WO2021100584A1 - Method for producing multilayer body, multilayer body and packaging material - Google Patents

Method for producing multilayer body, multilayer body and packaging material Download PDF

Info

Publication number
WO2021100584A1
WO2021100584A1 PCT/JP2020/042184 JP2020042184W WO2021100584A1 WO 2021100584 A1 WO2021100584 A1 WO 2021100584A1 JP 2020042184 W JP2020042184 W JP 2020042184W WO 2021100584 A1 WO2021100584 A1 WO 2021100584A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
film
group
layer
adhesive
Prior art date
Application number
PCT/JP2020/042184
Other languages
French (fr)
Japanese (ja)
Inventor
正光 新居
武田 博之
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021528394A priority Critical patent/JP7036283B2/en
Publication of WO2021100584A1 publication Critical patent/WO2021100584A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters

Definitions

  • the present invention relates to a method for producing a laminate, a laminate obtained by using the method, and a packaging material obtained by using the packaging material.
  • Packaging materials for foods and beverages have not only functions such as strength, resistance to cracking, retort resistance, and heat resistance to protect the contents from various distribution, storage such as refrigeration, and treatment such as heat sterilization. A wide variety of functions such as excellent transparency are required so that the contents can be confirmed.
  • an unstretched polyolefin film having excellent heat processability is indispensable, but the unstretched polyolefin film has many functions lacking as a packaging material.
  • the composite flexible film in which different types of polymer materials are combined is widely used as the packaging material.
  • the composite flexible film is composed of a thermoplastic plastic film layer or the like as an outer layer having various functions such as product protection and a thermoplastic plastic film layer or the like as a sealant layer.
  • the present invention has been made to solve at least a part of such a problem, and an object of the present invention is to provide a laminate having excellent gas barrier properties and a packaging material using the laminate.
  • the present invention is a method for producing a laminate having a first base material, a sealant layer, and an adhesive layer arranged between the first base material and the sealant layer, and is on the sealant layer.
  • the present invention relates to a step of forming an adhesive layer and a method for producing a laminate including.
  • the method for producing a laminate of the present invention it is possible to provide a laminate having excellent gas barrier properties and a packaging material using the laminate.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminated body manufactured by using the manufacturing method of the present invention.
  • the laminate 101 includes a first base material layer, an adhesive layer, an inorganic vapor deposition layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the first base material layer and the inorganic vapor deposition layer. Are pasted together.
  • the first base material layer can be used without particular limitation as long as it is a film or sheet having excellent chemical and physical strength (unless otherwise specified below, film is also a general term for film and sheet). Further, the base material may be a single-layer film or a multilayer laminated film. It can be appropriately selected according to the contents and type of the packaging material, which will be described later, and the conditions of use such as the presence or absence of heat treatment after filling the contents.
  • the base material include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, polypropylene, polyvinyl chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ionomer, and ethylene-.
  • resin films such as butylene terephthalate and polyethylene naphthalate
  • uniaxial or biaxially stretched polyester films such as polyethylene terephthalate and polyethylene naphthalate
  • uniaxially or biaxially stretched polyamide films such as nylon 6, nylon 66 and MXD6 (polymethoxylylen adipamide)
  • biaxially stretched polypropylene films A biaxially stretched polyethylene film or the like can be preferably used.
  • the film thickness of the film is not particularly limited, and may be appropriately selected in the range of 1 to 300 ⁇ m from the viewpoint of moldability and transparency. It is preferably in the range of 1 to 100 ⁇ m. If it is less than 1 ⁇ m, the strength is insufficient, and if it exceeds 300 ⁇ m, the rigidity becomes too high, which may make processing difficult.
  • the base film used was some kind of surface treatment, such as corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, physical treatment such as glow discharge treatment, or chemicals. It may be subjected to chemical treatment such as oxidation treatment or other treatment.
  • the base film for example, one or more selected from the above-mentioned resins are used, and the film is manufactured by a conventionally known film forming method such as an extrusion method, a cast molding method, a T-die method, a cutting method, and an inflation method. can do. Alternatively, it can be produced by a multi-layer coextrusion film forming method using two or more kinds of resins selected from the above-mentioned resins. From the viewpoint of film strength, dimensional stability, and heat resistance, the film may be stretched in the uniaxial or biaxial directions by using a tenter method, a tubular method, or the like.
  • the film as the base material may contain additives as needed. Specifically, improve workability, heat resistance, weather resistance, mechanical properties, dimensional stability, antioxidant properties, slipperiness, mold releasability, flame retardancy, antifungal properties, electrical properties, strength, etc.
  • plastic compounding agents such as lubricants, cross-linking agents, antioxidants, ultraviolet absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and the like can be added.
  • the amount of additive added should be adjusted within a range that does not affect other performance.
  • the sealant layer is a heat-sealing resin layer that can be melted by heat and fused to each other.
  • Suitable resins for the sealant layer include polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- ( Olefin resins such as meta) acrylate copolymer, ethylene- (meth) ethyl acrylate copolymer, ethylene-propylene copolymer, methylpentene polymer, polyethylene or polypropylene can be used as acrylic acid, methacrylic acid, maleic anhydride, etc.
  • Fumaric acid and other modified olefin resins modified with unsaturated carboxylic acid ternary copolymer of ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid, cyclic polyolefin, cyclic olefin copolymer, polyethylene terephthalate (PET), polyacrylonitrile (PAN) and the like.
  • a resin film, sheet, or other coating film made of one or more of these resins can be used as the sealant layer.
  • any unstretched, uniaxially stretched, or biaxially stretched film can be used as the film to be the sealant layer.
  • the stretched film stretched in the biaxial direction is vertically stretched 2 to 4 times by, for example, a roll stretching machine at 50 to 100 ° C., and further laterally stretched 3 to 5 times by a tenter stretching machine in an atmosphere of 90 to 150 ° C. Subsequently, it is obtained by heat treatment with a tenter stretching machine in an atmosphere of 100 to 240 ° C.
  • simultaneous biaxial stretching and sequential biaxial stretching may be used.
  • An easily peelable sealant film may be used for the sealant layer.
  • the easily peelable sealant film any of the interfacial peeling type, the coagulation peeling type, and the delamination type can be applied, and can be appropriately selected according to the type of the packaging material and the required characteristics described later.
  • the index of easy peelability is appropriately set according to the type of packaging material and the required characteristics, and as an example, the seal strength is 2 to 20 N / 15 mm.
  • easy peeling can be exhibited by a phase-separated polymer blend in which polypropylene is combined with high-density polyethylene, low-density polyethylene, an ethylene-vinyl acetate copolymer, or the like.
  • the film thickness of the sealant layer can be arbitrarily selected, but when applied to a packaging material described later, for example, it is selected in the range of 5 to 500 ⁇ m. It is more preferably 10 to 250 ⁇ m, and even more preferably 15 to 100 ⁇ m. If it is less than 5 ⁇ m, sufficient laminating strength as a packaging material cannot be obtained, and there is a risk that piercing resistance and the like will be lowered. If it exceeds 250 ⁇ m, the cost will increase and the film will become hard, resulting in reduced workability.
  • the inorganic vapor deposition layer can be provided directly on the film to be the sealant layer or via a layer formed by using an anchor coating agent or the like by a conventionally known method.
  • the method for forming the inorganic vapor deposition layer include a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, a plasma chemical vapor deposition method, and heat.
  • PVD method physical vapor deposition method
  • CVD method chemical Vapor Deposition method
  • the inorganic vapor deposition layer can be formed of any material such as various metals and their oxides.
  • aluminum, alumina (aluminum oxide), silica (silicon oxide), a combination thereof (for example, silica and alumina) and the like are preferably used.
  • the film thickness of the inorganic vapor deposition layer is preferably 1 to 200 nm.
  • the film thickness is more preferably 1 to 100 nm, and more preferably 15 to 60 nm.
  • the inorganic vapor deposition layer is silica, alumina, or a dual vapor deposition layer thereof, the film thickness is preferably 1 to 100 nm, more preferably 10 to 50 nm, and even more preferably 20 to 30 nm. ..
  • An anchor coat layer may be provided on the sealant film prior to the formation of the inorganic vapor deposition layer.
  • the anchor coat layer can be formed by applying an anchor coat agent on a sealant film and drying it.
  • the adhesion between the sealant layer and the inorganic vapor deposition layer can be improved, and the flatness of the formed surface of the inorganic vapor deposition layer can be improved by the leveling action of the anchor coating agent, and uniform inorganic vapor deposition with few film defects such as cracks can be achieved. Layers can be formed.
  • anchor coating agent examples include solvent-soluble or water-soluble polyester resin, isocyanate resin, urethane resin, acrylic resin, vinyl alcohol resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, oxazoline group-containing resin, and modified styrene.
  • examples thereof include those containing a resin, a modified silicon resin, an alkyl titanate and the like. These can be used alone or in combination of two or more.
  • the film thickness of the anchor coat layer is not particularly limited, but is preferably about 5 nm to 5 ⁇ m, and more preferably 10 nm to 1 ⁇ m. As a result, a uniform layer in which internal stress is suppressed can be formed on the sealant film.
  • the anchor coat layer When the anchor coat layer is provided, it is also preferable to perform a discharge treatment on the surface of the sealant film prior to forming the anchor coat layer in order to improve the coatability and adhesiveness of the anchor coat agent.
  • sealant film having an inorganic thin-film deposition layer aluminum-deposited CPP, aluminum-deposited OPP, aluminum-deposited PE, transparent-deposited PET and the like are commercially available, and these can also be used in the production method of the present invention.
  • the adhesive layer is a cured coating film of a solvent-based two-component adhesive containing a polyester polyol (A)-containing polyol composition (I), a polyisocyanate composition (II), and an ester-based solvent.
  • the polyester polyol (A) is a reaction product of a polyvalent carboxylic acid and a polyhydric alcohol, and may be urethane-extended with polyisocyanate, and any structure can be used.
  • a polyester polyol (A1) obtained by reacting a polyester polyol having three or more hydroxyl groups with a carboxylic acid anhydride or a polycarboxylic acid, a polyester polyol having a polymerizable carbon-carbon double bond (A2), and a glycerol skeleton.
  • a polyester polyol (A3) having the above, a polyester polyol (A4) obtained by polycondensing an ortho-oriented polyvalent carboxylic acid with a polyhydric alcohol, and a polyester polyol (A5) having an isocyanul ring are preferably used. Only one kind of these polyester polyols (A) may be used, or two or more kinds thereof may be used in combination. Although details will be described later, these cured coating films of the polyester polyol (A) are particularly excellent in gas barrier properties and are particularly suitable for the production method of the present invention.
  • the adhesive has a gas barrier property when the cured coating film of the adhesive applied with 5 g / m 2 (solid content) of the adhesive has an oxygen barrier property of 300 cc / m 2 / day / atm or less.
  • the water vapor barrier property satisfies at least one condition of 120 g / m 2 / day or less.
  • the polyester polyol (A1) is obtained by reacting a polyester polyol (a1) having three or more hydroxyl groups with a carboxylic acid anhydride or a polyvalent carboxylic acid, and has at least one carboxyl group and two or more hydroxyl groups. Have.
  • the polyester polyol (a1) can be obtained by making a part of the polyvalent carboxylic acid or polyhydric alcohol trivalent or higher.
  • the polyvalent carboxylic acid used for preparing the polyester polyol (A1) preferably contains at least one of orthophthalic acid and orthophthalic anhydride.
  • Polyester polyols obtained by using these compounds as polyvalent carboxylic acids have excellent gas barrier properties and adhesiveness. It is presumed that the reason why the gas barrier property of the adhesive is excellent by using orthophthalic acid and orthophthalic anhydride is that the rotation of the polyester chain obtained by using orthophthalic acid and its acid anhydride is suppressed. It is presumed that the reason why the adhesiveness is excellent is that the polyester chain exhibits amorphousness due to the asymmetry, and sufficient substrate adhesion is imparted.
  • trivalent or higher polyvalent carboxylic acid examples include trimellitic acid and its acid anhydride, pyromellitic acid and its acid anhydride. In order to prevent gelation during synthesis, it is preferable to use a trivalent carboxylic acid as a trivalent or higher polyvalent carboxylic acid.
  • polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired.
  • aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecandicarboxylic acid; unsaturated bond-containing polyvalent carboxylic acids such as maleic anhydride, maleic acid, and fumaric acid; , 3-Cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic polyvalent carboxylic acids; terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'
  • the polyhydric alcohol used for preparing the polyester polyol (A1) preferably contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol. It is presumed that the smaller the number of carbon atoms between oxygen atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate. Therefore, it is particularly preferable to use ethylene glycol.
  • trihydric or higher polyhydric alcohol examples include glycerin, trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, pentaerythritol, dipentaerythritol and the like. Be done. In order to prevent gelation during synthesis, it is preferable to use a trihydric alcohol as a trihydric or higher polyhydric alcohol.
  • polyhydric alcohols may be copolymerized as long as the effects of the present invention are not impaired. Specifically, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetra.
  • Aliper diols such as ethylene glycol, dipropylene glycol and tripropylene glycol; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, these ethylene oxide extensions and hydrolyzed fats.
  • Aromatic polyvalent phenols such as ring group can be exemplified.
  • the polyester polyol (A1) reacts the polyvalent carboxylic acid or its acid anhydride with the polyester polyol (a1) having three or more hydroxyl groups, which is a reaction product of the above-mentioned polyvalent carboxylic acid and polyhydric alcohol. It can be obtained by.
  • the ratio of the hydroxyl group to be reacted with the polyvalent carboxylic acid is preferably 1/3 or less of the hydroxyl group contained in the polyester polyol (a1).
  • the polyvalent carboxylic acid or its acid anhydride to be reacted with the polyester polyol (a1) is preferably divalent or trivalent.
  • Succinic anhydride maleic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, 4-cyclohexene-1,2-dicarboxylic acid anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, phthalic anhydride, 2, Examples thereof include, but are not limited to, 3-naphthalenedicarboxylic acid anhydride and trimellitic acid anhydride.
  • the polyester polyol (A2) having a polymerizable carbon-carbon double bond can be obtained by using a component having a polymerizable carbon-carbon double bond as a polyvalent carboxylic acid and a polyhydric alcohol.
  • maleic anhydride maleic acid, fumaric acid, 4-cyclohexene-1,2-dicarboxylic acid and its acid anhydride, 3-methyl-4-cyclohexene-1, as polyvalent carboxylic acids having a polymerizable carbon-carbon double bond.
  • 2-Dicarboxylic acid and its acid anhydride and the like maleic anhydride, maleic acid, and fumaric acid are preferable because it is presumed that the smaller the number of carbon atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate.
  • polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired.
  • aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid; alicyclic groups such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • Polyvalent carboxylic acid Polyvalent carboxylic acid; orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyl Dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid and acid anhydride or ester-forming derivative of these dicarboxylic acids, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid
  • aromatic polyvalent carboxylic acids such as ester-forming derivatives of these dihydroxycarboxylic acids, and one or more of them can be used in combination.
  • these acid anhydrides can also be used.
  • succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, acid anhydrides of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable, in order to obtain gas barrier properties.
  • Examples of the polyhydric alcohol having a polymerizable carbon-carbon double bond include 2-butene-1,4-diol and the like.
  • polyhydric alcohols may be copolymerized as long as the effects of the present invention are not impaired. Specifically, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol.
  • ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedim Methanol is preferred, and ethylene glycol is more preferred.
  • the polyester polyol (A2) having a polymerizable carbon-carbon double bond is a reaction product of a polyester polyol (a2) having a hydroxyl group and a carboxylic acid having a polymerizable double bond or a carboxylic acid anhydride.
  • a carboxylic acid having a polymerizable double bond or an acid anhydride thereof include a carboxylic acid having a polymerizable double bond such as maleic acid, maleic anhydride, or fumaric acid, and unsaturated fatty acids such as oleic acid and sorbic acid.
  • the polyester polyol (a2) preferably has three or more hydroxyl groups.
  • the polyester polyol (a2) has two or less hydroxyl groups
  • the number of hydroxyl groups contained in the polyester polyol (A2) is 0 to 1, and molecular elongation is unlikely to occur during the reaction with the polyisocyanate composition (II) described later. As a result, the adhesive strength and the like may decrease.
  • the polyester polyol (A2) preferably has a double bond component ratio of 5 to 60% by mass. If it is less than 5% by mass, the number of cross-linking points between the polymerizable double bonds is reduced, and it becomes difficult to obtain gas barrier properties. If it exceeds 60% by mass, the number of cross-linking points increases, and the flexibility of the cured coating film may decrease, making it difficult to obtain adhesive strength.
  • the ratio of double bond components in the polyester polyol (A2) is calculated using the following formula (a).
  • the monomer refers to a polyvalent carboxylic acid and a polyhydric alcohol used in the synthesis of polyester polyol (A2).
  • polyester polyol (A2) a drying oil or a semi-drying oil can be mentioned.
  • drying oil or semi-drying oil include known and commonly used drying oils and semi-drying oils having a carbon-carbon double bond.
  • the polyester polyol (A3) having a glycerol skeleton has a glycerol skeleton represented by the following general formula (1).
  • R 1 to R 3 are independently hydrogen atoms or the following general formula (2). However, at least one of R 1 to R 3 is the following general formula (2). ) Represents a group represented by.)
  • n represents an integer of 1 to 5
  • X is a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group which may have a substituent. It represents an arylene group selected from the group consisting of a 2,3-anthraquinonediyl group and a 2,3-anthracenediyl group, and Y represents an alkylene group having 2 to 6 carbon atoms.
  • Polyester polyol (A3) is a compound any one of R 1, R 2 and R 3 is a group represented by the general formula (2), R 1, R 2 and one of R 3 2 two generally formula A mixture of two or more compounds of the compound represented by (2) and the compound represented by the general formula (2) in which all of R 1 , R 2 and R 3 are represented by the general formula (2). May be. It is more preferable that all of R 1 to R 3 are groups represented by the general formula (2).
  • X when X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is any carbon atom on X different from the free radical. Is bound to.
  • substituents include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group
  • Y in the general formula (2) include an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, and a 1,6-hexylene group. It is an alkylene group having 2 to 6 carbon atoms, such as a methylpentylene group and a dimethylbutylene group. A propylene group and an ethylene group are preferable, and an ethylene group is more preferable.
  • the polyester polyol (A3) is obtained by reacting glycerol, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof, and a polyhydric alcohol as essential components.
  • Examples of the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof include orthophthalic acid or an acid anhydride thereof, naphthalene 2,3-dicarboxylic acid or an acid anhydride thereof, and naphthalene 1,2-dicarboxylic acid. Examples thereof include an acid or an acid anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an acid anhydride thereof, and 2,3-anthracenecarboxylic acid or an acid anhydride thereof. These compounds may have a substituent on any carbon atom of the aromatic ring.
  • Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • substituent include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
  • polyvalent carboxylic acid another polyvalent carboxylic acid may be copolymerized as long as the effect of the present invention is not impaired.
  • aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecandicarboxylic acid; unsaturated bond-containing polyvalent carboxylic acids such as maleic anhydride, maleic acid, and fumaric acid; , 3-Cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic polyvalent carboxylic acids; terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, diphenic acid and its acid an
  • Species or two or more species can be used together.
  • succinic acid 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid, and diphenic acid are preferable.
  • polyhydric alcohol examples include an alkylene diol having 2 to 6 carbon atoms.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, and dimethylbutanediol.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, and dimethylbutanediol.
  • a polyhydric alcohol other than glycerol and an alkylene diol having 2 to 6 carbon atoms may be copolymerized as long as the effect of the present invention is not impaired.
  • aliphatic polyhydric alcohols such as erythritol, pentaerythol, dipentaerythritol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetraethylene glycol and tripropylene glycol, cyclohexanedi.
  • Aliphatic polyhydric alcohols such as methanol and tricyclodecanedimethanol, aromatic polyhydric phenols such as hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, or ethylene oxide thereof. Elongates and hydrolyzed aliphatic ring groups can be exemplified.
  • the content of the glycerol residue contained in the polyester polyol (A3) in the solid content of the gas barrier adhesive is 5% by mass or more.
  • P refers to the polyester polyol (A3).
  • the resin solid content mass of the gas barrier adhesive is determined from the total mass of the polyol composition (I) and the polyisocyanate composition (II) to be used, as well as the diluting solvent, the volatile component contained in the polyisocyanate composition (II), and the inorganic component.
  • the mass is the mass excluding the mass.
  • the polyester polyol (A4) obtained by polycondensing an ortho-oriented polyvalent carboxylic acid and a polyhydric alcohol is a polyvalent carboxylic acid containing at least one orthophthalic acid and its acid anhydride, ethylene glycol, and propylene. It consists of a polyhydric alcohol containing at least one selected from the group consisting of glycols, butylene glycols, neopentyl glycols, and cyclohexanedimethanol.
  • a polyester polyol in which the usage rate of the orthophthalic acid and its acid anhydride with respect to the total amount of the polyvalent carboxylic acid is 70 to 100% by mass is preferable.
  • the polyvalent carboxylic acid requires either orthophthalic acid or an acid anhydride thereof, but other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired.
  • the aliphatic polyvalent carboxylic acid includes succinic acid, adipic acid, azelaic acid, sebacic acid, dodecandicarboxylic acid and the like, and the unsaturated bond-containing polyvalent carboxylic acid includes maleic anhydride and maleic acid.
  • Fumaric acid and the like 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like as the alicyclic polyvalent carboxylic acid, and terephthalic acid, isophthalic acid and frangicarboxylic acid as the aromatic polyvalent carboxylic acid.
  • Acid pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane -P, p'-dicarboxylic acids and acid anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids, etc.
  • the polybasic acids of can be used alone or in admixture of two or more. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, and isophthalic acid are preferable.
  • the polyhydric alcohol includes at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol, but other polyhydric alcohols can be used as long as the effects of the present invention are not impaired. It may be copolymerized. Specifically, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetra.
  • Aliper diols such as ethylene glycol, dipropylene glycol and tripropylene glycol; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol and their ethylene oxide extensions, hydrogenated Aromatic polyhydric phenols such as alicyclic groups can be exemplified.
  • the polyester polyol (A5) having an isocyanul ring is represented by the following general formula (3).
  • R 1 to R 3 are independently represented by ⁇ (CH 2 ) n1 ⁇ OH (where n1 represents an integer of 2 to 4) or the following general formula (4). However , at least one of R 1 , R 2 and R 3 is a group represented by the general formula (4).
  • n2 represents an integer of 2 to 4
  • n3 represents an integer of 1 to 5
  • X is a 1,2-phenylene group, a 1,2-naphthylene group, and a 2,3-naphthylene group.
  • Y represents an alkylene group having 2 to 6 carbon atoms. Represent.
  • Polyester polyol (A5) includes a compound any one of R 1, R 2 and R 3 is a group represented by the general formula (4), R 1, R 2 and one of R 3 2 two generally formula A mixture of two or more compounds of the compound represented by (4) and the compound represented by the general formula (4) in which all of R 1 , R 2 and R 3 are represented by the general formula (4). May be. It is more preferable that all of R 1 to R 3 are groups represented by the general formula (4).
  • the alkylene group represented by ⁇ (CH2) n1 ⁇ may be linear or branched.
  • n1 is preferably 2 or 3, and most preferably 2.
  • X when X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is any carbon atom on X different from the free radical. Is bound to.
  • substituents include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group
  • the substituent of X is preferably a hydroxyl group, a cyano group, a nitro group, an amino group, a phthalimide group, a carbamoyl group, an N-ethylcarbamoyl group or a phenyl group, preferably a hydroxyl group, a phenoxy group, a cyano group, a nitro group or a phthalimide group.
  • a phenyl group is more preferred.
  • Y in the general formula (4) include an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, and a 1,6-hexylene group. It is an alkylene group having 2 to 6 carbon atoms, such as a methylpentylene group and a dimethylbutylene group. A propylene group and an ethylene group are preferable, and an ethylene group is more preferable.
  • the polyester polyol (A5) is obtained by reacting a triol having an isocyanul ring, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof, and a polyhydric alcohol as essential components.
  • triols having an isocyanuric ring include alkylene oxide adducts of isocyanuric acid such as 1,3,5-tris (2-hydroxyethyl) isocyanuric acid and 1,3,5-tris (2-hydroxypropyl) isocyanuric acid. And so on.
  • Examples of the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof include orthophthalic acid or an acid anhydride thereof, naphthalene 2,3-dicarboxylic acid or an acid anhydride thereof, and naphthalene 1,2-dicarboxylic acid. Examples thereof include an acid or an acid anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an acid anhydride thereof, and 2,3-anthracenecarboxylic acid or an acid anhydride thereof. These compounds may have a substituent on any carbon atom of the aromatic ring.
  • Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group.
  • substituent include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
  • Polyhydric alcohols include alkylene diols having 2 to 6 carbon atoms, specifically ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Examples thereof include diols such as 1,6-hexanediol, methylpentanediol, and dimethylbutanediol.
  • 1,3,5-tris (2-hydroxyethyl) isocyanuric acid or 1,3,5-tris (2-hydroxypropyl) isocyanuric acid is used as the triol compound having an isocyanul ring, and the carboxylic acid is in the ortho position.
  • a polyester polyol (A5) having an isocyanul ring using an aromatic polyvalent carboxylic acid substituted with or using orthophthalic anhydride as the acid anhydride and ethylene glycol as the polyhydric alcohol has improved gas barrier properties and adhesiveness. Excellent and preferable.
  • the isocyanul ring is highly polar and does not form hydrogen bonds.
  • a method for improving adhesiveness a method of blending highly polar functional groups such as a hydroxyl group, a urethane bond, a ureido bond, and an amide bond is known, and a resin having these bonds forms an intermolecular hydrogen bond. It is easy and may impair the solubility in solvents such as ethyl acetate and 2-butanone, which are often used for solvent-based adhesives, but polyester resins having an isocyanul ring do not impair the solubility, so that the solubility is easily impaired. It can be diluted.
  • the isocyanul ring is trifunctional, a polyester polyol compound having the isocyanul ring as the center of the resin skeleton and a polyester skeleton having a specific structure in the branched chain can obtain a high crosslink density. It is presumed that by increasing the crosslink density, the gap through which a gas such as oxygen passes can be reduced. As described above, it is presumed that the isocyanul ring has high polarity and a high crosslink density without forming an intermolecular hydrogen bond, so that gas barrier properties and adhesiveness can be ensured.
  • the content of the isocyanul ring contained in the polyester polyol (A5) in the solid content of the gas barrier adhesive is 5% by mass.
  • P refers to a polyester polyol (A5).
  • the resin solid content mass of the gas barrier adhesive is determined from the total mass of the polyol composition (I) and the polyisocyanate composition (II) to be used, the diluting solvent, the volatile component contained in the polyisocyanate composition (II), and the inorganic component.
  • the mass is the mass excluding the mass.
  • the hydroxyl value of the polyester polyol is preferably 20 mgKOH / g or more and 250 mgKOH / g or less.
  • the hydroxyl value is smaller than 20 mgKOH / g, the viscosity of the polyol composition (I) becomes high because the molecular weight is too large, and good coating suitability cannot be obtained.
  • the hydroxyl value exceeds 250 mgKOH / g, the molecular weight is too small and the crosslink density of the cured coating film becomes too high, so that good adhesive strength cannot be obtained.
  • the acid value is preferably 200 mgKOH / g or less.
  • the acid value exceeds 200 mgKOH / g, the reaction between the polyol composition (I) and the polyisocyanate composition (II) becomes too fast, and good coating suitability cannot be obtained.
  • the lower limit of the acid value of the polyester polyol is not particularly limited, but as an example, it is 20 mgKOH / g or more.
  • the acid value is 20 mgKOH / g or more, good gas barrier properties and initial cohesive force can be obtained by intermolecular interaction.
  • the hydroxyl value of the polyester polyol can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070.
  • the number average molecular weight of the polyester polyol as described above is 300 to 5000 because a crosslink density having an excellent balance between adhesiveness and gas barrier property can be obtained. More preferably, the number average molecular weight is 350 to 3000. If the molecular weight is less than 300, the cohesive force of the adhesive at the time of coating becomes too small, and there is a possibility that the film may be displaced at the time of laminating or the bonded film may be lifted. On the other hand, if the molecular weight is higher than 5000, the viscosity at the time of coating becomes too high and the coating cannot be performed, or the adhesiveness is low and the lamination cannot be performed. The number average molecular weight is calculated from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
  • the glass transition temperature of the polyester polyol is preferably ⁇ 30 ° C. or higher and 80 ° C. or lower, more preferably 0 ° C. or higher and 60 ° C. or lower, and further preferably 25 ° C. or higher and 60 ° C. or lower. If the glass transition temperature exceeds 80 ° C., the flexibility of the polyester polyol at around room temperature is low, so that the adhesion to the substrate is poor and the adhesiveness may be lowered. On the other hand, if the temperature is lower than -30 ° C, the molecular motion of the polyester polyol at around room temperature is intense, so that sufficient gas barrier properties may not be obtained.
  • the polyester polyol may be a polyester polyurethane polyol having a number average molecular weight of 1000 to 15000 by urethane elongation of polyester polyols (A1) to (A5) by reaction with a diisocyanate compound. Since the urethane-extended polyester polyol has a molecular weight component of a certain level or more and a urethane bond, it has an excellent gas barrier property, an excellent initial cohesive force, and an excellent adhesive for laminating.
  • the isocyanate compound conventionally known compounds can be used without particular limitation, and tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydride diphenylmethane diisocyanate, xylylene diisocyanate, hydride xylylene diisocyanate, isophorone diisocyanate or Dimeric and trimeric of these isocyanate compounds, and excess amounts of these isocyanate compounds, such as ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene.
  • blocked isocyanate may be used as the isocyanate compound.
  • the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, acetoxime, methylethylketooxime, cyclohexanone oxime, and methanol.
  • Alcohols such as ethanol, propanol and butanol, ethylene chlorohydrin, 1,3-dichloro-2- Examples thereof include halogen-substituted alcohols such as propanol, tertiary alcohols such as t-butanol and t-pentanol, and lactams such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam and ⁇ -propyrrolactam.
  • the blocked isocyanate is obtained by subjecting the above-mentioned isocyanate compound and an isocyanate blocking agent to an addition reaction by a known and commonly used appropriate method.
  • xylylene diisocyanate hydrogenated xylylene diisocyanate, toluene diisocyanate, and diphenylmethane diisocyanate are preferable because good gas barrier properties can be obtained, and isocyanate compounds having a metaxylene skeleton such as metaxylylene diisocyanate and metahydrogenated xylylene diisocyanate are preferable. Is more preferable to use.
  • Examples of the isocyanate compound having a metaxylene skeleton include a trimer of xylene diisocyanate, a burette compound synthesized by reaction with an amine, and an adduct compound formed by reacting with an alcohol.
  • the adhesive is a solvent type, it is preferable to use an adduct body because the solubility in the organic solvent used for the solvent type adhesive is better than that of the trimer body and the burette body.
  • an adduct formed by reacting with an alcohol appropriately selected from the above low molecular weight active hydrogen compounds can be used, and among them, ethylene oxide adducts of trimethylolpropane, glycerol, triethanolamine, and metaxylylenediamine can be used.
  • An adduct body with an object is preferable.
  • the polyisocyanate composition (II) contains an epoxy compound.
  • the epoxy compound include bisphenol A diglycidyl ether and its oligomer, hydride bisphenol A diglycidyl ether and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, and p-oxybenzoic acid di.
  • Glycidyl ester tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipate diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1 , 4-Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyalkylene glycol diglycidyl ethers, trimeric acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl Examples thereof include propylene urea, glycerol triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylol propane triglycidyl
  • epoxy curing accelerator When an epoxy compound is used, a widely known epoxy curing accelerator may be appropriately added for the purpose of accelerating curing as long as the object of the present invention is not impaired.
  • composition (I) When a composition containing a polyol having a polymerizable carbon-carbon double bond such as the polyester polyol (A2) is used as the polyol composition (I), in order to promote the polymerization of the carbon-carbon double bond, A known polymerization catalyst can be used in combination, and a transition metal complex is mentioned as an example.
  • the transition metal complex is not particularly limited as long as it is a compound having an ability to oxidatively polymerize a polymerizable double bond.
  • metals such as cobalt, manganese, lead, calcium, cerium, zirconium, zinc, iron, copper, octyl acid, naphthenic acid, neodecanoic acid, stearic acid, resin acid, tall oil fatty acid, tung oil fatty acid, linseed oil fatty acid, Salts with soybean oil fatty acids and the like can be used.
  • the blending amount of the transition metal complex is preferably 0 to 10 parts by mass, more preferably 0 to 3 parts by mass with respect to the resin solid content contained in the polyol composition (I).
  • the equivalent ratio of the hydroxyl group contained in the polyol composition (I) to the isocyanate group contained in the polyisocyanate composition (II) of the polyol composition (I) and the polyisocyanate composition (II) is 1/0. It is preferably blended so as to be 5 to 1/10, and more preferably to be blended so as to be 1/1 to 1/5.
  • the isocyanate compound is excessive, the excess isocyanate compound remaining in the cured coating film of the adhesive may bleed out from the adhesive layer.
  • the reactive functional groups contained in the polyisocyanate composition (II) are insufficient, the adhesive strength may be insufficient.
  • additives may be added to the adhesive as long as the adhesiveness and gas barrier property (when the adhesive has gas barrier property) are not impaired.
  • An inorganic filler may be used as such an additive.
  • the inorganic filler include silica, alumina, aluminum flakes, glass flakes and the like.
  • Plate-like inorganic compounds include hydrous silicates (phyllocate minerals, etc.), kaolinite-serpentine clay minerals (haloisite, kaolinite, enderite, dikite, nacrite, etc., antigolite, chrysotile, etc.), pyrophyllium.
  • Light-Tark (pyrophyllite, talc, kerolai, etc.), smectite clay minerals (montmorillonite, biderite, nontronite, saponite, hectrite, saconite, stivuncite, etc.), vermiculite clay minerals (vermiculite, etc.), mica or Mica clay minerals (white mica, gold mica, etc., margarite, tetracylic mica, teniolite, etc.), green mudstones (cookate, sudowite, clinochloa, chamosite, nimite, etc.), hydrotalcite, plate sulfate Examples thereof include barium, boehmite and aluminum polyphosphate. These minerals may be natural clay minerals or synthetic clay minerals.
  • the plate-like inorganic compound may be used alone or in combination of two or more.
  • the plate-like inorganic compound may be an ionic compound having an electric charge between layers, or a nonionic compound having no electric charge.
  • the presence or absence of electric charge between layers does not directly affect the gas barrier property of the adhesive layer.
  • ionic plate-like inorganic compounds and inorganic compounds that have swelling properties with respect to water are inferior in dispersibility in solvent-type adhesives, and when the amount added is increased, they become thicker with the adhesives or become chyso-friendly. As a result, the coating suitability may decrease. Therefore, the plate-like inorganic compound is preferably nonionic without interlayer electrification.
  • the average particle size of the plate-shaped inorganic compound is not particularly limited, but as an example, it is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more. If it is smaller than 0.1 ⁇ m, the detour route of oxygen molecules will not be long, and improvement of gas barrier property cannot be expected sufficiently.
  • the upper limit of the average particle size is not particularly limited, but if the particle size is too large, defects such as streaks may occur on the coated surface depending on the coating method. Therefore, as an example, the average particle size is preferably 100 ⁇ m or less, and preferably 20 ⁇ m or less.
  • the average particle size of the plate-shaped inorganic compound means the particle size that appears most frequently when the particle size distribution of the plate-shaped inorganic compound is measured by a light scattering type measuring device.
  • the aspect ratio of the plate-like inorganic compound is preferably high in order to improve the gas barrier property due to the maze effect of oxygen. Specifically, it is preferably 3 or more, more preferably 10 or more, and most preferably 40 or more.
  • the blending amount of the plate-shaped inorganic compound is arbitrary, but as an example, when the total solid content of the polyol composition (I), the polyisocyanate composition (II), and the plate-shaped inorganic compound is 100 mass, the plate-shaped inorganic compound is formed.
  • the blending amount of the inorganic compound is 5 to 50 parts by mass.
  • the adhesive may contain an adhesion promoter.
  • adhesion accelerator examples include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate-based coupling agents, aluminum-based coupling agents, and epoxy resins. Silane coupling agents and titanate-based coupling agents can be expected to have the effect of improving the adhesiveness to various film materials.
  • the adhesive may contain a known acid anhydride.
  • the acid anhydride include phthalic acid anhydride, succinic acid anhydride, het acid anhydride, hymic acid anhydride, maleic acid anhydride, tetrahydrophthalic acid anhydride, hexahydraphthalic acid anhydride, and tetrapromphthalic acid.
  • Anhydride tetrachlorphthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic acid anhydride, 2,3,6,7-naphthalintetracarboxylic acid dianhydride, 5- (2) , 5-Oxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, maleic anhydride copolymer, and the like.
  • a compound or the like having an oxygen trapping function may be further added.
  • the compound having an oxygen trapping function include low molecular weight organic compounds that react with oxygen such as hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, and pyrogallol, cobalt, manganese, nickel, iron, and the like.
  • transition metal compounds such as copper.
  • a tackifier such as xylene resin, terpene resin, phenol resin, rosin resin may be added as needed.
  • the blending amount thereof is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the total solid content of the polyol composition (I) and the polyisocyanate composition (II).
  • active energy rays can also be used as a method for reacting the polymerizable carbon-carbon double bond.
  • a known technique can be used as the active energy ray, and it can be cured by irradiating it with ionizing radiation such as electron beam, ultraviolet ray, or ⁇ ray.
  • ionizing radiation such as electron beam, ultraviolet ray, or ⁇ ray.
  • a known ultraviolet irradiation device equipped with a high-pressure mercury lamp, an excimer lamp, a metal halide lamp, or the like can be used.
  • Radical-generating photo (polymerization) initiators include hydrogen abstraction types such as benzyl, benzophenone, Michler's ketone, 2-chlorothioxanthone, and 2,4-diethylthioxanthone, benzoin ethyl ether, diethoxyacetophenone, benzylmethyl ketal, and hydroxy.
  • Examples thereof include photocleavable types such as cyclohexylphenyl ketone and 2-hydroxy-2-methylphenyl ketone. Among these, one can be used alone or a plurality of them can be used in combination.
  • the adhesive may contain stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, blocking inhibitors, colorants, crystal nucleating agents, and the like.
  • stabilizers antioxidants, heat stabilizers, UV absorbers, etc.
  • plasticizers plasticizers
  • antistatic agents antistatic agents
  • lubricants blocking inhibitors
  • colorants crystal nucleating agents, and the like.
  • the adhesive used in the present invention is a solvent-based adhesive, and at least one of the polyol composition (I) and the polyisocyanate composition (II) contains a diluting solvent.
  • the diluting solvent used is toluene, xylene, methylene chloride, tetrahydrofuran, methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, acetone, methyl ethyl ketone (MEK), cyclohexanone, toluol, xylol, n-hexane, cyclohexane. And so on.
  • the solvent used as a reaction medium in the production of the constituent components of the polyol composition (I) or the polyisocyanate composition (II) may be further used as a diluting solvent in coating.
  • FIG. 2 is a schematic configuration diagram showing an example of a laminating apparatus 10 used for manufacturing the laminated body of the present invention.
  • the laminating device 10 includes film feeding devices 1 and 2, a coating device 3, a drying device 4, a bonding device 5, and a winding device 6.
  • the film supply device 1 is a device that unwinds the first film W1 from the winding R1 and continuously sends it to the coating device 3.
  • the film supply device 2 is a device that unwinds the second film W2 from the take-up R2 and continuously sends it to the bonding device 5.
  • the sealant film having the inorganic vapor deposition layer is the first film W1 and is set in the take-up R1.
  • the first base material layer is the second film W2 and is set on the take-up R2.
  • the coating device 3 is a device that applies an adhesive to the first film W1.
  • the coating device 3 includes, for example, an adhesive transfer roll 3a, an impression cylinder 3b, an adhesive tank 3c, a doctor blade 3d, and a smoothing roll 3e.
  • a chamber doctor may be used instead of the adhesive tank 3c and the doctor blade 3d.
  • the adhesive G contained in the adhesive tank 3c is transferred to the first film W1 via the adhesive transfer roll 3a. At this time, the excess adhesive G adhering to the adhesive transfer roll 3a is scraped off by the doctor blade 3d.
  • the impression cylinder 3b is a rotating body that presses the first film W1 with the adhesive transfer roll 3a while winding the first film W1 to attach the adhesive G attached to the adhesive transfer roll 3a to the first film W1.
  • the smoothing roll 3e is a rotating body that smoothes the coated surface of the adhesive G transferred to the first film W1 and rotates in a direction opposite to the traveling direction of the film.
  • the transport speed of the first film W1 and the second film W2 is arbitrarily set, but as an example, it is 80 m / min or more and 300 m / min. It is preferably 100 m / min or more, more preferably 150 m / min or more, preferably 250 m / min or less, and more preferably 200 m / min or less.
  • the adhesive G contained in the adhesive tank 3c is a mixture of a polyol composition (I) containing a polyester polyol (A), a polyisocyanate composition (II), and a two-component adhesive containing an ester solvent. It is a solvent.
  • the amount of the adhesive G applied is appropriately adjusted, but as an example, the solid content is 1 g / m 2 or more and 10 g / m 2 or less, preferably 1 g / m 2 or more and 5 g / m 2 or less.
  • the drying device 4 is a device for evaporating the diluting solvent in the adhesive transferred to the first film W1 by heating.
  • a heating method a hot air blowing method is widely used.
  • the drying device 4 generally includes a plurality of drying furnaces. When the drying apparatus 4 includes a plurality of drying furnaces, the drying furnaces may be set to the same temperature or may be set to different temperatures.
  • the temperature of the drying furnace is gradually increased from the drying furnace located on the upstream side to the drying furnace located on the downstream side with respect to the transport direction of the first film W1. Is preferably high.
  • the temperature of the drying furnace is preferably 50 ° C. or higher and 100 ° C. or lower.
  • the first film W1 that has passed through the drying device 4 is conveyed to the bonding device 5 and bonded to the second film W2 via the adhesive G.
  • the bonding device 5 includes a pair of nip rolls 5a and 5b, and presses and bonds the first film W1 and the second film W2 between the nip rolls 5a and 5b.
  • the nip roll 5a is a rubber roll
  • the nip roll 5b is a metal roll.
  • the nip roll 5b includes a heating device (not shown) that regulates the temperature of the adhesive G.
  • the laminated body W3 bonded by the nip rolls 5a and 5b is sent to the winding device 6 through the cooling roll 5c.
  • the bonding device 5 may be provided with a cooling roll 5c.
  • the cooling roll 5c is arranged between the nip rolls 5a and 5b and the winding device 6, and includes a mechanism for cooling the roll. Examples of the cooling mechanism include a method of passing water through the inside of the roll. After the laminated body W3 is cooled by the cooling roll 5c, tension is applied by the winding device 6 to wind the laminated body W3. As a result, the laminated body W3 is prevented from being wound tightly and curled.
  • the wound laminate W3 is aged at room temperature to 80 ° C. for 12 to 240 hours to obtain the laminate of the present invention.
  • the production method of the present invention can be applied to the production of various laminates, but is suitable when the first base material is a polyolefin film such as a biaxially stretched polypropylene film or a biaxially stretched polyethylene.
  • the first base material is a polyolefin film such as a biaxially stretched polypropylene film or a biaxially stretched polyethylene.
  • the laminate 101 Taking the laminate 101 as an example, if an OPP film is used as the first base material layer and an aluminum-deposited CPP is used as the sealant layer having an inorganic vapor-deposited layer, most of the laminate is made of polypropylene, so that it can be recycled more than before. Expected to be easier.
  • the adhesive layer using a solvent-based two-component adhesive containing a polyester polyol is a polyolefin film or a polyolefin film. It was found that the organic solvent remained in the adhesive layer when it came into contact with the printing layer provided above. When the amount of residual solvent in the adhesive layer exceeds a certain standard, the organic solvent remaining in the adhesive layer may migrate to the inside of the packaging material and cause an effect on the human body, changes in the taste and aroma of the contents. Is not acceptable as a laminate for food packaging.
  • the amount of residual solvent in the adhesive layer is extremely small even when a polyolefin film such as a polypropylene film or a polyethylene film is used as the first base material layer. Can be done. Therefore, it is possible to provide a laminate that is easy to recycle and has excellent gas barrier properties.
  • the production method of the present invention is particularly effective for an adhesive containing an ester solvent such as methyl acetate, ethyl acetate, n-propyl acetate and n-butyl acetate.
  • the tension between the film supply device 1 and the coating device 3 is set to 25 to 50 N (the width of the first film W1 is 800 mm). For ⁇ 1000 mm).
  • the sealant layer when a sealant layer having an inorganic thin-film vapor deposition layer is used as the first film W1, the sealant layer is deformed and cracked in the inorganic thin-film deposition layer while being conveyed through a plurality of rolls or passing through the drying device 4.
  • the adhesive G having a gas barrier property fills the cracks generated in the inorganic vapor deposition layer, so that the sealant film is laminated with excellent gas barrier properties.
  • Body W3 can be provided.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention.
  • the laminate 102 includes a first base material layer, a printing layer, an adhesive layer, an inorganic vapor deposition layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the printing layer and the inorganic vapor deposition layer. It is pasted together.
  • the inorganic vapor deposition layer is vapor-deposited on the sealant layer, and these correspond to the first film W1 in the above-mentioned production method.
  • the first base material layer including the print layer corresponds to the second film W2 in the above-mentioned production method.
  • the adhesive layer is a cured coating film of the above-mentioned adhesive.
  • the laminated body 102 corresponds to the above-mentioned laminated body W3.
  • the same one as that of the laminated body 101 can be used.
  • the printing layer is directly on the first base material layer by various printing inks such as gravure ink, flexo ink, offset ink, stencil ink, and inkjet ink by a general printing method conventionally used for printing on a polymer film. Alternatively, it is formed via another layer (such as a primer layer that improves the adhesion between the base material layer and the printing layer).
  • the inorganic vapor deposition layer and the sealant layer the same ones as those of the laminated body 101 can be used.
  • FIG. 4 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention.
  • the laminate 103 includes a first base material layer, an adhesive layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the first base material layer and the sealant layer, and these are bonded together.
  • the sealant layer corresponds to the first film W1 in the above-mentioned production method
  • the first base material layer corresponds to the second film W2.
  • FIG. 5 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention.
  • the laminate 104 includes a first base material layer, a printing layer, an adhesive layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the printing layer and the sealant layer, and these are bonded together.
  • the sealant layer corresponds to the first film W1 in the above-mentioned production method
  • the first base material layer including the printing layer corresponds to the second film W2.
  • the first base material layer and the sealant layer in the laminate 104 can be the same as those in the laminate 101, and the print layer can be formed in the same manner as in the laminate 102.
  • FIG. 6 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention.
  • the laminate 105 includes a first base material layer, an inorganic vapor deposition layer, an adhesive layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the inorganic vapor deposition layer and the sealant layer, and these are bonded together. ..
  • the inorganic vapor deposition layer is vapor-deposited on the first base material layer.
  • the sealant layer corresponds to the first film W1 in the above-mentioned production method
  • the first base material layer including the inorganic vapor-deposited layer corresponds to the second film W2 in the above-mentioned production method.
  • the first base material layer and sealant layer the same ones as those of the laminated body 101 can be used.
  • the inorganic vapor deposition layer can be provided on the first base material layer in the same manner as the laminated body 101.
  • FIG. 7 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention.
  • the laminate 106 includes a first base material layer, an inorganic vapor deposition layer, a printing layer, an adhesive layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the printing layer and the sealant layer, and these are attached. I'm matching.
  • the sealant layer corresponds to the first film W1 in the above-mentioned production method
  • the film provided with the inorganic vapor deposition layer and the printing layer on the first base material layer corresponds to the second film W2.
  • FIG. 8 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention.
  • the laminate 107 includes a first base material layer, a first adhesive layer, an inorganic thin-film deposition layer, a second base material layer, a second adhesive layer, and a sealant layer in this order. Adhesion is arranged in contact with the first base material layer and the inorganic thin-film deposition layer, and these are bonded together.
  • the second base material layer having the inorganic vapor deposition layer corresponds to the first film W1 in the above-mentioned production method
  • the first base material layer corresponds to the second film W2.
  • the second base material layer the same one as the first base material layer exemplified in the laminated body 101 can be used.
  • the second adhesive layer may be the same as or different from the first adhesive layer.
  • FIG. 9 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention.
  • the laminate 108 includes a first base material layer, a printing layer, a first adhesive layer, an inorganic thin-film deposition layer, a second base material layer, a second adhesive layer, and a sealant layer in this order.
  • the first adhesion is arranged in contact with the printing layer and the inorganic vapor deposition layer, and these are bonded together.
  • the second base material layer having the inorganic vapor deposition layer corresponds to the first film W1 in the above-mentioned production method
  • the first base material layer having the printed layer corresponds to the second film W2. ..
  • the laminate produced by the production method of the present invention can be used as a multi-layer packaging material for the purpose of protecting foods, pharmaceuticals and the like.
  • its layer structure may change depending on the contents, usage environment, and usage pattern.
  • the packaging material of the present invention is obtained by using a laminate manufactured by the production method of the present invention, laminating the surfaces of the sealant films of the laminate facing each other, and then heat-sealing the peripheral end portions thereof.
  • the laminate of the present invention is bent or overlapped so that the inner layer surface (the surface of the sealant film) faces each other, and the peripheral end thereof is, for example, a side seal type or a two-way seal type.
  • the packaging material of the present invention can take various forms depending on the contents, the environment of use, and the form of use. Self-supporting packaging materials (standing pouches), etc. are also possible.
  • a heat sealing method a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal can be used.
  • the opening After filling the packaging material of the present invention with the contents from the opening, the opening is heat-sealed to manufacture a product using the packaging material of the present invention.
  • the contents to be filled include rice confectionery, bean confectionery, nuts, biscuits / cookies, wafer confectionery, marshmallows, pies, half-baked cakes, candy, snack confectionery and other confectionery, bread, snack noodles, instant noodles, dried noodles, pasta.
  • Sterile packaged rice, elephant, porridge, packaged rice, staples such as cereal foods, pickles, boiled beans, natto, miso, frozen tofu, tofu, licked mushrooms, konjac, processed wild vegetables, jams, peanut cream, salads, frozen Agricultural processed products such as vegetables and potato processed products, hams, bacon, sausages, chicken processed products, livestock processed products such as confectionery, fish meat hams and sausages, marine products, kamaboko, glue, boiled vegetables, sardines, salted spicy, Processed marine products such as smoked salmon and spicy cod roe, peaches, tangerines, pineapples, apples, pears, cherries and other fruit meats, corn, asparagus, mushrooms, onions, carrots, radishes, potatoes and other vegetables, hamburgers, meats Prepared foods such as balls, fried fishery products, gyoza, croquette and other frozen side dishes, chilled side dishes, butter, margarine, cheese, cream, instant creamy powder, dairy products such as baby-prepared powdere
  • the packaging material of the present invention may be a lid material using the laminate of the present invention.
  • ⁇ Adhesive adjustment> (Adjustment of polyol composition) 92.09 parts of glycerol, 444.36 parts of phthalic anhydride, 186.21 parts of ethylene glycol, and 0.07 of titanium tetraisopropoxide in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snyder tube, and a condenser. The portion was charged and gradually heated so that the temperature of the upper part of the rectification tube did not exceed 100 ° C. to maintain the internal temperature at 220 ° C.
  • the esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol having a number average molecular weight of 668.60, a hydroxyl value of 250 mgKOH / g, and an acid value of 0.5 mgKOH / g.
  • Adhesive adjustment 100 parts of the polyol composition, 28 parts of the polyisocyanate composition, and 140 parts of ethyl acetate were well stirred to prepare an adhesive.
  • Example 1 The laminate of Example 1 was produced using a DL-600DX dry laminator (manufactured by Orient Sogyo Co., Ltd.). An aluminum-deposited CPP (manufactured by Toray Film Processing Co., Ltd., VM-CPP, 2203 # 25) having a film thickness of 25 ⁇ m was used as the first film W1, and an OPP film having a film thickness of 30 ⁇ m (manufactured by Toyobo Co., Ltd., Pyrene P2161) was used as the second film. A finale R794 white G3 coated on top was used so that the film thickness of the dry coating film was 1 ⁇ m.
  • a DL-600DX dry laminator manufactured by Orient Sogyo Co., Ltd.
  • An aluminum-deposited CPP manufactured by Toray Film Processing Co., Ltd., VM-CPP, 2203 # 25
  • OPP film having a film thickness of 30 ⁇ m manufactured by Toyobo Co., Ltd., Py
  • the transport speed of the first film W1 and the second film W2 is 120 m / min
  • the temperature of the drying furnace is 60 ° C., 70 ° C., 80 ° C. from the upstream side in the transport direction of the first film W1, respectively, and the adhesive is applied.
  • the amount (solid content) was set to be 3.5 g / m 2.
  • Example 2 The laminate of Example 2 was produced in the same manner as in Example 1 except that a non-printed film was used as the second film.
  • Example 3 Example 1 except that as the second film W2, a PET film having a film thickness of 12 ⁇ m (manufactured by Toyobo Co., Ltd., E5102) coated with Finato R794 white G3 so as to have a film thickness of 1 ⁇ m was used.
  • the laminate of Example 3 was produced in the same manner as in the above.
  • Example 4 The laminate of Example 4 was produced in the same manner as in Example 3 except that the second film W2, which was not printed, was used.
  • Oxygen permeability The aging-finished laminate is adjusted to a size of 10 cm x 10 cm, and OX-TRAN2 / 21 (manufactured by Mocon Co., Ltd .: oxygen permeability measuring device) is used, and according to JIS-K7126 (isopressure method), 23 ° C. 90% RH. Oxygen permeability (OTR) was measured in the atmosphere of. The unit is cc / m 2 , day, atm. Note that RH represents humidity. The results are summarized in Tables 1 and 2.
  • the laminate of the present invention has a low oxygen permeability, is excellent in barrier properties, and can also suppress the amount of residual solvent.
  • the laminates of Comparative Examples 1 to 4 are slightly inferior in gas barrier property to the laminates of Examples 1 to 4, and the amount of residual solvent increases remarkably depending on the layer structure of the laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention provides: a multilayer body which has excellent gas barrier properties; and a packaging material which uses this multilayer body. A method for producing a multilayer body which has a first base material, a sealant layer and a bonding layer that is arranged between the first base material and the sealant layer, said method comprising: a step wherein a two-pack type adhesive, which contains a polyol composition (I) containing a polyester polyol (A), a polyisocyanate composition (II) and an ester solvent, is applied onto the sealant layer; a step wherein the sealant layer is carried into a drying device and heated, so that the solvent is evaporated from the two-pack type adhesive; a step wherein the sealant layer and the first base material are bonded to each other; and a step wherein the two-pack type adhesive is cured, thereby forming the bonding layer.

Description

積層体の製造方法、積層体、包装材Laminate manufacturing method, laminate, packaging material
 本発明は、積層体の製造方法、当該方法を用いて得られる積層体、当該包装材を用いて得られる包装材に関する。 The present invention relates to a method for producing a laminate, a laminate obtained by using the method, and a packaging material obtained by using the packaging material.
 食品や飲料等の包装材料は、様々な流通、冷蔵等の保存や加熱殺菌などの処理等から内容物を保護するための強度や割れにくさ、耐レトルト性、耐熱性といった機能ばかりでなく、内容物を確認できるよう透明性に優れるなど多岐に渡る機能が要求されている。
 その一方で、ヒートシールにより袋を密閉する場合には、熱加工性に優れる無延伸のポリオレフィン類フィルムが必須であるが、無延伸ポリオレフィンフィルムには包装材料として不足している機能も多い。
Packaging materials for foods and beverages have not only functions such as strength, resistance to cracking, retort resistance, and heat resistance to protect the contents from various distribution, storage such as refrigeration, and treatment such as heat sterilization. A wide variety of functions such as excellent transparency are required so that the contents can be confirmed.
On the other hand, when the bag is sealed by heat sealing, an unstretched polyolefin film having excellent heat processability is indispensable, but the unstretched polyolefin film has many functions lacking as a packaging material.
 このようなことから、前記包装材料は、異種のポリマー材料を組み合わせた複合フレキシブルフィルムが広く用いられている。一般に複合フレキシブルフィルムは、商品保護や各種機能を有する外層となる熱可塑性プラスチックフィルム層等と、シーラント層となる熱可塑性プラスチックフィルム層等からなる。食品の状態を維持するためのバリア機能とともに、内容物の視認性も求められる場合には、プラスチックフィルムとして例えばポリエチレンテレフタレートフィルム(PETフィルム)や延伸ポリプロピレンフィルム(OPPフィルム)に酸化アルミニウムを蒸着したフィルムを用いることが提案されている(特許文献1)。 For this reason, a composite flexible film in which different types of polymer materials are combined is widely used as the packaging material. Generally, the composite flexible film is composed of a thermoplastic plastic film layer or the like as an outer layer having various functions such as product protection and a thermoplastic plastic film layer or the like as a sealant layer. When visibility of the contents is required as well as a barrier function for maintaining the state of food, a film in which aluminum oxide is vapor-deposited on, for example, a polyethylene terephthalate film (PET film) or a stretched polypropylene film (OPP film) as a plastic film. It has been proposed to use (Patent Document 1).
特開2001-260266号公報Japanese Unexamined Patent Publication No. 2001-260266
 昨今、環境負荷を軽減するための取り組みの一つとして食品の消費期限、賞味期限を延長し、フードロスを減らすべく、包装材料には酸素バリア性、水蒸気バリア性のより一層の向上が求められている。本発明はこのような課題の少なくとも一部を解決するために為されたものであり、ガスバリア性に優れた積層体、当該積層体を用いた包装材を提供することを目的とする。 Recently, as one of the efforts to reduce the environmental load, in order to extend the expiration date and expiration date of food and reduce food loss, packaging materials are required to further improve oxygen barrier property and water vapor barrier property. There is. The present invention has been made to solve at least a part of such a problem, and an object of the present invention is to provide a laminate having excellent gas barrier properties and a packaging material using the laminate.
 本発明は、第一の基材と、シーラント層と、前記第一の基材と前記シーラント層との間に配置された接着層とを有する積層体の製造方法であって、前記シーラント層上に、ポリエステルポリオール(A)を含むポリオール組成物(I)と、ポリイソシアネート組成物(II)と、エステル系溶剤と、を含む2液型接着剤を塗布する工程と、前記シーラント層を乾燥装置に搬送し、加熱して前記2液型接着剤から前記溶剤を蒸発させる工程と、前記シーラント層と前記第一の基材とを貼り合わせる工程と、前記2液型接着剤を硬化させて前記接着層を形成する工程と、を含む積層体の製造方法に関する。 The present invention is a method for producing a laminate having a first base material, a sealant layer, and an adhesive layer arranged between the first base material and the sealant layer, and is on the sealant layer. A step of applying a two-component adhesive containing a polyol composition (I) containing a polyester polyol (A), a polyisocyanate composition (II), and an ester-based solvent, and a drying apparatus for the sealant layer. The step of evaporating the solvent from the two-component adhesive, the step of bonding the sealant layer and the first base material, and the step of curing the two-component adhesive to the above. The present invention relates to a step of forming an adhesive layer and a method for producing a laminate including.
 本発明の積層体の製造方法によれば、ガスバリア性に優れた積層体、当該積層体を用いた包装材を提供することが可能となる。 According to the method for producing a laminate of the present invention, it is possible to provide a laminate having excellent gas barrier properties and a packaging material using the laminate.
本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the laminated body manufactured by using the manufacturing method of this invention. 本発明の積層体の製造に用いるラミネート装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the laminating apparatus used for manufacturing the laminated body of this invention. 本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the laminated body manufactured by using the manufacturing method of this invention. 本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the laminated body manufactured by using the manufacturing method of this invention. 本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the laminated body manufactured by using the manufacturing method of this invention. 本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the laminated body manufactured by using the manufacturing method of this invention. 本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the laminated body manufactured by using the manufacturing method of this invention. 本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the laminated body manufactured by using the manufacturing method of this invention. 本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the laminated body manufactured by using the manufacturing method of this invention.
<積層体の実施形態1>
 図1は、本発明の製造方法を用いて製造される積層体の一実施形態を示す概略断面図である。積層体101は、第一の基材層と、接着層と、無機蒸着層と、シーラント層とをこの順に備え、接着層は第一の基材層及び無機蒸着層に接して配置され、これらを貼り合わせている。
<Embodiment 1 of Laminated Body>
FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminated body manufactured by using the manufacturing method of the present invention. The laminate 101 includes a first base material layer, an adhesive layer, an inorganic vapor deposition layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the first base material layer and the inorganic vapor deposition layer. Are pasted together.
 第一の基材層は化学的、物理的強度に優れるフィルム、シート(なお以下では特記しない限り、フィルムはフィルムとシートの総称でもある)であれば特に制限なく用いることができる。また、基材は単層フィルムであってもよいし、多層積層フィルムであってもよい。後述する包装材の内容物、種類、内容物充填後の加熱処理の有無等の使用条件に応じて適宜選択することができる。 The first base material layer can be used without particular limitation as long as it is a film or sheet having excellent chemical and physical strength (unless otherwise specified below, film is also a general term for film and sheet). Further, the base material may be a single-layer film or a multilayer laminated film. It can be appropriately selected according to the contents and type of the packaging material, which will be described later, and the conditions of use such as the presence or absence of heat treatment after filling the contents.
 基材の具体例としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、ポリブテン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、アイオノマー、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-プロピレン共重合体、メチルペンテン、ポリアクリロニトリル、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリカーボネート、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリフッ化ビニリデン(PVDF)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリテトラフルオロエチレン(PTFE)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等の樹脂フィルム、Kコート延伸ポリプロピレンフィルム、Kコート延伸ナイロンフィルム、これらの2以上のフィルムを積層した複合フィルムが例示されるがこれに限定されない。 Specific examples of the base material include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, polypropylene, polyvinyl chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ionomer, and ethylene-. (Meta) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-propylene copolymer, methylpentene, polyacrylonitrile, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, Polypropylene, polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), vinylidene fluoride (PVDF), ethylene-tetrafluoroethylene copolymer (ETFE), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), poly Examples include, but are not limited to, resin films such as butylene terephthalate and polyethylene naphthalate, K-coated stretched polypropylene films, K-coated stretched nylon films, and composite films in which two or more of these films are laminated.
 中でも、ポリエチレンテレフタレート、ポリエチレンナフタレート等の1軸または2軸延伸ポリエステルフィルム、ナイロン6、ナイロン66、MXD6(ポリメタキシリレンアジパミド)等の1軸または2軸延伸ポリアミドフィルム、2軸延伸ポリプロピレンフィルム、2軸延伸ポリエチレンフィルム等を好適に用いることができる。 Among them, uniaxial or biaxially stretched polyester films such as polyethylene terephthalate and polyethylene naphthalate, uniaxially or biaxially stretched polyamide films such as nylon 6, nylon 66 and MXD6 (polymethoxylylen adipamide), and biaxially stretched polypropylene films. A biaxially stretched polyethylene film or the like can be preferably used.
 フィルムの膜厚は特に限定されず、成型性や透明性の観点から、1~300μmの範囲で適宜選択すればよい。好ましくは1~100μmの範囲である。1μmを下回ると強度が不足し、300μmを超えると剛性が高くなり過ぎ、加工が困難になる恐れがある。 The film thickness of the film is not particularly limited, and may be appropriately selected in the range of 1 to 300 μm from the viewpoint of moldability and transparency. It is preferably in the range of 1 to 100 μm. If it is less than 1 μm, the strength is insufficient, and if it exceeds 300 μm, the rigidity becomes too high, which may make processing difficult.
 基材となるフィルムは、何等かの表面処理、例えばコロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理等の物理的な処理や、化学薬品を用いた酸化処理等の化学的な処理、その他処理が施されたものであってもよい。 The base film used was some kind of surface treatment, such as corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, physical treatment such as glow discharge treatment, or chemicals. It may be subjected to chemical treatment such as oxidation treatment or other treatment.
 基材となるフィルムは、例えば上述した樹脂から選ばれる1種または2種以上を用い、押出し法、キャスト成形法、Tダイ法、切削法、インフレーション法等、従来公知の製膜化法により製造することができる。あるいは上述した樹脂から選ばれる2種以上の樹脂を使用し、多層共押し出し製膜化法により製造することができる。フィルムの強度、寸法安定性、耐熱性の観点から、テンター方式、チューブラー方式等を利用して1軸ないし2軸方向に延伸してもよい。 As the base film, for example, one or more selected from the above-mentioned resins are used, and the film is manufactured by a conventionally known film forming method such as an extrusion method, a cast molding method, a T-die method, a cutting method, and an inflation method. can do. Alternatively, it can be produced by a multi-layer coextrusion film forming method using two or more kinds of resins selected from the above-mentioned resins. From the viewpoint of film strength, dimensional stability, and heat resistance, the film may be stretched in the uniaxial or biaxial directions by using a tenter method, a tubular method, or the like.
 基材となるフィルムは、必要に応じて添加剤が含まれていてもよい。具体的には、加工性、耐熱性、耐候性、機械的性質、寸法安定性、抗酸化性、滑り性、離型性、難燃性、抗カビ性、電気的特性、強度等を改良、改質する目的で、滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料等のプラスチック配合剤や添加剤等を添加することができる。添加剤の添加量は、他の性能に影響を与えない範囲で調整する。 The film as the base material may contain additives as needed. Specifically, improve workability, heat resistance, weather resistance, mechanical properties, dimensional stability, antioxidant properties, slipperiness, mold releasability, flame retardancy, antifungal properties, electrical properties, strength, etc. For the purpose of modification, plastic compounding agents such as lubricants, cross-linking agents, antioxidants, ultraviolet absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments and the like can be added. The amount of additive added should be adjusted within a range that does not affect other performance.
 シーラント層は熱により溶融し相互に融着し得る、ヒートシール性の樹脂の層である。シーラント層に好適な樹脂としては、ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-プロピレン共重合体、メチルペンテンポリマー、ポリエチレンまたはポリプロピレン等のオレフィン系樹脂をアクリル酸、メタクリル酸、無水マレイン酸、フマル酸、その他不飽和カルボン酸で変性した変性オレフィン樹脂、エチレン-(メタ)アクリル酸エステル-不飽和カルボン酸の三元共重合体、環状ポリオレフィン、環状オレフィンコポリマー、ポリエチレンテレフタレート(PET)、ポリアクリロニトリル(PAN)等が挙げられる。これらの樹脂の1種または2種以上からなる樹脂のフィルム、シート、その他塗布膜等をシーラント層として使用することができる。 The sealant layer is a heat-sealing resin layer that can be melted by heat and fused to each other. Suitable resins for the sealant layer include polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- ( Olefin resins such as meta) acrylate copolymer, ethylene- (meth) ethyl acrylate copolymer, ethylene-propylene copolymer, methylpentene polymer, polyethylene or polypropylene can be used as acrylic acid, methacrylic acid, maleic anhydride, etc. Fumaric acid and other modified olefin resins modified with unsaturated carboxylic acid, ternary copolymer of ethylene- (meth) acrylic acid ester-unsaturated carboxylic acid, cyclic polyolefin, cyclic olefin copolymer, polyethylene terephthalate (PET), polyacrylonitrile (PAN) and the like. A resin film, sheet, or other coating film made of one or more of these resins can be used as the sealant layer.
 シーラント層となるフィルムとしては、未延伸、1軸延伸、2軸延伸のフィルムのいずれも使用することができる。 As the film to be the sealant layer, any unstretched, uniaxially stretched, or biaxially stretched film can be used.
 2軸方向に延伸した延伸フィルムは、例えば50~100℃のロール延伸機により2~4倍に縦延伸し、更に90~150℃の雰囲気下でテンター延伸機により3~5倍に横延伸し、引き続いて100~240℃の雰囲気下でテンター延伸機により熱処理することで得られる。あるいは、同時2軸延伸、逐次2軸延伸したものを用いてもよい。 The stretched film stretched in the biaxial direction is vertically stretched 2 to 4 times by, for example, a roll stretching machine at 50 to 100 ° C., and further laterally stretched 3 to 5 times by a tenter stretching machine in an atmosphere of 90 to 150 ° C. Subsequently, it is obtained by heat treatment with a tenter stretching machine in an atmosphere of 100 to 240 ° C. Alternatively, simultaneous biaxial stretching and sequential biaxial stretching may be used.
 シーラント層に易剥離性のシーラントフィルム(イージーピールフィルム)を用いてもよい。易剥離性のシーラントフィルムとしては、界面剥離タイプ、凝集剥離タイプ、層間剥離タイプの何れも適用可能であり、後述する包装材の種類や要求特性に応じて適宜選択することができる。易剥離性の指標としては、包装材の種類や要求特性に応じて適宜設定されるが、一例としてシール強度が2~20N/15mmである。例えばポリプロピレンと高密後ポリエチレン、低密度ポリエチレン、エチレン-酢酸ビニル共重合体などを組み合わせた相分離系のポリマーブレンドにより易剥離性を発現させることができる。 An easily peelable sealant film (easy peel film) may be used for the sealant layer. As the easily peelable sealant film, any of the interfacial peeling type, the coagulation peeling type, and the delamination type can be applied, and can be appropriately selected according to the type of the packaging material and the required characteristics described later. The index of easy peelability is appropriately set according to the type of packaging material and the required characteristics, and as an example, the seal strength is 2 to 20 N / 15 mm. For example, easy peeling can be exhibited by a phase-separated polymer blend in which polypropylene is combined with high-density polyethylene, low-density polyethylene, an ethylene-vinyl acetate copolymer, or the like.
 シーラント層の膜厚は任意に選択し得るが、例えば後述する包装材に適用する場合には5~500μmの範囲で選択される。10~250μmであることがより好ましく、15~100μmであることがさらに好ましい。5μmを下回ると包装材料として充分なラミネート強度が得られず、さらに耐突き刺し性等も低下する恐れがある。250μmを超えるとコスト上昇を招くと共にフィルムが硬くなり、作業性が低下する。 The film thickness of the sealant layer can be arbitrarily selected, but when applied to a packaging material described later, for example, it is selected in the range of 5 to 500 μm. It is more preferably 10 to 250 μm, and even more preferably 15 to 100 μm. If it is less than 5 μm, sufficient laminating strength as a packaging material cannot be obtained, and there is a risk that piercing resistance and the like will be lowered. If it exceeds 250 μm, the cost will increase and the film will become hard, resulting in reduced workability.
 無機蒸着層はシーラント層となるフィルム上に直接、またはアンカーコート剤等を用いて形成された層を介して、従来公知の方法により設けることができる。無機蒸着層の形成方法としては、例えば、真空蒸着法、スパッタリング法、およびイオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法(PVD法))や、プラズマ化学気相成長法、熱化学気相成長法、および光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法(CVD法))等が挙げられる。 The inorganic vapor deposition layer can be provided directly on the film to be the sealant layer or via a layer formed by using an anchor coating agent or the like by a conventionally known method. Examples of the method for forming the inorganic vapor deposition layer include a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, a plasma chemical vapor deposition method, and heat. Examples thereof include a chemical vapor deposition method (Chemical Vapor Deposition method (CVD method)) such as a chemical vapor deposition method and a photochemical vapor deposition method.
 図1の構成において無機蒸着層は各種金属やその酸化物等の任意の材料により形成することができる。一例としてアルミニウム、アルミナ(酸化アルミニウム)、シリカ(酸化ケイ素)、これらの組み合わせ(例えばシリカとアルミナ)等が好ましく用いられる。 In the configuration of FIG. 1, the inorganic vapor deposition layer can be formed of any material such as various metals and their oxides. As an example, aluminum, alumina (aluminum oxide), silica (silicon oxide), a combination thereof (for example, silica and alumina) and the like are preferably used.
 無機蒸着層の膜厚は1~200nmであることが好ましい。無機蒸着層がアルミニウム蒸着層である場合、その膜厚は1~100nmであることがより好ましく、15~60nmであることがより好ましい。無機蒸着層がシリカ、アルミナ、これらの二元蒸着層である場合、その膜厚は1~100nmであることが好ましく、10~50nmであることがより好ましく、20~30nmであることがより好ましい。 The film thickness of the inorganic vapor deposition layer is preferably 1 to 200 nm. When the inorganic vapor-deposited layer is an aluminum-deposited layer, the film thickness is more preferably 1 to 100 nm, and more preferably 15 to 60 nm. When the inorganic vapor deposition layer is silica, alumina, or a dual vapor deposition layer thereof, the film thickness is preferably 1 to 100 nm, more preferably 10 to 50 nm, and even more preferably 20 to 30 nm. ..
 無機蒸着層の形成に先立ち、シーラントフィルム上にアンカーコート層を設けてもよい。アンカーコート層はシーラントフィルム上にアンカーコート剤を塗布、乾燥することにより形成することができる。これにより、シーラント層と無機蒸着層の密着性を高めるとともに、アンカーコート剤のレベリング作用により無機蒸着層の形成面が平坦性を向上させることができ、クラック等の膜欠陥が少なく均一な無機蒸着層を形成とすることができる。 An anchor coat layer may be provided on the sealant film prior to the formation of the inorganic vapor deposition layer. The anchor coat layer can be formed by applying an anchor coat agent on a sealant film and drying it. As a result, the adhesion between the sealant layer and the inorganic vapor deposition layer can be improved, and the flatness of the formed surface of the inorganic vapor deposition layer can be improved by the leveling action of the anchor coating agent, and uniform inorganic vapor deposition with few film defects such as cracks can be achieved. Layers can be formed.
 アンカーコート剤としては、例えば、溶剤溶解性または水溶性のポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、ビニルアルコール樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、オキサゾリン基含有樹脂、変性スチレン樹脂、変性シリコン樹脂またはアルキルチタネート等を含むものが挙げられる。これらは単独または2種類以上組み合わせて使用することができる。 Examples of the anchor coating agent include solvent-soluble or water-soluble polyester resin, isocyanate resin, urethane resin, acrylic resin, vinyl alcohol resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, oxazoline group-containing resin, and modified styrene. Examples thereof include those containing a resin, a modified silicon resin, an alkyl titanate and the like. These can be used alone or in combination of two or more.
 アンカーコート層の膜厚は特に制限されないが、5nm~5μm程度であることが好ましく、10nm~1μmであることがより好ましい。これにより、シーラントフィルム上に内部応力が抑制された均一な層を形成することができる。 The film thickness of the anchor coat layer is not particularly limited, but is preferably about 5 nm to 5 μm, and more preferably 10 nm to 1 μm. As a result, a uniform layer in which internal stress is suppressed can be formed on the sealant film.
 アンカーコート層を設ける場合、アンカーコート剤の塗布性、接着性を改良するために、アンカーコート層形成に先立ちシーラントフィルムの表面に放電処理を施すことも好ましい。 When the anchor coat layer is provided, it is also preferable to perform a discharge treatment on the surface of the sealant film prior to forming the anchor coat layer in order to improve the coatability and adhesiveness of the anchor coat agent.
 無機蒸着層を有するシーラントフィルムとして、アルミ蒸着CPP、アルミ蒸着OPP、アルミ蒸着PE、透明蒸着PET等が市販されており、これを本発明の製造方法に用いることもできる。 As a sealant film having an inorganic thin-film deposition layer, aluminum-deposited CPP, aluminum-deposited OPP, aluminum-deposited PE, transparent-deposited PET and the like are commercially available, and these can also be used in the production method of the present invention.
 接着層は、ポリエステルポリオール(A)を含むポリオール組成物(I)と、ポリイソシアネート組成物(II)と、エステル系溶剤と、を含む溶剤系の2液型接着剤の硬化塗膜である。 The adhesive layer is a cured coating film of a solvent-based two-component adhesive containing a polyester polyol (A)-containing polyol composition (I), a polyisocyanate composition (II), and an ester-based solvent.
 ポリエステルポリオール(A)は多価カルボン酸と多価アルコールの反応生成物であり、さらにポリイソシアネートによりウレタン伸長されたものであってもよく任意の構造のものを用い得る。中でも3個以上の水酸基を有するポリエステルポリオールにカルボン酸無水物又はポリカルボン酸を反応させることにより得られるポリエステルポリオール(A1)、重合性炭素-炭素二重結合を有するポリエステルポリオール(A2)、グリセロール骨格を有するポリエステルポリオール(A3)、オルト配向性多価カルボン酸と、多価アルコールとを重縮合して得られるポリエステルポリオール(A4)、イソシアヌル環を有するポリエステルポリオール(A5)が好ましく用いられる。これらのポリエステルポリオール(A)は1種のみ用いてもよいし、2種以上を併用してもよい。詳細は後述するが、これらのポリエステルポリオール(A)の硬化塗膜は特にガスバリア性に優れ、本発明の製造方法に特に好適である。なお本明細書において接着剤がガスバリア性を備えるとは、接着剤の5g/m(固形分)で塗布した接着剤の硬化塗膜の酸素バリア性が300cc/m/day/atm以下、または水蒸気バリア性が120g/m/day以下の、少なくとも一方の条件を満足する場合をいう。 The polyester polyol (A) is a reaction product of a polyvalent carboxylic acid and a polyhydric alcohol, and may be urethane-extended with polyisocyanate, and any structure can be used. Among them, a polyester polyol (A1) obtained by reacting a polyester polyol having three or more hydroxyl groups with a carboxylic acid anhydride or a polycarboxylic acid, a polyester polyol having a polymerizable carbon-carbon double bond (A2), and a glycerol skeleton. A polyester polyol (A3) having the above, a polyester polyol (A4) obtained by polycondensing an ortho-oriented polyvalent carboxylic acid with a polyhydric alcohol, and a polyester polyol (A5) having an isocyanul ring are preferably used. Only one kind of these polyester polyols (A) may be used, or two or more kinds thereof may be used in combination. Although details will be described later, these cured coating films of the polyester polyol (A) are particularly excellent in gas barrier properties and are particularly suitable for the production method of the present invention. In the present specification, the adhesive has a gas barrier property when the cured coating film of the adhesive applied with 5 g / m 2 (solid content) of the adhesive has an oxygen barrier property of 300 cc / m 2 / day / atm or less. Alternatively, it means that the water vapor barrier property satisfies at least one condition of 120 g / m 2 / day or less.
 ポリエステルポリオール(A1)は、3個以上の水酸基を有するポリエステルポリオール(a1)にカルボン酸無水物又は多価カルボン酸を反応させることにより得られ、少なくとも1個のカルボキシル基と2個以上の水酸基を有する。ポリエステルポリオール(a1)は多価カルボン酸または多価アルコールの一部を三価以上とすることで得られる。 The polyester polyol (A1) is obtained by reacting a polyester polyol (a1) having three or more hydroxyl groups with a carboxylic acid anhydride or a polyvalent carboxylic acid, and has at least one carboxyl group and two or more hydroxyl groups. Have. The polyester polyol (a1) can be obtained by making a part of the polyvalent carboxylic acid or polyhydric alcohol trivalent or higher.
 ポリエステルポリオール(A1)の調整に用いられる多価カルボン酸は、オルトフタル酸、オルトフタル酸無水物の少なくとも1種を含むことが好ましい。多価カルボン酸としてこれらの化合物を用いて得られるポリエステルポリオールはガスバリア性と接着性とに優れる。オルトフタル酸、オルトフタル酸無水物を用いることにより接着剤のガスバリア性が優れる理由は、オルトフタル酸やその酸無水物を用いて得られるポリエステル鎖の回転が抑制されるためと推察される。接着性が優れる理由は、ポリエステル鎖が非対称であることに起因して非結晶性を示し、十分な基材密着性が付与されるためと推察される。 The polyvalent carboxylic acid used for preparing the polyester polyol (A1) preferably contains at least one of orthophthalic acid and orthophthalic anhydride. Polyester polyols obtained by using these compounds as polyvalent carboxylic acids have excellent gas barrier properties and adhesiveness. It is presumed that the reason why the gas barrier property of the adhesive is excellent by using orthophthalic acid and orthophthalic anhydride is that the rotation of the polyester chain obtained by using orthophthalic acid and its acid anhydride is suppressed. It is presumed that the reason why the adhesiveness is excellent is that the polyester chain exhibits amorphousness due to the asymmetry, and sufficient substrate adhesion is imparted.
 三価以上の多価カルボン酸としては、トリメリット酸およびその酸無水物、ピロメリット酸及びその酸無水物等が挙げられる。合成時のゲル化を防ぐ為には三価以上の多価カルボン酸として三価のカルボン酸を用いることが好ましい。 Examples of the trivalent or higher polyvalent carboxylic acid include trimellitic acid and its acid anhydride, pyromellitic acid and its acid anhydride. In order to prevent gelation during synthesis, it is preferable to use a trivalent carboxylic acid as a trivalent or higher polyvalent carboxylic acid.
 本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族多価カルボン酸;無水マレイン酸、マレイン酸、フマル酸等の不飽和結合含有多価カルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族多価カルボン酸;テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の芳香族多価カルボン酸等が挙げられ、1種または2種以上を併用することができる。中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸及びその酸無水物が好ましい。 Other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired. Specifically, aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecandicarboxylic acid; unsaturated bond-containing polyvalent carboxylic acids such as maleic anhydride, maleic acid, and fumaric acid; , 3-Cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic polyvalent carboxylic acids; terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid and acid anhydrides or ester-forming derivatives of these dicarboxylic acids , P-Hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and aromatic polyvalent carboxylic acids such as ester-forming derivatives of these dihydroxycarboxylic acids, and one or more are used in combination. be able to. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid and acid anhydrides thereof are preferable.
 ポリエステルポリオール(A1)の調整に用いられる多価アルコールは、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含むことが好ましい。酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコールを使用することが特に好ましい。 The polyhydric alcohol used for preparing the polyester polyol (A1) preferably contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol. It is presumed that the smaller the number of carbon atoms between oxygen atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate. Therefore, it is particularly preferable to use ethylene glycol.
 三価以上の多価アルコールとしては、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリス(2-ヒドロキシエチル)イソシアヌレート、1,2,4-ブタントリオール、ペンタエリスリトール、ジペンタエリスルトール等が挙げられる。合成時のゲル化を防ぐ為には三価以上の多価アルコールとしては三価アルコールを用いることが好ましい。 Examples of the trihydric or higher polyhydric alcohol include glycerin, trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, pentaerythritol, dipentaerythritol and the like. Be done. In order to prevent gelation during synthesis, it is preferable to use a trihydric alcohol as a trihydric or higher polyhydric alcohol.
 本発明の効果を損なわない範囲において、他の多価アルコールを共重合させてもよい。具体的には、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の脂肪族ジオール;ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらのエチレンオキサイド伸長物、水添化脂環族等の芳香族多価フェノール等を例示することができる。 Other polyhydric alcohols may be copolymerized as long as the effects of the present invention are not impaired. Specifically, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetra. Aliper diols such as ethylene glycol, dipropylene glycol and tripropylene glycol; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, these ethylene oxide extensions and hydrolyzed fats. Aromatic polyvalent phenols such as ring group can be exemplified.
 ポリエステルポリオール(A1)は、上述の多価カルボン酸と多価アルコールとの反応生成物である3個以上の水酸基を有するポリエステルポリオール(a1)に、多価カルボン酸またはその酸無水物を反応させることで得られる。多価カルボン酸と反応させる水酸基の割合は、ポリエステルポリオール(a1)が備える水酸基の1/3以下とすることが好ましい。ポリエステルポリオール(a1)と反応させる多価カルボン酸またはその酸無水物は、二価または三価であることが好ましい。無水コハク酸、無水マレイン酸、1,2-シクロヘキサンジカルボン酸無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、無水フタル酸、2,3-ナフタレンジカルボン酸無水物、トリメリット酸無水物等が挙げられるがこれに限定されない。 The polyester polyol (A1) reacts the polyvalent carboxylic acid or its acid anhydride with the polyester polyol (a1) having three or more hydroxyl groups, which is a reaction product of the above-mentioned polyvalent carboxylic acid and polyhydric alcohol. It can be obtained by. The ratio of the hydroxyl group to be reacted with the polyvalent carboxylic acid is preferably 1/3 or less of the hydroxyl group contained in the polyester polyol (a1). The polyvalent carboxylic acid or its acid anhydride to be reacted with the polyester polyol (a1) is preferably divalent or trivalent. Succinic anhydride, maleic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, 4-cyclohexene-1,2-dicarboxylic acid anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, phthalic anhydride, 2, Examples thereof include, but are not limited to, 3-naphthalenedicarboxylic acid anhydride and trimellitic acid anhydride.
 重合性炭素-炭素二重結合を有するポリエステルポリオール(A2)は、多価カルボン酸、多価アルコールとして重合性炭素-炭素二重結合をもつ成分を使用することにより得られる。 The polyester polyol (A2) having a polymerizable carbon-carbon double bond can be obtained by using a component having a polymerizable carbon-carbon double bond as a polyvalent carboxylic acid and a polyhydric alcohol.
 重合性炭素-炭素二重結合をもつ多価カルボン酸として無水マレイン酸、マレイン酸、フマル酸、4-シクロヘキセン-1,2-ジカルボン酸及びその酸無水物、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸及びその酸無水物等が挙げられる。中でも、炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、無水マレイン酸、マレイン酸、フマル酸が好ましい。 Maleic anhydride, maleic acid, fumaric acid, 4-cyclohexene-1,2-dicarboxylic acid and its acid anhydride, 3-methyl-4-cyclohexene-1, as polyvalent carboxylic acids having a polymerizable carbon-carbon double bond. , 2-Dicarboxylic acid and its acid anhydride and the like. Of these, maleic anhydride, maleic acid, and fumaric acid are preferable because it is presumed that the smaller the number of carbon atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate.
 本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族多価カルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族多価カルボン酸;オルトフタル酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の芳香族多価カルボン酸等が挙げられ、1種または2種以上を併用することができる。また、これらの酸無水物も使用することができる。中でも、ガスバリア性を得る為にはコハク酸、1,3-シクロペンタンジカルボン酸、オルトフタル酸、オルトフタル酸の酸無水物、イソフタル酸が好ましく、更にはオルトフタル酸及びその酸無水物がより好ましい。 Other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired. Specifically, aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid; alicyclic groups such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Polyvalent carboxylic acid; orthophthalic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyl Dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid and acid anhydride or ester-forming derivative of these dicarboxylic acids, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid Examples thereof include aromatic polyvalent carboxylic acids such as ester-forming derivatives of these dihydroxycarboxylic acids, and one or more of them can be used in combination. Moreover, these acid anhydrides can also be used. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, orthophthalic acid, acid anhydrides of orthophthalic acid, and isophthalic acid are preferable, and orthophthalic acid and its acid anhydride are more preferable, in order to obtain gas barrier properties.
 重合性炭素-炭素二重結合をもつ多価アルコールとしては、2-ブテン-1,4-ジオール等があげられる。 Examples of the polyhydric alcohol having a polymerizable carbon-carbon double bond include 2-butene-1,4-diol and the like.
 本発明の効果を損なわない範囲において、他の多価アルコールを共重合させてもよい。具体的には、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の脂肪族ジオール;ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらの、エチレンオキサイド伸長物、水添化脂環族等の芳香族多価フェノール等を例示することができる。中でも酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールが好ましく、更にはエチレングクリコールがより好ましい。 Other polyhydric alcohols may be copolymerized as long as the effects of the present invention are not impaired. Specifically, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethanol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol. , Dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and other aliphatic diols; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F , Tetramethylbiphenol, these ethylene oxide extenders, aromatic polyvalent phenols such as hydrogenated alicyclic group, and the like can be exemplified. Among them, it is presumed that the smaller the number of carbon atoms between oxygen atoms, the less flexible the molecular chain is and the more difficult it is for oxygen to permeate. Therefore, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedim Methanol is preferred, and ethylene glycol is more preferred.
 また、重合性炭素-炭素二重結合を有するポリエステルポリオール(A2)は、水酸基を有するポリエステルポリオール(a2)と重合性二重結合を有するカルボン酸、またはカルボン酸無水物との反応生成物であってもよい。重合性二重結合を有するカルボン酸またはその酸無水物としては、マレイン酸、無水マレイン酸、又はフマル酸等の重合性二重結合を有するカルボン酸、オレイン酸、ソルビン酸等の不飽和脂肪酸等が挙げられる。ポリエステルポリオール(a2)は、3個以上の水酸基を有することが好ましい。ポリエステルポリオール(a2)が備える水酸基が2個以下の場合、ポリエステルポリオール(A2)が備える水酸基の数が0~1個となり、後述するポリイソシアネート組成物(II)との反応時に分子伸張が起こり難くなり、接着強度等が低下する恐れがある。 The polyester polyol (A2) having a polymerizable carbon-carbon double bond is a reaction product of a polyester polyol (a2) having a hydroxyl group and a carboxylic acid having a polymerizable double bond or a carboxylic acid anhydride. You may. Examples of the carboxylic acid having a polymerizable double bond or an acid anhydride thereof include a carboxylic acid having a polymerizable double bond such as maleic acid, maleic anhydride, or fumaric acid, and unsaturated fatty acids such as oleic acid and sorbic acid. Can be mentioned. The polyester polyol (a2) preferably has three or more hydroxyl groups. When the polyester polyol (a2) has two or less hydroxyl groups, the number of hydroxyl groups contained in the polyester polyol (A2) is 0 to 1, and molecular elongation is unlikely to occur during the reaction with the polyisocyanate composition (II) described later. As a result, the adhesive strength and the like may decrease.
 ポリエステルポリオール(A2)は二重結合成分比率が5~60質量%であることが好ましい。5質量%を下回ると重合性二重結合間の架橋点が少なくなり、ガスバリア性が得難くなる。60質量%を超えると架橋点が多くなり、硬化塗膜の柔軟性が低下して接着強度が得難くなるおそれがある。なお本明細書においてポリエステルポリオール(A2)における二重結合成分比率は下記式(a)を用いて計算する。下記式においてモノマーとはポリエステルポリオール(A2)の合成に用いる多価カルボン酸、多価アルコールを指す。 The polyester polyol (A2) preferably has a double bond component ratio of 5 to 60% by mass. If it is less than 5% by mass, the number of cross-linking points between the polymerizable double bonds is reduced, and it becomes difficult to obtain gas barrier properties. If it exceeds 60% by mass, the number of cross-linking points increases, and the flexibility of the cured coating film may decrease, making it difficult to obtain adhesive strength. In this specification, the ratio of double bond components in the polyester polyol (A2) is calculated using the following formula (a). In the following formula, the monomer refers to a polyvalent carboxylic acid and a polyhydric alcohol used in the synthesis of polyester polyol (A2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 さらにポリエステルポリオール(A2)として、乾性油、又は半乾性油を挙げることができる。乾性油、又は半乾性油としては、炭素-炭素二重結合を有する公知慣用の乾性油、半乾性油等を挙げることができる。 Further, as the polyester polyol (A2), a drying oil or a semi-drying oil can be mentioned. Examples of the drying oil or semi-drying oil include known and commonly used drying oils and semi-drying oils having a carbon-carbon double bond.
 グリセロール骨格を有するポリエステルポリオール(A3)は、下記一般式(1)で表されるグリセロール骨格を有するものである。 The polyester polyol (A3) having a glycerol skeleton has a glycerol skeleton represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
(一般式(1)中、R~Rは各々独立に、水素原子、または下記一般式(2)である。但し、R~Rのうち少なくとも一つは、下記一般式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the general formula (1), R 1 to R 3 are independently hydrogen atoms or the following general formula (2). However, at least one of R 1 to R 3 is the following general formula (2). ) Represents a group represented by.)
Figure JPOXMLDOC01-appb-C000003
(一般式(2)中、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (2), n represents an integer of 1 to 5, and X is a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group which may have a substituent. It represents an arylene group selected from the group consisting of a 2,3-anthraquinonediyl group and a 2,3-anthracenediyl group, and Y represents an alkylene group having 2 to 6 carbon atoms.)
 ポリエステルポリオール(A3)は、R、R及びRのいずれか1つが一般式(2)で表される基である化合物と、R、R及びRのいずれか2つが一般式(2)で表される基である化合物と、R、R及びRの全てが一般式(2)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。R~Rの全てが一般式(2)で表される基であることがより好ましい。 Polyester polyol (A3) is a compound any one of R 1, R 2 and R 3 is a group represented by the general formula (2), R 1, R 2 and one of R 3 2 two generally formula A mixture of two or more compounds of the compound represented by (2) and the compound represented by the general formula (2) in which all of R 1 , R 2 and R 3 are represented by the general formula (2). May be. It is more preferable that all of R 1 to R 3 are groups represented by the general formula (2).
 一般式(2)において、Xが置換基によって置換されている場合、1又は複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 In the general formula (2), when X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is any carbon atom on X different from the free radical. Is bound to. Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group. Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
 一般式(2)におけるYの具体例としては、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基、ジメチルブチレン基等の、炭素原子数2~6のアルキレン基である。プロピレン基、エチレン基が好ましく、エチレン基がより好ましい。 Specific examples of Y in the general formula (2) include an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, and a 1,6-hexylene group. It is an alkylene group having 2 to 6 carbon atoms, such as a methylpentylene group and a dimethylbutylene group. A propylene group and an ethylene group are preferable, and an ethylene group is more preferable.
 ポリエステルポリオール(A3)は、グリセロールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその酸無水物と、多価アルコールとを必須成分として反応させて得られる。 The polyester polyol (A3) is obtained by reacting glycerol, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof, and a polyhydric alcohol as essential components.
 カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその酸無水物としては、オルトフタル酸又はその酸無水物、ナフタレン2,3-ジカルボン酸又はその酸無水物、ナフタレン1,2-ジカルボン酸又はその酸無水物、アントラキノン2,3-ジカルボン酸又はその酸無水物、及び2,3-アントラセンカルボン酸又はその酸無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 Examples of the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof include orthophthalic acid or an acid anhydride thereof, naphthalene 2,3-dicarboxylic acid or an acid anhydride thereof, and naphthalene 1,2-dicarboxylic acid. Examples thereof include an acid or an acid anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an acid anhydride thereof, and 2,3-anthracenecarboxylic acid or an acid anhydride thereof. These compounds may have a substituent on any carbon atom of the aromatic ring. Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group. Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
 多価カルボンとして、本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族多価カルボン酸;無水マレイン酸、マレイン酸、フマル酸等の不飽和結合含有多価カルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族多価カルボン酸;テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、ジフェン酸及びその酸無水物、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の芳香族多価カルボン酸等が挙げられ、1種または2種以上を併用することができる。中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,8-ナフタル酸、ジフェン酸が好ましい。 As the polyvalent carboxylic acid, another polyvalent carboxylic acid may be copolymerized as long as the effect of the present invention is not impaired. Specifically, aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecandicarboxylic acid; unsaturated bond-containing polyvalent carboxylic acids such as maleic anhydride, maleic acid, and fumaric acid; , 3-Cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic polyvalent carboxylic acids; terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5 -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, diphenic acid and its acid anhydride, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid and these dicarboxylic acids Examples thereof include aromatic polyvalent carboxylic acids such as acid anhydrides or ester-forming derivatives, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids. Species or two or more species can be used together. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid, and diphenic acid are preferable.
 多価アルコールとしては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール等のジオールを例示することができる。 Examples of the polyhydric alcohol include an alkylene diol having 2 to 6 carbon atoms. For example, diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, and dimethylbutanediol. Can be exemplified.
 また、グリセロール、炭素原子数が2~6のアルキレンジオール以外の多価アルコールを、本発明の効果を損なわない範囲において共重合させてもよい。具体的には、エリスリトール、ペンタエリトール、ジペンタエリスリトール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラエチレングリコール、トリプロピレングリコール等の脂肪族多価アルコール、シクロヘキサンジメタノール、トリシクロデカンジメタノール等の脂環族多価アルコール、ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノール等の芳香族多価フェノール、或いはこれらのエチレンオキサイド伸長物、水添化脂環族を例示することができる。 Further, a polyhydric alcohol other than glycerol and an alkylene diol having 2 to 6 carbon atoms may be copolymerized as long as the effect of the present invention is not impaired. Specifically, aliphatic polyhydric alcohols such as erythritol, pentaerythol, dipentaerythritol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetraethylene glycol and tripropylene glycol, cyclohexanedi. Aliphatic polyhydric alcohols such as methanol and tricyclodecanedimethanol, aromatic polyhydric phenols such as hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol, or ethylene oxide thereof. Elongates and hydrolyzed aliphatic ring groups can be exemplified.
 ポリオール組成物(A)がポリエステルポリオール(A3)を主成分とする場合、ガスバリア性接着剤の固形分に占めるポリエステルポリオール(A3)が有するグリセロール残基の含有量が5質量%以上であることが好ましい。グリセロール残基とは一般式(1)におけるR~Rを除いた残基(C=89.07)をいい、下記式(b)を用いて計算する。 When the polyol composition (A) contains the polyester polyol (A3) as a main component, the content of the glycerol residue contained in the polyester polyol (A3) in the solid content of the gas barrier adhesive is 5% by mass or more. preferable. The glycerol residue refers to a residue (C 3 H 5 O 3 = 89.07) excluding R 1 to R 3 in the general formula (1), and is calculated using the following formula (b).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお上記式(b)においてPはポリエステルポリオール(A3)を指す。ガスバリア性接着剤の樹脂固形分質量は、用いるポリオール組成物(I)とポリイソシアネート組成物(II)の合計質量から、希釈溶剤、ポリイソシアネート組成物(II)に含まれる揮発成分、無機成分の質量を除いた質量とする。 In the above formula (b), P refers to the polyester polyol (A3). The resin solid content mass of the gas barrier adhesive is determined from the total mass of the polyol composition (I) and the polyisocyanate composition (II) to be used, as well as the diluting solvent, the volatile component contained in the polyisocyanate composition (II), and the inorganic component. The mass is the mass excluding the mass.
 オルト配向性多価カルボン酸と、多価アルコールとを重縮合して得られるポリエステルポリオール(A4)は、オルトフタル酸及びその酸無水物を少なくとも1種以上含む多価カルボン酸と、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む多価アルコールからなる。特に、前記オルトフタル酸及びその酸無水物の、多価カルボン酸全量に対する使用率が70~100質量%であるポリエステルポリオールが好ましい。 The polyester polyol (A4) obtained by polycondensing an ortho-oriented polyvalent carboxylic acid and a polyhydric alcohol is a polyvalent carboxylic acid containing at least one orthophthalic acid and its acid anhydride, ethylene glycol, and propylene. It consists of a polyhydric alcohol containing at least one selected from the group consisting of glycols, butylene glycols, neopentyl glycols, and cyclohexanedimethanol. In particular, a polyester polyol in which the usage rate of the orthophthalic acid and its acid anhydride with respect to the total amount of the polyvalent carboxylic acid is 70 to 100% by mass is preferable.
 多価カルボン酸はオルトフタル酸及びその酸無水物のいずれかを必須とするが、本発明の効果を損なわない範囲において、他の多価カルボン酸を共重合させてもよい。具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、不飽和結合含有多価カルボン酸としては、無水マレイン酸、マレイン酸、フマル酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、テレフタル酸、イソフタル酸、フランジカルボン酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の酸無水物或いはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独で或いは二種以上の混合物で使用することができる。中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸が好ましい。 The polyvalent carboxylic acid requires either orthophthalic acid or an acid anhydride thereof, but other polyvalent carboxylic acids may be copolymerized as long as the effects of the present invention are not impaired. Specifically, the aliphatic polyvalent carboxylic acid includes succinic acid, adipic acid, azelaic acid, sebacic acid, dodecandicarboxylic acid and the like, and the unsaturated bond-containing polyvalent carboxylic acid includes maleic anhydride and maleic acid. Fumaric acid and the like, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like as the alicyclic polyvalent carboxylic acid, and terephthalic acid, isophthalic acid and frangicarboxylic acid as the aromatic polyvalent carboxylic acid. Acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane -P, p'-dicarboxylic acids and acid anhydrides or ester-forming derivatives of these dicarboxylic acids; p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids, etc. The polybasic acids of can be used alone or in admixture of two or more. Of these, succinic acid, 1,3-cyclopentanedicarboxylic acid, and isophthalic acid are preferable.
 多価アルコールはエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、及びシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含むが、本発明の効果を損なわない範囲において、他の多価アルコールを共重合させてもよい。具体的には、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の脂肪族ジオール;ヒドロキノン、レゾルシノール、カテコール、ナフタレンジオール、ビフェノール、ビスフェノールA、ヒスフェノールF、テトラメチルビフェノールや、これらの、エチレンオキサイド伸長物、水添化脂環族等の芳香族多価フェノール等を例示することができる。 The polyhydric alcohol includes at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol, but other polyhydric alcohols can be used as long as the effects of the present invention are not impaired. It may be copolymerized. Specifically, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetra. Aliper diols such as ethylene glycol, dipropylene glycol and tripropylene glycol; hydroquinone, resorcinol, catechol, naphthalenediol, biphenol, bisphenol A, hisphenol F, tetramethylbiphenol and their ethylene oxide extensions, hydrogenated Aromatic polyhydric phenols such as alicyclic groups can be exemplified.
 イソシアヌル環を有するポリエステルポリオール(A5)は、下記一般式(3)で表されるものである。 The polyester polyol (A5) having an isocyanul ring is represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000005
(一般式(3)中、R~Rは各々独立して、-(CHn1-OH(但しn1は2~4の整数を表す)、又は下記一般式(4)で表される基を表す。但しR、R及びRの少なくとも1つは一般式(4)で表される基である。)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (3), R 1 to R 3 are independently represented by − (CH 2 ) n1 −OH (where n1 represents an integer of 2 to 4) or the following general formula (4). However , at least one of R 1 , R 2 and R 3 is a group represented by the general formula (4).)
Figure JPOXMLDOC01-appb-C000006
(一般式(4)中、n2は2~4の整数を表し、n3は1~5の整数を表し、Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、及び2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (4), n2 represents an integer of 2 to 4, n3 represents an integer of 1 to 5, and X is a 1,2-phenylene group, a 1,2-naphthylene group, and a 2,3-naphthylene group. , 2,3-anthraquinonediyl group, and 2,3-anthracendiyl group selected from the group and may have a substituent, Y represents an alkylene group having 2 to 6 carbon atoms. Represent.)
 ポリエステルポリオール(A5)は、R、R及びRのいずれか1つが一般式(4)で表される基である化合物と、R、R及びRのいずれか2つが一般式(4)で表される基である化合物と、R、R及びRの全てが一般式(4)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。R~Rの全てが一般式(4)で表される基であることがより好ましい。 Polyester polyol (A5) includes a compound any one of R 1, R 2 and R 3 is a group represented by the general formula (4), R 1, R 2 and one of R 3 2 two generally formula A mixture of two or more compounds of the compound represented by (4) and the compound represented by the general formula (4) in which all of R 1 , R 2 and R 3 are represented by the general formula (4). May be. It is more preferable that all of R 1 to R 3 are groups represented by the general formula (4).
 一般式(3)において、-(CH2)n1-で表されるアルキレン基は、直鎖状であっても分岐状でもよい。n1は、中でも2又は3が好ましく、2が最も好ましい。 In the general formula (3), the alkylene group represented by − (CH2) n1 − may be linear or branched. Of these, n1 is preferably 2 or 3, and most preferably 2.
 一般式(4)において、Xが置換基によって置換されている場合、1又は複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。 In the general formula (4), when X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is any carbon atom on X different from the free radical. Is bound to. Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group. Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
 Xの置換基は、ヒドロキシル基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルバモイル基、N-エチルカルバモイル基、フェニル基が好ましく、ヒドロキシル基、フェノキシ基、シアノ基、ニトロ基、フタルイミド基、フェニル基がより好ましい。 The substituent of X is preferably a hydroxyl group, a cyano group, a nitro group, an amino group, a phthalimide group, a carbamoyl group, an N-ethylcarbamoyl group or a phenyl group, preferably a hydroxyl group, a phenoxy group, a cyano group, a nitro group or a phthalimide group. A phenyl group is more preferred.
 一般式(4)におけるYの具体例としては、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基、ジメチルブチレン基等の、炭素原子数2~6のアルキレン基である。プロピレン基、エチレン基が好ましく、エチレン基がより好ましい。 Specific examples of Y in the general formula (4) include an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, and a 1,6-hexylene group. It is an alkylene group having 2 to 6 carbon atoms, such as a methylpentylene group and a dimethylbutylene group. A propylene group and an ethylene group are preferable, and an ethylene group is more preferable.
 ポリエステルポリオール(A5)は、イソシアヌル環を有するトリオールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその酸無水物と、多価アルコールとを必須成分として反応させて得る。 The polyester polyol (A5) is obtained by reacting a triol having an isocyanul ring, an aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof, and a polyhydric alcohol as essential components.
 イソシアヌル環を有するトリオールとしては、例えば、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸等のイソシアヌル酸のアルキレンオキサイド付加物等が挙げられる。 Examples of triols having an isocyanuric ring include alkylene oxide adducts of isocyanuric acid such as 1,3,5-tris (2-hydroxyethyl) isocyanuric acid and 1,3,5-tris (2-hydroxypropyl) isocyanuric acid. And so on.
 カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその酸無水物としては、オルトフタル酸またはその酸無水物、ナフタレン2,3-ジカルボン酸またはその酸無水物、ナフタレン1,2-ジカルボン酸またはその酸無水物、アントラキノン2,3-ジカルボン酸またはその酸無水物、及び2,3-アントラセンカルボン酸またはその酸無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基またはナフチル基等が挙げられる。 Examples of the aromatic polyvalent carboxylic acid in which the carboxylic acid is substituted at the ortho position or an acid anhydride thereof include orthophthalic acid or an acid anhydride thereof, naphthalene 2,3-dicarboxylic acid or an acid anhydride thereof, and naphthalene 1,2-dicarboxylic acid. Examples thereof include an acid or an acid anhydride thereof, anthraquinone 2,3-dicarboxylic acid or an acid anhydride thereof, and 2,3-anthracenecarboxylic acid or an acid anhydride thereof. These compounds may have a substituent on any carbon atom of the aromatic ring. Examples of the substituent include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group and an amino group. Examples thereof include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group or a naphthyl group.
 多価アルコールとしては炭素原子数2~6のアルキレンジオール、具体的にはエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール等のジオールを例示することができる。 Polyhydric alcohols include alkylene diols having 2 to 6 carbon atoms, specifically ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Examples thereof include diols such as 1,6-hexanediol, methylpentanediol, and dimethylbutanediol.
 中でも、イソシアヌル環を有するトリオール化合物として1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、または1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸を使用し、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその酸無水物としてオルトフタル酸無水物を使用し、多価アルコールとしてエチレングリコールを使用したイソシアヌル環を有するポリエステルポリオール(A5)が、ガスバリア性や接着性に優れ好ましい。 Among them, 1,3,5-tris (2-hydroxyethyl) isocyanuric acid or 1,3,5-tris (2-hydroxypropyl) isocyanuric acid is used as the triol compound having an isocyanul ring, and the carboxylic acid is in the ortho position. A polyester polyol (A5) having an isocyanul ring using an aromatic polyvalent carboxylic acid substituted with or using orthophthalic anhydride as the acid anhydride and ethylene glycol as the polyhydric alcohol has improved gas barrier properties and adhesiveness. Excellent and preferable.
 イソシアヌル環は高極性であり、且つ水素結合を形成しない。一般に接着性を高める手法として、水酸基、ウレタン結合、ウレイド結合、アミド結合などの高極性の官能基を配合させる方法が知られているが、これらの結合を有する樹脂は分子間水素結合を形成しやすく、溶剤型接着剤に良く使用される酢酸エチル、2-ブタノン等の溶剤への溶解性を損ねてしまうことがあるが、イソシアヌル環を有するポリエステル樹脂は該溶解性を損なわないので、容易に希釈可能である。 The isocyanul ring is highly polar and does not form hydrogen bonds. Generally, as a method for improving adhesiveness, a method of blending highly polar functional groups such as a hydroxyl group, a urethane bond, a ureido bond, and an amide bond is known, and a resin having these bonds forms an intermolecular hydrogen bond. It is easy and may impair the solubility in solvents such as ethyl acetate and 2-butanone, which are often used for solvent-based adhesives, but polyester resins having an isocyanul ring do not impair the solubility, so that the solubility is easily impaired. It can be diluted.
 また、イソシアヌル環は3官能であるため、イソシアヌル環を樹脂骨格の中心とし、且つその分岐鎖に特定の構造のポリエステル骨格を有するポリエステルポリオール化合物は高い架橋密度を得ることができる。架橋密度を高めることで、酸素等のガスが通過する隙間を減らすことができると推定される。このように、イソシアヌル環は分子間水素結合を形成せずに高極性であり且つ高い架橋密度が得られるので、ガスバリア性と接着性とを担保できると推定している。 Further, since the isocyanul ring is trifunctional, a polyester polyol compound having the isocyanul ring as the center of the resin skeleton and a polyester skeleton having a specific structure in the branched chain can obtain a high crosslink density. It is presumed that by increasing the crosslink density, the gap through which a gas such as oxygen passes can be reduced. As described above, it is presumed that the isocyanul ring has high polarity and a high crosslink density without forming an intermolecular hydrogen bond, so that gas barrier properties and adhesiveness can be ensured.
 このような観点から、ポリオール組成物(A)がポリエステルポリオール(A5)を主成分とする場合、ガスバリア性接着剤の固形分に占めるポリエステルポリオール(A5)が有するイソシアヌル環の含有量が5質量%以上であることが好ましい。イソシアヌル環とは一般式(3)におけるR~Rを除いた残基(C=126.05)をいい、下記式(b)を用いて計算する。 From this point of view, when the polyol composition (A) contains the polyester polyol (A5) as a main component, the content of the isocyanul ring contained in the polyester polyol (A5) in the solid content of the gas barrier adhesive is 5% by mass. The above is preferable. The isocyanul ring refers to the residue (C 3 N 3 O 3 = 126.05) excluding R 1 to R 3 in the general formula (3), and is calculated using the following formula (b).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお上記式(c)においてPはポリエステルポリオール(A5)を指す。ガスバリア性接着剤の樹脂固形分質量は、用いるポリオール組成物(I)とポリイソシアネート組成物(II)の合計質量から、希釈溶剤、ポリイソシアネート組成物(II)に含まれる揮発成分、無機成分の質量を除いた質量とする。 In the above formula (c), P refers to a polyester polyol (A5). The resin solid content mass of the gas barrier adhesive is determined from the total mass of the polyol composition (I) and the polyisocyanate composition (II) to be used, the diluting solvent, the volatile component contained in the polyisocyanate composition (II), and the inorganic component. The mass is the mass excluding the mass.
 ポリエステルポリオールの水酸基価は、20mgKOH/g以上250mgKOH/g以下であることが好ましい。水酸基価が20mgKOH/gより小さい場合、分子量が大きすぎるためポリオール組成物(I)の粘度が高くなり、良好な塗工適性が得られない。水酸基価が250mgKOH/gを超える場合、分子量が小さすぎて硬化塗膜の架橋密度が高くなりすぎ、良好な接着強度が得られない。 The hydroxyl value of the polyester polyol is preferably 20 mgKOH / g or more and 250 mgKOH / g or less. When the hydroxyl value is smaller than 20 mgKOH / g, the viscosity of the polyol composition (I) becomes high because the molecular weight is too large, and good coating suitability cannot be obtained. When the hydroxyl value exceeds 250 mgKOH / g, the molecular weight is too small and the crosslink density of the cured coating film becomes too high, so that good adhesive strength cannot be obtained.
 ポリエステルポリオールが酸基を有する場合、酸価は200mgKOH/g以下であることが好ましい。酸価が200mgKOH/gを超える場合、ポリオール組成物(I)とポリイソシアネート組成物(II)との反応が早くなり過ぎ、良好な塗工適性が得られない。ポリエステルポリオールの酸価の下限は特に制限されないが、一例として20mgKOH/g以上である。酸価が20mgKOH/g以上であると分子間の相互作用により良好なガスバリア性や初期凝集力が得られる。ポリエステルポリオールの水酸基価はJIS-K0070に記載の水酸基価測定方法にて、酸価はJIS-K0070に記載の酸価測定法にて測定することができる。 When the polyester polyol has an acid group, the acid value is preferably 200 mgKOH / g or less. When the acid value exceeds 200 mgKOH / g, the reaction between the polyol composition (I) and the polyisocyanate composition (II) becomes too fast, and good coating suitability cannot be obtained. The lower limit of the acid value of the polyester polyol is not particularly limited, but as an example, it is 20 mgKOH / g or more. When the acid value is 20 mgKOH / g or more, good gas barrier properties and initial cohesive force can be obtained by intermolecular interaction. The hydroxyl value of the polyester polyol can be measured by the hydroxyl value measuring method described in JIS-K0070, and the acid value can be measured by the acid value measuring method described in JIS-K0070.
 上述したようなポリエステルポリオールの数平均分子量は300~5000であると接着性とガスバリア性とのバランスに優れる程度の架橋密度が得られるため特に好ましい。より好ましくは数平均分子量が350~3000である。分子量が300よりも小さいと塗工時の接着剤の凝集力が小さくなりすぎ、ラミネート時にフィルムがズレたり、貼り合せたフィルムが浮き上がるといった不具合が生じるおそれがある。一方、分子量が5000よりも高いと塗工時の粘度が高くなり過ぎて塗工が出来ない、あるいは粘着性が低くラミネートができないといった不具合が生じるおそれがある。なお、数平均分子量は得られた水酸基価と設計上の水酸基の官能基数から計算により求める。 It is particularly preferable that the number average molecular weight of the polyester polyol as described above is 300 to 5000 because a crosslink density having an excellent balance between adhesiveness and gas barrier property can be obtained. More preferably, the number average molecular weight is 350 to 3000. If the molecular weight is less than 300, the cohesive force of the adhesive at the time of coating becomes too small, and there is a possibility that the film may be displaced at the time of laminating or the bonded film may be lifted. On the other hand, if the molecular weight is higher than 5000, the viscosity at the time of coating becomes too high and the coating cannot be performed, or the adhesiveness is low and the lamination cannot be performed. The number average molecular weight is calculated from the obtained hydroxyl value and the number of functional groups of the designed hydroxyl group.
 ポリエステルポリオールのガラス転移温度は-30℃以上80℃以下であることが好ましく、0℃以上60℃以下であることがより好ましく、25℃以上60℃以下であることがさらに好ましい。ガラス転移温度が80℃を超えると室温付近でのポリエステルポリオールの柔軟性が低いために基材への密着性が劣り、接着性が低下するおそれがある。一方-30℃よりも低いと、常温付近でのポリエステルポリオールの分子運動が激しいため十分なガスバリア性が得られないおそれがある。 The glass transition temperature of the polyester polyol is preferably −30 ° C. or higher and 80 ° C. or lower, more preferably 0 ° C. or higher and 60 ° C. or lower, and further preferably 25 ° C. or higher and 60 ° C. or lower. If the glass transition temperature exceeds 80 ° C., the flexibility of the polyester polyol at around room temperature is low, so that the adhesion to the substrate is poor and the adhesiveness may be lowered. On the other hand, if the temperature is lower than -30 ° C, the molecular motion of the polyester polyol at around room temperature is intense, so that sufficient gas barrier properties may not be obtained.
 ポリエステルポリオールは、ポリエステルポリオール(A1)~(A5)をジイソシアネート化合物との反応によるウレタン伸長により数平均分子量1000~15000としたポリエステルポリウレタンポリオール、であってもよい。ウレタン伸長したポリエステルポリオールには一定以上の分子量成分とウレタン結合とが存在するため、優れたガスバリア性を持ち、初期凝集力に優れ、ラミネート用の接着剤として優れる。 The polyester polyol may be a polyester polyurethane polyol having a number average molecular weight of 1000 to 15000 by urethane elongation of polyester polyols (A1) to (A5) by reaction with a diisocyanate compound. Since the urethane-extended polyester polyol has a molecular weight component of a certain level or more and a urethane bond, it has an excellent gas barrier property, an excellent initial cohesive force, and an excellent adhesive for laminating.
 2液型接着剤の一成分であるポリイソシアネート組成物(II)は、イソシアネート化合物を含む。イソシアネート化合物としては、従来公知のものを特に制限なく用いることができ、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート或いはこれらのイソシアネート化合物の2量体、3量体、およびこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メタキシリレンジアミンなどの低分子活性水素化合物およびそのアルキレンオキシド付加物、各種ポリエステル樹脂類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などと反応させて得られるアダクト体が挙げられる。ポリエステルポリオール(A1)~(A5)とジイソシアネート化合物とを、水酸基とイソシアネート基の比率をイソシアネート過剰で反応させて得られるポリエステルポリイソシアネートを用いてもよい。これらは1種または2種以上を併用することができる。 The polyisocyanate composition (II), which is one component of the two-component adhesive, contains an isocyanate compound. As the isocyanate compound, conventionally known compounds can be used without particular limitation, and tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydride diphenylmethane diisocyanate, xylylene diisocyanate, hydride xylylene diisocyanate, isophorone diisocyanate or Dimeric and trimeric of these isocyanate compounds, and excess amounts of these isocyanate compounds, such as ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene. , Trimethylol propane, glycerol, pentaerythritol, erythritol, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, metaxylylene diisocyanate and other low molecular weight active hydrogen compounds and their alkylene oxide adducts, various polyester resins, poly Examples thereof include adducts obtained by reacting with ether polyols, high molecular weight active hydrogen compounds of polyamides, and the like. Polyester polyisocyanate obtained by reacting polyester polyols (A1) to (A5) with a diisocyanate compound in an excess ratio of hydroxyl groups and isocyanate groups may be used. These can be used alone or in combination of two or more.
 また、イソシアネート化合物としてブロック化イソシアネートを用いてもよい。イソシアネートブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、エチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノールなどのフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなそのオキシム類、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-
プロパノールなどのハロゲン置換アルコール類、t-ブタノール、t-ペンタノール、などの第3級アルコール類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピロラクタムなどのラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネートブロック化剤とを公知慣用の適宜の方法より付加反応させて得られる。
Further, blocked isocyanate may be used as the isocyanate compound. Examples of the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, acetoxime, methylethylketooxime, cyclohexanone oxime, and methanol. Alcohols such as ethanol, propanol and butanol, ethylene chlorohydrin, 1,3-dichloro-2-
Examples thereof include halogen-substituted alcohols such as propanol, tertiary alcohols such as t-butanol and t-pentanol, and lactams such as ε-caprolactam, δ-valerolactam, γ-butyrolactam and β-propyrrolactam. In addition, active methylene compounds such as aromatic amines, imides, acetylacetones, acetoacetate esters, and malonic acid ethyl esters, mercaptans, imines, ureas, diaryl compounds, sodium disulfide and the like can also be mentioned. The blocked isocyanate is obtained by subjecting the above-mentioned isocyanate compound and an isocyanate blocking agent to an addition reaction by a known and commonly used appropriate method.
 中でも、良好なガスバリア性が得られることからキシリレンジイソシアネート、水素化キシリレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネートが好ましく、メタキシリレンジイソシアネート、メタ水素化キシリレンジイソシアネートのようなメタキシレン骨格を有するイソシアネート化合物を用いることがより好ましい。 Of these, xylylene diisocyanate, hydrogenated xylylene diisocyanate, toluene diisocyanate, and diphenylmethane diisocyanate are preferable because good gas barrier properties can be obtained, and isocyanate compounds having a metaxylene skeleton such as metaxylylene diisocyanate and metahydrogenated xylylene diisocyanate are preferable. Is more preferable to use.
 メタキシレン骨格を有するイソシアネート化合物としては、キシリレンジイソシアネートの3量体、アミンとの反応により合成されるビューレット体、アルコールと反応してなるアダクト体が挙げられる。3量体、ビューレット体と比べ、溶剤型接着剤に用いられる有機溶剤への溶解性が良好なことから、接着剤が溶剤型の場合はアダクト体を用いることが好ましい。アダクト体としては、上記の低分子活性水素化合物の中から適宜選択されるアルコールと反応してなるアダクト体が使用できるが、中でも、トリメチロールプロパン、グリセロール、トリエタノールアミン、メタキシレンジアミンのエチレンオキシド付加物とのアダクト体が好ましい。 Examples of the isocyanate compound having a metaxylene skeleton include a trimer of xylene diisocyanate, a burette compound synthesized by reaction with an amine, and an adduct compound formed by reacting with an alcohol. When the adhesive is a solvent type, it is preferable to use an adduct body because the solubility in the organic solvent used for the solvent type adhesive is better than that of the trimer body and the burette body. As the adduct, an adduct formed by reacting with an alcohol appropriately selected from the above low molecular weight active hydrogen compounds can be used, and among them, ethylene oxide adducts of trimethylolpropane, glycerol, triethanolamine, and metaxylylenediamine can be used. An adduct body with an object is preferable.
 また、ポリオール組成物(I)として、ポリエステルポリオール(A1)のようにカルボン酸基が残存しているポリエステルポリオールを含む組成物を用いる場合には、ポリイソシアネート組成物(II)がエポキシ化合物を含んでいてもよい。エポキシ化合物としてはビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、水素化ビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、オルソフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、p-オキシ安息香酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルおよびポリアルキレングリコールジグリシジルエーテル類、トリメリット酸トリグリシジルエステル、トリグリシジルイソシアヌレート、1,4-ジグリシジルオキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセロールアルキレンオキサイド付加物のトリグリシジルエーテルなどを挙げることができる。 When a composition containing a polyester polyol having a carboxylic acid group remaining, such as the polyester polyol (A1), is used as the polyol composition (I), the polyisocyanate composition (II) contains an epoxy compound. You may be. Examples of the epoxy compound include bisphenol A diglycidyl ether and its oligomer, hydride bisphenol A diglycidyl ether and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, and p-oxybenzoic acid di. Glycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipate diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1 , 4-Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and polyalkylene glycol diglycidyl ethers, trimeric acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl Examples thereof include propylene urea, glycerol triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylol propane triglycidyl ether, pentaerythritol tetraglycidyl ether, and triglycidyl ether as a glycerol alkylene oxide adduct.
 エポキシ化合物を用いる場合には、硬化を促進する目的で汎用公知のエポキシ硬化促進剤を本発明の目的が損なわれない範囲で適宜添加してもよい。 When an epoxy compound is used, a widely known epoxy curing accelerator may be appropriately added for the purpose of accelerating curing as long as the object of the present invention is not impaired.
 ポリオール組成物(I)として、ポリエステルポリオール(A2)のように重合性炭素-炭素二重結合を有するポリオールを含む組成物を用いる場合には、炭素-炭素二重結合の重合を促進するために公知の重合触媒を併用することができ、一例として遷移金属錯体が挙げられる。遷移金属錯体は、重合性二重結合を酸化重合させる能力を備える化合物であれば特に限定されない。例えば、コバルト、マンガン、鉛、カルシウム、セリウム、ジルコニウム、亜鉛、鉄、銅等の金属と、オクチル酸、ナフテン酸、ネオデカン酸、ステアリン酸、樹脂酸、トール油脂肪酸、桐油脂肪酸、アマニ油脂肪酸、大豆油脂肪酸等との塩を用いることができる。遷移金属錯体の配合量はポリオール組成物(I)に含まれる樹脂固形分に対して0~10質量部が好ましく、より好ましくは0~3質量部である。 When a composition containing a polyol having a polymerizable carbon-carbon double bond such as the polyester polyol (A2) is used as the polyol composition (I), in order to promote the polymerization of the carbon-carbon double bond, A known polymerization catalyst can be used in combination, and a transition metal complex is mentioned as an example. The transition metal complex is not particularly limited as long as it is a compound having an ability to oxidatively polymerize a polymerizable double bond. For example, metals such as cobalt, manganese, lead, calcium, cerium, zirconium, zinc, iron, copper, octyl acid, naphthenic acid, neodecanoic acid, stearic acid, resin acid, tall oil fatty acid, tung oil fatty acid, linseed oil fatty acid, Salts with soybean oil fatty acids and the like can be used. The blending amount of the transition metal complex is preferably 0 to 10 parts by mass, more preferably 0 to 3 parts by mass with respect to the resin solid content contained in the polyol composition (I).
 ポリオール組成物(I)とポリイソシアネート組成物(II)とは、ポリオール組成物(I)に含まれる水酸基と、ポリイソシアネート組成物(II)に含まれるイソシアネート基との当量比が1/0.5~1/10となるよう配合することが好ましく、1/1~1/5となるよう配合することがより好ましい。イソシアネート化合物が過剰の場合、接着剤の硬化塗膜に残留した余剰のイソシアネート化合物が接着剤層からブリードアウトするおそれがある。一方、ポリイソシアネート組成物(II)に含まれる反応性の官能基が不足すると、接着強度が不足するおそれがある。 The equivalent ratio of the hydroxyl group contained in the polyol composition (I) to the isocyanate group contained in the polyisocyanate composition (II) of the polyol composition (I) and the polyisocyanate composition (II) is 1/0. It is preferably blended so as to be 5 to 1/10, and more preferably to be blended so as to be 1/1 to 1/5. When the isocyanate compound is excessive, the excess isocyanate compound remaining in the cured coating film of the adhesive may bleed out from the adhesive layer. On the other hand, if the reactive functional groups contained in the polyisocyanate composition (II) are insufficient, the adhesive strength may be insufficient.
 接着剤には、接着性およびガスバリア性(接着剤がガスバリア性を備える場合)を損なわない範囲で各種添加剤を配合してもよい。 Various additives may be added to the adhesive as long as the adhesiveness and gas barrier property (when the adhesive has gas barrier property) are not impaired.
 このような添加剤として、無機充填剤を用いてもよい。無機充填剤としては、シリカ、アルミナ、アルミニウムフレーク、ガラスフレーク等が挙げられる。特に無機充填剤として板状無機化合物を用いると、接着強度、ガスバリア性、遮光性等が向上するため好ましい。板状無機化合物としては、含水ケイ酸塩(フィロケイ酸塩鉱物等)、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト等、アンチゴライト、クリソタイル等)、パイロフィライト-タルク族(パイロフィライト、タルク、ケロライ等)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト等)、バーミキュライト族粘土鉱物(バーミキュライト等)、雲母又はマイカ族粘土鉱物(白雲母、金雲母等の雲母、マーガライト、テトラシリリックマイカ、テニオライト等)、緑泥石族(クッケアイト、スドーアイト、クリノクロア、シャモサイト、ニマイト等)、ハイドロタルサイト、板状硫酸バリウム、ベーマイト、ポリリン酸アルミニウム等が挙げられる。これらの鉱物は天然粘土鉱物であっても合成粘土鉱物であってもよい。板状無機化合物は1種または2種以上を併用することができる。 An inorganic filler may be used as such an additive. Examples of the inorganic filler include silica, alumina, aluminum flakes, glass flakes and the like. In particular, it is preferable to use a plate-shaped inorganic compound as the inorganic filler because the adhesive strength, gas barrier property, light-shielding property and the like are improved. Plate-like inorganic compounds include hydrous silicates (phyllocate minerals, etc.), kaolinite-serpentine clay minerals (haloisite, kaolinite, enderite, dikite, nacrite, etc., antigolite, chrysotile, etc.), pyrophyllium. Light-Tark (pyrophyllite, talc, kerolai, etc.), smectite clay minerals (montmorillonite, biderite, nontronite, saponite, hectrite, saconite, stivuncite, etc.), vermiculite clay minerals (vermiculite, etc.), mica or Mica clay minerals (white mica, gold mica, etc., margarite, tetracylic mica, teniolite, etc.), green mudstones (cookate, sudowite, clinochloa, chamosite, nimite, etc.), hydrotalcite, plate sulfate Examples thereof include barium, boehmite and aluminum polyphosphate. These minerals may be natural clay minerals or synthetic clay minerals. The plate-like inorganic compound may be used alone or in combination of two or more.
 板状無機化合物は、層間に電荷を有するイオン性のものであってもよいし、電荷を持たない非イオン性のものであってもよい。層間の電荷の有無は接着剤層のガスバリア性に直接大きな影響を与えない。しかしながらイオン性の板状無機化合物や水に対して膨潤性を有する無機化合物は溶剤型接着剤への分散性が劣り、添加量を増加させると接着剤と増粘したり、チキソ性となったりして塗工適性が低下するおそれがある。このため板状無機化合物層間電化を持たない非イオン性であることが好ましい。 The plate-like inorganic compound may be an ionic compound having an electric charge between layers, or a nonionic compound having no electric charge. The presence or absence of electric charge between layers does not directly affect the gas barrier property of the adhesive layer. However, ionic plate-like inorganic compounds and inorganic compounds that have swelling properties with respect to water are inferior in dispersibility in solvent-type adhesives, and when the amount added is increased, they become thicker with the adhesives or become chyso-friendly. As a result, the coating suitability may decrease. Therefore, the plate-like inorganic compound is preferably nonionic without interlayer electrification.
 板状無機化合物の平均粒径は、特に制限されないが、一例として0.1μm以上であることが好ましく、1μm以上であることがより好ましい。0.1μmよりも小さいと、酸素分子の迂回経路が長くならず、ガスバリア性の向上が十分には期待できない。平均粒径の上限は特に制限されないが、粒径が大きすぎると塗工方法によっては塗工面にスジ等の欠陥が生じる場合がある。このため、一例として平均粒径は100μm以下であることが好ましく、20μm以下であることが好ましい。なお本明細書において板状無機化合物の平均粒径とは、板状無機化合物の粒度分布を光散乱式測定装置で測定した場合の出現頻度が最も高い粒径をいう。 The average particle size of the plate-shaped inorganic compound is not particularly limited, but as an example, it is preferably 0.1 μm or more, and more preferably 1 μm or more. If it is smaller than 0.1 μm, the detour route of oxygen molecules will not be long, and improvement of gas barrier property cannot be expected sufficiently. The upper limit of the average particle size is not particularly limited, but if the particle size is too large, defects such as streaks may occur on the coated surface depending on the coating method. Therefore, as an example, the average particle size is preferably 100 μm or less, and preferably 20 μm or less. In the present specification, the average particle size of the plate-shaped inorganic compound means the particle size that appears most frequently when the particle size distribution of the plate-shaped inorganic compound is measured by a light scattering type measuring device.
 板状無機化合物のアスペクト比は酸素の迷路効果によるガスバリア性の向上のためには高い方が好ましい。具体的には3以上が好ましく、更に好ましくは10以上、最も好ましくは40以上である。 The aspect ratio of the plate-like inorganic compound is preferably high in order to improve the gas barrier property due to the maze effect of oxygen. Specifically, it is preferably 3 or more, more preferably 10 or more, and most preferably 40 or more.
 板状無機化合物の配合量は任意であるが、一例として、ポリオール組成物(I)、ポリイソシアネート組成物(II)、板状無機化合物の固形分総質量を100質量としたときに、板状無機化合物の配合量が5~50質量部である。 The blending amount of the plate-shaped inorganic compound is arbitrary, but as an example, when the total solid content of the polyol composition (I), the polyisocyanate composition (II), and the plate-shaped inorganic compound is 100 mass, the plate-shaped inorganic compound is formed. The blending amount of the inorganic compound is 5 to 50 parts by mass.
 接着剤が接着促進剤を含んでいてもよい。接着促進剤としては、加水分解性アルコキシシラン化合物等のシランカップリング剤、チタネート系カップリング剤、アルミニウム系等のカップリング剤、エポキシ樹脂等が挙げられる。シランカップリング剤やチタネート系カップリング剤は、各種フィルム材料に対する接着性を向上させる効果が期待できる。 The adhesive may contain an adhesion promoter. Examples of the adhesion accelerator include silane coupling agents such as hydrolyzable alkoxysilane compounds, titanate-based coupling agents, aluminum-based coupling agents, and epoxy resins. Silane coupling agents and titanate-based coupling agents can be expected to have the effect of improving the adhesiveness to various film materials.
 接着層に耐酸性が必要な場合には、接着剤が公知の酸無水物を含んでいてもよい。酸無水物としては、例えば、フタル酸無水物、コハク酸無水物、ヘット酸無水物、ハイミック酸無水物、マレイン酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドラフタル酸無水物、テトラプロムフタル酸無水物、テトラクロルフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノテトラカルボン酸無水物、2,3,6,7-ナフタリンテトラカルボン酸2無水物、5-(2,5-オキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、スチレン無水マレイン酸共重合体等が挙げられる。 If the adhesive layer requires acid resistance, the adhesive may contain a known acid anhydride. Examples of the acid anhydride include phthalic acid anhydride, succinic acid anhydride, het acid anhydride, hymic acid anhydride, maleic acid anhydride, tetrahydrophthalic acid anhydride, hexahydraphthalic acid anhydride, and tetrapromphthalic acid. Anhydride, tetrachlorphthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic acid anhydride, 2,3,6,7-naphthalintetracarboxylic acid dianhydride, 5- (2) , 5-Oxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, maleic anhydride copolymer, and the like.
 必要に応じて、更に酸素捕捉機能を有する化合物等を添加してもよい。酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。 If necessary, a compound or the like having an oxygen trapping function may be further added. Examples of the compound having an oxygen trapping function include low molecular weight organic compounds that react with oxygen such as hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, and pyrogallol, cobalt, manganese, nickel, iron, and the like. Examples thereof include transition metal compounds such as copper.
 塗布直後の各種フィルム材料に対する粘着性を向上させるために、必要に応じてキシレン樹脂、テルペン樹脂、フェノール樹脂、ロジン樹脂などの粘着付与剤を添加しても良い。これらを添加する場合にその配合量は、ポリオール組成物(I)とポリイソシアネート組成物(II)の固形分総量100質量部に対して0.01~5質量部の範囲が好ましい。 In order to improve the adhesiveness to various film materials immediately after application, a tackifier such as xylene resin, terpene resin, phenol resin, rosin resin may be added as needed. When these are added, the blending amount thereof is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the total solid content of the polyol composition (I) and the polyisocyanate composition (II).
 ポリオール組成物(I)がポリエステルポリオール(A2)を含む場合、重合性炭素-炭素二重結合を反応させる方法として活性エネルギー線を使用することもできる。活性エネルギー線としては公知の技術が使用でき、電子線、紫外線、或いはγ線等の電離放射線等を照射して硬化させることができる。紫外線で硬化させる場合、高圧水銀灯、エキシマランプ、メタルハライドランプ等を備えた公知の紫外線照射装置を使用することができる。 When the polyol composition (I) contains a polyester polyol (A2), active energy rays can also be used as a method for reacting the polymerizable carbon-carbon double bond. A known technique can be used as the active energy ray, and it can be cured by irradiating it with ionizing radiation such as electron beam, ultraviolet ray, or γ ray. When curing with ultraviolet rays, a known ultraviolet irradiation device equipped with a high-pressure mercury lamp, an excimer lamp, a metal halide lamp, or the like can be used.
 紫外線を照射して硬化させる場合には、必要に応じて、紫外線の照射によりラジカル等を発生する光(重合)開始剤をポリエステルポリオール(A2)100質量部に対して0.1~20質量部程度添加することが好ましい。 When curing by irradiating with ultraviolet rays, if necessary, 0.1 to 20 parts by mass of a light (polymerization) initiator that generates radicals or the like by irradiation with ultraviolet rays with respect to 100 parts by mass of polyester polyol (A2). It is preferable to add to some extent.
 ラジカル発生型の光(重合)開始剤としては、ベンジル、ベンゾフェノン、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン等の水素引き抜きタイプや、ベンゾインエチルエーテル、ジエトキシアセトフェノン、ベンジルメチルケタール、ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルフェニルケトン等の光開裂タイプが挙げられる。これらの中から単独或いは複数のものを組み合わせて使用することができる。 Radical-generating photo (polymerization) initiators include hydrogen abstraction types such as benzyl, benzophenone, Michler's ketone, 2-chlorothioxanthone, and 2,4-diethylthioxanthone, benzoin ethyl ether, diethoxyacetophenone, benzylmethyl ketal, and hydroxy. Examples thereof include photocleavable types such as cyclohexylphenyl ketone and 2-hydroxy-2-methylphenyl ketone. Among these, one can be used alone or a plurality of them can be used in combination.
 その他、接着剤が安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、結晶核剤等を含んでいてもよい。これらの各種添加剤は予めポリオール組成物(I)およびポリイソシアネート組成物(II)のいずれか一方、または両方に添加しておいてもよいし、ポリオール組成物(I)とポリイソシアネート組成物(II)とを混合する際に添加してもよい。 In addition, the adhesive may contain stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, blocking inhibitors, colorants, crystal nucleating agents, and the like. These various additives may be added to either or both of the polyol composition (I) and the polyisocyanate composition (II) in advance, or the polyol composition (I) and the polyisocyanate composition ( It may be added when mixing with II).
 本発明で用いられる接着剤は溶剤系であり、ポリオール組成物(I)、ポリイソシアネート組成物(II)の少なくとも一方が希釈溶剤を含む。用いられる希釈溶剤としては、トルエン、キシレン、塩化メチレン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン、トルオール、キシロール、n-ヘキサン、シクロヘキサン等が挙げられる。ポリオール組成物(I)またはポリイソシアネート組成物(II)の構成成分の製造時に反応媒体として使用された溶剤が、更に塗装時に希釈溶剤として使用される場合もある。 The adhesive used in the present invention is a solvent-based adhesive, and at least one of the polyol composition (I) and the polyisocyanate composition (II) contains a diluting solvent. The diluting solvent used is toluene, xylene, methylene chloride, tetrahydrofuran, methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, acetone, methyl ethyl ketone (MEK), cyclohexanone, toluol, xylol, n-hexane, cyclohexane. And so on. The solvent used as a reaction medium in the production of the constituent components of the polyol composition (I) or the polyisocyanate composition (II) may be further used as a diluting solvent in coating.
 以下ではこのような構成の積層体101を例に挙げて本発明の積層体の製造方法について説明する。 Hereinafter, the method for producing the laminate of the present invention will be described by taking the laminate 101 having such a configuration as an example.
<積層体の製造方法>
 図2は、本発明の積層体の製造に用いるラミネート装置10の一例を示す概略構成図である。ラミネート装置10は、フィルム供給装置1、2と、コーティング装置3と、乾燥装置4と、貼り合わせ装置5と、巻取り装置6とを備える。
<Manufacturing method of laminated body>
FIG. 2 is a schematic configuration diagram showing an example of a laminating apparatus 10 used for manufacturing the laminated body of the present invention. The laminating device 10 includes film feeding devices 1 and 2, a coating device 3, a drying device 4, a bonding device 5, and a winding device 6.
 フィルム供給装置1は、第1のフィルムW1を巻取りR1から巻き出して、コーティング装置3に連続して送り出す装置である。フィルム供給装置2は、第2のフィルムW2を巻取りR2から巻き出して、貼り合わせ装置5に連続して送り出す装置である。 The film supply device 1 is a device that unwinds the first film W1 from the winding R1 and continuously sends it to the coating device 3. The film supply device 2 is a device that unwinds the second film W2 from the take-up R2 and continuously sends it to the bonding device 5.
 通常と異なり、本発明の製造方法では無機蒸着層を有するシーラントフィルムが第1のフィルムW1であり、巻き取りR1にセットする。第1の基材層が第2のフィルムW2であり巻取りR2にセットする。 Unlike usual, in the production method of the present invention, the sealant film having the inorganic vapor deposition layer is the first film W1 and is set in the take-up R1. The first base material layer is the second film W2 and is set on the take-up R2.
 コーティング装置3は、第1のフィルムW1に接着剤を塗布する装置である。コーティング装置3は、一例として接着剤転写ロール3aと、圧胴3bと、接着剤槽3cと、ドクターブレード3dと、スムージングロール3eとを含む。接着剤槽3c、ドクターブレード3dに換えて、チャンバードクターを用いてもよい。接着剤槽3cに入った接着剤Gは、接着剤転写ロール3aを介して第1のフィルムW1に転写される。このときドクターブレード3dにより接着剤転写ロール3aに付着した余分な接着剤Gが掻き取られる。圧胴3bは、第1のフィルムW1を巻き付けながら接着剤転写ロール3aとの間で加圧して、接着剤転写ロール3aに付着した接着剤Gを第1のフィルムW1に付着させる回転体である。スムージングロール3eは、第1のフィルムW1に転写された接着剤Gのコーティング面を平滑にする回転体であり、フィルムの走行方向とは逆方向に回転する。 The coating device 3 is a device that applies an adhesive to the first film W1. The coating device 3 includes, for example, an adhesive transfer roll 3a, an impression cylinder 3b, an adhesive tank 3c, a doctor blade 3d, and a smoothing roll 3e. A chamber doctor may be used instead of the adhesive tank 3c and the doctor blade 3d. The adhesive G contained in the adhesive tank 3c is transferred to the first film W1 via the adhesive transfer roll 3a. At this time, the excess adhesive G adhering to the adhesive transfer roll 3a is scraped off by the doctor blade 3d. The impression cylinder 3b is a rotating body that presses the first film W1 with the adhesive transfer roll 3a while winding the first film W1 to attach the adhesive G attached to the adhesive transfer roll 3a to the first film W1. .. The smoothing roll 3e is a rotating body that smoothes the coated surface of the adhesive G transferred to the first film W1 and rotates in a direction opposite to the traveling direction of the film.
 第1のフィルムW1、第2のフィルムW2の搬送速度は任意で設定されるが、一例として80m/min以上300m/minである。100m/min以上であることが好ましく、150m/min以上であることがより好ましく、250m/min以下であることが好ましく、200m/min以下であることがより好ましい。 The transport speed of the first film W1 and the second film W2 is arbitrarily set, but as an example, it is 80 m / min or more and 300 m / min. It is preferably 100 m / min or more, more preferably 150 m / min or more, preferably 250 m / min or less, and more preferably 200 m / min or less.
 接着剤槽3cに入った接着剤Gはポリエステルポリオール(A)を含むポリオール組成物(I)と、ポリイソシアネート組成物(II)と、エステル系溶剤と、を含む2液型接着剤が混合されたものである。接着剤Gの塗布量は適宜調整されるが、一例として固形分量が1g/m以上10g/m以下、好ましくは1g/m以上5g/m以下である。 The adhesive G contained in the adhesive tank 3c is a mixture of a polyol composition (I) containing a polyester polyol (A), a polyisocyanate composition (II), and a two-component adhesive containing an ester solvent. It is a solvent. The amount of the adhesive G applied is appropriately adjusted, but as an example, the solid content is 1 g / m 2 or more and 10 g / m 2 or less, preferably 1 g / m 2 or more and 5 g / m 2 or less.
 続いて第1のフィルムW1は乾燥装置4へと搬送される。乾燥装置4は加熱により第1のフィルムW1に転写した接着剤中の希釈溶剤を蒸発させるための装置である。加熱方法としては熱風吹き付け方式が広く用いられている。また乾燥装置4は一般的に、複数の乾燥炉を備える。乾燥装置4が複数の乾燥炉を備える場合、それぞれの乾燥炉は同じ温度に設定されていてもよいし、異なる温度に設定されていてもよい。 Subsequently, the first film W1 is conveyed to the drying device 4. The drying device 4 is a device for evaporating the diluting solvent in the adhesive transferred to the first film W1 by heating. As a heating method, a hot air blowing method is widely used. Further, the drying device 4 generally includes a plurality of drying furnaces. When the drying apparatus 4 includes a plurality of drying furnaces, the drying furnaces may be set to the same temperature or may be set to different temperatures.
 乾燥炉を複数備え、それぞれ異なる温度に設定される場合、第1のフィルムW1の搬送方向に対して上流側に位置する乾燥炉から下流側に位置する乾燥炉に向けて徐々に乾燥炉の温度が高くなっていることが好ましい。乾燥炉の温度は50℃以上100℃以下であることが好ましい。 When a plurality of drying furnaces are provided and the temperatures are set to be different from each other, the temperature of the drying furnace is gradually increased from the drying furnace located on the upstream side to the drying furnace located on the downstream side with respect to the transport direction of the first film W1. Is preferably high. The temperature of the drying furnace is preferably 50 ° C. or higher and 100 ° C. or lower.
 乾燥装置4を通過した第1のフィルムW1は貼り合わせ装置5に搬送され、接着剤Gを介して第2のフィルムW2と貼り合わせられる。貼り合わせ装置5は一対のニップロール5a、5bを備え、ニップロール5aと5bの間で第1のフィルムW1と第2のフィルムW2とを加圧し貼り合わせる。ニップロール5aはゴムロールであり、ニップロール5bは金属ロールである。ニップロール5bは接着剤Gの温度を調節する図示しない加熱装置を内部に備える。ニップロール5a、5bで貼り合わせられた積層体W3は、冷却ロール5cを通り巻取り装置6に送られる。 The first film W1 that has passed through the drying device 4 is conveyed to the bonding device 5 and bonded to the second film W2 via the adhesive G. The bonding device 5 includes a pair of nip rolls 5a and 5b, and presses and bonds the first film W1 and the second film W2 between the nip rolls 5a and 5b. The nip roll 5a is a rubber roll, and the nip roll 5b is a metal roll. The nip roll 5b includes a heating device (not shown) that regulates the temperature of the adhesive G. The laminated body W3 bonded by the nip rolls 5a and 5b is sent to the winding device 6 through the cooling roll 5c.
 さらに貼り合わせ装置5は冷却ロール5cを備えていてもよい。冷却ロール5cはニップロール5a、5bと巻取り装置6との間に配置され、ロールを冷却する機構を備える。冷却機構としては、ロール内部に通水する方法等が挙げられる。冷却ロール5cによって積層体W3を冷却した後、巻取り装置6でテンションをかけて巻き上げる。これにより、積層体W3の巻き締まりやカールを防止する。巻き取った積層体W3を室温~80℃、12~240時間エージングして本発明の積層体を得る。 Further, the bonding device 5 may be provided with a cooling roll 5c. The cooling roll 5c is arranged between the nip rolls 5a and 5b and the winding device 6, and includes a mechanism for cooling the roll. Examples of the cooling mechanism include a method of passing water through the inside of the roll. After the laminated body W3 is cooled by the cooling roll 5c, tension is applied by the winding device 6 to wind the laminated body W3. As a result, the laminated body W3 is prevented from being wound tightly and curled. The wound laminate W3 is aged at room temperature to 80 ° C. for 12 to 240 hours to obtain the laminate of the present invention.
 本発明の製造方法は種々の積層体の製造に適用できるが、第一の基材が2軸延伸ポリプロピレンフィルムや2軸延伸ポリエチレン等のポリオレフィンフィルムの場合に好適である。昨今、環境負荷を軽減するためプラスチックのリサイクル(一度使用されたプラスチックを原料として再生する試み)が検討されている。しかしながら、PETフィルムとOPPフィルムのように異なる種類のフィルム貼り合わせた積層体からなる包装材はこのようなリサイクルが困難である。そこで積層体の製造に用いる全てのフィルムを同じ材料を用いて製造することが検討されている。積層体101を例に挙げれば第一の基材層としてOPPフィルムを用い、無機蒸着層を有するシーラント層としてアルミ蒸着CPPを用いれば、積層体の大部分がポリプロピレンからなるため従来よりもリサイクルが容易となることが期待される。 The production method of the present invention can be applied to the production of various laminates, but is suitable when the first base material is a polyolefin film such as a biaxially stretched polypropylene film or a biaxially stretched polyethylene. Recently, in order to reduce the environmental load, recycling of plastic (an attempt to recycle used plastic as a raw material) is being studied. However, it is difficult to recycle a packaging material composed of a laminate of different types of films such as PET film and OPP film. Therefore, it is being studied to manufacture all the films used for manufacturing the laminate using the same material. Taking the laminate 101 as an example, if an OPP film is used as the first base material layer and an aluminum-deposited CPP is used as the sealant layer having an inorganic vapor-deposited layer, most of the laminate is made of polypropylene, so that it can be recycled more than before. Expected to be easier.
 しかしながらこのような積層体について本発明者らが鋭意検討したところ、ポリオレフィンフィルムを用いた積層体の製造において、ポリエステルポリオールを含む溶剤系の2液型接着剤による接着層が、ポリオレフィンフィルムまたはポリオレフィンフィルム上に設けられる印刷層と接する場合に、接着層中に有機溶剤が残留してしまうことが判明した。接着層に残留した有機溶剤は包装材の内部に移行し、人体への影響、内容物の味、香りの変化を起こす恐れがあることから、接着層中の残留溶剤量が一定基準を超える場合には食品包装用の積層体として許容されない。 However, as a result of diligent studies by the present inventors on such a laminate, in the production of a laminate using a polyolefin film, the adhesive layer using a solvent-based two-component adhesive containing a polyester polyol is a polyolefin film or a polyolefin film. It was found that the organic solvent remained in the adhesive layer when it came into contact with the printing layer provided above. When the amount of residual solvent in the adhesive layer exceeds a certain standard, the organic solvent remaining in the adhesive layer may migrate to the inside of the packaging material and cause an effect on the human body, changes in the taste and aroma of the contents. Is not acceptable as a laminate for food packaging.
 しかしながら本発明の製造方法によれば、第一の基材層としてポリプロピレンフィルムやポリエチレンフィルム等のポリオレフィンフィルムを用いた場合であっても接着層中への残留溶剤量が極めて軽微なものとすることができる。従って、リサイクル容易であり、かつガスバリア性に優れた積層体の提供が可能となる。本発明の製造方法は、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル等のエステル系溶剤を含む接着剤に対して本発明は特に有効である。 However, according to the production method of the present invention, the amount of residual solvent in the adhesive layer is extremely small even when a polyolefin film such as a polypropylene film or a polyethylene film is used as the first base material layer. Can be done. Therefore, it is possible to provide a laminate that is easy to recycle and has excellent gas barrier properties. The production method of the present invention is particularly effective for an adhesive containing an ester solvent such as methyl acetate, ethyl acetate, n-propyl acetate and n-butyl acetate.
 第1のフィルムW1として無機蒸着層を有するシーラント層を用いる場合、フィルム供給装置1とコーティング装置3との間のテンションを25~50Nに設定することが好ましい(第1のフィルムW1の幅が800mm~1000mmの場合)。 When a sealant layer having an inorganic vapor deposition layer is used as the first film W1, it is preferable to set the tension between the film supply device 1 and the coating device 3 to 25 to 50 N (the width of the first film W1 is 800 mm). For ~ 1000 mm).
 さらに、第1のフィルムW1として無機蒸着層を有するシーラント層を用いた場合、複数のロールを経由し搬送される間、あるいは乾燥装置4を通る間にシーラント層が変形して無機蒸着層にクラックが生じ、シーラントフィルムのガスバリア性が低下する恐れがあるが、本発明の製造方法によれば無機蒸着層に生じたクラックをガスバリア性を有する接着剤Gが埋めることで、ガスバリア性に優れた積層体W3を提供することができる。 Further, when a sealant layer having an inorganic thin-film vapor deposition layer is used as the first film W1, the sealant layer is deformed and cracked in the inorganic thin-film deposition layer while being conveyed through a plurality of rolls or passing through the drying device 4. However, according to the production method of the present invention, the adhesive G having a gas barrier property fills the cracks generated in the inorganic vapor deposition layer, so that the sealant film is laminated with excellent gas barrier properties. Body W3 can be provided.
<積層体 他の実施形態>
 以下では本発明の製造方法を用いて製造され得る他の積層体について説明するがこれに限定されない。
 図3は、本発明の製造方法を用いて製造される積層体の他の実施形態を示す概略断面図である。積層体102は第一の基材層と、印刷層と、接着層と、無機蒸着層と、シーラント層とをこの順に備え、接着層は印刷層及び無機蒸着層に接して配置され、これらを貼り合わせている。積層体102において無機蒸着層はシーラント層に蒸着されており、これらが上述の製造方法における第1のフィルムW1に該当する。印刷層を含む第一の基材層が上述の製造方法における第2のフィルムW2に該当する。接着層は上述の接着剤の硬化塗膜である。積層体102は上述の積層体W3に該当する。
<Laminated body and other embodiments>
Hereinafter, other laminates that can be produced by using the production method of the present invention will be described, but the present invention is not limited thereto.
FIG. 3 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention. The laminate 102 includes a first base material layer, a printing layer, an adhesive layer, an inorganic vapor deposition layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the printing layer and the inorganic vapor deposition layer. It is pasted together. In the laminated body 102, the inorganic vapor deposition layer is vapor-deposited on the sealant layer, and these correspond to the first film W1 in the above-mentioned production method. The first base material layer including the print layer corresponds to the second film W2 in the above-mentioned production method. The adhesive layer is a cured coating film of the above-mentioned adhesive. The laminated body 102 corresponds to the above-mentioned laminated body W3.
 第一の基材層は積層体101と同様のものを用いることができる。印刷層は第一の基材層上に、グラビアインキ、フレキソインキ、オフセットインキ、孔版インキ、インクジェットインク等各種印刷インキにより、従来ポリマーフィルムへの印刷に用いられてきた一般的な印刷方法で直接または他の層(基材層と印刷層との密着性を向上させるプライマー層等)を介して形成される。無機蒸着層、シーラント層は積層体101と同様のものを用いることができる。 As the first base material layer, the same one as that of the laminated body 101 can be used. The printing layer is directly on the first base material layer by various printing inks such as gravure ink, flexo ink, offset ink, stencil ink, and inkjet ink by a general printing method conventionally used for printing on a polymer film. Alternatively, it is formed via another layer (such as a primer layer that improves the adhesion between the base material layer and the printing layer). As the inorganic vapor deposition layer and the sealant layer, the same ones as those of the laminated body 101 can be used.
 図4は、本発明の製造方法を用いて製造される積層体の他の実施形態を示す概略断面図である。積層体103は第一の基材層と、接着層と、シーラント層とをこの順に備え、接着層は第一の基材層及びシーラント層に接して配置され、これらを貼り合わせている。積層体103においてシーラント層が上述の製造方法における第1のフィルムW1に該当し、第一の基材層が第2のフィルムW2に該当する。 FIG. 4 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention. The laminate 103 includes a first base material layer, an adhesive layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the first base material layer and the sealant layer, and these are bonded together. In the laminated body 103, the sealant layer corresponds to the first film W1 in the above-mentioned production method, and the first base material layer corresponds to the second film W2.
 図5は、本発明の製造方法を用いて製造される積層体の他の実施形態を示す概略断面図である。積層体104は第一の基材層と、印刷層と、接着層と、シーラント層とをこの順に備え、接着層は印刷層及びシーラント層に接して配置され、これらを貼り合わせている。積層体104においてシーラント層が上述の製造方法における第1のフィルムW1に該当し、印刷層を含む第一の基材層が第2のフィルムW2に該当する。積層体104における第一の基材層、シーラント層は積層体101と同様のものを用いることができる、印刷層は積層体102と同様の方法で形成することができる。 FIG. 5 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention. The laminate 104 includes a first base material layer, a printing layer, an adhesive layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the printing layer and the sealant layer, and these are bonded together. In the laminated body 104, the sealant layer corresponds to the first film W1 in the above-mentioned production method, and the first base material layer including the printing layer corresponds to the second film W2. The first base material layer and the sealant layer in the laminate 104 can be the same as those in the laminate 101, and the print layer can be formed in the same manner as in the laminate 102.
 図6は、本発明の製造方法を用いて製造される積層体の他の実施形態を示す概略断面図である。積層体105は第一の基材層と、無機蒸着層と、接着層と、シーラント層とをこの順に備え、接着層は無機蒸着層及びシーラント層に接して配置され、これらを貼り合わせている。積層体105において無機蒸着層は第一の基材層に蒸着されている。積層体10においてシーラント層が上述の製造方法における第1のフィルムW1に該当し、無機蒸着層を含む第一の基材層が上述の製造方法における第2のフィルムW2に該当する。第一の基材層、シーラント層は積層体101と同様のものを用いることができる。無機蒸着層は積層体101と同様の方法で第一の基材層上に設けることができる。 FIG. 6 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention. The laminate 105 includes a first base material layer, an inorganic vapor deposition layer, an adhesive layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the inorganic vapor deposition layer and the sealant layer, and these are bonded together. .. In the laminated body 105, the inorganic vapor deposition layer is vapor-deposited on the first base material layer. In the laminate 10, the sealant layer corresponds to the first film W1 in the above-mentioned production method, and the first base material layer including the inorganic vapor-deposited layer corresponds to the second film W2 in the above-mentioned production method. As the first base material layer and sealant layer, the same ones as those of the laminated body 101 can be used. The inorganic vapor deposition layer can be provided on the first base material layer in the same manner as the laminated body 101.
 図7は、本発明の製造方法を用いて製造される積層体の他の実施形態を示す概略断面図である。積層体106は第一の基材層と、無機蒸着層と、印刷層と、接着層と、シーラント層とをこの順に備え、接着層は印刷層及びシーラント層に接して配置され、これらを貼り合わせている。積層体106においてシーラント層が上述の製造方法における第1のフィルムW1に該当し、第一の基材層に無機蒸着層、印刷層が設けられたフィルムが第2のフィルムW2に該当する。 FIG. 7 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention. The laminate 106 includes a first base material layer, an inorganic vapor deposition layer, a printing layer, an adhesive layer, and a sealant layer in this order, and the adhesive layer is arranged in contact with the printing layer and the sealant layer, and these are attached. I'm matching. In the laminated body 106, the sealant layer corresponds to the first film W1 in the above-mentioned production method, and the film provided with the inorganic vapor deposition layer and the printing layer on the first base material layer corresponds to the second film W2.
 図8は、本発明の製造方法を用いて製造される積層体の他の実施形態を示す概略断面図である。積層体107は第一の基材層と、第一の接着層と、無機蒸着層と、第二の基材層と、第二の接着層と、シーラント層とをこの順に備え、第一の接着は第一の基材層及び無機蒸着層に接して配置され、これらを貼り合わせている。積層体107において、無機蒸着層を有する第二の基材層が上述の製造方法における第1のフィルムW1に該当し、第一の基材層が第2のフィルムW2に該当する。第二の基材層としては、積層体101で例示した第一の基材層と同様のものを用いることができる。第二の接着層は、第一の接着層と同じであってもよいし、異なっていてもよい。 FIG. 8 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention. The laminate 107 includes a first base material layer, a first adhesive layer, an inorganic thin-film deposition layer, a second base material layer, a second adhesive layer, and a sealant layer in this order. Adhesion is arranged in contact with the first base material layer and the inorganic thin-film deposition layer, and these are bonded together. In the laminated body 107, the second base material layer having the inorganic vapor deposition layer corresponds to the first film W1 in the above-mentioned production method, and the first base material layer corresponds to the second film W2. As the second base material layer, the same one as the first base material layer exemplified in the laminated body 101 can be used. The second adhesive layer may be the same as or different from the first adhesive layer.
 図9は、本発明の製造方法を用いて製造される積層体の他の実施形態を示す概略断面図である。積層体108は第一の基材層と、印刷層と、第一の接着層と、無機蒸着層と、第二の基材層と、第二の接着層と、シーラント層とをこの順に備え、第一の接着は印刷層及び無機蒸着層に接して配置され、これらを貼り合わせている。積層体108において、無機蒸着層を有する第二の基材層が上述の製造方法における第1のフィルムW1に該当し、印刷層を有する第一の基材層が第2のフィルムW2に該当する。 FIG. 9 is a schematic cross-sectional view showing another embodiment of the laminate manufactured by using the manufacturing method of the present invention. The laminate 108 includes a first base material layer, a printing layer, a first adhesive layer, an inorganic thin-film deposition layer, a second base material layer, a second adhesive layer, and a sealant layer in this order. , The first adhesion is arranged in contact with the printing layer and the inorganic vapor deposition layer, and these are bonded together. In the laminated body 108, the second base material layer having the inorganic vapor deposition layer corresponds to the first film W1 in the above-mentioned production method, and the first base material layer having the printed layer corresponds to the second film W2. ..
<包装材>
 本発明の製造方法で製造された積層体は、食品や医薬品などの保護を目的とする多層包装材料として使用することができる。多層包装材料として使用する場合には、内容物や使用環境、使用形態に応じてその層構成は変化し得る。
<Packaging material>
The laminate produced by the production method of the present invention can be used as a multi-layer packaging material for the purpose of protecting foods, pharmaceuticals and the like. When used as a multi-layer packaging material, its layer structure may change depending on the contents, usage environment, and usage pattern.
 本発明の包装材は、本発明の製造方法で製造された積層体を使用し、積層体のシーラントフィルムの面を対向して重ね合わせた後、その周辺端部をヒートシールして得られる。製袋方法としては、本発明の積層体を折り曲げるか、あるいは重ねあわせてその内層の面(シーラントフィルムの面)を対向させ、その周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(縦ピロー、横ピロー)、ひだ付シール型、平底シール型、角底シール型、ガゼット型、その他のヒートシール型等の形態によりヒートシールする方法が挙げられる。本発明の包装材は内容物や使用環境、使用形態に応じて種々の形態をとり得る。自立性包装材(スタンディングパウチ)等も可能である。ヒートシールの方法としては、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。 The packaging material of the present invention is obtained by using a laminate manufactured by the production method of the present invention, laminating the surfaces of the sealant films of the laminate facing each other, and then heat-sealing the peripheral end portions thereof. As a bag-making method, the laminate of the present invention is bent or overlapped so that the inner layer surface (the surface of the sealant film) faces each other, and the peripheral end thereof is, for example, a side seal type or a two-way seal type. Three-way seal type, four-way seal type, envelope-attached seal type, gassho-attached seal type (vertical pillow, horizontal pillow), fold-attached seal type, flat-bottom seal type, square-bottom seal type, gusset type, and other heat-seal types There is a method of heat-sealing. The packaging material of the present invention can take various forms depending on the contents, the environment of use, and the form of use. Self-supporting packaging materials (standing pouches), etc. are also possible. As a heat sealing method, a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal can be used.
 本発明の包装材に、その開口部から内容物を充填した後、開口部をヒートシールして本発明の包装材を使用した製品が製造される。充填される内容物としては、米菓、豆菓子、ナッツ類、ビスケット・クッキー、ウェハース菓子、マシュマロ、パイ、半生ケーキ、キャンディ、スナック菓子などの菓子類、パン、スナックめん、即席めん、乾めん、パスタ、無菌包装米飯、ぞうすい、おかゆ、包装もち、シリアルフーズなどのステープル類、漬物、煮豆、納豆、味噌、凍豆腐、豆腐、なめ茸、こんにゃく、山菜加工品、ジャム類、ピーナッツクリーム、サラダ類、冷凍野菜、ポテト加工品などの農産加工品、ハム類、ベーコン、ソーセージ類、チキン加工品、コンビーフ類などの畜産加工品、魚肉ハム・ソーセージ、水産練製品、かまぼこ、のり、佃煮、かつおぶし、塩辛、スモークサーモン、辛子明太子などの水産加工品、桃、みかん、パイナップル、りんご、洋ナシ、さくらんぼなどの果肉類、コーン、アスパラガス、マッシュルーム、玉ねぎ、人参、大根、じゃがいもなどの野菜類、ハンバーグ、ミートボール、水産フライ、ギョーザ、コロッケなどを代表とする冷凍惣菜、チルド惣菜などの調理済食品、バター、マーガリン、チーズ、クリーム、インスタントクリーミーパウダー、育児用調整粉乳などの乳製品、液体調味料、レトルトカレー、ペットフードなどの食品類が挙げられる。また、本発明の包装材はタバコ、使い捨てカイロ、輸液パック等の医薬品、化粧品、真空断熱材などの包装材料としても使用され得る。 After filling the packaging material of the present invention with the contents from the opening, the opening is heat-sealed to manufacture a product using the packaging material of the present invention. The contents to be filled include rice confectionery, bean confectionery, nuts, biscuits / cookies, wafer confectionery, marshmallows, pies, half-baked cakes, candy, snack confectionery and other confectionery, bread, snack noodles, instant noodles, dried noodles, pasta. , Sterile packaged rice, elephant, porridge, packaged rice, staples such as cereal foods, pickles, boiled beans, natto, miso, frozen tofu, tofu, licked mushrooms, konjac, processed wild vegetables, jams, peanut cream, salads, frozen Agricultural processed products such as vegetables and potato processed products, hams, bacon, sausages, chicken processed products, livestock processed products such as confectionery, fish meat hams and sausages, marine products, kamaboko, glue, boiled vegetables, sardines, salted spicy, Processed marine products such as smoked salmon and spicy cod roe, peaches, tangerines, pineapples, apples, pears, cherries and other fruit meats, corn, asparagus, mushrooms, onions, carrots, radishes, potatoes and other vegetables, hamburgers, meats Prepared foods such as balls, fried fishery products, gyoza, croquette and other frozen side dishes, chilled side dishes, butter, margarine, cheese, cream, instant creamy powder, dairy products such as baby-prepared powdered milk, liquid seasonings, retorts Examples include foods such as curry and pet food. In addition, the packaging material of the present invention can also be used as a packaging material for pharmaceuticals such as tobacco, disposable body warmers, infusion packs, cosmetics, and vacuum heat insulating materials.
 あるいは、本発明の包装材は、本発明の積層体を使用した蓋材であってもよい。 Alternatively, the packaging material of the present invention may be a lid material using the laminate of the present invention.
 以下、実施例と比較例により本発明を説明するが、本発明はこれに限定されるものではない。配合組成その他の数値は特記しない限り質量基準である。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The composition and other values are based on mass unless otherwise specified.
<接着剤の調整>
(ポリオール組成物の調整)
 攪拌機、窒素ガス導入管、スナイダー管、コンデンサーを備えたポリエステル反応容器に、グリセロールを92.09部、無水フタル酸444.36部、エチレングリコール186.21部、及びチタニウムテトライソプロポキシド0.07部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が1mgKOH/g以下になったところでエステル化反応を終了し、数平均分子量668.60、水酸基価250mgKOH/g、酸価0.5mgKOH/gのポリエステルポリオールを得た。
<Adhesive adjustment>
(Adjustment of polyol composition)
92.09 parts of glycerol, 444.36 parts of phthalic anhydride, 186.21 parts of ethylene glycol, and 0.07 of titanium tetraisopropoxide in a polyester reaction vessel equipped with a stirrer, a nitrogen gas introduction tube, a snyder tube, and a condenser. The portion was charged and gradually heated so that the temperature of the upper part of the rectification tube did not exceed 100 ° C. to maintain the internal temperature at 220 ° C. The esterification reaction was terminated when the acid value became 1 mgKOH / g or less to obtain a polyester polyol having a number average molecular weight of 668.60, a hydroxyl value of 250 mgKOH / g, and an acid value of 0.5 mgKOH / g.
 撹拌機を備えた容器に上記で合成したポリエステルポリオール70部を仕込み、90℃で加熱撹拌しポリオールが十分に流動性を保つ状態とした。撹拌しながらHM6025(HENGHAO社製、天然マイカ/非膨潤性、板状、平均粒径10μm、アスペクト比100以上)30部を加え、90℃で均一となるまで撹拌した。これを冷却したものをポリオール組成物として用いた。 70 parts of the polyester polyol synthesized above was placed in a container equipped with a stirrer and heated and stirred at 90 ° C. so that the polyol maintained sufficient fluidity. While stirring, 30 parts of HM6025 (manufactured by HENGHAO, natural mica / non-swellable, plate-shaped, average particle size 10 μm, aspect ratio 100 or more) was added, and the mixture was stirred at 90 ° C. until uniform. This cooled product was used as a polyol composition.
(ポリイソシアネート組成物の調整)
 三井化学製「タケネートD-110N」(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体 不揮発成分75.0% NCO% 11.5%)と三井化学製「タケネート500」(メタキシリレンジイソシアネート不揮発分>99%,NCO% 44.6%)を50/50(質量比)の割合で混合したものをポリイソシアネート組成物として用いた。ポリイソシアネート組成物の不揮発分は、87.5%、NCO%は28.05%である。
(Preparation of polyisocyanate composition)
Mitsui Chemicals "Takenate D-110N" (trimethylolpropane adduct of metaxylylene diisocyanate non-volatile component 75.0% NCO% 11.5%) and Mitsui Chemicals "Takenate 500" (methoxylylene diisocyanate non-volatile content> 99 %, NCO% 44.6%) was mixed at a ratio of 50/50 (mass ratio) and used as a polyisocyanate composition. The non-volatile content of the polyisocyanate composition is 87.5%, and the NCO% is 28.05%.
(接着剤の調整)
 ポリオール組成物100部、ポリイソシアネート組成物28部、酢酸エチル140部をよく攪拌し、接着剤を調整した。
(Adhesive adjustment)
100 parts of the polyol composition, 28 parts of the polyisocyanate composition, and 140 parts of ethyl acetate were well stirred to prepare an adhesive.
<積層体の製造>
(実施例1)
 DL-600DXドライラミネータ(オリエント総業社製)を用いて実施例1の積層体を製造した。第1のフィルムW1として膜厚25μmのアルミ蒸着CPP(東レフィルム加工社製、VM-CPP、2203#25)を用い、第2のフィルムとして膜厚30μmのOPPフィルム(東洋紡社製、パイレンP2161)上に、フィナートR794 白G3を、乾燥塗膜の膜厚が1μmとなるよう塗工したものを用いた。第1のフィルムW1、第2のフィルムW2の搬送速度は120m/min、乾燥炉の温度は第1のフィルムW1の搬送方向の上流側からそれぞれ60℃、70℃、80℃、接着剤の塗布量(固形分)は3.5g/mとなるように設定した。
<Manufacturing of laminate>
(Example 1)
The laminate of Example 1 was produced using a DL-600DX dry laminator (manufactured by Orient Sogyo Co., Ltd.). An aluminum-deposited CPP (manufactured by Toray Film Processing Co., Ltd., VM-CPP, 2203 # 25) having a film thickness of 25 μm was used as the first film W1, and an OPP film having a film thickness of 30 μm (manufactured by Toyobo Co., Ltd., Pyrene P2161) was used as the second film. A finale R794 white G3 coated on top was used so that the film thickness of the dry coating film was 1 μm. The transport speed of the first film W1 and the second film W2 is 120 m / min, the temperature of the drying furnace is 60 ° C., 70 ° C., 80 ° C. from the upstream side in the transport direction of the first film W1, respectively, and the adhesive is applied. The amount (solid content) was set to be 3.5 g / m 2.
(実施例2)
 第2のフィルムとして印刷を施さないものを用いた以外は実施例1と同様にして実施例2の積層体を製造した。
(Example 2)
The laminate of Example 2 was produced in the same manner as in Example 1 except that a non-printed film was used as the second film.
(実施例3)
 第2のフィルムW2として、膜厚12μmのPETフィルム(東洋紡社製、E5102)にフィナートR794 白G3を、乾燥塗膜の膜厚が1μmとなるよう塗工したものを用いた以外は実施例1と同様にして実施例3の積層体を製造した。
(Example 3)
Example 1 except that as the second film W2, a PET film having a film thickness of 12 μm (manufactured by Toyobo Co., Ltd., E5102) coated with Finato R794 white G3 so as to have a film thickness of 1 μm was used. The laminate of Example 3 was produced in the same manner as in the above.
(実施例4)
 第2のフィルムW2として印刷を施さないものを用いた以外は実施例3と同様にして実施例4の積層体を製造した。
(Example 4)
The laminate of Example 4 was produced in the same manner as in Example 3 except that the second film W2, which was not printed, was used.
(比較例1)~(比較例4)
 第1のフィルムW1と第2のフィルムW2をそれぞれ逆にした以外は実施例1~4と同様にして比較例1~4の積層体を製造した。
(Comparative Example 1) to (Comparative Example 4)
Laminates of Comparative Examples 1 to 4 were produced in the same manner as in Examples 1 to 4 except that the first film W1 and the second film W2 were reversed.
<評価>
(酸素透過率)
 エージングが終了した積層体を10cm×10cmのサイズに調整し、OX-TRAN2/21(モコン社製:酸素透過率測定装置)を用い、JIS-K7126(等圧法)に準じ、23℃90%RHの雰囲気下で酸素透過率(OTR)を測定した。単位はcc/m・day・atmである。なおRHとは、湿度を表す。結果を表1、表2にまとめた。
<Evaluation>
(Oxygen permeability)
The aging-finished laminate is adjusted to a size of 10 cm x 10 cm, and OX-TRAN2 / 21 (manufactured by Mocon Co., Ltd .: oxygen permeability measuring device) is used, and according to JIS-K7126 (isopressure method), 23 ° C. 90% RH. Oxygen permeability (OTR) was measured in the atmosphere of. The unit is cc / m 2 , day, atm. Note that RH represents humidity. The results are summarized in Tables 1 and 2.
(残留溶剤量の測定方法)
 得られた積層体を500ccのフラスコに入れて80℃で30分間加熱した。フラスコ内のガスをガスクロマトグラフィーにより測定し、積層体1mあたりの溶剤量(mg/m)に換算した。結果を表1、表2にまとめた。
(Measuring method of residual solvent amount)
The obtained laminate was placed in a 500 cc flask and heated at 80 ° C. for 30 minutes. The gas in the flask was measured by gas chromatography and converted into the amount of solvent (mg / m 2 ) per 1 m 2 of the laminate. The results are summarized in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例、比較例から明らかなように、本発明の積層体は酸素透過率が低く抑えられており、バリア性に優れ、且つ残留溶剤量も抑制できている。一方比較例1~4の積層体は、実施例1~4の積層体と比較するとガスバリア性がやや劣り、積層体の層構成によっては残留溶剤量が著しく上昇する。 As is clear from Examples and Comparative Examples, the laminate of the present invention has a low oxygen permeability, is excellent in barrier properties, and can also suppress the amount of residual solvent. On the other hand, the laminates of Comparative Examples 1 to 4 are slightly inferior in gas barrier property to the laminates of Examples 1 to 4, and the amount of residual solvent increases remarkably depending on the layer structure of the laminate.
 1、2:フィルム供給装置、3:コーティング装置、3a:接着剤転写ロール、3b:圧胴、3c:接着剤槽、3d:ドクターブレード、3e:スムージングロール、4:乾燥装置、5:貼り合わせ装置、5a:ニップロール(ゴムロール)、5b:ニップロール(金属ロール)、5c:冷却ロール、6:巻取り装置、10:ラミネート装置、W1:第1のフィルム、W2:第2のフィルム、W3:積層体、R1、R2:巻取り 1, 2: Film supply device, 3: Coating device, 3a: Adhesive transfer roll, 3b: Impressor, 3c: Adhesive tank, 3d: Doctor blade, 3e: Smoothing roll, 4: Drying device, 5: Lamination Equipment, 5a: Nip roll (rubber roll), 5b: Nip roll (metal roll), 5c: Cooling roll, 6: Winding equipment, 10: Laminating equipment, W1: First film, W2: Second film, W3: Laminating Body, R1, R2: Winding

Claims (3)

  1.  第一の基材と、シーラント層と、前記第一の基材と前記シーラント層との間に配置された接着層とを有する積層体の製造方法であって、
     前記シーラント層上に、ポリエステルポリオール(A)を含むポリオール組成物(I)と、ポリイソシアネート組成物(II)と、エステル系溶剤と、を含む2液型接着剤を塗布する工程と、
     前記シーラント層を乾燥装置に搬送し、加熱して前記2液型接着剤から前記溶剤を蒸発させる工程と、
     前記シーラント層と前記第一の基材とを貼り合わせる工程と、
     前記2液型接着剤を硬化させて前記接着層を形成する工程と、を含む積層体の製造方法。
    A method for producing a laminate having a first base material, a sealant layer, and an adhesive layer arranged between the first base material and the sealant layer.
    A step of applying a two-component adhesive containing a polyester polyol (A)-containing polyol composition (I), a polyisocyanate composition (II), and an ester-based solvent onto the sealant layer.
    A step of transporting the sealant layer to a drying device and heating it to evaporate the solvent from the two-component adhesive.
    The step of bonding the sealant layer and the first base material, and
    A method for producing a laminate, which comprises a step of curing the two-component adhesive to form the adhesive layer.
  2.  請求項1に記載の製造方法で製造された積層体。 A laminate manufactured by the manufacturing method according to claim 1.
  3.  請求項2に記載の積層体からなる包装材。 A packaging material made of the laminate according to claim 2.
PCT/JP2020/042184 2019-11-19 2020-11-12 Method for producing multilayer body, multilayer body and packaging material WO2021100584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021528394A JP7036283B2 (en) 2019-11-19 2020-11-12 Laminate manufacturing method, laminate, packaging material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019208897 2019-11-19
JP2019-208897 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021100584A1 true WO2021100584A1 (en) 2021-05-27

Family

ID=75981219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042184 WO2021100584A1 (en) 2019-11-19 2020-11-12 Method for producing multilayer body, multilayer body and packaging material

Country Status (2)

Country Link
JP (1) JP7036283B2 (en)
WO (1) WO2021100584A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071845A (en) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd Paper container for liquid
JP2014189639A (en) * 2013-03-27 2014-10-06 Dic Corp Two liquid mixing adhesive composition for laminate
JP2015157363A (en) * 2014-02-21 2015-09-03 大日本印刷株式会社 Laminate and package using the same
JP2016037508A (en) * 2014-08-05 2016-03-22 東洋紡株式会社 Adhesive composition for two-liquid curable dry laminate, laminate film using the same, and package bag for retort pouch
JP2019156416A (en) * 2018-03-09 2019-09-19 大倉工業株式会社 Package with cleaning agent, laminated film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071845A (en) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd Paper container for liquid
JP2014189639A (en) * 2013-03-27 2014-10-06 Dic Corp Two liquid mixing adhesive composition for laminate
JP2015157363A (en) * 2014-02-21 2015-09-03 大日本印刷株式会社 Laminate and package using the same
JP2016037508A (en) * 2014-08-05 2016-03-22 東洋紡株式会社 Adhesive composition for two-liquid curable dry laminate, laminate film using the same, and package bag for retort pouch
JP2019156416A (en) * 2018-03-09 2019-09-19 大倉工業株式会社 Package with cleaning agent, laminated film

Also Published As

Publication number Publication date
JP7036283B2 (en) 2022-03-15
JPWO2021100584A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
TWI425022B (en) Amine-based epoxy resin hardener, gas barrier epoxy resin composition containing the same, coating, and adhesive for laminating
AU2002328410B2 (en) Adhesive for gas barrier laminates and laminated films
JP6856175B2 (en) Two-component adhesive, polyisocyanate composition for two-component adhesive, laminate, packaging material
JP5835615B2 (en) Barrier easy-open laminate film and packaging material using the same
JP2013103434A (en) Multilayer film for inert gas barrier
JP7228107B2 (en) Gas barrier laminates, packaging materials
TWI551460B (en) Laminated film
WO2021039337A1 (en) Gas barrier laminate and packaging material
JP6973690B2 (en) Gas barrier laminate, packaging material
JP2020168837A (en) Gas barrier laminate, and packaging material
JP5648855B2 (en) Resin composition for adhesive having water vapor barrier property, and adhesive
JP4857721B2 (en) Laminate film
JP2013107925A (en) Multilayer film for alcohol barrier
JP7207617B1 (en) Two-component curable adhesive composition, anchor coating agent, adhesive, laminate, packaging material
WO2021100584A1 (en) Method for producing multilayer body, multilayer body and packaging material
JP2020100024A (en) Gas barrier laminate and packaging medium
JP7239069B2 (en) Gas barrier laminates, packaging materials
JP4433153B2 (en) Manufacturing method of laminate film
JP7201131B2 (en) Gas barrier laminates, packaging materials
JP7468813B1 (en) Gas barrier coating agent, laminate, and packaging material
JP6801828B2 (en) Polyester polyisocyanate, polyester polyisocyanate composition, adhesives, laminates, packaging materials
WO2023120203A1 (en) Laminate and packaging material
JP7184181B2 (en) Adhesive composition, laminate, and package
WO2024101165A1 (en) Gas barrier composition, coating agent and multilayer body
TW202210305A (en) Gas barrier laminate and packaging material to provide a laminate having better gas barrier properties in contrast to the conventional gas barrier laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021528394

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891046

Country of ref document: EP

Kind code of ref document: A1