WO2021100505A1 - Electronic component and method for manufacturing electronic component - Google Patents

Electronic component and method for manufacturing electronic component Download PDF

Info

Publication number
WO2021100505A1
WO2021100505A1 PCT/JP2020/041646 JP2020041646W WO2021100505A1 WO 2021100505 A1 WO2021100505 A1 WO 2021100505A1 JP 2020041646 W JP2020041646 W JP 2020041646W WO 2021100505 A1 WO2021100505 A1 WO 2021100505A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
electronic component
substrate
cover portion
electrode
Prior art date
Application number
PCT/JP2020/041646
Other languages
French (fr)
Japanese (ja)
Inventor
井上 和則
慎太郎 大塚
正宏 福島
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021100505A1 publication Critical patent/WO2021100505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to an electronic component and a method for manufacturing the electronic component, and more specifically, to a structure of an electronic component having a WLP (Wafer Level Package) structure and a functional element formed in a hollow space.
  • WLP Wafer Level Package
  • an elastic wave device having a WLP structure has been known.
  • a surface acoustic wave (IDT: Interdigital Transducer) electrode is arranged on a piezoelectric substrate.
  • a wave (SAW: Surface Acoustic Wave) device is disclosed.
  • SAW Surface Acoustic Wave
  • Elastic wave devices are widely used in small mobile terminals such as smartphones and mobile phones, for example. The needs for miniaturization and thinning of these mobile terminals are still high, and along with this, the built-in elastic wave device is also required to be further miniaturized and thinned.
  • the elastic wave device requires a package structure in which a hollow space is formed inside. Therefore, if the elastic wave device is made thinner (lowered in height), it is necessary to reduce the height (gap) of the hollow space formed inside.
  • the cover portion for forming the hollow space can be deformed to some extent by an external force. Therefore, when the height of the hollow space becomes low, the cover portion may be deformed and come into contact with a functional element such as an IDT electrode, so that the characteristics of the functional element may deteriorate.
  • a functional element such as an IDT electrode
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-081613 (Patent Document 1) and International Publication No. 2016/158050 (Patent Document 2), the piezoelectric substrate, the support layer and the cover portion are formed. Inside the hollow space, a support member lower than the height of the support layer is arranged. This support member prevents the deformed cover portion from coming into contact with the functional element.
  • the above-mentioned support member is premised on the case where the cover portion is deformed in a convex shape toward the substrate side, and although the functional element can be protected against the deformation, the height of the hollow space is limited. , The size (height) of the functional element arranged thereby may be limited.
  • the present disclosure has been made to solve such a problem, and an object thereof is to secure a space in a hollow space in an electronic component having a WLP structure and a functional element arranged in the hollow space. At the same time, it is to suppress the deterioration of the characteristics of the functional element.
  • An electronic component includes a substrate, a functional element formed on the substrate, a first support, and a cover portion.
  • the first support is arranged on the substrate around the region where the functional element is formed.
  • the cover portion is arranged to face the substrate and forms a hollow space together with the substrate and the first support.
  • the cover portion has a shape that is convex in the direction opposite to the hollow space.
  • the method for manufacturing an electronic component according to another aspect of the present disclosure includes i) a step of forming a functional element and a functional element on a substrate, and ii) arranging a support around a region on the substrate on which the functional element is formed. Iii) The step of arranging the cover portion facing the substrate to form a hollow space by the substrate, the support and the cover portion, and iv) the step of forming the cover portion in the direction opposite to the hollow space. Includes a step of forming the shape to be.
  • the cover portion formed by the hollow space has a shape that is convex in the direction opposite to the hollow space. Therefore, even when the height of the first support is reduced, the space of the hollow space can be secured, and the deterioration of the characteristics of the functional element can be suppressed.
  • FIG. 1 is a cross-sectional view of an electronic component 100 according to an embodiment. Further, FIG. 2 is a plan view of the electronic component 100. Note that FIG. 1 is a cross-sectional view taken along the line I-I in FIG.
  • the electronic component 100 includes a substrate 110, a functional element 120, a support 140, a columnar electrode 152 formed in the support 140, a protrusion 160, and a cover 170. And.
  • the electronic component 100 is a surface acoustic wave (SAW) device will be described. Therefore, a case where a piezoelectric substrate is used as the substrate 110 and an IDT electrode is included as the functional element 120 will be described as an example.
  • the substrate 110 may be referred to as a "piezoelectric substrate 110".
  • the positive direction of the Z axis may be referred to as the upper surface side
  • the negative direction may be referred to as the lower surface side.
  • the piezoelectric substrate 110 is made of, for example, a piezoelectric single crystal material such as lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ), alumina, silicon (Si), and sapphire, or LiTaO 3 or LiNbO 3. It is formed of a piezoelectric laminated material.
  • a plurality of functional elements 120 are arranged on the first surface 111 of the piezoelectric substrate 110.
  • the functional element 120 is formed by using, for example, a single metal composed of at least one of aluminum, copper, silver, gold, titanium, tungsten, platinum, chromium, nickel, and molybdenum, or an electrode material such as an alloy containing these as main components.
  • a pair of IDT electrodes is included.
  • a surface acoustic wave (SAW) resonator is formed by the piezoelectric substrate 110 and the functional element (IDT electrode) 120.
  • SAW surface acoustic wave
  • a wiring electrode 130 is formed between the functional elements 120 and for electrically connecting the functional element 120 and the connection electrode 154. ing. Further, the wiring electrode 130 is formed with a terminal electrode 150 for connecting to the columnar electrode 152.
  • the support 140 is formed in a wall shape surrounding the functional element 120, and projects from the first surface 111 of the piezoelectric substrate 110 in the positive direction of the Z axis.
  • the support 140 is formed of an insulating resin such as epoxy or polyimide and / or a photosensitive resin material. A part of the support 140 covers the terminal electrode 150.
  • the support 140 corresponds to the "first support" in the present disclosure.
  • the columnar electrode 152 is formed by filling a through hole (through hole) formed in the support 140 with a conductive member such as copper.
  • the columnar electrode 152 is electrically connected to the functional element 120 via the terminal electrode 150 and the wiring electrode 130.
  • the columnar electrode 152 is also electrically connected to the connection electrode 154 arranged on the upper surface side of the support 140.
  • the connection electrode 154 is a terminal for connecting an external device (not shown) and the electronic component 100.
  • the cover portion 170 is supported by the support 140 and is arranged so as to face the first surface 111 of the piezoelectric substrate 110.
  • the cover portion 170 is formed of, for example, a thermosetting photosensitive resin material containing epoxy, polyimide, acrylic, urethane or the like as main components. Further, the cover portion 170 may use a part of metal in addition to the above resin.
  • the hollow space 180 is formed by the piezoelectric substrate 110, the support 140, and the cover portion 170.
  • the functional element 120 is arranged in the hollow space 180. As shown in FIG. 1, the cover portion 170 is formed in a shape that is convex in the direction opposite to the hollow space 180 (that is, in the positive direction of the Z axis).
  • a plurality of protrusions 160 are arranged at positions that do not overlap with the functional element 120.
  • the protrusions 160 are arranged in a grid pattern or a staggered pattern.
  • the protrusion 160 is a columnar member that protrudes from the piezoelectric substrate 110 and / or the wiring electrode 130 in the positive direction of the Z axis, and is made of the same material as the support 140.
  • the cross section of the protrusion 160 is formed in a circular shape, an elliptical shape, or a polygonal shape.
  • the height of the protrusion 160 (dimension in the Z-axis direction) is higher than the height of the functional element 120 and equal to or less than the height of the support 140.
  • the protrusion 160 has a function of preventing the cover 170 from coming into contact with the functional element 120 when the cover 170 is deformed toward the hollow space 180.
  • a recess 162 as shown in FIG. 3 is formed at the end of the protrusion 160.
  • the recess 162 is formed to reduce the contact area between the cover 170 and the protrusion 160 when the cover 170 is deformed and comes into contact with the protrusion 160.
  • the electronic component 100 may further include an auxiliary support 145 for dividing the hollow space 180 into a plurality of sections.
  • the auxiliary support 145 projects from the piezoelectric substrate 110 and / or the wiring electrode 130 in the positive direction of the Z axis.
  • the auxiliary support 145 is formed in a wall shape or a columnar shape using the same material as the support 140.
  • the height of the auxiliary support 145 is formed to be substantially the same as the height of the support 140.
  • the auxiliary support 145 is arranged only in the direction along the X-axis, but in addition to or instead, it may be arranged along the Y-axis direction.
  • the auxiliary support 145 corresponds to the "second support" in the present disclosure.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV parallel to the Y-axis direction of FIG.
  • the cover portion 170 is supported by the auxiliary support 145 in addition to the support 140.
  • the portion of the cover portion 170 supported by the support 140 and the auxiliary support 145 has a shape that is convex in the direction opposite to the hollow space 180.
  • the convex cover portion 170 When the convex cover portion 170 is supported only by the support 140 arranged along the outer circumference of the piezoelectric substrate 110, the amount of protrusion in the positive direction of the Z axis at the central portion of the cover portion 170 becomes large, and the entire device becomes large. The height will be high. As a result, it may hinder the miniaturization of the device size.
  • the auxiliary support 145 is arranged in the area surrounded by the support 140, and the cover portion 170 and the auxiliary support are supported by using the support 140 and the auxiliary support 145 to support the cover portion 170 and the auxiliary support.
  • the cover portion 170 has a convex shape for each section surrounded by the body 145.
  • the amount of protrusion of the cover portion 170 can be reduced as compared with the case where the cover portion 170 is supported only by the support body 140. Therefore, by providing the auxiliary support 145, it is possible to prevent the size of the entire device from becoming large. Further, by increasing the number of places that support the cover portion 170, the load applied to the individual support and the auxiliary support from the cover portion 170 is dispersed, and the connection portion between the support and the auxiliary support and the substrate or the like is distributed. Since the applied moment can be reduced, peeling of the support and the auxiliary support can be suppressed.
  • the above-mentioned electronic components may be used for mobile terminals such as mobile phones and smartphones, but in such mobile terminals, there is still a high need for miniaturization and thinning, and these electronic components are associated therewith. Further miniaturization is needed.
  • an electronic component having a hollow space an external force may act on the cover portion forming the hollow space due to sealing of the substrate or the like, and the cover portion may be deformed.
  • the cover portion has a convex shape toward the hollow space side, and the height of the hollow space is reduced. Therefore, the height of the functional element arranged inside the hollow space is limited, or the support is specified. It is necessary to maintain the height above.
  • the cover portion supported by the support and the auxiliary support has a shape that is convex on the opposite side (upper side) of the hollow space.
  • the height (margin) of the hollow space can be secured even when the height of the support is lowered.
  • the cover portion has a convex shape on the upper side, more external force is required to deform the cover portion into a convex shape on the lower side as compared with the case where the cover portion is flat. That is, the load bearing capacity against an external force can be increased.
  • the protrusion is arranged in the hollow space, even if the cover portion is deformed to have a downwardly convex shape, the cover portion and the functional element are still connected. Contact can be suppressed, which makes it possible to suppress deterioration of the characteristics of the functional element.
  • FIG. 5 shows a cross-sectional view of an electronic component in each process.
  • a metal film such as copper is formed on the first surface 111 of the piezoelectric substrate 110 by, for example, sputtering, and the metal film is subjected to processing such as patterning and etching to perform a functional element. 120 and the wiring electrode 130 are formed. Further, the terminal electrode 150 is formed on the wiring electrode 130.
  • the support 140 and the protrusion 160 are formed on the intermediate parts formed in FIG. 5 (a).
  • the support 140 and the protrusion 160 are formed, for example, by photolithography using a photosensitive resin material. More specifically, a negative type photosensitive resin material sheet is laminated and arranged on the intermediate component formed in FIG. 5A. Then, the portion other than the region to be the support 140 and the protrusion 160 is masked and irradiated with light. In the photosensitive resin material, only the portion irradiated with light is cured. Therefore, by performing the developing process after the exposure, the portions of the support 140 and the protrusion 160 remain, and the photosensitive resin material of the portions other than the support 140 and the protrusion 160 is removed.
  • the height of the protrusion 160 having a small light receiving area is lower than that of the support 140.
  • the auxiliary support 145 is also formed in this step.
  • a through hole 142 is formed in the formed support 140 by laser processing or the like.
  • the through hole 142 may be formed at the same time by photolithography in FIG. 5 (b).
  • the columnar electrode (via) 152 is formed in the through hole 142 formed in the step of FIG. 5 (c) (or FIG. 5 (b)).
  • the columnar electrode 152 for example, a method of filling the through hole 142 with a conductive paste, a method of forming by electrolytic plating, or the like is used.
  • electrolytic plating a metal seed layer is formed on the inner surface of the through hole 142 by sputtering or the like prior to the plating treatment.
  • connection electrode 154 electrically connected to the formed columnar electrode 152 is formed on the upper surface of the support 140.
  • the cover portion 170 is arranged on the support 140 to create a hollow space 180.
  • the cover portion 170 is made of, for example, a thermosetting resin material, and FIG. 5 (e) shows a state before thermosetting.
  • the cover portion 170 since the material of the cover portion 170 is uncured and flexible, the cover portion 170 has a convex shape toward the hollow space 180 side. In this state, at least a part of the protrusions 160 may come into contact with the cover 170. The protrusion 160 suppresses the contact of the cover 170 with the functional element 120.
  • the cover portion 170 is cured by applying heat to the intermediate part formed in FIG. 5 (e). Since the material forming the cover portion 170 generates gas during thermosetting, the gas generated during the process fills the hollow space 180 and expands. As a result, the cover portion 170 has a convex shape upward, and is cured in that state to complete the electronic component 100 as shown in FIG.
  • a recess 162 is formed at the end of the protrusion 160.
  • the protrusion 160 comes into contact with the cover 170 in FIG. 5 (e), and the cover 170 is separated from the protrusion 160 in FIG. 5 (f). Since the contact area between the protrusion 160 and the cover 170 can be reduced by the recess 162 of the protrusion 160 as described above, in the curing process of the cover 170 in FIG. 5 (f), the cover 170 from the protrusion 160 Is easy to separate.
  • the cover portion 170 and the protrusion 160 are not in contact with each other. Therefore, the stress from the outside applied to the cover portion 170 is not transmitted to the piezoelectric substrate 110 via the protrusion 160, so that the characteristic fluctuation of the functional element 120 due to the external force can be suppressed. Further, since corrosive substances that can be contained in the moisture component that passes through the cover portion 170 and infiltrates are difficult to reach the functional element 120 through the protrusion 160, these corrosive substances are applied to the functional element 120. The influence is reduced, and the characteristic fluctuation of the functional element 120 can be suppressed.
  • the electronic component 100 having the structure shown in FIG. 1 is formed.
  • the electronic component is a surface acoustic wave (SAW) device
  • SAW surface acoustic wave
  • a hollow space is formed inside the component and functional elements are arranged in the hollow space.
  • the structure of the present disclosure can be applied to electronic components other than SAW devices.
  • it may be a Bulk Acoustic Wave (BAW) device, or it may be a MEMS device in which a small sensor or actuator is formed.
  • BAW Bulk Acoustic Wave
  • a method is used in which a plurality of electronic components are formed on the same substrate by the manufacturing process described with reference to FIG. 5, and then divided into individual substrates by dicing or the like. There is.
  • the characteristics of individual electronic components may be evaluated in advance on the collective substrate before being divided into individual substrates.
  • the signal state is measured using a contact-type probe when evaluating the characteristics, but in many cases, it is used when evaluating the characteristics in consideration of the possibility that contact with the probe may cause scratches on the electrodes.
  • a dedicated measurement electrode is formed on the substrate.
  • the measurement electrode Since the measurement electrode becomes unnecessary when it becomes a product, in order to effectively utilize the area in the substrate, the measurement electrode is generally arranged at the boundary between the individual substrates (that is, on the dicing line). Will be done. In this case, the measurement substrate is cut by the dicing saw at the time of division by dicing, but depending on the cutting state, a part of the cut end of the measurement electrode is peeled off and protrudes from the substrate. May be.
  • the measurement electrode is an electrode (product electrode) that is actually used as a signal electrode or a ground electrode when the electronic component becomes a product in order to measure the electrical state of the electronic component. It is connected to the. Therefore, in the electronic component divided into individual substrates, if the measurement electrode and the product electrode are still connected, the measurement electrode may be in a state where an electric potential is generated. Then, as described above, when a part of the measurement electrode is peeled off due to the division into individual substrates, the peeled portion of the measurement electrode in the state where the voltage is applied is the other conductive part on the substrate. May cause a malfunction or functional malfunction.
  • the product electrode and the measurement electrode can be electrically separated when they are divided into individual substrates in the dicing process, so that the measurement electrode after separation is set to no voltage. can do.
  • the measurement electrode after separation is set to no voltage.
  • FIG. 6 is a diagram showing an example of the assembly substrate 10 before the electronic component 100 according to the present embodiment is separated by dicing.
  • the assembly substrate 10 of FIG. 6 as an example, six electronic components 100 are integrally formed.
  • a region (hereinafter, also referred to as “dicing line”) 300 that is removed by dicing when each electronic component 100 is divided into individual substrates is formed at a boundary portion between the electronic components 100.
  • the measurement electrode 200 is arranged so that at least a part of the electronic component 100 overlaps the dicing line 300.
  • FIG. 7 is a diagram showing the state of the substrate before and after dicing in the assembly substrate 10 # including the electronic components of the comparative example.
  • FIG. 7 is an enlarged view of the portion corresponding to the region AR1 including the boundary portion of the four electronic components in FIG. 6, and
  • FIG. 7A shows the state before dicing, and
  • FIG. 7A shows the state before dicing.
  • (B) shows the state after dicing.
  • a dicing line 300 is formed in the region between the four electronic components 100 # 1 to 100 # 4.
  • the measuring electrode 210 is arranged between the electronic component 100 # 1 and the electronic component 100 # 3, and the measuring electrode 220 is arranged between the electronic component 100 # 3 and the electronic component 100 # 4. Has been done. Further, the measurement electrode 230 is arranged between the electronic component 100 # 1 and the electronic component 100 # 2.
  • the measuring electrodes 210, 220, and 230 are all arranged so as to straddle the dicing line 300.
  • connection electrodes 1541 to 1544 are arranged for each of the electronic components 100 # 1 to 100 # 4.
  • the connection electrodes 1541 and 1542 are ground electrodes (GND) for connecting to the ground potential.
  • the connection electrodes 1543 and 1544 are signal electrodes (SIG) to which a signal line or a power supply line is connected.
  • the measurement electrode 210 is connected to the connection electrode 1543 by the wiring 131 # formed in the region of the electronic component 100 # 3.
  • the measurement electrode 220 is connected to the connection electrode 1544 by the wiring 132 # formed in the region of the electronic component 100 # 4.
  • the measurement electrode 230 is connected to the connection electrode 1541 by the wiring 133 # formed in the region of the electronic component 100 # 1.
  • FIG. 7 (b) shows a state after the collective substrate 10 # in such a connection mode is divided by dicing.
  • the dicing line 300 shown in FIG. 7A has been removed.
  • the measuring electrode 210 is divided into electrodes 211 and 212
  • the measuring electrode 220 is divided into electrodes 221, and 222
  • the measuring electrode 230 is divided into electrodes 231 and 232.
  • Electrodes 211,221,232 are "floating electrodes" that are not connected to other elements.
  • the electrode 212 is connected to the connection electrode 1543 by the wiring 131 #
  • the electrode 222 is connected to the connection electrode 1544 by the wiring 132 #
  • the electrode 231 is connected to the connection electrode 1541 by the wiring 133 #. .. That is, in the actual use of the electronic component, the electrodes 212, 222, 231 may be in a state of being electrically connected to the circuit in the electronic component.
  • FIG. 8 is a diagram showing an example in the vicinity of the cut surface when the collective substrate is divided into individual substrates by dicing.
  • the electronic component is cut by the cut surface 310.
  • a part of the end portion of the divided electrode 212 is peeled off and turned up.
  • the peeled portion 215 can be generated by an impact during dicing.
  • the electrode 212 is connected to the connection electrode 1543 by the wiring 131 #, when the peeled portion 215 as shown in FIG. 8 is generated, the same potential as that of the connection electrode 1543 is generated in the peeled portion 215. To do.
  • FIG. 9 is a diagram showing a state of the substrate before and after dicing in the collective substrate 10 including the electronic components according to the present embodiment.
  • FIG. 9A shows the state before dicing
  • FIG. 9B shows the state after dicing.
  • the assembly substrate 10 of FIG. 9 also includes four electronic components 1001 to 1004, and a dicing line 300 is formed in the region between the electronic components.
  • the measurement electrodes 210, 220, and 230 are arranged so as to straddle the dicing line 300.
  • a part of the wiring 131 connecting the measurement electrode 210 and the connection electrode 1543, a part of the wiring 132 connecting the measurement electrode 220 and the connection electrode 1544, and the measurement electrode 230 are connected.
  • a part of the wiring 133 connecting the electrode 1541 is formed on the dicing line 300.
  • connection electrode 1541 and the connection electrode 1542 are connected by wiring in order to unify the ground potential at the time of measurement, and further, the electronic components 1003 and 1004 are connected via the wiring 135. It is connected to a grounding connection electrode (not shown). At this time, a part of the wiring 135 is formed on the dicing line 300.
  • the divided electrodes 211,212, All of 221,222 and 231,232 are "floating electrodes". This makes it possible to prevent the potential in the circuit from being generated in the measurement electrode when the electronic component is used. Therefore, even when the measurement electrode is peeled off as shown in FIG. 8 due to dicing, it is possible to prevent the characteristics of the electronic component from being affected.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An electronic component (100) is provided with a substrate (110), a functional element (120) formed on the substrate (110), a support (140), and a cover portion (170). The support (140) is disposed over the substrate (100) around a region in which the functional element (120) is formed. The cover portion (170) is disposed to oppose the substrate (110) and, together with the substrate (100) and the support (140), forms a hollow space (180). The cover portion (170) has a shape protruding in a direction opposite to the hollow space (180).

Description

電子部品および電子部品の製造方法Electronic components and manufacturing methods for electronic components
 本開示は、電子部品および電子部品の製造方法に関し、より特定的には、WLP(Wafer Level Package)構造を有し、中空空間に機能素子が形成された電子部品の構造に関する。 The present disclosure relates to an electronic component and a method for manufacturing the electronic component, and more specifically, to a structure of an electronic component having a WLP (Wafer Level Package) structure and a functional element formed in a hollow space.
 従来から、WLP構造を有する弾性波装置が知られている。たとえば、特開2007-081613号公報(特許文献1)および国際公開第2016/158050号(特許文献2)には、圧電基板上に櫛歯状(IDT:Interdigital Transducer)電極が配置された弾性表面波(SAW:Surface Acoustic Wave)装置が開示されている。このような弾性波装置においては、圧電基板上でIDT電極が励振できるようにするために、圧電基板、カバー部、および当該カバー部を指示する支持層によってデバイス内に中空空間が形成されている。 Conventionally, an elastic wave device having a WLP structure has been known. For example, in Japanese Patent Application Laid-Open No. 2007-081613 (Patent Document 1) and International Publication No. 2016/158050 (Patent Document 2), a surface acoustic wave (IDT: Interdigital Transducer) electrode is arranged on a piezoelectric substrate. A wave (SAW: Surface Acoustic Wave) device is disclosed. In such an elastic wave device, a hollow space is formed in the device by the piezoelectric substrate, the cover portion, and the support layer instructing the cover portion so that the IDT electrode can be excited on the piezoelectric substrate. ..
特開2007-081613号公報Japanese Unexamined Patent Publication No. 2007-081613 国際公開第2016/158050号International Publication No. 2016/158050
 弾性波装置は、たとえば、スマートフォンあるいは携帯電話のような小型の携帯端末に広く用いられている。これらの携帯端末においては、小型化,薄型化のニーズが依然として高く、それに伴って内蔵される弾性波装置についてもさらなる小型化,薄型化が求められている。 Elastic wave devices are widely used in small mobile terminals such as smartphones and mobile phones, for example. The needs for miniaturization and thinning of these mobile terminals are still high, and along with this, the built-in elastic wave device is also required to be further miniaturized and thinned.
 上述のように、弾性波装置においては、内部に中空空間が形成されたパッケージ構造が必要とされる。そのため、弾性波装置の薄型化(低背化)を進めると、内部に形成される中空空間の高さ(隙間)も低くすることが必要となる。一方で、中空空間を形成するためのカバー部は、外力によって少なからず変形し得る。そのため、中空空間の高さが低くなると、カバー部が変形してIDT電極などの機能素子に接触することによって、機能素子の特性が劣化する可能性がある。カバー部の強度を確保して変形を抑制するためにはカバー部の厚みを厚くすることが必要となるが、カバー部を厚くするとかえって薄型化の妨げになってしまう。 As described above, the elastic wave device requires a package structure in which a hollow space is formed inside. Therefore, if the elastic wave device is made thinner (lowered in height), it is necessary to reduce the height (gap) of the hollow space formed inside. On the other hand, the cover portion for forming the hollow space can be deformed to some extent by an external force. Therefore, when the height of the hollow space becomes low, the cover portion may be deformed and come into contact with a functional element such as an IDT electrode, so that the characteristics of the functional element may deteriorate. In order to secure the strength of the cover portion and suppress the deformation, it is necessary to increase the thickness of the cover portion, but thickening the cover portion rather hinders the thinning.
 このような課題を解決するために、特開2007-081613号公報(特許文献1)および国際公開第2016/158050号(特許文献2)においては、圧電基板、支持層およびカバー部によって形成される中空空間の内部に、支持層の高さよりも低い支持部材が配置されている。この支持部材によって、変形したカバー部が機能素子に接触することが抑制される。 In order to solve such a problem, in Japanese Patent Application Laid-Open No. 2007-081613 (Patent Document 1) and International Publication No. 2016/158050 (Patent Document 2), the piezoelectric substrate, the support layer and the cover portion are formed. Inside the hollow space, a support member lower than the height of the support layer is arranged. This support member prevents the deformed cover portion from coming into contact with the functional element.
 しかしながら、上記の支持部材は、カバー部が基板側に凸形状に変形する場合を前提としており、当該変形に対して機能素子を保護することはできるが、中空空間の高さが制限されてしまい、それによって配置される機能素子のサイズ(高さ)が制限される場合がある。 However, the above-mentioned support member is premised on the case where the cover portion is deformed in a convex shape toward the substrate side, and although the functional element can be protected against the deformation, the height of the hollow space is limited. , The size (height) of the functional element arranged thereby may be limited.
 本開示は、このような課題を解決するためになされたものであって、その目的は、WLP構造を有し中空空間内に機能素子が配置される電子部品において、中空空間のスペースを確保しつつ、機能素子の特性劣化を抑制することである。 The present disclosure has been made to solve such a problem, and an object thereof is to secure a space in a hollow space in an electronic component having a WLP structure and a functional element arranged in the hollow space. At the same time, it is to suppress the deterioration of the characteristics of the functional element.
 本開示のある局面に従う電子部品は、基板と、基板上に形成された機能素子と、第1支持体と、カバー部とを備える。第1支持体は、基板上において、機能素子が形成された領域の周囲に配置される。カバー部は、基板に対向して配置され、基板および第1支持体とともに中空空間を形成する。カバー部は、中空空間とは反対方向に凸となる形状を有する。 An electronic component according to a certain aspect of the present disclosure includes a substrate, a functional element formed on the substrate, a first support, and a cover portion. The first support is arranged on the substrate around the region where the functional element is formed. The cover portion is arranged to face the substrate and forms a hollow space together with the substrate and the first support. The cover portion has a shape that is convex in the direction opposite to the hollow space.
 本開示の他の局面に従う電子部品の製造方法は、i)基板上に機能素子および機能素子を形成する工程と、ii)基板上において、機能素子が形成された領域の周囲に支持体を配置する工程と、iii)基板に対向してカバー部を配置して、上記の基板、支持体およびカバー部によって中空空間を形成する工程と、iv)カバー部を上記中空空間とは反対方向に凸となる形状にする工程とを含む。 The method for manufacturing an electronic component according to another aspect of the present disclosure includes i) a step of forming a functional element and a functional element on a substrate, and ii) arranging a support around a region on the substrate on which the functional element is formed. Iii) The step of arranging the cover portion facing the substrate to form a hollow space by the substrate, the support and the cover portion, and iv) the step of forming the cover portion in the direction opposite to the hollow space. Includes a step of forming the shape to be.
 本開示に係る電子部品によれば、中空空間の形成するカバー部が、中空空間とは反対方向に凸となる形状を有している。そのため、第1支持体の高さを低減した場合でも、中空空間のスペースを確保することができ、機能素子の特性劣化を抑制することができる。 According to the electronic component according to the present disclosure, the cover portion formed by the hollow space has a shape that is convex in the direction opposite to the hollow space. Therefore, even when the height of the first support is reduced, the space of the hollow space can be secured, and the deterioration of the characteristics of the functional element can be suppressed.
実施の形態に係る電子部品の断面図である。It is sectional drawing of the electronic component which concerns on embodiment. 実施の形態に係る電子部品の平面図である。It is a top view of the electronic component which concerns on embodiment. 図1の突起部の端部の拡大図である。It is an enlarged view of the end part of the protrusion part of FIG. 図2の線IV-IVに沿った断面図である。It is sectional drawing along the line IV-IV of FIG. 実施の形態に係る電子部品の製造プロセスである。It is a manufacturing process of the electronic component which concerns on embodiment. ダイシング前の集合状態の電子部品の概略図である。It is a schematic diagram of the electronic component in the assembled state before dicing. 比較例の電子部品におけるダイシング前後の基板の状態を示す図である。It is a figure which shows the state of the substrate before and after dicing in the electronic component of a comparative example. ダイシング後の測定パッドの状態の一例を示す図である。It is a figure which shows an example of the state of the measurement pad after dicing. 実施の形態に係る電子部品におけるダイシング前後の基板の状態を示す図である。It is a figure which shows the state of the substrate before and after dicing in the electronic component which concerns on embodiment.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 [電子部品の構成]
 図1は、実施の形態に従う電子部品100の断面図である。また、図2は電子部品100の平面図である。なお、図1は図2における線I-Iに沿った断面図である。
[Configuration of electronic components]
FIG. 1 is a cross-sectional view of an electronic component 100 according to an embodiment. Further, FIG. 2 is a plan view of the electronic component 100. Note that FIG. 1 is a cross-sectional view taken along the line I-I in FIG.
 図1および図2を参照して、電子部品100は、基板110と、機能素子120と、支持体140と、支持体140内に形成された柱状電極152と、突起部160と、カバー部170とを備える。なお、本実施の形態においては、電子部品100が弾性表面波(SAW)デバイスの場合について説明する。そのため、基板110として圧電性基板が使用され、機能素子120としてIDT電極を含む場合を例として説明する。以下、基板110を「圧電性基板110」と称する場合がある。なお、図1において、Z軸の正方向を上面側、負方向を下面側と称する場合がある。 With reference to FIGS. 1 and 2, the electronic component 100 includes a substrate 110, a functional element 120, a support 140, a columnar electrode 152 formed in the support 140, a protrusion 160, and a cover 170. And. In this embodiment, the case where the electronic component 100 is a surface acoustic wave (SAW) device will be described. Therefore, a case where a piezoelectric substrate is used as the substrate 110 and an IDT electrode is included as the functional element 120 will be described as an example. Hereinafter, the substrate 110 may be referred to as a "piezoelectric substrate 110". In FIG. 1, the positive direction of the Z axis may be referred to as the upper surface side, and the negative direction may be referred to as the lower surface side.
 圧電性基板110は、たとえば、タンタル酸リチウム(LiTaO)、ニオブ酸リチウム(LiNbO)、アルミナ、シリコン(Si)、およびサファイアのような圧電単結晶材料、あるいは、LiTaOまたはLiNbOからなる圧電積層材料により形成される。圧電性基板110の第1面111には、複数の機能素子120が配置されている。機能素子120として、たとえばアルミニウム、銅、銀、金、チタン、タングステン、白金、クロム、ニッケル、モリブデンの少なくとも一種からなる単体金属、またはこれらを主成分とする合金などの電極材を用いて形成された一対のIDT電極が含まれる。圧電性基板110と機能素子(IDT電極)120とによって弾性表面波(SAW)共振子が形成される。 The piezoelectric substrate 110 is made of, for example, a piezoelectric single crystal material such as lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ), alumina, silicon (Si), and sapphire, or LiTaO 3 or LiNbO 3. It is formed of a piezoelectric laminated material. A plurality of functional elements 120 are arranged on the first surface 111 of the piezoelectric substrate 110. The functional element 120 is formed by using, for example, a single metal composed of at least one of aluminum, copper, silver, gold, titanium, tungsten, platinum, chromium, nickel, and molybdenum, or an electrode material such as an alloy containing these as main components. A pair of IDT electrodes is included. A surface acoustic wave (SAW) resonator is formed by the piezoelectric substrate 110 and the functional element (IDT electrode) 120.
 圧電性基板110の機能素子120が形成される第1面111には、機能素子120同士の間、および、機能素子120と接続電極154とを電気的に接続するための配線電極130が形成されている。また、配線電極130には、柱状電極152に接続するための端子電極150が形成されている。 On the first surface 111 on which the functional element 120 of the piezoelectric substrate 110 is formed, a wiring electrode 130 is formed between the functional elements 120 and for electrically connecting the functional element 120 and the connection electrode 154. ing. Further, the wiring electrode 130 is formed with a terminal electrode 150 for connecting to the columnar electrode 152.
 支持体140は、機能素子120の周囲を囲む壁状に形成されており、圧電性基板110の第1面111からZ軸の正方向に突出している。支持体140は、エポキシあるいはポリイミドなどの絶縁性の樹脂および/または感光性樹脂材料で形成される。支持体140の一部は、端子電極150を覆っている。なお、支持体140は、本開示における「第1支持体」に対応する。 The support 140 is formed in a wall shape surrounding the functional element 120, and projects from the first surface 111 of the piezoelectric substrate 110 in the positive direction of the Z axis. The support 140 is formed of an insulating resin such as epoxy or polyimide and / or a photosensitive resin material. A part of the support 140 covers the terminal electrode 150. The support 140 corresponds to the "first support" in the present disclosure.
 柱状電極152は、支持体140に形成された貫通孔(スルーホール)内に、銅などの導電部材が充填されることによって形成される。柱状電極152は、端子電極150および配線電極130を介して、機能素子120と電気的に接続されている。また、柱状電極152は、支持体140の上面側に配置された接続電極154とも電気的に接続される。接続電極154は、図示しない外部機器と当該電子部品100とを接続するための端子である。 The columnar electrode 152 is formed by filling a through hole (through hole) formed in the support 140 with a conductive member such as copper. The columnar electrode 152 is electrically connected to the functional element 120 via the terminal electrode 150 and the wiring electrode 130. The columnar electrode 152 is also electrically connected to the connection electrode 154 arranged on the upper surface side of the support 140. The connection electrode 154 is a terminal for connecting an external device (not shown) and the electronic component 100.
 カバー部170は、支持体140によって支持され、圧電性基板110の第1面111に対向して配置される。カバー部170は、たとえば、エポキシ、ポリイミド、アクリル、ウレタン等を主成分とした、熱硬化性の感光性樹脂材料により形成されている。また、カバー部170は、上記樹脂の他に一部金属を用いてもよい。圧電性基板110、支持体140およびカバー部170によって中空空間180が形成される。機能素子120は、当該中空空間180内に配置されている。カバー部170は、図1に示されるように、中空空間180とは反対の方向(すなわち、Z軸の正方向)に凸となる形状に形成されている。 The cover portion 170 is supported by the support 140 and is arranged so as to face the first surface 111 of the piezoelectric substrate 110. The cover portion 170 is formed of, for example, a thermosetting photosensitive resin material containing epoxy, polyimide, acrylic, urethane or the like as main components. Further, the cover portion 170 may use a part of metal in addition to the above resin. The hollow space 180 is formed by the piezoelectric substrate 110, the support 140, and the cover portion 170. The functional element 120 is arranged in the hollow space 180. As shown in FIG. 1, the cover portion 170 is formed in a shape that is convex in the direction opposite to the hollow space 180 (that is, in the positive direction of the Z axis).
 中空空間180には、機能素子120と重ならない位置に複数個の突起部160が配置されている。突起部160は、格子状あるいは千鳥状に配置される。突起部160は、圧電性基板110および/または配線電極130からZ軸の正方向に突出した柱状の部材であり、支持体140と同様の材料で形成されている。突起部160の断面は、円形、楕円形、あるいは多角形に形成されている。突起部160の高さ(Z軸方向の寸法)は、機能素子120の高さよりも高く、かつ、支持体140の高さ以下である。突起部160は、カバー部170が中空空間180側に変形した場合に、カバー部170と機能素子120とが接触することを防止する機能を有する。 In the hollow space 180, a plurality of protrusions 160 are arranged at positions that do not overlap with the functional element 120. The protrusions 160 are arranged in a grid pattern or a staggered pattern. The protrusion 160 is a columnar member that protrudes from the piezoelectric substrate 110 and / or the wiring electrode 130 in the positive direction of the Z axis, and is made of the same material as the support 140. The cross section of the protrusion 160 is formed in a circular shape, an elliptical shape, or a polygonal shape. The height of the protrusion 160 (dimension in the Z-axis direction) is higher than the height of the functional element 120 and equal to or less than the height of the support 140. The protrusion 160 has a function of preventing the cover 170 from coming into contact with the functional element 120 when the cover 170 is deformed toward the hollow space 180.
 突起部160の端部には、図3に示されるような凹部162が形成されている。この凹部162は、カバー部170が変形して突起部160に接触した場合に、カバー部170と突起部160との間の接触面積を小さくするために形成されている。 A recess 162 as shown in FIG. 3 is formed at the end of the protrusion 160. The recess 162 is formed to reduce the contact area between the cover 170 and the protrusion 160 when the cover 170 is deformed and comes into contact with the protrusion 160.
 また、電子部品100は、図2の平面図に示されるように、中空空間180を複数の区画に分割するための補助支持体145をさらに備えてもよい。補助支持体145は、圧電性基板110および/または配線電極130からZ軸の正方向に突出している。補助支持体145は、支持体140と同様の材料を用いて、壁状あるいは柱状に形成されている。補助支持体145の高さは、支持体140とほぼ同じ高さに形成されている。なお、図2においては、補助支持体145は、X軸の沿った方向にのみ配置されているが、それに加えて、あるいは、それに代えて、Y軸方向に沿って配置されていてもよい。なお、補助支持体145は、本開示における「第2支持体」に対応する。 Further, as shown in the plan view of FIG. 2, the electronic component 100 may further include an auxiliary support 145 for dividing the hollow space 180 into a plurality of sections. The auxiliary support 145 projects from the piezoelectric substrate 110 and / or the wiring electrode 130 in the positive direction of the Z axis. The auxiliary support 145 is formed in a wall shape or a columnar shape using the same material as the support 140. The height of the auxiliary support 145 is formed to be substantially the same as the height of the support 140. In FIG. 2, the auxiliary support 145 is arranged only in the direction along the X-axis, but in addition to or instead, it may be arranged along the Y-axis direction. The auxiliary support 145 corresponds to the "second support" in the present disclosure.
 図4は、図2のY軸方向に平行な線IV-IVに沿った断面図である。図4に示されるように、カバー部170は、支持体140に加えて補助支持体145にも支持されている。そして、支持体140と補助支持体145とで支持されるカバー部170の部分は、中空空間180とは反対の方向に凸となる形状を有している。 FIG. 4 is a cross-sectional view taken along the line IV-IV parallel to the Y-axis direction of FIG. As shown in FIG. 4, the cover portion 170 is supported by the auxiliary support 145 in addition to the support 140. The portion of the cover portion 170 supported by the support 140 and the auxiliary support 145 has a shape that is convex in the direction opposite to the hollow space 180.
 圧電性基板110の外周に沿って配置された支持体140のみで凸形状のカバー部170を支持した場合、カバー部170の中央部分におけるZ軸の正方向への突出量が大きくなり機器全体の高さが高くなってしまう。その結果、機器サイズの小型化を妨げてしまうことになり得る。図4で示すように、支持体140によって囲まれる領域内に補助支持体145を配置し、支持体140および補助支持体145を用いてカバー部170を支持することによって、カバー部170と補助支持体145とで囲まれる区画ごとにカバー部170が凸形状となる。そのため、支持体140のみでカバー部170を支持する場合に比べて、カバー部170の突出量を小さくすることができる。したがって、補助支持体145を設けることによって、機器全体のサイズが大きくなってしまうことを抑制することができる。また、カバー部170を支持する箇所が増加することによって、個々の支持体および補助支持体に加えられるカバー部170からの荷重が分散され、支持体および補助支持体と基板等との接続部分に加わるモーメントを小さくできるので、支持体および補助支持体の剥離を抑制することができる。 When the convex cover portion 170 is supported only by the support 140 arranged along the outer circumference of the piezoelectric substrate 110, the amount of protrusion in the positive direction of the Z axis at the central portion of the cover portion 170 becomes large, and the entire device becomes large. The height will be high. As a result, it may hinder the miniaturization of the device size. As shown in FIG. 4, the auxiliary support 145 is arranged in the area surrounded by the support 140, and the cover portion 170 and the auxiliary support are supported by using the support 140 and the auxiliary support 145 to support the cover portion 170 and the auxiliary support. The cover portion 170 has a convex shape for each section surrounded by the body 145. Therefore, the amount of protrusion of the cover portion 170 can be reduced as compared with the case where the cover portion 170 is supported only by the support body 140. Therefore, by providing the auxiliary support 145, it is possible to prevent the size of the entire device from becoming large. Further, by increasing the number of places that support the cover portion 170, the load applied to the individual support and the auxiliary support from the cover portion 170 is dispersed, and the connection portion between the support and the auxiliary support and the substrate or the like is distributed. Since the applied moment can be reduced, peeling of the support and the auxiliary support can be suppressed.
 上述のような電子部品は、携帯電話あるいはスマートフォンなどの携帯端末に用いられる場合があるが、このような携帯端末においては、小型化および薄型化のニーズが依然として高く、それに伴ってこれらの電子部品についてのさらなる小型化が必要とされている。中空空間を有する電子部品においては、基板の封止などにより、中空空間を形成するカバー部に外力が作用し、カバー部が変形する場合がある。このような場合には、カバー部は中空空間側に凸の形状となり、中空空間の高さが減少するので、中空空間の内部に配置する機能素子の高さが制限されたり、支持体を所定以上の高さに維持したりすることが必要となる。 The above-mentioned electronic components may be used for mobile terminals such as mobile phones and smartphones, but in such mobile terminals, there is still a high need for miniaturization and thinning, and these electronic components are associated therewith. Further miniaturization is needed. In an electronic component having a hollow space, an external force may act on the cover portion forming the hollow space due to sealing of the substrate or the like, and the cover portion may be deformed. In such a case, the cover portion has a convex shape toward the hollow space side, and the height of the hollow space is reduced. Therefore, the height of the functional element arranged inside the hollow space is limited, or the support is specified. It is necessary to maintain the height above.
 本実施の形態の電子部品においては、支持体および補助支持体によって支持されるカバー部が、中空空間とは反対側(上側)に凸となる形状とされている。これによって、支持体の高さを低くした状態でも、中空空間の高さ(マージン)を確保することができる。また、上側に凸の形状となっているため、カバー部が平坦の場合に比べて、下側に凸の形状に変形させるためにより多くの外力が必要とされる。すなわち、外力に対する耐荷重性を高めることができる。さらに、実施の形態の電子部品においては、中空空間内に突起部が配置されているため、仮にカバー部が変形して下側に凸の形状となった場合でも、カバー部と機能素子とが接触することを抑制できる、これにより機能素子の特性劣化を抑制することが可能となる。 In the electronic component of the present embodiment, the cover portion supported by the support and the auxiliary support has a shape that is convex on the opposite side (upper side) of the hollow space. As a result, the height (margin) of the hollow space can be secured even when the height of the support is lowered. Further, since the cover portion has a convex shape on the upper side, more external force is required to deform the cover portion into a convex shape on the lower side as compared with the case where the cover portion is flat. That is, the load bearing capacity against an external force can be increased. Further, in the electronic component of the embodiment, since the protrusion is arranged in the hollow space, even if the cover portion is deformed to have a downwardly convex shape, the cover portion and the functional element are still connected. Contact can be suppressed, which makes it possible to suppress deterioration of the characteristics of the functional element.
 [製造プロセス]
 次に、図5を用いて、本実施の形態に係る電子部品100の製造プロセスについて説明する。製造プロセスは図5(a)から図5(f)までの工程を含む。図5においては各工程における電子部品の断面図が示されている。
[Manufacturing process]
Next, the manufacturing process of the electronic component 100 according to the present embodiment will be described with reference to FIG. The manufacturing process includes the steps from FIGS. 5 (a) to 5 (f). FIG. 5 shows a cross-sectional view of an electronic component in each process.
 図5(a)の工程において、圧電性基板110の第1面111上に、たとえばスパッタリングによって銅などの金属膜を形成し、当該金属膜にパターニングおよびエッチング等の処理を施すことによって、機能素子120および配線電極130が形成される。さらに、配線電極130上に、端子電極150が形成される。 In the step of FIG. 5A, a metal film such as copper is formed on the first surface 111 of the piezoelectric substrate 110 by, for example, sputtering, and the metal film is subjected to processing such as patterning and etching to perform a functional element. 120 and the wiring electrode 130 are formed. Further, the terminal electrode 150 is formed on the wiring electrode 130.
 次に、図5(b)の工程において、図5(a)で形成された中間部品に、支持体140および突起部160が形成される。支持体140および突起部160は、たとえば感光性樹脂材料を用いたフォトリソグラフィーによって形成される。より具体的には、図5(a)で形成された中間部品上に、ネガタイプの感光性樹脂材料のシートをラミネートして配置する。そして、支持体140および突起部160となる領域以外の部分をマスクして光を照射する。感光性樹脂材料は、光が照射された部分のみが硬化する。そのため、露光後に現像処理を行なうことによって、支持体140および突起部160の部分が残り、支持体140および突起部160以外の部分の感光性樹脂材料は除去される。 Next, in the step of FIG. 5 (b), the support 140 and the protrusion 160 are formed on the intermediate parts formed in FIG. 5 (a). The support 140 and the protrusion 160 are formed, for example, by photolithography using a photosensitive resin material. More specifically, a negative type photosensitive resin material sheet is laminated and arranged on the intermediate component formed in FIG. 5A. Then, the portion other than the region to be the support 140 and the protrusion 160 is masked and irradiated with light. In the photosensitive resin material, only the portion irradiated with light is cured. Therefore, by performing the developing process after the exposure, the portions of the support 140 and the protrusion 160 remain, and the photosensitive resin material of the portions other than the support 140 and the protrusion 160 is removed.
 なお、感光性樹脂材料の硬化は、照射される光の光量に依存するため、受光面積が小さい突起部160については、支持体140よりも高さが低くなる。また、補助支持体145もこの工程において形成される。 Since the curing of the photosensitive resin material depends on the amount of light emitted, the height of the protrusion 160 having a small light receiving area is lower than that of the support 140. The auxiliary support 145 is also formed in this step.
 図5(c)の工程においては、形成された支持体140にレーザ加工等により貫通孔142が形成される。なお、当該貫通孔142は、図5(b)においてフォトリソグラフィーによって同時に形成してもよい。 In the step of FIG. 5C, a through hole 142 is formed in the formed support 140 by laser processing or the like. The through hole 142 may be formed at the same time by photolithography in FIG. 5 (b).
 図5(d)の工程においては、図5(c)(あるいは、図5(b))の工程で形成された貫通孔142内に柱状電極(ビア)152が形成される。柱状電極152は、たとえば、導電ペーストを貫通孔142に充填する手法、あるいは、電解めっきにより形成する手法などが用いられる。なお、電解めっきを用いる場合には、めっき処理に先立って、貫通孔142の内面にスパッタリングなどで金属シード層が形成される。 In the step of FIG. 5 (d), the columnar electrode (via) 152 is formed in the through hole 142 formed in the step of FIG. 5 (c) (or FIG. 5 (b)). As the columnar electrode 152, for example, a method of filling the through hole 142 with a conductive paste, a method of forming by electrolytic plating, or the like is used. When electrolytic plating is used, a metal seed layer is formed on the inner surface of the through hole 142 by sputtering or the like prior to the plating treatment.
 また、形成された柱状電極152に電気的に接続される接続電極154が、支持体140の上面に形成される。 Further, a connection electrode 154 electrically connected to the formed columnar electrode 152 is formed on the upper surface of the support 140.
 次に、図5(e)の工程において、支持体140上にカバー部170を配置して中空空間180をする。カバー部170は、たとえば熱硬化性の樹脂材料で形成されており、図5(e)には熱硬化前の状態が示されている。図5(e)の工程においては、カバー部170の材料が未硬化であり柔軟性があるため、カバー部170は中空空間180側に凸の形状となっている。この状態において、少なくとも一部の突起部160はカバー部170と接触し得る。突起部160によって、カバー部170の機能素子120への接触が抑制される。 Next, in the process of FIG. 5 (e), the cover portion 170 is arranged on the support 140 to create a hollow space 180. The cover portion 170 is made of, for example, a thermosetting resin material, and FIG. 5 (e) shows a state before thermosetting. In the step of FIG. 5 (e), since the material of the cover portion 170 is uncured and flexible, the cover portion 170 has a convex shape toward the hollow space 180 side. In this state, at least a part of the protrusions 160 may come into contact with the cover 170. The protrusion 160 suppresses the contact of the cover 170 with the functional element 120.
 図5(f)の工程においては、図5(e)で形成された中間部品に熱を加えることによって、カバー部170を硬化させる。カバー部170を形成する材料は、熱硬化する際にガスを発生するため、当該工程中に発生したガスが中空空間180に充満し膨張する。これによって、カバー部170が上側に凸の形状となり、その状態で硬化して図1で示したような電子部品100が完成する。 In the step of FIG. 5 (f), the cover portion 170 is cured by applying heat to the intermediate part formed in FIG. 5 (e). Since the material forming the cover portion 170 generates gas during thermosetting, the gas generated during the process fills the hollow space 180 and expands. As a result, the cover portion 170 has a convex shape upward, and is cured in that state to complete the electronic component 100 as shown in FIG.
 なお、図3で説明したように、突起部160の端部には凹部162が形成されている。上述のように、カバー部170を形成する際に、図5(e)において突起部160がカバー部170と接触し、図5(f)においてカバー部170が突起部160から分離される。上記のように突起部160の凹部162によって、突起部160とカバー部170との接触面積を低減できるので、図5(f)におけるカバー部170の硬化処理において、突起部160からのカバー部170の分離が容易になる。 As described with reference to FIG. 3, a recess 162 is formed at the end of the protrusion 160. As described above, when the cover portion 170 is formed, the protrusion 160 comes into contact with the cover 170 in FIG. 5 (e), and the cover 170 is separated from the protrusion 160 in FIG. 5 (f). Since the contact area between the protrusion 160 and the cover 170 can be reduced by the recess 162 of the protrusion 160 as described above, in the curing process of the cover 170 in FIG. 5 (f), the cover 170 from the protrusion 160 Is easy to separate.
 最終的に形成された電子部品100においては、カバー部170と突起部160とは接触していない。そのため、カバー部170にかかる外部からの応力が、突起部160を介して圧電性基板110に伝達されないため、外力による機能素子120の特性変動を抑制することができる。さらには、カバー部170を通過して浸入する湿気成分に含まれ得る腐食性物質が、突起部160を伝って機能素子120に到達しにくくなるため、これらの腐食性物質による機能素子120への影響が低減され、機能素子120の特性変動を抑制することができる。 In the finally formed electronic component 100, the cover portion 170 and the protrusion 160 are not in contact with each other. Therefore, the stress from the outside applied to the cover portion 170 is not transmitted to the piezoelectric substrate 110 via the protrusion 160, so that the characteristic fluctuation of the functional element 120 due to the external force can be suppressed. Further, since corrosive substances that can be contained in the moisture component that passes through the cover portion 170 and infiltrates are difficult to reach the functional element 120 through the protrusion 160, these corrosive substances are applied to the functional element 120. The influence is reduced, and the characteristic fluctuation of the functional element 120 can be suppressed.
 以上のように、図5(a)~図5(f)の工程を実行することによって、図1で示した構造を有する電子部品100が形成される。 As described above, by executing the steps of FIGS. 5A to 5F, the electronic component 100 having the structure shown in FIG. 1 is formed.
 なお、上記の説明においては、電子部品が表面弾性波(SAW)デバイスである場合を例として説明したが、部品内部に中空空間が形成され、当該中空空間内に機能素子が配置される構成であればSAWデバイス以外の電子部品にも本開示の構造が適用可能である。たとえば、バルク弾性波(Bulk Acoustic Wave:BAW)デバイスであってもよいし、小型のセンサあるいはアクチュエータが形成されたMEMSデバイスであってもよい。 In the above description, the case where the electronic component is a surface acoustic wave (SAW) device has been described as an example, but a hollow space is formed inside the component and functional elements are arranged in the hollow space. If so, the structure of the present disclosure can be applied to electronic components other than SAW devices. For example, it may be a Bulk Acoustic Wave (BAW) device, or it may be a MEMS device in which a small sensor or actuator is formed.
 (測定用配線の配置)
 上述のような電子部品を製造する場合、上記の図5で説明した製造プロセスによって同一の基板上に複数の電子部品を形成し、その後、ダイシング等により個片基板に分割する手法が用いられる場合がある。このような手法においては、個片基板に分割する前の集合基板において、あらかじめ個々の電子部品の特性の評価を行なう場合がある。特性評価の際には接触式のプローブを用いて信号状態が測定されるが、プローブの接触によって電極に傷等が生じる可能性を考慮して、多くの場合には、特性評価の際に使用する専用の測定用電極が基板上に形成される。
(Arrangement of measurement wiring)
When manufacturing electronic components as described above, a method is used in which a plurality of electronic components are formed on the same substrate by the manufacturing process described with reference to FIG. 5, and then divided into individual substrates by dicing or the like. There is. In such a method, the characteristics of individual electronic components may be evaluated in advance on the collective substrate before being divided into individual substrates. The signal state is measured using a contact-type probe when evaluating the characteristics, but in many cases, it is used when evaluating the characteristics in consideration of the possibility that contact with the probe may cause scratches on the electrodes. A dedicated measurement electrode is formed on the substrate.
 測定用電極は製品となった場合に不要となるので、基板内の面積を有効活用するために、一般的には、測定用電極は個片基板同士の境界部(すなわちダイシングライン上)に配置される。この場合、ダイシングによる分割の際に、当該測定用基板がダイシングソーによって切断されることになるが、切断の状態によっては、測定用電極の切断端の一部が剥離して基板から突出した状態となる場合がある。 Since the measurement electrode becomes unnecessary when it becomes a product, in order to effectively utilize the area in the substrate, the measurement electrode is generally arranged at the boundary between the individual substrates (that is, on the dicing line). Will be done. In this case, the measurement substrate is cut by the dicing saw at the time of division by dicing, but depending on the cutting state, a part of the cut end of the measurement electrode is peeled off and protrudes from the substrate. May be.
 一方で、測定用電極は、電子部品の電気的状態を測定するために、電子部品が製品となった際に信号用電極あるいは接地電極として実際に使用される電極(製品用電極)と電気的に接続されている。そのため、個片基板に分割された電子部品において、測定用電極と製品用電極とが接続されたままの状態であると、測定用電極には電位が生じる状態となり得る。そうすると、上記のように、個片基板への分割によって測定用電極の一部が剥離した状態となった場合、電圧が印加された状態の測定用電極の剥離部分が基板上の他の導電部位と接触してしまい、故障あるいは機能上の不具合が生じる可能性がある。 On the other hand, the measurement electrode is an electrode (product electrode) that is actually used as a signal electrode or a ground electrode when the electronic component becomes a product in order to measure the electrical state of the electronic component. It is connected to the. Therefore, in the electronic component divided into individual substrates, if the measurement electrode and the product electrode are still connected, the measurement electrode may be in a state where an electric potential is generated. Then, as described above, when a part of the measurement electrode is peeled off due to the division into individual substrates, the peeled portion of the measurement electrode in the state where the voltage is applied is the other conductive part on the substrate. May cause a malfunction or functional malfunction.
 そこで、本実施の形態においては、製品用電極と測定用電極とを接続する配線部分の少なくとも一部をダイシングライン上に形成する。このような構成とすることによって、ダイシング工程で個片基板に分割した際に、製品用電極と測定用電極とを電気的に分離することができるので、分離後の測定用電極を無電圧とすることができる。これによって、仮に分割後の測定用電極に剥離部分が生じた場合でも、電子部品の特性に影響を与えることが防止できる。 Therefore, in the present embodiment, at least a part of the wiring portion connecting the product electrode and the measurement electrode is formed on the dicing line. With such a configuration, the product electrode and the measurement electrode can be electrically separated when they are divided into individual substrates in the dicing process, so that the measurement electrode after separation is set to no voltage. can do. As a result, even if a peeled portion is formed on the measurement electrode after the division, it is possible to prevent the characteristics of the electronic component from being affected.
 図6は、本実施の形態に係る電子部品100がダイシングにより分離される前の集合基板10の一例を示す図である。図6の集合基板10においては、例として6個の電子部品100が一体として形成されている。電子部品100同士の境界部分には、各電子部品100を個片基板に分割する際に、ダイシングにより除去される領域(以下、「ダイシングライン」とも称する。)300が形成されている。また、各電子部品100においては、少なくとも一部がダイシングライン300に重なるように、測定用電極200が配置されている。 FIG. 6 is a diagram showing an example of the assembly substrate 10 before the electronic component 100 according to the present embodiment is separated by dicing. In the assembly substrate 10 of FIG. 6, as an example, six electronic components 100 are integrally formed. A region (hereinafter, also referred to as “dicing line”) 300 that is removed by dicing when each electronic component 100 is divided into individual substrates is formed at a boundary portion between the electronic components 100. Further, in each electronic component 100, the measurement electrode 200 is arranged so that at least a part of the electronic component 100 overlaps the dicing line 300.
 図7は、比較例の電子部品を含む集合基板10#における、ダイシング前後の基板の状態を示す図である。図7は、図6における4つの電子部品の境界部分を含む領域AR1に対応する部分の詳細を拡大した図であり、図7(a)にはダイシング前の状態が示されており、図7(b)にはダイシング後の状態が示されている。 FIG. 7 is a diagram showing the state of the substrate before and after dicing in the assembly substrate 10 # including the electronic components of the comparative example. FIG. 7 is an enlarged view of the portion corresponding to the region AR1 including the boundary portion of the four electronic components in FIG. 6, and FIG. 7A shows the state before dicing, and FIG. 7A shows the state before dicing. (B) shows the state after dicing.
 図7を参照して、4つの電子部品100#1~100#4の間の領域には、ダイシングライン300が形成されている。そして、測定用電極210は、電子部品100#1と電子部品100#3との間に配置されており、測定用電極220は、電子部品100#3と電子部品100#4との間に配置されている。また、測定用電極230は、電子部品100#1と電子部品100#2との間に配置されている。測定用電極210,220,230は、いずれもダイシングライン300をまたぐように配置されている。 With reference to FIG. 7, a dicing line 300 is formed in the region between the four electronic components 100 # 1 to 100 # 4. The measuring electrode 210 is arranged between the electronic component 100 # 1 and the electronic component 100 # 3, and the measuring electrode 220 is arranged between the electronic component 100 # 3 and the electronic component 100 # 4. Has been done. Further, the measurement electrode 230 is arranged between the electronic component 100 # 1 and the electronic component 100 # 2. The measuring electrodes 210, 220, and 230 are all arranged so as to straddle the dicing line 300.
 図7の例においては、電子部品100#1~100#4に対して、それぞれ4つの接続電極1541~1544が配置されている。接続電極1541,1542は、接地電位に接続するための接地電極(GND)である。また、接続電極1543,1544は、信号線あるいは電源線が接続される信号用電極(SIG)である。 In the example of FIG. 7, four connection electrodes 1541 to 1544 are arranged for each of the electronic components 100 # 1 to 100 # 4. The connection electrodes 1541 and 1542 are ground electrodes (GND) for connecting to the ground potential. Further, the connection electrodes 1543 and 1544 are signal electrodes (SIG) to which a signal line or a power supply line is connected.
 測定用電極210は、電子部品100#3の領域に形成された配線131#によって、接続電極1543に接続されている。測定用電極220は、電子部品100#4の領域に形成された配線132#によって、接続電極1544に接続されている。測定用電極230は、電子部品100#1の領域に形成された配線133#によって、接続電極1541に接続されている。 The measurement electrode 210 is connected to the connection electrode 1543 by the wiring 131 # formed in the region of the electronic component 100 # 3. The measurement electrode 220 is connected to the connection electrode 1544 by the wiring 132 # formed in the region of the electronic component 100 # 4. The measurement electrode 230 is connected to the connection electrode 1541 by the wiring 133 # formed in the region of the electronic component 100 # 1.
 このような接続態様の集合基板10#がダイシングにより分割された後の状態が図7(b)である。ダイシングにより、図7(a)で示されていたダイシングライン300が除去されている。そして、測定用電極210は電極211,212に分割され、測定用電極220は電極221,222に分割され、測定用電極230は電極231,232に分割されている。 FIG. 7 (b) shows a state after the collective substrate 10 # in such a connection mode is divided by dicing. By dicing, the dicing line 300 shown in FIG. 7A has been removed. The measuring electrode 210 is divided into electrodes 211 and 212, the measuring electrode 220 is divided into electrodes 221, and 222, and the measuring electrode 230 is divided into electrodes 231 and 232.
 電極211,221,232は、他の要素と接続されていない「浮き電極」となっている。一方で、電極212は配線131#によって接続電極1543に接続されており、電極222は配線132#によって接続電極1544に接続されており、電極231は配線133#によって接続電極1541に接続されている。すなわち、電子部品を実際に使用する場面において、電極212,222,231は電子部品内の回路と電気的に接続された状態となり得る。 Electrodes 211,221,232 are "floating electrodes" that are not connected to other elements. On the other hand, the electrode 212 is connected to the connection electrode 1543 by the wiring 131 #, the electrode 222 is connected to the connection electrode 1544 by the wiring 132 #, and the electrode 231 is connected to the connection electrode 1541 by the wiring 133 #. .. That is, in the actual use of the electronic component, the electrodes 212, 222, 231 may be in a state of being electrically connected to the circuit in the electronic component.
 図8は、ダイシングによって集合基板を個片基板に分割した際の、切断面付近の例を示した図である。図8において、電子部品は切断面310によって切断されている。図8の例においては、分割された電極212の端部の一部が剥離して、上方にめくれ上がっている。剥離部分215は、ダイシング時の衝撃によって生じ得る。比較例の場合には、電極212は、配線131#によって接続電極1543と接続されているため、図8のような剥離部分215が発生すると、剥離部分215にも接続電極1543と同じ電位が発生する。 FIG. 8 is a diagram showing an example in the vicinity of the cut surface when the collective substrate is divided into individual substrates by dicing. In FIG. 8, the electronic component is cut by the cut surface 310. In the example of FIG. 8, a part of the end portion of the divided electrode 212 is peeled off and turned up. The peeled portion 215 can be generated by an impact during dicing. In the case of the comparative example, since the electrode 212 is connected to the connection electrode 1543 by the wiring 131 #, when the peeled portion 215 as shown in FIG. 8 is generated, the same potential as that of the connection electrode 1543 is generated in the peeled portion 215. To do.
 図9は、本実施の形態に係る電子部品を含む集合基板10における、ダイシング前後の基板の状態を示す図である。図9(a)にはダイシング前の状態が示されており、図9(b)にはダイシング後の状態が示されている。 FIG. 9 is a diagram showing a state of the substrate before and after dicing in the collective substrate 10 including the electronic components according to the present embodiment. FIG. 9A shows the state before dicing, and FIG. 9B shows the state after dicing.
 図9の集合基板10においても、比較例同様に、4つの電子部品1001~1004が含まれており、各電子部品の間の領域にはダイシングライン300が形成されている。そして、測定用電極210,220,230が、ダイシングライン300をまたぐように配置されている。 Similarly to the comparative example, the assembly substrate 10 of FIG. 9 also includes four electronic components 1001 to 1004, and a dicing line 300 is formed in the region between the electronic components. The measurement electrodes 210, 220, and 230 are arranged so as to straddle the dicing line 300.
 集合基板10においては、測定用電極210と接続電極1543とを接続する配線131の一部、測定用電極220と接続電極1544とを接続する配線132の一部、および、測定用電極230と接続電極1541とを接続する配線133の一部は、ダイシングライン300上に形成されている。 In the assembly substrate 10, a part of the wiring 131 connecting the measurement electrode 210 and the connection electrode 1543, a part of the wiring 132 connecting the measurement electrode 220 and the connection electrode 1544, and the measurement electrode 230 are connected. A part of the wiring 133 connecting the electrode 1541 is formed on the dicing line 300.
 また、集合基板10においては、測定の際に接地電位を統一するために、接続電極1541と接続電極1542が配線で接続されており、さらに、配線135を経由して、電子部品1003,1004の接地用の接続電極(図示せず)に接続されている。このとき、配線135の一部がダイシングライン300上に形成されている。 Further, in the assembly substrate 10, the connection electrode 1541 and the connection electrode 1542 are connected by wiring in order to unify the ground potential at the time of measurement, and further, the electronic components 1003 and 1004 are connected via the wiring 135. It is connected to a grounding connection electrode (not shown). At this time, a part of the wiring 135 is formed on the dicing line 300.
 このように、測定用電極に接続される配線の一部をダイシングライン300上に形成すると、ダイシングを実施した後には、図7(b)に示されるように、分割された電極211,212,221,222,231,232のすべてが「浮き電極」となる。これにより、電子部品を使用する際に、回路内の電位が測定用電極に生じることを抑制できる。したがって、ダイシングによって、図8で示したような測定用電極の剥離が生じた場合であっても、電子部品の特性に影響を与えることが防止できる。 When a part of the wiring connected to the measurement electrode is formed on the dicing line 300 in this way, after the dicing is performed, as shown in FIG. 7B, the divided electrodes 211,212, All of 221,222 and 231,232 are "floating electrodes". This makes it possible to prevent the potential in the circuit from being generated in the measurement electrode when the electronic component is used. Therefore, even when the measurement electrode is peeled off as shown in FIG. 8 due to dicing, it is possible to prevent the characteristics of the electronic component from being affected.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the description of the embodiment described above, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10,10# 集合基板、100,1001,1003,1004,100#1~100#4 電子部品、110 基板、111 第1面、120 機能素子、130 配線電極、131~133,135 配線、140 支持体、142 貫通孔、145 補助支持体、150 端子電極、152 柱状電極、154,1541~1544 接続電極、160 突起部、162 凹部、170 カバー部、180 中空空間、200,210,220,230 測定用電極、211,212,221,222,231,232 電極、215 剥離部分、300 ダイシングライン、310 切断面、AR1 領域。 10,10 # Assembly board, 100,1001,1003,1004,100 # 1-100 # 4 Electronic components, 110 board, 111 first surface, 120 functional elements, 130 wiring electrodes, 131-133, 135 wiring, 140 support Body, 142 through holes, 145 auxiliary supports, 150 terminal electrodes, 152 columnar electrodes, 154,1541-1544 connection electrodes, 160 protrusions, 162 recesses, 170 covers, 180 hollow spaces, 200, 210, 220, 230 measurements Electrodes, 211,212,221,222,231,232 electrodes, 215 peeled parts, 300 dicing lines, 310 cut surfaces, AR1 area.

Claims (9)

  1.  基板と、
     前記基板上に形成された機能素子と、
     前記基板上において、前記機能素子が形成された領域の周囲に配置された第1支持体と、
     前記基板に対向配置され、前記基板および前記第1支持体とともに中空空間を形成するカバー部とを備え、
     前記カバー部は、前記中空空間とは反対方向に凸となる形状を有する、電子部品。
    With the board
    The functional element formed on the substrate and
    On the substrate, a first support arranged around the region where the functional element is formed, and
    A cover portion that is arranged to face the substrate and forms a hollow space together with the substrate and the first support is provided.
    The cover portion is an electronic component having a shape that is convex in the direction opposite to the hollow space.
  2.  前記中空空間に配置され、前記基板から突出する突起部をさらに備える、請求項1に記載の電子部品。 The electronic component according to claim 1, further comprising a protrusion that is arranged in the hollow space and projects from the substrate.
  3.  前記突起部は、感光性樹脂で形成されている、請求項2に記載の電子部品。 The electronic component according to claim 2, wherein the protrusion is made of a photosensitive resin.
  4.  前記第1支持体および前記突起部は、同じ材料で形成されている、請求項2または3に記載の電子部品。 The electronic component according to claim 2 or 3, wherein the first support and the protrusion are made of the same material.
  5.  前記突起部の端部には凹部が形成されている、請求項2~4のいずれか1項に記載の電子部品。 The electronic component according to any one of claims 2 to 4, wherein a recess is formed at the end of the protrusion.
  6.  前記突起部の高さは、前記第1支持体の高さよりも低い、請求項2~5のいずれか1項に記載の電子部品。 The electronic component according to any one of claims 2 to 5, wherein the height of the protrusion is lower than the height of the first support.
  7.  前記カバー部は、感光性樹脂で形成されている、請求項1~6のいずれか1項に記載の電子部品。 The electronic component according to any one of claims 1 to 6, wherein the cover portion is made of a photosensitive resin.
  8.  前記第1支持体によって囲まれる領域内に配置された第2支持体をさらに備え、
     前記カバー部は、前記第1支持体および前記第2支持体によって支持される、請求項1~7のいずれか1項に記載の電子部品。
    Further comprising a second support arranged in the area surrounded by the first support.
    The electronic component according to any one of claims 1 to 7, wherein the cover portion is supported by the first support and the second support.
  9.  基板上に機能素子および前記機能素子を形成する工程と、
     前記基板上において、前記機能素子が形成された領域の周囲に支持体を配置する工程と、
     前記基板に対向してカバー部を配置して、前記基板、前記支持体および前記カバー部によって中空空間を形成する工程と、
     前記カバー部を前記中空空間とは反対方向に凸となる形状にする工程とを含む、電子部品の製造方法。
    A process of forming a functional element and the functional element on a substrate, and
    A step of arranging a support around a region on which the functional element is formed on the substrate, and a step of arranging the support.
    A step of arranging a cover portion facing the substrate to form a hollow space by the substrate, the support, and the cover portion.
    A method for manufacturing an electronic component, which comprises a step of forming the cover portion into a shape that is convex in a direction opposite to the hollow space.
PCT/JP2020/041646 2019-11-18 2020-11-09 Electronic component and method for manufacturing electronic component WO2021100505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-207862 2019-11-18
JP2019207862 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021100505A1 true WO2021100505A1 (en) 2021-05-27

Family

ID=75981208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041646 WO2021100505A1 (en) 2019-11-18 2020-11-09 Electronic component and method for manufacturing electronic component

Country Status (1)

Country Link
WO (1) WO2021100505A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158744A1 (en) * 2015-03-27 2016-10-06 株式会社村田製作所 Electronic component
JP2018117267A (en) * 2017-01-19 2018-07-26 新日本無線株式会社 Electronic device and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158744A1 (en) * 2015-03-27 2016-10-06 株式会社村田製作所 Electronic component
JP2018117267A (en) * 2017-01-19 2018-07-26 新日本無線株式会社 Electronic device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8564171B2 (en) Acoustic wave element and electronic device including the same
JP5117083B2 (en) Elastic wave device and manufacturing method thereof
EP1768256B1 (en) Piezoelectric device
US9271400B2 (en) Electronic component and manufacturing method therefor
CN111052606B (en) Elastic wave device and elastic wave module provided with same
US8536959B1 (en) Substrate with built-in electronic component
JP5815365B2 (en) Elastic wave device, electronic component, and method of manufacturing elastic wave device
JP5521417B2 (en) Elastic wave device and electronic device using the same
CN111052607B (en) Elastic wave device and elastic wave module provided with same
CN110663178B (en) Electronic component and module provided with same
WO2021100505A1 (en) Electronic component and method for manufacturing electronic component
JP6950658B2 (en) Elastic wave device
JP5338575B2 (en) Elastic wave device and electronic device using the same
JP5865698B2 (en) Elastic wave device, electronic component, and method of manufacturing elastic wave device
JPWO2018225589A1 (en) Electronic component module
WO2021100504A1 (en) Electronic component and method for manufacture of electronic component
WO2002087080A1 (en) Surface acoustic wave device and its manufacture method, and electronic part using it
JP2011023929A (en) Acoustic wave device and electronic apparatus using the same
US20220278007A1 (en) Electronic component
KR102432301B1 (en) seismic device
WO2019044309A1 (en) Elastic wave device and elastic wave module equipped with same
JP7329592B2 (en) Crystal element and crystal device
JP2011109481A (en) Surface acoustic wave device and method of manufacturing the same
KR100484078B1 (en) Surface acoustic wave device and its manufacture method, and electronic part using it
JP2024004311A (en) elastic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP