WO2021100442A1 - 顔料内包樹脂粒子、顔料内包樹脂粒子の製造方法、顔料内包樹脂粒子を含むインク - Google Patents

顔料内包樹脂粒子、顔料内包樹脂粒子の製造方法、顔料内包樹脂粒子を含むインク Download PDF

Info

Publication number
WO2021100442A1
WO2021100442A1 PCT/JP2020/040907 JP2020040907W WO2021100442A1 WO 2021100442 A1 WO2021100442 A1 WO 2021100442A1 JP 2020040907 W JP2020040907 W JP 2020040907W WO 2021100442 A1 WO2021100442 A1 WO 2021100442A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
resin particles
encapsulating resin
producing
emulsion
Prior art date
Application number
PCT/JP2020/040907
Other languages
English (en)
French (fr)
Inventor
清貴 藤原
木村 睦
Original Assignee
株式会社ミマキエンジニアリング
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミマキエンジニアリング, 国立大学法人信州大学 filed Critical 株式会社ミマキエンジニアリング
Publication of WO2021100442A1 publication Critical patent/WO2021100442A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents

Definitions

  • the present invention relates to pigment-encapsulating resin particles, a method for producing pigment-encapsulating resin particles, and an ink containing pigment-encapsulating resin particles.
  • the pigment contained in the ink for inkjet printing has a particle size of nano-order level and is coated with a resin.
  • the pigment particles that have been printed are used. These are called pigment-encapsulating resin particles, pigment-encapsulating particles, pigment-encapsulating resin particles, microencapsulating pigments, microcapsule pigments, and the like.
  • Patent Document 1 discloses dye-encapsulating microcapsules having an average particle size of 0.6 to 0.7 ⁇ m formed by self-accumulation of polymers and a method for producing the same.
  • Patent Document 2 discloses a method for producing a microencapsulated pigment having a small particle size and a narrow particle size distribution by coating pigment particles having a hydrophilic group on the surface with a polymer by a mini-emulsion polymerization method.
  • the inventor of the present application has conducted diligent research on a method for producing pigment-encapsulated resin particles having a particle size of nano-order. Then, the present invention was completed by finding the following points. By adopting a configuration in which emulsion polymerization is performed using a low CMC surfactant or the like, pigment-encapsulated resin particles having a nano-order particle size can be produced more easily than in the conventional method.
  • the pigment-encapsulating resin particles are synthesized in a batch manner in an emulsion containing a pigment, an aqueous medium, a monomer, a low CMC surfactant, and a polymerization initiator.
  • a production method in which the average particle size of the pigment-encapsulating resin particles is 30 nm or more and 200 nm or less.
  • the low CMC surfactant is preferably an anionic surfactant having a linear alkyl group having 15 to 23 carbon atoms. It is preferable that the polymerization initiator has an action of lowering the ionic strength of the aqueous phase of the emulsion.
  • the present invention is a method for producing pigment-encapsulating resin particles.
  • a step of dispersing a pigment in an aqueous medium to prepare a pigment dispersion liquid and (B) A step of preparing a mixture of the pigment dispersion liquid and a surfactant, and (C) A step of adding a monomer to the mixture to form an emulsion, and (D) Including a step of adding a polymerization initiator to the emulsion and emulsion-polymerizing the monomer to synthesize pigment-encapsulating resin particles.
  • the average particle size of the pigment-encapsulating resin particles is 30 nm or more and 200 nm or less.
  • the surfactant is a low CMC surfactant, Provided is a production method in which the steps (B), (C) and (D) are carried out in the same reaction vessel. It is preferable that the steps (B), (C) and (D) are carried out under stirring of 300 rpm or more and 500 rpm or less.
  • the low CMC surfactant is preferably an anionic surfactant having a linear alkyl group having 15 to 23 carbon atoms. It is preferable that the polymerization initiator has an action of lowering the ionic strength of the aqueous phase of the emulsion.
  • the present invention is a method for producing pigment-encapsulating resin particles.
  • the pigment-encapsulating resin particles are synthesized in a batch manner in an emulsion containing a pigment, an aqueous medium, a monomer, a surfactant, and a polymerization initiator.
  • the average particle size of the pigment-encapsulating resin particles is 30 nm or more and 200 nm or less.
  • the polymerization initiator has an action of reducing the ionic strength of the aqueous phase of the emulsion.
  • pigment-encapsulating resin particles produced by any of the above-mentioned production methods and ink containing the pigment-encapsulating resin particles are provided.
  • a pigment-encapsulating fine particles having a nano-order particle size and an ink containing the pigment-encapsulating fine particles can be produced more easily than the conventional method, and application to industrialization becomes easy. Further, by blending such pigment-encapsulating resin particles into the ink, an ink having good fixability on a recording medium and excellent scratch resistance of a printed image can be obtained.
  • FIG. 1 (A) is a vertical sectional view
  • FIG. 1 (B) is a horizontal sectional view
  • 6 is an FE-SEM image of the pigment-encapsulating resin particles synthesized in Example 1.
  • 6 is an FE-SEM image of the pigment-encapsulating resin particles synthesized in Example 2.
  • 6 is an FE-SEM image of the pigment-encapsulating resin particles synthesized in Example 3.
  • 6 is an FE-SEM image of the pigment-encapsulating resin particles synthesized in Example 4.
  • 6 is an FE-SEM image of the pigment-encapsulating resin particles synthesized in Example 5.
  • 6 is an FE-SEM image of the pigment-encapsulating resin particles synthesized in Example 6.
  • 6 is an FE-SEM image of the pigment-encapsulating resin particles synthesized in Example 7. It is a table which shows the outline and the result of the Example of this invention.
  • the production method is a method for producing pigment-encapsulating resin particles.
  • pigment-encapsulating resin particles are batch-synthesized in an emulsion containing a pigment, an aqueous medium, a monomer, a low CMC surfactant, and a polymerization initiator.
  • the average particle size of the synthesized pigment-encapsulating resin particles is 30 nm or more and 200 nm or less.
  • the low CMC surfactant is preferably an anionic surfactant having a linear alkyl group having 15 to 23 carbon atoms. It is preferable that the polymerization initiator has an action of lowering the ionic strength of the aqueous phase of the emulsion.
  • the production method is a method for producing pigment-encapsulating resin particles, and includes the following steps.
  • the average particle size of the pigment-encapsulating resin particles synthesized by this production method is 30 nm or more and 200 nm or less.
  • the surfactant is a low CMC surfactant.
  • Steps (B), (C) and (D) are carried out in the same reaction vessel. According to such a configuration, pigment-encapsulated resin particles having an average particle size of 30 nm or more and 200 nm or less can be obtained by a simple production method.
  • the low CMC surfactant is preferably an anionic surfactant having a linear alkyl group having 15 to 23 carbon atoms. It is preferable that the polymerization initiator has an action of lowering the ionic strength of the aqueous phase of the emulsion.
  • the production method is a method for producing pigment-encapsulating resin particles.
  • Pigment-encapsulating resin particles are synthesized in a batch manner in an emulsion containing a pigment, an aqueous medium, a monomer, a surfactant, and a polymerization initiator.
  • the average particle size of the pigment-encapsulating resin particles is 30 nm or more and 200 nm or less.
  • the polymerization initiator has the effect of reducing the ionic strength of the aqueous phase of the emulsion. According to such a configuration, pigment-encapsulated resin particles having a nano-order particle size can be obtained by a simple manufacturing method, and application to industrialization becomes easy.
  • pigment-encapsulating resin particles produced by any of the above-mentioned production methods of the present invention are provided.
  • Inks containing pigment-encapsulating resin particles are also provided.
  • pigment-encapsulating resin particles having an average particle size of 30 nm or more and 200 nm or less it is possible to obtain pigment-encapsulating resin particles having an average particle size of 30 nm or more and 200 nm or less, and an ink using such pigment-encapsulating resin particles, which has good fixability to a recording medium and excellent wear resistance.
  • the average particle size of the pigment-encapsulating resin particles produced by the method of the present invention is preferably in the range of 30 nm or more and 200 nm or less. It is more preferably in the range of 60 nm or more and 200 nm or less. It is even more preferable that the range is 85 nm or more and 150 nm or less.
  • the particle size of the pigment-encapsulated resin particles can be measured by a commercially available particle size measuring device using a light scattering method, an electrophoresis method, a laser Doppler method, or the like. Alternatively, the particle size can be measured by taking a particle image with a field emission scanning electron microscope or a transmission electron microscope. In the present invention, it is preferable to measure the average particle size of the pigment-encapsulating resin particles by a dynamic light scattering method (DLS) or by taking a particle image of a field emission scanning electron microscope.
  • DLS dynamic light scattering method
  • the pigment used in the present invention is not particularly limited as long as it does not dissolve in the aqueous medium in which the pigment is dispersed.
  • Known inorganic pigments and organic pigments can be used depending on the purpose.
  • the inorganic pigment for example, titanium oxide, antimony red, red iron oxide, cadmium red, cadmium yellow, cobalt blue, dark blue, ultramarine, carbon black, graphite and the like can be used.
  • organic pigments examples include quinacridone pigments, quinacridone quinone pigments, dioxazine pigments, phthalocyanine pigments, anthrapyrimidine pigments, anthanthrone pigments, indanslon pigments, flavanthron pigments, perylene pigments, and dioxide pigments.
  • Ketopyrrolopyrrole pigments, perinone pigments, quinophthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments, azo pigments and the like can be used.
  • pigments that can be used in the present invention are also described in The Color Index, Third Edition (The Society of Dyers and Colorists, 1982). Two or more of these pigments may be used in combination. As will be described later, a commercially available pigment dispersion may be used.
  • the amount of the pigment added is preferably 1.0% by mass or more and 14.0% by mass or less based on the total amount of the water-based ink. It is more preferably 6.0% by mass or more and 12.0% by mass or less.
  • aqueous medium As the aqueous medium used in the present invention, water (for example, ion-exchanged water, distilled water, ultrapure water, etc.), a water-soluble organic solvent, or a mixture thereof can be used.
  • water-soluble organic solvent include the following.
  • Alcohols such as methanol, ethanol, n- and isopropanol; Ketones such as acetone and methyl ethyl ketone; Polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; Alkyl ethers of polyalkylene glycol; lactams such as N-methyl-2-pyrrolidone From the viewpoint of safety and environmental impact, it is preferable to use water or a mixture of water and a water-soluble organic solvent.
  • the surfactant used in the present invention is not particularly limited.
  • Anionic surfactants such as dialkyl sulfosuccinates, alkylnaphthalene sulfonates, fatty acid salts, etc.
  • Nonionic surfactants Cationic surfactants such as alkylamine salts and quaternary ammonium salts Among these, anionic surfactants can be particularly preferably used. Among them, a low CMC surfactant is preferable.
  • the "low CMC surfactant” means a surfactant having a low critical micelle concentration (CMC) (for example, CMC of 0.1 to 0.001 mol / l).
  • CMC critical micelle concentration
  • an anionic surfactant containing a linear hydrocarbon is preferable.
  • those having a linear alkyl or alkenyl group having 11 to 25 carbon atoms, preferably 15 to 23 carbon atoms can be used.
  • the amount of the low CMC surfactant added is preferably 0.01% by mass or more and 0.50% by mass or less based on the total amount of the monomers. It is more preferably 0.03% by mass or more and 0.25% by mass or less.
  • the monomer used in the present invention is not particularly limited as long as it has polymerizable properties.
  • Styrene-based monomers such as styrene, ⁇ -methylstyrene, and chlorostyrene; Acrylic acid, methacrylic acid; alkyl groups such as methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, butyl methacrylate, etc., preferably having 1 to 22 carbon atoms, more preferably 1 to 12 or less, still more preferably 1 to 8 or less.
  • styrene-based monomers and methacrylic acid esters are preferably used. Two or more kinds of monomers may be used in combination. In particular, styrene, methyl methacrylate (methyl methacrylate), glycidyl methacrylate (glycidyl methacrylate) and the like are preferably used. Only one kind of these monomers may be used, or two or more kinds may be used.
  • the amount of the monomer used is preferably 2.0% by mass or more and 5.0% by mass or less with respect to the total amount of the water-based ink. More preferably, it is 3.0% by mass or more and 4.0% by mass or less. More preferably, it is 3.0% by mass or more and 3.5% by mass or less.
  • the polymerization initiator used in the present invention is not particularly limited, and examples thereof include the following.
  • -Hydroperoxides such as hydrogen peroxide, cumenehydroperoxide, diisopropylbenzene hydroperoxide, paramentan hydroperoxide, peroxides such as benzoyl peroxide and lauroyl peroxide, and 2,2'-azobis ⁇ 2- Methyl-N- [2- (1-hydroxybutyl) propionamide] ⁇ , 2,2'-azobis [(2-methylpropionamidin) dihydrochloride], 2,2'-azobis [N- (2-carboxy) Ethyl) -2-methyl-propiondiamine] tetrahydrate, 2,2'-azobis (2,4-dimethylvaleronitrile), azo compound such as azobisisobutyronitrile, etc.
  • Organic polymerization initiator Persulfate
  • Inorganic polymerization initiators such as persulfates such as potassium, sodium persulfate and ammonium persulfate
  • so-called redox-based polymerization initiators in which reducing agents such as sodium bisulfite, ascorbic acid and salts thereof are used in combination with polymerization initiators.
  • reducing agents such as sodium bisulfite, ascorbic acid and salts thereof are used in combination with polymerization initiators.
  • reducing agents such as sodium bisulfite, ascorbic acid and salts thereof are used in combination with polymerization initiators.
  • reducing agents such as sodium bisulfite, ascorbic acid and salts thereof are used in combination with polymerization initiators.
  • reducing agents such as sodium bisulfite, ascorbic acid and salts thereof are used in combination with polymerization initiators.
  • redox-based polymerization initiators in which reducing agents such as sodium bisulfite, ascorbic acid and salts
  • the amount of the polymerization initiator added is preferably 1% by mass or more and 30% by mass or less based on the total amount of the monomers. It is more preferably 5% by mass or more and 30% by mass or less. It is even more preferable that it is 10% by mass or more and 20% by mass or less.
  • the pigment-encapsulating resin particles can be synthesized in batch by the following procedure. Specifically, first, a pigment, a monomer, an aqueous medium, and a surfactant are mixed to produce an emulsion containing oil droplets in water. Subsequently, pigment-encapsulating resin particles containing the pigment are synthesized by emulsion polymerization in which the monomer is polymerized using a polymerization initiator.
  • the pigment, the monomer, the surfactant and the polymerization initiator may be added to the reaction system of emulsion polymerization including the aqueous medium, and the order of adding these is not particularly limited.
  • the pigment is first added to an aqueous medium and treated with ultrasonic waves or the like to prepare a dispersion liquid in which the pigment is dispersed. Then, a surfactant, a monomer, and a polymerization initiator may be added to the obtained dispersion liquid.
  • a surfactant, a monomer, and a polymerization initiator may be added to the obtained dispersion liquid.
  • the emulsion polymerization performed after the pigment is dispersed can be carried out in a batch manner under gentle stirring of 300 to 500 rpm.
  • Pigment-encapsulating resin particles having a nano-order small particle size can be synthesized in the same container without performing mechanical treatment using a strong shearing force such as ultrasonic treatment as in the conventional method. Therefore, the work process can be simplified as compared with the conventional method, and the work efficiency can be improved from this point as well.
  • the "batch type" means that the process is performed in one facility. That is, in the present invention, the synthesis of the pigment-containing resin particles containing the pigment inside by emulsion polymerization can be carried out in the reaction system in the same reaction vessel.
  • the body may be diluted and dispersed in an aqueous medium for use.
  • Such a pigment dispersion can be prepared by treating an aqueous medium containing a pigment with ultrasonic waves or the like.
  • a dispersant may be used to improve the dispersibility of the pigment in the pigment dispersion, and for example, a known dispersant such as a polymer-based dispersant can be used. Mechanical treatment and dispersant may be used in combination.
  • pigment dispersions for example, Cyan BG-PT of Hostaget (trade name), Magenta E5B-PT VP 3565, Magenta E7B VP3985 S250, Yellow4G-PT VP 2669 (Clariant), EMACOL SF CYAN AE2034, Sanyo Pigment Co., Ltd.) and the like.
  • aqueous medium for preparing the pigment dispersion water, a water-soluble organic solvent, or a mixture thereof can be used.
  • the "water” as the aqueous medium is, for example, ion-exchanged water, distilled water, ultrapure water, or the like. From the viewpoint of safety and environmental impact, it is preferable to use water or a mixture of water and a water-soluble organic solvent.
  • any method such as a monomer dropping method, a monomer batch charging method, and a pre-emulsion method can be used.
  • the pre-emulsion method is an addition method in which a monomer is prepared into an emulsion for dropping (pre-emulsion) and then dropped.
  • the monomer batch charging method is adopted.
  • the reaction vessel for carrying out emulsion polymerization in the present invention is not particularly limited.
  • the reaction vessels shown in the vertical sectional view and the horizontal sectional view can be used in FIGS. 1 (A) and 1 (B), respectively.
  • This reaction vessel has a plurality of baffles 11 on the inner wall and includes a stirring unit 12.
  • the baffle 11 is preferably installed at a predetermined distance from the bottom surface of the container, and the stirring unit 12 preferably has a plurality of blades.
  • the ink of the present invention contains pigment-encapsulating resin particles produced by the method for producing pigment-encapsulating resin particles of the present invention.
  • the components other than the pigment-encapsulating resin particles that can be contained in the ink of the present invention are not particularly limited. Any component that can be contained in ordinary inks, especially ink jet inks, may be used.
  • the ink of the present invention may contain an aqueous solvent, a binder resin, and the like, in addition to the pigment-encapsulating resin particles produced by the method for producing pigment-encapsulating resin particles of the present invention.
  • components such as penetrants, fungicides, rust preventives, pH adjusters, wetting agents, defoamers, additional surfactants, water-soluble UV absorbers, and water-soluble infrared absorbers. May include.
  • the ink of the present invention can be produced, for example, by dispersing the pigment-encapsulating resin particles produced by the method for producing pigment-encapsulating resin particles of the present invention in an aqueous medium together with a binder resin or the like.
  • a surfactant or the like may be added.
  • components such as a fungicide, a rust preventive, a pH adjuster, a wetting agent, an antifoaming agent, a water-soluble ultraviolet absorber, and a water-soluble infrared absorber may be added to the produced ink.
  • Example 1 200 ml of ion-exchanged water was added to 2.69 g of EMACOL SF CYAN AE2034F (manufactured by Sanyo Pigment Co., Ltd., pigment concentration 20%), which is a commercially available cyan pigment dispersion, and ultrasonic waves were applied for 30 minutes to convert the pigment into ion-exchanged water. After dispersion, 18.6 mg (0.050 mmol) of sodium octadecyl sulfate was added to prepare an aqueous solution.
  • EMACOL SF CYAN AE2034F manufactured by Sanyo Pigment Co., Ltd., pigment concentration 20%
  • the aqueous solution (220 ml) thus obtained was poured into a four-mouth separate reactor (inner diameter 7.5 cm) having a capacity of half a liter, which had been preheated in a constant temperature bath at 70 ° C.
  • the four-port separate reactor includes an aren cooling pipe, a nitrogen gas inflow pipe, and a mechanical stirrer.
  • the four-mouth separate reactor is equipped with four baffles (0.7 cm wide) and four blade-pitch paddle impellers (5 cm long). The four baffles are located 1 cm above the bottom and are spaced apart from the bottom.
  • the aqueous solution was bubbled with nitrogen gas for 30 minutes while stirring at 360 rpm.
  • the morphology of the obtained pigment-encapsulating fine particles was observed using a field-emission scanning electron microscope (FE-SEM: S-5000, manufactured by Hitachi, Ltd.), it was composed of spherical pigment-encapsulating fine particles having a uniform particle size. It was (Fig. 2). Further, when the particle size of the obtained pigment-encapsulated fine particles was measured with a dynamic light scattering measuring device (DLS measuring device: ZETASIER Nano manufactured by Malvern), the volume average particle size (DLS) was 84.2 nm. .. Moreover, when the particle size (diameter) of 30 pigment-encapsulating fine particles was measured on the FE-SEM photograph and the average value was calculated, the average particle size (FE-SEM) was 100 nm.
  • FE-SEM field-emission scanning electron microscope
  • Example 2 200 ml of ion-exchanged water was added to 2.69 g of the same commercially available cyan pigment dispersion as in Example 1, and ultrasonic waves were applied for 30 minutes to disperse the pigment in ion-exchanged water, and then 18.6 mg of sodium octadecyl sulfate.
  • the aqueous solution was prepared.
  • the aqueous solution (220 ml) thus obtained was poured into a four-mouth separate reactor preheated in the same manner as in Example 1.
  • the aqueous solution was bubbled with nitrogen gas for 30 minutes while stirring at 360 rpm.
  • the particle size of the obtained pigment-encapsulating machine particles was measured with a DLS measuring device and FE-SEM in the same manner as in Example 1, the volume average particle size (DLS) was 86.3 nm and the average particle size (FE-S), respectively. SEM) was 100 nm.
  • Example 3 200 ml of ion-exchanged water was added to 2.69 g of the same commercially available cyan pigment dispersion as in Example 1, and ultrasonic waves were applied for 30 minutes to disperse the pigment in ion-exchanged water, and then 18.6 mg of sodium octadecyl sulfate.
  • the aqueous solution was prepared.
  • the aqueous solution (220 ml) thus obtained was poured into a four-mouth separate reactor that had been warmed in the same manner as in Example 1.
  • the aqueous solution was bubbled with nitrogen gas for 30 minutes while stirring at 360 rpm.
  • the volume average particle size (DLS) was 109 nm and the average particle size (FE-SEM), respectively. It was 110 nm.
  • Example 4 Add 200 ml of ion-exchanged water to 2.69 g of EMACOL SF MAGENTA AE2033F (manufactured by Sanyo Pigment Co., Ltd., pigment concentration 20%), which is a commercially available magenta pigment dispersion, and apply ultrasonic waves for 30 minutes to convert the pigment into ion-exchanged water. After dispersion, 18.6 mg of sodium octadecyl sulfate was added to prepare an aqueous solution. The aqueous solution (220 ml) thus obtained was poured into a four-mouth separate reactor that had been warmed in the same manner as in Example 1.
  • the aqueous solution was bubbled with nitrogen gas for 30 minutes while stirring at 360 rpm.
  • 3.90 g of styrene monomer and 3.75 g of methyl methacrylate were added to the aqueous solution at one time, and the aqueous solution was stirred for 20 minutes under a nitrogen atmosphere.
  • a 30 ml aqueous ammonium persulfate solution in which 1.14 g of ammonium persulfate was dissolved was prepared, and the prepared ammonium persulfate aqueous solution was added to the reactor at one time to initiate emulsion polymerization. Then, the polymerization was carried out at 70 ° C. for 6 hours while stirring at 360 rpm in a nitrogen atmosphere.
  • the volume average particle size (DLS) was 92.7 nm.
  • Example 5 Add 200 ml of ion-exchanged water to 2.69 g of EMACOL SF YELLOW AE2032F (manufactured by Sanyo Pigment Co., Ltd., pigment concentration 20%), which is a commercially available yellow pigment dispersion, and apply ultrasonic waves for 30 minutes to convert the pigment into ion-exchanged water. After dispersion, 18.6 mg of sodium octadecyl sulfate was added to prepare an aqueous solution. The aqueous solution (220 ml) thus obtained was poured into a four-mouth separate reactor that had been warmed in the same manner as in Example 1.
  • the aqueous solution was bubbled with nitrogen gas for 30 minutes while stirring at 360 rpm.
  • 3.90 g of styrene monomer and 3.75 g of methyl methacrylate were added to the aqueous solution at one time, and the aqueous solution was stirred for 20 minutes under a nitrogen atmosphere.
  • a 30 ml aqueous ammonium persulfate solution in which 1.14 g of ammonium persulfate was dissolved was prepared, and the prepared ammonium persulfate aqueous solution was added to the reactor at one time in order to initiate emulsion polymerization. Then, the polymerization was carried out at 70 ° C. for 6 hours while stirring at 360 rpm in a nitrogen atmosphere.
  • the volume average particle size (DLS) was 86.2 nm.
  • Example 6 Add 200 ml of ion-exchanged water to 1.345 g each of the same commercially available magenta pigment dispersion as in Example 4 and 1.345 g each of the same commercially available yellow pigment dispersion as in Example 5, and add 200 ml of ion-exchanged water for more than 30 minutes. After the pigment was dispersed in ion-exchanged water by applying a sound wave, 9.3 mg of sodium octadecyl sulfate was added to prepare an aqueous solution. The aqueous solution (220 ml) thus obtained was poured into a four-mouth separate reactor that had been warmed in the same manner as in Example 1.
  • the aqueous solution was bubbled with nitrogen gas for 30 minutes while stirring at 360 rpm.
  • 3.90 g of styrene monomer and 3.75 g of methyl methacrylate were added to the aqueous solution at one time, and the aqueous solution was stirred for 20 minutes under a nitrogen atmosphere.
  • a 30 ml aqueous ammonium persulfate solution in which 1.14 g of ammonium persulfate was dissolved was prepared, and the prepared ammonium persulfate aqueous solution was added to the reactor at one time in order to initiate emulsion polymerization. Then, the polymerization was carried out at 70 ° C. for 6 hours while stirring at 360 rpm in a nitrogen atmosphere.
  • the volume average particle size (DLS) was 112 nm.
  • Example 7 1.345 g each of the same commercially available cyan pigment dispersion as in Example 1 and the same commercially available yellow pigment dispersion as in Example 5, 200 ml of ion-exchanged water was added to a total of 2.69 g, and ultrasonic waves were used for 30 minutes. After dispersing the pigment in ion-exchanged water, 9.3 mg of sodium octadecyl sulfate was added to prepare an aqueous solution. The aqueous solution (220 ml) thus obtained was poured into a four-mouth separate reactor that had been warmed in the same manner as in Example 1. The aqueous solution was bubbled with nitrogen gas for 30 minutes while stirring at 360 rpm.
  • styrene monomer and 3.75 g of methyl methacrylate were added to the aqueous solution at one time, and the aqueous solution was stirred for 20 minutes under a nitrogen atmosphere.
  • a 30 ml aqueous ammonium persulfate solution in which 1.14 g of ammonium persulfate was dissolved was prepared, and the prepared ammonium persulfate aqueous solution was added to the reactor at one time in order to initiate emulsion polymerization. Then, the polymerization was carried out at 70 ° C. for 6 hours while stirring at 360 rpm in a nitrogen atmosphere.
  • the volume average particle size (DLS) was 89.5 nm.
  • the production method according to the present invention can be suitably used for producing, for example, pigments for inks, particularly pigments for inkjet inks.
  • the pigment-encapsulating resin particles according to the present invention can be suitably used as, for example, a pigment for an ink, particularly a pigment for an inkjet ink.
  • the ink according to the present invention can be suitably used as an ink jet ink.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

【課題】ナノオーダーの粒径を有する顔料内包樹脂粒子を製造するための簡便かつ工業化に適した合成方法の提供。 【解決手段】顔料内包樹脂粒子の製造方法であって、前記顔料内包樹脂粒子が、顔料と、水性媒体と、モノマーと、低CMC界面活性剤と、重合開始剤とを含むエマルジョンにおいて、バッチ式に合成され、前記顔料内包樹脂粒子の平均粒径が30nm以上200nm以下である、顔料内包樹脂粒子の製造方法。

Description

顔料内包樹脂粒子、顔料内包樹脂粒子の製造方法、顔料内包樹脂粒子を含むインク
 本発明は、顔料内包樹脂粒子、顔料内包樹脂粒子の製造方法、顔料内包樹脂粒子を含むインクに関する。
 従来から、インク中の着色剤の記録媒体に対する定着性を高めて印刷画像の耐摩擦性を向上させるために、インクジェット印刷用インクに含まれる顔料として、ナノオーダーレベルの粒径を有すると共に樹脂被覆された顔料粒子が使用されている。
 これは顔料内包樹脂粒子、顔料内包粒子、顔料包含樹脂粒子、マイクロカプセル化顔料、マイクロカプセル顔料等と呼ばれている。こうした粒径の小さい顔料内包樹脂粒子を使用することで、記録ヘッドのノズルからのインクの吐出を安定化し得る。また、インクの分散安定性も向上し得る。
 インクジェット印刷用インクに用いる顔料内包樹脂粒子としては、例えば、500nm以下等のナノオーダーの粒径を有するものが好ましい。このような粒径の小さい顔料内包樹脂粒子を、顔料の表面被覆が十分でかつ単分散(つまり、狭い粒度分布)で製造するために、様々な方法が提案されている。例えば、特許文献1には、高分子の自己集積により形成された平均粒径0.6~0.7μmの色素内包マイクロカプセルとその製造方法が開示されている。特許文献2には、親水性基を表面に有する顔料粒子をミニエマルジョン重合法によりポリマーで被覆することで、小粒径で粒度分布の狭いマイクロカプセル化顔料を製造する方法が開示されている。
特開2002-167522号公報 特開2005-97518号公報
 しかし、例えば、特許文献1に開示の方法においては、自己集積性を有する高分子であるロッド-コイルブロックポリマーを使用している。そのため、このロッド-コイルブロックポリマーを合成するために複雑な処理工程が必要となる。
 また、特許文献2に開示の方法においては、顔料の表面に親水性基を結合させるために、複雑な処理が必要となる。さらに、ナノオーダーのマイクロカプセルを得るために、超音波を照射しながらミニエマルジョン反応を行う必要がある。
 その他の従来方法の場合でも、ナノオーダーの粒径を有する顔料内包樹脂粒子を製造するために、重合時に強いせん断力を用いる機械的処理(超音波処理、ホモジナイザー処理等)を行うこと、ハイドロホーブ(疎水性物質)等の試薬を添加すること、重合後に未反応のモノマーを除去することや、工程管理が必要とされる(特許3940909号公報、特開2014-40579号公報、特開2003-306611号公報等)。
 このように、従来の顔料内包樹脂粒子の合成方法によっては、多種類の試薬を用いることや複雑な処理が必要であった。そのため、生産性の向上が困難であり、工業化のハードルが高かった。そのため、ナノオーダーの粒径を有する顔料内包樹脂粒子を製造するための簡便かつ工業化に適した合成方法の開発が望まれていた。
 すなわち、上記の課題を解決できる顔料内包樹脂粒子、顔料内包樹脂粒子の製造方法、そして顔料内包樹脂粒子を含むインクが求められている。
 本願の発明者は、ナノオーダーの粒径を有する顔料内包樹脂粒子を製造する方法に関し、鋭意研究を行った。そして、以下の点を見いだして、本発明を完成した。
 低CMC界面活性剤等を使用する乳化重合を行う構成を採用することで、従来法よりも簡便に、ナノオーダーの粒径を有する顔料内包樹脂粒子が製造できる。
 すなわち、本発明によれば、顔料内包樹脂粒子の製造方法であって、
 前記顔料内包樹脂粒子が、顔料と、水性媒体と、モノマーと、低CMC界面活性剤と、重合開始剤とを含むエマルジョンにおいて、バッチ式に合成され、
 前記顔料内包樹脂粒子の平均粒径が30nm以上200nm以下である、製造方法が提供される。
 前記低CMC界面活性剤が、炭素数15~23の直鎖状アルキル基を有するアニオン系界面活性剤であることが好ましい。
 前記重合開始剤が、前記エマルジョンの水相のイオン強度を低下させる作用を有することが好ましい。
 さらに、本発明によれば、顔料内包樹脂粒子の製造方法であって、
(A)顔料を水性媒体に分散して顔料分散液を調製する工程と、
(B)前記顔料分散液及び界面活性剤の混合物を調製する工程と、
(C)前記混合物にモノマーを添加し、エマルジョンを形成させる工程と、
(D)前記エマルジョンに重合開始剤を添加し、前記モノマーを乳化重合させて、顔料内包樹脂粒子を合成する工程とを含み、
 前記顔料内包樹脂粒子の平均粒径が30nm以上200nm以下であり、
 前記界面活性剤が低CMC界面活性剤であり、
 前記工程(B)、(C)、(D)が同一の反応容器内で実施される、製造方法が提供される。前記工程(B)、(C)、(D)が、300rpm以上500rpm以下の撹拌下で実施されることが好ましい。前記低CMC界面活性剤が、炭素数15~23の直鎖状アルキル基を有するアニオン系界面活性剤であることが好ましい。前記重合開始剤が、前記エマルジョンの水相のイオン強度を低下させる作用を有することが好ましい。
 さらに、本発明によれば、顔料内包樹脂粒子の製造方法であって、
 前記顔料内包樹脂粒子が、顔料と、水性媒体と、モノマーと、界面活性剤と、重合開始剤とを含むエマルジョンにおいて、バッチ式に合成され、
 前記顔料内包樹脂粒子の平均粒径が30nm以上200nm以下であり、
 前記重合開始剤が前記エマルジョンの水相のイオン強度を低下させる作用を有する、製造方法が提供される。
 加えて、本発明によれば、上記製造方法のいずれかによって製造される顔料内包樹脂粒子と、該顔料内包樹脂粒子を含むインクとが提供される。
 本発明によれば、従来法よりも簡便に、ナノオーダーの粒径を有する顔料内包微粒子と該顔料内包微粒子を含むインクを製造することができ、工業化への適用も容易となる。また、こうした顔料内包樹脂粒子をインクに配合することで、記録媒体への定着性が良好で印刷画像の耐擦過性に優れたインクが得られる。
本発明の一実施形態に係る反応容器の構成の一例を示す図である。図1(A)は縦断面図、図1(B)は横断面図である。 実施例1で合成された顔料内包樹脂粒子のFE-SEM画像である。 実施例2で合成された顔料内包樹脂粒子のFE-SEM画像である。 実施例3で合成された顔料内包樹脂粒子のFE-SEM画像である。 実施例4で合成された顔料内包樹脂粒子のFE-SEM画像である。 実施例5で合成された顔料内包樹脂粒子のFE-SEM画像である。 実施例6で合成された顔料内包樹脂粒子のFE-SEM画像である。 実施例7で合成された顔料内包樹脂粒子のFE-SEM画像である。 本発明の実施例の概要と結果を示す表である。
 以下に好ましい実施の形態を挙げて、本発明を説明する。本発明の一実施形態に係る製造方法は、顔料内包樹脂粒子の製造方法である。この製造方法では、顔料内包樹脂粒子が、顔料と、水性媒体と、モノマーと、低CMC界面活性剤と、重合開始剤とを含むエマルジョンにおいて、バッチ式に合成される。そして、合成された顔料内包樹脂粒子の平均粒径が30nm以上200nm以下である。
 これによって、簡便な製造方法により、ナノオーダーの粒径を有する顔料内包樹脂粒子を得ることができる。
 実施形態においては、低CMC界面活性剤が、炭素数15~23の直鎖状アルキル基を有するアニオン系界面活性剤であることが好ましい。重合開始剤が、エマルジョンの水相のイオン強度を低下させる作用を有することが好ましい。
 本発明の別の実施形態に係る製造方法は、顔料内包樹脂粒子の製造方法であって、以下の工程を含む。
(A)顔料を水性媒体に分散して顔料分散液を調製する工程
(B)顔料分散液及び界面活性剤の混合物を調製する工程
(C)混合物にモノマーを添加し、エマルジョンを形成させる工程
(D)エマルジョンに重合開始剤を添加し、モノマーを乳化重合させて、顔料内包樹脂粒子を合成する工程
 この製造方法で合成された顔料内包樹脂粒子の平均粒径が、30nm以上200nm以下である。
 界面活性剤が低CMC界面活性剤である。
 工程(B)、(C)、(D)が同一の反応容器内で実施される。
 こうした構成によれば、簡便な製造方法によって、平均粒径が30nm以上200nm以下という非常に小さい粒径を有する顔料内包樹脂粒子を得ることができる。
 実施形態においては、低CMC界面活性剤が、炭素数15~23の直鎖状アルキル基を有するアニオン系界面活性剤であることが好ましい。重合開始剤が、エマルジョンの水相のイオン強度を低下させる作用を有することが好ましい。
 本発明のさらに別の実施形態に係る製造方法は、顔料内包樹脂粒子の製造方法であって、
 顔料内包樹脂粒子が、顔料と、水性媒体と、モノマーと、界面活性剤と、重合開始剤とを含むエマルジョンにおいて、バッチ式に合成される。
 顔料内包樹脂粒子の平均粒径が30nm以上200nm以下である。
 重合開始剤がエマルジョンの水相のイオン強度を低下させる作用を有する。こうした構成によれば、簡便な製造方法によって、ナノオーダーの粒径を有する顔料内包樹脂粒子を得ることができ、工業化への適用も容易となる。
 本発明のさらに別の実施形態によれば、上記の本発明の製造方法のいずれかによって製造される顔料内包樹脂粒子が提供される。顔料内包樹脂粒子を含むインクも提供される。これによって、平均粒径が30nm以上200nm以下の顔料内包樹脂粒子と、こうした顔料内包樹脂粒子を使用した、記録媒体への定着性が良好で耐摩耗性に優れたインクとを得ることができる。
<顔料内包樹脂粒子>
(平均粒径)
 本発明の方法によって製造される顔料内包樹脂粒子の平均粒径は、30nm以上200nm以下の範囲であることが好ましい。60nm以上200nm以下の範囲であることがさらに好ましい。85nm以上150nm以下の範囲であることがさらにいっそう好ましい。
 顔料内包樹脂粒子の粒径測定は、光散乱法、電気泳動法、レーザードップラー法等を用いた市販の粒径測定機器により行うことができる。あるいは、電界放出形走査電子顕微鏡や透過型電子顕微鏡による粒子像撮影から粒径測定を行うことも可能である。本発明においては、顔料内包樹脂粒子の平均粒径を、動的光散乱法(Dynamic Light Scattering: DLS)により測定するか、又は電界放出形走査電子顕微鏡の粒子像撮影から計測することが好ましい。
(顔料)
 本発明で使用する顔料としては、該顔料を分散する水性媒体に溶解しないものであれば特に限定されない。公知の無機顔料や有機顔料を目的に応じて使用することができる。無機顔料としては、例えば、酸化チタン、アンチモンレッド、ベンガラ、カドミウムレッド、カドミウムイエロー、コバルトブルー、紺青、群青、カーボンブラック、黒鉛等を使用できる。有機顔料としては、例えば、キナクリドン系顔料、キナクリドンキノン系顔料、ジオキサジン系顔料、フタロシアニン系顔料、アントラピリミジン系顔料、アンサンスロン系顔料、インダンスロン系顔料、フラバンスロン系顔料、ペリレン系顔料、ジケトピロロピロール系顔料、ペリノン系顔料、キノフタロン系顔料、アントラキノン系顔料、チオインジゴ系顔料、ベンツイミダゾロン系顔料、アゾ系顔料等を使用できる。本発明で使用できる顔料の例は、The Colour Index、第三版(The Society of Dyers and Colourists、1982)にも記載されている。これらの顔料の2種類以上を併用してもよい。後述するように、市販の顔料分散体を使用してもよい。
 顔料の添加量は、水性インクの全量基準で、1.0質量%以上14.0質量%以下であることが好ましい。6.0質量%以上12.0質量%以下であることがさらに好ましい。
(水性媒体)
 本発明で使用する水性媒体としては、水(例えば、イオン交換水、蒸留水、超純水等)、水溶性有機溶媒又はこれらの混合物を用いることができる。水溶性有機溶媒としては、例えば、以下のものが挙げられる。
 メタノール、エタノール、n-及びイソプロパノール等のアルコール類;
 アセトン、メチルエチルケトン等のケトン類;
 エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール類;
 ポリアルキレングリコールのアルキルエーテル類;N-メチル-2-ピロリドン等のラクタム類
 安全性や環境に対する影響の観点からは、水又は水及び水溶性有機溶媒の混合物を用いることが好ましい。
(界面活性剤)
 本発明で使用する界面活性剤としては、特に制限はない。例えば、以下のものが挙げられる。
 ジアルキルスルホコハク酸塩類、アルキルナフタレンスルホン酸塩類、脂肪酸塩類等のアニオン性界面活性剤
 ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、アセチレングリコール類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類等のノニオン性界面活性剤
 アルキルアミン塩類、第四級アンモニウム塩類等のカチオン性界面活性剤
 これらの中でも、特にアニオン性界面活性剤を好ましく用いることができる。その中でも低CMC界面活性剤が好ましい。
 本発明において「低CMC界面活性剤」とは、臨界ミセル濃度(CMC)が低い(例えば、CMCが0.1~0.001mol/l)界面活性剤を意味する。
 臨界ミセル濃度(CMC)が低いアニオン性界面活性剤としては、直鎖状炭化水素を含むアニオン性界面活性剤が好ましい。例えば、炭素数11~25、好ましくは炭素数15~23の直鎖状アルキル又はアルケニル基を有するものを使用できる。直鎖状アルキル基を有するアニオン性界面活性剤を用いることが好ましい。炭素数15~23の直鎖状アルキル基を有するアニオン系界面活性剤を用いることが、さらに好ましい。炭素数18の直鎖状アルキル基を有するアニオン系界面活性剤を用いることが、いっそう好ましい。
 低CMC界面活性剤の添加量は、モノマーの全量を基準として、0.01質量%以上0.50質量%以下であることが好ましい。0.03質量%以上0.25質量%以下であることがさらに好ましい。
(モノマー)
 本発明で使用するモノマーとしては、重合性を有するものであれば、特に限定されない。例えば、以下のものが挙げられる。
 スチレン、α-メチルスチレン、クロロスチレン等のスチレン系モノマー;
 アクリル酸、メタクリル酸;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸グリシジル、メタクリル酸ブチル等の好ましくは炭素数1以上22以下、より好ましくは1以上12以下、さらに好ましくは1以上8以下のアルキル基を有するメタクリル酸エステル;
 塩化ビニル、臭化ビニル等のハロゲン化ビニル及び塩化ビニリデン等のハロゲン化ビニリデン;酢酸ビニル、プロピオン酸ビニル等のビニルエステル
 これらの中でも、スチレン系モノマー、メタクリル酸エステルが好ましく用いられる。2種類以上のモノマーを、組み合わせて使用してもよい。特に、スチレン、メタクリル酸メチル(メチルメタクリレート)、メタクリル酸グリシジル(グリシジルメタクリレート)等が好ましく用いられる。これらのモノマーは1種のみ用いてもよく、2種以上を用いてもよい。
 モノマーの使用量は、水性インクの全量に対して、好ましくは2.0質量%以上5.0質量%以下である。より好ましくは3.0質量%以上4.0質量%以下である。さらに好ましくは3.0質量%以上3.5質量%以下である。
(重合開始剤)
 本発明で使用する重合開始剤としては、特に限定されないが、例えば、以下のものが挙げられる。
・過酸化水素、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等のハイドロパーオキサイド類、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等のパーオキサイド類及び2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)プロピオンアミド]}、2,2’-アゾビス[(2-メチルプロピオンアミジン)ジハイドロクロライド]、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチル-プロピオンジアミン]四水塩、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等のアゾ化合物類等の有機系重合開始剤
 過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩等の無機系重合開始剤
 また、重亜硫酸ナトリウム、アスコルビン酸及びその塩等の還元剤を重合開始剤と組合せて用いる、いわゆるレドックス系重合開始剤も使用することができる。中でも、乳化重合の反応系(エマルジョンの水相)のイオン強度を低下させる作用を有するものが好ましい。例えば、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩が好ましく用いられる。特に、過硫酸アンモニウムが好ましく用いられる。
 重合開始剤の添加量は、モノマーの全量を基準として、1質量%以上30質量%以下であることが好ましい。5質量%以上30質量%以下であることがさらに好ましい。10質量%以上20質量%以下であることがさらにいっそう好ましい。
<顔料内包樹脂粒子の合成>
 本発明においては、以下の手順にて、顔料内包樹脂粒子を、バッチ式に合成できる。具体的には、始めに、顔料と、モノマーと、水性媒体と、界面活性剤とを混合し、水中油滴を含有するエマルジョンを生成させる。続いて、重合開始剤を使用してモノマーを重合させる乳化重合により、内部に該顔料を包含する顔料内包樹脂粒子を合成する。
 本発明においては、水性媒体を含む乳化重合の反応系に、顔料、モノマー、界面活性剤及び重合開始剤が添加されていればよく、これらを添加する順序等は特に限定されない。
 本発明においては、最初に顔料を水性媒体に添加し、超音波等で処理して顔料を分散させた分散液を調整する。そして、得られた分散液に、界面活性剤、モノマー、重合開始剤を加えるようにしてもよい。こうした構成によれば、顔料分散後に行う乳化重合を、300~500rpmという穏やかな撹拌下で、バッチ式で実施することができる。従来の方法のように超音波処理等の強いせん断力を用いる機械的処理を行うことなく、同一容器内で、ナノオーダーの小さい粒径を有する顔料内包樹脂粒子を合成できる。そのため、従来の方法と比較して作業工程を簡略化できるので、この点からも作業効率の向上を図ることができる。
 本発明において、「バッチ式」とは、1つの設備で工程が行われることを意味する。つまり、本発明においては、内部に顔料を包含する顔料包含樹脂粒子の乳化重合による合成を、同一反応容器内の反応系で行うことができる。
 本発明においては、水性溶媒に顔料を分散した顔料分散体であって、顔料の濃度が高い高濃度の顔料分散体をあらかじめ調製しておき、顔料内包樹脂粒子の合成を行う際に、顔料分散体を水性媒体に希釈、分散して使用してもよい。このような顔料分散体は、顔料を含む水性媒体を超音波等で処理することで調製できる。
 なお、顔料分散体中の顔料の分散性を向上させるために分散剤を使用してもよく、例えば、ポリマー系分散剤等の公知の分散剤を用いることができる。機械的処理と分散剤を併用してもよい。こうした顔料分散体として市販品を使用してもよい。例えば、Hostajet(商標名)のCyan BG-PT 、Magenta E5B-PT VP 3565、Magenta E7B VP3958 S250、Yellow4G-PT VP 2669(Clariant)や、EMACOL SF CYAN AE2034F、EMACOL SF MAGENTA AE2033F、EMACOL SF YELLOW AE2032F(山陽色素社製)等が挙げられる。
 顔料分散体を調製する際の水性媒体としては、水、水溶性有機溶媒、又はこれらの混合物を用いることができる。なお、水性媒体としての「水」は、例えば、イオン交換水、蒸留水、超純水等である。安全性や環境に対する影響の観点からは、水又は水及び水溶性有機溶媒の混合物を用いることが好ましい。
 反応系へのモノマーの添加方法としては、モノマー滴下法、モノマー一括仕込み法、プレエマルション法等のいずれの方法によっても行うことができる。ここで、プレエマルション法とは、モノマーを滴下用の乳化物(プレエマルション)に調製してから滴下する添加方法である。
 本発明においては、モノマー一括仕込み法を採用している。この添加方法を採用すると、モノマー全量を一度に反応系に添加しても、合成される顔料内包樹脂粒子の品質が損なわれないため、この点からも作業効率の向上を図ることができる。
 本発明において乳化重合を実施する反応容器としては、特に限定されない。例えば、図1(A)及び(B)に、それぞれ、縦断面図及び横断面図で示した反応容器を用いることができる。この反応容器は、内壁に複数のバッフル11を有し、撹拌部12を備えている。バッフル11は、容器底面から所定の距離をあけて設置されることが好ましく、また、撹拌部12は複数のブレードを有することが好ましい。
<インク>
 本発明のインクは、本発明の顔料内包樹脂粒子の製造方法により製造した顔料内包樹脂粒子を含むものである。本発明のインクが含み得る顔料内包樹脂粒子以外の成分は、特に限定されない。通常のインク、特にインクジェット用インクに含有可能な成分であればよい。例えば、本発明のインクは、本発明の顔料内包樹脂粒子の製造方法により製造した顔料内包樹脂粒子以外に、水性溶媒、バインダー樹脂等を含むことができる。
 これら以外に、添加剤として、浸透剤、防黴剤、防錆剤、pH調整剤、湿潤剤、消泡剤、追加の界面活性剤、水溶性紫外線吸収剤、水溶性赤外線吸収剤等の成分を含んでいてもよい。
 本発明のインクは、例えば、本発明の顔料内包樹脂粒子の製造方法により製造した顔料内包樹脂粒子をバインダー樹脂等と共に、水性媒体中に分散させることで、製造することができる。
 顔料内包樹脂粒子とバインダー樹脂の分散性を向上させるために、界面活性剤等を追加してもよい。さらに、製造したインクに、防黴剤、防錆剤、pH調整剤、湿潤剤、消泡剤、水溶性紫外線吸収剤、水溶性赤外線吸収剤等の成分を配合してもよい。
(実施例1)
 市販のシアン顔料分散体であるEMACOL SF CYAN AE2034F(山陽色素社製、顔料濃度20%)の2.69gに、イオン交換水200mlを加え、30分間超音波をかけて、顔料をイオン交換水に分散させた後、オクタデシル硫酸ナトリウムを18.6mg(0.050mmol)加えて水溶液を調整した。
 このようにして得られた水溶液(220ml)を、あらかじめ70℃の恒温槽に入れて温めておいた容量半リットルの四ツ口セパレート反応器(内径7.5cm)に注いだ。
 ここで、四ツ口セパレート反応器は、アリーン冷却管、窒素ガス流入管、及びメカニカルスターラーを備える。さらに、四ツ口セパレート反応器は、4つのバッフル(幅0.7cm)と、4枚のブレードピッチのパドルインペラ(長さ5cm)を備える。4つのバッフルは、底部から上方に1cm離れて位置しており、底部との間に間隔をあけて設けられている。
 水溶液を360rpmで攪拌しながら、30分間窒素ガスでバブリングした。次いで、水溶液に7.80g(74.9mmol)のスチレンモノマーを1回で加え、窒素雰囲気下で20分間、水溶液を境拌した(360rpm)。過硫酸アンモニウム1.14gを溶解させた30mlの過硫酸アンモニウム水溶液を調製し、調整した過硫酸アンモニウム水溶液を、乳化重合を開始するために四ツ口セパレート反応器に1回で添加した。そして、窒素雰囲気下、360rpmで攪拌しながら、70℃で6時間、重合を行った。
 電界放出形走査電子顕微鏡(FE-SEM:S-5000、HITACHI社製)を用いて、得られた顔料内包微粒子の形態観察を行ったところ、粒径の揃った球形の顔料内包微粒子から構成されていた(図2)。さらに、得られた顔料内包微粒子の粒径を、動的光散乱測定器(DLS測定器:Malvern社製、ZETASIZER Nano)で測定したところ、体積平均粒径(DLS)は84.2nmであった。また、FE-SEM写真上で30個の顔料内包微粒子の粒径(直径)を計測し平均値を算出したところ、平均粒径(FE-SEM)は100nmであった。
(実施例2)
 実施例1と同じ市販のシアン顔料分散体の2.69gに、イオン交換水200mlを加え、30分間超音波をかけて、顔料をイオン交換水に分散させた後、オクタデシル硫酸ナトリウムを18.6mg加えて水溶液を調整した。
 このようにして得られた水溶液(220ml)を、あらかじめ実施例1と同様にして温めておいた四ツ口セパレート反応器に注いだ。
 水溶液を360rpmで攪拌しながら、30分間窒素ガスでバブリングした。次いで、水溶液にスチレンモノマー3.90gとメタクリル酸メチル3.75gを1回で加え、窒素雰囲気下で20分間、水溶液を攪拌した。過硫酸アンモニウム1.14gを溶解させた30mlの過硫酸アンモニウム水溶液を調製し、調整した過硫酸アンモニウム水溶液を、乳化重合を開始するために反応器に1回で添加した。そして、窒素雰囲気下、360rpmで攪拌しながら、70℃で6時間、重合を行った。
 FE-SEMで、得られた顔料内包微粒子の形態観察を行ったところ、粒径の揃った球形の顔料内包微粒子から構成されていた(図3)。
 得られた顔料内包機粒子の粒径を、実施例1と同様に、DLS測定器及びFE-SEMで測定したところ、それぞれ、体積平均粒径(DLS)86.3nm、平均粒径(FE-SEM)100nmであった。
(実施例3)
 実施例1と同じ市販のシアン顔料分散体の2.69gに、イオン交換水200mlを加え、30分間超音波をかけて、顔料をイオン交換水に分散させた後、オクタデシル硫酸ナトリウムを18.6mg加えて水溶液を調整した。
 このようにして得られた水溶液(220ml)を、実施例1と同様に温めておいた四ツ口セパレート反応器に注いだ。
 水溶液を360rpmで攪拌しながら、30分間窒素ガスでバブリングした。次いで、水溶液にスチレンモノマー3.90gとメタクリル酸グリシジル3.75gを1回で加え、窒素雰囲気下で20分間、水溶液を攪拌した。過硫酸アンモニウム1.14gを溶解させた30mlの過硫酸アンモニウム水溶液を調整し、調整した過硫酸アンモニウム水溶液を、乳化重合を開始するために反応器に1回で添加した。そして、窒素雰囲気下、360rpmで攪拌しながら、70℃で6時間、重合を行った。
 FE-SEMで、得られた顔料内包微粒子の形態観察を行ったところ、粒径の揃った球形の顔料内包微粒子から構成されていた(図4)。
 得られた顔料内包機粒子の粒径を、実施例1と同様に、DLS測定器及びFE-SEMで測定したところ、それぞれ、体積平均粒径(DLS)109nm、平均粒径(FE-SEM)110nmであった。
(実施例4)
 市販のマゼンタ顔料分散体であるEMACOL SF MAGENTA AE2033F(山陽色素社製、顔料濃度20%)の2.69gに、イオン交換水200mlを加え、30分間超音波をかけて、顔料をイオン交換水に分散させた後、オクタデシル硫酸ナトリウムを18.6mg加えて水溶液を調整した。
 このようにして得られた水溶液(220ml)を、実施例1と同様に温めておいた四ツ口セパレート反応器に注いだ。
 水溶液を360rpmで攪拌しながら、30分間窒素ガスでバブリングした。次いで、水溶液にスチレンモノマー3.90gとメタクリル酸メチル3.75gを1回で加え、窒素雰囲気下で20分間水溶液を撹拌した。過硫酸アンモニウム1.14gを溶解させた30mlの過硫酸アンモニウム水溶液を調整し、調整した過硫酸アンモニウム水溶液を乳化重合を開始するために反応器に1回で添加した。そして、窒素雰囲気下、360rpmで攪拌しながら、70℃で6時間、重合を行った。
 FE-SEMで、得られた顔料内包微粒子の形態観察を行ったところ、粒径の揃った球形の顔料内包微粒子から構成されていた(図5)。
 得られた顔料内包機粒子の粒径を、実施例1と同様にDLS測定器で測定したところ、体積平均粒径(DLS)92.7nmであった。
(実施例5)
 市販のイエロー顔料分散体であるEMACOL SF YELLOW AE2032F(山陽色素社製、顔料濃度20%)の2.69gに、イオン交換水200mlを加え、30分間超音波をかけて、顔料をイオン交換水に分散させた後、オクタデシル硫酸ナトリウムを18.6mg加えて水溶液を調整した。
 このようにして得られた水溶液(220ml)を、実施例1と同様に温めておいた四ツ口セパレート反応器に注いだ。
 水溶液を360rpmで攪拌しながら、30分間窒素ガスでバブリングした。次いで、水溶液に、スチレンモノマー3.90gとメタクリル酸メチル3.75gを1回で加え、窒素雰囲気下で20分間水溶液を攪拌した。過硫酸アンモニウム1.14gを溶解させた30mlの過硫酸アンモニウム水溶液を調整し、調整した過硫酸アンモニウム水溶液を、乳化重合を開始するために反応器に1回で添加した。そして、窒素雰囲気下、360rpmで攪拌しながら、70℃で6時間、重合を行った。
 FE-SEMで、得られた顔料内包微粒子の形態観察を行ったところ、粒径の揃った球形の顔料内包微粒子から構成されていた(図6)。
 得られた顔料内包機粒子の粒径を、実施例1と同様にDLS測定器で測定したところ、体積平均粒径(DLS)86.2nmであった。
(実施例6)
 実施例4と同じ市販のマゼンタ顔料分散体と、実施例5と同じ市販のイエロー顔料分散体を、それぞれ1.345gずつ、合計2.69gに対して、イオン交換水200mlを加え、30分間超音波をかけて顔料をイオン交換水に分散させた後、オクタデシル硫酸ナトリウムを9.3mg加えて水溶液を調整した。
 このようにして得られた水溶液(220ml)を、実施例1と同様に温めておいた四ツ口セパレート反応器に注いだ。
 水溶液を360rpmで攪拌しながら、30分間窒素ガスでバブリングした。次いで、水溶液にスチレンモノマー3.90gとメタクリル酸メチル3.75gを1回で加え、窒素雰囲気下で20分間、水溶液を撹拌した。過硫酸アンモニウム1.14gを溶解させた30mlの過硫酸アンモニウム水溶液を調整し、調整した過硫酸アンモニウム水溶液を、乳化重合を開始するために反応器に1回で添加した。そして、窒素雰囲気下、360rpmで攪拌しながら、70℃で6時間、重合を行った。
 FE-SEMで、得られた顔料内包微粒子の形態観察を行ったところ、粒径の揃った球形の顔料内包微粒子から構成されていた(図7)。
 得られた顔料内包機粒子の粒径を、実施例1と同様にDLS測定器で測定したところ、体積平均粒径(DLS)112nmであった。
(実施例7)
 実施例1と同じ市販のシアン顔料分散体と実施例5と同じ市販のイエロー顔料分散体を、それぞれ1.345gずつ、合計2.69gに対して、イオン交換水200mlを加え、30分間超音波をかけて、顔料をイオン交換水に分散させた後、オクタデシル硫酸ナトリウムを9.3mg加えて水溶液を調整した。
 このようにして得られた水溶液(220ml)を、実施例1と同様に温めておいた四ツ口セパレート反応器に注いだ。
 水溶液を360rpmで攪拌しながら、30分間窒素ガスでバブリングした。次いで、水溶液にスチレンモノマー3.90gとメタクリル酸メチル3.75gを1回で加え、窒素雰囲気下で20分間、水溶液を撹拌した。過硫酸アンモニウム1.14gを溶解させた30mlの過硫酸アンモニウム水溶液を調整し、調整した過硫酸アンモニウム水溶液を、乳化重合を開始するために反応器に1回で添加した。そして、窒素雰囲気下、360rpmで攪拌しながら、70℃で6時間、重合を行った。
 FE-SEMで、得られた顔料内包微粒子の形態観察を行ったところ、粒径の揃った球形の顔料内包微粒子から構成されていた(図8)。
 得られた顔料内包機粒子の粒径を、実施例1と同様にDLS測定器で測定したところ、体積平均粒径(DLS)89.5nmであった。
 本発明に係る製造方法は、例えば、インクの顔料、特にインクジェット用インクの顔料を製造するために、好適に利用できる。本発明に係る顔料内包樹脂粒子は、例えば、インクの顔料、特にインクジェット用インクの顔料として、好適に利用できる。
本発明に係るインクは、インクジェット用インクとして、好適に利用できる。
 1  反応容器
 11 バッフル
 12 撹拌部

Claims (17)

  1.  顔料内包樹脂粒子の製造方法であって、
     前記顔料内包樹脂粒子が、顔料と、水性媒体と、モノマーと、低CMC界面活性剤と、重合開始剤とを含むエマルジョンにおいて、バッチ式に合成され、
     前記顔料内包樹脂粒子の平均粒径が30nm以上200nm以下である、顔料内包樹脂粒子の製造方法。
  2.  顔料内包樹脂粒子の製造方法であって、
    (A)顔料を水性媒体に分散して顔料分散液を調製する工程と、
    (B)前記顔料分散液及び界面活性剤の混合物を調製する工程と、
    (C)前記混合物にモノマーを添加し、エマルジョンを形成させる工程と、
    (D)前記エマルジョンに重合開始剤を添加し、前記モノマーを乳化重合させて、顔料内包樹脂粒子を合成する工程とを含み、
     前記顔料内包樹脂粒子の平均粒径が30nm以上200nm以下であり、
     前記界面活性剤が低CMC界面活性剤であり、
     前記工程(B)、(C)、(D)が同一の反応容器内で実施される、顔料内包樹脂粒子の製造方法。
  3.  前記工程(B)、(C)、(D)が、300rpm以上500rpm以下の撹拌下で実施される、請求項2に記載の顔料内包樹脂粒子の製造方法。
  4.  前記低CMC界面活性剤が、炭素数15~23の直鎖状アルキル基を有するアニオン系界面活性剤である、請求項1ないし3のいずれか1項に顔料内包樹脂粒子の記載の製造方法。
  5.  前記重合開始剤が、前記エマルジョンの水相のイオン強度を低下させる作用を有する、請求項1ないし3のいずれか1項に記載の顔料内包樹脂粒子の製造方法。
  6.  前記重合開始剤が、前記エマルジョンの水相のイオン強度を低下させる作用を有する、請求項4に記載の顔料内包樹脂粒子の製造方法。
  7.  顔料内包樹脂粒子の製造方法であって、
     前記顔料内包樹脂粒子が、顔料と、水性媒体と、モノマーと、界面活性剤と、重合開始剤とを含むエマルジョンにおいて、バッチ式に合成され、
     前記顔料内包樹脂粒子の平均粒径が30nm以上200nm以下であり、
     前記重合開始剤が前記エマルジョンの水相のイオン強度を低下させる作用を有する、顔料内包樹脂粒子の製造方法。
  8.  請求項1ないし3のいずれか1項に記載の顔料内包樹脂粒子の製造方法によって製造される顔料内包樹脂粒子。
  9.  請求項4に記載の顔料内包樹脂粒子の製造方法によって製造される顔料内包樹脂粒子。
  10.  請求項5に記載の顔料内包樹脂粒子の製造方法によって製造される顔料内包樹脂粒子。
  11.  請求項6に記載の顔料内包樹脂粒子の製造方法によって製造される顔料内包樹脂粒子。
  12.  請求項7に記載の顔料内包樹脂粒子の製造方法によって製造される顔料内包樹脂粒子。
  13.  請求項8に記載の顔料内包樹脂粒子を含むインク。
  14.  請求項9に記載の顔料内包樹脂粒子を含むインク。
  15.  請求項10に記載の顔料内包樹脂粒子を含むインク。
  16.  請求項11に記載の顔料内包樹脂粒子を含むインク。
  17.  請求項12に記載の顔料内包樹脂粒子を含むインク。
     
     
PCT/JP2020/040907 2019-11-20 2020-10-30 顔料内包樹脂粒子、顔料内包樹脂粒子の製造方法、顔料内包樹脂粒子を含むインク WO2021100442A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019209406A JP2021080380A (ja) 2019-11-20 2019-11-20 顔料内包樹脂粒子及びその製造方法並びにその顔料内包樹脂粒子を用いたインク
JP2019-209406 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021100442A1 true WO2021100442A1 (ja) 2021-05-27

Family

ID=75964183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040907 WO2021100442A1 (ja) 2019-11-20 2020-10-30 顔料内包樹脂粒子、顔料内包樹脂粒子の製造方法、顔料内包樹脂粒子を含むインク

Country Status (2)

Country Link
JP (1) JP2021080380A (ja)
WO (1) WO2021100442A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179686A (ja) * 2007-01-24 2008-08-07 Seiko Epson Corp カプセル化物の製造方法及びカプセル化物
JP2016027151A (ja) * 2014-07-04 2016-02-18 花王株式会社 着色微粒子分散体の製造方法
JP2016027150A (ja) * 2014-07-04 2016-02-18 花王株式会社 着色微粒子分散体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179686A (ja) * 2007-01-24 2008-08-07 Seiko Epson Corp カプセル化物の製造方法及びカプセル化物
JP2016027151A (ja) * 2014-07-04 2016-02-18 花王株式会社 着色微粒子分散体の製造方法
JP2016027150A (ja) * 2014-07-04 2016-02-18 花王株式会社 着色微粒子分散体の製造方法

Also Published As

Publication number Publication date
JP2021080380A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US7544418B2 (en) Polymer-encapsulated pigments and associated methods
US7741384B2 (en) Encapsulation of pigment particles by polymerization
US6020400A (en) Ink jet inks containing emulsion polymer additives stabilized with structured polymers
JP5704920B2 (ja) ポリマーカプセル化顔料
WO2010013651A1 (ja) 水性顔料分散液、および使用
JP2005097476A (ja) マイクロカプセル化顔料及びその製造方法、水性分散液、並びに、インクジェット記録用インク
JPH1095857A (ja) 湿式ミリング法のための二成分分散剤
EP2343344B1 (en) Encapsulation of pigments with polymer latex prepared by mini-emulsion polymerization
US8383701B2 (en) Polymer encapsulated pigment dispersion with high solids content
US20120116006A1 (en) Polymer Encapsulation Of Particles
US20120171373A1 (en) Encapsulation of pigments with polymer latex prepared by mini-emulsion polymerization
WO2021100442A1 (ja) 顔料内包樹脂粒子、顔料内包樹脂粒子の製造方法、顔料内包樹脂粒子を含むインク
WO2021100443A1 (ja) 水系インク
JP2004189928A (ja) 顔料分散液の製造方法
JP2007186569A (ja) 水性顔料分散体、水性インク及び水性顔料分散体の製造方法
JP2003213142A (ja) 親水性着色樹脂微粒子、着色水性エマルジョン組成物及びそれらの製造方法
JPH11263931A (ja) インクジェット用二相インク
JP2003342507A (ja) 水性インク、水性インクの製造方法及びそれを用いた画像形成方法
JP2003313475A (ja) 着色微粒子分散体インク、インクジェット用水性インクおよび画像形成方法
NL2025262B1 (en) Inkjet printing process, ink set of inkjet inks for forming an image on a substrate
NL2026618B1 (en) Inkjet ink, inkjet printing process and ink set for forming an image on a substrate and aqueous pigment dispersion for forming the inkjet ink
JP4547725B2 (ja) 水性顔料分散体、その製造方法ならびに水性記録液
JP2006096930A (ja) インク組成物
JP2007190470A (ja) カプセル化物及びその製造方法
JP2004285215A (ja) 着色微粒子分散体とそれを含有する水性インク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891318

Country of ref document: EP

Kind code of ref document: A1