WO2021100117A1 - 腐食量推定装置および腐食量推定方法 - Google Patents
腐食量推定装置および腐食量推定方法 Download PDFInfo
- Publication number
- WO2021100117A1 WO2021100117A1 PCT/JP2019/045256 JP2019045256W WO2021100117A1 WO 2021100117 A1 WO2021100117 A1 WO 2021100117A1 JP 2019045256 W JP2019045256 W JP 2019045256W WO 2021100117 A1 WO2021100117 A1 WO 2021100117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soil
- corrosion
- unit
- water
- amount
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/02—Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/006—Investigating resistance of materials to the weather, to corrosion, or to light of metals
Definitions
- the present invention relates to a corrosion amount estimation device for estimating the corrosion amount of a metal material buried in the ground, and a corrosion amount estimation method.
- condition-based maintenance As an operation method that achieves both safety and efficiency in underground equipment where visual inspection is difficult, operation according to the deterioration state of the equipment, that is, condition-based maintenance can be mentioned. This is an operation in which deterioration of equipment is predicted and estimated from environmental information, etc., and the one with advanced deterioration is preferentially updated. If this operation method is realized, safety can be ensured by updating the target with fast deterioration without overlooking it, and it is expected that the target with slow deterioration will be used for a longer period of time to improve cost efficiency.
- Non-Patent Document 1 Soil corrosion is the main cause of deterioration of metal materials buried underground. In order to predict the deterioration of underground equipment, it is necessary to evaluate how the corrosion of underground metal materials progresses. It is said that the corrosion of a metal material buried in soil basically proceeds based on a cathode reaction and an anodic reaction as in the air and an aqueous solution (Non-Patent Document 1).
- Multiple candidates can be considered as a method for evaluating how the corrosion of underground metal materials progresses.
- the first is a non-invasive method of performing corrosion evaluation on existing outdoor equipment.
- the more complicated the shape of the underground structure the more difficult it is to evaluate by non-invasiveness, and it is not a method applicable to all underground equipment.
- the second is an exposure test method in which a sample is buried in an outdoor environment to evaluate corrosion.
- this method since the shape, surface area, weight, thickness, etc. of the sample to be buried can be specified in advance, it is possible to evaluate the progress of corrosion from the amount of change before and after the exposure test. However, it is a fatal drawback that it takes a long time to evaluate because it must be corroded until the corrosion can be measured.
- the third method is to obtain the corrosion rate from environmental factors that are highly correlated with corrosion and estimate the amount of corrosion from the corrosion estimation formula. It is possible to estimate the amount of corrosion by identifying the environmental factors that contribute most to corrosion based on the corrosion mechanism of the material and knowing the relationship between the environmental factors and the corrosion rate. Corrosion of underground metal materials is said to proceed based on an oxidation reaction in which iron elutes as ions (anode reaction) and a reduction reaction in which oxygen in an aqueous solution receives electrons (cathode reaction). From this, it can be said that the controlling factors that trigger the corrosion reaction are water and oxygen.
- the amount of corrosion can be estimated if the soil particle size, which is an environmental factor that determines the state of water and oxygen in the soil, can be measured. It is also considered that the amount of corrosion can be estimated by measuring the permeability of the soil, which has a correlation with the soil particle size.
- the following two methods are widely used for measuring soil particle size.
- the first is the soil particle size test method described in JIS A 1204: 2009. This test applies sieving analysis to particles larger than 75 ⁇ m and sedimentation analysis to particles smaller than 75 ⁇ m.
- the test instrument is specified in JIS Z8801-1 and is relatively inexpensive, but the number of test instruments is huge, so the portability is low and it takes a long time to measure.
- the second method for measuring soil particle size is the laser diffraction / scattering particle size analysis method.
- the time required for measurement is short, the amount of soil required for analysis is small, and the equipment used for analysis is of a size that can be carried around.
- the device is a precision instrument, it is expensive and cannot be easily obtained by anyone.
- methods for measuring the permeability of soil include constant water level permeability measurement method, variable water level permeability measurement method, flow pump permeability measurement method, etc.
- how much water is added to the soil by applying a certain pressure It is a method to evaluate whether or not it has flowed.
- the devices used in these measurement methods are relatively small, therefore portable, and inexpensive, so they are relatively easily available.
- water is used. It takes a very long time to measure because it hardly penetrates into the soil.
- the present invention has been made in view of these problems, and an object of the present invention is to provide a technique capable of estimating the amount of corrosion of a metal material buried in the ground with higher portability and economy in a short time. To do.
- One aspect of the present invention is a corrosion amount estimation device for estimating the corrosion amount of a metal material buried in the ground, in which a soil adjusting unit for drying the target soil and water is supplied to the dried soil. It includes a water permeability measuring unit for measuring the permeability of the soil, and a corrosion estimation unit for estimating the amount of corrosion when the metal material is embedded in the soil using the water permeability.
- One aspect of the present invention is a corrosion amount estimation method for estimating the corrosion amount of a metal material buried in the ground, which is performed by a corrosion amount estimation device, the adjustment step of drying the target soil, and the drying.
- a measurement step of supplying water to the soil and measuring the permeability of the soil, and an estimation step of estimating the amount of corrosion when the metal material is buried in the soil using the permeability are performed.
- FIG. 1 It is a functional block diagram which shows typically the structure of the corrosion amount estimation apparatus of this embodiment.
- FIG. 1 It is a schematic diagram which shows how the color of the soil changes with time when the soil becomes wet.
- the soil environment is a complex environment in which the solid phase, liquid phase, and vapor phase coexist. It is said that the corrosion of metal materials buried in soil basically proceeds based on the same reactions of the following formulas (1) and (2) as in air and aqueous solution (Non-Patent Document 1).
- Equation (1) above is a cathode reaction, and the ionization of iron reduces the thickness of the metal material.
- Equation (2) is an anodic reaction, in which dissolved oxygen in water receives electrons and hydroxide ions are generated. From these equations, it can be seen that water and oxygen are required on the metal surface for the corrosion reaction to proceed.
- the most important feature of soil corrosion is the presence of soil particles as a solid phase. That is, the liquid phase and the gas phase compete with each other in the gaps between the soil particles which are the solid phase, and the progress of corrosion is determined by the state of water and oxygen required for corrosion on the metal surface. ..
- the reaction field of corrosion that is, the surface area of contact between the metal surface and water, depends on the surface area of contact between soil particles and metal. Furthermore, how long the water captured by capillarity stays in the narrow gap between the metal surface and the soil particles depends on the capillary force applied to the water, which is determined by the size of the soil particles.
- the gas phase in the soil particle gap is diffused as oxygen gas, then reaches the liquid phase, and diffuses to the metal surface as dissolved oxygen.
- the diffusion of oxygen is inhibited by soil particles existing as a solid phase. Therefore, the diffusion distance of oxygen correlates with the tortuosity.
- the tortuosity is an index showing the complexity of the diffusion path, and the diffusion path of the porous body having a small tortuosity is more linear than that of the porous body having a large tortuosity, and the diffusion path of dissolved oxygen is shorter. Therefore, the degree of bending changes depending on how the soil particles are clogged, and the way the soil is clogged mainly depends on the diameter of the soil particles.
- soil particle size is a highly correlated environmental factor for soil corrosion as a parameter that affects both water and oxygen, which play an important role as a trigger for the occurrence of corrosion. Therefore, if the soil particle size is known, soil corrosion can be estimated.
- the following two methods are widely used for measuring soil particle size.
- the first is the soil particle size test method described in JIS A 1204: 2009.
- a sieving analysis must be applied to particles having a size of 75 ⁇ m or more
- a sedimentation analysis must be applied to particles having a size of less than 75 ⁇ m, and it takes a long time to obtain a result.
- analysis requires more than 500 mL of soil sample.
- the main test instruments are metal mesh sieves and floats specified in JIS Z8801-1.
- the metal mesh sieve used is relatively small with an inner diameter of about 200 mm and a depth of 60 mm and is inexpensive at tens of thousands of yen, but the opening is 75 ⁇ m, 106 ⁇ m, 250 ⁇ m, 425 ⁇ m, 850 ⁇ m, 2 mm, 4.75 mm, 9.5 mm, It is necessary to prepare 19 mm, 26.5 mm, 37.5 mm, 53 mm and 75 mm, and the portability is low.
- the second is a laser diffraction / scattering particle size analysis method.
- the laser diffraction / scattering particle size analysis method is excellent in that the time required for measurement is as short as several tens of seconds, and the amount of soil required for analysis is as small as several tens of mg to several g. ing.
- the equipment used in this analysis has often been large in the past, but in recent years it has become smaller, and the smallest model has a width of 300 mm, a depth of 420 mm, and a height of 400 mm, which are sizes that can be carried around.
- the measurement can be performed in a very short time of several tens of seconds.
- the device is a precision instrument, it is expensive at about several million yen and cannot be easily obtained by anyone.
- Soil particles form a gap structure in which the liquid and gas phases in the soil can exist. Since the interstitial structure is different in soils with different soil particle sizes, it affects the diffusion behavior of water or oxygen and the apparent diffusion rate. Therefore, it is known that the behavior of water diffusing through the gaps between soil particles, that is, the permeability of soil, has a high correlation with the soil particle size.
- Examples of methods for measuring the permeability of soil include a constant water level permeability measurement method, a variable water level permeability measurement method, and a flow pump permeability measurement method.
- the constant water level method is a method of calculating the hydraulic conductivity K from Darcy's formula by giving a constant water level difference to the soil contained in the container and measuring the hydraulic conductivity per unit time.
- the above method is characterized in that the permeability of the soil can be easily measured. However, in the case of poorly permeable soil containing fine soil particles, water does not permeate even if a high hydraulic gradient is provided, and the measurement can be performed. It lasts for a long time.
- Change water level permeability measurement is a method of measuring the change in water level that decreases as water permeates into the soil within a certain minute time. Even when poorly permeable soil is applied to the above method, even if a high hydraulic gradient is provided, water does not permeate and a long time is required for measurement.
- the permeability coefficient is measured by controlling the minute flow rate of soil water to be constant from the outside and directly measuring the pressure. According to the above method, if the flow rate is about 10-7 cm 3 / s, a commercially available syringe can be used, so that the method can be easily carried out. However, since resolving power of the volume measurement of the fluid it is 10 -3 cm 3, which requires a very long time to permeability measurements low permeability soil.
- a metal material is buried by supplying water into the dry soil and observing and evaluating the color change of the soil due to water absorption for the time when the soil changes from the dry state to the wet state.
- On-site measurement of soil permeability is highly portable, low cost and in a short time. This makes it possible to easily estimate the amount of corrosion of the metal material buried in the ground in the present embodiment.
- FIG. 1 is a functional block diagram schematically showing the configuration of the corrosion amount estimation device 1 of the present embodiment.
- the corrosion amount estimation device 1 is a device that estimates the corrosion amount of a metal material buried in the ground (soil).
- the corrosion amount estimation device 1 shown in FIG. 1 includes at least one soil adjusting unit 10, a water permeability measuring unit 20, a corrosion estimating unit 30, and an instruction determination unit 40.
- FIG. 2 is a functional block diagram schematically showing a detailed configuration example of the corrosion amount estimation device 1 of the present embodiment shown in FIG.
- the soil adjusting unit 10 of the corrosion amount estimation device 1 shown in FIG. 2 dries the target soil (recovered soil) according to the instruction from the instruction determination unit 40 before the hydraulic conductivity measurement by the hydraulic conductivity measuring unit 20. Perform pretreatment and prepare the soil.
- the illustrated soil adjusting unit 10 includes at least one soil drying unit 11, a soil pressurizing unit 12, and a soil stirring unit 13.
- the soil drying unit 11 carries out a step of evaporating all the water contained in the collected soil and drying it.
- Examples of the method for drying the soil in the soil drying section 11 include exposure to a high temperature environment, standing in a dry environment using silica gel, suction by a vacuum pump, and the like.
- the soil drying method is not limited to the above method as long as it is a method capable of removing all the water in the soil.
- the soil drying step is preferably carried out in an environment of 60 ° C. or lower at which proteins begin to denature.
- the soil pressurizing unit 12 applies pressure to the soil dried by the soil drying unit 11 and carries out a step of crushing the fixed mass of soil particles until it becomes a powder.
- Examples of the method for carrying out the soil pressurization step include pressing at a constant pressure using a machine, depressurizing with a vacuum pump, and the like.
- the soil pressurization method is not limited to the above method as long as it is a method in which a mass of soil particles is powdered. However, be aware that if the pressure is too high, the soil particles themselves may be crushed.
- the soil stirring unit 13 carries out a step of stirring the powdered soil in the soil pressurizing unit 12 until it becomes uniform.
- the soil agitation unit 13 also has a function of loosening a mass of soil particles remaining in the soil pressurization unit 12.
- the method of stirring the soil is not limited as long as it is a means for making the powdery soil uniform.
- two rod-shaped objects may be stirred in a circular shape, or a mechanism similar to that of an automatic stirrer used in a food factory or the like may be adopted.
- it is preferable to use a material that does not easily rust for example, a material made of stainless steel or plastic.
- the water permeability measuring unit 20 supplies water to dry soil that does not contain water, and measures the water permeability of the soil.
- the water permeability measuring unit 20 measures (evaluates) the change time until the soil color completely changes to the color after wetting due to water absorption as water permeability by image analysis. That is, the water permeability measuring unit 20 measures the water permeability of the soil at the change time when the color changes as the soil absorbs water by adding water to the powdered soil dried by the soil adjusting unit 10.
- the gap structure of soil particles is an important parameter. If the treatment by the soil adjusting unit 10 is insufficient, that is, if a mass of soil particles remains, the water permeability inherent in the soil to be measured cannot be evaluated correctly, and the measurement is caused by the mass of soil particles. If a gap is formed between the container and the soil particles, the water permeability may be overestimated as a result of water permeating through the gap. In order to ensure the reliability of the result obtained by the hydraulic conductivity measuring unit 20, it is preferable to carry out the process carefully so that the step in the soil adjusting unit 10 is surely achieved.
- the illustrated water permeability measuring unit 20 includes at least one water supply unit 21, a soil storage unit 22, a discharge unit 23, a pressure addition unit 24, a hue observation unit 25, and a water permeability determination unit 26.
- the soil accommodating unit 22 accommodates the soil adjusted by the soil adjusting unit 10.
- the water supply unit 21 supplies water to the dry soil contained in the soil storage unit 22 in accordance with the instruction from the instruction determination unit 40.
- the water supplied by the water supply unit 21 is arbitrary water, but it is preferable to use soil water extracted from the same type of soil as the soil for which the permeability measurement is performed. Note that if distilled water is used, the chemical components in the soil contained in the soil storage section 22 may flow out, impairing the original characteristics of the soil.
- the water supply method by the water supply unit 21 is arbitrary. However, if high pressure is applied during water supply, the upper surface of the dry soil may be disturbed and correct results may not be obtained. Therefore, for example, it is recommended to adopt a method such as supplying water in the form of droplets simulating rain. preferable.
- the amount of water supplied may be arbitrarily determined, but the proportion of the solid phase in the soil is 50%, the proportion of the liquid phase and the gas phase is 50%, and the proportions of the liquid phase and the gas phase compete with each other. Therefore, water may be supplied so that the ratio of the liquid phase to the liquid phase + the gas phase is 100%. That is, water may be supplied to the introduced soil so that the volume moisture content is 50%.
- the water supply unit 21 also plays a role of supplying water for cleaning the soil adhering to the soil storage unit 22 after the water permeability measurement is completed and the soil contained in the soil storage unit 22 is discharged to the outside.
- the soil storage unit 22 is a container for storing powdered dry soil prepared by the soil preparation unit 10. At least one side surface of the soil storage unit 22 is made of a transparent material so that the color change of the soil can be observed (photographed). As the material of the soil accommodating portion 22, any material may be used as long as the above conditions are satisfied. However, it is preferable to avoid metal materials that may corrode during water permeability measurement.
- a cylindrical container may be used in accordance with the soil permeability test method described in JIS A 1218: 2009.
- the inner diameter and length of the cylinder may be 10 times or more the maximum particle size of the soil used.
- the inner diameter and the length of the cylinder may be allowed up to 5 times the maximum particle diameter.
- the inner diameter may be 100 mm and the length may be 120 mm in accordance with JIS A 1218: 2009.
- the soil in the soil accommodating unit 22 for which the water permeability measurement has been completed is moved to the discharge unit 23 according to the instruction from the instruction determination unit 40, and is discharged to the outside of the corrosion amount estimation device 1.
- the discharge unit 23 may be a container adjacent to the soil storage unit 22, or may be a discharge mechanism attached to the soil storage unit 22 such as a discharge port and a discharge valve installed on the end face of the soil storage unit 22.
- the shape and structure of the discharge unit 23 are not limited to those described above, as long as the soil in the soil storage unit 22 for which the water permeability measurement has been completed has a function of being discharged to the outside of the corrosion amount estimation device 1.
- the pressure applying unit 24 applies a predetermined pressure to the soil of the soil accommodating unit 22 according to the instruction from the instruction determination unit 40.
- the pressure applying unit 24 operates in a step of accommodating soil in the soil accommodating unit 22, a water supply process by the water supply unit 21, and a discharge process by the discharge unit 23.
- the pressure applying unit 24 applies a predetermined pressure to the soil of the soil accommodating unit 22, so that the soil can be accommodated without gaps. It becomes.
- the pressure addition unit 24 may apply a predetermined pressure to the soil of the soil storage unit 22. Further, after the water permeability measurement is completed, the pressure addition unit 24 may reduce the pressure in order to efficiently discharge the soil to the outside of the corrosion amount estimation device 1 through the discharge unit 23. This can support the soil discharge process.
- the hue observation unit 25 images (observes) the soil contained in the soil storage unit 22 in accordance with the instruction from the instruction determination unit 40. That is, the hue observation unit 25 images the change in soil color due to water absorption.
- the hue observation unit 25 is an imaging device that captures images (moving images) of, for example, a CCD camera or a CMOS camera.
- the hue observation unit 25 images the soil of the soil storage unit 22 from the surface of the transparent material of the soil storage unit 22, and outputs the captured image to the water permeability determination unit 26.
- FIG. 3 is a schematic view showing how water is supplied to the dry soil of the soil accommodating portion 22, the soil becomes moist as the water diffuses through the soil particle gaps, and the color of the soil changes over time.
- only dry soil is contained in the soil storage section 22 before water supply. After the start of water supply, the soil is gradually moistened by water absorption, and the soil accommodating portion 22 includes dry soil and moist soil. Then, the soil of the soil accommodating portion 22 is all wet soil.
- the change in soil color with time according to the present embodiment as shown in FIG. 3 is excellent in that it can be measured in a relatively short time of several minutes to several tens of minutes even in poorly permeable soil. ..
- the water permeability determination unit 26 measures the time required for the dry soil contained in the soil storage unit 22 to completely change to wet soil due to water absorption, using the image output from the hue observation unit 25. Specifically, the water permeability determination unit 26 analyzes the image of the soil in the soil storage unit 22 using colors (hue, color tone) until the color of the soil changes to the color after wetting due to water absorption. The change time is measured and evaluated as water permeability.
- the water permeability determination unit 26 acquires an image (RGB color image) of the dry soil stored in the soil storage unit 22 before the start of water supply from the hue observation unit 25, and stores the color of the dry soil in a storage unit (not shown). I will do it. Then, the water permeability determination unit 26 performs image analysis of each frame of the image output from the hue observation unit 25, so that the soil color of the soil storage unit 22 changes from the color of the dry soil to the color of the wet soil. Get the time until. Specifically, the water permeability determination unit 26 determines when the proportion of the changed color in the wet soil becomes 100% in the image output from the hue observation unit 25 (when the color of the dry soil disappears). Then, the time from when the water supply unit 21 starts supplying water until the soil is completely moistened is acquired.
- RGB color image RGB color image
- the method is not limited to the above method as long as the method can always determine the change time of soil color under the same conditions.
- the water permeability determination unit 26 stores 406 colors of the standard soil pledge in the storage unit (not shown) instead of the image of the dry soil, and uses any one of the 406 colors of the standard soil pledge as the color of the dry soil. You may use it.
- hue observation unit 25 and the water permeability determination unit 26 for example, a person observes the color change of the soil with the naked eye and measures the time from the start of water supply until all the soil in the soil storage unit 22 becomes moist soil. You may.
- the corrosion estimation unit 30 estimates the amount of corrosion when the metal material is buried in the soil of the soil storage unit 22 by using the change time (water permeability) at which the soil changes from a dry state to a wet state. In the present embodiment, the corrosion estimation unit 30 calculates the particle size of the soil using the change time, and estimates the amount of corrosion of the metal material based on the particle size.
- the illustrated corrosion estimation unit 30 includes at least one corrosion amount calculation unit 31 and a record storage unit 32.
- the recording storage unit 32 stores calculation formulas, data, etc. necessary for calculating the hydraulic conductivity from the change time measured by the hydraulic conductivity measuring unit 20, the soil particle size from the water permeability coefficient, and the amount of corrosion from the soil particle size. There is.
- the corrosion amount calculation unit 31 estimates the corrosion amount from the change time in the water permeation measurement unit 20 by using various calculation formulas and data stored in the record storage unit 32.
- the corrosion amount calculation unit 31 obtains the relationship between the change time by the hydraulic conductivity measuring unit 20 and the hydraulic conductivity in advance using a calibration curve or the like and stores it in the recording storage unit 32.
- the hydraulic conductivity k may be obtained from the above relationship. Water permeability in soil is closely related to the flowability of water in the interstices of soil particles, and the index indicating the water flowability is the hydraulic conductivity k.
- the corrosion amount calculation unit 31 calculates the particle size by using, for example, the Hazen formula (formula (3)) or the Creager formula (formula (4)), which is well known as the relationship between the hydraulic conductivity k and the particle diameter. To do.
- k is permeability
- d 20 is 20% particle size.
- a cumulative distribution curve vertical axis: frequency, horizontal axis: particle size
- the corrosion amount calculation unit 31 obtains, for example, the relationship between the soil particle size and the corrosion rate in advance and stores it in the recording / storage unit 32, and the corrosion rate corresponding to the particle size calculated using the relationship. May be obtained.
- a method of electrochemically calculating the corrosion rate a method of measuring the reaction resistance (charge transfer resistance Rct ) accompanying the progress of corrosion is generally used.
- a method of measuring the reaction resistance (charge transfer resistance Rct ) accompanying the progress of corrosion is generally used.
- the electrochemical method for example, a DC polarization resistance method or an AC impedance method may be used.
- the DC potential is swept in a range that does not roughen the metal surface based on the natural potential and in a potential range in which the resistance value can be calculated from the obtained current-potential characteristics. For example, it may be carried out at ⁇ 5 [mV], which is the applied potential in the AC impedance method, which is considered to have a small effect on the metal surface in the electrochemical measurement.
- the charge transfer resistance Rct is calculated from the slope of the obtained current-potential characteristic.
- the least squares method may be used, or the extrapolation method may be used.
- the measurement in the AC impedance method is performed from a high frequency to a low frequency, and an arc appears in each of the high frequency region and the low frequency region. Since the charge transfer resistance Rct is considered to be derived from the arc in the low frequency region, the value of the horizontal axis (impedance real part, Z'[ ⁇ ⁇ cm 2 ]) from the start point to the end point of the arc in the low frequency region. The charge transfer resistance Rct is calculated from.
- the AC application potential is preferably ⁇ 5 [mV], which is considered to have a small effect on the metal surface.
- the resistance value of the entire measurement system is calculated for the charge transfer resistance R ct obtained by the DC polarization resistance method, the value of the soil resistance cannot be ignored with respect to the charge transfer resistance R ct in the measurement in the soil sample. It is possible that it will appear large.
- the AC impedance method it is possible to separate the resistance value measured by the frequency of the applied potential, since the arc of the low frequency region to reflect only the charge transfer resistance R ct, only the charge transfer resistance R ct Can be calculated accurately. Therefore, it is preferable to perform electrochemical measurement in advance using the AC impedance method.
- the corrosion current density i corr is calculated from the charge transfer resistance Rct measured by such a method based on the equation (5).
- i corr is the corrosion current density
- K is the conversion coefficient
- R ct is the charge transfer resistance.
- the conversion coefficient K is obtained in advance.
- the conversion coefficient K may be calculated based on the equation (6) by deriving the Tapel gradient from the anode and cathode polarization curves.
- ⁇ a is the anode gradient and ⁇ c is the cathode gradient.
- the corrosion rate r is derived based on the equation (7).
- r is the corrosion rate
- z is the ionic valence
- ⁇ is the density
- F is the Faraday constant
- M is the atomic weight.
- the corrosion rate calculated electrochemically as described above is stored in the record storage unit 32 for each particle size of the soil, and the corrosion amount calculation unit 31 refers to the record storage unit 32 to measure the water permeability.
- the corrosion rate corresponding to the particle size obtained from the change time measured by the part 20 may be obtained.
- the corrosion amount calculation unit 31 calculates the corrosion amount using the power law (Equation (8)) that should be known as an empirical model for predicting the progress of corrosion using the acquired corrosion rate r.
- d is the amount of corrosion
- t is the aged value of the buried metal material
- n is the evaluation value of the corrosiveness of the metal material.
- n is empirically said to be 0.4 to 0.6, an intermediate value of 0.5 may be adopted.
- FIG. 4 is an operation flow showing the processing procedure of the corrosion amount estimation device 1 of the present embodiment.
- the instruction determination unit 40 supplies the soil to the soil adjustment unit 10.
- the soil drying unit 11 dries the supplied soil (step S101).
- the soil pressurizing unit 12 applies pressure to the dried soil to crush the lumps of soil particles that have become lumps (step S102).
- the soil stirring unit 13 stirs the pressurized soil (step S103).
- the instruction determination unit 40 determines whether or not a mass of soil particles remains in the soil after stirring (step S104). When lumps are generated in the soil, the volume of the soil is relatively large. On the other hand, when the mass in the soil is finely crushed, small particles increase and the volume of the soil decreases. Therefore, the instruction determination unit 40 determines whether or not a mass of soil particles remains by using the volume of the soil or the line (height) of the soil surface of the container that accommodates the soil in the soil adjustment unit 10. You may.
- the instruction determination unit 40 measures the volume of the soil each time after stirring in step S103, and when there is no change between the volume measured in the previous step S103 and the volume measured this time (the volume has not decreased). In the case), it may be determined that no lumps of soil particles remain in the soil after stirring. Further, the instruction determination unit 40 measures the soil surface line of the container containing the soil every time after stirring in step S103, and there is no change between the line measured in the previous step S103 and the line measured this time (soil). If the surface height is not lowered), it is determined that no lumps of soil particles remain in the soil after stirring.
- step S104 NO
- the instruction determination unit 40 shifts the soil to the soil pressure unit 12, and steps S102 and step to the soil pressure unit 12 and the soil agitation unit 13. S103 is executed again.
- step S104 When it is determined that there is no lump (step S104: YES), the instruction determination unit 40 stores the agitated dry soil in the soil storage unit 22 of the water permeability measuring unit 20 (step S105).
- the water supply unit 21 supplies water to the soil of the soil storage unit 22 according to the instruction of the instruction determination unit 40 (step S106).
- the hue observation unit 25 photographs the soil from the direction of the transparent member of the soil storage unit 22 according to the instruction of the instruction determination unit 40, and the water is supplied to moisten the soil and completely change the color of the soil.
- the change time is measured (step S107).
- the corrosion estimation unit 30 estimates the amount of corrosion when the metal material is buried in the soil based on the change time (step S108).
- the corrosion amount estimation device 1 of the present embodiment described above includes a soil adjusting unit 10 for drying the target soil, a water permeability measuring unit 20 for supplying water to the dried soil and measuring the permeability of the soil. It is provided with a corrosion estimation unit 30 that estimates the amount of corrosion when the metal material is buried in the soil using the water permeability.
- water is supplied into the dry soil and the permeability of the soil is measured.
- the change time water permeability
- the change time at which the soil changes from a dry state to a wet state is observed and evaluated using the color change of the soil due to water absorption, and the change time of the metal material is used. Estimate the amount of corrosion.
- the water permeability of the soil can be measured at a site where the metal material is buried, with high portability, at low cost, and in a short time. Therefore, in the present embodiment, it is possible to easily estimate the amount of corrosion of the metal material buried in the ground.
- a general-purpose computer system as shown in FIG. 5 can be used for the instruction determination unit 40 and the corrosion estimation unit 30 of the corrosion amount estimation device 1 described above.
- the computer system shown is a CPU (Central Processing Unit, processor) 901, memory 902, storage 903 (HDD: Hard Disk Drive, SSD: Solid State Drive), communication device 904, input device 905, and output device. 906 and.
- the memory 902 and the storage 903 are storage devices.
- the functions of the instruction determination unit 40 and the corrosion estimation unit 30 are realized by executing the programs for the instruction determination unit 40 and the corrosion estimation unit 30 loaded on the memory 902 by the CPU 901.
- instruction determination unit 40 and the corrosion estimation unit 30 may be implemented by one computer or may be implemented by a plurality of computers. Further, the instruction determination unit 40 and the corrosion estimation unit 30 may be virtual machines mounted on a computer.
- the programs for the instruction determination unit 40 and the corrosion estimation unit 30 should be stored in a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc). It can also be delivered via a network.
- a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc). It can also be delivered via a network.
- Corrosion amount estimation device 10 Soil adjustment part 11: Soil drying part 12: Soil pressurizing part 13: Soil stirring part 20: Permeability measurement part 21: Water supply part 22: Soil storage part 23: Discharge part 24: Pressure addition part 25: Hure observation unit 26: Water permeability determination unit 30: Corrosion estimation unit 31: Corrosion amount calculation unit 32: Record storage unit 40: Instruction judgment unit
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
地中に埋設された金属材料の腐食量を推定する腐食量推定装置1であって、対象とする土壌を乾燥させる土壌調整部10と、前記乾燥させた土壌に給水し、前記土壌の透水性を測定する透水測定部20と、前記金属材料が前記土壌に埋設された場合の腐食量を、前記透水性を用いて推定する腐食推定部30と、を備える。
Description
本発明は、地中に埋設された金属材料の腐食量を推定する腐食量推定装置、および腐食量推定方法に関する。
我々の生活を支えるインフラ設備は高度経済成長期以降のおよそ20年間に大量にかつ急速に整備されてきたことから、2030年には建設後50年を経過する設備が全体の半数以上を占めると言われている。そのため、今後益々増加する設備の故障に対応するために、安全性および効率性を考慮したインフラマネジメントを推進する必要がある。
これら老朽化したインフラ設備の故障を防ぐために、定期点検による保守運用が実施されている。しかしながら、目視点検は設備が地上に存在する架空設備にのみ有効であり、地中部など目視できない領域に存在する設備の点検は困難である。そのため、これら点検が困難あるいは不可能な設備については、ある一定の年数が経過したものを一律に更新する運用をせざるを得ない現状にある。
更新する年数を短くするほど故障を未然に防ぐことができ安全性を担保することができるが、まだ耐用年数ギリギリまで使用することができないため更新費用がかさみコスト上の効率性は失われてしまう。一方で、更新する年数を長くするほど設備の更新にかかる費用は抑えることができるが、劣化速度が速い環境に存在する設備の故障を見逃す危険性があり安全性の担保ができない。以上より、点検不可能領域の設備については経過年数を基準とした運用、すなわちタイムベースメンテナンスでは安全性および効率性の両立ができない。
目視点検が困難な地中設備において安全性および効率性を両立する運用方法として、設備の劣化状態に応じた運用、すなわちコンディションベースメンテナンスが挙げられる。これは環境情報などから設備の劣化を予測・推定し、劣化が進行したものから優先的に更新するという運用である。この運用方法が実現されれば、劣化進行の速い対象を見逃すことなく更新することで安全性が担保され、劣化進行の遅い対象はより長く使用することでコスト面の効率化が期待される。
地中に埋設された金属材料の劣化主要因は土壌腐食である。地中設備の劣化を予測するためには、地中埋設金属材料の腐食がどの様に進行するかを評価する必要がある。土壌中に埋設された金属材料の腐食は、基本的に大気及び水溶液中と同様にカソード反応およびアノード反応に基づき進行すると言われている(非特許文献1)。
Y. Wan, L. Ding, X. Wang, Y, Li, H. Sun and Q. Wang, Int. J. Electrochem. Sci., Vol. 8, pp.12531-12542.
地中埋設金属材料の腐食がどの様に進行するかを評価する方法として、複数候補が考えられる。1つ目は、屋外の既設設備に対して非侵襲で腐食評価を実施する方法である。しかし、地中構造物の形状が複雑になるほど非侵襲による評価が困難になり、あらゆる地中設備に適用可能な手法ではない。
2つ目は、屋外環境にサンプルを埋設し腐食を評価する曝露試験法である。この方法では、埋設するサンプルの形状・表面積・重量・厚さ等をあらかじめ規定することができるため、曝露試験前後の変化量から腐食の進行度を評価することが可能である。しかし、腐食測定が可能となるまで腐食させないといけないことから、評価するまで長時間を要することが致命的な欠点である。
3つ目は、腐食と相関の高い環境因子から腐食速度を求め、腐食推定式から腐食量を推定する方法である。材料の腐食メカニズムに基づき腐食に最も寄与する環境因子を特定し、環境因子と腐食速度の関係さえ分かれば、腐食量を推定することが可能である。地中埋設金属材料の腐食は、鉄がイオンとして溶出する酸化反応(アノード反応)と水溶液中の酸素が電子を受け取る還元反応(カソード反応)に基づき進行すると言われている。これより、腐食反応のトリガーとなる支配因子は水と酸素であると言える。よって、土壌腐食においては、土壌中の水と酸素の状態を決定する環境因子である土粒子径を測定することができれば腐食量を推定することができると考えられる。また、土粒子径と相関を有する土壌の透水性を測定することによっても、腐食量を推定することができると考えられる。
土粒子径の測定として広く利用されている手法は以下の2つが挙げられる。1つ目はJIS A 1204:2009に記載の土の粒度試験方法である。この試験は、75μm以上の粒子に対してふるい分析を、75μm以下の粒子に対して沈降分析を適用する。試験器具はJIS Z 8801-1に規定されており比較的安価であるが、試験器具個数が膨大なため可搬性が低く、測定にも長い時間を要する。
土粒子径の2つ目の測定方法は、レーザー回折/散乱式粒度分析法である。この分析法では、測定に要する時間は短く、分析に必要な土壌の量は少量でよく、分析に用いる装置も持ち運びに差し支えないサイズである。しかしながら、前記装置は精密機器であるが故に高価であり、誰もが容易に入手することができない。
また、土壌の透水性を測定する手法は定水位透水測定法、変水位透水測定法、フローポンプ透水測定法等が挙げられ、いずれにおいてもある一定の圧力を加えることで土壌中にどの程度水が流れたかを評価する手法である。これらの測定法に用いる装置は、比較的小型であるため可搬性があり、安価であるため比較的容易に入手できるが、土粒子径が数μmである難透水性土壌に適用した場合、水が土壌中をほとんど浸透しないために測定に非常に長い時間を要する。
本発明はこれら課題に鑑みてなされたものであり、地中に埋設された金属材料の腐食量を、より高い可搬性および経済性で、短時間に推定可能な技術を提供することを目的とする。
本発明の一態様は、地中に埋設された金属材料の腐食量を推定する腐食量推定装置であって、対象とする土壌を乾燥させる土壌調整部と、前記乾燥させた土壌に給水し、前記土壌の透水性を測定する透水測定部と、前記金属材料が前記土壌に埋設された場合の腐食量を、前記透水性を用いて推定する腐食推定部と、を備える。
本発明の一態様は、腐食量推定装置が行う、地中に埋設された金属材料の腐食量を推定する腐食量推定方法であって、対象とする土壌を乾燥させる調整ステップと、前記乾燥させた土壌に給水し、前記土壌の透水性を測定する測定ステップと、前記金属材料が前記土壌に埋設された場合の腐食量を、前記透水性を用いて推定する推定ステップと、を行う。
本発明によれば、地中に埋設された金属材料の腐食量を、より高い可搬性および経済性で、短時間に推定可能な技術を提供することができる。
土壌環境は固相・液相・気相の三相が共存する複雑な環境である。土壌中に埋設された金属材料の腐食は、基本的に大気及び水溶液中と同じ下記式(1)および(2)の反応に基づき進行すると言われている(非特許文献1)。
Fe→Fe2++2e- (1)
O2+2H2O+4e-→4OH- (2)
O2+2H2O+4e-→4OH- (2)
上記の(1)式はカソード反応であり、鉄がイオン化することで金属材料の部材厚が減少する。(2)式はアノード反応であり、水中の溶存酸素が電子を受け取り水酸化物イオンが生成する。これら式から、腐食反応が進行するためには金属表面に水と酸素が必要であることが分かる。
また固相として土粒子が介在することが土壌腐食の最たる特徴である。すなわち、固相である土粒子の間隙を液相と気相が競合しており、腐食に必要な水と酸素が金属表面にどの様な状態で存在するかによって腐食の進み方が決定される。腐食の反応場、すなわち金属表面と水が接する表面積は、土粒子と金属が接する表面積に依存している。さらに、金属表面と土粒子の細い間隙に毛細管現象で捕捉された水がどのくらいの時間滞留するかは、水にかかる毛管力に依存しており、これは土粒子の大きさで決まる。
また、土壌中の酸素については、土粒子間隙中の気相を酸素ガスとして拡散したのち液相に到達し、溶存酸素として金属表面まで拡散する。土壌のような多孔質体中では、固相として存在する土粒子によって酸素の拡散が阻害される。そのため、酸素の拡散距離は屈曲度と相関関係がある。屈曲度とは拡散経路の複雑さを表す指標であり、屈曲度の小さい多孔質体の拡散経路は屈曲度の大きいものと比べて直線的となり溶存酸素の拡散経路は短くなる。従って、屈曲度は土粒子の詰まり方で変化し、土の詰まり方は主に土粒子径に依存する。
以上より、腐食の発生トリガーとして重要な役割を果たす水と酸素の双方に影響するパラメータとして土粒子径が土壌腐食にとって相関の高い環境因子である。従って、土粒子径を知ることができれば土壌腐食を推定することができる。
土粒子径の測定として広く利用されている手法は以下の2つが挙げられる。1つ目はJIS A 1204:2009に記載の土の粒度試験方法である。JISに記載の土の粒度試験方法では、75μm以上の粒子はふるい分析を、75μm未満の粒子は沈降分析を適用しなければならず、結果が得られるまで長時間を要する。また、分析には500mL超の土壌サンプルを必要とする。主な試験器具はJIS Z 8801-1に規定する金属製網ふるい及び浮ひょうである。使用する金属製網ふるいはおよそ内径200mm、深さ60mmと比較的小型かつ数万円と安価であるものの、目開き75μm、106μm、250μm、425μm、850μm、2mm、4.75mm、9.5mm、19mm、26.5mm、37.5mm、53mm及び75mmのものを用意する必要があり可搬性が低い。
2つ目は、レーザー回折/散乱式粒度分析法である。レーザー回折/散乱式粒度分析法では、測定に要する時間は数十秒と短時間であり、分析に必要な土壌の量は数十mg~数gと少量の土壌を採取できれば良いという点に優れている。本分析に用いる装置は従来大型であることが多かったが、近年小型化が進み、最も小さい機種で幅300mm、奥行420mm、高さ400mmと持ち運びに差し支えないサイズである。加えて、測定に要する時間は数十秒と非常に短い時間で実行が可能である。しかしながら、前記装置は精密機器であるが故におよそ数百万円と高価であり、誰もが容易に入手することができない。
土粒子は土壌中の液相・気相が存在することのできる間隙構造を形作っている。土粒子径が異なる土壌では間隙構造も異なることから、水または酸素の拡散挙動やみかけの拡散速度に影響を与える。ゆえに、土粒子の間隙を拡散する水の挙動、すなわち土壌の透水性は土粒子径と高い相関があると知られている。
土壌の透水性を測定する方法は定水位透水測定法、変水位透水測定法、フローポンプ透水測定法等が挙げられる。定水位法透水測定法は、容器に収容した土壌に一定の水位差を与え、単位時間当たりの透水量を測定することでダルシーの式から透水係数Kを算出する方法である。前記方法は土壌の透水性を容易に測定可能であることが特徴であるが、細かい土粒子を含む難透水性土壌の場合、高い動水勾配を設けたとしても水が透水せず、測定が長期間に及ぶ。
変水位透水測定は、ある微小時間内で土壌中に水が浸透することで低下する水位の変化を測定する方法である。前記方法に難透水性土壌を適用する場合においても、高い動水勾配を設けたとしても水が透水せず測定に長時間を必要とする。
フローポンプ透水測定法は、土壌水の微小流量を外部から一定に制御し、その圧力を直接計測することで透水係数を測定する。前記方法によると、流量が10-7cm3/s程度であれば市販のシリンジを使用することができるため容易に実施することが可能である。しかしながら、流体の体積計測の分解力は10-3cm3であるため、難透水性土壌の透水測定には非常に長い時間を必要とする。
本実施形態では、乾燥した土壌中に水を供給し、土壌が乾燥状態から湿潤状態に変化する時間を、吸水に伴う土壌の色変化を観測・評価することで、金属材料が埋設されている現場で、土壌の透水性を可搬性高く、低コストで、かつ短時間に測定する。これにより、本実施形態では、地中に埋設された金属材料の腐食量を簡便に推定することが可能となる。
以下、本発明の実施の形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付与する。
図1は、本実施形態の腐食量推定装置1の構成を模式的に示す機能ブロック図である。腐食量推定装置1は、地中(土壌)に埋設された金属材料の腐食量を推定する装置である。図1に示す腐食量推定装置1は、土壌調整部10と、透水測定部20と、腐食推定部30と、指示判定部40とを少なくとも一つずつ備える。
図2は、図1に示す本実施形態の腐食量推定装置1の詳細な構成例を、模式的に示す機能ブロック図である。図2に示す腐食量推定装置1の土壌調整部10は、透水測定部20での透水測定の前に、指示判定部40からの指示に従って、対象とする土壌(回収土壌)を乾燥させるなどの前処理を実施し、土壌を調整する。
図示する土壌調整部10は、土壌乾燥部11と、土壌加圧部12と、土壌撹拌部13とを少なくとも一つずつ含む。
土壌乾燥部11は、回収した土壌中に含まれる水分をすべて蒸発させ、乾燥させる工程を実施する。土壌乾燥部11での土壌の乾燥方法は、例えば高温環境に曝す、シリカゲルを使用した乾燥環境での静置、真空ポンプの吸引等が挙げられる。土壌乾燥方法は、土壌中の水分をすべて飛ばすことのできる手法であれば、前記の方法に限定されない。ただし、高温環境に曝すと土壌に含まれる有機成分が破壊され、土壌本来が有する特徴を失う可能性がある。このため、土壌乾燥工程は、タンパク質が変性し始める60℃以下の環境で実施するのが好ましい。
土壌加圧部12は、土壌乾燥部11で乾燥した土壌に対して圧力を加え、固着した土粒子の塊が粉末状になるまで粉砕する工程を実施する。土壌加圧工程の実施方法として、例えば機械を用いて一定圧力でプレスする、真空ポンプにて減圧する等が挙げられる。土壌加圧方法は、土粒子の塊が粉末状になる手法であれば前記の方法に限定されない。ただし、圧力が高すぎると土粒子自体が粉砕される可能性があるため注意する。
土壌撹拌部13は、土壌加圧部12で粉末状になった土壌を均一になるまで撹拌する工程を実施する。また、土壌撹拌部13は、土壌加圧部12で残留した土粒子の塊をほぐす機能も兼ねる。土壌の撹拌方法は、粉末状の土壌が均一状態になる手段であれば限定されるものではない。例えば、二本の棒状の物体を円形にかき回しても良いし、食品工場等で採用される自動撹拌機と同様の機構を採用しても良い。ただし、撹拌機の材料は錆びにくい材料、例えばステンレスやプラスチック製のものを採用するのが好ましい。
透水測定部20は、水を含まない乾燥させた土壌に給水し、土壌の透水性を測定する。本実施形態では、透水測定部20は、画像解析により、土壌の色が吸水により湿潤後の色に全て変化するまでの変化時間を透水性として測定(評価)する。すなわち、透水測定部20は、土壌調整部10で乾燥させた粉末状の土壌に水を加えることで、土壌が吸水するに伴い色が変化する変化時間で土壌の透水性を測定する。
土壌中の水は土粒子間隙を伝って拡散することから、土粒子の間隙構造が重要なパラメータとなる。土壌調整部10での処理が不十分、すなわち土粒子の塊が残留している場合、測定対象土壌が本来有する透水性を正しく評価することができないことに加え、土粒子の塊に起因する測定容器と土粒子間で隙間が形成されてしまうと、前記隙間を伝って水が透水した結果透水性を過大評価してしまう恐れがある。透水測定部20で得られる結果の信頼性を担保するために、土壌調整部10での工程が確実に達成されるよう念入りに実施することが好ましい。
図示する透水測定部20は、給水部21と、土壌収容部22と、排出部23と、圧力添加部24と、色相観測部25と、透水判定部26とを少なくとも一つずつ含む。土壌収容部22には、土壌調整部10で調整された土壌が収容される。
給水部21は、指示判定部40からの指示に従って、土壌収容部22に収容された乾燥土壌に水を供給する。給水部21が給水する水は任意の水であるが、透水測定を行う土壌と同じ種類の土壌から抽出した土壌水を用いるのが好ましい。仮に蒸留水を用いた場合、土壌収容部22に収容された土壌中の化学成分が流出し、土本来が有する特徴を損なう恐れがあることに注意する。
また、給水部21による給水方法は任意である。ただし、給水時に高い圧力が加わると乾燥土壌の上面が乱れることで正しい結果が得られない可能性があるため、例えば雨を模擬した液滴状の水を供給する等の方法を採用するのが好ましい。
また、水の供給量は任意に定めて良いが、土壌において固相の占める割合が50%、液相と気相の占める割合が50%であり、液相と気相の占める割合は競合していることから、液相+気相において液相の占める割合が100%となるように水を供給してもよい。すなわち、導入した土壌に対し体積含水率が50%となるよう水を供給しても良い。なお、給水部21は、透水測定が終了し土壌収容部22に収容された土壌を外部に排出した後に、土壌収容部22に付着した土壌を洗浄するために水を供給する役割も担う。
土壌収容部22は、土壌調整部10で調整された粉末状の乾燥土壌を収容する容器である。土壌収容部22は、土壌の色変化を観測(撮影)できるように側面のうち少なくとも1面は透明な材料で構成される。土壌収容部22の材料は、上記条件が満たされる場合、任意の材料を用いても良い。ただし、透水測定時に腐食する懸念を有する金属材料は避けるのが好ましい。
土壌収容部22の形状は、JIS A 1218:2009に記載の土の透水試験方法に準拠して円筒状の容器を使用しても良い。JIS A 1218:2009に記載に従って、円筒の内径及び長さは使用する土壌の最大粒子径の10倍以上としても良い。また、粒子径の幅が広い場合は、円筒の内径及び長さは、最大粒子径の5倍までを許容可能としてもよい。もしくは、JIS A 1218:2009に準拠し、内径100mm、長さ120mmとしても良い。
透水測定が終了した土壌収容部22の土壌は、指示判定部40からの指示に従って、排出部23に移動され、腐食量推定装置1の外部へと排出される。排出部23は、土壌収容部22と隣接した容器でも良いし、土壌収容部22の端面に設置された排出口、排出弁など土壌収容部22に付属する排出機構であってもよい良い。排出部23は、透水測定が終了した土壌収容部22の土壌が、腐食量推定装置1の外部に排出される機能を有していれば、形状及び構造は前記のものに限定されない。
圧力添加部24は、指示判定部40からの指示に従って、土壌収容部22の土壌に所定の圧力を添加する。圧力添加部24は、土壌収容部22に土壌を収容する工程、給水部21による給水工程、および、排出部23による排出工程で作動する。土壌調整部10で調整された乾燥土壌を土壌収容部22に収容する際、圧力添加部24が土壌収容部22の土壌に所定の圧力を添加することで、土壌を隙間なく収容することが可能となる。ただし、測定条件を一定にするために、別の土壌を使用する際も同様の圧力を添加することが好ましい。
給水部21が土壌収容部22に効率よく水を供給する際も、圧力添加部24が土壌収容部22の土壌に所定の圧力を添加してもよい。また、透水測定が終了した後、排出部23を通して腐食量推定装置1の外部に土壌を排出する工程を効率良く行うために、圧力添加部24が減圧してもよい。これにより、土壌排出工程を支援することができる。
色相観測部25は、指示判定部40からの指示に従って、土壌収容部22に収容された土壌を撮像(観測)する。すなわち、色相観測部25は、吸水に伴う土壌の色の変化を撮像する。色相観測部25は、例えばCCDカメラ、CMOSカメラなどの映像(動画)を撮影する撮像装置である。色相観測部25は、土壌収容部22の透明な材料の面から、土壌収容部22の土壌を撮像し、撮像した映像を透水判定部26に出力する。
図3は土壌収容部22の乾燥土壌に給水し、土粒子間隙を水が拡散するに伴い土が湿潤し、土の色が経時的に変化する様子を示す模式図である。図示するように、給水前の土壌収容部22には乾燥土壌のみが収容されている。給水開始後は、吸水により土壌が徐々に湿潤し、土壌収容部22には、乾燥土壌と湿潤土壌とが含まれる。そして、土壌収容部22の土壌は、全て湿潤土壌となる。
一般的に用いられる透水試験法を難透水性土壌に適用した場合、数十時間と非常に長い時間を必要とする。これに対し、図3に示すような本実施形態による土の色の経時変化は、難透水性土壌においても数分~数十分と比較的短い時間で測定が可能である点で優れている。
透水判定部26は、色相観測部25から出力される映像を用いて、土壌収容部22に収容された乾燥土壌が、吸水によって湿潤土壌に完全に変化するまでに要した時間を測定する。具体的には、透水判定部26は、土壌収容部22の土壌の映像を、色(色相、色調)を用いて画像解析し、土壌の色が吸水により湿潤後の色に全て変化するまでの変化時間を測定し、透水性として評価する。
例えば、透水判定部26は、給水開始前の土壌収容部22に収容された乾燥土壌の画像(RGBカラー画像)を色相観測部25から取得し、当該乾燥土壌の色を図示しない記憶部に記憶しておく。そして、透水判定部26は、色相観測部25から出力される映像の各フレームを画像解析することで、土壌収容部22の土壌の色が、乾燥土壌の色から湿潤土壌の色に全て変化するまでの時間を取得する。具体的には、透水判定部26は、色相観測部25から出力された映像において、湿潤土壌に変化した色が占める割合が100%となった時点(乾燥土壌の色がなくなった時点)を判定し、給水部21が給水を開始してから土壌が完全に湿潤するまでの時間を取得する。
常に同じ条件で土の色の変化時間を判断可能な方法であれば、前記の方法に限定されない。なお、透水判定部26は、乾燥土壌の画像の代わりに、標準土壌帖406色を記憶部(不図示)に記憶しておき、標準土壌帖406色のいずれかの色を乾燥土壌の色として用いてもよい。
なお、色相観測部25および透水判定部26を備える代わりに、例えば人が肉眼で土壌の色変化を観測し、給水開始から土壌収容部22の土壌がすべて湿潤土壌となるまでの時間を計測してもよい。
腐食推定部30は、金属材料が土壌収容部22の土壌に埋設された場合の腐食量を、土壌が乾燥状態から湿潤状態に変化する変化時間(透水性)を用いて推定する。本実施形態では、腐食推定部30は、変化時間を用いて土壌の粒子径を算出し、粒子径に基づいて金属材料の腐食量を推定する。
図示する腐食推定部30は、腐食量計算部31と、記録保管部32とを少なくとも一つずつ含む。記録保管部32は、透水測定部20が測定した変化時間から透水係数を、透水係数から土粒子径を、土粒子径から腐食量を算出するために必要な計算式、データ等が格納されている。腐食量計算部31は、記録保管部32に保存された各種計算式、データを用いて、透水測定部20での変化時間から腐食量を推定する。
腐食量を推定する方法として、例えば、腐食量計算部31は、透水測定部20による変化時間と透水係数との関係を予め検量線等を用いて求めて記録保管部32に記憶しておき、前記関係から透水係数kを取得しても良い。土壌中の透水は、土粒子間隙中の水の流れやすさと密接に関連し、この水の流れやすさを示す指標が透水係数kである。
そして、腐食量計算部31は、例えば、透水係数kと粒子径との関係として良く知られるHazen式(式(3))、もしくはCreager式(式(4))等を用いて粒子径を算出する。
ここで、kは透水係数、deは平均粒子径、d20は20%粒子径である。20%粒子径については、粒度分布測定を実施すると累積分布曲線(縦軸:頻度,横軸:粒子径)が取得でき、縦軸の頻度が20%のときの粒子径が20%粒子径に相当する。
次に、腐食量計算部31は、例えば、土の粒子径と腐食速度との関係を予め求めて記録保管部32に記憶しておき、前記関係を用いて算出した粒子径に対応する腐食速度を取得してもよい。
電気化学的に腐食速度を算出する方法として、腐食進行に伴う反応抵抗(電荷移動抵抗Rct)を測定する手法が一般的に用いられている。電気化学的手法として、例えば直流分極抵抗法、あるいは交流インピーダンス法を用いても良い。
直流分極抵抗法における測定は、自然電位を基準に金属表面を荒らさない範囲で、かつ得られる電流-電位特性から抵抗値の算出が可能な電位範囲で直流電位の掃引を実施する。例えば、電気化学測定において金属表面への影響が小さいと考えられている交流インピーダンス法における印加電位である±5 [mV]で実施しても良い。電荷移動抵抗Rctは、得られた電流-電位特性の傾きから算出する。傾きの算出方法は、例えば最小二乗法を用いても良いし、外挿法を用いても良い。
交流インピーダンス法における測定は、高周波数から低周波数に向かって実施し、高周波領域及び低周波領域それぞれに円弧が出現する。電荷移動抵抗Rctは低周波領域の円弧に由来すると考えられるため、前記低周波領域の円弧の開始点から終着点までの横軸(インピーダンス実部, Z‘ [Ω・cm2])の値から電荷移動抵抗Rctを算出する。交流印加電位は金属表面への影響が小さいと考えられている±5 [mV]で実施するのが好ましい。
なお、直流分極抵抗法で得られる電荷移動抵抗Rctは、測定系全体の抵抗値が算出されるため、土壌サンプル中の測定において電荷移動抵抗Rctに対して土壌抵抗の値が無視できないほど大きく現れる可能性が考えられる。一方で、交流インピーダンス法では、印加電位の周波数によって測定される抵抗値を分離することが可能であり、低周波領域の円弧は電荷移動抵抗Rctのみを反映するため、電荷移動抵抗Rctのみを正確に求めることができる。したがって、交流インピーダンス法用いて、あらかじめ電気化学測定を行うことが好ましい。
このような方法で測定した電荷移動抵抗Rctから式(5)に基づき腐食電流密度icorrが計算される。
ここで、icorrは腐食電流密度、Kは換算係数、Rctは電荷移動抵抗である。ここで、換算係数Kは予め求めておく。換算係数Kは、アノード及びカソード分極曲線からTafel勾配を導いて式(6)に基づいて算出しても良い。
βaはアノード勾配、βcはカソード勾配である。もしくは、ターフェル勾配測定することなくβa = βc =0.1と仮定し、換算係数Kを算出しても良い。
式(7)に基づいて腐食速度rが導出される。ここで、rは腐食速度、zはイオン価数、ρは密度、Fはファラデー定数、Mは原子量である。
記録保管部32には、上述のように電気化学的に算出した腐食速度が、土の粒子径毎に記憶されており、腐食量計算部31は、記録保管部32を参照して、透水測定部20が測定した変化時間から求めた粒子径に対応する腐食速度を取得してもよい。
そして、腐食量計算部31は、取得した腐食速度rを用いて腐食進展を予測する経験モデルとして知られるべき乗則((8)式)を用いて、腐食量を算出する。
ここで、dは腐食量、tは埋設金属材料の経年、nは金属材料の腐食性評価値である。ただし、nの値については経験的に0.4~0.6と言われているため、その中間値である0.5を採用しても良い。
図4は、本実施形態の腐食量推定装置1の処理手順を示す動作フローである。先ず、ユーザの指示を受け付けて、指示判定部40は、土壌調整部10に土壌を供給する。土壌乾燥部11は、供給された土壌を乾燥させる(ステップS101)。土壌加圧部12は、乾燥させた土壌に圧力を加え、ダマになった土粒子の塊を粉砕する(ステップS102)。
土壌撹拌部13は、加圧された土壌を撹拌する(ステップS103)。指示判定部40は、撹拌後の土壌の中に土粒子の塊が残留しているか否かを判定する(ステップS104)。土壌中に塊が発生していると、土壌としての体積は比較的大きい。一方、土壌中の塊が細かく砕かれた状態では小粒子が増え土壌の体積は減る。そのため、指示判定部40は、土壌の体積または、土壌調整部10で土壌を収容する容器の土表面のライン(高さ)を用いて、土粒子の塊が残留しているか否かを判定してもよい。
具体的には、指示判定部40は、ステップS103の撹拌後に土壌の体積を毎回測定し、前回のステップS103で測定した体積と、今回測定した体積とに変化がない場合(体積が減っていない場合)、撹拌後の土壌の中に土粒子の塊が残留していないと判定してもよい。また、指示判定部40は、土壌を収容する容器の土表面のラインをステップS103の撹拌後に毎回測定し、前回のステップS103で測定したラインと、今回測定したラインとに変化がない場合(土表面の高さ下がっていない場合)、撹拌後の土壌の中に土粒子の塊が残留していないと判定する。
塊が残留していると判定した場合(ステップS104:NO)、指示判定部40は、当該土壌を土壌加圧部12へ移行し、土壌加圧部12および土壌撹拌部13にステップS102およびステップS103を再度実行させる。
塊が無いと判定した場合(ステップS104:YES)、指示判定部40は、撹拌した乾燥土壌を透水測定部20の土壌収容部22に収容する(ステップS105)。給水部21は、指示判定部40の指示にしたがって、土壌収容部22の土壌に水を供給する(ステップS106)。
色相観測部25は、指示判定部40の指示にしたがって、土壌収容部22の透明な部材の方向から土壌を撮影し、水が供給されることで土壌が湿潤し、土の色が完全に変化するまでの変化時間を測定する(ステップS107)。腐食推定部30は、変化時間に基づいて金属材料が当該土壌に埋設された場合の腐食量を推定する(ステップS108)。
以上説明した本実施形態の腐食量推定装置1は、対象とする土壌を乾燥させる土壌調整部10と、前記乾燥させた土壌に給水し、前記土壌の透水性を測定する透水測定部20と、前記金属材料が前記土壌に埋設された場合の腐食量を、前記透水性を用いて推定する腐食推定部30と、を備える。
このように本実施形態では、乾燥した土壌中に水を供給し、土壌の透水性を測定する。具体的には、本実施形態では、土壌が乾燥状態から湿潤状態に変化する変化時間(透水性)を、吸水に伴う土壌の色変化を用いて観測・評価し、当該変化時間から金属材料の腐食量を推定する。
これにより、本実施形態では、金属材料が埋設されている現場で、土壌の透水性を可搬性高く、低コストで、かつ短時間に測定することができる。したがって、本実施形態では、地中に埋設された金属材料の腐食量を簡便に推定することが可能となる。
上記説明した腐食量推定装置1の指示判定部40および腐食推定部30には、例えば、図5に示すような汎用的なコンピュータシステムを用いることができる。図示するコンピュータシステムは、CPU(Central Processing Unit、プロセッサ)901と、メモリ902と、ストレージ903(HDD:Hard Disk Drive、SSD:Solid State Drive)と、通信装置904と、入力装置905と、出力装置906とを備える。メモリ902およびストレージ903は、記憶装置である。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされた指示判定部40および腐食推定部30用のプログラムを実行することにより、指示判定部40および腐食推定部30の機能が実現される。
また、指示判定部40および腐食推定部30は、1つのコンピュータで実装されてもよく、あるいは複数のコンピュータで実装されても良い。また、指示判定部40および腐食推定部30は、コンピュータに実装される仮想マシンであっても良い。
指示判定部40および腐食推定部30用のプログラムは、HDD、SSD、USB(Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶することも、ネットワークを介して配信することもできる。
なお、本発明は上記実施形態および変形例に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
1 :腐食量推定装置
10:土壌調整部
11:土壌乾燥部
12:土壌加圧部
13:土壌撹拌部
20:透水測定部
21:給水部
22:土壌収容部
23:排出部
24:圧力添加部
25:色相観測部
26:透水判定部
30:腐食推定部
31:腐食量計算部
32:記録保管部
40:指示判定部
10:土壌調整部
11:土壌乾燥部
12:土壌加圧部
13:土壌撹拌部
20:透水測定部
21:給水部
22:土壌収容部
23:排出部
24:圧力添加部
25:色相観測部
26:透水判定部
30:腐食推定部
31:腐食量計算部
32:記録保管部
40:指示判定部
Claims (4)
- 地中に埋設された金属材料の腐食量を推定する腐食量推定装置であって、
対象とする土壌を乾燥させる土壌調整部と、
前記乾燥させた土壌に給水し、前記土壌の透水性を測定する透水測定部と、
前記金属材料が前記土壌に埋設された場合の腐食量を、前記透水性を用いて推定する腐食推定部と、
を備える腐食量推定装置。 - 請求項1記載の腐食量推定装置であって、
前記透水測定部は、画像解析により、前記土壌の色が吸水により湿潤後の色に全て変化するまでの変化時間を前記透水性として測定し、
前記腐食推定部は、前記変化時間を用いて前記土壌の粒子径を算出し、前記粒子径に基づいて前記金属材料の腐食量を推定する
腐食量推定装置。 - 腐食量推定装置が行う、地中に埋設された金属材料の腐食量を推定する腐食量推定方法であって、
対象とする土壌を乾燥させる調整ステップと、
前記乾燥させた土壌に給水し、前記土壌の透水性を測定する測定ステップと、
前記金属材料が前記土壌に埋設された場合の腐食量を、前記透水性を用いて推定する推定ステップと、
を行う腐食量推定方法。 - 請求項3記載の腐食量推定方法であって、
前記測定ステップは、画像解析により、前記土壌の色が吸水により湿潤後の色に全て変化するまでの変化時間を前記透水性として測定し、
前記推定ステップは、前記変化時間を用いて前記土壌の粒子径を算出し、前記粒子径に基づいて前記金属材料の腐食量を推定する
腐食量推定方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/777,156 US20220390354A1 (en) | 2019-11-19 | 2019-11-19 | Corrosion Amount Estimation Apparatus and Corrosion Amount Estimation Method |
JP2021558074A JP7343809B2 (ja) | 2019-11-19 | 2019-11-19 | 腐食量推定装置および腐食量推定方法 |
PCT/JP2019/045256 WO2021100117A1 (ja) | 2019-11-19 | 2019-11-19 | 腐食量推定装置および腐食量推定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/045256 WO2021100117A1 (ja) | 2019-11-19 | 2019-11-19 | 腐食量推定装置および腐食量推定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021100117A1 true WO2021100117A1 (ja) | 2021-05-27 |
Family
ID=75981443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045256 WO2021100117A1 (ja) | 2019-11-19 | 2019-11-19 | 腐食量推定装置および腐食量推定方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220390354A1 (ja) |
JP (1) | JP7343809B2 (ja) |
WO (1) | WO2021100117A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023073751A1 (ja) * | 2021-10-25 | 2023-05-04 | 日本電信電話株式会社 | 腐食推定方法および装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021145010A1 (ja) * | 2020-01-15 | 2021-07-22 | 日本国土開発株式会社 | 回転式破砕装置 |
CN116381187B (zh) * | 2023-02-15 | 2023-11-07 | 国传(山东)科技发展有限公司 | 一种基于5g网络远程控制的土壤酸度实时监测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011075477A (ja) * | 2009-10-01 | 2011-04-14 | Jfe Steel Corp | 模擬土壌を用いた土壌腐食試験方法 |
WO2019225664A1 (ja) * | 2018-05-23 | 2019-11-28 | 日本電信電話株式会社 | 腐食量推定装置および腐食量推定方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5344781A (en) * | 1991-04-17 | 1994-09-06 | International Lubrication And Fuel Consultants | Detection and prevention of hydrocarbon leakage from underground storage tanks |
US9354157B2 (en) * | 2013-12-30 | 2016-05-31 | Electric Power Research Institute, Inc. | Apparatus and method for assessing subgrade corrosion |
CN105738274A (zh) * | 2016-03-22 | 2016-07-06 | 全球能源互联网研究院 | 一种用于模拟加速金属材料土壤环境腐蚀的检测方法 |
-
2019
- 2019-11-19 WO PCT/JP2019/045256 patent/WO2021100117A1/ja active Application Filing
- 2019-11-19 US US17/777,156 patent/US20220390354A1/en active Pending
- 2019-11-19 JP JP2021558074A patent/JP7343809B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011075477A (ja) * | 2009-10-01 | 2011-04-14 | Jfe Steel Corp | 模擬土壌を用いた土壌腐食試験方法 |
WO2019225664A1 (ja) * | 2018-05-23 | 2019-11-28 | 日本電信電話株式会社 | 腐食量推定装置および腐食量推定方法 |
Non-Patent Citations (4)
Title |
---|
MINETA, SHINGO ET AL.: "Risk assessment of outdoor telecommunication facilities based on deterioration mechanisms", NTT GIJUTSU JOURNAL, vol. 29, no. 11, November 2017 (2017-11-01), pages 19 - 23 * |
OHKI SHOTA ET AL.: "Corrosion rate of steel in soil of different particle size distribution", PROCEEDINGS OF THE 64TH ZAIRYO-TO-KANKYO SYMPOSIUM, vol. 64, 18 October 2017 (2017-10-18), pages 85 - 86 * |
OHKI SHOTA ET AL.: "Effects of soil particle size and water content on corrosion rate of carbon steel in soil", ZAIRYO-TO-KANKYO, vol. 67, no. 3, 15 March 2018 (2018-03-15), pages 118 - 120 * |
TSUNODA SATOMI ET AL.: "Some problems for evaluating soil aggressivity - 4. soil composition and water content", BOSHOKU GIJUTSU, vol. 36, no. 3, 1987, pages 168 - 177 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023073751A1 (ja) * | 2021-10-25 | 2023-05-04 | 日本電信電話株式会社 | 腐食推定方法および装置 |
Also Published As
Publication number | Publication date |
---|---|
US20220390354A1 (en) | 2022-12-08 |
JPWO2021100117A1 (ja) | 2021-05-27 |
JP7343809B2 (ja) | 2023-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021100117A1 (ja) | 腐食量推定装置および腐食量推定方法 | |
JP6850766B2 (ja) | 腐食量推定装置および腐食量推定方法 | |
US11821817B2 (en) | Electrode, corrosion analysis device, and corrosion analysis method | |
JP6712543B2 (ja) | 腐食量推定装置とその方法 | |
Crawford et al. | The relation between the moisture‐release curve and the structure of soil | |
Mouanga et al. | Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part II: Electrochemical analyses | |
CN103091226A (zh) | 一种检测饱和土孔隙率装置及方法 | |
JP2020051894A (ja) | 腐食性評価装置とその方法 | |
Tanner et al. | The effects of soil properties and aggregation on sensitivity to erosion by water and wind in two Mediterranean soils | |
KR101135977B1 (ko) | 후광산란법을 이용한 콘크리트의 공극측정방법 | |
Lim et al. | Influence of matric suction on resilient modulus and CBR of compacted Ballina clay | |
KR101128455B1 (ko) | 후광산란법을 이용한 콘크리트의 수화도 측정방법 | |
JP6793108B2 (ja) | 腐食量推定装置とその方法 | |
JP7201947B2 (ja) | 腐食評価支援装置および腐食評価支援方法 | |
JP7405254B2 (ja) | 腐食推定装置および方法 | |
Vanapalli et al. | Interpretation of undrained shear strength of unsaturated soils in terms of stress state variables | |
Van Steen et al. | X-ray computed tomography for the detection of corrosion-induced damage at the reinforcement-concrete interface | |
CN105572056B (zh) | 一种测量土壤含水特性的装置及方法 | |
WO2023223413A1 (ja) | 腐食推定装置および方法 | |
Rubio et al. | The size of colon polyps revisited: intra-and inter-observer variations | |
WO2021240637A1 (ja) | 粒子径分布測定方法および装置 | |
Dai et al. | The variation of uranium tailings impoundment cover fissures and radon exhalation under the continuous heat and insolation conditions | |
Berejnov et al. | Advances in structural characterization using soft x-ray scanning transmission microscopy (STXM): Mapping and measuring porosity in PEM-FC catalyst layers | |
Jones et al. | Service life modeling of reinforced high volume fly ash (HVFA) concrete structures containing cracks | |
Dafter et al. | Prediction of long-term corrosion in soils using electrochemical tests |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19953014 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021558074 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19953014 Country of ref document: EP Kind code of ref document: A1 |