WO2021098841A1 - 激光光源 - Google Patents

激光光源 Download PDF

Info

Publication number
WO2021098841A1
WO2021098841A1 PCT/CN2020/130580 CN2020130580W WO2021098841A1 WO 2021098841 A1 WO2021098841 A1 WO 2021098841A1 CN 2020130580 W CN2020130580 W CN 2020130580W WO 2021098841 A1 WO2021098841 A1 WO 2021098841A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
laser
end surface
light
chip
Prior art date
Application number
PCT/CN2020/130580
Other languages
English (en)
French (fr)
Inventor
郑兆祯
陈长安
Original Assignee
深圳市中光工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中光工业技术研究院 filed Critical 深圳市中光工业技术研究院
Publication of WO2021098841A1 publication Critical patent/WO2021098841A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers

Definitions

  • the present invention relates to the field of optical technology, in particular to a laser light source.
  • the all-solid-state laser pumped by a semiconductor laser is a new type of laser that appeared in the late 1980s. Its overall efficiency is at least 10 times higher than lamp pumping. Due to the reduced heat load per unit output, higher power can be obtained. The system life and reliability are about 100 times that of flashlamp pumping systems. Therefore, semiconductor laser pumping technology Inject new vitality and vitality into the solid-state laser. At present, semiconductor laser pumping technology has penetrated into various disciplines, such as: laser information storage and processing, laser material processing, laser medicine and biology, laser communications and military laser technology, etc., which greatly promotes technological progress and unprecedented in these fields development of.
  • the general laser chip has a relatively large divergence angle, which makes its collimation poor, which limits its application in industry.
  • the usual processing method is to install optical elements on the exit light path of the laser chip.
  • the optical elements can further reshape the non-uniformly distributed light spots to achieve the desired light distribution.
  • the reshaped light beam has a better pattern distribution and Collimation, so it can be directly applied to various fields.
  • adding optical elements means increasing the cost of the laser, and due to the high energy density distribution characteristics of the laser, the reliability of the optical element is also higher, which further increases the material cost of the optical element.
  • the purpose of the present invention is to provide a laser light source to solve the above-mentioned problems.
  • the invention provides a laser light source, which includes a supporting shaft and a first light source module.
  • the supporting shaft includes an outer peripheral surface;
  • the first light source module includes a plurality of first light source structures arranged at equal intervals around the axis of the supporting shaft, and each first light source structure includes a first heat sink substrate and a corresponding first laser
  • the first heat sink substrate includes an adjacent fixing surface and a mounting surface, the fixing surface is fixed on the outer peripheral surface along a direction parallel to the axis of the supporting shaft, and the first laser chip is arranged on the mounting surface.
  • the number of the plurality of first light source structures is four, and the included angle between the mounting surfaces of the first heat sink substrates of two adjacent first light source structures is 90°.
  • the number of the plurality of first light source structures is eight, and the included angle between the mounting surfaces of the first heat sink substrates of two adjacent first light source structures is 45°.
  • the supporting shaft further includes a first end surface and a second end surface that are parallel, the outer peripheral surface is perpendicularly connected between the first end surface and the second end surface, and the distance between the first light source module and the second end surface is greater than that of the second end surface.
  • the distance between a light source module and the first end surface is the same as the distance between a plurality of first light source structures in the first light source module and the second end surface.
  • a first cavity and a second cavity are opened in the supporting shaft, the second cavity is exposed on the second end surface, and the first cavity surrounds the second cavity.
  • the laser light source further includes a heat dissipation fan, and the heat dissipation fan is disposed on the second end surface.
  • the laser light source further includes a second light source module, the distance between the second light source module and the second end surface is smaller than the distance between the second light source module and the first end surface, and the second light source module includes a surrounding support shaft A plurality of second light source structures are arranged at equal intervals on the axis of the component, and the distance between the plurality of second light source structures in the second light source module and the second end surface is the same.
  • each second light source structure includes a second heat sink substrate and a corresponding second laser chip, and the second heat sink substrate of each second light source structure is connected to the second heat sink substrate of another second light source structure.
  • the laser chips are adjacent, and the projection of each second light source structure is located between the projections of the two first light source structures on the projection surface perpendicular to the outer peripheral surface.
  • the first laser chips in the plurality of first light source structures emit light of different primary colors to be mixed into white light
  • the laser light source further includes a driving device, which is mechanically connected to the supporting shaft for driving the supporting shaft around The axis of the support shaft rotates.
  • the first laser chip in the plurality of first light source structures includes at least one red light chip, at least one green light chip, and at least one blue light chip.
  • the first laser chip in the plurality of first light source structures includes at least two red light chips, at least two green light chips, and at least two blue light chips, and the first light source structure emitting light of the same primary color does not Adjacent.
  • the laser light source provided by the present invention integrates the first heat sink substrate and the first laser chip on the supporting shaft, and can emit light with better light distribution without the need for optical elements for light shaping. Outgoing beam.
  • Fig. 1 is a schematic structural diagram of a first laser light source provided by an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a three-dimensional structure of a first laser light source provided by an embodiment of the present invention.
  • FIG 3 is a schematic longitudinal cross-sectional view of a supporting shaft of a laser light source provided by an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a supporting shaft of a laser light source provided by an embodiment of the present invention.
  • Fig. 5 is a schematic longitudinal cross-sectional view of another supporting shaft of a laser light source provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a second laser light source provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a second laser light source provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a three-dimensional structure of a third laser light source provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a three-dimensional structure of a fourth laser light source provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a three-dimensional structure of a fifth laser light source provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a three-dimensional structure of a sixth laser light source provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a three-dimensional structure of a seventh laser light source provided by an embodiment of the present invention.
  • the laser light source 1 provided by the present invention includes a supporting shaft 10 and a first light source module 20.
  • the supporting shaft 10 includes an outer peripheral surface 14.
  • the first light source module 20 includes a plurality of first light source structures 200 arranged at equal intervals around the axis of the supporting shaft 10.
  • Each first light source structure 200 includes a first heat sink substrate 210 and a corresponding first laser chip 220.
  • the first heat sink substrate 210 includes an adjacent fixing surface 211 and a mounting surface 213.
  • the fixing surface 211 is fixed to the outer peripheral surface 14 along a direction parallel to the axis of the support shaft 10, and the first laser chip 220 is disposed on the mounting surface 213.
  • the mounting surface 213 is a curved surface with the same curvature as the outer peripheral surface 14 of the support shaft 10.
  • the plurality of first light source structures 200 are arranged in sequence along the same direction surrounding the axis of the support shaft 10, that is, the plurality of first light source structures 200 are all arranged in a clockwise direction or are all arranged in a counterclockwise direction.
  • the hour hand direction is arranged in sequence.
  • the support shaft 10 is approximately cylindrical, a wire harness can be provided on the surface of the support shaft 10 to supply power to the first laser chip 200, and the material of the support shaft 10 can be metal, resin or plastic. .
  • the supporting shaft 10 needs to have sufficient strength to support the first heat sink substrate 210, etc., and may have better heat dissipation performance, so as to quickly dissipate the heat generated by the first laser chip 220 and other light-emitting elements to the environment to prevent The accumulation of heat affects the life of the light-emitting element.
  • the supporting shaft 10 may also have other shapes such as an elliptical cylinder or a cube, which can satisfy the installation of the first heat sink substrate 210.
  • the supporting shaft 10 includes an outer peripheral surface 14 and a first end surface 11 and a second end surface 13 that are parallel, wherein the outer peripheral surface 14 is perpendicularly connected between the first end surface 11 and the second end surface 13.
  • the outer peripheral surface 14, the first end surface 11 or the second end surface 13 can all be used to fix the support shaft 10, and the outer peripheral surface 14, the first end surface 11 or the second end surface 13 can also be provided with a heat dissipation structure to increase the support shaft. 10's heat dissipation performance.
  • the structure of the support shaft 10 itself can be changed.
  • a first cavity 15 and a second cavity 16 are opened in the support shaft 10, and the first cavity 15 surrounds the second cavity 16, and the first cavity 15 Both the second cavity 16 and the second cavity 16 are exposed to the second end surface 13. That is to say, both the first cavity 15 and the second cavity 16 are recessed from the second end surface 13 to the first end surface 11 along the direction parallel to the support axis.
  • the depth of the recess is not limited, and can be 5 cm or 10 cm, or the first
  • the cavity 15 and the second cavity 16 penetrate the second end surface 13 and the first end surface 11.
  • the first cavity 15 and the second cavity 16 are in communication with each other, which can realize heat exchange between the two, and the position of the communication is not limited.
  • the heat exchange can be realized by air convection.
  • the ambient air flow enters the support shaft 10 from the second cavity 16 and flows out of the support shaft 10 through the first cavity 15 to exchange between the first cavity 15 and the second cavity. 16 realizes the circulation of the air flow, thereby quickly dissipating the heat in the supporting shaft 10 to improve the heat dissipation capacity of the supporting shaft 10.
  • the ambient air flow can also enter the support shaft 10 from the first cavity 15 and flow out of the support shaft 10 through the second cavity 16.
  • a third cavity 17 and a fourth cavity 18 that are connected to each other are opened in the support shaft 10, and the third cavity 17 surrounds the fourth cavity 18, and the third cavity Both the 17 and the fourth cavity 18 are exposed on the first end surface 11, and the heat dissipation performance of the supporting shaft 10 is further improved by opening the third cavity 17 and the fourth cavity 18.
  • the heat exchange between the first cavity 15 and the second cavity 16 can also be realized by water cooling, for example, water can be taken in from the first cavity 15 and from the second cavity
  • the body 16 discharges water, and can also quickly dissipate the heat in the supporting shaft 10.
  • ice water can also be used to quickly remove heat, so as to reduce the temperature of the support shaft 10.
  • the specific heat exchange method can be selected according to actual needs.
  • the distance between the first light source module 20 and the second end surface 13 is greater than the distance between the first light source module 20 and the first end surface 11.
  • the first light source module 20 may also be located between the first end surface 11 and the second end surface 13, or the distance between the first light source module 20 and the second end surface 13 is smaller than the first light source module 20 and the second end surface 13 The distance between one end face 11.
  • the first light source module 20 includes a plurality of first light source structures 200 arranged at equal intervals around the axis of the supporting shaft 10, the plurality of first light source structures 200 are circumferentially distributed along the axis perpendicular to the supporting shaft 10, and the plurality of first light source structures 200 The distance between a light source structure 200 and the second end surface 13 is the same.
  • the number of the first light source structure 200 may be four, five, six, eight or more.
  • the distribution of the first light source structure 200 is related to the structure of the supporting shaft 10.
  • the supporting shaft 10 is cylindrical, and the angle between the first light source structures 200 is 360/n, where n is the first light source structure The number of 200.
  • the supporting shaft 10 is in the shape of a square shaft, the number of the first light source structure 200 may be 4, and each first light source structure 200 is located on a surface; or the number of the first light source structure 200 is 8, every two The first light source structure 200 is located on a surface.
  • Each first light source structure 200 includes a first heat sink substrate 210 and a corresponding first laser chip 220.
  • the first heat sink substrate 210 is connected to the outer peripheral surface 14 of the support shaft 10 and can be used to generate the first laser chip 220. The heat is transferred to the support shaft 10.
  • the first laser chip 220 is mounted on the first heat sink substrate 210.
  • the first heat sink substrate 210 is approximately a square plate, and the first heat sink substrate 210 includes a fixing surface 211 and a mounting surface 213 adjacent to each other.
  • the mounting surface 213 can be used to mount the first heat sink substrate 210, and the included angle between any two adjacent mounting surfaces 213 is the same, and the included angle is related to the number of the first light source structures 200.
  • the number of the plurality of first light source structures 200 is four.
  • the angle between the mounting surfaces 213 of the first heat sink substrate 210 of two adjacent first light source structures 200 is 90°.
  • the number of the plurality of first light source structures 200 is eight. As shown in FIG.
  • the angle between the mounting surfaces 213 of the first heat sink substrate 210 of two adjacent first light source structures 200 is 45°.
  • the fixing surface 211 is fixed to the outer peripheral surface 14 along the direction parallel to the axis of the support shaft 10, and the fixing method can be welding or bonding. Specifically, it can be selected according to the material of the support shaft 10 and the first heat sink substrate 210 or actual requirements. set. In other embodiments, the first heat sink substrate 210 may also be integrally formed with the support shaft 10 to improve the connection strength between the first heat sink substrate 210 and the support shaft 10.
  • the intensity distribution of the emitted light from a single first laser chip 220 is a non-uniform distribution including a long axis direction and a short axis direction, and the emitted light has a large divergence angle, which makes the collimation of the emitted light poor.
  • the first laser chip 220 is disposed on the mounting surface 213, and the first laser chip 220 of each first light source structure 200 is adjacent to the first heat sink substrate 210 of another first light source structure 200,
  • the distance between each first laser chip 220 and the supporting shaft 10 is the same. Since the included angle between any two adjacent mounting surfaces 213 is the same, that is to say, the first laser chips 220 are evenly distributed around the axis of the supporting shaft 10, so that the light distribution of each first laser chip 220 is approximately in the direction of the long axis.
  • the shape of the light spot is related to the number of the first laser chip 220. For example, if the number of the first laser chip 220 is four, the shape of the finally emitted light spot is a square spot; for example, the number of the first laser chip 220 is eight, and the final The shape of the emitted light spot is an octagonal light spot; for another example, the larger the number of the first laser chips 220, the closer the shape of the final emitted light spot is to a circle.
  • each first light source structure 200 may also be adjacent to the first heat sink substrate 210 of another first light source structure 200. It can be understood that each first light source structure 200 The first laser chip 220 of may also be adjacent to the first laser chip 220 of another first light source structure 200.
  • the first laser chip 220 may emit light of different primary colors to mix white light.
  • the first laser chip 220 in the plurality of first light source structures 200 includes at least one red light chip 223, at least one green light chip 225, and at least one blue light chip 227.
  • the red chip 223 can be used to emit red laser light
  • the green chip 225 can be used to emit green laser light
  • the blue chip 227 can be used to emit blue laser light.
  • the laser light source 1 also includes a driving device 30, which is mechanically connected to the support shaft 10, and is used to drive the support shaft 10 to rotate around the axis of the support shaft 10 to emit a uniform white circular light spot .
  • the driving device 30 may be a motor, and the rotating shaft of the motor may be directly fixed to the second end surface 13 of the support shaft 10 in a direction parallel to the axis of the support shaft 10.
  • the first laser chip 220 in the plurality of first light source structures 200 includes at least two red light chips 223, at least two green light chips 225, and at least two blue light chips 227, any two red light chips At least one green light chip 225 or blue light chip 227 is included between 223, at least one red light chip 223 or blue light chip 227 is included between any two green light chips 225, and at least one red light chip is included between any two blue light chips 227 223 or green chip 225.
  • the first light source structures 200 that emit light of the same primary color are not adjacent to each other.
  • the number of the red light chip 223, the green light chip 225 and the blue light chip 227 may be the same, for example, one or two.
  • the supporting shaft 10 can be rotated around the axis of the supporting shaft 10 to mix the lights of different primary colors and emit white light.
  • the numbers of the red light chip 223, the green light chip 225, and the blue light chip 227 may also be different.
  • the blue laser light emitted by the blue light chip 227 has a larger intensity.
  • the green light chip 225 has the highest cost, and a smaller number of green light chips 225 can be selected when the emitted light meets the conditions.
  • the laser light source 1 further includes a heat dissipation fan 40, and the heat dissipation fan 40 may be disposed on the second end surface 13.
  • the air convection generated by the heat dissipation fan 40 can directly take away the heat on the surface of the first laser chip 220; it can also improve the heat dissipation performance of the supporting shaft 10 and the first heat sink substrate 210.
  • the heat dissipating fan 40 may also be arranged on the first end surface 11 or the outer peripheral surface 14, or other positions adjacent to the first laser chip 220, which can meet the requirement of accelerating the heat dissipation of the first laser chip 220.
  • the laser light source 1 may include a heat dissipation fan 40 when the supporting shaft 10 has the first cavity 15 and the second cavity 16 defined therein.
  • the laser light source 1 further includes a second light source module 50, the second light source module 50 is located between the first light source module 20 and the second end surface 13, and the second light source module The distance between 50 and the second end surface 13 is smaller than the distance between the second light source module 50 and the first end surface 11.
  • the second light source module 50 includes a plurality of second light source structures 51 arranged at equal intervals around the axis of the supporting shaft 10, and the plurality of second light source structures 51 in the second light source module 50 are at the same distance from the second end surface 13 .
  • Each second light source structure 51 includes a second heat sink substrate 511 and a corresponding second laser chip 513.
  • the second heat sink substrate 511 of each second light source structure 51 is connected to the second laser of another second light source structure 51.
  • the chips 513 are adjacent.
  • the structure and installation manner of the second light source structure 51 are the same as those of the first light source structure 200, and will not be repeated here.
  • each second light source structure 51 is located between the projections of the two first light source structures 200. That is, in the direction parallel to the axis of the supporting shaft 10, the second light source structure 51 and the first light source structure 200 are arranged to cross each other to prevent the light emitted by the first light source structure 200 from being blocked by the second light source structure 51, or The light emitted by the second light source structure 51 is prevented from being blocked by the first light source structure 200.
  • the installation position of the second light source structure 51 may not be limited. .
  • any second light source structure 51 may overlap with the first light source structure 200.
  • the installation position of the second light source structure 51 may not be limited.
  • each first light source structure 200 may further include two first laser chips 220, and the two first laser chips 220 are respectively disposed on two opposite sides of the first heat sink substrate 210.
  • the mounting surface 213 is arranged in this way to increase the brightness of the emitted light beam while ensuring uniform light emission.
  • each first light source structure 200 may further include a first laser chip 220, and the mounting surface 213 may further define a groove 2132.
  • the first laser chip 220 is received in the groove 2132 and It is exposed from the mounting surface 213. This arrangement can better mount the first laser chip 220, and can also reduce the volume of the laser light source 1.
  • each first light source structure 200 may further include two first laser chips 220, and two opposite mounting surfaces 213 of each first heat sink substrate 210 may be provided with each There is a groove 2132, and the two first laser chips 220 are respectively mounted in the two grooves 2132 and exposed from the mounting surface 213 respectively.
  • the laser light source 1 provided by the present invention integrates the first heat sink substrate 210 and the first laser chip 220 on the supporting shaft 10, and can emit light with better light distribution without the need for optical elements for light shaping. Outgoing beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光光源(1),包括支撑轴件(10)和第一光源模组(20)。其中,支撑轴件(10)包括外周面(14);第一光源模组(20)包括环绕支撑轴件(10)的轴线等间距设置的多个第一光源结构(200),每个第一光源结构(200)包括第一热沉基板(210)和对应的第一激光芯片(220),第一热沉基板(210)包括邻接的固定面(211)与安装面(213),固定面(211)沿着平行于支撑轴件(10)的轴线的方向固定于外周面(14),第一激光芯片(220)设置于安装面(213)。激光光源(1)将第一热沉基板(210)和第一激光芯片(220)集成在支撑轴件(10)上,在不需要光学元件进行光整形的情况下,也可以出射较好光分布的出射光束。

Description

激光光源 技术领域
本发明涉及光学技术领域,具体而言,涉及一种激光光源。
背景技术
半导体激光泵浦的全固态激光器是20世纪80年代末期出现的新型激光器。其总体效率至少要比灯泵浦高10倍,由于单位输出的热负荷降低,可获取更高的功率,系统寿命和可靠性大约是闪光灯泵浦系统的100倍,因此,半导体激光器泵浦技术为固体激光器注入了新的生机和活力。目前半导体激光器泵浦技术已渗透到各个学科领域,例如:激光信息存储与处理、激光材料加工、激光医学及生物学、激光通讯及军用激光技术等,极大地促进了这些领域的技术进步和前所未有的发展。
一般的激光器芯片由于出射光具有较大的发散角,使得其准直性较差,限制了其在工业中的应用。通常的处理方法是在激光芯片的出射光路上设置光学元件,光学元件可进一步对非均匀分布的光斑进行整形,进而实现所需光分布的出射光,整形后的光束具有较好的图案分布和准直性,因此可直接应用于各种领域。然而,增加光学元件意味着增加了激光器的成本,且由于激光器的高能量密度分布特性,使得对光学元件的可靠性也有较高的要求,进一步增加了光学元件的材料成本。
发明内容
本发明的目的在于提供一种激光光源,以解决上述问题。
本发明实施例通过以下技术方案来实现上述目的。
本发明提供一种激光光源,包括支撑轴件和第一光源模组。其中,支撑轴件包括外周面;第一光源模组包括环绕支撑轴件的轴线等间距设置的多个第一光源结构,每个第一光源结构包括第一热沉基板和对应的第一激光芯片,第一热沉基板包括邻接的固定面与安装面,固定面沿着平行于支撑轴件的轴线的方向固定于外周面,第一激光芯片设置于安装面。
在一种实施方式中,多个第一光源结构的数量为四个,相邻两个第一光源结构的第一热沉基板的所述安装面之间的夹角为90°。
在一种实施方式中,多个第一光源结构的数量为八个,相邻两个第一光源结构的第一热沉基板的安装面之间的夹角为45°。
在一种实施方式中,支撑轴件还包括平行的第一端面和第二端面,外周面垂直连接于第一端面和第二端面之间,第一光源模组与第二端面的间距大于第一光源模组与第一端面的间距,第一光源模组中的多个第一光源结构与第二端面的间距相同。
在一种实施方式中,支撑轴件内开设相连通的第一腔体和第二腔体,第二腔体暴露于第二端面,第一腔体围绕第二腔体。
在一种实施方式中,激光光源还包括散热风扇,散热风扇设置于第二端面。
在一种实施方式中,激光光源还包括第二光源模组,第二光源模组与第二端面的间距小于第二光源模组与第一端面的间距,第二光源模组包括环绕支撑轴件的轴线等间距设置的多个第二光源结构,第二光源模组中的多个第二光源结构与第二端面的间距相同。
在一种实施方式中,每个第二光源结构包括第二热沉基板和对应的第二激光 芯片,每个第二光源结构的第二热沉基板均与另一第二光源结构的第二激光芯片相邻,在垂直于外周面的投影面上,每个第二光源结构的投影位于两个第一光源结构的投影之间。
在一种实施方式中,多个第一光源结构中的第一激光芯片出射不同基色光以混成白光,激光光源还包括驱动装置,驱动装置与支撑轴件机械连接,用于带动支撑轴件绕支撑轴件的轴线转动。
在一种实施方式中,多个第一光源结构中的第一激光芯片包括至少一个红光芯片、至少一个绿光芯片和至少一个蓝光芯片。
在一种实施方式中,多个第一光源结构中的第一激光芯片包括至少两个红光芯片、至少两个绿光芯片以及至少两个蓝光芯片,出射相同基色光的第一光源结构不相邻。
相较于现有技术,本发明提供的激光光源将第一热沉基板和第一激光芯片集成在支撑轴件上,在不需要光学元件进行光整形的情况,也可以出射较好光分布的出射光束。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的第一种激光光源的结构示意图。
图2是本发明实施例提供的第一种激光光源的立体结构示意图。
图3是本发明实施例提供的激光光源的一种支撑轴件的纵截面示意图。
图4是本发明实施例提供的激光光源的一种支撑轴件的横截面示意图。
图5是本发明实施例提供的激光光源的另一种支撑轴件的纵截面示意图。
图6是本发明实施例提供的第二激光光源的结构示意图。
图7是本发明实施例提供的第二种激光光源的立体结构示意图。
图8是本发明实施例提供的第三种激光光源的立体结构示意图。
图9是本发明实施例提供的第四种激光光源的立体结构示意图。
图10是本发明实施例提供的第五种激光光源的立体结构示意图。
图11是本发明实施例提供的第六种激光光源的立体结构示意图。
图12是本发明实施例提供的第七种激光光源的立体结构示意图。
具体实施方式
为了便于理解本发明实施例,下面将参照相关附图对本发明实施例进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明实施例中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
请参阅图1和图2,本发明提供的激光光源1,包括支撑轴件10和第一光源模组20。其中,支撑轴件10包括外周面14。第一光源模组20包括环绕支撑轴件10的轴线等间距设置的多个第一光源结构200。每个第一光源结构200包括 第一热沉基板210和对应的第一激光芯片220。第一热沉基板210包括邻接的固定面211与安装面213,固定面211沿着平行于支撑轴件10的轴线的方向固定于外周面14,第一激光芯片220设置于安装面213,在本实施例中,安装面213为与支撑轴件10的外周面14曲率相同的曲面。所述多个第一光源结构200沿着同一环绕支撑轴件10的轴线的方向依次排列,也就是说,所述多个第一光源结构200均沿着顺时针方向依次排列或者均沿着逆时针方向依次排列。
具体地,在本实施例中,支撑轴件10大致为圆柱形,支撑轴件10的表面可以设置线束,以给第一激光芯片200供电,支撑轴件10的材质可以金属、树脂或者塑胶材质。支撑轴件10需要有足够的强度以对第一热沉基板210等进行支撑,并且可以有较好的散热性能,以将第一激光芯片220等发光元件产生的热量快速散发至环境中,防止热量的堆积而影响发光元件的寿命。
在其他实施方式中,支撑轴件10还可以是椭圆柱形或者正方体形等其他形状,满足第一热沉基板210的安装即可。
请继续参阅图2,支撑轴件10包括外周面14和平行的第一端面11和第二端面13,其中,外周面14垂直连接于第一端面11和第二端面13之间。外周面14、第一端面11或者第二端面13都可以用于对支撑轴件10的固定,外周面14、第一端面11或者第二端面13也都可以设置散热结构,以增加支撑轴件10的散热性能。可以通过对支撑轴件10本身的结构进行改变。
请参阅图3,在其他实施方式中,支撑轴件10内开设相连通的第一腔体15和第二腔体16,且第一腔体15围绕第二腔体16,第一腔体15和第二腔体16均暴露于第二端面13。也就是说,第一腔体15和第二腔体16均沿平行于支撑轴线的方向自第二端面13向第一端面11凹陷,凹陷深度不限,可以是5cm或10cm 等,或者第一腔体15和第二腔体16贯穿第二端面13和第一端面11。第一腔体15与第二腔体16相互连通,可以实现两者之间的热交换,连通的位置不限。可以通过空气对流实现热交换,例如,环境气流从第二腔体16进入支撑轴件10,并通过第一腔体15从支撑轴件10流出,以在第一腔体15和第二腔体16实现气流的循环,从而将支撑轴件10中的热量快速导出,以提升支撑轴件10的散热能力。本领域技术人员可以理解,环境气流还可以从第一腔体15进入支撑轴件10,并通过第二腔体16从支撑轴件10流出。
请参阅图4,在其他实施方式中,支撑轴件10内还开设相连通的第三腔体17和第四腔体18,且第三腔体17围绕第四腔体18,第三腔体17和第四腔体18均暴露于第一端面11,通过开设第三腔体17和第四腔体18进一步提升支撑轴件10的散热性能。
请继续参阅图3,在其他实施方式中,也可以通过水冷实现第一腔体15与第二腔体16之间的热交换,例如可以从第一腔体15进水,并从第二腔体16将水排出,也可以将支撑轴件10中的热量快速导出。本领域技术人员可以理解,还可以使用冰水以实现快速带走热量,以降低支撑轴件10温度。具体的热交换方式可以根据实际需要进行选择。
请参阅图6和图7,在本实施例中,第一光源模组20与第二端面13的间距大于第一光源模组20与第一端面11的间距。在其他实施方式中,第一光源模组20还可以位于第一端面11与第二端面13的中间,或者第一光源模组20与第二端面13的间距小于第一光源模组20与第一端面11的间距。
第一光源模组20包括环绕支撑轴件10的轴线等间距设置的多个第一光源结构200,多个第一光源结构200沿垂直于支撑轴件10的轴线周向分布,且多个第 一光源结构200与第二端面13的间距相同。第一光源结构200的数量可以是四个、五个、六个、八个或者更多。第一光源结构200的分布情况与支撑轴件10的结构有关,例如支撑轴件10为圆柱形,则各第一光源结构200之间的夹角为360/n,其中n为第一光源结构200的数量。又例如支撑轴件10为方轴形,则第一光源结构200的数量可以是4个,每个第一光源结构200位于一个表面;或者第一光源结构200的数量是8个,每两个第一光源结构200位于一个表面。
每个第一光源结构200包括第一热沉基板210和对应的第一激光芯片220,第一热沉基板210连接于支撑轴件10的外周面14,可以用于将第一激光芯片220产生的热量传递至支撑轴件10。第一激光芯片220安装于第一热沉基板210。
具体地,第一热沉基板210大致为方形板体,第一热沉基板210包括邻接的固定面211与安装面213。安装面213可以用于安装第一热沉基板210,且任意两个相邻安装面213之间的夹角均相同,夹角与第一光源结构200的数量有关。例如多个第一光源结构200的数量为四个,如图1所示,相邻两个第一光源结构200的第一热沉基板210的安装面213之间的夹角为90°。又例如多个第一光源结构200的数量为八个,如图6所示,相邻两个第一光源结构200的第一热沉基板210的安装面213之间的夹角为45°。固定面211沿着平行于支撑轴件10的轴线的方向固定于外周面14,固定方式可以是焊接或者粘结,具体可以根据支撑轴件10与第一热沉基板210的材质或者实际需求选定。在其他实施方式中,第一热沉基板210还可以与支撑轴件10一体成型,以提升第一热沉基板210与支撑轴件10的连接强度。
单个第一激光芯片220出射光的强度分布,为包括一长轴方向和短轴方向的非均匀分布,并且出射光具有较大的发散角,使得出射光的准直性较差。
在本实施例中,第一激光芯片220设置于安装面213,并且每个第一光源结构200的第一激光芯片220均与另一第一光源结构200的第一热沉基板210相邻,每个第一激光芯片220与支撑轴件10之间的距离相同。由于任意两个相邻安装面213之间的夹角相同,也就是说第一激光芯片220绕支撑轴件10的轴线均匀分布,使得每个第一激光芯片220出射的光分布长轴方向大致垂直于与其相邻的另一第一激光芯片220出射的长轴方向,使得每个第一激光芯片220出射的光非均匀分布光通过叠加实现较为均匀的图案化光斑。光斑的形状与第一激光芯片220的数量有关,例如第一激光芯片220的数量为四个,则最终出射的光斑形状为方形光斑;又例如第一激光芯片220的数量为八个,则最终出射的光斑形状为八边形光斑;再例如第一激光芯片220的数量越多,最终出射的光斑形状越接近圆形。
在其他实施方式中,每个第一光源结构200的第一热沉基板210还可以与另一第一光源结构200的第一热沉基板210相邻,可以理解,每个第一光源结构200的第一激光芯片220也可以与另一第一光源结构200的第一激光芯片220相邻。
请继续参阅图6,在一种实施方式中,第一激光芯片220可以出射不同基色光以混成白光。多个第一光源结构200中的第一激光芯片220包括至少一个红光芯片223、至少一个绿光芯片225和至少一个蓝光芯片227。其中红光芯片223可以用于发出红激光,绿光芯片225可以用于发出绿激光,蓝光芯片227可以用于发出蓝激光。
请继续参阅图7,激光光源1还包括驱动装置30,驱动装置30与支撑轴件10机械连接,用于带动支撑轴件10绕支撑轴件10的轴线转动,以出射均匀的白 色圆形光斑。具体地,驱动装置30可以是电机,电机的转轴可以沿平行于支撑轴件10的轴线方向直接固定于支撑轴件10的第二端面13。
在其他实施方式中,多个第一光源结构200中的第一激光芯片220包括至少两个红光芯片223,至少两个绿光芯片225以及至少两个蓝光芯片227,任意两个红光芯片223之间至少包括一个绿光芯片225或蓝光芯片227,任意两个绿光芯片225之间至少包括一个红光芯片223或蓝光芯片227,任意两个蓝光芯片227之间至少包括一个红光芯片223或绿光芯片225。也就是说,出射相同基色光的第一光源结构200不相邻。红光芯片223、绿光芯片225和蓝光芯片227的数量可以相同,例如都为1个或者2个,可以通过支撑轴件10绕支撑轴件10的轴线转动使不同基色光混合并出射白光。在其他实施方式中,红光芯片223、绿光芯片225和蓝光芯片227的数量还可以不同,例如相对红光芯片223和绿光芯片225,蓝光芯片227发出的蓝激光强度较大的情况下,可以选用较少数量的蓝光芯片227。再例如相对红光芯片223和蓝光芯片227,绿光芯片225的成本最高,在出射的光线满足条件的情况下可以选择较少数量的绿光芯片225。
请参阅图8,在其他实施方式中,激光光源1还包括散热风扇40,散热风扇40可以设置于第二端面13。散热风扇40产生的空气对流可以直接将第一激光芯片220表面的热量带走;也可以提升支撑轴件10及第一热沉基板210的散热性能。
在其他实施方式中,散热风扇40还可以设置于第一端面11或者外周面14,或者是与第一激光芯片220相邻的其他位置,能够满足加快第一激光芯片220的散热即可。
在其他实施方式中,激光光源1可以在支撑轴件10开设第一腔体15和第二 腔体16的同时还包括散热风扇40。
请参阅图9,在其他实施方式中,激光光源1还包括第二光源模组50,第二光源模组50位于第一光源模组20和第二端面13之间,且第二光源模组50与第二端面13的间距小于第二光源模组50与第一端面11的间距。
第二光源模组50包括环绕支撑轴件10的轴线等间距设置的多个第二光源结构51,且第二光源模组50中的多个第二光源结构51与第二端面13的间距相同。每个第二光源结构51包括第二热沉基板511和对应的第二激光芯片513,每个第二光源结构51的第二热沉基板511均与另一第二光源结构51的第二激光芯片513相邻。第二光源结构51的结构和安装方式与第一光源结构200相同,此处不再赘述。
在垂直于外周面14的投影面上,每个第二光源结构51的投影位于两个第一光源结构200的投影之间。也就是说,在平行于支撑轴件10的轴线方向上,第二光源结构51与第一光源结构200为交叉设置,防止第一光源结构200发出的光线被第二光源结构51所阻挡,或者防止第二光源结构51发出的光线被第一光源结构200所阻挡。
在其他实施方式中,当第一激光芯片220朝第一端面11的方向出射激光,第二激光芯片513朝第二端面13的方向出射激光,则第二光源结构51的安装位置可以不做限定。例如,自第一端面11向第二端面13,任一第二光源结构51可以与第一光源结构200重合。
在其他实施方式中,当第二光源模组50出射的光斑半径大于第一光源模组20出射的光斑半径时,第二光源结构51的安装位置也可以不做限定。
请参阅图10,在一些实施方式中,每个第一光源结构200还可以包括两个第 一激光芯片220,两个第一激光芯片220分别设置于第一热沉基板210的相背两个安装面213,这样设置,可以在保证出光均匀的情况下,提高出射光束的亮度。
请参阅图11,在另一些实施方式中,每个第一光源结构200还可以包括一个第一激光芯片220,安装面213还可以开设凹槽2132,第一激光芯片220收容于凹槽2132并自安装面213露出,这样设置,可以更好地安装第一激光芯片220,还可以减小激光光源1的体积。
请参阅图12,在其他的一些实施方式中,每个第一光源结构200还可以包括两个第一激光芯片220,每个第一热沉基板210的相背两个安装面213可以各开设一个凹槽2132,两个第一激光芯片220分别安装于两个凹槽2132内,并分别自安装面213露出。
综上,本发明提供的激光光源1将第一热沉基板210和第一激光芯片220集成在支撑轴件10上,在不需要光学元件进行光整形的情况,也可以出射较好光分布的出射光束。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (11)

  1. 一种激光光源,其特征在于,包括:
    支撑轴件,包括外周面;及
    第一光源模组,包括环绕所述支撑轴件的轴线等间距设置的多个第一光源结构,每个所述第一光源结构包括第一热沉基板和对应的第一激光芯片,所述第一热沉基板包括邻接的固定面与安装面,所述固定面沿着平行于所述支撑轴件的轴线的方向固定于所述外周面,所述第一激光芯片设置于所述安装面。
  2. 根据权利要求1所述的激光光源,其特征在于,所述多个第一光源结构的数量为四个,相邻两个所述第一光源结构的所述第一热沉基板的所述安装面之间的夹角为90°。
  3. 根据权利要求1所述的激光光源,其特征在于,所述多个第一光源结构的数量为八个,相邻两个所述第一光源结构的所述第一热沉基板的所述安装面之间的夹角为45°。
  4. 根据权利要求1所述的激光光源,其特征在于,所述支撑轴件还包括平行的第一端面和第二端面,所述外周面垂直连接于所述第一端面和所述第二端面之间,所述第一光源模组与所述第二端面的间距大于所述第一光源模组与所述第一端面的间距,所述第一光源模组中的所述多个第一光源结构与所述第二端面的间距相同。
  5. 根据权利要求4所述的激光光源,其特征在于,所述支撑轴件内开设相连通 的第一腔体和第二腔体,所述第二腔体暴露于所述第二端面,所述第一腔体围绕所述第二腔体。
  6. 根据权利要求4所述的激光光源,其特征在于,所述激光光源还包括散热风扇,所述散热风扇设置于所述第二端面。
  7. 根据权利要求4所述的激光光源,其特征在于,所述激光光源还包括第二光源模组,所述第二光源模组与所述第二端面的间距小于所述第二光源模组与所述第一端面的间距,所述第二光源模组包括环绕所述支撑轴件的轴线等间距设置的多个第二光源结构,所述第二光源模组中的所述多个第二光源结构与所述第二端面的间距相同。
  8. 根据权利要求7所述的激光光源,其特征在于,每个所述第二光源结构包括第二热沉基板和对应的第二激光芯片,每个所述第二光源结构的所述第二热沉基板均与另一第二光源结构的所述第二激光芯片相邻,在垂直于所述外周面的投影面上,每个所述第二光源结构的投影位于两个所述第一光源结构的投影之间。
  9. 根据权利要求1所述的激光光源,其特征在于,所述多个第一光源结构中的所述第一激光芯片出射不同基色光以混成白光,所述激光光源还包括与所述支撑轴件机械连接的驱动装置,所述驱动装置用于带动所述支撑轴件绕所述支撑轴件的轴线转动。
  10. 根据权利要求9所述的激光光源,其特征在于,所述多个第一光源结构中的所述第一激光芯片包括至少一个红光芯片、至少一个绿光芯片和至少一个蓝光芯片。
  11. 根据权利要求9所述的激光光源,其特征在于,所述多个第一光源结构中的所述第一激光芯片包括至少两个红光芯片、至少两个绿光芯片以及至少两个蓝光芯片,出射相同基色光的所述第一光源结构不相邻。
PCT/CN2020/130580 2019-11-21 2020-11-20 激光光源 WO2021098841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911149642.7A CN112825407A (zh) 2019-11-21 2019-11-21 激光光源
CN201911149642.7 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021098841A1 true WO2021098841A1 (zh) 2021-05-27

Family

ID=75907204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130580 WO2021098841A1 (zh) 2019-11-21 2020-11-20 激光光源

Country Status (2)

Country Link
CN (1) CN112825407A (zh)
WO (1) WO2021098841A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668822A (en) * 1994-08-05 1997-09-16 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor laser device
CN101867157A (zh) * 2009-04-15 2010-10-20 三菱电机株式会社 多波长半导体激光装置
CN101924323A (zh) * 2009-06-09 2010-12-22 三菱电机株式会社 多波长半导体激光器装置
US20110063871A1 (en) * 2009-09-15 2011-03-17 Hitachi, Ltd. Multi-Wavelength Light Emitting Device
CN102522694A (zh) * 2011-12-12 2012-06-27 烟台睿创微纳技术有限公司 一种高功率半导体激光器阵列线性光源装置
CN207880465U (zh) * 2017-10-19 2018-09-18 宁波凯耀电器制造有限公司 一种大功率柱型led灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668822A (en) * 1994-08-05 1997-09-16 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor laser device
CN101867157A (zh) * 2009-04-15 2010-10-20 三菱电机株式会社 多波长半导体激光装置
CN101924323A (zh) * 2009-06-09 2010-12-22 三菱电机株式会社 多波长半导体激光器装置
US20110063871A1 (en) * 2009-09-15 2011-03-17 Hitachi, Ltd. Multi-Wavelength Light Emitting Device
CN102522694A (zh) * 2011-12-12 2012-06-27 烟台睿创微纳技术有限公司 一种高功率半导体激光器阵列线性光源装置
CN207880465U (zh) * 2017-10-19 2018-09-18 宁波凯耀电器制造有限公司 一种大功率柱型led灯

Also Published As

Publication number Publication date
CN112825407A (zh) 2021-05-21

Similar Documents

Publication Publication Date Title
US8556471B2 (en) Lighting module, lamp and lighting method
CN113251331B (zh) 照明模块
US7936119B2 (en) Wide-angle LED lighting lamp with high heat-dissipation efficiency and uniform illumination
US8814405B2 (en) Light emitting device, vehicle headlamp, and illumination device
JP4430585B2 (ja) 面光源装置
US20130265760A1 (en) Variable beam angle directional lighting fixture assembly
US20090067152A1 (en) Rotating lamp
JP2006004947A (ja) Led自動車ヘッドランプ
JP2004206947A (ja) 発光ダイオード及び灯具並びにその製造方法
JP2010257965A (ja) 照明装置
JP4096927B2 (ja) Led照明光源
US9016915B2 (en) Light tube
JP2016164871A (ja) 発光装置
US9874662B2 (en) Illumination device
EP3514443A1 (en) Light emitting module and lamp unit
WO2021098841A1 (zh) 激光光源
US8388195B2 (en) Illumination device with heat dissipation structures
JP2006310515A (ja) 発光ユニット
US20180283636A1 (en) Illumination arrangement and headlamp
US20150276168A1 (en) Device for providing electromagnetic radiation having a predefined target radiation distribution, and method for producing a lens arrangement
CN211875909U (zh) 面光源系统及其车灯
JP2014170672A (ja) 照明装置
KR101667358B1 (ko) 불균질한 led 광원의 다중 배열 및 배열각 회전을 이용한 균질 광원화 방법 및 이러한 방식이 적용된 led 조명장치
WO2020015419A1 (zh) 车用led照明装置及led车灯
US20180267229A1 (en) Light guide and lighting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889529

Country of ref document: EP

Kind code of ref document: A1