WO2021098654A1 - 信号传输方法及装置 - Google Patents

信号传输方法及装置 Download PDF

Info

Publication number
WO2021098654A1
WO2021098654A1 PCT/CN2020/129149 CN2020129149W WO2021098654A1 WO 2021098654 A1 WO2021098654 A1 WO 2021098654A1 CN 2020129149 W CN2020129149 W CN 2020129149W WO 2021098654 A1 WO2021098654 A1 WO 2021098654A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
signal
uplink
control channel
pucch
Prior art date
Application number
PCT/CN2020/129149
Other languages
English (en)
French (fr)
Inventor
黄秋萍
陈润华
高秋彬
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20889335.4A priority Critical patent/EP4064774A4/en
Priority to US17/778,412 priority patent/US20230006726A1/en
Publication of WO2021098654A1 publication Critical patent/WO2021098654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • This application relates to the field of communication technology, and in particular to signal transmission methods and devices.
  • the use of analog beamforming for downlink signal transmission can achieve higher forming gain and greater coverage.
  • An important challenge for the analog beamforming of high-frequency systems is that the transmission signal has a large propagation loss and a high probability of being blocked.
  • the terminal When the physical downlink control channel (PDCCH, Physical Downlink Control Channel) signal is blocked, the terminal will not be able to accurately obtain the control information of the downlink transmission, resulting in a decrease in reception performance, such as a decrease in rate, an increase in scheduling delay, and a decrease in user experience.
  • PDCCH Physical Downlink Control Channel
  • the embodiments of the present application provide a signal transmission method and device, which are used to implement PUCCH transmission through the beam used to transmit the beam failure event of the cell when a beam failure occurs in a cell.
  • a signal sending method provided in an embodiment of the present application includes:
  • the uplink transmission beam is used to transmit the physical uplink control channel PUCCH signal, where the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • the uplink transmission beam is used to send the physical uplink control channel PUCCH signal
  • the uplink transmission beam includes: A beam used to transmit at least one of the beam failure event of the cell, the identifier of the cell, and the new beam of the cell; or, the space-related information used to carry the signal of the beam failure event of the cell corresponds to Or, the beam used to transmit the identity of the cell and/or the new beam; or, the uplink beam corresponding to the space-related information that carries the identity of the cell and/or the signal of the new beam; or, the reported The uplink beam corresponding to the new beam of the cell, so that when a beam failure occurs in the cell, the PUCCH transmission is realized through the beam used to transmit the beam failure event of the cell.
  • the preset conditions include:
  • the uplink transmission beam to send the physical uplink control channel PUCCH, which specifically includes:
  • K is a preset non-negative integer.
  • the uplink transmission beam uses the uplink transmission beam to transmit the physical uplink control channel PUCCH, which specifically includes: the first time slot after receiving the specific information or specific signal for K time units Initially, the physical uplink control channel PUCCH is transmitted using the uplink transmission beam.
  • the specific information includes one of the following information or any combination of the following information:
  • the uplink grant information UL grant received after the terminal sends the PUCCH that reports the beam failure event of the cell.
  • the specific signal is a signal carrying the specific information.
  • the specific signal is a physical downlink control channel PDCCH signal.
  • a signal receiving method provided by an embodiment of the present application includes:
  • the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • the method further includes: sending specific information or a specific signal to the terminal.
  • the PUCCH is a PUCCH transmitted by the terminal using an uplink transmission beam from the Kth time unit after receiving the specific information or the specific signal;
  • the PUCCH is a PUCCH sent by the terminal using an uplink transmission beam after K time units of specific information or specific signals are received;
  • K is a preset non-negative integer.
  • the specific information includes one of the following information or any combination of the following information:
  • the uplink grant information UL grant received after the terminal sends the PUCCH that reports the beam failure event of the cell.
  • the specific signal is a physical downlink control channel PDCCH signal.
  • the physical uplink control channel PUCCH sent by the receiving terminal through the uplink transmission beam includes:
  • the physical uplink control channel PUCCH transmitted by the terminal through the uplink transmission beam is received by using the reception beam corresponding to the uplink transmission beam.
  • a signal sending device provided in an embodiment of the present application includes:
  • the determining unit is used to determine that the beam fails in the cell
  • the sending unit is configured to, if the terminal needs to send the physical uplink control channel PUCCH signal, when a preset condition is met, use the uplink transmission beam to send the physical uplink control channel PUCCH signal, wherein the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • a signal receiving device provided in an embodiment of the present application includes:
  • the first unit is configured to receive the beam failure event of the cell reported by the terminal when a beam failure occurs in the cell;
  • the second unit is used to receive the physical uplink control channel PUCCH signal sent by the terminal through the uplink transmission beam; wherein, the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • another signal sending device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute the steps of the signal sending method provided in the first aspect above according to the obtained program.
  • another signal receiving apparatus provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute the steps of the signal receiving method provided in the second aspect above according to the obtained program.
  • Another embodiment of the present application provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the foregoing methods.
  • FIG. 1 is a schematic diagram of signal transmission time points provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of signal transmission time points according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of signal transmission time points provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of signal transmission time points according to an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a signal sending method on the terminal side according to an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a signal receiving method on the network side according to an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a signal sending device on the terminal side according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a signal receiving device on the network side according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another signal sending apparatus on the terminal side according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another signal receiving device on the network side according to an embodiment of the application.
  • LTE Long Term Evolution
  • the radio link is considered to have failed and the process of radio link reconstruction is started.
  • this method may also cause a waste of resources, because changing the transmit beam and/or receive beam may make the reception quality of the downlink control signal meet the requirements.
  • NR New Radio
  • a fast and reliable beam failure detection and recovery process is standardized, so that the network side can quickly recover the transmission process from the beam failure.
  • the beam failure recovery process of the primary cell (Pcell) is specified
  • the beam failure recovery process of the secondary cell (SCell) is specified.
  • a UE can be configured with one or more SCells.
  • One SCell can be configured to have only downlink (DL, downlink), or include downlink DL and uplink (UL, Uplink).
  • Each SCell can be configured with a beam failure recovery (BFR) process.
  • BFR beam failure recovery
  • the UE performs beam failure monitoring, and if the UE detects that the beam of the SCell DL fails, it sends a beam failure recovery request (BFRQ, beam failure recovery request) to the base station.
  • the beam failure recovery request sent by the UE includes at least the reporting of the beam failure event and the reporting of the component carrier (Component Carrier, CC) identification (or index/indices) where the beam failure occurred. If the UE detects a new beam that meets certain quality conditions, it can also report the identity (or index/indices) of the new beam to the base station.
  • Component Carrier Component Carrier
  • the base station After the base station receives the report of the beam failure event of the UE, the base station will reconfigure the downlink beam for the SCell where the number of reporting failures has occurred.
  • the UE measures the downlink beam quality of the downlink control channel PDCCH (or consider the channel quality of the control resource set (Control Resource SET, CORESET)).
  • the UE detects the beam failure of the SCell by detecting the quality of the downlink reference signal used for beam failure detection (BFD) of the SCell.
  • the downlink reference signal used for SCell BFD can be explicitly configured through Radio Resource Control (Radio Resource Control, RRC) or implicitly configured through the Transmission Configuration Indicator (TCI, Transmission Configuration Indicator) state.
  • RRC Radio Resource Control
  • TCI Transmission Configuration Indicator
  • Each SCell can be configured with a maximum of 8 downlink beams, for example, a maximum of 8 TCI states or a maximum of 8 downlink reference signals for BFD.
  • the beam of the downlink control channel is a subset of the activated TCI state.
  • the process of the NR system regarding the beam failure recovery request (BFRQ, beam failure recovery request) of the UE to the SCell includes the following two steps:
  • Step 1 The UE reports the beam failure event
  • Step 2 The UE reports the index/indices of the CC where the beam failed and the new beam information (report if there is a new beam).
  • the information of step 1 can be sent through the physical uplink control channel (PUCCH, Physical Uplink Control Channel) resource specially configured for the SR-like (Schedule Request-like) of the BFR.
  • the SR-like PUCCH means that the transmission method is similar.
  • the information of step 2 is sent through the media access control element (MAC-CE, Media Access Control Element) in the physical uplink shared channel (PUSCH, Physical Uplink Shared Channel).
  • MAC-CE Media Access Control Element
  • PUSCH Physical Uplink Shared Channel
  • the MAC-CE used to carry the index/indices of the CC where the beam failure occurred and/or the BFR new beam information may be carried on the PUSCH corresponding to the PUCCH sending the beam failure event (the PUSCH scheduled based on the scheduling request of the PUCCH ), it may also be multiplexed on one and already existing PUSCH resources, for example, multiplexed on a configured grant PUSCH (configured grant PUSCH).
  • the UE uses the MAC-CE indicator in step 2
  • the new beam of PDCCH is received on the downlink of the SCell where the beam fails. This applies to all CORESETs of SCells that have failed beams.
  • the embodiments of the present application provide a signal transmission method and device, and provide related solutions, which can enable the UE to use a better uplink transmission beam to transmit PUCCH, and the UE and the network side have the same consensus on the uplink signal transmission beam , So that the base station can use the optimal receiving beam to receive uplink signals, ensuring system performance.
  • the method and the device are based on the same application concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system can be the global system of mobile communication (GSM) system, code division multiple access (CDMA) system, and wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general Mobile system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet radio service
  • GPRS general packet Radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general Mobile system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called a user equipment (UE).
  • the wireless terminal device can communicate with one or more core networks via the RAN.
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal device, for example, it can be a portable , Pocket, handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile, remote station, and access point , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device can be used to convert the received air frame and the Internet protocol (IP) packet to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiment of this application may be a network equipment (base transmitter station, BTS) in the global system for mobile communications (GSM) or code division multiple access (CDMA). ), it can also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in the 5G network architecture (next generation system), or home evolved node B (HeNB), relay node (relay node), home base station ( Femto), pico base station (pico), etc., which are not limited in the embodiment of the present application.
  • BTS network equipment
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • LTE long-term evolution
  • 5G base station in the 5G network architecture
  • HeNB home evolved node B
  • HeNB home evolved node B
  • Femto home base
  • the embodiment of the application proposes a signal transmission method for the UE after a beam failure occurs in a cell, which can enable the UE to use a better uplink transmission beam to transmit PUCCH, and the UE and the network side have the same consensus on the uplink signal transmission beam, so that the base station
  • the optimal receiving beam can be used to receive the uplink signal, which ensures the performance of the uplink transmission.
  • one judging method is: the UE measures the quality of the downlink beam corresponding to the cell, and if the quality of each downlink beam is lower than a preset condition, the UE considers that a beam failure event has occurred.
  • the downlink beam may be configured by the base station or predefined.
  • the downlink beams are beams of all downlink control channels of the cell.
  • the downlink beam is a downlink beam corresponding to a reference signal configured by the base station for the terminal to perform beam failure monitoring.
  • BLER Block Error Ratio
  • the UE may report the beam failure event of the cell.
  • the UE may also report a new beam that the UE considers to be capable of normal communication (for example, a beam with a quality higher than a certain preset condition).
  • the report of the new beam can be reported in the form of an indicative reference signal.
  • the process of the UE reporting the beam failure event and the new beam can be considered as a process of sending a beam failure recovery request.
  • a process for the UE to send a beam failure recovery request of a cell is:
  • the UE reports the beam failure event and/or the new beam through a physical random access channel (PRACH) configured by the base station for beam failure recovery.
  • PRACH physical random access channel
  • the new beam and the PRACH may have a predefined one-to-one correspondence.
  • the base station After receiving the PRACH, the base station can determine that a beam failure event has occurred in the UE, and/or determine a new beam.
  • a process of sending a request for cell beam failure recovery is as follows:
  • Step 1 UE reports beam failure event through PUCCH
  • Step 2 The UE reports the identity of the cell where the beam failed and/or the new beam information through the MAC-CE (if there is a new beam report, the new beam information is only reported)
  • the PUCCH in step 1 is the PUCCH used to send beam failure events, which can be sent through a PUCCH resource similar to sending SR specially configured for BFR.
  • the PUCCH is called PUCCH-BFR
  • the PUCCH resource is called PUCCH-BFR resource
  • the information in step 2 can be reported through PUSCH.
  • the identity of the cell where the beam failure occurred is reported in the form of index/indices of the component carrier CC where the beam failure occurred.
  • Some embodiments of the present application include, but are not limited to, the manner in which the UE sends a cell beam failure recovery request.
  • UE For PUCCH in a failed SCell, starting from K symbols after receiving response to step 2 MAC-CE, UE applies the original UL beam (spatial relation info) of PUCCH-BFR resource used on of the step 1 SCell
  • Solution 1 For the PUCCH on the SCell where the beam failure occurs, starting from the K symbols after receiving the MAC-CE response to step 2, the UE uses the original uplink beam used to transmit the PUCCH-BFR resource of step 1 (transmit The PUCCH).
  • this solution is implemented only when the UE recognizes a new beam; or, this solution can be applied regardless of whether the UE finds a new beam.
  • this solution is applicable to all PUCCH resources on the beam failure SCell.
  • Solution 2 For the PUCCH on the SCell where the beam failure occurs, starting from the K symbols after receiving the MAC-CE response of step 2, the UE uses the spatial reference signal for transmitting the PUCCH-BFR resource of step 1 as the PUCCH The spatial reference signal.
  • this solution is implemented only when the UE recognizes a new beam; or, this solution can be applied regardless of whether the UE finds a new beam.
  • this solution is applicable to all PUCCH resources on the beam failure SCell.
  • the spatial reference signal is a signal indicated by spatial relation info.
  • Solution 3 For the PUCCH on the SCell where the beam failure occurs, starting from the K symbols after receiving the MAC-CE response in step 2, the UE uses the spatial reference signal of the PUCCH-BFR resource in step 1 as the PUCCH Spatial reference signal.
  • this solution is implemented only when the UE recognizes a new beam; or, this solution can be applied regardless of whether the UE finds a new beam.
  • this solution is applicable to all PUCCH resources on the beam failure SCell.
  • the spatial reference signal is a signal indicated by spatial relation info.
  • the MAC-CE in step 2 may be a MAC-CE used to transmit the identity of the cell where the beam failure occurs and/or the new beam indication information.
  • the PUCCH-BFR resource in step 1 may be a PUCCH resource used to report a beam failure event.
  • the PUCCH-BFR resource is a PUCCH resource configured by the base station for the UE for beam failure recovery.
  • this application uses SCell as an example for explanation, which is also applicable to other cells such as PCell and cells without carrier aggregation; this embodiment uses PUCCH to report beam failure events as an example for explanation, and the present invention is also applicable
  • the UE uses other uplink signals such as PRACH to report beam failure events
  • the "PUCCH-BFR resource in step 1" in this embodiment needs to be replaced with other uplink signals; this embodiment uses the MAC-CE for the UE
  • the cell identification and/or new beam reporting where the beam failure occurs is explained as an example. It is also applicable to the situation where the UE uses other uplink signals or information such as PRACH to report the beam failure event.
  • MAC-CE is replaced with other uplink signals or information such as PRACH.
  • UE For PUCCH in a failed SCell, starting from K symbols after UE receives an UL grant after the transmission of step 1 PUCCH-BFR, UE applies the original ULbeam(spatialforrelationrelation)of PUCCH-Btransmissioninfo ,on the failed SCell.
  • Solution 1 For the PUCCH on the SCell where the beam fails, starting from receiving the UL grant after the PUCCH-BFR of step 1 is transmitted, the UE uses the original uplink beam used to transmit the PUCCH-BFR resource of step 1 (transmitting the PUCCH );
  • this solution is implemented only when the UE recognizes a new beam; or, this solution can be applied regardless of whether the UE finds a new beam.
  • this solution is applicable to all PUCCH resources on the beam failure SCell.
  • the UL grant is a UL grant for scheduling new data (for example, the New Data Indicator (NDI) field in the UL grant indicates that the PUSCH is new data).
  • the UL grant is a normal UL grant for scheduling new data transmission for the HARQ process of the PUSCH carrying the MAC-CE of step 2, similar to the "acknowledge ACK" (a normal uplink grant to schedule) of the normal PUSCH a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE, which is the same as normal "ACK" for PUSCH.).
  • the UL grant may be a UL grant for scheduling new data, or a UL grant for non-scheduling new data.
  • Solution 2 For the PUCCH on the SCell where beam failure occurs, starting from receiving the UL grant after the PUCCH-BFR of step 1 is transmitted, the UE uses the spatial reference signal of the PUCCH-BFR resource of step 1 as the spatial reference of the PUCCH signal.
  • this solution is implemented only when the UE recognizes a new beam; or, this solution can be applied regardless of whether the UE finds a new beam.
  • this solution is applicable to all PUCCH resources on the beam failure SCell.
  • the spatial reference signal is used to indicate a signal of an uplink transmission beam. For example, it is indicated by Spatial Relation Info.
  • the UL grant is a UL grant for scheduling new data (for example, the new data indication (NDI) field in the UL grant indicates that the PUSCH is new data).
  • the UL grant is a normal UL grant for scheduling new data transmission for the HARQ process of the PUSCH carrying the MAC-CE of step 2, similar to the "acknowledge ACK" (a normal uplink grant to schedule) of the normal PUSCH a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE, which is the same as normal “ACK” for PUSCH.)
  • the UL grant can be a UL grant for scheduling new data, or it can be non- UL grant for scheduling new data.
  • Solution 3 For the PUCCH on the SCell where the beam failure occurs, starting from receiving the UL grant after the PUCCH-BFR of step 1 is transmitted, the UE uses the spatial reference signal of the PUCCH-BFR resource of step 1 as the spatial reference signal of the PUCCH ,
  • this solution is implemented only when the UE recognizes a new beam; or, this solution can be applied regardless of whether the UE finds a new beam.
  • this solution is applicable to all PUCCH resources on the beam failure SCell.
  • the spatial reference signal is a signal used to indicate an uplink transmission beam.
  • it is indicated by Spatial Relation Info.
  • the UL grant is a UL grant for scheduling new data (for example, the new data indication (NDI) field in the UL grant indicates that the PUSCH is new data).
  • the UL grant is a normal UL grant for scheduling new data transmission for the HARQ process of the PUSCH carrying the MAC-CE of step 2, similar to the "acknowledge ACK" (a normal uplink grant to schedule) of the normal PUSCH a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE, which is the same as normal “ACK” for PUSCH.)
  • the UL grant can be a UL grant for scheduling new data, or it can be non- UL grant for scheduling new data.
  • the UE uses the uplink transmission beam used to transmit the uplink signal of the beam failure event of the cell to transmit the PUCCH transmitted on the cell.
  • the UE sets or replaces the spatial reference signal of the PUCCH with the spatial reference signal of the uplink signal carrying the beam failure event of the cell.
  • the spatial reference signal here is a signal used to indicate the uplink transmission beam.
  • K is a preset non-negative integer.
  • K is agreed by the UE and the network side (for example, agreed by a protocol).
  • K is indicated to the UE by the base station (for example, the base station indicates to the UE through RRC (full name in Chinese and English) signaling, and/or MAC-CE signaling, and/or DCI signaling).
  • the time unit is a symbol. Or, optionally, the time unit is a slot. Of course, it can also be other types of time units.
  • the specific information includes one of the following information or any combination of the following information:
  • the UE sends the uplink grant information (UL grant) received after the PUCCH reporting the beam failure event of the cell where the beam failure occurs.
  • UL grant uplink grant information
  • the beam failure recovery response of the cell where the beam failure occurs may be the beam failure recovery response of the cell.
  • it is a response to a MAC-CE, where the MAC-CE is reported by the UE to the base station, and the MAC-CE is the MAC-CE that sends the identifier of the CC where the beam failed and/or the new beam information is sent.
  • the identity of the CC includes the identity of the cell where the beam failure occurs.
  • the UL grant includes the UL grant for scheduling the PUSCH sent in the cell, for example, DCI format 0_0, DCI format 0_1, and so on.
  • the UL grant includes the first UL grant scheduled to be sent on the PUSCH of the cell, for example, DCI format 0_0, DCI format 0_1, and so on.
  • the UL grant is the first UL grant.
  • the UL grant is a UL grant for scheduling new data.
  • the UL grant is a normal UL grant for scheduling new data transmission for the HARQ process of the PUSCH carrying the MAC-CE of step 2, similar to the "acknowledge ACK" (a normal uplink grant to schedule) of the normal PUSCH a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE, which is the same as normal “ACK” for PUSCH.)
  • the UL grant is the first UL grant for scheduling new data .
  • the UL grant is any UL grant.
  • the specific signal is a signal carrying the specific information.
  • the specific signal is a MAC-CE that carries an identifier and/or new beam information corresponding to the CC that has reported a beam failure, and the identifier of the CC that has a beam failure includes the identifier of the cell.
  • the response signal is a signal that carries uplink grant information (UL grant) after the PUCCH that reports the beam failure event of the cell is sent.
  • the UL grant may be, for example, the first UL grant, or may also be a UL grant for scheduling new data.
  • the specific signal may also be any PDCCH.
  • the PDCCH is a PDCCH that instructs the UE to transmit any uplink signal in the cell, for example, a PDCCH that instructs the UE to send an SRS, a PDCCH that instructs the UE to send a PUSCH, and so on.
  • the specific signal may also be a predefined PDCCH.
  • the predefined PDCCH is a PDCCH agreed in advance by the base station and the UE (for example, a protocol agreement), or a PDCCH indicated to the UE in advance by the base station.
  • the solution of the present invention is used only when the UE determines a new beam about the beam failure cell.
  • the technical solution provided in the embodiment of the present application can be applied.
  • the technical solution provided in the embodiment of the present application is applicable to all PUCCH resources of the cell.
  • the technical solution provided by the embodiments of the present application is applicable to the PUCCH resource that does not receive the transmission beam indication information (Spatial Relation Info) indication or update after the UE receives the specific information or signal.
  • the transmission beam indication information Spatial Relation Info
  • the uplink signal is PUCCH (for example, PUCCH-BFR in step 1).
  • the embodiments of the present invention may also have the following English descriptions: If PUCCH-BFR spatial relation info is associated with a DL RS, override with new beam. If PUCCH-BFR spatial relation info is associated with an UL RS, override with PUCCH-BFR beam.
  • Solution 1 Optionally, if the spatial relation information (Spatial Relation Info) of the PUCCH-BFR is associated with a downlink signal, the new beam reported by the UE during the beam failure recovery process is used to determine the PUCCH beam.
  • the spatial relation information Spatial Relation Info
  • the PUCCH-BFR transmission beam is used as the PUCCH transmission beam.
  • the PUCCH is a PUCCH transmitted on the cell where the beam failure occurs.
  • the PUCCH is from the Kth time unit after receiving the specific information or specific signal, or after receiving the specific information or specific signal K time units, or after receiving the specific information or specific signal K time units The PUCCH transmitted on the cell where the beam failure occurred from the first time slot after that.
  • the PUCCH is a PUCCH transmitted on a cell that sends PUCCH-BFR.
  • the PUCCH is from the Kth time unit after receiving the specific information or specific signal, or after receiving the specific information or specific signal K time units, or after receiving the specific information or specific signal K time units.
  • Solution 2 Optionally, if the Spatial Relation Info of PUCCH-BFR is associated with a downlink signal, use the reference signal corresponding to the new beam reported by the UE during the beam failure recovery process as the PUCCH beam reference signal .
  • the beam reference signal is a reference signal used to determine a transmission beam.
  • the reference signal corresponding to the new beam reported by the UE in the beam failure recovery process is used as the beam reference signal of the PUCCH.
  • the beam reference signal is a reference signal used to determine a transmission beam.
  • the space-related information of an uplink signal is associated with a downlink signal. This can be achieved by indicating a downlink reference signal by the space-related information of the uplink signal. In the protocol, it may be specified when the space-related information of an uplink signal indicates a downlink reference. When the signal is generated, the transmit spatial filtering of the uplink signal is the same as the receive spatial filtering of the downlink reference signal.
  • the space-related information of an uplink signal is associated with an uplink signal. This can be achieved by indicating an uplink reference signal by the space-related information of the uplink signal. In the agreement, it may be specified when the space-related information of an uplink signal indicates an uplink reference.
  • the transmit spatial filtering of the uplink signal is the same as the receive spatial filtering of the uplink reference signal.
  • the UE actually sends the uplink signal it may use the same transmission beam as that of the uplink reference signal.
  • the spatial relation information (Spatial Relation Info) of PUCCH-BFR is associated with a downlink signal (for example, the spatial relation information of PUCCH-BFR indicates a downlink reference signal, in the agreement, PUCCH-
  • the BFR spatial transmission filtering uses the same method as the receiving filtering of the downlink reference signal
  • the reference signal corresponding to the new beam reported by the UE during the beam failure recovery process (for example, the reference signal reported in step 2) is used to cover the downlink Signal (for example, replace the reference signal corresponding to the spatial relation info of PUCCH-BFR with the reference signal reported by the UE during the beam failure recovery process).
  • the Spatial Relation Info of PUCCH-BFR is associated with an uplink signal
  • use the reference corresponding to the new beam reported by the UE during the beam failure recovery process for example, the reference signal reported in step 2
  • the signal covers this upstream signal.
  • the PUCCH-BFR spatial correlation information (Spatial Relation Info) is associated with an uplink signal, the PUCCH-BFR spatial correlation information is not replaced.
  • PUCCH-BFR spatial correlation information (Spatial Relation Info) to be associated with a downlink signal is that the PUCCH-BFR spatial correlation information indicates a downlink reference signal.
  • the spatial transmission filtering of PUCCH-BFR is the same as the spatial reception filtering of the downlink reference signal.
  • the spatial correlation information (Spatial Relation Info) of the PUCCH-BFR is associated with a downlink signal.
  • the spatial correlation information of the PUCCH-BFR indicates an uplink reference signal.
  • the spatial transmission filtering of PUCCH-BFR is the same as the spatial transmission filtering of the uplink signal.
  • the UE reporting a new beam in the beam failure recovery process may be reported in the form of a reference signal identifier.
  • the embodiments of the present invention may have the following English descriptions: For SCell on which PUCCH-BFR resource is used to send step 1 during the BFR procedure, PUCCH resources are replaced with PUCCH-BFR beam, or nothing is done;
  • PUCCH beams are replaced with the new beam reported in step 2 MAC-CE.
  • the transmission beam of the PUCCH resource is the transmission beam of the PUCCH-BFR resource.
  • the PUCCH transmission beam is the new beam reported by the MAC-CE in step 2 or the new beam reported by the MAC-CE in step 2 MAC-CE The transmit beam corresponding to the reported new beam.
  • the reference signal used to determine the transmission beam of the PUCCH resource is set or replaced with the reference signal used to determine the PUCCH-BFR resource transmission beam.
  • the reference signal of the PUCCH is set or replaced with the one used to indicate step 2 MAC-CE reporting Reference signal for the new beam.
  • the sending beam of the PUCCH resource is the beam for sending the PUCCH-BFR.
  • the PUCCH transmission beam is the new beam reported by the MAC-CE in step 2 or step 2 MAC-CE The transmit beam corresponding to the reported new beam.
  • a form in which the PUCCH transmission beam is replaced with a PUCCH-BFR beam is to use the PUCCH-BFR corresponding transmission beam to send the PUCCH.
  • the signal corresponding to the space-related information of the PUCCH resource is replaced with the signal corresponding to the space-related information of the PUCCH-BFR.
  • the signal corresponding to the spatial related information of the PUCCH is replaced with the new beam corresponding to the MAC-CE reported in step 2. signal of.
  • the UE For a cell where beam failure occurs, from the Kth time unit after receiving specific information or specific signal or K time units after receiving specific information or specific signal, the UE It is assumed that the spatial correlation information (Spatial Relation Info) of the PUCCH transmitted on the cell where the beam failure occurs is the same as the spatial correlation information of the uplink signal that transmits the beam failure event of the cell.
  • the spatial correlation information Spatial Relation Info
  • Solution 1 For a cell where a beam failure occurs, from the Kth symbol after receiving a response corresponding to a specific MAC-CE, the UE uses the PUCCH resource that transmits the beam failure event of the cell (PUCCH in step 1 -BFR) The uplink transmission beam used to transmit the PUCCH transmitted on the cell.
  • the specific MAC-CE described in the embodiment of the present application is, for example, the MAC-CE that reports the identification of the CC where the beam failure occurred and/or the new beam information, and the specific MAC-CE reported the occurrence of the beam failure
  • the identity of the CC includes the identity of the cell (that is, the MAC-CE in step 2).
  • Solution 2 For a cell where a beam failure has occurred, after receiving K symbols corresponding to the response of a specific MAC-CE, the UE uses the PUCCH resource that transmits the beam failure event of the cell (PUCCH- in step 1).
  • the uplink transmission beam used by BFR) transmits the PUCCH transmitted on the cell.
  • the specific MAC-CE is the MAC-CE that reports the identifier of the CC where the beam failed and/or the new beam information is reported, and the identifier of the CC where the beam failed reported by the specific MAC-CE includes the identifier of the cell ( MAC-CE in step 2).
  • the solution is only applicable to SCell.
  • the solution is applicable to SCell and PCell.
  • the solution 1 or the solution 2 is applied.
  • scheme 1 or scheme 2 can be applied regardless of whether the UE finds a new beam about the beam failure cell.
  • scheme 1 and scheme 2 are applicable to all PUCCH resources in the cell where the beam failure occurs.
  • solution 1 and solution 2 are only applicable to the PUCCH resource that does not receive the beam indication information (Spatial Relation Info) indication or the updated PUCCH resource after sending the MAC-CE in step 2 by the UE of the cell where the beam failure occurs.
  • the base station After receiving the Kth symbol corresponding to the MAC-CE response in step 2 of the cell, if the base station sends an uplink transmission beam indication or update information of a PUCCH resource on the cell, the UE The PUCCH is sent using the uplink sending beam indicated by the base station.
  • the UE when the UE receives a signal of a specific PDCCH (that is, any or predefined PDCCH described above), it is considered that it has received a response corresponding to a specific MAC-CE.
  • a specific PDCCH that is, any or predefined PDCCH described above
  • the specific PDCCH may be indicated to the UE through the base station, or may be pre-appointed.
  • the UE receives any PDCCH signal for scheduling PUSCH transmission of the cell, it is considered that it has received a response corresponding to a specific MAC-CE.
  • the UE receives any PDCCH signal used to schedule or trigger the uplink signal transmission of the cell, it is considered that it has received a response corresponding to a specific MAC-CE.
  • the UE receives any PDCCH signal, it is considered that it has received a response corresponding to a specific MAC-CE.
  • Solution 3 For any cell where a beam failure occurs, the UE uses the transmission report from the Kth symbol after the UE receives an uplink grant information (UL grant) after sending the PUCCH that reports the beam failure event of the cell.
  • UL grant uplink grant information
  • the uplink transmission beam used by the PUCCH resource (PUCCH-BFR in step 1) of the beam failure event of the cell transmits the PUCCH on the cell.
  • Solution 4 For any cell where a beam failure occurs, after the UE sends the PUCCH that reports the beam failure event of the cell and receives the Kth symbol after the uplink grant information (UL grant), the UE uses the transmission report
  • the uplink transmission beam used by the PUCCH resource (PUCCH-BFR in step 1) of the beam failure event of the cell transmits the PUCCH on the cell.
  • scheme 3 and scheme 4 are only applicable to SCell. Or, alternatively, scheme 3 and scheme 4 are applicable to SCell and PCell.
  • scheme 3 or scheme 4 is applied.
  • scheme 3 or scheme 4 can be applied regardless of whether the UE finds a new beam about the beam failure cell.
  • scheme 3 and scheme 4 are applicable to all PUCCH resources of the cell where the beam failure occurs.
  • the UL grant may be a UL grant for scheduling the PUSCH of the cell where the beam failure occurs, that is, the UL grant schedules the UE to transmit the PUSCH in the cell where the beam failure occurs.
  • the UL grant is a UL that indicates that the transmission of the PUSCH is a new data transmission (for example, the new data in the downlink control information (Downlink Control Information, DCI) indicates NDI (New data indicator) indicates that the transmission is new data).
  • DCI Downlink Control Information
  • NDI New data indicator
  • grant that is, UL grant for scheduling new data.
  • the UL grant is a normal UL grant that schedules new data transmission for the HARQ process of the PUSCH carrying the MAC-CE of step 2, which is similar to the "acknowledge ACK" (a normal uplink grant to schedule a) of the normal PUSCH. new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE, which is the same as normal "ACK" for PUSCH.)
  • the UL grant is any UL grant (regardless of indicating that the transmission of the PUSCH is a new data transmission or a data retransmission).
  • the UL grant is DCI format 0_0.
  • the UL grant is DCI format 0_1.
  • the UL grant is DCI format 0_0 or DCI format 0_1.
  • the UL grant is the first UL grant.
  • the end time of the PDCCH where the UL grant is located is t2, and the UE starts from t2+K to use the PUCCH transmission beam mentioned in step 1 to transmit the PUCCH of the cell where the beam fails.
  • the end time of the UL grant is t2, and the UE starts from t2+K to use the PUCCH transmission beam mentioned in step 1 to transmit the PUCCH of the cell where the beam fails.
  • the UL grant and PDCCH are transmitted on slot n, and the UE starts from slot n+K and uses the PUCCH transmission beam mentioned in step 1 to send the PUCCH of the cell where the beam fails.
  • n is any integer greater than or equal to zero.
  • UL grant and PDCCH are transmitted on time slot n, the end time of PDCCH is t2, and the UE starts using the PUCCH transmission mentioned in step 1 from the first time slot Slot X after t2+K symbols
  • the beam transmits the PUCCH of the cell where the beam failed.
  • n and X are any integer greater than or equal to zero.
  • the start time of the UL grant is t1
  • the UE starts from t1+K to use the PUCCH transmission beam mentioned in step 1 to transmit the PUCCH of the cell where the beam fails.
  • the above example only gives the case where the specific information is UL grant, and does not give the case where the specific information is the beam failure recovery response.
  • the specific information is the situation of beam failure recovery response, which is the same as UL grant, so I won't repeat it here.
  • the signal sending method provided in the embodiment of the present application includes:
  • the terminal needs to send the physical uplink control channel PUCCH signal, when a preset condition is met, use the uplink transmission beam to send the physical uplink control channel PUCCH signal, where the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • the preset conditions include:
  • the uplink transmission beam to send the physical uplink control channel PUCCH, which specifically includes:
  • K is a preset non-negative integer.
  • the uplink transmission beam uses the uplink transmission beam to transmit the physical uplink control channel PUCCH, which specifically includes: the first time slot after receiving the specific information or specific signal for K time units Initially, the physical uplink control channel PUCCH is transmitted using the uplink transmission beam.
  • the specific information includes one of the following information or any combination of the following information:
  • the uplink grant information UL grant received after the terminal sends the PUCCH that reports the beam failure event of the cell.
  • the specific signal is a signal carrying the specific information.
  • the specific signal is a physical downlink control channel PDCCH signal.
  • the signal receiving method provided by the embodiment of the present application includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • the method further includes: sending specific information or a specific signal to the terminal;
  • the PUCCH is a PUCCH transmitted by the terminal using an uplink transmission beam from the Kth time unit after receiving the specific information or the specific signal;
  • the PUCCH is a PUCCH sent by the terminal using an uplink transmission beam after receiving specific information or specific signals for K time units;
  • K is a preset non-negative integer.
  • the specific information includes one of the following information or any combination of the following information:
  • the uplink grant information UL grant received after the terminal sends the PUCCH that reports the beam failure event of the cell.
  • the specific signal is a physical downlink control channel PDCCH signal.
  • the physical uplink control channel PUCCH sent by the receiving terminal through the uplink transmission beam includes:
  • the physical uplink control channel PUCCH transmitted by the terminal through the uplink transmission beam is received by using the reception beam corresponding to the uplink transmission beam.
  • the signal sending apparatus provided in the embodiment of the present application includes:
  • the determining unit 11 is configured to determine that a beam failure occurs in a cell
  • the sending unit 12 is configured to, if the terminal needs to send the physical uplink control channel PUCCH signal, when a preset condition is met, use the uplink transmission beam to send the physical uplink control channel PUCCH signal, wherein the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • the unit in the signal sending device has the function of executing all the procedures mentioned in the above-mentioned terminal-side signal sending method, which will not be repeated here.
  • the preset condition includes: receiving specific information or a specific signal.
  • the sending unit uses the uplink sending beam to send the physical uplink control channel PUCCH, which specifically includes:
  • K is a preset non-negative integer.
  • the transmitting unit uses the uplink transmission beam to transmit the physical uplink control channel PUCCH, which specifically includes: the first one after receiving the specific information or specific signal for K time units.
  • the uplink transmission beam is used to transmit the physical uplink control channel PUCCH.
  • the specific information includes one of the following information or any combination of the following information:
  • the uplink grant information UL grant received after the terminal sends the PUCCH that reports the beam failure event of the cell.
  • the specific signal is a signal carrying the specific information.
  • the specific signal is a physical downlink control channel PDCCH signal.
  • the physical uplink control channel PUCCH signal is a PUCCH signal transmitted in the cell where the beam failure occurs.
  • the physical uplink control channel PUCCH signal is a PUCCH signal transmitted in a cell reporting a beam failure event
  • the uplink transmission beam is a beam used to transmit a beam failure event
  • the physical uplink control channel PUCCH signal is a PUCCH signal transmitted in another cell outside the cell reporting the beam failure event, and the uplink transmission beam is the uplink beam corresponding to the reported new beam of the cell.
  • the uplink transmission beam is the uplink beam corresponding to the reported new beam of the cell.
  • the uplink transmission beam is a beam used to transmit a beam failure event or the space-related information associated with the physical uplink control channel PUCCH signal The transmission beam of the uplink signal.
  • the signal receiving apparatus provided in the embodiment of the present application includes:
  • the first unit 21 is configured to receive a beam failure event of the cell reported by the terminal when a beam failure occurs in a cell;
  • the second unit 22 is configured to receive the physical uplink control channel PUCCH signal sent by the terminal through the uplink transmission beam; wherein, the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • the device further includes:
  • the third unit is used to send specific information or specific signals to the terminal.
  • the PUCCH is a PUCCH transmitted by the terminal using an uplink transmission beam from the Kth time unit after receiving the specific information or the specific signal;
  • the PUCCH is a PUCCH sent by the terminal using an uplink transmission beam after receiving specific information or specific signals for K time units;
  • K is a preset non-negative integer.
  • the specific information includes one of the following information or any combination of the following information:
  • the uplink grant information UL grant received after the terminal sends the PUCCH that reports the beam failure event of the cell.
  • the specific signal is a physical downlink control channel PDCCH signal.
  • the physical uplink control channel PUCCH signal is a PUCCH signal transmitted in the cell where the beam failure occurs.
  • the physical uplink control channel PUCCH signal is a PUCCH signal transmitted in a cell reporting a beam failure event
  • the uplink transmission beam is a beam used to transmit a beam failure event
  • the physical uplink control channel PUCCH signal is a PUCCH signal transmitted in another cell outside the cell reporting the beam failure event, and the uplink transmission beam is the uplink beam corresponding to the reported new beam of the cell.
  • the uplink transmission beam is the uplink beam corresponding to the reported new beam of the cell.
  • the uplink transmission beam is a beam used to transmit a beam failure event or the space-related information associated with the physical uplink control channel PUCCH signal The transmission beam of the uplink signal.
  • the physical uplink control channel PUCCH sent by the receiving terminal through the uplink transmission beam includes:
  • the physical uplink control channel PUCCH transmitted by the terminal through the uplink transmission beam is received by using the reception beam corresponding to the uplink transmission beam.
  • the unit in the signal receiving device has the function of executing all the procedures mentioned in the above-mentioned network-side signal receiving method, which will not be repeated here.
  • another signal sending apparatus provided in an embodiment of the present application includes:
  • the processor 600 is configured to read a program in the memory 620, and execute the following process:
  • the uplink transmission beam is used to transmit the physical uplink control channel PUCCH signal, where the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • the preset conditions include:
  • the uplink transmission beam is used to send the physical uplink control channel PUCCH through the transceiver 610, which specifically includes:
  • the transceiver 610 after receiving K time units of specific information or specific signals through the transceiver 610, use the uplink transmission beam to transmit the physical uplink control channel PUCCH through the transceiver 610;
  • K is a preset non-negative integer.
  • the uplink transmission beam is used to transmit the physical uplink control channel PUCCH through the transceiver 610, which specifically includes: receiving specific information or specific signals from the transceiver 610 The first time slot after K time units of the signal starts, and the physical uplink control channel PUCCH is transmitted through the transceiver 610 using the uplink transmission beam.
  • the specific information includes one of the following information or any combination of the following information:
  • the uplink grant information UL grant received after the terminal sends the PUCCH that reports the beam failure event of the cell.
  • the specific signal is a signal carrying the specific information.
  • the specific signal is a physical downlink control channel PDCCH signal.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting internally required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a CPU (central embedded device), ASIC (Application Specific Integrated Circuit, application-specific integrated circuit), FPGA (Field-Programmable Gate Array, field programmable gate array) or CPLD (Complex Programmable Logic Device) , Complex Programmable Logic Device).
  • CPU central embedded device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • CPLD Complex Programmable Logic Device
  • Complex Programmable Logic Device Complex Programmable Logic Device
  • another signal receiving apparatus provided in an embodiment of the present application includes:
  • the processor 500 is configured to read a program in the memory 520 and execute the following process:
  • the physical uplink control channel PUCCH signal sent by the terminal through the uplink transmission beam is received through the transceiver 510; wherein, the uplink transmission beam includes:
  • the uplink beam corresponding to the space-related information used to carry the signal of the beam failure event of the cell
  • the beam used to send the identity of the cell and/or the new beam is the beam used to send the identity of the cell and/or the new beam
  • the reported uplink beam corresponding to the new beam of the cell Or, the reported uplink beam corresponding to the new beam of the cell.
  • the processor 500 is further configured to read a program in the memory 520, and execute the following process: send specific information or a specific signal to the terminal through the transceiver 510;
  • the PUCCH is a PUCCH transmitted by the terminal using an uplink transmission beam from the Kth time unit after receiving the specific information or the specific signal;
  • the PUCCH is a PUCCH sent by the terminal using an uplink transmission beam after receiving specific information or specific signals for K time units;
  • K is a preset non-negative integer.
  • the specific information includes one of the following information or any combination of the following information:
  • the uplink grant information UL grant received after the terminal sends the PUCCH that reports the beam failure event of the cell.
  • the specific signal is a physical downlink control channel PDCCH signal.
  • the receiving, through the transceiver 510, the physical uplink control channel PUCCH sent by the terminal through the uplink transmission beam includes:
  • the physical uplink control channel PUCCH transmitted by the terminal through the uplink transmission beam is received through the transceiver 510.
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), a memory, an input/output device, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • an output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include read only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), Mobile Station (Mobile Station, referred to as “MS”), Mobile Terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal can be It has the ability to communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal can be a mobile phone (or called a "cellular" phone), or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or it can be gNB in the 5G system, etc.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • the above-mentioned method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above-mentioned method steps are executed.
  • the embodiments of this application propose some schemes for determining the PUCCH signal transmission beam after the UE has a beam failure in a cell, so that the UE can use a better uplink transmission beam to transmit PUCCH, and the UE and The network side has the same consensus on the transmission beam of the uplink signal, so that the base station can use the optimal reception beam to receive the uplink signal.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了信号传输方法及装置,用以当小区发生波束失败时,通过用于发送所述小区的波束失败事件的波束,实现PUCCH的传输。本申请提供的信号发送方法,包括:确定小区发生波束失败;若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号。

Description

信号传输方法及装置
相关申请的交叉引用
本申请要求在2019年11月21日提交中国专利局、申请号为201911151190.6、申请名称为“信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信号传输方法及装置。
背景技术
对于无线通信系统,采用模拟波束赋形进行下行信号的传输可以实现更高赋形增益和更大覆盖。对于高频段系统的模拟波束赋形面临的一个重要挑战是传输信号的传播损耗大、被遮挡概率高。当物理下行控制信道(PDCCH,Physical Downlink Control Channel)信号被遮挡时,终端将无法准确获得下行传输的控制信息,从而接收性能下降,例如速率下降、调度时延增加、用户体验下降等。
现有技术中,在终端检测到波束失败后,关于终端使用什么样的接收波束接收PDCCH以外的其他信道信号,以及使用什么样的发送波束发送上行信号尚无定义。
发明内容
本申请实施例提供了信号传输方法及装置,用以当小区发生波束失败时,通过用于发送所述小区的波束失败事件的波束,实现PUCCH的传输。
第一方面,在终端侧,本申请实施例提供的一种信号发送方法,包括:
确定小区发生波束失败;
若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时, 使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
通过该方法,确定小区发生波束失败;若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;或者,用于发送所述小区的标识和/或新波束的波束;或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;或者,上报的所述小区的新波束对应的上行波束,从而当小区发生波束失败时,通过用于发送所述小区的波束失败事件的波束,实现PUCCH的传输。
可选地,所述预设条件,包括:
接收到特定信息或特定信号。
可选地,当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH,具体包括:
从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送物理上行控制信道PUCCH;
或者,接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH;
其中,K为预设非负整数。
可选地,接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH,具体包括:从接收到特定信息或特定信号K个时间单元后的第一个时隙开始,使用上行发送波束发送物理上行控制信道PUCCH。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
所述小区的波束失败恢复响应;
终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
可选地,所述特定信号为携带所述特定信息的信号。
可选地,所述特定信号为物理下行控制信道PDCCH信号。
第二方面,在网络侧,本申请实施例提供的一种信号接收方法,包括:
当小区发生波束失败时,接收终端上报的所述小区的波束失败事件;
接收终端通过上行发送波束发送的物理上行控制信道PUCCH信号;其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
可选地,该方法还包括:向终端发送特定信息或特定信号。
可选地,所述PUCCH是所述终端从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送的PUCCH;
或者,所述PUCCH是所述终端接收到特定信息或特定信号K个时间单 元后,使用上行发送波束发送的PUCCH;
其中,K为预设非负整数。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
所述小区的波束失败恢复响应;
终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
可选地,所述特定信号为物理下行控制信道PDCCH信号。
可选地,所述接收终端通过上行发送波束发送的物理上行控制信道PUCCH,包括:
使用与所述上行发送波束对应的接收波束接收终端通过上行发送波束发送的物理上行控制信道PUCCH。
第三方面,在终端侧,本申请实施例提供的一种信号发送装置,包括:
确定单元,用于确定小区发生波束失败;
发送单元,用于若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
第四方面,在网络侧,本申请实施例提供的一种信号接收装置,包括:
第一单元,用于当小区发生波束失败时,接收终端上报的所述小区的波束失败事件;
第二单元,用于接收终端通过上行发送波束发送的物理上行控制信道PUCCH信号;其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
第五方面,在终端侧,本申请实施例提供的另一种信号发送装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行上述第一方面提供的信号发送方法的步骤。
第六方面,在网络侧,本申请实施例提供的另一种信号接收装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行上述第二方面提供的信号接收方法的步骤。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中 所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的信号传输时间点示意图;
图2为本申请实施例提供的信号传输时间点示意图;
图3为本申请实施例提供的信号传输时间点示意图;
图4为本申请实施例提供的信号传输时间点示意图;
图5为本申请实施例提供的信号传输时间点示意图;
图6为本申请实施例提供的终端侧的一种信号发送方法的流程示意图;
图7为本申请实施例提供的网络侧的一种信号接收方法的流程示意图;
图8为本申请实施例提供的终端侧的一种信号发送装置的结构示意图;
图9为本申请实施例提供的网络侧的一种信号接收装置的结构示意图;
图10为本申请实施例提供的终端侧的另一种信号发送装置的结构示意图;
图11为本申请实施例提供的网络侧的另一种信号接收装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在长期演进(LTE,Long Term Evolution)等通信系统中,当为下行控制信道PDCCH配置的下行波束都失败时,就认为无线链路失败,开启无线链路重建的过程。这种方式除了增加时延外,还有可能会造成资源的浪费,因为换个发送波束和/或接收波束就有可能使得下行控制信号的接收质量可以满足要求。为了避免这种资源浪费和时延,在新空口(NR,New Radio)标准中,一种快速、可靠的波束失败检测和恢复过程被标准化,使得网络侧能够快速从波束失败中恢复传输过程。在NR标准的版本15(Rel-15)阶段规定了主小 区(Pcell)的波束失败恢复过程,在NR标准的版本16(Rel-16)阶段规定了辅小区(SCell)的波束失败恢复过程。
一个UE在进行了初始接入后可以被配置一个或多个SCell。一个SCell可以被配置为只有下行链路(DL,downlink),或者包含下行链路DL和上行链路(UL,Uplink)。
每个SCell都可以被配置波束失败恢复(beam failure recovery,BFR)过程。波束失败恢复的过程如下:
UE进行波束失败监测,如果UE检测到SCell DL的波束失败,则向基站发送波束失败恢复请求(BFRQ,beam failure recovery request)。UE发送的波束失败恢复请求至少包括波束失败事件的上报和发生波束失败的成员载波(Component Carrier,CC)的标识(或标号index/indices)的上报。如果UE检测到符合一定质量条件的新的波束,还可以向基站上报新波束的标识(或标号index/indices)。
基站接收到UE的波束失败事件的上报后,基站会为发生报数失败的SCell重新配置下行波束。
为了进行BFR,UE测量下行控制信道PDCCH的下行波束质量(或者认为测量控制资源集合(Control Resource SET,CORESET)的信道质量)。UE通过检测用来进行SCell波束失败检测(Beam failure detection,BFD)的下行参考信号的质量,来进行SCell的波束失败检测。其中,用来进行SCell BFD的下行参考信号可以通过无线资源控制(Radio Resource Control,RRC)显式配置或者通过传输配置指示(TCI,Transmission Configuration Indicator)状态隐式配置。每个SCell最多可以配置8个下行波束,例如最多8个TCI状态(state)或者最多8个用于BFD的下行参考信号。下行控制信道的波束是激活TCI状态的一个子集。
NR系统关于UE对SCell的波束失败恢复请求(BFRQ,beam failure recovery request)的过程包括如下两个步骤:
步骤1:UE上报波束失败事件;
步骤2:UE上报发生波束失败的CC的索引(index/indices)以及新波束信息(如果存在新波束则上报)。
其中,步骤1的信息可以通过专门配置给BFR的SR-like(Schedule Request-like)的物理上行控制信道(PUCCH,Physical Uplink Control Channel)资源发送,所述SR-like的PUCCH是指发送方式类似于发送调度请求(SR,Schedule Request)的PUCCH;步骤2的信息通过物理上行共享信道(PUSCH,PhysicalUplinkSharedChannel)中的媒体接入控制单元(MAC-CE,Media Access Control Control Element)发送。需要说明的是:通过专门配置给BFR的SR-like的PUCCH来上报波束失败事件,未必是上报波束失败事件的唯一方式。
用来携带发生波束失败的CC的index/indices和/或BFR新波束信息的MAC-CE,有可能携带在发送波束失败事件的PUCCH所对应的PUSCH上(基于该PUCCH的调度请求所调度的PUSCH),也可能复用在一个以及已经存在的PUSCH资源上,例如复用在一个配置准许的PUSCH(configured grant PUSCH)上。
如果步骤2的MAC-CE指示了新波束且被UE检测到,UE在接收到对于步骤2的MAC-CE的响应的K个符号后(K是正整数),UE使用步骤2的MAC-CE指示的新的波束在发生波束失败的SCell上进行PDCCH的下行接收。这适用于发生了波束失败的SCell的所有的CORESET。
然而,在UE检测到波束失败且接收到BFR响应后,关于UE使用什么样的接收波束接收PDCCH以外的其他信道信号,以及UE使用什么样的发送波束发送上行信号,目前尚无解决方案。
因此,本申请实施例提供了信号传输方法及装置,给出了相关的解决方案,可以使得UE使用更好的上行发送波束发送PUCCH,且UE和网络侧关于上行信号的发送波束有着相同的共识,从而使得基站可以使用最优的接收波束进行上行信号的接收,保证了系统性能。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(user equipment,UE)。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。 根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本申请实施例提供的技术方案,适用的系统包括但不限于NR系统、LTE系统、6G系统,以及它们演进版本的系统等。
本申请实施例提出了UE在小区发生波束失败后的信号发送方法,可以使得UE使用更好的上行发送波束发送PUCCH,且UE和网络侧关于上行信号的发送波束有着相同的共识,从而使得基站可以使用最优的接收波束进行上行信号的接收,保证了上行传输的性能。
关于小区的波束失败,一种判断方法为:UE测量对应于该小区的下行波束的质量,如果每个下行波束的质量都低于预设条件,则UE认为发生了波束失败事件。所述下行波束可以是基站配置的,或者预定义的。例如,所述下行波束为该小区的所有下行控制信道的波束。再例如,所述下行波束为基站 为终端配置的用来进行波束失败监测的参考信号对应的下行波束。
UE判断一个下行波束的质量是否低于预设条件的一些可能的方式有:UE测量使用该下行波束的参考信号的接收强度,判断其是否大于一定阈值,如果小于一定阈值,则认为该下行波束的质量都低于预设条件,该下行波束发生失败;UE测量使用该下行波束的参考信号的性能,并映射至下行控制信道PDCCH信号的译码错误概率BLER(Block Error Ratio),如果BLER的值高于设定阈值(例如,BLER=10%),则认为该下行波束的质量都低于预设条件,该波束失败等。
UE判断一个小区发生波束失败后,可以上报该小区的波束失败事件。
UE上报小区的波束失败事件的同时或之后,还可以上报UE认为可以进行正常通信的新波束(例如质量高于一定预设条件的波束)。新波束的上报可以以指示参考信号的形式上报。UE上报波束失败事件和新波束的过程可以认为是发送波束失败恢复请求的过程。
一种UE发送小区的波束失败恢复请求的过程为:
UE通过基站配置的用于波束失败恢复的物理随机接入信道PRACH(Physical Random Access Channel)上报波束失败事件和/或新波束。新波束与PRACH可以有预先定义的一一对应关系。基站接收到PRACH后,可以确定UE发生了波束失败事件,和/或确定出新波束。
一种关于小区波束失败恢复请求的发送过程如下:
步骤1:UE通过PUCCH上报波束失败事件;
步骤2:UE通过MAC-CE上报发生波束失败的小区的标识和/或新波束信息(如果存在新波束上报,才上报新波束信息)
其中,步骤1中的PUCCH是用来发送波束失败事件的PUCCH,可以是通过专门配置给BFR的类似于发送SR的PUCCH资源发送,为了便于描述,本申请实施例中将用来发送波束失败事件的PUCCH称为PUCCH-BFR,将PUCCH资源称为PUCCH-BFR资源;步骤2中的信息可以通过PUSCH上报。
可选地,发生波束失败的小区的标识以发生波束失败的成员载波CC的序 号index/indices的方式上报。
本申请的部分实施例包含且不限于上述UE发送小区波束失败恢复请求的方式。
在标准中,关于本发明实施例可能会有如下英文描述:
For PUCCH in a failed SCell,starting from K symbols after receiving response to step 2 MAC-CE,UE applies the original UL beam(spatial relation info)of PUCCH-BFR resource used for the transmission of step 1,on the failed SCell.
This may be applied only when a new beam is identified,or applied regardless if a new beam is found.
This applies to all PUCCH resources on the failed SCell.
上述描述至少包含以下可能的方案:
方案1:对于发生波束失败的SCell上的PUCCH,从接收到对于步骤2的MAC-CE的响应后的K个符号开始,UE使用用于传输步骤1的PUCCH-BFR资源的原始上行波束(发送所述PUCCH)。
可选地,仅当UE识别出新波束时,才实施本方案;或者,无论UE是否找到新波束,都可以应用此方案。
可选地,本方案适用于波束失败SCell上的所有PUCCH资源。
方案2:对于发生波束失败的SCell上的PUCCH,从接收到对于步骤2的MAC-CE的响应后的K个符号开始,UE使用传输步骤1的PUCCH-BFR资源的空间参考信号作为所述PUCCH的空间参考信号。
可选地,仅当UE识别出新波束时,才实施本方案;或者,无论UE是否找到新波束,都可以应用此方案。
可选地,本方案适用于波束失败SCell上的所有PUCCH资源。
可选地,所述空间参考信号是通过空间相关信息(spatial relation info)指示的信号。
方案3:对于发生波束失败的SCell上的PUCCH,从接收到对于步骤2的MAC-CE的响应后的K个符号开始,UE使用步骤1的PUCCH-BFR资源的 空间参考信号作为所述PUCCH的空间参考信号。
可选地,仅当UE识别出新波束时,才实施本方案;或者,无论UE是否找到新波束,都可以应用此方案。
可选地,本方案适用于波束失败SCell上的所有PUCCH资源。
可选地,所述空间参考信号是通过空间相关信息(spatial relation info)指示的信号。
在本申请中,步骤2的MAC-CE可以为用来发送发生波束失败的小区的标识和/或新波束指示信息的MAC-CE。步骤1的PUCCH-BFR资源可以为用来上报波束失败事件的PUCCH资源。可选地,PUCCH-BFR资源是基站配置给UE的用于波束失败恢复的PUCCH资源。
需要理解的是,本申请以SCell为例进行阐述,同样适用于PCell、未进行载波聚合的小区等其他小区;本实施例以UE使用PUCCH进行波束失败事件上报为例进行阐述,本发明同样适用于UE使用例如PRACH等其他上行信号进行波束失败事件上报的情形,此时需要将本实施例中“步骤1的PUCCH-BFR资源”替换为其他上行信号;本实施例以UE使用MAC-CE进行发生波束失败的小区标识和/或新波束上报为例进行阐述,同时适用于UE使用诸如PRACH等其他上行信号或信息进行波束失败事件上报的情形,此时需要将本实施例中“步骤2的MAC-CE”替换为诸如PRACH等其他上行信号或信息。
在标准中,关于本发明实施例可能会有如下英文描述:
For PUCCH in a failed SCell,starting from K symbols after UE receives an UL grant after the transmission of step 1 PUCCH-BFR,UE applies the original UL beam(spatial relation info)of PUCCH-BFR resource used for the transmission of step 1,on the failed SCell.
This may be applied only when a new beam is identified,or applied regardless if a new beam is found.
This applies to all PUCCH resources on the failed SCell.
This applies when the UL grant is for new data transmission(e.g.NDI toggled),or regardless of the NDI status.
上述描述至少包含以下可能的方案:
方案1:对于发生波束失败的SCell上的PUCCH,从接收到传输步骤1的PUCCH-BFR后的UL grant开始,UE使用用于传输步骤1的PUCCH-BFR资源的原始上行波束(发送所述PUCCH);
可选地,仅当UE识别出新波束时,才实施本方案;或者,无论UE是否找到新波束,都可以应用此方案。
可选地,本方案适用于波束失败SCell上的所有PUCCH资源。
可选地,所述UL grant是调度新数据的UL grant(例如,UL grant里的新数据指示NDI(New Data Indicator)域指示所述PUSCH是新数据)。可选地,所述UL grant是一个为携带步骤2的MAC-CE的PUSCH的HARQ进程调度新数据传输的的普通的UL grant,类似于普通PUSCH的“确认ACK”(a normal uplink grant to schedule a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE,which is the same as normal“ACK”for PUSCH.)。可选地,所述UL grant可以是调度新数据的UL grant,也可以是非调度新数据的UL grant。
方案2:对于发生波束失败的SCell上的PUCCH,从接收到传输步骤1的PUCCH-BFR后的UL grant开始,UE使用传输步骤1的PUCCH-BFR资源的空间参考信号作为所述PUCCH的空间参考信号。
可选地,仅当UE识别出新波束时,才实施本方案;或者,无论UE是否找到新波束,都可以应用此方案。
可选地,本方案适用于波束失败SCell上的所有PUCCH资源。
可选地,所述空间参考信号用来指示上行发送波束的信号。例如,通过空间相关信息(Spatial Relation Info)指示的。
可选地,所述UL grant是调度新数据的UL grant(例如,UL grant里的新数据指示(NDI)域指示所述PUSCH是新数据)。可选地,所述UL grant是 一个为携带步骤2的MAC-CE的PUSCH的HARQ进程调度新数据传输的的普通的UL grant,类似于普通PUSCH的“确认ACK”(a normal uplink grant to schedule a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE,which is the same as normal“ACK”for PUSCH.)可选地,所述UL grant可以是调度新数据的UL grant,也可以是非调度新数据的UL grant。
方案3:对于发生波束失败的SCell上的PUCCH,从接收到传输步骤1的PUCCH-BFR后的UL grant开始,UE使用步骤1的PUCCH-BFR资源的空间参考信号作为所述PUCCH的空间参考信号,
可选地,仅当UE识别出新波束时,才实施本方案;或者,无论UE是否找到新波束,都可以应用此方案。
可选地,本方案适用于波束失败SCell上的所有PUCCH资源。
可选地,所述空间参考信号是用来指示上行发送波束的信号。例如,通过空间相关信息(Spatial Relation Info)指示。
可选地,所述UL grant是调度新数据的UL grant(例如,UL grant里的新数据指示(NDI)域指示所述PUSCH是新数据)。可选地,所述UL grant是一个为携带步骤2的MAC-CE的PUSCH的HARQ进程调度新数据传输的的普通的UL grant,类似于普通PUSCH的“确认ACK”(a normal uplink grant to schedule a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE,which is the same as normal“ACK”for PUSCH.)可选地,所述UL grant可以是调度新数据的UL grant,也可以是非调度新数据的UL grant。
本申请实施例提供的技术方案中,对于一个发生了波束失败的小区,从接收到特定信息或特定信号后的第K个时间单元起,或接收到特定信息或特定信号K个时间单元后,或从接收到特定信息或特定信号K个时间单元后的第一个时隙起,UE使用发送所述小区的波束失败事件的上行信号所使用的上行发送波束发送传输在该小区上的PUCCH。
可选地,UE将所述PUCCH的空间参考信号设置或者替换为携带所述小区的波束失败事件的上行信号的空间参考信号。这里的空间参考信号是用来 指示上行发送波束的信号。
其中,K为预设非负整数。
可选地,K是UE和网络侧约定的(例如,协议约定)。或者,可选地,K是基站指示给UE的(例如,基站通过RRC(中英完全称)信令,和/或MAC-CE信令,和/或DCI信令指示给UE)。
可选地,所述时间单元为符号(symbol)。或者,可选地,所述时间单元为时隙(slot)。当然,也可以为其他类型的时间单元。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
发生波束失败的小区的波束失败恢复响应;
UE发送了上报发生波束失败的小区的波束失败事件的PUCCH之后接收到的上行准许信息(UL grant)。
其中,所述发生波束失败的小区的波束失败恢复响应,可以是关于所述小区的波束失败恢复响应。例如,是关于MAC-CE的响应,其中,MAC-CE是UE上报给基站的,该MAC-CE是发送发生波束失败的CC的标识和/或新波束信息的MAC-CE。可选地,所述CC的标识中包含所述发生波束失败的小区的标识。
其中,可选地,所述UL grant包括调度发送在所述小区的PUSCH的UL grant,例如,DCI format 0_0、DCI format 0_1等。或者,可选地,所述UL grant包括调度发送在所述小区的PUSCH的第一个UL grant,例如,DCI format 0_0、DCI format 0_1等。或者,可选地,所述UL grant为第一个UL grant。或者,可选地,所述UL grant为调度新数据的UL grant。可选地,所述UL grant是一个为携带步骤2的MAC-CE的PUSCH的HARQ进程调度新数据传输的的普通的UL grant,类似于普通PUSCH的“确认ACK”(a normal uplink grant to schedule a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE,which is the same as normal“ACK”for PUSCH.)或者,可选地,所述UL grant为调度新数据的第一个UL grant。或者,可选地,所述UL grant为任意一个UL grant。
可选地,所述特定信号为携带所述特定信息的信号。例如:可选地,所述特定信号为携带对应于上报发生波束失败的CC的标识和/或新波束信息、且所述发生波束失败的CC的标识中包含所述小区的标识的MAC-CE的响应的信号。可选地,所述特定信号为携带发送了上报所述小区的波束失败事件的PUCCH之后的上行准许信息(UL grant)的信号。其中,所述UL grant例如可以为第一个UL grant,或者也可以为调度新数据的UL grant等。
可选地,所述特定信号也可以为任意一个PDCCH。可选地,所述PDCCH为指示UE在所述小区进行任意一个上行信号传输的PDCCH,例如,指示UE发送SRS的PDCCH,指示UE发送PUSCH的PDCCH等。
可选地,所述特定信号也可以为预定义的PDCCH。所述预定义的PDCCH是基站和UE预先约定的PDCCH(例如协议约定),或者基站预先指示给UE的PDCCH。
本申请实施例提供的技术方案可以仅适用于SCell,也可以仅适用于PCell,或者两者都适用,本申请不进行限制。
可选地,只有在UE确定出了关于波束失败小区的新的波束的情况下,才使用本发明的方案。
可选地,无论UE是否找到关于波束失败小区的新的波束,都可以应用本申请实施例提供的技术方案。
可选地,本申请实施例提供的技术方案适用于所述小区的所有PUCCH资源。
可选地,本申请实施例提供的技术方案适用于UE接收到特定信息或信号后,没有收到发送波束指示信息(Spatial Relation Info)指示或更新的PUCCH资源。
可选地,所述上行信号为PUCCH(例如,步骤1里的PUCCH-BFR)。
在标准中,关于本发明实施例也可能会有如下英文描述:If PUCCH-BFR spatial relation info is associated with a DL RS,override with new beam.If PUCCH-BFR spatial relation info is associated with an UL RS,override with  PUCCH-BFR beam.
上述描述包含如下可能的方案:
方案1:可选地,如果PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个下行信号相关联,则使用UE在波束失败恢复过程中上报的新波束确定PUCCH的波束。
可选地,如果PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个上行信号相关联,使用PUCCH-BFR的发送波束作为PUCCH的发送波束。
可选地,所述PUCCH为在所述发生波束失败的小区上传输的PUCCH。例如,所述PUCCH为从接收到特定信息或特定信号后的第K个时间单元起,或接收到特定信息或特定信号K个时间单元后,或从接收到特定信息或特定信号K个时间单元后的第一个时隙起在所述发生波束失败的小区上传输的PUCCH。
可选地,所述PUCCH为发送PUCCH-BFR的小区上传输的PUCCH。例如,所述PUCCH为从接收到特定信息或特定信号后的第K个时间单元起,或接收到特定信息或特定信号K个时间单元后,或从接收到特定信息或特定信号K个时间单元后的第一个时隙起在所述发生波束失败的小区上传输的PUCCH。
方案2:可选地,如果PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个下行信号相关联,则使用UE在波束失败恢复过程中上报的新波束对应的参考信号作为PUCCH的波束参考信号。所述波束参考信号为用来确定发送波束的参考信号。
可选地,如果PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个上行信号相关联,使用UE在波束失败恢复过程中上报的新波束对应的参考信号作为PUCCH的波束参考信号。所述波束参考信号为用来确定发送波束的参考信号。
一个上行信号的空间相关信息与一个下行信号相关联,可以通过该上行信号的空间相关信息指示一个下行参考信号来实现,在协议中,可能会规定 当一个上行信号的空间相关信息指示一个下行参考信号时,该上行信号的发送空间滤波与该下行参考信号的接收空间滤波相同。
一个上行信号的空间相关信息与一个上行信号相关联,可以通过该上行信号的空间相关信息指示一个上行参考信号来实现,在协议中,可能会规定当一个上行信号的空间相关信息指示一个上行参考信号时,该上行信号的发送空间滤波与该上行参考信号的接收空间滤波相同。UE在实际发送该上行信号时,可以采用与发送该上行参考信号相同的发送波束。
可选地,如果PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个下行信号相关联(例如,PUCCH-BFR的空间相关信息指示的是一个下行参考信号,在协议中,可能会规定PUCCH-BFR的空间发送滤波使用与该下行参考信号的接收滤波相同的方式),则使用UE在波束失败恢复过程中上报的新波束(例如,步骤2中上报的参考信号)对应的参考信号覆盖这个下行信号(例如,将PUCCH-BFR的spatial relation info对应的参考信号替换为UE在波束失败恢复过程中上报的参考信号)。
可选地,如果PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个上行信号相关联,使用UE在波束失败恢复过程中上报的新波束(例如,步骤2中上报的参考信号)对应的参考信号覆盖这个上行信号。
可选地,如果PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个上行信号相关联,不替换PUCCH-BFR的空间相关信息。
PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个下行信号相关联的一种方式为PUCCH-BFR的空间相关信息指示的是一个下行参考信号。在协议中,可能会规定PUCCH-BFR的空间发送滤波与该下行参考信号的空间接收滤波相同。
PUCCH-BFR的空间相关信息(Spatial Relation Info)与一个下行信号相关联的一种方式为PUCCH-BFR的空间相关信息指示的是一个上行参考信号。在协议中,可能会规定PUCCH-BFR的空间发送滤波与该上行信号的空间发送滤波相同。
需要说明的是,UE在波束失败恢复过程中上报新波束可能以参考信号标识的方式来上报。
在标准中,关于本发明实施例可能会有如下英文描述:For SCell on which PUCCH-BFR resource is used to send step 1 during the BFR procedure,PUCCH resources are replaced with PUCCH-BFR beam,or nothing is done;
For other SCell,PUCCH beams are replaced with the new beam reported in step 2 MAC-CE.
上述英文描述可以包含:
可选地,对于在波束失败恢复过程步骤1中发送PUCCH-BFR资源的SCell,PUCCH资源的发送波束为PUCCH-BFR资源的发送波束。
可选地,对于其他小区(如非BFR过程的步骤1的PUCCH-BFR资源所在的、进行BFR的SCell)l,PUCCH的发送波束为步骤2 MAC-CE上报的新波束或步骤2 MAC-CE上报的新波束对应的发送波束。
可选地,对于在波束失败恢复过程步骤1中发送PUCCH-BFR资源的SCell,用来确定PUCCH资源的发送波束的参考信号被设置或替换为用来确定PUCCH-BFR资源发送波束的参考信号。
可选地,对于其他小区(例如,非BFR过程的步骤1的PUCCH-BFR资源所在的、进行BFR的SCell)l,PUCCH的参考信号被设置或替换为用来指示步骤2 MAC-CE上报的新波束的参考信号。
可选地,对于BFR过程步骤1中的PUCCH-BFR资源所在的SCell,PUCCH资源的发送波束为发送PUCCH-BFR的波束。
可选地,对于其他小区(非BFR过程的步骤1的PUCCH-BFR资源所在的、进行BFR的SCell)l,PUCCH的发送波束为步骤2中MAC-CE上报的新波束或step 2 MAC-CE上报的新波束对应的发送波束。
一种PUCCH的发送波束被替换为PUCCH-BFR的波束的形式为,使用PUCCH-BFR对应的发送波束发送PUCCH。
可选地,对于BFR过程步骤1的PUCCH-BFR资源所在的SCell,PUCCH 资源的空间相关信息对应的信号被替换为PUCCH-BFR的空间相关信息对应的信号。
可选地,对于其他小区(非BFR过程的步骤1的PUCCH-BFR资源所在的、进行BFR的SCell)l,PUCCH的空间相关信息对应的信号被替换为步骤2 MAC-CE上报的新波束对应的信号。
需要说明的是,本申请实施例中,对于一个发生了波束失败的小区,从接收到特定信息或特定信号后的第K个时间单元或接收到特定信息或特定信号K个时间单元后,UE假设传输在发生了波束失败的小区上的PUCCH的空间相关信息(Spatial Relation Info)与发送该小区的波束失败事件的上行信号的空间相关信息相同。
下面给出一些具体实施例的举例说明:
方案1:对于一个发生了波束失败的小区,从接收到对应于特定MAC-CE的响应后的第K个符号起,UE使用发送所述小区的波束失败事件的PUCCH资源(步骤1中的PUCCH-BFR)所使用的上行发送波束发送传输在该小区上的PUCCH。
可选地,本申请实施例中所述的特定MAC-CE,例如为上报发生波束失败的CC的标识和/或新波束信息的MAC-CE,且所述特定MAC-CE上报的发生波束失败的CC的标识中包含所述小区的标识(即步骤2中的MAC-CE)。
方案2:对于一个发生了波束失败的小区,在接收到对应于特定MAC-CE的响应后的K个符号后,UE使用发送所述小区的波束失败事件的PUCCH资源(步骤1中的PUCCH-BFR)所使用的上行发送波束发送传输在该小区上的PUCCH。所述特定MAC-CE为上报发生波束失败的CC的标识和/或新波束信息的MAC-CE,且所述特定MAC-CE上报的发生波束失败的CC的标识中包含所述小区的标识(步骤2中的MAC-CE)。
对于方案1和方案2:
可选地,所述方案只适用于SCell。或者,可选地,所述方案适用于SCell和PCell。
可选地,只有在UE确定出了关于波束失败小区的新的波束的情况下,才应用方案1或方案2。
可选地,无论UE是否找到关于波束失败小区的新的波束,都可以应用方案1或方案2。
可选地,方案1和方案2适用于在所述发生波束失败的小区的所有PUCCH资源。
可选地,方案1和方案2只适用于在所述发生波束失败的小区的UE发送步骤2中的MAC-CE后没有收到发送波束指示信息(Spatial Relation Info)指示或更新的PUCCH资源。在接收到对应于所述小区的步骤2中的MAC-CE的响应后的第K个符号后,如果基站发送了所述小区上的一个PUCCH资源的上行发送波束的指示或更新信息,则UE使用基站指示的上行发送波束发送所述PUCCH。
可选地,UE接收到特定PDCCH(即上述的任意或预定义的PDCCH)的信号,则认为接收到了对应于特定MAC-CE的响应。其中,所述特定PDCCH可以通过基站指示给UE,也可以预先约定好。
可选地,UE接收到任意一个调度所述小区的PUSCH传输的PDCCH的信号,则认为接收到了对应于特定MAC-CE的响应。
可选地,UE接收到任意一个用于调度或触发所述小区的上行信号传输的PDCCH的信号,则认为接收到了对应于特定MAC-CE的响应。
可选地,UE接收到任意一个PDCCH信号,则认为接收到了对应于特定MAC-CE的响应。
方案3:对于任意一个发生了波束失败的小区,从UE发送了上报所述小区的波束失败事件的PUCCH之后接收到一个上行准许信息(UL grant)后的第K个符号起,UE使用发送上报所述小区的波束失败事件的PUCCH资源(步骤1里的PUCCH-BFR)所使用的上行发送波束发送所述小区上的PUCCH。
方案4:对于任意一个发生了波束失败的小区,在UE发送了上报所述小区的波束失败事件的PUCCH之后接收到一个上行准许信息(UL grant)后的 第K个符号后,UE使用发送上报所述小区的波束失败事件的PUCCH资源(步骤1里的PUCCH-BFR)所使用的上行发送波束发送所述小区上的PUCCH。
对于方案3和方案4:
可选地,方案3和方案4只适用于SCell。或者,可选地,方案3和方案4适用于SCell和PCell。
可选地,只有在UE确定出了关于波束失败小区的新的波束的情况下,应用方案3或方案4。
可选地,无论UE是否找到关于波束失败小区的新的波束,都可以应用方案3或方案4。
可选地,方案3和方案4适用于发生波束失败的小区的所有PUCCH资源。
可选地,所述UL grant可以是调度发生波束失败的小区的PUSCH的UL grant,即所述UL grant调度UE在发生波束失败的小区发送PUSCH。
可选地,所述UL grant为指示PUSCH的传输为新数据传输(例如,下行控制信息(Downlink Control Information,DCI)中的新数据指示NDI(New data indicator)指示传输的是新数据)的UL grant(即调度新数据的UL grant)。
可选地,所述UL grant是一个为携带步骤2的MAC-CE的PUSCH的HARQ进程调度新数据传输的普通的UL grant,类似于普通PUSCH的“确认ACK”(a normal uplink grant to schedule a new transmission for the same HARQ process as PUSCH carrying the step 2 MAC CE,which is the same as normal“ACK”for PUSCH.)
可选地,所述UL grant为任意一个UL grant(无论指示PUSCH的传输为新数据传输或是数据重传)。
可选地,所述UL grant为DCI format 0_0。
可选地,所述UL grant为DCI format 0_1。
可选地,所述UL grant为DCI format 0_0或DCI format 0_1。
可选地,所述UL grant为第一个UL grant。
下面介绍一下本申请实施例中关于UE接收到特定信息或特定信号的时 间点的一些举例说明:
示例1:
如图1所示,UL grant所在的PDCCH的结束时刻为t2,UE从t2+K开始使用步骤1中提到的PUCCH的发送波束发送发生波束失败的小区的PUCCH。
示例2:
如图2所示,UL grant的结束时刻为t2,UE从t2+K开始使用步骤1中提到的PUCCH的发送波束发送发生波束失败的小区的PUCCH。
示例3:
如图3所示,UL grant和PDCCH在时隙(Slot)n上传输,UE从时隙n+K开始使用步骤1中提到的PUCCH的发送波束发送发生波束失败的小区的PUCCH。其中,n为任意大于或等于零的整数。
示例4:
如图4所示,UL grant和PDCCH在时隙n上传输,PDCCH的结束时刻为t2,UE从t2+K符号后的第一个时隙Slot X开始使用步骤1中提到的PUCCH的发送波束发送发生波束失败的小区的PUCCH。其中,n、X为任意大于或等于零的整数。
示例5:
如图5所示,UL grant的开始时刻为t1,UE从t1+K开始使用步骤1中提到的PUCCH的发送波束发送发生波束失败的小区的PUCCH。
需要说明的是,上述示例只给出了特定信息为UL grant的情形,没有给出特定信息为波束失败恢复响应的情形。特定信息为波束失败恢复响应的情况,与UL grant同理,在此不再赘述。
综上所述,参见图6,在终端侧,本申请实施例提供的信号发送方法包括:
S101、确定小区发生波束失败;
S102、若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
可选地,所述预设条件,包括:
接收到特定信息或特定信号。
可选地,当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH,具体包括:
从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送物理上行控制信道PUCCH;
或者,接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH;
其中,K为预设非负整数。
可选地,接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH,具体包括:从接收到特定信息或特定信号K个时间单元后的第一个时隙开始,使用上行发送波束发送物理上行控制信道PUCCH。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
所述小区的波束失败恢复响应;
终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
可选地,所述特定信号为携带所述特定信息的信号。
可选地,所述特定信号为物理下行控制信道PDCCH信号。
相应地,参见图7,在网络侧,本申请实施例提供的信号接收方法包括:
S201、当小区发生波束失败时,接收终端上报的所述小区的波束失败事件;
S202、接收终端通过上行发送波束发送的物理上行控制信道PUCCH信号;其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
可选地,该方法还包括:向终端发送特定信息或特定信号;
可选地,所述PUCCH是所述终端从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送的PUCCH;
或者,所述PUCCH是所述终端接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送的PUCCH;
其中,K为预设非负整数。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
所述小区的波束失败恢复响应;
终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
可选地,所述特定信号为物理下行控制信道PDCCH信号。
可选地,所述接收终端通过上行发送波束发送的物理上行控制信道PUCCH,包括:
使用与所述上行发送波束对应的接收波束接收终端通过上行发送波束发 送的物理上行控制信道PUCCH。
参见图8,在终端侧,本申请实施例提供的信号发送装置包括:
确定单元11,用于确定小区发生波束失败;
发送单元12,用于若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
需要说明的是,该信号发送装置中的单元具有执行上述终端侧信号发送方法中提到的所有流程的功能,在此不再赘述。
可选地,所述预设条件,包括:接收到特定信息或特定信号。
可选地,当满足预设条件时,发送单元使用上行发送波束发送物理上行控制信道PUCCH,具体包括:
从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送物理上行控制信道PUCCH;
或者,接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH;
其中,K为预设非负整数。
可选地,发送单元接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH,具体包括:从接收到特定信息或特定信号K个时间单元后的第一个时隙开始,使用上行发送波束发送物理上 行控制信道PUCCH。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
所述小区的波束失败恢复响应;
终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
可选地,所述特定信号为携带所述特定信息的信号。
可选地,所述特定信号为物理下行控制信道PDCCH信号。
可选地,所述物理上行控制信道PUCCH信号为传输在所述发生波束失败的小区的PUCCH信号。
可选地,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区的PUCCH信号,所述上行发送波束为用于发送波束失败事件的波束。
可选地,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区外的其他小区的PUCCH信号,所述上行发送波束为上报的所述小区的新波束对应的上行波束。
可选地,所述物理上行控制信道PUCCH信号的空间相关信息与下行信号相关联时,所述上行发送波束为上报的所述小区的新波束对应的上行波束;和/或,
所述物理上行控制信道PUCCH信号的空间相关信息与上行信号相关联时,所述上行发送波束为用于发送波束失败事件的波束或者所述与物理上行控制信道PUCCH信号的空间相关信息相关联的上行信号的发送波束。
相应地,参见图9,在网络侧,本申请实施例提供的信号接收装置包括:
第一单元21,用于当小区发生波束失败时,接收终端上报的所述小区的波束失败事件;
第二单元22,用于接收终端通过上行发送波束发送的物理上行控制信道PUCCH信号;其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
可选地,该装置还包括:
第三单元,用于向终端发送特定信息或特定信号。
可选地,所述PUCCH是所述终端从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送的PUCCH;
或者,所述PUCCH是所述终端接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送的PUCCH;
其中,K为预设非负整数。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
所述小区的波束失败恢复响应;
终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
可选地,所述特定信号为物理下行控制信道PDCCH信号。
可选地,所述物理上行控制信道PUCCH信号为传输在所述发生波束失败的小区的PUCCH信号。
可选地,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区的PUCCH信号,所述上行发送波束为用于发送波束失败事件的波束。
可选地,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区外的其他小区的PUCCH信号,所述上行发送波束为上报的所述小区的新波束对应的上行波束。
可选地,所述物理上行控制信道PUCCH信号的空间相关信息与下行信号相关联时,所述上行发送波束为上报的所述小区的新波束对应的上行波束; 和/或,
所述物理上行控制信道PUCCH信号的空间相关信息与上行信号相关联时,所述上行发送波束为用于发送波束失败事件的波束或者所述与物理上行控制信道PUCCH信号的空间相关信息相关联的上行信号的发送波束。
可选地,所述接收终端通过上行发送波束发送的物理上行控制信道PUCCH,包括:
使用与所述上行发送波束对应的接收波束接收终端通过上行发送波束发送的物理上行控制信道PUCCH。
需要说明的是,该信号接收装置中的单元具有执行上述网络侧信号接收方法中提到的所有流程的功能,在此不再赘述。
参见图10,在终端侧,本申请实施例提供的另一信号发送装置包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
确定小区发生波束失败;
若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
可选地,所述预设条件,包括:
接收到特定信息或特定信号。
可选地,当满足预设条件时,使用上行发送波束通过收发机610发送物 理上行控制信道PUCCH,具体包括:
从通过收发机610接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束通过收发机610发送物理上行控制信道PUCCH;
或者,通过收发机610接收到特定信息或特定信号K个时间单元后,使用上行发送波束通过收发机610发送物理上行控制信道PUCCH;
其中,K为预设非负整数。
可选地,通过收发机610接收到特定信息或特定信号K个时间单元后,使用上行发送波束通过收发机610发送物理上行控制信道PUCCH,具体包括:从通过收发机610接收到特定信息或特定信号K个时间单元后的第一个时隙开始,使用上行发送波束通过收发机610发送物理上行控制信道PUCCH。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
所述小区的波束失败恢复响应;
终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
可选地,所述特定信号为携带所述特定信息的信号。
可选地,所述特定信号为物理下行控制信道PDCCH信号。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
相应地,参见图11,在网络侧,本申请实施例提供的另一信号接收装置包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
当小区发生波束失败时,通过收发机510接收终端上报的所述小区的波束失败事件;
通过收发机510接收终端通过上行发送波束发送的物理上行控制信道PUCCH信号;其中,所述上行发送波束包括:
用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
或者,用于发送所述小区的标识和/或新波束的波束;
或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
或者,上报的所述小区的新波束对应的上行波束。
可选地,处理器500,还用于读取存储器520中的程序,执行下列过程:通过收发机510向终端发送特定信息或特定信号;
可选地,所述PUCCH是所述终端从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送的PUCCH;
或者,所述PUCCH是所述终端接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送的PUCCH;
其中,K为预设非负整数。
可选地,所述特定信息包括下列信息之一或下列信息的任意组合:
所述小区的波束失败恢复响应;
终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
可选地,所述特定信号为物理下行控制信道PDCCH信号。
可选地,所述通过收发机510接收终端通过上行发送波束发送的物理上行控制信道PUCCH,包括:
使用与所述上行发送波束对应的接收波束,通过收发机510接收终端通过上行发送波束发送的物理上行控制信道PUCCH。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本 申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,相对于现有技术,本申请实施例提出了一些UE在小区发生波束失败后的PUCCH信号发送波束的确定方案,可以使得UE使用更好的上行发送波束发送PUCCH,且UE和网络侧关于上行信号的发送波束有着相同的共识,从而使得基站可以使用最优的接收波束进行上行信号的接收。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图 和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (46)

  1. 一种信号发送方法,其中,该方法包括:
    确定小区发生波束失败;
    若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:
    用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
    或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
    或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
    或者,上报的所述小区的新波束对应的上行波束。
  2. 根据权利要求1所述的方法,其中,所述预设条件,包括:
    接收到特定信息或特定信号。
  3. 根据权利要求2所述的方法,其中,当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH,具体包括:
    从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送物理上行控制信道PUCCH;
    或者,接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH;
    其中,K为预设非负整数。
  4. 根据权利要求3所述的方法,其中,接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH,具体包括:从接收到特定信息或特定信号K个时间单元后的第一个时隙开始,使用上行发送波束发送物理上行控制信道PUCCH。
  5. 根据权利要求2所述的方法,其中,所述特定信息包括下列信息之一或下列信息的任意组合:
    所述小区的波束失败恢复响应;
    终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
  6. 根据权利要求2或5所述的方法,其中,所述特定信号为携带所述特定信息的信号。
  7. 根据权利要求2或5所述的方法,其中,所述特定信号为物理下行控制信道PDCCH信号。
  8. 根据权利要求1至5任一项所述的方法,其中,所述物理上行控制信道PUCCH信号为传输在所述发生波束失败的小区的PUCCH信号。
  9. 根据权利要求1至5任一项所述的方法,其中,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区的PUCCH信号,所述上行发送波束为用于发送波束失败事件的波束。
  10. 根据权利要求1至5任一项所述的方法,其中,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区外的其他小区的PUCCH信号,所述上行发送波束为上报的所述小区的新波束对应的上行波束。
  11. 根据权利要求1至5任一项所述的方法,其中,所述物理上行控制信道PUCCH信号的空间相关信息与下行信号相关联时,所述上行发送波束为上报的所述小区的新波束对应的上行波束;和/或,
    所述物理上行控制信道PUCCH信号的空间相关信息与上行信号相关联时,所述上行发送波束为用于发送波束失败事件的波束或者所述与物理上行控制信道PUCCH信号的空间相关信息相关联的上行信号的发送波束。
  12. 一种信号接收方法,其中,该方法包括:
    当小区发生波束失败时,接收终端上报的所述小区的波束失败事件;
    接收终端通过上行发送波束发送的物理上行控制信道PUCCH信号;其中,所述上行发送波束包括:
    用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
    或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
    或者,用于发送所述小区的标识和/或新波束的波束;
    或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
    或者,上报的所述小区的新波束对应的上行波束。
  13. 根据权利要求12所述的方法,其中,该方法还包括:向终端发送特定信息或特定信号。
  14. 根据权利要求13所述的方法,其中,所述PUCCH是所述终端从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送的PUCCH;
    或者,所述PUCCH是所述终端接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送的PUCCH;
    其中,K为预设非负整数。
  15. 根据权利要求13所述的方法,其中,所述特定信息包括下列信息之一或下列信息的任意组合:
    所述小区的波束失败恢复响应;
    终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
  16. 根据权利要求13所述的方法,其中,所述特定信号为物理下行控制信道PDCCH信号。
  17. 根据权利要求12至16任一项所述的方法,其中,所述物理上行控制信道PUCCH信号为传输在所述发生波束失败的小区的PUCCH信号。
  18. 根据权利要求12至16任一项所述的方法,其中,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区的PUCCH信号,所述 上行发送波束为用于发送波束失败事件的波束。
  19. 根据权利要求12至16任一项所述的方法,其中,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区外的其他小区的PUCCH信号,所述上行发送波束为上报的所述小区的新波束对应的上行波束。
  20. 根据权利要求12至16任一项所述的方法,其中,所述物理上行控制信道PUCCH信号的空间相关信息与下行信号相关联时,所述上行发送波束为上报的所述小区的新波束对应的上行波束;和/或,
    所述物理上行控制信道PUCCH信号的空间相关信息与上行信号相关联时,所述上行发送波束为用于发送波束失败事件的波束或者所述与物理上行控制信道PUCCH信号的空间相关信息相关联的上行信号的发送波束。
  21. 根据权利要求12至16任一项所述方法,其中,所述接收终端通过上行发送波束发送的物理上行控制信道PUCCH,包括:
    使用与所述上行发送波束对应的接收波束接收终端通过上行发送波束发送的物理上行控制信道PUCCH。
  22. 一种信号发送装置,其中,包括:
    确定单元,用于确定小区发生波束失败;
    发送单元,用于若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:
    用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
    或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
    或者,用于发送所述小区的标识和/或新波束的波束;
    或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
    或者,上报的所述小区的新波束对应的上行波束。
  23. 一种信号接收装置,其中,包括:
    第一单元,用于当小区发生波束失败时,接收终端上报的所述小区的波束失败事件;
    第二单元,用于接收终端通过上行发送波束发送的物理上行控制信道PUCCH信号;其中,所述上行发送波束包括:
    用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
    或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
    或者,用于发送所述小区的标识和/或新波束的波束;
    或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
    或者,上报的所述小区的新波束对应的上行波束。
  24. 一种信号发送装置,其中,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    确定小区发生波束失败;
    若终端需要发送物理上行控制信道PUCCH信号,则当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH信号,其中,所述上行发送波束包括:
    用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
    或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
    或者,用于发送所述小区的标识和/或新波束的波束;
    或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
    或者,上报的所述小区的新波束对应的上行波束。
  25. 根据权利要求24所述的装置,其中,所述预设条件,包括:
    接收到特定信息或特定信号。
  26. 根据权利要求25所述的装置,其中,当满足预设条件时,使用上行发送波束发送物理上行控制信道PUCCH,具体包括:
    从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送物理上行控制信道PUCCH;
    或者,接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送物理上行控制信道PUCCH;
    其中,K为预设非负整数。
  27. 根据权利要求26所述的装置,其中,接收到特定信息或特定信号K个时间单元后,使用上行发送波束通过收发机610发送物理上行控制信道PUCCH,具体包括:从接收到特定信息或特定信号K个时间单元后的第一个时隙开始,使用上行发送波束发送物理上行控制信道PUCCH。
  28. 根据权利要求25所述的装置,其中,所述特定信息包括下列信息之一或下列信息的任意组合:
    所述小区的波束失败恢复响应;
    终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
  29. 根据权利要求25或28所述的装置,其中,所述特定信号为携带所述特定信息的信号。
  30. 根据权利要求25或28所述的装置,其中,所述特定信号为物理下行控制信道PDCCH信号。
  31. 根据权利要求24至28任一所述的装置,其中,所述物理上行控制信道PUCCH信号为传输在所述发生波束失败的小区的PUCCH信号。
  32. 根据权利要求24至28任一所述的装置,其中,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区的PUCCH信号,所述上 行发送波束为用于发送波束失败事件的波束。
  33. 根据权利要求24至28任一所述的装置,其中,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区外的其他小区的PUCCH信号,所述上行发送波束为上报的所述小区的新波束对应的上行波束。
  34. 根据权利要求24至28任一所述的装置,其中,所述物理上行控制信道PUCCH信号的空间相关信息与下行信号相关联时,所述上行发送波束为上报的所述小区的新波束对应的上行波束;和/或,
    所述物理上行控制信道PUCCH信号的空间相关信息与上行信号相关联时,所述上行发送波束为用于发送波束失败事件的波束或者所述与物理上行控制信道PUCCH信号的空间相关信息相关联的上行信号的发送波束。
  35. 一种信号接收装置,其中,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    当小区发生波束失败时,接收终端上报的所述小区的波束失败事件;
    接收终端通过上行发送波束发送的物理上行控制信道PUCCH信号;其中,所述上行发送波束包括:
    用于发送所述小区的波束失败事件、所述小区的标识、所述小区的新波束中的至少一种的波束;
    或者,用于承载所述小区的波束失败事件的信号的空间相关信息对应的上行波束;
    或者,用于发送所述小区的标识和/或新波束的波束;
    或者,承载所述小区的标识和/或新波束的信号的空间相关信息对应的上行波束;
    或者,上报的所述小区的新波束对应的上行波束。
  36. 根据权利要求35所述的装置,其中,所述处理器还用于调用所述存储器中存储的程序指令,按照获得的程序执行:向终端发送特定信息或特定信号。
  37. 根据权利要求36所述的装置,其中,所述PUCCH是所述终端从接收到特定信息或特定信号后的第K个时间单元开始,使用上行发送波束发送的PUCCH;
    或者,所述PUCCH是所述终端接收到特定信息或特定信号K个时间单元后,使用上行发送波束发送的PUCCH;
    其中,K为预设非负整数。
  38. 根据权利要求36所述的装置,其中,所述特定信息包括下列信息之一或下列信息的任意组合:
    所述小区的波束失败恢复响应;
    终端发送了上报所述小区的波束失败事件的PUCCH之后接收到的上行准许信息UL grant。
  39. 根据权利要求36所述的装置,其中,所述特定信号为物理下行控制信道PDCCH信号。
  40. 根据权利要求35所述的装置,其中,所述接收终端通过上行发送波束发送的物理上行控制信道PUCCH,包括:
    使用与所述上行发送波束对应的接收波束接收终端通过上行发送波束发送的物理上行控制信道PUCCH。
  41. 根据权利要求35至40任一所述的装置,其中,所述物理上行控制信道PUCCH信号为传输在所述发生波束失败的小区的PUCCH信号。
  42. 根据权利要求35至40任一所述的装置,其中,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区的PUCCH信号,所述上行发送波束为用于发送波束失败事件的波束。
  43. 根据权利要求35至40任一所述的装置,其中,所述物理上行控制信道PUCCH信号为传输在上报波束失败事件的小区外的其他小区的PUCCH信号,所述上行发送波束为上报的所述小区的新波束对应的上行波束。
  44. 根据权利要求35至40任一所述的装置,其中,所述物理上行控制信道PUCCH信号的空间相关信息与下行信号相关联时,所述上行发送波束为 上报的所述小区的新波束对应的上行波束;和/或,
    所述物理上行控制信道PUCCH信号的空间相关信息与上行信号相关联时,所述上行发送波束为用于发送波束失败事件的波束或者所述与物理上行控制信道PUCCH信号的空间相关信息相关联的上行信号的发送波束。
  45. 根据权利要求35至40任一所述的装置,其中,所述接收终端通过上行发送波束发送的物理上行控制信道PUCCH,包括:
    使用与所述上行发送波束对应的接收波束接收终端通过上行发送波束发送的物理上行控制信道PUCCH。
  46. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至21任一项所述的方法。
PCT/CN2020/129149 2019-11-21 2020-11-16 信号传输方法及装置 WO2021098654A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20889335.4A EP4064774A4 (en) 2019-11-21 2020-11-16 SIGNAL TRANSMISSION METHOD AND DEVICE
US17/778,412 US20230006726A1 (en) 2019-11-21 2020-11-16 Signal communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911151190.6 2019-11-21
CN201911151190.6A CN112825593B (zh) 2019-11-21 2019-11-21 信号传输方法及装置

Publications (1)

Publication Number Publication Date
WO2021098654A1 true WO2021098654A1 (zh) 2021-05-27

Family

ID=75907695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129149 WO2021098654A1 (zh) 2019-11-21 2020-11-16 信号传输方法及装置

Country Status (5)

Country Link
US (1) US20230006726A1 (zh)
EP (1) EP4064774A4 (zh)
CN (2) CN116390249A (zh)
TW (1) TWI793471B (zh)
WO (1) WO2021098654A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116547939A (zh) * 2023-03-15 2023-08-04 北京小米移动软件有限公司 信息处理方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112074A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 信息的上报、接收方法、装置及计算机可读存储介质
CN110149177A (zh) * 2018-02-12 2019-08-20 维沃移动通信有限公司 一种波束失败恢复的方法、终端设备及网络设备
EP3547566A1 (en) * 2018-03-30 2019-10-02 Comcast Cable Communications, LLC Configuration for beam failure recovery
CN110393033A (zh) * 2018-02-23 2019-10-29 联发科技股份有限公司 波束故障恢复后用于上行链路传输的默认波束
US20190335524A1 (en) * 2018-03-19 2019-10-31 Intel Corporation Pucch and pusch default beam considering beam failure recovery
CN110475337A (zh) * 2018-05-11 2019-11-19 成都华为技术有限公司 通信方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089322B (zh) * 2017-06-14 2021-01-08 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
US10880761B2 (en) * 2017-09-11 2020-12-29 Qualcomm Incorporated System and method for selecting resources to transmit a beam failure recovery request
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
JP7026796B2 (ja) * 2018-01-04 2022-02-28 サムスン エレクトロニクス カンパニー リミテッド 半永続的なチャネル状態情報レポート
US11115892B2 (en) * 2018-02-15 2021-09-07 Ofinno, Llc Beam failure information for radio configuration
CN110831189B (zh) * 2018-08-11 2022-05-10 华为技术有限公司 链路失败恢复方法及相关设备
US11937320B2 (en) * 2018-10-25 2024-03-19 Electronics And Telecommunications Research Institute Method for managing radio link in multi-carrier environment, and device for same
JP7375037B2 (ja) * 2019-11-11 2023-11-07 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US11924837B2 (en) * 2019-11-15 2024-03-05 Qualcomm Incorporated Techniques for physical uplink control channel beam failure recovery reselection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112074A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 信息的上报、接收方法、装置及计算机可读存储介质
CN110149177A (zh) * 2018-02-12 2019-08-20 维沃移动通信有限公司 一种波束失败恢复的方法、终端设备及网络设备
CN110393033A (zh) * 2018-02-23 2019-10-29 联发科技股份有限公司 波束故障恢复后用于上行链路传输的默认波束
US20190335524A1 (en) * 2018-03-19 2019-10-31 Intel Corporation Pucch and pusch default beam considering beam failure recovery
EP3547566A1 (en) * 2018-03-30 2019-10-02 Comcast Cable Communications, LLC Configuration for beam failure recovery
CN110475337A (zh) * 2018-05-11 2019-11-19 成都华为技术有限公司 通信方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "3GPP TSG-RAN WG1 Meeting #99, R1-1912058", 《REMAINING ISSUES ON MULTI-BEAM ENHANCEMENTS》, 8 November 2019 (2019-11-08), XP051819932 *
INTEL CORPORATION: "3GPP TSG RAN WG1 Meeting #99, R1-1912223", 《DISCUSSION ON MULTI-BEAM ENHANCEMENTS》, 9 November 2019 (2019-11-09), XP051823300 *

Also Published As

Publication number Publication date
CN112825593B (zh) 2023-04-25
CN112825593A (zh) 2021-05-21
EP4064774A1 (en) 2022-09-28
CN116390249A (zh) 2023-07-04
TW202121916A (zh) 2021-06-01
EP4064774A4 (en) 2023-01-04
TWI793471B (zh) 2023-02-21
US20230006726A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
WO2018210176A1 (zh) 波束失败处理方法、辅基站失败处理方法及终端
US10277363B2 (en) Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station
WO2022083774A1 (zh) 消息处理方法、装置、终端设备、网络设备及存储介质
WO2022033274A1 (zh) 通信方法、用户设备、网络设备及计算机可读存储介质
WO2021012996A1 (zh) 信息传输方法及装置
WO2021238545A1 (zh) 信息传输方法及装置
US11882566B2 (en) Communications method and apparatus
WO2021227624A1 (zh) 一种确定反馈信息传输位置的方法及设备
US20220322368A1 (en) Method and terminal for data transmission using unlicensed carrier
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
WO2021056581A1 (zh) 上行信号的发送和接收方法以及装置
US20190379519A1 (en) Confirmation apparatus for activation command, report apparatus for data transmission mode and methods thereof
WO2021098654A1 (zh) 信号传输方法及装置
CN112217618B (zh) 信息传输方法及装置
WO2021026844A1 (zh) 数据传输方法、终端设备、网络设备及存储介质
KR20220047328A (ko) 정보를 전송하기 위한 방법 및 장치
WO2020156002A1 (zh) 通信方法及通信装置
US20230156696A1 (en) Data communication method and apparatus
EP4319403A1 (en) Resource determination method and apparatus
WO2021204255A1 (zh) 信息传输方法及装置
EP4344258A1 (en) Data processing method and apparatus, and device and storage medium
EP4383621A1 (en) Control signaling monitoring method and apparatus, device, and storage medium
US20240015665A1 (en) Method and apparatus for transmitting uplink data and a system
WO2021087926A1 (zh) 上行信号的发送和接收方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020889335

Country of ref document: EP

Effective date: 20220621