WO2021098455A1 - 一种电池、电池模组、电池包及电动车 - Google Patents

一种电池、电池模组、电池包及电动车 Download PDF

Info

Publication number
WO2021098455A1
WO2021098455A1 PCT/CN2020/124107 CN2020124107W WO2021098455A1 WO 2021098455 A1 WO2021098455 A1 WO 2021098455A1 CN 2020124107 W CN2020124107 W CN 2020124107W WO 2021098455 A1 WO2021098455 A1 WO 2021098455A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
battery
pole core
separator
battery according
Prior art date
Application number
PCT/CN2020/124107
Other languages
English (en)
French (fr)
Inventor
陆可为
牟晓文
刘彦初
朱婧妍
余璇
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US17/778,710 priority Critical patent/US20230020749A1/en
Priority to KR1020227019778A priority patent/KR20220100923A/ko
Priority to EP20888910.5A priority patent/EP4053976A1/en
Priority to JP2022529797A priority patent/JP7420940B2/ja
Publication of WO2021098455A1 publication Critical patent/WO2021098455A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and more specifically, to a battery, a battery module, a battery pack, and an electric vehicle.
  • lithium-ion battery As a new type of pollution-free secondary battery, lithium-ion battery has been widely used in many fields, especially as a power battery for new energy vehicles. With the continuous popularity of new energy vehicles and the gradual improvement of their performance, users have put forward higher and higher requirements for the mileage and power performance of new energy vehicles. Therefore, the requirements for the use of power batteries in new energy vehicles have also changed. Getting higher and higher. For battery packs used in new energy vehicles, while their overall capacity requirements continue to increase, the total weight of the battery packs is also required to be reduced as much as possible. Generally speaking, the capacity of batteries used in new energy vehicles is very large, and the capacity of only one single battery is often not enough, and it is usually necessary to arrange multiple single batteries side by side. Therefore, the total weight of the battery pack cannot be ignored. The lightweight design of the battery pack is of great significance to the lightweight design of new energy vehicles.
  • One purpose of this application is to provide a new technical solution for batteries, battery modules, battery packs, and electric vehicles.
  • a battery including:
  • a housing the housing has an accommodating cavity
  • At least two pole core sets are arranged in the accommodating cavity along a first direction, the pole core sets are connected in series, and the pole core set includes at least one pole core;
  • a partition the partition is arranged between two adjacent pole core groups and used to isolate the mutual contact between the two adjacent pole core sets, the partition includes a first partition and a second partition, The first partition and the second partition are arranged opposite to each other along a second direction, and a gap is provided between the first partition and the second partition along the second direction;
  • the second direction is perpendicular to the first direction.
  • first partition and the second partition are respectively fixedly connected to the inner surface of the housing.
  • first partition and/or the second partition and the housing are integrally formed.
  • the first partition and the second partition are plate-shaped or mesh-shaped.
  • the opposite ends of the pole core group along the second direction cross the gap between the first partition and the second partition.
  • an expansion space is reserved between the pole core group and the partition.
  • each of the first partition and the second partition includes a side surface of the partition facing the pole core group, and the first partition and/or the second partition face the pole.
  • the distance between the side surface of the separator of the core group and the pole core group is increasing in the direction from the outside of the housing to the inside of the housing.
  • the first partition and the second partition include two partition sides facing the pole core group, and the two partition sides are arc surfaces.
  • the pole core set includes a circumferential surface facing the housing and a side surface of the pole core set facing the separator, and an area of the side surface of the pole core set is larger than an area of the circumferential surface.
  • the partition is made of insulating material.
  • an insulating film is provided between the pole core group and the housing.
  • the shell includes a shell body with an open end and a cover plate provided at the opening of the shell body.
  • first partition and the cover plate are integrally formed and/or the second partition and the shell body are integrally formed.
  • a groove is formed on the cover plate, and a conductive connector is embedded in the groove, and the conductive connector is configured to connect a plurality of pole core groups in series.
  • the conductive connecting member and the cover plate are integrally formed.
  • the conductive connecting member includes a copper connecting portion and an aluminum connecting portion, and the position where the copper connecting portion and the aluminum connecting portion are electrically connected is located inside the cover plate.
  • an insulating layer is provided between the conductive connector and the cover plate.
  • the battery further includes a detection unit that is electrically connected to the pole core group and detects the state of the pole core group.
  • the detection unit is a sampling line, and the sampling line is connected to a conductive connector.
  • the battery is a polymer lithium-ion battery or a solid-state battery.
  • a battery module including the battery as described above.
  • a battery pack including the battery as described above or the battery module as described above.
  • an electric vehicle which includes the battery module as described above or includes the battery pack as described above.
  • At least two pole core groups are connected in series in a housing cavity of a casing, and at least two pole core groups share a casing, which reduces the outer casing and the external installation structure, and reduces the weight of the battery; and ,
  • the separator is arranged between two adjacent pole core groups.
  • the separator can effectively prevent the adjacent pole core groups from contacting each other. Even when the battery is squeezed or collided, due to the isolation effect of the separator, There will be no collision contact between the pole core groups, which ensures the reliability and safety of the battery.
  • the separator can also play a supporting role in the casing, so that the ability of the battery to resist external forces is enhanced.
  • the partition includes a first partition and a second partition, and a gap is provided between the first partition and the second partition, this arrangement is not only convenient for installation, but also effective compared to a whole partition. Reducing the weight of the battery is conducive to the lightweight design of the battery and can also save costs.
  • FIG. 1 is a perspective structural diagram of a first embodiment of a battery according to this application.
  • FIG. 2 is a schematic cross-sectional structure diagram of a first embodiment of a battery according to this application.
  • FIG. 3 is a schematic diagram of a three-dimensional structure of another embodiment of a battery of this application.
  • FIG. 4 is a schematic cross-sectional structure diagram of another embodiment of a battery according to this application.
  • Figure 5 is a state diagram before the battery is charged
  • Figure 6 is a state diagram of a fully charged battery
  • FIG. 7 is a schematic diagram of a cover plate of a first embodiment of a battery according to this application.
  • any specific value should be construed as merely exemplary, and not as a limitation. Therefore, other examples of the exemplary embodiment may have different values.
  • the embodiment of the present application provides a battery.
  • the battery includes: a housing, at least two pole core groups, and a partition, the housing has a accommodating cavity; the at least two pole core groups are arranged in the accommodating cavity along a first direction, and the first direction is a pole The arrangement direction of the core groups; the pole core groups are connected in series, the pole core group includes at least one pole core; the separator is arranged between two adjacent pole core groups and is used to isolate two adjacent pole core groups The mutual contact between the pole core groups, that is, after the spacer is provided, it can be ensured that the two adjacent pole core groups will not touch each other.
  • the partition includes a first partition 13 and a second partition 14.
  • the first partition 13 and the second partition 14 are disposed opposite to each other along the second direction, and the first partition is along the second direction.
  • a gap is provided between 13 and the second partition 14; the second direction is perpendicular to the first direction.
  • the shapes of the first partition 13 and the second partition 14 may be the same or different.
  • the relative arrangement can be understood as the position of the first partition 13 and the second partition 14 may be slightly misaligned.
  • the first direction can be understood as the arrangement direction of the pole core group, for example, it can be the thickness direction of the pole core group, that is, the T direction shown in FIGS. 1 and 3; then the second direction is the length of the pole core group The direction is the L direction shown in FIGS. 1 and 3, or the second direction is the width direction of the pole core group, that is, the W direction shown in FIGS. 1 and 3.
  • At least two pole core groups are connected in series in the housing cavity of the housing, that is, at least two pole core groups share a housing, and are arranged side by side with respect to multiple batteries, reducing the housing and external installation
  • the structure reduces the weight, improves the space utilization rate, and ensures the overall capacity of the power battery pack; at the same time, it reduces the use of external power connectors, and the series connection of the pole core groups directly adjacent to the shell does not need to be considered
  • the connection stability and reliability of the power connector can reduce the connection content, thereby reducing the internal consumption of the power battery pack in use.
  • a separator is provided between two adjacent electrode core groups, and the separator is used to isolate the mutual contact between the two adjacent electrode core groups, that is, The separator can effectively prevent the adjacent electrode core groups from contacting each other. Even when the battery is squeezed or collided, due to the isolation effect of the separator, collision and contact between the electrode core groups will not occur, which ensures that the battery is used. Reliability and safety.
  • the separator can also play a supporting role in the casing, so that the ability of the battery to resist external forces is enhanced.
  • the partition includes a first partition 13 and a second partition 14, and a gap is provided between the first partition 13 and the second partition 14, this arrangement is not only convenient for installation, but also compared to a whole partition. It can effectively reduce the weight of the battery, facilitate the lightweight design of the battery, and can also save costs.
  • the first partition 13 and the second partition 14 are arranged opposite to each other along a second direction, and the second direction is the length direction of the pole core group, that is, the L direction in FIG. 1; As shown, the first partition 13 and the second partition 14 are disposed oppositely along a second direction, and the second direction is the width direction of the pole core group, that is, the W direction in FIG. 3. Both of these two embodiments can reduce the weight while ensuring that the separator effectively isolates two adjacent pole core groups.
  • one pole core group may only include a single pole core 4.
  • one pole core set may also include at least two pole cores 4, and At least two pole cores 4 can be connected in series and/or in parallel to form the pole core group, which is not limited in this application.
  • two pole cores 4 are connected in parallel to form a pole core group; or four pole cores 4 are connected in parallel to form a pole core group.
  • the pole core 4 is a pole core commonly used in the field of power batteries.
  • the pole core 4 can be formed by winding or lamination; generally, the pole core 4 includes at least a positive electrode sheet, a separator, a negative electrode sheet, and Electrolyte.
  • the electrolyte is a solid electrolyte or a polymer electrolyte, that is, in the battery provided in the embodiment of the present application, the electrolyte used in the pole core 4 is not a liquid electrolyte.
  • the battery is a polymer lithium ion battery.
  • the electrode core 4 includes a positive electrode sheet, a negative electrode sheet, a separator, and an electrolyte.
  • the electrolyte is a polymer electrolyte.
  • the battery can be divided into liquid lithium ion battery and polymer lithium ion battery according to the different electrolyte materials inside. Liquid lithium ion battery uses liquid electrolyte, and polymer lithium ion battery uses polymer electrolyte. This polymer is generally Colloidal, not liquid.
  • the battery is a solid-state battery.
  • the pole core 4 includes a positive electrode sheet, a negative electrode sheet and a solid electrolyte.
  • the electrolyte uses a solid electrolyte, which is also non-liquid.
  • the electrolyte is a polymer electrolyte or a solid electrolyte.
  • the electrolyte is a polymer electrolyte or a solid electrolyte; the electrolyte can be well located between the positive electrode sheet and the negative electrode sheet, and will not flow out of the positive electrode sheet and the negative electrode like the electrolyte. The location of the film.
  • both ends of the pole core group in the length direction cross the gap between the first partition 13 and the second partition 14.
  • the reason why both ends of the pole core group along the length direction are set to cross the gap between the first partition 13 and the second partition 14 is to ensure that the first partition 13 and the second partition 14 are adjacent to each other.
  • the effectiveness of the isolation between the two pole core groups prevents the ends of two adjacent pole core groups from contacting and colliding at the gap between the first separator 13 and the second separator 14.
  • the length direction is the L direction.
  • the first partition 13 and the second partition 14 are respectively fixedly connected to the inner surface of the housing. Specifically, in the embodiment shown in FIGS. 1 and 2, the first partition 13 and the second partition 14 are arranged along the length direction of the pole core group, that is, the L direction, and the first partition 13 and the second partition 13 A gap is provided between the spacers 14 along the length direction of the pole core group, that is, the first spacer 13 and the second spacer 14 are not connected together.
  • the first partition 13 and the second partition 14 are respectively fixedly connected to the two surfaces of the housing along the L direction; in this way, the first partition 13 and the second partition 14 are arranged to facilitate the two partitions. The positioning and installation of the separator prevent the dislocation and movement of the divider during the assembly process.
  • the first partition 13 and the second partition 14 are arranged along the width direction of the pole core group, that is, the W direction, and the first partition 13 and the second partition 13 A gap is provided between the partitions 14 along the width direction of the pole core group, that is, the first partition 13 and the second partition 14 are not connected together. Both ends of the pole core group in the width direction cross the gap between the first partition member 13 and the second partition member 14. The reason why both ends of the pole core group in the width direction are set to cross the first partition member 13 The gap with the second separator 14 is to ensure the effectiveness of the isolation between the first separator 13 and the second separator 14 between two adjacent pole core groups, and to prevent the two adjacent pole core groups from being damaged. The end may be in contact and collision at the gap between the first partition 13 and the second partition 14. In this embodiment, the first partition 13 and the second partition 14 are respectively fixedly connected to the two surfaces of the casing along the W direction.
  • an expansion space is reserved between the pole core group and the separator.
  • Figure 5 shows the state before the battery is charged. At this time, the volume of the pole core group is small and the expansion space 15 is larger;
  • Figure 6 shows the state after the battery is fully charged, and the volume of the pole core group becomes larger at this time. A part of the expansion space 15 is occupied, so that the expansion space 15 becomes smaller.
  • the expansion space 15 can avoid internal short circuit caused by mutual extrusion between the pole core groups, which improves the safety of battery use.
  • both the first partition 13 and the second partition 14 include a partition side 16 facing the pole core group, and the first partition 13 and/or the
  • the distance between the side surface 16 of the separator facing the pole core group of the second separator 14 and the pole core group shows an increasing trend in the direction from the outside of the housing to the inside of the housing. It may be that the distance between the side 16 of the separator and the pole core group shows an increasing trend in the direction from the outside of the casing to the inside of the casing.
  • the increasing trend is gradually increasing.
  • the distance between each of the first partition 13 and/or the two partition sides 16 of the second partition 14 and the pole core group gradually increases in the direction from the outside of the housing to the inside of the housing. .
  • the gradually increased distance ensures that the expansion space can more effectively avoid the phenomenon of mutual squeezing of the electrode core groups after the volume of the electrode core groups increases after charging.
  • the first partition 13 and the second partition 14 include two partition sides 16 facing the pole core group, and the two partitions
  • the side surface 16 of the piece is curved.
  • the pole core set includes a circumferential surface 43 facing the housing and a pole core set side surface 44 facing the separator, and the area of the pole core set side surface 44 is larger than that of the circumferential surface 43 .
  • the side surface 44 with a larger area of the electrode core group expands more than the circumferential surface 43, so more expansion space needs to be reserved at the position of the side surface 44 of the electrode core group.
  • the arcuate design of the first partition 13 and the second partition 14 is beneficial to ensure sufficient expansion space while avoiding mutual contact between the pole core sets, and can also provide position limitation for the pole core sets to ensure the battery Safety of use.
  • multiple first partitions may be integrally formed, and further multiple first partitions and the housing are integrally formed
  • multiple second partitions 14 are integrally formed, and further multiple first partitions and the housing are integrally formed.
  • the first partition 13 and the second partition 14 are plate-shaped or mesh-shaped. As shown in FIG. 1, the first separator 13 and the second separator 14 have a plate-like structure, and the plate-like structure of the first separator 13 and the second separator 14 can provide excellent batteries for the battery while isolating the electrode core assembly. The support function effectively improves the battery's ability to resist external forces.
  • the first partition 13 and the second partition 14 can also be designed into a net-like structure.
  • the first partition 13 and the second partition 14 of the net-like structure can also effectively isolate the pole core group, and the net-like structure
  • the first partition 13 and the second partition 14 have more excellent technical effects in reducing the weight of the battery.
  • the partition is made of insulating material.
  • the separator made of insulating material can more effectively ensure that there will be no short circuit between the electrode core groups, even if the battery is subjected to strong force so that the two adjacent electrode core groups are squeezed together with the separator, because the separator is Insulating material, there is no short circuit between the pole core groups.
  • an insulating film is provided between the pole core group and the housing. This application does not impose special restrictions on the material of the insulating film, as long as it can be insulated.
  • the material of the insulating film may include polypropylene (PP), polyethylene (PE) or a multilayer composite film.
  • the housing includes a shell body 11 with an open end and a cover plate 12 provided at the opening of the shell body 11.
  • the cover plate 12 and the shell body 11 are in a sealed connection to jointly define an accommodating cavity in which the pole core assembly is located. Setting the shell to include the shell body 11 and the cover plate 12 with open ends can facilitate the assembly of the pole core group and the partition in the shell.
  • the cover plate 12 and the shell body 11 are made of the same material, both of which are metal or plastic.
  • the shell body 11 is an integrally formed structure, and the cover plate 12 is also an integrally formed structure.
  • the first partition 13 and the cover plate 12 are integrally formed and/or the second partition 14 and the shell body 11 are integrally formed. That is, the first partition 13 and the cover plate 12 are integrally formed, or the second partition 14 is integrally formed with the housing body 11, or the first partition 13 and the cover plate 12 are integrally formed and the second partition 14 is integrally formed with the housing body 11 forming.
  • the first partition 13 and the cover plate 12 are integrally formed, the first partition 13 and the cover plate 12 are integrally formed of cast aluminum or injection molding; the second partition 14 and the shell body 11 are integrally formed.
  • the second partition 14 and the shell body 11 are integrally formed by cast aluminum or injection molding; in the embodiment where the first partition 13 and the cover plate 12 are integrally formed, and the second partition 14 and the shell body 11 are integrally formed
  • the first partition 13 and the cover plate 12 are integrally formed of cast aluminum or injection molding
  • the second partition 14 and the shell body 11 are integrally formed of cast aluminum or injection molding.
  • the integral molding arrangement is convenient for processing and manufacturing, and can ensure the firmness and reliability of the connection between the first partition member 13 and the cover plate 12, and the second partition member 14 and the housing body 11.
  • first partition 13 and/or the second partition 14 and the housing body 11 are integrally formed, that is, the first partition 13 and the housing body 11 are It is integrally formed, or the second partition 14 and the shell body 11 are integrally formed, or both the first partition 13 and the second partition 14 are integrally formed with the shell body 11.
  • first partition 13 and the shell body 11 are integrally formed, the first partition 13 and the shell body 11 are integrally formed of cast aluminum or injection molding; the second partition 14 and the shell body 11 are integrally formed In the embodiment, the second partition 14 and the shell body 11 are integrally formed by cast aluminum or injection molding; in the embodiment where the first partition 13 and the second partition 14 are integrally formed with the shell body 11, Both the first partition 13 and the second partition 14 and the shell body 11 are integrally formed of cast aluminum or injection molding.
  • the positive pole 2 and the negative pole 3 are arranged on the cover 12.
  • Each of the pole core groups has a current draw-out component.
  • the at least two pole core groups are arranged in a line, and the positive pole 2 on the housing is opposite to the outermost pole.
  • the current extraction component of one of the two pole core groups is connected, and the negative pole 3 on the housing is connected to the current extraction component of the other of the two outermost pole core groups.
  • the current draw-out components of the pole core set are the positive pole tab 41 and the negative pole tab 42 of this pole core 4.
  • the positive pole pole 2 on the shell is connected to the bottom pole.
  • the positive pole tab 41 of one of the two outer pole core sets is connected, and the negative pole 3 on the shell is connected to the negative pole tab 42 of the other of the two outermost pole core sets;
  • the pole core set contains parallel connections
  • the positive pole tabs 41 of the pole cores 4 are connected to form a positive lead
  • the negative pole tabs 42 of the multiple pole cores 4 are connected to form a negative lead.
  • the current extraction components are the positive electrode lead and the negative electrode lead.
  • the positive pole 2 on the shell is connected to the positive lead of one of the two outermost pole core sets, and the negative pole 3 on the shell is connected to the bottom pole.
  • the negative lead of the other of the two outer core groups is connected.
  • the cover plate 12 is provided with a groove, and the conductive connector 5 is embedded in the groove.
  • the groove is opened on the cover plate. 12 facing the lower surface of the shell body 11; the conductive connector 5 is configured to connect a plurality of pole core groups in series, specifically, the conductive connector 5 is fixedly arranged in the groove to prevent conductive connection
  • the component 5 shakes and shifts during the battery use, which affects the reliability of the series connection of the conductive connector 5 to the pole core set; in the case that the pole core set only includes one pole core 4 as shown in FIG. 1, the phase
  • the positive electrode tab 41 of one of the two adjacent pole core groups is connected to one end of the conductive connecting member 5, and the other negative electrode tab 42 is connected to the other end of the conductive connecting member 5.
  • the conductive connecting member 5 and the cover plate 12 are integrally formed.
  • the integrally formed arrangement makes the connection between the conductive connector 5 and the cover plate 12 stronger and more stable.
  • each pole core group only includes one pole core 4 as shown in FIG. 1
  • the positive pole tab 41 and the negative pole tab 42 of the pole core 4 are connected to the conductive connecting piece on the cover 12 5 Connect by welding or riveting; then, put the pole core 4 together with the cover plate 12 into the shell body 11 from the open end of the shell body 11, and the cover plate 12 is placed on the opening of the shell body 11, and finally the shell The body 11 and the cover 12 are welded and sealed to complete the assembly.
  • the conductive connection member 5 includes a copper connection portion and an aluminum connection portion, the copper connection portion and the aluminum connection portion are electrically connected, and the position where the copper connection portion and the aluminum connection portion are electrically connected is located on the cover plate 12's interior.
  • the copper connection part and the aluminum connection part are compositely connected to form a composite connection part, and then the copper connection part is connected to the copper lead-out end of the pole core group on the side of the separator, and the aluminum connection part is connected to The aluminum lead-out ends of the pole core group on the other side of the separator are connected.
  • the battery further includes a detection unit that is electrically connected to the pole core group and detects the state of the pole core group.
  • the state of the pole core group generally refers to signals such as temperature and voltage of each pole core group.
  • the detection unit is a sampling line 6, and the sampling line 6 is connected to the conductive connector 5.
  • a sampling line 6 is connected to each conductive connector 5, and the sampling line 6 is led out from above the cover plate 12 to the outside of the battery, so as to accurately record the output of each electrode group. Temperature and voltage signals.
  • an insulating layer is provided between the conductive connector 5 and the cover plate 12.
  • the cover plate 12 is made of metal material, since the material of the conductive connector 5 is a copper-aluminum composite metal material, it is necessary to provide an insulating layer between the conductive connector 5 and the cover plate 12 to prevent the cover plate from conducting electricity.
  • the material of the insulating layer is plastic or plastic. Of course, other insulating materials can also be used, which is not particularly limited in this application.
  • the battery is a polymer lithium ion battery.
  • the battery can be divided into liquid lithium ion battery and polymer lithium ion battery according to the different electrolyte materials inside.
  • Liquid lithium ion battery uses liquid electrolyte
  • polymer lithium ion battery uses solid polymer electrolyte. This polymer can It is dry or colloidal. Even if the first separator 13 and the second separator 14 of the present application do not completely isolate the two adjacent electrode core groups, since the solid polymer electrolyte will not circulate between the two adjacent electrode core groups, it will not Due to the decomposition of the polymer electrolyte caused by the potential difference, the more preferable battery of the solution of the present application is a polymer lithium ion battery.
  • an explosion-proof valve 7 is provided on the cover plate 12, and the explosion-proof valve 7 is configured to open when the pressure inside the battery cell exceeds a pressure threshold. pressure.
  • the setting of the explosion-proof valve 7 ensures the safety of the battery.
  • the explosion-proof valve 7 can automatically open to release the pressure inside the battery, effectively preventing the battery from being caused by excessive internal pressure. Risk of explosion.
  • An embodiment of the present application also provides a battery module, which includes at least two batteries as described above. At least two batteries in the battery module can be connected in series and/or in parallel, and a detection and sampling component can be provided on the battery module for independent power supply of the battery module.
  • An embodiment of the present application also provides a battery pack, which includes at least two batteries as described above or includes at least two battery modules as described above. At least two batteries or at least two battery modules in the battery pack may be connected in series and/or in parallel, and detection and sampling components may be provided on the battery pack for independent power supply of the battery pack.
  • An embodiment of the present application also provides an electric vehicle, which includes the battery module as described above or includes the battery pack as described above. Both battery modules or battery packs can provide independent power supply for electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电池、电池模组、电池包及电动车,所述电池包括壳体及至少两个极芯组,所述壳体内具有容纳腔;所述至少两个极芯组设置在容纳腔内,所述极芯组之间串联连接,所述极芯组包括至少一个极芯(4);所述电池还包括分隔件,所述分隔件设置在相邻两个极芯组之间,所述分隔件包括第一分隔件(13)及第二分隔件(14),所述第一分隔件(13)与第二分隔件(14)之间设置有间隙。

Description

一种电池、电池模组、电池包及电动车
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2019年11月22日提交的、申请名称为“一种电池、电池模组、电池包及电动车”的、中国专利申请号“201911159598.8”的优先权。
技术领域
本申请涉及电池技术领域,更具体地,涉及一种电池、电池模组、电池包及电动车。
背景技术
锂离子电池作为一种新型无污染的二次电池,已经被广泛应用于许多领域当中,特别是作为新能源汽车的动力电池。随着新能源汽车的不断普及和性能的逐渐完善,用户对新能源汽车的续时里程、动力性能等方面提出越来越高的要求,因此,对新能源汽车中动力电池的使用要求也变得越来越高。对新能源汽车使用的电池包而言,在对其总体容量要求不断提高的同时,还要求电池包的总重量尽量减轻。一般而言,新能源汽车所用的蓄电池容量非常大,仅依靠一块单体电池的容量往往不够,通常都需要并排设置多个单体电池。因此,电池包的总重量不容忽视。电池包的轻量化设计对于新能源汽车的轻量化设计具有非常重要的意义。
目前,现有技术中的一些电池组结构虽然可以达到组合串联的效果,但由于其所采用的结构件较多,因此无法达到对锂离子电池轻量化、低成本、高能量密度的要求。
有鉴于此,需要提供一种新的技术方案以解决上述问题。
发明内容
本申请的一个目的是提供一种电池、电池模组、电池包及电动车的新技术方案。
根据本申请的第一方面,提供了一种电池,包括:
壳体,所述壳体内具有容纳腔;
至少两个极芯组,所述至少两个极芯组沿第一方向设置在容纳腔内,所述极芯组之间串联连接,所述极芯组包括至少一个极芯;
分隔件,所述分隔件设置在相邻两个极芯组之间且用于隔绝相邻两个极芯组之间的互相接触,所述分隔件包括第一分隔件及第二分隔件,所述第一分隔件与第二分隔件沿第二方向相对设置,且所述第一分隔件与第二分隔件之间沿所述第二方向设置有间隙;
所述第二方向与所述第一方向垂直。
可选地,所述第一分隔件及第二分隔件分别与壳体的内表面固定连接。
可选地,所述第一分隔件和/或所述第二分隔件与壳体为一体成型设置。
可选地,所述第一分隔件及第二分隔件为板状或者网状。
可选地,所述极芯组沿所述第二方向相对设置的两端均越过第一分隔件与第二分隔件之间的间隙。
可选地,所述极芯组与分隔件之间预留有膨胀空间。
可选地,所述第一分隔件和所述第二分隔件均包括面向所述极芯组的分隔件侧面,所述第一分隔件和/或所述第二分隔件的面向所述极芯组的分隔件侧面与极芯组之间的距离在从壳体外向壳体内的方向上呈增大趋势。
可选地,所述第一分隔件和所述第二分隔件包括面向所述极芯组的两个分隔件侧面且所述两个分隔件侧面为弧面。
可选地,所述极芯组包括面向所述壳体的周向面以及面向所述分隔件的极芯组侧面,所述极芯组侧面的面积大于所述周向面的面积。
可选地,所述分隔件由绝缘材质制成。
可选地,所述极芯组与壳体之间设置有绝缘膜。
可选地,所述壳体包括端部开口的壳本体和设置在所述壳本体开口处的盖板。
可选地,所述第一分隔件与盖板为一体成型设置和/或所述第二分隔件与壳本体为一体成型设置。
可选地,所述盖板上开设有凹槽,所述凹槽内嵌设有导电连接件,所述导电连接件被配置为用于将多个极芯组进行串联连接。
可选地,所述导电连接件与盖板一体成型设置。
可选地,所述导电连接件包括铜连接部和铝连接部,所述铜连接部和铝连接部电连接的位置位于所述盖板的内部。
可选地,所述导电连接件与盖板之间设置有绝缘层。
可选地,所述电池还包括检测单元,所述检测单元与所述极芯组电连接并检测所述极芯组的状态。
可选地,所述检测单元为采样线,所述采样线与导电连接件连接。
可选地,所述电池为聚合物锂离子电池或固态电池。
根据本申请的第二方面,提供了一种电池模组,所述电池模组包括如上所述的电池。
根据本申请的第三方面,提供了一种电池包,所述电池包包括如上所述的电池或者包括如上所述的电池模组。
根据本申请的第四方面,提供了一种电动车,所述电动车包括如上所述的电池模组或者 包括如上所述的电池包。
本申请提供的一种电池,在壳体的容纳腔内串联连接至少两个极芯组,至少两个极芯组共用一个壳体,减少了外壳以及外部安装结构,减轻了电池的重量;并且,在相邻的两个极芯组之间设置分隔件,分隔件能够有效防止相邻极芯组之间发生互相接触,即便在电池受到挤压或碰撞时,由于有分隔件的隔离作用,极芯组之间不会发生碰撞接触,保证了电池使用的可靠性及安全性。此外,分隔件在壳体内还能够起到支撑的作用,使电池抵抗外力的能力得以增强。同时,由于分隔件包括第一分隔件及第二分隔件,且第一分隔件与第二分隔件之间设置有间隙,这样设置不仅方便安装,并且相比设置一整块分隔件,能够有效减轻电池的重量,有利于电池的轻量化设计,并且还能够节省成本。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1为本申请一种电池第一种实施例的透视结构示意图;
图2为本申请一种电池第一种实施例的剖视结构示意图;
图3为本申请一种电池另一种实施例的立体结构示意图;
图4为本申请一种电池另一种实施例的剖视结构示意图;
图5为电池充电前的状态图;
图6为电池充满电的状态图;
图7为本申请一种电池第一种实施例的盖板示意图。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为 限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本申请实施例提供了一种电池。该电池包括:壳体、至少两个极芯组以及分隔件,所述壳体内具有容纳腔;所述至少两个极芯组沿第一方向设置在容纳腔内,所述第一方向为极芯组的排列方向;所述极芯组之间串联连接,所述极芯组包括至少一个极芯;所述分隔件设置在相邻两个极芯组之间且用于隔绝相邻两个极芯组之间的互相接触,即,设置了分隔件之后,能够确保相邻的两个极芯组之间不会发生相互触碰接触的情况。
所述分隔件包括第一分隔件13及第二分隔件14,所述第一分隔件13与第二分隔件14沿第二方向相对设置,且沿所述第二方向所述第一分隔件13与第二分隔件14之间设置有间隙;所述第二方向与所述第一方向垂直。当然,第一分隔件13和第二分隔件14的形状可以相同也可以不同。
相对设置可以理解为,第一分隔件13和第二分隔件14的位置可以稍微有错位。第一方向可以理解为极芯组的排列方向,例如可以为极芯组的厚度方向,即图1、图3中所示的T方向;那么所述第二方向为所述极芯组的长度方向,即图1、图3中所示的L方向,或者所述第二方向为所述极芯组的宽度方向,即图1、图3所示的W方向。
本申请实施例提供的电池,在壳体的容纳腔内串联连接至少两个极芯组,即至少两个极芯组共用一个壳体,相对于多个电池并排设置,减少了外壳以及外部安装结构,减轻了重量,提高了空间利用率,保证了动力电池包的整体容量;同时,减少了外部动力连接件的使用,而由壳体内部直接相邻的极芯组串联的方式,无需考虑动力连接件的连接稳定性及可靠性,能够降低连接内容,进而减少动力电池包在使用中的内耗。但是在壳体内直接串联极芯组,如果在使用过程中电池受到挤压、晃动、碰撞等情况而导致极芯组之间互相接触,那么极易发生短路的故障,存在电池失效的风险,甚至还存在一定的安全隐患。
因此,在本申请实施例提供的电池中,在相邻的两个极芯组之间设置分隔件,并且所述分隔件用于隔绝相邻两个极芯组之间的互相接触,即,分隔件能够有效防止相邻极芯组之间发生互相接触,即便在电池受到挤压或碰撞时,由于有分隔件的隔离作用,极芯组之间不会发生碰撞接触,保证了电池使用的可靠性及安全性。并且,分隔件在壳体内还能够起到支撑的作用,使电池抵抗外力的能力得以增强。
同时,由于分隔件包括第一分隔件13及第二分隔件14,且第一分隔件13与第二分隔件14之间设置有间隙,这样设置不仅方便安装,并且相比设置一整块分隔件,能够有效减轻电池的重量,有利于电池的轻量化设计,并且还能够节省成本。
参考图1所示,所述第一分隔件13与第二分隔件14沿第二方向相对设置,该第二方向 为极芯组的长度方向,即图1中的L方向;参考图3所示,所述第一分隔件13与第二分隔件14沿第二方向相对设置,该第二方向为极芯组的宽度方向,即图3中的W方向。这两种实施方式均能够在保证分隔件有效隔离相邻两个极芯组的同时减轻重量。
在本申请实施例提供的电池中,参考图1所示,一个所述极芯组可以只包括单个的极芯4,当然,一个所述极芯组也可以包括至少两个极芯4,并且至少两个极芯4可以串联和/或并联连接,构成所述极芯组,本申请不对此进行限制。例如,两个极芯4并联后,形成极芯组;或者四个极芯4并联后,构成极芯组。其中,极芯4为动力电池领域常用的极芯,极芯4可以是卷绕形成,也可以是叠片的方式制成;一般情况下,极芯4至少包括正极片、隔膜、负极片以及电解质。
在本申请实施例提供的电池中,所述电解质为固态电解质或者聚合物电解质,即本申请实施例提供的电池中,极芯4所使用的电解质不是液体电解质。
在本申请一些实施例提供的电池中,所述电池为聚合物锂离子电池,一般来说,所述极芯4包括正极片、负极片、隔膜以及电解质,聚合物锂离子电池亦即所述电解质为聚合物电解质。电池根据其内部设置的电解质材料的不同,可以分为液态锂离子电池和聚合物锂离子电池,液态锂离子电池使用液体电解质,聚合物锂离子电池则采用聚合物电解质,这种聚合物一般是胶态的,并非液态。
而本申请另一些实施例中,电池为固态电池。一般来说,所述极芯4包括正极片、负极片以及固态电解质。在固态电池中,电解质采用的是固态电解质,也是非液态的。
在本申请中,之所以可以在第一分隔件13及第二分隔件14之间设置间隙;其中一个原因是,本申请采用的是聚合物电池或固态电池,即在本申请提供的电池中,电解质为聚合物电解质或固态电解质。在电池为聚合物电池或固态电池时,其电解质为聚合物电解质或固态电解质;该电解质能够很好地位于正极片和负极片之间,而不会像电解液一样,会流出正极片和负极片所在位置。
在图1、图2所示的实施例中,所述极芯组沿长度方向的两端均越过第一分隔件13与第二分隔件14之间的间隙。之所以将极芯组沿长度方向的两端均设置为越过第一分隔件13与第二分隔件14之间的间隙,是为了保证第一分隔件13与第二分隔件14在相邻两个极芯组之间隔离的有效性,防止相邻的两个极芯组的端部在第一分隔件13与第二分隔件14之间的间隙处发生接触碰撞的情况。其中,长度方向为L方向。
所述第一分隔件13及第二分隔件14分别与壳体的内表面固定连接。具体地,在图1、图2所示的实施例中,所述第一分隔件13与第二分隔件14沿极芯组的长度方向即L方向布置,且第一分隔件13与第二分隔件14之间沿极芯组的长度方向设置有间隙,即第一分隔件13与第二分隔件14没有连接在一起。在该实施例中,第一分隔件13与第二分隔件14 分别与壳体的沿L方向的两个表面固定连接;这样设置第一分隔件13及第二分隔件14便于两个分隔件的定位与安装,防止分隔件在装配过程中发生错位移动的情况。
参考图3、图4所示,在另一个实施例中,所述第一分隔件13与第二分隔件14沿极芯组的宽度方向即W方向布置,且第一分隔件13与第二分隔件14之间沿极芯组的宽度方向设置有间隙,即第一分隔件13与第二分隔件14没有连接在一起。所述极芯组沿宽度方向的两端均越过第一分隔件13与第二分隔件14之间的间隙,之所以将极芯组沿宽度方向的两端均设置为越过第一分隔件13与第二分隔件14之间的间隙,是为了保证第一分隔件13与第二分隔件14在相邻两个极芯组之间隔离的有效性,防止相邻的两个极芯组的端部在第一分隔件13与第二分隔件14之间的间隙处发生接触碰撞的情况。在该实施例中,第一分隔件13与第二分隔件14分别与壳体的沿W方向的两个表面固定连接。
在本申请的描述中,需要理解的是,术语“长度方向”“宽度方向”“厚度方向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
参考图5、图6所示,所述极芯组与分隔件之间预留有膨胀空间。图5所示为电池充电前的状态,此时极芯组的体积较小,膨胀空间15较大;如图6所示为电池充满电后的状态,此时极芯组的体积变大,占据了一部分的膨胀空间15,使得膨胀空间15变小。膨胀空间15能够避免极芯组之间相互挤压造成内短路,提升了电池使用的安全性。
参考图5、图6所示,所述第一分隔件13和所述第二分隔件14均包括面向所述极芯组的分隔件侧面16,所述第一分隔件13和/或所述第二分隔件14的面向所述极芯组的分隔件侧面16与极芯组之间的距离在从壳体外向壳体内的方向上呈增大趋势。可以是一个分隔件侧面16与极芯组之间的距离在从壳体外向壳体内的方向上呈增大趋势,优选的是,所述增大趋势为逐渐增大。
更加优选的是每个第一分隔件13和/或所述第二分隔件14的两个分隔件侧面16均与极芯组之间的距离在从壳体外向壳体内的方向上逐渐增大。逐渐增大的距离保证了膨胀空间能够更加有效地避免极芯组的体积充电变大后极芯组发生相互挤压的现象。
参考图5、图6所示,在一个实施例中,所述第一分隔件13和所述第二分隔件14包括面向所述极芯组的两个分隔件侧面16且所述两个分隔件侧面16为弧面。进一步地,所述极芯组包括面向所述壳体的周向面43以及面向所述分隔件的极芯组侧面44,所述极芯组侧面44的面积大于所述周向面43的面积。由于电池充电后,极芯组面积更大的侧面44的膨胀比周向面43的膨胀更大,因此需要在极芯组侧面44的位置处预留更多的膨胀空间。
第一分隔件13及第二分隔件14中弧面状的设计有利于在保证足够的膨胀空间的同时避 免极芯组之间互相接触,并且还能够为极芯组提供位置限定,保证了电池使用的安全性。
在设置多个第一分隔件13实施方式中,多个第一分隔件可以13一体成型,进一步的多个第一分隔件和壳体一体成型
及设置多个第二分隔件14的实施方式中,多个第二分隔件14一体成型,进一步的多个第一分隔件和壳体一体成型。
在一个实施例中,所述第一分隔件13及第二分隔件14为板状或者网状。参考图1所示,第一分隔件13与第二分隔件14为板状结构,板状结构的第一分隔件13与第二分隔件14在隔离极芯组的同时能够为电池提供优秀的支撑作用,有效提高电池抵抗外力的能力。当然,第一分隔件13与第二分隔件14还可以设计成网状的结构,网状结构的第一分隔件13与第二分隔件14同样能够有效隔离极芯组,并且网状结构的第一分隔件13与第二分隔件14在减轻电池重量方便具有更加优秀的技术效果。
在一个实施例中,所述分隔件由绝缘材质制成。绝缘材质制成的分隔件能够更加有效地保证极芯组之间不会发生短路的现象,即便电池受到强力作用使得相邻两个极芯组都与分隔件挤压在一起,由于分隔件是绝缘材质,极芯组之间也不会发生短路。
在一个实施例中,所述极芯组与壳体之间设置有绝缘膜。本申请不对绝缘膜的材料作特殊限制,只要能够绝缘即可,在一些实施例中,隔离膜的材料可以包括聚丙烯(PP)、聚乙烯(PE)或者多层复合膜。
在一个实施例中,参考图1所示,所述壳体包括端部开口的壳本体11和设置在所述壳本体11开口处的盖板12。盖板12与壳本体11密封连接共同限定出容纳腔,极芯组件位于该容纳腔中。将壳体设置为包括端部开口的壳本体11与盖板12,能够方便壳体内的极芯组及分隔件的组装。在一个可选的实施例中,所述盖板12与壳本体11的材质相同,均为金属材质或者均为塑料材质。在一个可选的实施例中,壳本体11为一体成型的结构,并且盖板12也为一体成型的结构。
在图1、图2所示的实施例中,所述第一分隔件13与盖板12为一体成型设置和/或所述第二分隔件14与壳本体11为一体成型设置。即,第一分隔件13与盖板12一体成型,或者第二分隔件14与壳本体11一体成型,或者第一分隔件13与盖板12一体成型并且第二分隔件14与壳本体11一体成型。在第一分隔件13与盖板12一体成型的实施例中,第一分隔件13与盖板12为铸铝或注塑的一体成型设置;在第二分隔件14与壳本体11一体成型的实施例中,第二分隔件14与壳本体11为铸铝或注塑的一体成型设置;在第一分隔件13与盖板12一体成型并且第二分隔件14与壳本体11一体成型的实施例中,第一分隔件13与盖板12为铸铝或注塑的一体成型设置并且第二分隔件14与壳本体11为铸铝或注塑的一体成型设置。一体成型设置便于加工制造,并且能够保证第一分隔件13与盖板12、 第二分隔件14与壳本体11连接的牢固可靠性。
在图3、图4所示的实施例中,所述第一分隔件13和/或所述第二分隔件14与壳本体11为一体成型设置,即第一分隔件13与壳本体11为一体成型设置,或者第二分隔件14与壳本体11为一体成型设置,或者第一分隔件13及第二分隔件14均与壳本体11为一体成型设置。在第一分隔件13与壳本体11为一体成型的实施例中,第一分隔件13与壳本体11为铸铝或注塑的一体成型设置;在第二分隔件14与壳本体11为一体成型的实施例中,第二分隔件14与壳本体11为铸铝或注塑的一体成型设置;在第一分隔件13及第二分隔件14均与壳本体11为一体成型设置的实施例中,第一分隔件13及第二分隔件14均与壳本体11为铸铝或注塑的一体成型设置。
在一个实施例中,参考图1、图2所示,壳体包括壳本体11和盖板12的实施例中,正极极柱2及负极极柱3设置在盖板12上。每个所述极芯组具有电流引出部件,在图1所示的实施例中,所述至少两个极芯组呈一字排开设置,所述壳体上的正极极柱2与最外侧的两个极芯组其中一个的电流引出部件连接,所述壳体上的负极极柱3与最外侧的两个极芯组中另一个的电流引出部件连接。在极芯组只包含一个极芯4的情况下,极芯组的电流引出部件为这一个极芯4的正极极耳41和负极极耳42,其中,壳体上的正极极柱2与最外侧的两个极芯组其中一个的正极极耳41连接,壳体上的负极极柱3与最外侧的两个极芯组中另一个的负极极耳42连接;在极芯组包含并联连接的多个极芯4的情况下,多个极芯4的正极极耳41之间连接起来形成正极引线,并且多个极芯4的负极极耳42之间连接起来形成负极引线,那么此种情况下,电流引出部件即为正极引线与负极引线,其中,壳体上的正极极柱2与最外侧的两个极芯组其中一个的正极引线连接,壳体上的负极极柱3与最外侧的两个极芯组中另一个的负极引线连接。
在一个实施例中,参考图1、图2所示,所述盖板12上开设有凹槽,所述凹槽内嵌设有导电连接件5,具体地,所述凹槽开设在盖板12面向壳本体11的下表面位置处;所述导电连接件5被配置为用于将多个极芯组进行串联连接,具体地,导电连接件5固定设置在凹槽内,以防止导电连接件5在电池使用过程中发生晃动、移位而影响导电连接件5对极芯组串联连接的可靠性;在如图1所示极芯组只包含一个极芯4的情况下,所述相邻的两个极芯组其中一个的正极极耳41与所述导电连接件5的一端连接、另一个的负极极耳42与所述导电连接件5的另一端连接。
在一个实施例中,所述导电连接件5与盖板12一体成型设置。一体成型的设置方式使得导电连接件5与盖板12的连接更加牢固稳定。在图1所示每个极芯组只包含一个极芯4的实施方式中,在热压工艺之后,将极芯4的正极极耳41及负极极耳42与盖板12上的导电连接件5通过焊接或铆接进行连接;随后,将极芯4连同盖板12一起从壳本体11的开 口端放入到壳本体11内,盖板12盖设于壳本体11的开口处,最后对壳本体11与盖板12四周进行焊接密封,即完成装配。
在一个实施例中,所述导电连接件5包括铜连接部和铝连接部,所述铜连接部和铝连接部电连接,并且铜连接部和铝连接部电连接的位置位于所述盖板12的内部。在一个可选的实施例中,首先将铜连接部与铝连接部进行复合连接,形成复合连接部,然后铜连接部与分隔件一侧的极芯组的铜引出端连接,铝连接部与分隔件另一侧的极芯组的铝引出端连接。
在一个实施例中,所述电池还包括检测单元,所述检测单元与所述极芯组电连接并检测所述极芯组的状态。所述极芯组的状态一般是指各个极芯组的温度和电压等信号。
在一个实施例中,参考图1所示,所述检测单元为采样线6,所述采样线6与导电连接件5连接。为了能够准确实时地采集电池内部的信号,在每个导电连接件5上连接一根采样线6,并且将采样线6从盖板12上方引出到电池的外部,以准确记录各个极芯组的温度和电压信号。
在一个实施例中,所述导电连接件5与盖板12之间设置有绝缘层。当盖板12为金属材质时,由于导电连接件5的材质为铜铝复合的金属材质,因此,需要在导电连接件5与盖板12之间设置一层绝缘层,避免盖板导电,发生短路或安全问题,在一个可选的实施例中,绝缘层的材质为塑胶或塑料,当然,也可以采用其他的绝缘材料,本申请对此不作特别限制。
在一个实施例中,所述电池为聚合物锂离子电池。电池根据其内部设置的电解质材料的不同,可以分为液态锂离子电池和聚合物锂离子电池,液态锂离子电池使用液体电解质,聚合物锂离子电池则采用固体聚合物电解质,这种聚合物可以是干态的,也可以是胶态的。即使本申请的第一分隔件13和第二分隔件14未完全将相邻两个极芯组完全隔离,由于固体聚合物电解质不会在相邻两个极芯组之间发生流通,不会由于因电位差而引起的聚合物电解质的分解问题,因而,本申请的方案更优选的电池是聚合物锂离子电池。
在一个实施例中,参考图7所示,所述盖板12上设置有防爆阀7,所述防爆阀7被配置为当电池单元内部的压力值超过压力阈值时,防爆阀7打开以释放压力。防爆阀7的设置确保了电池使用的安全性,当电池内部的压力值超过安全的压力阈值时,防爆阀7能够自动打开以释放电池内部的压力,有效防止了电池由于内部压力过大而发生爆炸的风险。
本申请实施例还提供了一种电池模组,所述电池模组包括至少两个如上所述的电池。所述电池模组中的至少两个电池可以串联和/或并联连接,可以在电池模组上设置检测采样部件,用于电池模组的独立供电。
本申请实施例还提供了一种电池包,所述电池包包括至少两个如上所述的电池或者包括至少两个如上所述的电池模组。所述电池包中的至少两个电池或者至少两个电池模组可以 串联和/或并联连接,可以在电池包上设置检测采样部件,用于电池包的独立供电。
本申请实施例还提供了一种电动车,所述电动车包括如上所述的电池模组或者包括如上所述的电池包。电池模组或者电池包均可为电动车进行独立供电。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (23)

  1. 一种电池,其特征在于,包括:
    壳体,所述壳体内具有容纳腔;
    至少两个极芯组,所述至少两个极芯组沿第一方向设置在容纳腔内,所述极芯组之间串联连接,所述极芯组包括至少一个极芯;
    分隔件,所述分隔件设置在相邻两个极芯组之间且用于隔绝相邻两个极芯组之间的互相接触,所述分隔件包括第一分隔件及第二分隔件,所述第一分隔件与第二分隔件沿第二方向相对设置,且所述第一分隔件与第二分隔件之间沿所述第二方向设置有间隙;
    所述第二方向与所述第一方向垂直。
  2. 根据权利要求1所述的电池,其特征在于,所述第一分隔件及第二分隔件分别与壳体的内表面固定连接。
  3. 根据权利要求2所述的电池,其特征在于,所述第一分隔件和/或所述第二分隔件与壳体为一体成型设置。
  4. 根据权利要求1或2所述的电池,其特征在于,所述第一分隔件及第二分隔件为板状或者网状。
  5. 根据权利要求1-4中任一项所述的电池,其特征在于,所述极芯组沿所述第二方向相对设置的两端均越过第一分隔件与第二分隔件之间的间隙。
  6. 根据权利要求1-5中任一项所述的电池,其特征在于,所述极芯组与分隔件之间预留有膨胀空间。
  7. 根据权利要求6所述的电池,其特征在于,所述第一分隔件和所述第二分隔件均包括面向所述极芯组的分隔件侧面,所述第一分隔件和/或所述第二分隔件的面向所述极芯组的分隔件侧面与极芯组之间的距离在从壳体外向壳体内的方向上呈增大趋势。
  8. 根据权利要求6或7所述的电池,其特征在于,所述第一分隔件和所述第二分隔件包括面向所述极芯组的两个分隔件侧面且所述两个分隔件侧面为弧面。
  9. 根据权利要求8所述的电池,其特征在于,所述极芯组包括面向所述壳体的周向面以及面向所述分隔件的极芯组侧面,所述极芯组侧面的面积大于所述周向面的面积。
  10. 根据权利要求1-5中任一项所述的电池,其特征在于,所述分隔件由绝缘材质制成。
  11. 根据权利要求1-5中任一项所述的电池,其特征在于,所述极芯组与壳体之间设置有绝缘膜。
  12. 根据权利要求1-11中任一项所述的电池,其特征在于,所述壳体包括端部开口的壳本体和设置在所述壳本体开口处的盖板。
  13. 根据权利要求12所述的电池,其特征在于,所述第一分隔件与盖板为一体成型设置和/或所述第二分隔件与壳本体为一体成型设置。
  14. 根据权利要求12或13所述的电池,其特征在于,所述盖板上开设有凹槽,所述凹槽内嵌设有导电连接件,所述导电连接件被配置为用于将多个极芯组进行串联连接。
  15. 根据权利要求14所述的电池,其特征在于,所述导电连接件与盖板一体成型设置。
  16. 根据权利要求14或15所述的电池,其特征在于,所述导电连接件包括铜连接部和铝连接部,所述铜连接部和铝连接部电连接的位置位于所述盖板的内部。
  17. 根据权利要求14-16中任一项所述的电池,其特征在于,所述导电连接件与盖板之间设置有绝缘层。
  18. 根据权利要求14-17中任一项所述的电池,其特征在于,所述电池还包括检测单元,所述检测单元与所述极芯组电连接并检测所述极芯组的状态。
  19. 根据权利要求18所述的电池,其特征在于,所述检测单元为采样线,所述采样线与导电连接件连接。
  20. 根据权利要求1-19中任一项所述的电池,其特征在于,所述电池为聚合物锂离子电池或固态电池。
  21. 一种电池模组,其特征在于,所述电池模组包括如权利要求1-20任一项所述的电池。
  22. 一种电池包,其特征在于,所述电池包包括如权利要求1-20任一项所述的电池或者包括如权利要求21所述的电池模组。
  23. 一种电动车,其特征在于,所述电动车包括如权利要求21所述的电池模组或者包括如权利要求22所述的电池包。
PCT/CN2020/124107 2019-11-22 2020-10-27 一种电池、电池模组、电池包及电动车 WO2021098455A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/778,710 US20230020749A1 (en) 2019-11-22 2020-10-27 Battery, battery module, battery pack and electric vehicle
KR1020227019778A KR20220100923A (ko) 2019-11-22 2020-10-27 배터리, 배터리 모듈, 배터리 팩, 및 전기 차량
EP20888910.5A EP4053976A1 (en) 2019-11-22 2020-10-27 Battery, battery module, battery pack and electric vehicle
JP2022529797A JP7420940B2 (ja) 2019-11-22 2020-10-27 電池、電池モジュール、電池パック及び電気自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911159598.8A CN112952273B (zh) 2019-11-22 2019-11-22 一种电池、电池模组、电池包及电动车
CN201911159598.8 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021098455A1 true WO2021098455A1 (zh) 2021-05-27

Family

ID=75981240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124107 WO2021098455A1 (zh) 2019-11-22 2020-10-27 一种电池、电池模组、电池包及电动车

Country Status (6)

Country Link
US (1) US20230020749A1 (zh)
EP (1) EP4053976A1 (zh)
JP (1) JP7420940B2 (zh)
KR (1) KR20220100923A (zh)
CN (1) CN112952273B (zh)
WO (1) WO2021098455A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118017114A (zh) * 2022-11-09 2024-05-10 南京泉峰科技有限公司 电动工具、为电动工具提供电力的电池包
CN116365154B (zh) * 2023-06-02 2023-07-28 深圳海辰储能控制技术有限公司 储能装置及储能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141010A (zh) * 2007-07-24 2008-03-12 雷天电池技术有限公司 高电压动力型锂离子可充电电池
JP2014157722A (ja) * 2013-02-15 2014-08-28 Hitachi Vehicle Energy Ltd 組電池
CN205960045U (zh) * 2016-06-27 2017-02-15 广东志成冠军集团有限公司 车载磷酸铁锂电池包
CN205960130U (zh) * 2016-08-10 2017-02-15 宁德新能源科技有限公司 锂离子电池结构
CN209312827U (zh) * 2018-11-22 2019-08-27 中信国安盟固利动力科技有限公司 一种改善膨胀的电池模组
CN209389151U (zh) * 2019-01-10 2019-09-13 合肥国轩高科动力能源有限公司 一种优化内部空间的方形锂离子电池结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077131B2 (ja) * 2007-08-02 2012-11-21 ソニー株式会社 正極活物質、並びにそれを用いた正極、および非水電解質二次電池
JP4296522B2 (ja) * 2007-08-23 2009-07-15 トヨタ自動車株式会社 電池およびその製造方法
JP5537111B2 (ja) * 2009-09-30 2014-07-02 株式会社東芝 二次電池装置
JP2013080563A (ja) * 2011-09-30 2013-05-02 Sanyo Electric Co Ltd 積層型二次電池
JP2013251085A (ja) * 2012-05-31 2013-12-12 Energy Control Ltd 複数の立方状二次電池を組付け可能なケース
JP2015011919A (ja) * 2013-07-01 2015-01-19 三洋電機株式会社 電源装置
JP6233242B2 (ja) * 2014-08-26 2017-11-22 株式会社豊田自動織機 電池モジュール
JP6354514B2 (ja) * 2014-10-17 2018-07-11 住友電気工業株式会社 蓄電デバイスモジュール
JP6743359B2 (ja) * 2015-09-29 2020-08-19 株式会社Gsユアサ 蓄電装置
CN106803608A (zh) * 2016-09-29 2017-06-06 蔚来汽车有限公司 电池模组和新能源汽车
KR102180946B1 (ko) * 2016-12-27 2020-11-19 주식회사 엘지화학 균일한 sei 형성을 위한 버퍼 플레이트 및 이를 이용한 전지 제조방법
CN206480683U (zh) * 2017-03-10 2017-09-08 江苏索尔新能源科技股份有限公司 一种电芯纵向排布的电池组件
CN111492503A (zh) * 2017-12-19 2020-08-04 三洋电机株式会社 电源装置和电源装置用的分隔件
CN209150238U (zh) * 2019-06-21 2019-07-23 比亚迪股份有限公司 电池模组、动力电池包和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141010A (zh) * 2007-07-24 2008-03-12 雷天电池技术有限公司 高电压动力型锂离子可充电电池
JP2014157722A (ja) * 2013-02-15 2014-08-28 Hitachi Vehicle Energy Ltd 組電池
CN205960045U (zh) * 2016-06-27 2017-02-15 广东志成冠军集团有限公司 车载磷酸铁锂电池包
CN205960130U (zh) * 2016-08-10 2017-02-15 宁德新能源科技有限公司 锂离子电池结构
CN209312827U (zh) * 2018-11-22 2019-08-27 中信国安盟固利动力科技有限公司 一种改善膨胀的电池模组
CN209389151U (zh) * 2019-01-10 2019-09-13 合肥国轩高科动力能源有限公司 一种优化内部空间的方形锂离子电池结构

Also Published As

Publication number Publication date
KR20220100923A (ko) 2022-07-18
EP4053976A1 (en) 2022-09-07
JP2023502734A (ja) 2023-01-25
JP7420940B2 (ja) 2024-01-23
CN112952273B (zh) 2022-08-09
CN112952273A (zh) 2021-06-11
US20230020749A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP7417720B2 (ja) 電池、電池モジュール、電池パック及び電気自動車
EP4087000A1 (en) Battery, battery module, battery pack, and automobile
JP5256231B2 (ja) 2次電池及び2次電池モジュール
WO2021098455A1 (zh) 一种电池、电池模组、电池包及电动车
CN101719562A (zh) 一种高电压电池的电芯
CN215989120U (zh) 方形电池单体、电池及用电设备
WO2021139649A1 (zh) 电池, 电池模组, 电池包以及电动车
CN215989064U (zh) 电池单体、电池以及用电装置
JP7255021B2 (ja) バッテリーモジュール、それを含むバッテリーパック、及び自動車
JP2012069283A (ja) 積層型電池の製造方法および積層型電池用セパレータ
EP4254626A1 (en) Battery pack and device including same
WO2023245429A1 (zh) 电池单体、电池及用电装置
CN110635175A (zh) 一种内部串联式电芯和内部串联式电池
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN216120530U (zh) 电池和用电装置
KR101576597B1 (ko) 이차 전지 및 이를 포함하는 배터리 팩
CN210668591U (zh) 一种内部串联式电芯和内部串联式电池
CN114361732A (zh) 电化学装置及电子设备
CN109037788B (zh) 一种软包大容量固态聚合物锂离子电池及其应用
EP4164039A1 (en) Battery pack and device including same
JP7475536B2 (ja) 電池セル、電池、電力利用装置、並びに電池セルを製造する装置及び方法
CN221041219U (zh) 电极组件、电池单体、电池和用电装置
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2024001318A1 (zh) 电池极片、极片组件、电池和用电设备
US20240136641A1 (en) Battery pack and device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529797

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019778

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020888910

Country of ref document: EP

Effective date: 20220531

NENP Non-entry into the national phase

Ref country code: DE