WO2021098415A1 - 多频段通信、接口参数更新方法及相关设备 - Google Patents

多频段通信、接口参数更新方法及相关设备 Download PDF

Info

Publication number
WO2021098415A1
WO2021098415A1 PCT/CN2020/120951 CN2020120951W WO2021098415A1 WO 2021098415 A1 WO2021098415 A1 WO 2021098415A1 CN 2020120951 W CN2020120951 W CN 2020120951W WO 2021098415 A1 WO2021098415 A1 WO 2021098415A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
link
sta
mac address
devices
Prior art date
Application number
PCT/CN2020/120951
Other languages
English (en)
French (fr)
Inventor
黄国刚
郭宇宸
淦明
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022529747A priority Critical patent/JP2023502719A/ja
Priority to BR112022009776A priority patent/BR112022009776A2/pt
Priority to EP20890893.9A priority patent/EP4050922A4/en
Publication of WO2021098415A1 publication Critical patent/WO2021098415A1/zh
Priority to US17/749,349 priority patent/US20220286194A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0882Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity
    • H04B7/0888Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity with selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • This application relates to the field of communication technology, and in particular to a method for multi-band communication, interface parameter update, and related equipment.
  • devices can communicate on the 2.4 gigahertz (GHz) frequency band, the 5 GHz frequency band, and the 6 GHz frequency band at the same time. Even when the number of antennas is limited, multi-band devices can switch between different frequency bands to select the best frequency band and ensure its communication quality.
  • GHz gigahertz
  • Multi-band devices may be referred to as multi-link (Multiple-link, ML) devices.
  • ML devices can perform multi-link aggregation (MLA).
  • Multi-link aggregation means that an ML device uses multiple links to send data at the same time to increase the transmission rate.
  • This application provides a method for multi-band communication, interface parameter update, and related equipment, which can facilitate rapid switching of station (Station, STA) equipment between multiple access points (Access Point, AP).
  • STA station
  • AP access point
  • a multi-band communication method when the AP device authenticates the STA device, the AP device sends a target message to the STA device.
  • the AP device includes multiple APs, and the multiple APs work on different frequency bands.
  • the AP device authenticates the STA device means that the AP device authenticates the STA device on the link layer, which usually includes association and secret key derivation.
  • the target message includes multiple multi-band elements, the multiple multi-band elements correspond to the multiple APs one-to-one, and each of the multiple multi-band elements includes frequency band information of the corresponding AP.
  • the multiple multi-band elements are used to instruct the STA device to associate with multiple APs and derive a secret key.
  • the AP device may carry multiple multi-frequency band elements in the target message sent to the STA device, so as to send information related to the frequency bands in which multiple APs work in the AP device to the STA device. This instructs the STA device to associate and derive the key with the multiple APs. In this way, it is convenient for the STA device to quickly switch between the multiple APs.
  • the target message is an association response frame generated during the association process, and/or the target message is a secret key message generated during the secret key derivation process.
  • the target message when the target message is a secret key message generated during the secret key derivation process, the target message also includes a robust and secure network information element, and the robust and secure network information element includes a request type, and the request type is single chain The path association type and the corresponding key derivation type, or the request type is a multi-link association type and the corresponding key derivation type.
  • the single-link association type refers to the single-link association with the AP device
  • the multi-link association type refers to the multi-link association with the AP device
  • the secret key derivation type is used to indicate the connection with the AP device.
  • the STA device includes multiple STAs, and the multiple STAs work in different frequency bands, and the MAC (Media Access Control) addresses of the multiple STAs are different, and the multiple STAs correspond to the first service.
  • Access point SAP multiple APs correspond to the second service access point SAP.
  • the association request frame sent by the STA device to the AP device includes the first information element, and the first information element includes the MAC address of the first SAP; or, the address field of the frame header of the association request frame sent by the STA device to the AP device includes The MAC address of the first SAP.
  • the association response frame sent by the AP device to the STA device includes a second information element, and the second information element includes the MAC address of the second SAP; or, the address field of the frame header of the association response frame sent by the AP device to the STA device includes The MAC address of the second SAP.
  • the MAC address of the first SAP is used to generate a secret key during the secret key derivation process, and the secret key can be used on all links in the ML-entity corresponding to the first SAP.
  • the MAC address of the second SAP is used to generate a secret key during the secret key derivation process, and the secret key can be used on all links in the ML-entity corresponding to the second SAP.
  • the first information element may also include indication information for indicating the encryption algorithm preferentially adopted by the STA device, and/or, the first information element may also include the MAC address of each STA in the plurality of STAs.
  • the second information element may also include indication information for indicating the encryption algorithm preferentially adopted by the AP device, and/or, the second information element may also include the MAC address of each AP of the multiple APs.
  • the association request frame includes the MAC address of the first SAP and the MAC address of each of the multiple STAs
  • the MAC address of the first SAP is used to generate unicast data during the secret key derivation process
  • the encryption key of the frame the MAC address of each STA is used to generate the encryption key of the multicast data frame during the key derivation process.
  • the association response frame includes the MAC address of the second SAP and the MAC address of each AP in the multiple APs
  • the MAC address of the second SAP is used to generate the encryption key of the unicast data frame during the key derivation process
  • the MAC address of each AP is used to generate the encryption key of the multicast data frame during the key derivation process.
  • the STA device and the AP device can be based on the MAC address of the first SAP, the MAC address of the second SAP obtained during the association process, the encryption algorithm that the STA device prefers to use, and the AP device preferentially uses the The encryption algorithm, the MAC address of each STA in the multiple STAs, and the MAC address of each AP in the multiple APs negotiate the secret key during the secret key derivation process, thereby improving the efficiency of secret key negotiation.
  • the association request frame sent by the STA device to the AP device includes a third information element, and the third information element includes multi-AP association indication information.
  • the multi-AP association indication information is used to request simultaneous association with multiple APs. Perform association and key derivation.
  • the association response frame sent by the AP device to the STA device includes a second information element, and the second information element includes the MAC address of the second SAP; or, the address field of the frame header of the association response frame sent by the AP device to the STA device includes The MAC address of the second SAP.
  • the MAC address of the second SAP is used to generate the secret key during the secret key derivation process.
  • the second information element may also include indication information for indicating the encryption algorithm preferentially adopted by the AP device, and/or, the second information element may also include the MAC address of each AP in the multiple APs.
  • the association request frame sent by the STA device to the AP device carries the multi-AP association indication information, it indicates that the STA device wants to associate and derive the key with multiple APs in the AP device at the same time.
  • the AP device may carry the MAC address of the second SAP in the association response frame returned to the STA device, and may further carry the MAC address of each AP in the multiple APs and the encryption that the AP device prefers to use. algorithm.
  • the STA device can subsequently derive the secret key for the multiple APs based on the MAC address of the second SAP, the MAC address of each AP in the multiple APs, and the encryption algorithm preferentially adopted by the AP device.
  • the beacon frame sent by each AP of the multiple APs may include an access control policy information element, and the access control policy information element includes multiple APs. At least one of the number of APs, the access policy of each AP in the multiple APs, handover threshold indication information, or STA association restriction.
  • the switching threshold indication information is used to instruct the STA device to perform AP switching when the signal quality drops to the first threshold
  • the STA association restriction is used to indicate the type of STA that each AP of the multiple APs is allowed to associate.
  • the access policy of one AP includes at least one of a service policy or timeout information.
  • the service policy is used to indicate the highest access category (Access Category, AC) or TID of the data packet allowed to be transmitted by an AP
  • the timeout information is used to indicate that the STA device has not received the highest AC allowed to be transmitted by an AP within a preset period of time.
  • TID data packet for AP switching is used to indicate that the STA device has not received the highest AC allowed to be transmitted by an AP within a preset period of time.
  • a multi-band communication method is provided.
  • one ML device when two ML devices perform FST, one ML device sends an FST frame to the other ML device, and the FST frame includes multi-band elements.
  • the multi-band element includes a packet-level MLA supported field, and the packet-level MLA supported field is used to indicate whether packet-level multi-link aggregation is supported.
  • the other ML device can learn whether this ML device supports packet-level multi-link aggregation.
  • two ML devices performing FST can learn whether each other supports packet-level multi-link aggregation, and perform FST according to whether each other supports packet-level multi-link aggregation, so that both parties can complete FST more quickly and accurately.
  • one of the two ML devices is a STA device, and the other ML device is an AP device.
  • the multi-band element in the FST frame sent by the STA device to the AP device includes the Noncollocated supported field, and the Noncollocated supported field is used to indicate whether noncollocated multi-link aggregation is supported.
  • the STA device may carry the Noncollocated supported field in the multi-band element in the FST frame sent to the AP device to indicate whether the STA device supports the communication with multiple APs belonging to different physical devices. Multi-link aggregation. In this way, it is convenient for the AP device to adjust the communication strategy with the STA device accordingly.
  • one of the two ML devices is a STA device, and the other ML device is an AP device.
  • the multi-band element in the FST frame sent by the AP device to the STA device includes the multi-band connection capability field.
  • the multi-band connection capability field contains the Noncollocated AP indicator bit.
  • the Noncollocated AP indicator bit is used to indicate whether to support communication with APs belonging to other physical devices. Multi-link aggregation.
  • the AP device may carry a Noncollocated AP indicator bit in the multi-band connection capability field in the multi-band element in the FST frame sent to the STA device to indicate whether the AP in the AP device supports APs belonging to other physical devices perform multi-link aggregation. In this way, it is convenient for the STA device to adjust the communication strategy with the AP device accordingly.
  • one of the two ML devices is a STA device
  • the other ML device is an AP device
  • the FST frame sent by the STA device to the AP device includes a mobility domain element.
  • the mobility field element includes the Noncollocated supported field, which is used to indicate whether Noncollocated multi-link aggregation is supported; or, the mobility field element includes the Noncollocated flow-level MLA Supported field and the Noncollocated packet-level MLA Supported field, and the Noncollocated flow
  • the -level MLA Supported field is used to indicate whether noncollocated multi-link aggregation is supported during flow-level multi-link aggregation
  • the Noncollocated packet-level MLA Supported field is used to indicate whether noncollocated multi-link aggregation is supported during packet-level multi-link aggregation.
  • Link aggregation is used to indicate whether noncollocated multi-link aggregation is supported during packet-level multi-link aggregation.
  • the STA device may carry a Noncollocated supported field in the mobility field element in the FST frame sent to the AP device to indicate whether the STA device supports multiple APs belonging to different physical devices Perform multi-link aggregation. In this way, it is convenient for the AP device to adjust the communication strategy with the STA device accordingly.
  • the STA device may carry the Noncollocated flow-level MLA Supported field and the Noncollocated packet-level MLA Supported field in the mobility field element in the FST frame sent to the AP device to indicate that the STA device is performing flow-level Whether to support multi-link aggregation with multiple APs belonging to different physical devices during multi-link aggregation and packet-level multi-link aggregation.
  • the AP device may adjust the communication strategy with the STA device accordingly.
  • the multi-band element also includes a first flag bit, the first flag bit is used to indicate whether the multi-band element includes a link identification field, and the link identification field is used to indicate that the two ML devices want to transfer the FST session to Frequency band.
  • the multi-band element further includes a second flag bit, the second flag bit is used to indicate whether the multi-band element includes a multi-band control field, and the multi-band control field includes a packet-level MLA supported field.
  • a multi-band communication method in the process of packet-level multi-link aggregation between two ML devices, the two ML devices use their respective SAP MAC addresses to communicate, and the SAP of each ML device corresponds to the multiple included in each ML device. Network interface.
  • the SAP of the one ML device corresponds to multiple network interfaces included in the one ML device. That is, the SAP of this ML device is an ML-SAP corresponding to multiple network interfaces that perform packet-level multi-link aggregation in this ML device.
  • the MAC address of the SAP of this ML device may be a newly allocated MAC address, or it may be the MAC address of one of the multiple network interfaces.
  • the two ML devices when two ML devices are performing packet-level multi-link aggregation, the two ML devices use their respective SAP MAC addresses to communicate. In this way, these two ML devices can quickly and accurately realize multi-band communication.
  • the address field of the data frame sent by one of the two ML devices to the other ML device contains the MAC address of the SAP of the other ML device.
  • the address field of the control frame sent by one of the two ML devices to the other ML device contains the MAC address of the SAP of the other ML device or contains the MAC address of the other ML device.
  • the MAC address of a network interface of an ML device, and the address field of a management frame sent by a device to another ML device contains the MAC address of the SAP of another ML device or the MAC address of a network interface of the other ML device.
  • the address field of the control frame and management frame sent by one of the two ML devices to the other ML device both contain the MAC address of a network interface of the other ML device .
  • the address field of the designated control frame sent by one of the two ML devices to the other ML device contains the MAC address of the SAP of the other ML device, and one ML device
  • the address field of the management frame sent to another ML device and the control frame other than the designated control frame both contain the MAC address of a network interface of the other ML device.
  • a link is allowed to belong to multiple ML-entities at the same time, that is, one network interface can correspond to multiple ML-entities.
  • each ML-entity in addition to having a MAC address (that is, the MAC address of the ML-SAP corresponding to each ML-entity), each ML-entity is also assigned a multi-link entity identifier.
  • the entity identifier can be used in other stages than the multi-link aggregation setup stage.
  • the frame header of the control frame sent by one of the two ML devices to the other ML device includes the aggregation control field, and the aggregation control field includes the multilink entity identifier. And control information.
  • the action frame sent by one ML device of the two ML devices to the other ML device includes a category field, and the value of the category field is the same as that in the FST frame.
  • the values of the included category fields are the same.
  • the action frame and the FST frame in the embodiment of the present application share a category value, so that the FST mechanism can be used to implement a multi-link aggregation operation.
  • the action frame when the action frame is a multi-link aggregation setting request frame or a multi-link aggregation setting response frame, the action frame includes a fourth information element, and the fourth information element is used to indicate multi-link entity information.
  • the ML device can quickly and accurately perform the multi-link aggregation setting according to the multi-link entity information contained in the fourth information element.
  • the fourth information element includes whether it is the same location field, the MAC address field of the multilink aggregation initiator, the MAC address field of the multilink aggregation response end, the multilink entity identifier field, the navigation channel information field, or At least one of the member link information list fields, and the member link information list field is used to indicate the information of each member link.
  • an interface parameter update method is provided.
  • the ML device updates the parameters of the opened network interfaces in the multiple network interfaces according to the status changes of each of the multiple network interfaces included in the ML device, and the multiple network interfaces work on different frequency bands. Two network interfaces share the antenna configured in the ML device.
  • the parameter may include at least one of capability information or operating parameters.
  • the parameter can include the number of configured transceiver antennas, the maximum number of streams that can be sent or received, whether to support simultaneous transmission and reception with other network interfaces, and the allowable use of devices at both ends of the link when there is adjacent channel interference on the link.
  • the state change of the network interface means that the network interface changes from an open state to a closed state, or from a closed state to an open state.
  • the sharing of the antennas configured in the ML device by the multiple network interfaces will change.
  • the parameters of the network interfaces that have been turned on among the multiple network interfaces will change.
  • the ML device can update the parameters of the opened network interface to ensure the normal use of the opened network interface, thereby ensuring the normal communication of the ML device.
  • the ML device updates the parameters of the opened network interfaces in the multiple network interfaces according to the status changes of each of the multiple network interfaces included in the ML device, including: the ML device is opening one of the multiple network interfaces Or after closing one of the multiple network interfaces, configure the parameters of each network interface in all the network interfaces that have been turned on in the multiple network interfaces, and send all the network interfaces that have been turned on through each network interface that has been turned on Parameters.
  • the ML device after the ML device opens one of the plurality of network interfaces or closes one of the plurality of network interfaces, the opened network interface of the plurality of network interfaces will occur. Change. At this time, the sharing situation of the multiple network interfaces with the antenna configured in the ML device will change, so the ML device needs to reconfigure each network interface of all the network interfaces that have been turned on among the multiple network interfaces accordingly. Parameters. Moreover, after the ML device completes the parameter configuration of the network interface, it can also send the parameters of all the network interfaces that have been turned on through each network interface that has been turned on.
  • other devices that have established a communication connection with any network interface in the ML device can obtain the parameters of all the network interfaces that have been opened in the ML device from the information sent by this network interface, so that the other devices can follow
  • the parameters of all the network interfaces that have been opened in the ML device adjust its own communication strategy in time.
  • the other device can establish a communication connection with all the network interfaces that have been opened accordingly, or switch from the currently connected network interface to another based on this Network interfaces, etc., which are not limited in the embodiment of the present application.
  • an AP device in a fifth aspect, includes: a sending module, configured to send a target message to the STA device during the process of the AP device authenticating the STA device, the AP device includes multiple APs, and multiple APs work on different frequency bands.
  • the target message includes multiple multi-band elements, and the multiple multi-band elements correspond to multiple APs one-to-one.
  • Each of the multiple multi-band elements contains the frequency band information of the corresponding AP.
  • the frequency band element is used to instruct the STA device to associate with multiple APs and derive the secret key.
  • an ML device in a sixth aspect, includes a sending module for sending an FST frame to other ML devices during an FST process between the ML device and other ML devices.
  • the FST frame includes multi-band elements.
  • the multi-band element includes a packet-level MLA supported field, and the packet-level MLA supported field is used to indicate whether packet-level multi-link aggregation is supported.
  • an ML device in a seventh aspect, includes a communication module for using the SAP MAC address of the ML device and other ML devices in the process of packet-level multi-link aggregation.
  • the ML device communicates, and the SAP of the ML device corresponds to multiple network interfaces included in the ML device.
  • an ML device in an eighth aspect, includes: an update module for updating the parameters of the opened network interface among the multiple network interfaces according to the status change of each of the multiple network interfaces included in the ML device ,
  • the parameters include at least one of capability information or operating parameters, multiple network interfaces work on different frequency bands, and multiple network interfaces share the antenna configured in the ML device.
  • a computer device specifically an AP device.
  • the computer device includes a processor and a memory, and the memory is used to store a program that supports the computer device to execute the multi-band communication method provided in the first aspect. , And storing data involved in the multi-band communication method described in the first aspect above.
  • the processor is configured to execute a program stored in the memory.
  • the computer device may also include a communication bus for establishing a connection between the processor and the memory.
  • a computer device specifically an ML device.
  • the computer device includes a processor and a memory, and the memory is used to store a program that supports the computer device to execute the multi-band communication method provided in the second aspect. , And storing the data involved in the multi-band communication method described in the second aspect above.
  • the processor is configured to execute a program stored in the memory.
  • the computer device may also include a communication bus for establishing a connection between the processor and the memory.
  • a computer device specifically an ML device.
  • the computer device includes a processor and a memory, and the memory is used to store information that supports the computer device to execute the multi-band communication method provided in the third aspect. Programs, and storing data used to implement the multi-band communication method described in the third aspect.
  • the processor is configured to execute a program stored in the memory.
  • the computer device may also include a communication bus for establishing a connection between the processor and the memory.
  • a computer device specifically an ML device.
  • the computer device includes a processor and a memory, and the memory is used to store information that supports the computer device in executing the interface parameter update method provided in the fourth aspect. Programs, and storing data involved in implementing the multi-band communication method described in the fourth aspect.
  • the processor is configured to execute a program stored in the memory.
  • the computer device may also include a communication bus for establishing a connection between the processor and the memory.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the multi-band communication method described in the first aspect.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the multi-band communication method described in the second aspect.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the multi-band communication method described in the third aspect.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the interface parameter update method described in the fourth aspect.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the multi-band communication method described in the first aspect.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the multi-band communication method described in the second aspect.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the multi-band communication method described in the third aspect.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the interface parameter update method described in the fourth aspect.
  • a chip in a twenty-first aspect, includes a processing circuit and an interface circuit, the interface circuit is configured to receive instructions and transmit them to the processing circuit, and the processing circuit is used in the above-mentioned first aspect Multi-band communication method.
  • a chip including a processing circuit and an interface circuit, the interface circuit is used to receive instructions and transmit to the processing circuit, the processing circuit is used for the above-mentioned second aspect Multi-band communication method.
  • a chip in a twenty-third aspect, includes a processing circuit and an interface circuit, the interface circuit is configured to receive instructions and transmit them to the processing circuit, and the processing circuit is used in the foregoing third aspect Multi-band communication method.
  • a chip in a twenty-fourth aspect, includes a processing circuit and an interface circuit, the interface circuit is used to receive instructions and transmit them to the processing circuit, the processing circuit is used in the fourth aspect above The interface parameter update method.
  • FIG. 1 is a schematic diagram of communication between a STA device and an AP device according to an embodiment of the present application
  • Figure 2 is a schematic diagram of a Collocated multi-link aggregation provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a Noncollocated multi-link aggregation provided by an embodiment of the present application
  • FIG. 4 is a flowchart of the first multi-band communication method provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a second multi-band communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a format of multi-band elements included in an FST frame provided by related technologies
  • FIG. 7 is a flowchart of a third multi-band communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the format of an action frame provided by related technologies.
  • FIG. 9 is a schematic diagram of a format of a fourth information element provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the format of a multi-link aggregation session conversion element provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a format of a multi-link aggregation conversion stream element provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the format of a diversion stream element provided by an embodiment of the present application.
  • FIG. 13 is a flowchart of a method for updating interface parameters provided by an embodiment of the present application.
  • FIG. 14 is a block diagram of an ML device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an AP device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a first type of ML device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a second type of ML device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a third type of ML device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • devices can communicate on the 2.4 GHz, 5 GHz, and 6 GHz frequency bands at the same time. Even when the number of antennas is limited, multi-band devices can switch between different frequency bands to select the best frequency band and ensure its communication quality.
  • the multi-band device can be a STA device or an AP device.
  • the STA device usually includes multiple STAs, and the multiple STAs can work on different frequency bands or on different channels of the same frequency band.
  • An AP device usually includes multiple APs, and the multiple APs can work on different frequency bands or on different channels of the same frequency band.
  • each STA or each AP included in the multi-band device has a network interface, and the network interface may be an IEEE 802.11 interface or the like. That is, a multi-band device includes multiple network interfaces.
  • each STA in the STA device needs to associate with the corresponding AP in the AP device, so that each STA in multiple STAs can be connected to its own link. It establishes a connection with the corresponding AP, and then realizes multi-band communication between the STA device and the AP device.
  • Multi-band devices can also be called ML devices, that is, both STA devices and AP devices can be called ML devices.
  • ML devices can perform multi-link aggregation. Multi-link aggregation means that an ML device uses multiple links to send data at the same time to increase the transmission rate.
  • multi-link aggregation can be divided into flow-level multi-link aggregation and packet-level multi-link aggregation.
  • Flow-level multi-link aggregation means that an ML device uses multiple links to simultaneously send data packets with different traffic identifiers (TID).
  • Packet-level multi-link aggregation means that an ML device uses multiple links to send data packets of the same TID at the same time. Among them, the TID can identify the type of service to which the data packet belongs.
  • ML-entity multi-link entity
  • ML-entity multi-link entity
  • ML-SAP Multi-link service Access point
  • ML-SAP Multi-link service Access point
  • ML-SAP multiple network interfaces used for packet-level multi-link aggregation in one ML device correspond to one ML-SAP.
  • Each ML-SAP has a MAC address, which may be newly allocated or the same as the MAC address of one of the corresponding multiple network interfaces.
  • multi-link aggregation can be divided into co-located (Collocated) multi-link aggregation and non-collocated (Noncollocated) multi-link aggregation.
  • Collocated multi-link aggregation means that APs corresponding to multiple STAs that perform multi-link aggregation in an STA device belong to the same physical device.
  • Noncollocated multi-link aggregation means that APs corresponding to multiple STAs performing multi-link aggregation among STA devices belong to different physical devices.
  • the IEEE 802.11 protocol defines an FST mechanism to switch the transmission of data packets of a certain TID or all TIDs of an ML device from one frequency band to another frequency band.
  • the FST mechanism is divided into two modes, one is a transparent (Transparent) mode, and the other is a non-transparent (Nontransparent) mode.
  • Transparent mode means that multiple network interfaces included in each of the two ML devices at both ends of the link use the same MAC address.
  • Nontransparent mode means that each of the two ML devices at both ends of the link or multiple network interfaces included in one of the ML devices use different MAC addresses.
  • Fig. 4 is a flowchart of a multi-band communication method provided by an embodiment of the present application. Referring to Figure 4, the method includes:
  • Step 401 When the AP device authenticates the STA device, the AP device sends a target message to the STA device.
  • the AP device authenticates the STA device means that the AP device authenticates the STA device on the link layer, which usually includes association and secret key derivation.
  • the STA device may send an association request frame (Association Request) to the AP device, and then the AP device may send an association response frame (Association Response) to the STA device.
  • the STA device and the AP device can send multiple key messages (Key Message) to negotiate the secret key.
  • the secret key is used to protect the communication data transmitted between the STA device and the AP device. .
  • the AP device can be an ML device, that is, the AP device can work on multiple frequency bands at the same time.
  • the AP device may include multiple APs, the multiple APs work on different frequency bands, and the MAC addresses of the multiple APs may be different.
  • the AP device includes AP1, AP2, and AP3.
  • AP1 can work in the 2.4GHz frequency band
  • AP2 can work in the 5GHz frequency band
  • AP3 can work in the 6GHz frequency band.
  • the MAC address of the AP may be the MAC address of a network interface possessed by the AP.
  • the STA device may be a device that supports multiple frequency bands.
  • the STA device is a single-link (SL) device and can only work on one frequency band at a time; the STA device can be between multiple APs included in the AP device Handover, for example, the STA device can dynamically switch between the multiple APs according to service delay requirements.
  • the STA device is an ML device, that is, the STA device can work on multiple frequency bands at the same time; the STA device can include multiple STAs, and the multiple STAs work on different frequency bands.
  • the MAC address of each STA can be different.
  • the MAC address of the STA may be the MAC address of a network interface possessed by the STA.
  • the target message includes multiple multi-band elements, and the multiple multi-band elements correspond to multiple APs included in the AP device one-to-one, and each of the multiple multi-band elements
  • Each multi-band element contains frequency band information of the corresponding AP, and the multiple multi-band elements are used to instruct the STA device to associate with the multiple APs and derive a secret key.
  • the frequency band information of the AP is related information of the frequency band in which the AP works. According to the frequency band information of the AP, it can be associated with the AP and a secret key can be derived.
  • the AP device may carry multiple multi-frequency band elements in the target message sent to the STA device, so as to send information related to the frequency bands in which multiple APs work in the AP device. STA device, thereby instructing the STA device to associate and key derivation with the multiple APs. In this way, it is convenient for the STA device to quickly switch between the multiple APs.
  • the target message may be an association response frame generated during the association process, and/or the target message may be a secret key message generated during the secret key derivation process.
  • the target message when the target message is a secret key message generated during the secret key derivation process, the target message may also include a robust security network information element (RSN IE), which is the robust security network information
  • RSN IE robust security network information element
  • the element contains the request type.
  • the value of the reserved bit of the robust security network information element can be the request type.
  • the request type may be a single link association type and the corresponding key derivation type, or the request type may be a multi-link association type and the corresponding secret key derivation type.
  • the single-link association type refers to the single-link association with the AP device
  • the multi-link association type refers to the multi-link association with the AP device
  • the key derivation type is used to indicate the connection with the AP device.
  • the encryption protocol that can be used when the secret key is derived.
  • the STA device is an ML device.
  • Multiple STAs performing multi-link aggregation in the STA device correspond to one ML-SAP (may be referred to as the first SAP).
  • Multiple APs performing multi-link aggregation in the AP device correspond to one ML-SAP (may be referred to as a second SAP).
  • the association request frame sent by the STA device to the AP device may include a first information element (information element, IE), and the first information element may include the MAC address of the first SAP.
  • the address field of the frame header of the association request frame sent by the STA device to the AP device includes the MAC address of the first SAP.
  • the association response frame sent by the AP device to the STA device may include a second information element, and the second information element may include the MAC address of the second SAP.
  • the address field of the frame header of the association response frame sent by the AP device to the STA device includes the MAC address of the second SAP.
  • the MAC address of the first SAP is used to generate a secret key during the secret key derivation process, and the secret key can be used on all links in the ML-entity corresponding to the first SAP.
  • the MAC address of the second SAP is used to generate a secret key during the secret key derivation process, and the secret key can be used on all links in the ML-entity corresponding to the second SAP.
  • the first information element may also include indication information for indicating the encryption algorithm preferentially adopted by the STA device, and/or, the first information element may also include the MAC address of each STA in the plurality of STAs.
  • the second information element may also include indication information for indicating the encryption algorithm preferentially adopted by the AP device, and/or, the second information element may also include the MAC address of each AP of the multiple APs.
  • the association request frame includes the MAC address of the first SAP and the MAC address of each of the multiple STAs
  • the MAC address of the first SAP is used to generate unicast data during the secret key derivation process
  • the encryption key of the frame the MAC address of each STA is used to generate the encryption key of the multicast data frame during the key derivation process.
  • the association response frame includes the MAC address of the second SAP and the MAC address of each AP in the multiple APs
  • the MAC address of the second SAP is used to generate the encryption key of the unicast data frame during the key derivation process
  • the MAC address of each AP is used to generate the encryption key of the multicast data frame during the key derivation process.
  • the STA device and the AP device can be based on the MAC address of the first SAP, the MAC address of the second SAP, the encryption algorithm that the STA device preferentially uses, and the MAC address of the second SAP obtained during the association process.
  • the encryption algorithm that the AP device preferentially uses, the MAC address of each STA in the multiple STAs, and the MAC address of each AP in the multiple APs negotiate the secret key during the secret key derivation process, thereby improving the efficiency of secret key negotiation .
  • the STA device is an SL device.
  • Multiple APs performing multi-link aggregation in the AP device correspond to one ML-SAP (may be referred to as a second SAP).
  • the association request frame sent by the STA device to the AP device includes a third information element, and the third information element includes multi-AP association indication information.
  • the multi-AP association indication information is used to request to associate and secretly associate with the multiple APs at the same time. Key derivation.
  • the association response frame sent by the AP device to the STA device includes a second information element, and the second information element includes the MAC address of the second SAP; or, the frame header of the association response frame sent by the AP device to the STA device
  • the address field contains the MAC address of the second SAP.
  • the second information element may also include indication information for indicating the encryption algorithm preferentially adopted by the AP device, and/or, the second information element may also include the MAC address of each AP in the multiple APs.
  • the association request frame sent by the STA device to the AP device carries the multi-AP association indication information, it indicates that the STA device wants to associate and derive the key with multiple APs in the AP device at the same time.
  • the AP device may carry the MAC address of the second SAP in the association response frame returned to the STA device, and may further carry the MAC address of each AP in the multiple APs and the encryption that the AP device prefers to use. algorithm.
  • the STA device can subsequently derive the secret key for the multiple APs based on the MAC address of the second SAP, the MAC address of each AP in the multiple APs, and the encryption algorithm preferentially adopted by the AP device.
  • the AP device may carry an access control policy information element (Access Control Policy IE) in a beacon (Beacon) frame sent by each AP of the multiple APs.
  • the access control policy information element may include one or more indication information, and the one or more indication information may include the number of the multiple APs, the access policy of each AP in the multiple APs, and handover threshold indication information , Or at least one of STA association restrictions, etc.
  • the access policy of this AP may include at least one of a service policy, timeout information, and the like.
  • the service policy is used to indicate the highest AC or TID of the data packet allowed to be transmitted by this AP.
  • the timeout information is used to instruct the STA device to perform AP switching when it does not receive the highest AC or TID data packet allowed by this AP to transmit within a preset period of time.
  • the preset duration can be set in advance, for example, the preset duration can be 5 minutes, etc.
  • the switching threshold indication information is used to instruct the STA device to perform AP switching when the signal quality drops to the first threshold.
  • the first threshold can be set in advance. When the signal quality drops to the first threshold, it indicates that the signal quality is relatively poor.
  • the signal quality can be measured in a variety of ways, for example, it can be measured by a Received Signal Strength Indication (RSSI) value, which is not limited in the embodiment of the present application.
  • RSSI Received Signal Strength Indication
  • the STA association restriction is used to indicate the type of STA that each AP of the multiple APs is allowed to associate.
  • the STA type may include an HT model, a VHT model, an HE model, an EHT model, support for multiple frequency bands, not support for multiple frequency bands, etc., which is not limited in the embodiment of the present application.
  • the AP device includes multiple APs, and the multiple APs work in different frequency bands.
  • the AP device can send a target message carrying multiple multi-band elements to the STA device, so that it can include information about the frequency bands in which multiple APs work. Sent to the STA device to instruct the STA device to associate and derive the key with the multiple APs. In this way, it is convenient for the STA device to quickly switch between the multiple APs.
  • Fig. 5 is a flowchart of a multi-band communication method provided by an embodiment of the present application. Referring to Figure 5, the method includes:
  • Step 501 In the process of two ML devices performing FST, one ML device sends an FST frame to the other ML device, and the FST frame includes multi-band elements.
  • the multi-band element includes a packet-level MLA supported field, and the packet-level MLA supported field is used to indicate whether packet-level multi-link aggregation is supported. In this way, after one ML device sends an FST frame to another ML device, the other ML device can learn whether this ML device supports packet-level multi-link aggregation.
  • the FST frame may be a data frame, a control frame, a management frame, etc. that the two ML devices send to each other during the FST process.
  • the FST frame may be an FST setup request frame (FST Setup Request), an FST setup response frame (FST Setup Response), an FST teardown session frame (FST Teardown), an FST confirmation request frame (FST Ack Request), an FST confirmation response frame (FST Ack Response) and so on.
  • FIG. 6 is a schematic diagram of a format of multi-band elements included in an FST frame provided by related technologies.
  • the multi-band element can include multiple fields, such as element ID, length, multi-band control, band ID, Operating Class, Channel Number, Basic Service Set (BSS) Identifier (BSSID), Beacon Interval, Timing Synchronization Function (TSF) offset (TSF offset), Multi-band connection capability (Multi-band connection capability), FST Session Timeout, STA MAC address (STA MAC Address), number of paired cipher suites (Pairwise Cipher Suite count), paired encryption Fields such as Pairwise Cipher Suite list.
  • BSS Basic Service Set
  • TSF Timing Synchronization Function
  • Multi-band connection capability Multi-band connection capability
  • FST Session Timeout STA MAC address (STA MAC Address)
  • STA MAC Address number of paired cipher suites
  • Pairwise Cipher Suite count paired encryption Fields such as Pairwise Cipher Suite list.
  • the Multi-band Control field can include STA role (STA Role), STA MAC address present (STA MAC Address Present), paired cipher suite present (Pairwise Cipher Suite Present), FST not supported (FST Not Supported), Channel transparent transmission (On-channel tunneling, OCT) does not support (OCT Not Supporte) and other information.
  • the Multi-band connection capability field can include AP, Personal BSS (PBSS) control point (ie PBSS control point (PCP)), Tunneled direct link setup, TDLS ), Independent Basic Service Set (IBSS) and other information.
  • the embodiments of the present application are extended on the basis of the FST mechanism in the related technology to newly define the operation signaling indication of packet-level multi-link aggregation. That is, a packet-level MLA supported field is added to the multi-band element to indicate whether packet-level multi-link aggregation is supported. In this way, two ML devices performing FST can learn whether each other supports packet-level multi-link aggregation, and perform FST according to whether each other supports packet-level multi-link aggregation, so that both parties can complete FST more quickly and accurately.
  • one of the two ML devices is a STA device, and the other ML device is an AP device.
  • the multi-band element in the FST frame sent by the STA device to the AP device includes a Noncollocated Supported (Noncollocated Supported) field, and the Noncollocated Supported field is used to indicate whether Noncollocated Multilink Aggregation is supported.
  • a Noncollocated supported field may also be added to the multi-band element to indicate whether noncollocated multi-link aggregation is supported. That is, the STA device can carry a Noncollocated supported field in the multi-band element in the FST frame sent to the AP device to indicate whether the STA device supports multi-link with multiple APs belonging to different physical devices. polymerization. In this way, it is convenient for the AP device to adjust the communication strategy with the STA device accordingly.
  • one of the two ML devices is an STA device, and the other ML device is an AP device.
  • the FST frame sent by the STA device to the AP device includes a mobility domain element (mobility domain element). domain element).
  • the mobility domain element includes a Noncollocated supported field, and the Noncollocated supported field is used to indicate whether noncollocated multi-link aggregation is supported.
  • the mobility field element includes a non-co-located flow-level MLA Supported field and a non-co-located packet-level MLA Supported field.
  • the Noncollocated flow-level MLA Supported field is used to indicate whether noncollocated multi-link aggregation is supported during flow-level multi-link aggregation, and the Noncollocated packet-level MLA Supported field is used to indicate whether or not to perform packet-level multi-link aggregation. Support Noncollocated multi-link aggregation.
  • a Noncollocated supported field can be added to the mobility field element in the FST frame to indicate whether noncollocated multi-link aggregation is supported. That is, the STA device can carry the Noncollocated supported field in the mobility field element in the FST frame sent to the AP device to indicate whether the STA device supports multi-link with multiple APs belonging to different physical devices. Road aggregation. In this way, it is convenient for the AP device to adjust the communication strategy with the STA device accordingly.
  • a Noncollocated flow-level MLA Supported field and a Noncollocated packet-level MLA Supported field can be added to the mobility field element in the FST frame to indicate that flow-level multi-link aggregation and packet-level multi-link aggregation are being performed.
  • the STA device may carry the Noncollocated flow-level MLA Supported field and the Noncollocated packet-level MLA Supported field in the mobility field element in the FST frame sent to the AP device to indicate that the STA device is performing flow-level MLA.
  • one of the two ML devices is a STA device, and the other ML device is an AP device.
  • the multi-band element in the FST frame sent by the AP device to the STA device includes a multi-band connection capability field, and the multi-band connection capability field contains a non-co-located AP indicator bit.
  • the Noncollocated AP indicator bit is used for To indicate whether to support multi-link aggregation with APs belonging to other physical devices.
  • a Noncollocated AP indicator bit may also be added to the multi-band connection capability field in the multi-band element to indicate whether to support multi-link aggregation with APs belonging to other physical devices. That is, the AP device can carry a Noncollocated AP indicator bit in the multi-band connection capability field in the multi-band element in the FST frame sent to the STA device to indicate whether the AP in the AP device supports and belongs to other physical The AP of the device performs multi-link aggregation. In this way, it is convenient for the STA device to adjust the communication strategy with the AP device accordingly.
  • the above-mentioned multi-band element may further include a first flag bit, and the first flag bit is used to indicate whether the multi-band element includes a link identity (link identity) field.
  • the first flag bit is used to indicate whether the multi-band element includes a link identity (link identity) field.
  • the link identification field is not included in the element.
  • the link identification field is used to indicate the frequency band to which the two ML devices are to transfer the FST session, that is, the value of the link identification field is used to identify the frequency band to which the two ML devices are to transfer the FST session.
  • the above-mentioned multi-band element may further include a second flag bit, and the second flag bit is used to indicate whether the multi-band element includes a multi-band control field.
  • the multi-band element includes a multi-band control field; when the value of the second flag bit is not a preset value, the multi-band element The element does not include the multi-band control field.
  • the multi-band control field may include the aforementioned packet-level MLA supported field, Noncollocated supported field, link identification field, and so on.
  • one ML device sends an FST frame to the other ML device.
  • the FST frame includes a multi-band element, and the multi-band element includes packet-level MLA supported.
  • Field the packet-level MLA supported field is used to indicate whether packet-level multi-link aggregation is supported.
  • Fig. 7 is a flowchart of a multi-band communication method provided by an embodiment of the present application. Referring to Figure 7, the method includes:
  • Step 701 In the process of packet-level multi-link aggregation between two ML devices, the two ML devices use their respective SAP MAC addresses to communicate.
  • the SAP of the one ML device corresponds to multiple network interfaces included in the one ML device. That is, the SAP of this ML device is an ML-SAP corresponding to multiple network interfaces that perform packet-level multi-link aggregation in this ML device.
  • the MAC address of the SAP of this ML device may be a newly allocated MAC address, or it may be the MAC address of one of the multiple network interfaces.
  • the address field of the data frame sent by one of the two ML devices to the other ML device contains the MAC address of the SAP of the other ML device, It is used to indicate that the data frame is to operate multiple network interfaces corresponding to the SAP of the other ML device.
  • the address field of the control frame sent by one of the two ML devices to the other ML device contains the The SAP MAC address of another ML device or the MAC address of a network interface of the other ML device
  • the address field of the management frame sent by this ML device to the other ML device contains the MAC address of the other ML device
  • the address field of the control frame contains the MAC address of the SAP of the other ML device, it indicates that the control frame is to operate multiple network interfaces corresponding to the SAP of the other ML device.
  • the address field of the control frame contains the MAC address of a network interface of the other ML device, it indicates that the control frame is to operate on this network interface of the other ML device.
  • the address field of the management frame contains the MAC address of the SAP of the other ML device, it indicates that the management frame is to operate multiple network interfaces corresponding to the SAP of the other ML device.
  • the address field of the management frame contains the MAC address of a network interface of the other ML device, it indicates that the management frame is to operate on this network interface of the other ML device.
  • the address fields of the control frame and management frame sent by one of the two ML devices to the other ML device both contain the The MAC address of a network interface of another ML device.
  • both the control frame and the management frame are used to operate the one network interface of the other ML device.
  • the address field of the designated control frame sent by one of the two ML devices to the other ML device contains the other ML device.
  • the MAC address of the SAP of the device, and the management frame sent by this ML device to the other ML device and the address field of the control frame except the designated control frame both contain the MAC of a network interface of the other ML device address.
  • the designated control frame can be set in advance. At this time, the designated control frame is used to operate multiple network interfaces corresponding to the SAP of the other ML device. Both the management frame and the control frames other than the designated control frame are used to operate the one network interface of the other ML device.
  • a link is allowed to belong to multiple multi-link entities (ML-entities) at the same time, that is, one network interface can correspond to multiple ML-entities.
  • ML-entities multi-link entities
  • each ML-entity is also assigned a multi-link entity identifier.
  • the entity identifier can be used in other stages except the MLA setup stage.
  • the frame header of the control frame sent by one of the two ML devices to the other ML device may include an aggregation control (Aggregation Control, A-Control) field.
  • the aggregation control field may include a multilink entity identifier and control information to instruct multiple network interfaces corresponding to the ML-entity indicated by the multilink entity identifier to perform the operation indicated by the control information.
  • FIG. 8 is a schematic diagram of a format of an action frame provided by related technologies.
  • the action frame includes Frame control, Duration, Address 1 (Destination Address (DA)), Address 2 (Sender Address (SA)), BSSID, Sequence control, Frame body, Frame Check Sequence (FCS) and other fields.
  • the frame body field may include fields such as category (Category), function (Action), and information element list (IE List).
  • the action frame sent by one of the two ML devices to the other ML device includes a category field, and
  • the value of the category field is the same as the value of the category field included in the FST frame.
  • the action frame and the FST frame in the embodiment of the present application share a category value (Category value), so that the FST mechanism can be used to implement a multi-link aggregation operation.
  • the action frame in the embodiment of the present application may also belong to a different category value from the FST frame.
  • both the flow-level multi-link aggregation operation and the packet-level multi-link aggregation operation need to be newly defined.
  • the realization of the multi-link aggregation operation does not rely on the FST mechanism, and the newly defined multi-link aggregation operation can be used to further improve the FST mechanism.
  • both Transparent mode and Nontransparent mode may be supported; for packet-level multi-link aggregation, only Transparent mode may be supported.
  • the action frame provided in the embodiment of the present application may be called a multi-link aggregation action frame (MLA Action frame).
  • MVA Action frame multi-link aggregation action frame
  • Table 1 the format of the action frame may be as shown in Table 1 below:
  • Order Information (Information) 1 Category field 2 FST Action field ... ...
  • the action frame when the action frame is a multi-link aggregation setting request frame or a multi-link aggregation setting response frame, the action frame may include a fourth information element, and the fourth information element is used to indicate multi-link entity information.
  • the ML device can quickly and accurately perform the multi-link aggregation setting according to the multi-link entity information contained in the fourth information element.
  • FIG. 9 is a schematic diagram of a format of a fourth information element provided by an embodiment of the present application.
  • the fourth information element may include element identifier (Element ID), length (Length), multi-link aggregation control (MLA Control), multi-link entity identifier (ML-Entity ID), multiple Link aggregation initiator MAC address (MLA initiator MAC Address), multi-link aggregation responder MAC address (MLA responder MAC Address), number of paired cipher suites (Pairwise Cipher Suite count), navigation channel information (Home link info), The number of member links (Number of member links), member link information list (Member link info list) and other fields.
  • the MLA Control field may include STA role (STA role), whether it is the same location (Collocated or not), transparent mode or non-transparent mode (Transparent or nontransparent) and other fields.
  • the Member link info list field can include link identifier (Link ID), STA MAC address (STA MAC Address), BSS identifier (BSSID), operating class (Operating Class), band identifier (Band ID), and channel number (Channel Number), Beacon Interval, TSF offset (TSF offset) and other fields.
  • the Collocated or not field is used to indicate whether the set multi-link aggregation is Collocated multi-link aggregation or Noncollocated multi-link aggregation.
  • the MLA initiator MAC Address field and the MLA responder MAC Address field are used to indicate the SAP MAC addresses of the two ML devices at both ends of the link.
  • the Home link info field is used to indicate the navigation channel of the ML-entity, which is used to restrict the multi-link aggregation management from being performed through the navigation channel. It can also restrict the Block Ack Requst (BAR)/Block Ack (BA) operation It can only be performed through the navigation channel.
  • the Number of member links field is used to indicate how many member links the ML-entity contains.
  • the Member link info list field is used to indicate the information of each member link
  • the Member link info list field can include multiple link info fields, and each link info field is used to indicate the information of a member link;
  • the Member link info list field Specifically, it can be indicated by carrying multiple existing multi-band elements, or by newly defining an extended multi-band element, or by newly defining an extended multi-band element and combining the extended multi-band element with the existing one. Multi-band elements are combined to indicate; in addition, it can also carry an indicator bit for indicating whether a certain multi-band element is included in the Member link info list field.
  • the Collocated or not field may not be carried in the multi-link aggregation control field, but the Collocated Transparent or not field is carried in each link info field, and the Collocated Transparent or not field is used To indicate whether the AP supports Transparent mode under Collocated multi-link aggregation, and to indicate whether the set multi-link aggregation is Transparent mode or Nontransparent mode.
  • each link info field may not carry the address information of both ends of the member link; otherwise, each link info field needs to carry the address information of both ends of the member link.
  • each link info field can also include an indicator bit to indicate whether the MAC address of the ML-SAP corresponding to the member link is the same as the MAC address of the network interface in the Transparent mode; if the same, each link info field is It only needs to carry the MAC address of the ML-SAP corresponding to the member link; if different, each link info field must carry the MAC address of the ML-SAP corresponding to the member link as well as the ML-SAP corresponding to the member link The corresponding MAC addresses of multiple network interfaces.
  • these two fields can be directly carried in the fourth information element; in the nontransparent mode, these two fields may not be carried in the fourth information Under the element, it is carried in each link info field.
  • MLA initiator MAC Address field For the MLA initiator MAC Address field and MLA responder MAC Address field, these two fields may not be carried in the fourth information element, but are carried directly after the FST Action field in the action frame.
  • the fourth information element may also carry indication information for indicating the operation mode between the member links of the ML-Entity, and the operation mode may be an asynchronous mode (Asynchronous) or a synchronous mode (Synchronous). If it is in the synchronous mode, the fourth information element may also carry indication information for indicating whether the corresponding transmission is a single protocol data unit (Presentation Protocol Data Unit, PPDU) or multiple independent PPDUs.
  • asynchronous mode Asynchronous
  • Synchronous a synchronous mode
  • the fourth information element may also carry indication information for indicating whether the corresponding transmission is a single protocol data unit (Presentation Protocol Data Unit, PPDU) or multiple independent PPDUs.
  • PPDU Presentation Protocol Data Unit
  • the multi-link aggregation operation allows the overall switching of a session from one ML-entity to another ML-entity.
  • a new multi-link aggregation session transition element (MLA session Transition element) is defined.
  • the multi-link aggregation session conversion element can be carried in the action frame.
  • the format of the multi-link aggregation session conversion element may be as shown in FIG. 10.
  • the multi-link aggregation session conversion element may include element identifier (Element ID), length (Length), multi-link aggregation session identifier (MLA Session ID), multi-link aggregation session control (MLA Session Control), new Multi-link entity information (New ML-entity info), old multi-link entity information (Old ML-entity info) and other fields.
  • the MLA Session Control field includes a Session Type (Session Type) field.
  • the New ML-entity info field includes the multi-link entity identifier (ML-entity ID), the SAP address of the multi-link aggregation initiator (ML-SAP Address of initiator), and the SAP address of the multi-link aggregation responder (ML-SAP Address of responder) and other fields, the multilink entity identifier may be an identifier set separately or may be the MAC address of the ML-SAP corresponding to the multilink entity.
  • the multi-link aggregation operation can also switch a certain data stream in the ML-entity to another ML-entity.
  • a new multi-link aggregation conversion stream element (MLA Switching stream element) is newly defined, and the multi-link aggregation conversion stream element can be carried in the action frame.
  • the format of the multi-link aggregation conversion stream element may be as shown in FIG. 11.
  • the multi-link aggregation conversion flow element includes element identifier (Element ID), length (Length), old multi-link entity identifier (Old ML-entity ID), new multi-link entity identifier (New ML) -entity ID), non-QoS data frame (Non-QoS data frame), time-sensitive networking (TSN), number of streams switching (Number of streams switching), stream information list (Stream info list), etc.
  • the Stream info list field may include fields such as service identification (TID) and direction (Direction).
  • the Direction field can be a 1-bit (bit) indication, which is used to indicate whether it is a one-way TID switch from the initiator to the responder, or a two-way TID switch from the initiator to the responder; or, the Direction field can be a 2bit indication, with Yu indicates whether it is a one-way TID switch from the initiator to the responder, a one-way TID switch from the responder to the initiator, or a two-way TID switch from the initiator to the responder.
  • bit bit
  • Yu indicates whether it is a one-way TID switch from the initiator to the responder, a one-way TID switch from the responder to the initiator, or a two-way TID switch from the initiator to the responder.
  • the devices at both ends of the link establish multiple ML-entities at one time, and carry multiple fourth information elements in the action frame, and carry a newly defined stream steering element (Stream Steering element).
  • the diversion flow element is used to indicate the TID of the data packet carried by each ML-entity.
  • the format of the steering flow element may be as shown in FIG. 12.
  • the steering flow element may include element identifier (Element ID), length (Length), number of ML-entities (Number of ML-entities), multi-link entity identifier (ML-entity ID), business information ( Traffic info) and other fields.
  • the multi-link aggregation operation should also support adding a link to a certain ML-entity, or removing a certain link from an ML-entity, or even directly delete the entire ML-entity. Therefore, in a possible situation, a new information element can be defined in the action frame, which carries a sub-action field to specifically indicate what operation is performed, and also carries the link info field and ML-entity info information. Field to indicate the link and ML-entity corresponding to the operation; in another possible situation, the FST Action field can be directly used to specifically indicate what operation to perform.
  • the two ML devices when two ML devices are performing packet-level multi-link aggregation, the two ML devices use their respective SAP MAC addresses to communicate. In this way, these two ML devices can quickly and accurately realize multi-band communication.
  • FIG. 13 is a flowchart of a method for updating interface parameters provided by an embodiment of the present application. Referring to Figure 13, the method includes:
  • Step 1301 The ML device updates the parameters of the opened network interfaces among the multiple network interfaces according to the state changes of each of the multiple network interfaces included in the ML device.
  • the multiple network interfaces included in the ML device work on different frequency bands, and the multiple network interfaces share the antenna configured in the ML device.
  • the ML device is configured with 3 antennas, and the ML device includes 3 network interfaces. When all 3 network interfaces are turned on, each network interface can use 1 antenna, and only one stream can be sent and received. When 1 network interface is turned on, all 3 antennas can be used for this 1 network interface, and 3 streams can be sent and received correspondingly.
  • the ML device has 3 independent antennas and corresponding transmission/reception chains and baseband processing modules.
  • each network interface uses 1 antenna, and each network interface has its own MAC, MAC sublayer management entity (MLME), and site management entity (STA management entity, SME) And 1 physical layer (PHY) transceiver chain (that is, a maximum of 1 stream is supported);
  • MLME MAC sublayer management entity
  • STA management entity, SME site management entity
  • PHY physical layer
  • when only 1 network interface is enabled it can be configured to have only 1 MAC, MLME, SME and 3 PHY transceiver chains (Ie supports up to 3 streams);
  • each network interface has its own MAC, MLME and SME, and can be configured to use one PHY transceiver chain for one of the network interfaces (ie supports up to 1 stream ), another network interface uses the remaining 2 PHY transceiver chains (that is, a maximum of 2 streams are supported).
  • a PHY transceiver chain may include a scrambler, forward error correction (FEC) encoder, stream parser, interleaver, constellation mapper, cyclic shift diversity (CSD), Spatial mapper, inverse discrete fourier transform (IDFT), insert guard interval (GI) and window, analog and radio frequency (RF), antenna.
  • FEC forward error correction
  • FEC stream parser
  • interleaver constellation mapper
  • CSD cyclic shift diversity
  • Spatial mapper Spatial mapper
  • IDFT inverse discrete fourier transform
  • GI insert guard interval
  • RF analog and radio frequency
  • the state change of a network interface means that the network interface changes from an open state to a closed state, or from a closed state to an open state.
  • the sharing of the antennas configured in the ML device by the multiple network interfaces will change.
  • the parameters of the network interfaces that have been turned on among the multiple network interfaces will change.
  • the ML device can update the parameters of the opened network interface to ensure the normal use of the opened network interface, thereby ensuring the normal communication of the ML device.
  • the parameters of the network interface include at least one of capability information or operating parameters.
  • the parameters of a network interface can include the number of configured transmit and receive antennas, the maximum number of streams that can be sent or received, whether to support simultaneous transmit and receive with other network interfaces, and allow the devices at both ends of the link when there is adjacent channel interference. At least one of the highest modulation and coding method adopted and the safety margin, channel bandwidth, or transmission power that the sending end of the link needs to reserve.
  • step 1301 may be: after the ML device opens one of the multiple network interfaces or closes one of the multiple network interfaces, configure the opened ones of the multiple network interfaces.
  • the parameters of each network interface in all network interfaces, and the parameters of all network interfaces that have been turned on are sent through each network interface that has been turned on.
  • the ML device opens one of the multiple network interfaces or closes one of the multiple network interfaces, the opened network interfaces of the multiple network interfaces will change. At this time, the sharing situation of the multiple network interfaces with the antenna configured in the ML device will change, so the ML device needs to reconfigure the parameters of each network interface among all the network interfaces that have been turned on among the multiple network interfaces accordingly. . Moreover, after the ML device completes the parameter configuration of the network interface, it can also send the parameters of all the network interfaces that have been turned on through each network interface that has been turned on.
  • other devices that have established a communication connection with any network interface in the ML device can obtain the parameters of all the network interfaces that have been opened in the ML device from the information sent by this network interface, so that the other devices can follow
  • the parameters of all the network interfaces that have been opened in the ML device adjust its own communication strategy in time.
  • the other device can establish a communication connection with all the network interfaces that have been opened accordingly, or switch from the currently connected network interface to another based on this Network interfaces, etc., which are not limited in the embodiment of the present application.
  • the ML device includes multiple network interfaces, the multiple network interfaces work on different frequency bands, and the multiple network interfaces share an antenna configured in the ML device.
  • the ML device updates the parameters of the opened network interfaces among the multiple network interfaces according to the state changes of each of the multiple network interfaces included in the ML device. In this way, the normal use of the opened network interface can be guaranteed, thereby ensuring the normal communication of the ML device.
  • FIG. 15 is a schematic structural diagram of an AP device provided by an embodiment of the present application.
  • the AP device includes:
  • the sending module 1401 is configured to send a target message to the STA device when the AP device authenticates the STA device.
  • the AP device includes multiple APs, and the multiple APs work on different frequency bands.
  • the target message includes multiple multi-band elements, and the multiple multi-band elements correspond to multiple APs one-to-one.
  • Each of the multiple multi-band elements contains the frequency band information of the corresponding AP.
  • the frequency band element is used to instruct the STA device to associate with multiple APs and derive the secret key.
  • the target message is an association response frame generated during the association process, and/or the target message is a secret key message generated during the secret key derivation process.
  • the target message when the target message is a secret key message generated during the secret key derivation process, the target message also includes a robust and secure network information element, and the robust and secure network information element includes the request type, and the request type is single link The association type and the corresponding key derivation type, or the request type is a multi-link association type and the corresponding key derivation type.
  • the STA device includes multiple STAs, the multiple STAs work in different frequency bands, the multiple STAs have different MAC addresses, the multiple STAs correspond to the first SAP, and the multiple APs correspond to the second SAP;
  • the association request frame sent by the STA device to the AP device includes the first information element, and the first information element includes the MAC address of the first SAP; or, the address field of the frame header of the association request frame sent by the STA device to the AP device includes The MAC address of the first SAP; where the MAC address of the first SAP is used to generate the secret key during the secret key derivation process;
  • the association response frame sent by the AP device to the STA device includes a second information element, and the second information element includes the MAC address of the second SAP; or, the address field of the frame header of the association response frame sent by the AP device to the STA device includes The MAC address of the second SAP; where the MAC address of the second SAP is used to generate the secret key during the secret key derivation process.
  • the first information element further includes indication information used to indicate the encryption algorithm preferentially adopted by the STA device, and/or, the first information element further includes the MAC address of each STA among the multiple STAs;
  • the second information element also includes indication information for indicating the encryption algorithm preferentially adopted by the AP device, and/or, the second information element also includes the MAC address of each AP in the multiple APs.
  • the association request frame sent by the STA device to the AP device includes a third information element, and the third information element includes multi-AP association indication information, and the multi-AP association indication information is used to request simultaneous associations and secrets with multiple APs.
  • the association response frame sent by the AP device to the STA device includes a second information element, and the second information element includes the MAC address of the second SAP; or, the address field of the frame header of the association response frame sent by the AP device to the STA device includes The MAC address of the second SAP; where the MAC address of the second SAP is used to generate the secret key during the secret key derivation process.
  • the beacon frame sent by each AP in the multiple APs includes an access control policy information element, and the access control policy information element includes the number of multiple APs and the access policy of each AP in the multiple APs.
  • the access control policy information element includes the number of multiple APs and the access policy of each AP in the multiple APs.
  • the switching threshold indication information is used to instruct the STA device to perform AP switching when the signal quality drops to the first threshold
  • the STA association restriction is used to indicate the STA type that each AP of the multiple APs is allowed to associate.
  • the access policy of one AP includes at least one of a service policy or timeout information
  • the service policy is used to indicate the highest AC or TID of the data packet that an AP is allowed to transmit
  • the timeout information is used to indicate that the STA device does not receive a data packet with the highest AC or TID that the AP allows to transmit within a preset period of time. Switch.
  • the AP device includes multiple APs, and the multiple APs work in different frequency bands.
  • the AP device can send a target message carrying multiple multi-band elements to the STA device, so that it can include information about the frequency bands in which multiple APs work. Sent to the STA device to instruct the STA device to associate and derive the key with the multiple APs. In this way, it is convenient for the STA device to quickly switch between the multiple APs.
  • FIG. 16 is a schematic structural diagram of an ML device provided by an embodiment of the present application.
  • the ML device includes:
  • the sending module 1501 is used to send FST frames to other ML devices during the FST process between the ML device and other ML devices, and the FST frame includes multi-band elements;
  • the multi-band element includes a packet-level MLA supported field, and the packet-level MLA supported field is used to indicate whether packet-level multi-link aggregation is supported.
  • the ML device is a STA device, and other ML devices are AP devices; the multi-band element in the FST frame sent by the STA device to the AP device includes the Noncollocated supported field, and the Noncollocated supported field is used to indicate whether Noncollocated multi-link aggregation is supported. .
  • the ML device is a STA device, and the other ML devices are AP devices;
  • the multi-band element in the FST frame sent by the AP device to the STA device includes the multi-band connection capability field.
  • the multi-band connection capability field contains the Noncollocated AP indicator bit.
  • the Noncollocated AP indicator bit is used to indicate whether to support communication with APs belonging to other physical devices. Multi-link aggregation.
  • the ML device is a STA device
  • the other ML devices are AP devices
  • the FST frame sent by the STA device to the AP device includes the mobility domain element
  • the mobility field element includes the Noncollocated supported field, which is used to indicate whether Noncollocated multi-link aggregation is supported; or, the mobility field element includes the Noncollocated flow-level MLA Supported field and the Noncollocated packet-level MLA Supported field, and the Noncollocated flow
  • the -level MLA Supported field is used to indicate whether noncollocated multi-link aggregation is supported during flow-level multi-link aggregation
  • the Noncollocated packet-level MLA Supported field is used to indicate whether noncollocated multi-link aggregation is supported during packet-level multi-link aggregation.
  • Link aggregation is used to indicate whether Noncollocated multi-link aggregation is supported during packet-level multi-link aggregation.
  • the multi-band element further includes a first flag bit, the first flag bit is used to indicate whether the multi-band element includes a link identification field, and the link identification field is used to indicate that the ML device and other ML devices want to FST The frequency band to which the conversation is transferred.
  • the multi-band element further includes a second flag bit, the second flag bit is used to indicate whether the multi-band element includes a multi-band control field, and the multi-band control field includes a packet-level MLA supported field.
  • one ML device sends an FST frame to the other ML device.
  • the FST frame includes a multi-band element, and the multi-band element includes packet-level MLA supported.
  • Field the packet-level MLA supported field is used to indicate whether packet-level multi-link aggregation is supported.
  • FIG. 17 is a schematic structural diagram of an ML device provided by an embodiment of the present application.
  • the ML device includes:
  • the communication module 1601 is used to communicate with other ML devices using the MAC address of the SAP of the ML device during packet-level multi-link aggregation between the ML device and other ML devices, and the SAP of the ML device corresponds to the ML Multiple network interfaces included in the device.
  • the address field of the data frame sent by the ML device to the other ML device contains the MAC address of the SAP of the other ML device.
  • the address field of the control frame sent by the ML device to the other ML device contains the SAP MAC address of the other ML device or contains a network interface of the other ML device
  • the MAC address of the ML device, and the address field of the management frame sent by the ML device to other ML devices contains the SAP MAC address of the other ML device or the MAC address of a network interface of the other ML device; or
  • the address fields of the control frames and management frames sent by the ML device to the other ML devices both contain the MAC address of a network interface of the other ML device;
  • the address field of the designated control frame sent by the ML device to other ML devices contains the MAC address of the SAP of the other ML device, and the ML device sends the management to the other ML device.
  • Both the frame and the address field of the control frame except the designated control frame contain the MAC address of a network interface of other ML devices.
  • the header of the control frame sent by the ML device to the other ML device includes an aggregation control field, and the aggregation control field includes a multilink entity identifier and control information.
  • the action frame sent by the ML device to the other ML device includes a category field, and the value of the category field is the same as the value of the category field included in the FST frame.
  • the action frame when the action frame is a multi-link aggregation setting request frame or a multi-link aggregation setting response frame, the action frame includes a fourth information element, and the fourth information element is used to indicate multi-link entity information.
  • the fourth information element includes whether it is the same location field, the MAC address field of the multilink aggregation initiator, the MAC address field of the multilink aggregation response end, the multilink entity identifier field, the navigation channel information field, or the member At least one of the link information list fields, and the member link information list field is used to indicate the information of each member link.
  • the two ML devices when two ML devices are performing packet-level multi-link aggregation, the two ML devices use their respective SAP MAC addresses to communicate. In this way, these two ML devices can quickly and accurately realize multi-band communication.
  • FIG. 18 is a schematic structural diagram of an ML device provided by an embodiment of the present application.
  • the ML device includes:
  • the update module 1701 is used to update the parameters of the opened network interfaces in the multiple network interfaces according to the status changes of each of the multiple network interfaces included in the network interface, and the parameters include at least one of capability information or operating parameters, Multiple network interfaces work on different frequency bands, and multiple network interfaces share the antenna configured in the ML device.
  • updating the parameters of the opened network interfaces of the multiple network interfaces includes:
  • the parameters include the number of configured transmitting and receiving antennas, the maximum number of streams that can be sent or received, whether to support simultaneous transmission and reception with other network interfaces, and the allowable use of devices at both ends of the link when there is adjacent channel interference on the link.
  • the ML device includes multiple network interfaces, the multiple network interfaces work on different frequency bands, and the multiple network interfaces share an antenna configured in the ML device.
  • the ML device updates the parameters of the opened network interfaces among the multiple network interfaces according to the state changes of each of the multiple network interfaces included in the ML device. In this way, the normal use of the opened network interface can be guaranteed, thereby ensuring the normal communication of the ML device.
  • the device provided in the above embodiment is working, only the division of the above-mentioned functional modules is used as an example.
  • the above-mentioned function allocation can be completed by different functional modules according to needs, that is, the internal of the device
  • the structure is divided into different functional modules to complete all or part of the functions described above.
  • the device provided in the foregoing embodiment belongs to the same concept as the method embodiment of the present application, and the specific implementation process is detailed in the method embodiment, and will not be repeated here.
  • Fig. 19 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the computer device may be the AP device shown in Fig. 15 or the ML device shown in any one of Figs. 16-18.
  • the computer device includes at least one processor 1801, a communication bus 1802, a memory 1803, and at least one communication interface 1804.
  • the processor 1801 may be a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or may be one or more programs used to control the program of this application Implementation of integrated circuits.
  • CPU Central Processing Unit
  • ASIC application-specific integrated circuit
  • the communication bus 1802 may include a path for transferring information between the above-mentioned components.
  • the memory 1803 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, or it can be a random access memory (RAM) or can store information and instructions
  • Other types of dynamic storage devices can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disk storage , CD storage (including compressed CDs, laser disks, CDs, digital versatile CDs, Blu-ray CDs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures And any other media that can be accessed by the computer, but not limited to this.
  • the memory 1803 may exist independently and is connected to the processor 1801 through a communication bus 1802.
  • the memory 1803 may also be integrated with the processor 1801.
  • the communication interface 1804 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), and Wireless Local Area Networks (WLAN).
  • a transceiver to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), and Wireless Local Area Networks (WLAN).
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the processor 1801 may include one or more CPUs, such as CPU0 and CPU1 as shown in FIG. 19.
  • the computer device may include multiple processors, such as a processor 1801 and a processor 1805 as shown in FIG. 19.
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (such as computer program instructions).
  • the above-mentioned computer equipment may be a general-purpose computer equipment or a special-purpose computer equipment.
  • the computer device may be a desktop computer, a portable computer, a network server, a PDA (Personal Digital Assistant, PDA), a mobile phone, a tablet computer, a wireless terminal device, a communication device, or an embedded device.
  • PDA Personal Digital Assistant
  • the embodiments of this application do not Limit the type of computer equipment.
  • the memory 1803 is used to store the program code 1810 for executing the solution of the present application, and the processor 1801 is used to execute the program code 1810 stored in the memory 1803.
  • the computer device can implement the corresponding method embodiment in this application through the processor 1801 and the program code 210 in the memory 1803.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example: floppy disk, hard disk, tape), optical medium (for example: Digital Versatile Disc (DVD)) or semiconductor medium (for example: Solid State Disk (SSD)) Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种多频段通信、接口参数更新方法及相关设备,属于通信技术领域。所述方法包括:在AP设备对STA设备进行认证的过程中,该AP设备向该STA设备发送目标报文,该AP设备包括多个AP,该多个AP工作在不同的频段上。其中,目标报文中包括多个多频段元素,该多个多频段元素与该多个AP一一对应,该多个多频段元素中的每个多频段元素中包含对应的AP的频段信息,该多个多频段元素用于指示该STA设备与该多个AP进行关联和秘钥派生。本申请可以使得该STA设备能够在该多个AP之间快速切换。

Description

多频段通信、接口参数更新方法及相关设备
本申请要求于2019年11月22日提交的申请号为201911159823.8、发明名称为“多频段通信、接口参数更新方法、AP设备和ML设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种多频段通信、接口参数更新方法及相关设备。
背景技术
随着无线技术的发展,越来越多的设备支持多频段通信,如设备能够同时在2.4吉赫(GHz)频段、5GHz频段以及6GHz频段上进行通信。即使在天线数受限的情况下,多频段设备也可以在不同的频段上进行切换,从而选择最佳的频段,保证其通信质量。
多频段设备可以被称为多链路(Multiple-link,ML)设备。ML设备可以进行多链路聚合(Multi-link Aggregation,MLA),多链路聚合是指一个ML设备采用多个链路同时发送数据,以提高传输速率。
发明内容
本申请提供了一种多频段通信、接口参数更新方法及相关设备,可以便于站点(Station,STA)设备在多个接入点(Access Point,AP)之间快速切换。所述技术方案如下:
第一方面,提供了一种多频段通信方法。在该方法中,在AP设备对STA设备进行认证的过程中,AP设备向STA设备发送目标报文,AP设备包括多个AP,该多个AP工作在不同的频段上。
需要说明的是,该AP设备对该STA设备进行认证是指该AP设备在链路层上对该STA设备进行身份验证,通常包括关联和秘钥派生。
另外,目标报文中包括多个多频段元素,该多个多频段元素与该多个AP一一对应,该多个多频段元素中的每个多频段元素中包含对应的AP的频段信息,该多个多频段元素用于指示该STA设备与多个AP进行关联和秘钥派生。
在本申请实施例中,该AP设备可以在向该STA设备发送的目标报文中携带多个多频段元素,以将自身包括的多个AP所工作的频段的相关信息发送给该STA设备,从而指示该STA设备与该多个AP进行关联和秘钥派生。如此,可以便于该STA设备在该多个AP之间快速切换。
一种可能的实现方式中,目标报文是在关联过程中产生的关联响应帧,和/或,目标报文是在秘钥派生过程中产生的秘钥消息。
可选地,当目标报文是在秘钥派生过程中产生的秘钥消息时,目标报文中还包括健壮安全网络信息元素,健壮安全网络信息元素中包含请求类型,该请求类型是单链路关联类型及 对应的秘钥派生类型,或者该请求类型是多链路关联类型及对应的秘钥派生类型。
需要说明的是,单链路关联类型是指可以与该AP设备进行单链路关联,多链路关联类型是指可以与该AP设备进行多链路关联,秘钥派生类型用于指示与该AP设备进行秘钥派生时可以采用的加密协议。
一种可能的情况中,STA设备包括多个STA,该多个STA工作在不同的频段上,多个STA的MAC(Media Access Control,介质访问控制)地址不同,该多个STA对应第一服务访问点SAP,多个AP对应第二服务访问点SAP。
STA设备向AP设备发送的关联请求帧中包括第一信息元素,第一信息元素中包含第一SAP的MAC地址;或者,STA设备向AP设备发送的关联请求帧的帧头的地址字段中包含第一SAP的MAC地址。
AP设备向STA设备发送的关联响应帧中包括第二信息元素,第二信息元素中包含第二SAP的MAC地址;或者,AP设备向STA设备发送的关联响应帧的帧头的地址字段中包含第二SAP的MAC地址。
需要说明的是,第一SAP的MAC地址用于在秘钥派生过程中生成秘钥,该秘钥可以用于第一SAP对应的ML-entity中的所有链路上。第二SAP的MAC地址用于在秘钥派生过程中生成秘钥,该秘钥可以用于第二SAP对应的ML-entity中的所有链路上。
进一步地,第一信息元素中还可以包含用于指示该STA设备优先采用的加密算法的指示信息,和/或,第一信息元素中还包含该多个STA中每个STA的MAC地址。第二信息元素中还可以包含用于指示该AP设备优先采用的加密算法的指示信息,和/或,第二信息元素中还包含该多个AP中每个AP的MAC地址。
需要说明的是,当该关联请求帧中包括第一SAP的MAC地址和该多个STA中每个STA的MAC地址时,第一SAP的MAC地址用于在秘钥派生过程中生成单播数据帧的加密秘钥,每个STA的MAC地址用于在秘钥派生过程中生成组播数据帧的加密秘钥。当该关联响应帧中包括第二SAP的MAC地址和该多个AP中每个AP的MAC地址时,第二SAP的MAC地址用于在秘钥派生过程中生成单播数据帧的加密秘钥,每个AP的MAC地址用于在秘钥派生过程中生成组播数据帧的加密秘钥。
值得说明的是,该STA设备和该AP设备就可以根据在关联过程中获得的第一SAP的MAC地址、第二SAP的MAC地址、该STA设备优先采用的加密算法、该AP设备优先采用的加密算法、该多个STA中每个STA的MAC地址和该多个AP中每个AP的MAC地址来在秘钥派生过程中协商秘钥,从而可以提高秘钥协商效率。
另一种可能的情况中,STA设备向AP设备发送的关联请求帧中包括第三信息元素,第三信息元素中包含多AP关联指示信息,多AP关联指示信息用于请求同时与多个AP进行关联和秘钥派生。
AP设备向STA设备发送的关联响应帧中包括第二信息元素,第二信息元素中包含第二SAP的MAC地址;或者,AP设备向STA设备发送的关联响应帧的帧头的地址字段中包含第二SAP的MAC地址。其中,第二SAP的MAC地址用于在秘钥派生过程中生成秘钥。
进一步地,第二信息元素中还可以包含用于指示该AP设备优先采用的加密算法的指示信息,和/或,第二信息元素中还包含该多个AP中每个AP的MAC地址。
在本申请实施例中,当该STA设备向该AP设备发送的关联请求帧中携带多AP关联指 示信息时,表明该STA设备想同时与该AP设备中的多个AP进行关联和秘钥派生。此时,该AP设备可以在向该STA设备返回的关联响应帧中携带第二SAP的MAC地址,进一步还可以携带该多个AP中每个AP的MAC地址以及指示该AP设备优先采用的加密算法。如此,该STA设备后续就可以根据第二SAP的MAC地址、该多个AP中每个AP的MAC地址和该AP设备优先采用的加密算法与该多个AP完成秘钥派生。
进一步地,为了避免该STA设备在该多个AP之间任意切换,该多个AP中每个AP发送的信标帧中可以包括接入控制策略信息元素,接入控制策略信息元素中包含多个AP的数量、多个AP中每个AP的接入策略、切换阈值指示信息、或STA关联限制中的至少一个。
需要说明的是,切换阈值指示信息用于指示STA设备在信号质量下降到第一阈值时进行AP切换,STA关联限制用于指示多个AP中每个AP允许关联的STA类型。
另外,对于多个AP中的任意一个AP,一个AP的接入策略包括业务策略、或超时信息中的至少一个。其中,业务策略用于指示一个AP允许传输的数据包的最高接入类别(Access Category,AC)或TID,超时信息用于指示STA设备在预设时长内未接收到一个AP允许传输的最高AC或TID的数据包时进行AP切换。
第二方面,提供了一种多频段通信方法。在该方法中,在两个ML设备进行FST的过程中,一个ML设备向另一个ML设备发送FST帧,FST帧中包括多频段元素。
需要说明的是,多频段元素中包括packet-level MLA supported字段,packet-level MLA supported字段用于指示是否支持packet-level多链路聚合。
在本申请实施例中,一个ML设备向另一个ML设备发送FST帧后,另一个ML设备就可以获知这一个ML设备是否支持packet-level多链路聚合。如此,进行FST的两个ML设备就可以获知彼此是否支持packet-level多链路聚合,并根据彼此是否支持packet-level多链路聚合来进行FST,从而便于双方更为快速准确地完成FST。
一种可能的实现方式中,这两个ML设备中的一个ML设备是STA设备,另一个ML设备是AP设备。STA设备发送给AP设备的FST帧中的多频段元素包括Noncollocated supported字段,Noncollocated supported字段用于指示是否支持Noncollocated多链路聚合。
在本申请实施例中,该STA设备可以在向该AP设备发送的FST帧中的多频段元素中携带Noncollocated supported字段,以指示该STA设备是否支持与分属不同的物理设备的多个AP进行多链路聚合。如此,可以便于该AP设备据此调整与该STA设备之间的通信策略。
另一种可能的实现方式中,这两个ML设备中的一个ML设备是STA设备,另一个ML设备是AP设备。AP设备发送给STA设备的FST帧中的多频段元素包括多频段连接能力字段,多频段连接能力字段中包含Noncollocated AP指示位,Noncollocated AP指示位用于指示是否支持与属于其它物理设备的AP进行多链路聚合。
在本申请实施例中,该AP设备可以在向该STA设备发送的FST帧中的多频段元素中的多频段连接能力字段中携带Noncollocated AP指示位,以指示该AP设备中的AP是否支持与属于其它物理设备的AP进行多链路聚合。如此,可以便于该STA设备据此调整与该AP设备之间的通信策略。
又一种可能的实现方式中,这两个ML设备中的一个ML设备是STA设备,另一个ML设备是AP设备,STA设备发送给AP设备的FST帧中包括移动性域元素。移动性域元素中 包括Noncollocated supported字段,Noncollocated supported字段用于指示是否支持Noncollocated多链路聚合;或者,移动性域元素中包括Noncollocated flow-level MLA Supported字段和Noncollocated packet-level MLA Supported字段,Noncollocated flow-level MLA Supported字段用于指示在进行flow-level多链路聚合时是否支持Noncollocated多链路聚合,Noncollocated packet-level MLA Supported字段用于指示在进行packet-level多链路聚合时是否支持Noncollocated多链路聚合。
在本申请实施例中,该STA设备可以在向该AP设备发送的FST帧中的移动性域元素中携带Noncollocated supported字段,以指示该STA设备是否支持与分属不同的物理设备的多个AP进行多链路聚合。如此,可以便于该AP设备据此调整与该STA设备之间的通信策略。或者,该STA设备可以在向该AP设备发送的FST帧中的移动性域元素中携带Noncollocated flow-level MLA Supported字段和Noncollocated packet-level MLA Supported字段,以分别指示该STA设备在进行flow-level多链路聚合和packet-level多链路聚合时是否支持与分属不同的物理设备的多个AP进行多链路聚合。如此,可以便于该AP设备据此调整与该STA设备之间的通信策略。
进一步地,该多频段元素中还包括第一标志位,第一标志位用于指示多频段元素中是否包括链路标识字段,链路标识字段用于指示两个ML设备要将FST会话转移到的频段。
进一步地,该多频段元素中还包括第二标志位,第二标志位用于指示多频段元素中是否包括多频段控制字段,多频段控制字段中包括packet-level MLA supported字段。
第三方面,提供了一种多频段通信方法。在该方法中,两个ML设备在进行packet-level多链路聚合的过程中,两个ML设备使用各自的SAP的MAC地址进行通信,每个ML设备的SAP对应每个ML设备包括的多个网络接口。
需要说明的是,对于这两个ML设备中的任意一个ML设备,这一个ML设备的SAP对应这一个ML设备包括的多个网络接口。也即是,这一个ML设备的SAP是这一个ML设备中进行packet-level多链路聚合的多个网络接口对应的一个ML-SAP。这一个ML设备的SAP的MAC地址可以是新分配的一个MAC地址,也可以是该多个网络接口中的一个网络接口的MAC地址。
在本申请实施例中,两个ML设备在进行packet-level多链路聚合的过程中,这两个ML设备使用各自的SAP的MAC地址进行通信。如此,这两个ML设备可以快速且准确地实现多频段通信。
可选地,在两个ML设备的通信过程中,两个ML设备中的一个ML设备向另一个ML设备发送的数据帧的地址字段中包含另一个ML设备的SAP的MAC地址。
可选地,在两个ML设备的通信过程中,两个ML设备中的一个ML设备向另一个ML设备发送的控制帧的地址字段中包含另一个ML设备的SAP的MAC地址或包含另一个ML设备的一个网络接口的MAC地址,且一个设备向另一个ML设备发送的管理帧的地址字段中包含另一个ML设备的SAP的MAC地址或包含另一个ML设备的一个网络接口的MAC地址。或者,在两个ML设备的通信过程中,两个ML设备中的一个ML设备向另一个ML设备发送的控制帧和管理帧的地址字段中均包含另一个ML设备的一个网络接口的MAC地址。或者,在两个ML设备的通信过程中,两个ML设备中的一个ML设备向另一个ML设 备发送的指定控制帧的地址字段中包含另一个ML设备的SAP的MAC地址,且一个ML设备向另一个ML设备发送的管理帧和除指定控制帧之外的控制帧的地址字段中均包含另一个ML设备的一个网络接口的MAC地址。
值得注意的是,本申请实施例中允许一条链路同时属于多个ML-entity,即一个网络接口可以对应多个ML-entity。这种情况下,每个ML-entity除了拥有一个MAC地址(即是每个ML-entity对应的ML-SAP的MAC地址)之外,还分配有一个多链路实体标识符,该多链路实体标识符可以用在除了多链路聚合设置阶段之外的其它阶段中。
例如,在两个ML设备的通信过程中,两个ML设备中的一个ML设备向另一个ML设备发送的控制帧的帧头中包括聚合控制字段,聚合控制字段中包括多链路实体标识符和控制信息。
一种可能的实现方式中,在两个ML设备的通信过程中,两个ML设备中的一个ML设备向另一个ML设备发送的行动帧中包括类别字段,该类别字段的值与FST帧中包括的类别字段的值相同。这种情况下,本申请实施例中的行动帧与FST帧共享一个类别值,从而可以利用FST机制来实现多链路聚合操作。
其中,当该行动帧是多链路聚合设置请求帧或多链路聚合设置响应帧时,该行动帧中包括第四信息元素,第四信息元素用于指示多链路实体信息。如此,在多链路聚合设置过程中,ML设备就可以根据第四信息元素中包含的多链路实体信息来快速准确地进行多链路聚合设置。
需要说明的是,第四信息元素包括是否是同一位置字段、多链路聚合发起端MAC地址字段、多链路聚合响应端MAC地址字段、多链路实体标识符字段、导航信道信息字段、或成员链路信息列表字段中的至少一个,成员链路信息列表字段用于指示每个成员链路的信息。
第四方面,提供了一种接口参数更新方法。在该方法中,ML设备根据自身包括的多个网络接口中每个网络接口的状态变化,更新多个网络接口中已开启的网络接口的参数,多个网络接口工作在不同的频段上,多个网络接口共享ML设备中配置的天线。
需要说明的是,该参数可以包括能力信息、或操作参数等中的至少一个。例如,该参数可以包括配置的收发天线数、最大可支持的发送或接收的流数、是否支持与其它网络接口同时收发、当链路存在邻近信道干扰时该链路两端的设备所允许采用的最高调制编码方式及该链路的发送端需要预留的安全余量、信道带宽、或发射功率等中的至少一个。
在本申请实施例中,网络接口的状态变化是指该网络接口由开启状态转为关闭状态,或者由关闭状态转为开启状态。当一个网络接口出现状态变化时,该多个网络接口对该ML设备中配置的天线的共享情况会发生变化,此时该多个网络接口中已开启的网络接口的参数会发生变化,因而该ML设备可以更新已开启的网络接口的参数,以保证已开启的网络接口的正常使用,从而保证该ML设备的正常通信。
其中,ML设备根据自身包括的多个网络接口中每个网络接口的状态变化,更新多个网络接口中已开启的网络接口的参数,包括:ML设备在开启多个网络接口中的一个网络接口或在关闭多个网络接口中的一个网络接口后,配置多个网络接口中已开启的所有网络接口中每个网络接口的参数,并通过已开启的每个网络接口发送已开启的所有网络接口的参数。
在本申请实施例中,该ML设备在开启该多个网络接口中的一个网络接口或在关闭该多 个网络接口中的一个网络接口后,该多个网络接口中已开启的网络接口会发生变化,此时该多个网络接口对该ML设备中配置的天线的共享情况会发生变化,因而该ML设备需要据此重新配置该多个网络接口中已开启的所有网络接口中每个网络接口的参数。并且,该ML设备在完成网络接口的参数配置后,还可以将已开启的所有网络接口的参数通过已开启的每个网络接口发送出去。如此,与该ML设备中的任一网络接口建立通信连接的其它设备就可以在这一网络接口发送的信息中获取到该ML设备中已开启的所有网络接口的参数,从而便于该其它设备根据该ML设备中已开启的所有网络接口的参数及时调整自身的通信策略,如该其它设备可以据此与已开启的所有网络接口建立通信连接,或者据此从当前连接的网络接口切换到另一网络接口等,本申请实施例对此不作限定。
第五方面,提供了一种AP设备,该AP设备包括:发送模块,用于在AP设备对STA设备进行认证的过程中,向STA设备发送目标报文,AP设备包括多个AP,多个AP工作在不同的频段上。其中,目标报文中包括多个多频段元素,多个多频段元素与多个AP一一对应,多个多频段元素中的每个多频段元素中包含对应的AP的频段信息,多个多频段元素用于指示STA设备与多个AP进行关联和秘钥派生。
第六方面,提供了一种ML设备,该ML设备包括:发送模块,用于在ML设备与其它ML设备进行FST的过程中,向其它ML设备发送FST帧,FST帧中包括多频段元素。其中,多频段元素中包括packet-level MLA supported字段,packet-level MLA supported字段用于指示是否支持packet-level多链路聚合。
第七方面,提供了一种ML设备,该ML设备包括:通信模块,用于在ML设备与其它ML设备进行packet-level多链路聚合的过程中,使用ML设备的SAP的MAC地址与其它ML设备进行通信,ML设备的SAP对应ML设备包括的多个网络接口。
第八方面,提供了一种ML设备,ML设备包括:更新模块,用于根据自身包括的多个网络接口中每个网络接口的状态变化,更新多个网络接口中已开启的网络接口的参数,参数包括能力信息、或操作参数中的至少一个,多个网络接口工作在不同的频段上,多个网络接口共享ML设备中配置的天线。
第九方面,提供了一种计算机设备,具体为AP设备,所述计算机设备中包括处理器和存储器,所述存储器用于存储支持计算机设备执行上述第一方面所提供的多频段通信方法的程序,以及存储用于实现上述第一方面所述的多频段通信方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述计算机设备还可以包括通信总线,所述通信总线用于在所述处理器与所述存储器之间建立连接。
第十方面,提供了一种计算机设备,具体为ML设备,所述计算机设备中包括处理器和存储器,所述存储器用于存储支持计算机设备执行上述第二方面所提供的多频段通信方法的程序,以及存储用于实现上述第二方面所述的多频段通信方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述计算机设备还可以包括通信总线,所述通信总线用于在所述处理器与所述存储器之间建立连接。
第十一方面,提供了一种计算机设备,具体为ML设备,所述计算机设备中包括处理器和存储器,所述存储器用于存储支持计算机设备执行上述第三方面所提供的多频段通信方法 的程序,以及存储用于实现上述第三方面所述的多频段通信方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述计算机设备还可以包括通信总线,所述通信总线用于在所述处理器与所述存储器之间建立连接。
第十二方面,提供了一种计算机设备,具体为ML设备,所述计算机设备中包括处理器和存储器,所述存储器用于存储支持计算机设备执行上述第四方面所提供的接口参数更新方法的程序,以及存储用于实现上述第四方面所述的多频段通信方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述计算机设备还可以包括通信总线,所述通信总线用于在所述处理器与所述存储器之间建立连接。
第十三方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面所述的多频段通信方法。
第十四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面所述的多频段通信方法。
第十五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面所述的多频段通信方法。
第十六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面所述的接口参数更新方法。
第十七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的多频段通信方法。
第十八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的多频段通信方法。
第十九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面所述的多频段通信方法。
第二十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第四方面所述的接口参数更新方法。
第二十一方面,提供了一种芯片,所述芯片包括处理电路和接口电路,所述接口电路用于接收指令并传输至所述处理电路,所述处理电路用于上述第一方面所述的多频段通信方法。
第二十二方面,提供了一种芯片,所述芯片包括处理电路和接口电路,所述接口电路用于接收指令并传输至所述处理电路,所述处理电路用于上述第二方面所述的多频段通信方法。
第二十三方面,提供了一种芯片,所述芯片包括处理电路和接口电路,所述接口电路用于接收指令并传输至所述处理电路,所述处理电路用于上述第三方面所述的多频段通信方法。
第二十四方面,提供了一种芯片,所述芯片包括处理电路和接口电路,所述接口电路用于接收指令并传输至所述处理电路,所述处理电路用于上述第四方面所述的接口参数更新方法。
上述第五方面、第九方面、第十三方面、第十七方面和第二十一方面所获得的技术效果与上述第一方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
上述第六方面、第十方面、第十四方面、第十八方面和第二十二方面所获得的技术效果 与上述第二方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
上述第七方面、第十一方面、第十五方面、第十九方面和第二十三方面所获得的技术效果与上述第三方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
上述第八方面、第十二方面、第十六方面、第二十方面和第二十四方面所获得的技术效果与上述第四方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
附图说明
图1是本申请实施例提供的一种STA设备与AP设备的通信示意图;
图2是本申请实施例提供的一种Collocated多链路聚合的示意图;
图3是本申请实施例提供的一种Noncollocated多链路聚合的示意图;
图4是本申请实施例提供的第一种多频段通信方法的流程图;
图5是本申请实施例提供的第二种多频段通信方法的流程图;
图6是相关技术提供的一种FST帧中包括的多频段元素的格式示意图;
图7是本申请实施例提供的第三种多频段通信方法的流程图;
图8是相关技术提供的一种行动帧的格式示意图;
图9是本申请实施例提供的一种第四信息元素的格式示意图;
图10是本申请实施例提供的一种多链路聚合会话转换元素的格式示意图;
图11是本申请实施例提供的一种多链路聚合转换流元素的格式示意图;
图12是本申请实施例提供的一种转向流元素的格式示意图;
图13是本申请实施例提供的一种接口参数更新方法的流程图;
图14是本申请实施例提供的一种ML设备的框图;
图15是本申请实施例提供的一种AP设备的结构示意图;
图16是本申请实施例提供的第一种ML设备的结构示意图;
图17是本申请实施例提供的第二种ML设备的结构示意图;
图18是本申请实施例提供的第三种ML设备的结构示意图;
图19是本申请实施例提供的一种计算机设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
应当理解的是,本申请提及的“多个”是指两个或两个以上。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,为了便于清楚描述本申请的技术方案,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在对本申请实施例进行详细地解释说明之前,先对本申请实施例涉及的应用场景予以说 明。
随着无线技术的发展,越来越多的设备支持多频段通信,如设备能够同时在2.4GHz频段、5GHz频段以及6GHz频段上进行通信。即使在天线数受限的情况下,多频段设备也可以在不同的频段上进行切换,从而选择最佳的频段,保证其通信质量。
多频段设备可以为STA设备或AP设备。STA设备中通常包括多个STA,该多个STA可以工作在不同频段上,或者工作在相同频段的不同信道上。AP设备中通常包括多个AP,该多个AP可以工作在不同频段上,或者工作在相同频段的不同信道上。其中,多频段设备中包括的每个STA或每个AP均具有一个网络接口,该网络接口可以为IEEE 802.11接口等。也即是,多频段设备中包括多个网络接口。
如图1所示,STA设备如果要与AP设备进行通信,STA设备中的每个STA需要与AP设备中对应的AP进行关联,如此可以将多个STA中的每个STA在各自的链路上与对应的AP建立连接,继而实现STA设备与AP设备之间的多频段通信。
多频段设备也可以被称为ML设备,即STA设备和AP设备均可以称为ML设备。ML设备可以进行多链路聚合,多链路聚合是指一个ML设备采用多个链路同时发送数据,以提高传输速率。
接下来对多链路聚合的相关概念进行说明。
一方面,多链路聚合可以分为流级(flow-level)多链路聚合和包级(packet-level)多链路聚合。flow-level多链路聚合是指一个ML设备采用多个链路同时发送通信标识符(Traffic identifier,TID)互不相同的数据包。packet-level多链路聚合是指一个ML设备采用多个链路同时发送同一TID的数据包。其中,TID可以标识数据包所属的业务类型。
对于packet-level多链路聚合,一个ML设备中进行packet-level多链路聚合的所有链路组成一个多链路实体(Multi-link entity,ML-entity),每个ML-entity对应一个多链路服务访问点(Multi-link service Access point,ML-SAP)。也即是,一个ML设备中用于进行packet-level多链路聚合的多个网络接口对应一个ML-SAP。每个ML-SAP具有一个MAC地址,该MAC地址可以是新分配的,也可以是与其对应的多个网络接口中的一个网络接口的MAC地址相同。
另一方面,多链路聚合可以分为同一位置(Collocated)多链路聚合和非同一位置(Noncollocated)多链路聚合。如图2所示,Collocated多链路聚合是指STA设备中进行多链路聚合的多个STA对应的AP属于同一个物理设备。如图3所示,Noncollocated多链路聚合是指STA设备中进行多链路聚合的多个STA对应的AP分属不同的物理设备。
接下来对快速会话转移(Fast session transition,FST)机制进行说明。
IEEE 802.11协议定义了一种FST机制,用于将一个ML设备的某个TID或所有TID的数据包的传输从一个频段切换到另一个频段上。具体来说,FST机制分为两种模式,一种是透明(Transparent)模式,另一种是非透明(Nontransparent)模式。Transparent模式是指链路两端的两个ML设备中的每个ML设备中包括的多个网络接口采用相同的MAC地址。Nontransparent模式是指链路两端的两个ML设备中的每个ML设备或其中一个ML设备中包括的多个网络接口采用不同的MAC地址。
接下来对本申请实施例提供的一种多频段通信方法进行说明。
图4是本申请实施例提供的一种多频段通信方法的流程图。参见图4,该方法包括:
步骤401:在AP设备对STA设备进行认证的过程中,该AP设备向该STA设备发送目标报文。
需要说明的是,该AP设备对该STA设备进行认证是指该AP设备在链路层上对该STA设备进行身份验证,通常包括关联和秘钥派生。关联过程中,该STA设备可以向该AP设备发送关联请求帧(Association Request),然后该AP设备可以向该STA设备发送关联响应帧(Association Response)。秘钥派生过程中,该STA设备与该AP设备之间可以发送多个秘钥消息(Key Message)来协商秘钥,该秘钥用于保护该STA设备与该AP设备之间传输的通信数据。
另外,该AP设备可以为ML设备,即该AP设备可以同时工作在多个频段上。示例地,该AP设备可以包括多个AP,该多个AP工作在不同的频段上,该多个AP的MAC地址可以不同。例如,该AP设备包括AP1、AP2和AP3,AP1可以工作在2.4GHz频段,AP2可以工作在5GHz频段,AP3可以工作在6GHz频段。其中,AP的MAC地址可以是该AP具有的网络接口的MAC地址。
再者,该STA设备可以是支持多频段的设备。一种可能的情况中,该STA设备是单链路(single-link,SL)设备,在某一时刻只能工作在一个频段上;该STA设备可以在该AP设备包括的多个AP之间切换,如该STA设备可以根据业务时延要求,动态地在该多个AP之间切换。另一种可能的情况中,该STA设备为ML设备,即该STA设备可以同时工作在多个频段上;该STA设备可以包括多个STA,该多个STA工作在不同的频段上,该多个STA的MAC地址可以不同。其中,STA的MAC地址可以是该STA具有的网络接口的MAC地址。
需要说明的是,目标报文中包括多个多频段元素(Multi-band element),该多个多频段元素与该AP设备包括的多个AP一一对应,该多个多频段元素中的每个多频段元素中包含对应的AP的频段信息,该多个多频段元素用于指示该STA设备与该多个AP进行关联和秘钥派生。其中,AP的频段信息是该AP所工作的频段的相关信息,根据该AP的频段信息可以与该AP进行关联和秘钥派生。
值得说明的是,本申请实施例中该AP设备可以在向该STA设备发送的目标报文中携带多个多频段元素,以将自身包括的多个AP所工作的频段的相关信息发送给该STA设备,从而指示该STA设备与该多个AP进行关联和秘钥派生。如此,可以便于该STA设备在该多个AP之间快速切换。
一种可能的实现方式中,目标报文可以是在关联过程中产生的关联响应帧,和/或,目标报文可以是在秘钥派生过程中产生的秘钥消息。
可选地,当目标报文是在秘钥派生过程中产生的秘钥消息时,目标报文中还可以包括健壮安全网络信息元素(Robust Security Network information element,RSN IE),该健壮安全网络信息元素中包含请求类型,如该健壮安全网络信息元素的保留位(Reserved bit)的值可以是该请求类型。
需要说明的是,该请求类型可以是单链路关联类型及对应的秘钥派生类型,或者该请求类型可以是多链路关联类型及对应的秘钥派生类型。其中,单链路关联类型是指可以与该AP 设备进行单链路关联,多链路关联类型是指可以与该AP设备进行多链路关联,秘钥派生类型用于指示与该AP设备进行秘钥派生时可以采用的加密协议。
下面对该STA设备是ML设备的情况进行说明。该STA设备中进行多链路聚合的多个STA对应一个ML-SAP(可以称为第一SAP)。该AP设备中进行多链路聚合的多个AP对应一个ML-SAP(可以称为第二SAP)。
该STA设备向该AP设备发送的关联请求帧中可以包括第一信息元素(information element,IE),第一信息元素中可以包含第一SAP的MAC地址。或者,该STA设备向该AP设备发送的关联请求帧的帧头的地址字段中包含第一SAP的MAC地址。
该AP设备向该STA设备发送的关联响应帧中可以包括第二信息元素,第二信息元素中可以包含第二SAP的MAC地址。或者,该AP设备向该STA设备发送的关联响应帧的帧头的地址字段中包含第二SAP的MAC地址。
需要说明的是,第一SAP的MAC地址用于在秘钥派生过程中生成秘钥,该秘钥可以用于第一SAP对应的ML-entity中的所有链路上。第二SAP的MAC地址用于在秘钥派生过程中生成秘钥,该秘钥可以用于第二SAP对应的ML-entity中的所有链路上。
进一步地,第一信息元素中还可以包含用于指示该STA设备优先采用的加密算法的指示信息,和/或,第一信息元素中还包含该多个STA中每个STA的MAC地址。第二信息元素中还可以包含用于指示该AP设备优先采用的加密算法的指示信息,和/或,第二信息元素中还包含该多个AP中每个AP的MAC地址。
需要说明的是,当该关联请求帧中包括第一SAP的MAC地址和该多个STA中每个STA的MAC地址时,第一SAP的MAC地址用于在秘钥派生过程中生成单播数据帧的加密秘钥,每个STA的MAC地址用于在秘钥派生过程中生成组播数据帧的加密秘钥。当该关联响应帧中包括第二SAP的MAC地址和该多个AP中每个AP的MAC地址时,第二SAP的MAC地址用于在秘钥派生过程中生成单播数据帧的加密秘钥,每个AP的MAC地址用于在秘钥派生过程中生成组播数据帧的加密秘钥。
值得说明的是,本申请实施例中,该STA设备和该AP设备就可以根据在关联过程中获得的第一SAP的MAC地址、第二SAP的MAC地址、该STA设备优先采用的加密算法、该AP设备优先采用的加密算法、该多个STA中每个STA的MAC地址和该多个AP中每个AP的MAC地址来在秘钥派生过程中协商秘钥,从而可以提高秘钥协商效率。
下面对该STA设备是SL设备的情况进行说明。该AP设备中进行多链路聚合的多个AP对应一个ML-SAP(可以称为第二SAP)。
该STA设备向该AP设备发送的关联请求帧中包括第三信息元素,第三信息元素中包含多AP关联指示信息,该多AP关联指示信息用于请求同时与该多个AP进行关联和秘钥派生。
该AP设备向该STA设备发送的关联响应帧中包括第二信息元素,第二信息元素中包含第二SAP的MAC地址;或者,该AP设备向该STA设备发送的关联响应帧的帧头的地址字段中包含第二SAP的MAC地址。
进一步地,第二信息元素中还可以包含用于指示该AP设备优先采用的加密算法的指示信息,和/或,第二信息元素中还包含该多个AP中每个AP的MAC地址。
需要说明的是,当该STA设备向该AP设备发送的关联请求帧中携带多AP关联指示信息时,表明该STA设备想同时与该AP设备中的多个AP进行关联和秘钥派生。此时,该AP 设备可以在向该STA设备返回的关联响应帧中携带第二SAP的MAC地址,进一步还可以携带该多个AP中每个AP的MAC地址以及指示该AP设备优先采用的加密算法。如此,该STA设备后续就可以根据第二SAP的MAC地址、该多个AP中每个AP的MAC地址和该AP设备优先采用的加密算法与该多个AP完成秘钥派生。
值得注意的是,快速切换对于该STA设备来说,可以减少切换带来的时延,但对于该AP设备来说,如果允许该STA设备在多个AP之间任意切换,则会造成其他STA设备的服务质量(Quality of Service,QoS)下降。为此,该AP设备可以在该多个AP中的每个AP发送的信标(Beacon)帧中携带一个接入控制策略信息元素(Access Control Policy IE)。该接入控制策略信息元素中可以包含一个或多个指示信息,该一个或多个指示信息可以包括该多个AP的数量、该多个AP中每个AP的接入策略、切换阈值指示信息、或STA关联限制等中的至少一个。
需要说明的是,对于该多个AP中的任意一个AP,这一个AP的接入策略可以包括业务策略、或超时信息等中的至少一个。该业务策略用于指示这一个AP允许传输的数据包的最高AC或TID。该超时信息用于指示STA设备在预设时长内未收到这一个AP允许传输的最高AC或TID的数据包时进行AP切换。预设时长可以预先进行设置,如预设时长可以为5分钟等。
另外,切换阈值指示信息用于指示STA设备在信号质量下降到第一阈值时进行AP切换。第一阈值可以预先进行设置,当信号质量下降到第一阈值时,说明信号质量比较差。信号质量可以通过多种方式衡量,如可以通过接收信号强度指示(Received Signal Strength Indication,RSSI)值来衡量,本申请实施例对此不作限定。
再者,STA关联限制用于指示该多个AP中每个AP允许关联的STA类型。该STA类型可以包括HT型号、VHT型号、HE型号、EHT型号、支持多频段、不支持多频段等,本申请实施例对此不作限定。
在本申请实施例中,AP设备包括多个AP,该多个AP工作在不同的频段上。在该AP设备对STA设备进行认证的过程中,该AP设备可以向该STA设备发送携带有多个多频段元素的目标报文,从而可以将自身包括的多个AP所工作的频段的相关信息发送给该STA设备,以指示该STA设备与该多个AP进行关联和秘钥派生。如此,可以便于该STA设备在该多个AP之间快速切换。
图5是本申请实施例提供的一种多频段通信方法的流程图。参见图5,该方法包括:
步骤501:在两个ML设备进行FST的过程中,一个ML设备向另一个ML设备发送FST帧,该FST帧中包括多频段元素。
需要说明的是,该多频段元素中包括包级多链路聚合支持(packet-level MLA supported)字段,该packet-level MLA supported字段用于指示是否支持packet-level多链路聚合。如此,一个ML设备向另一个ML设备发送FST帧后,另一个ML设备就可以获知这一个ML设备是否支持packet-level多链路聚合。
另外,该FST帧可以是这两个ML设备在进行FST的过程中,相互发送的数据帧、控制帧、管理帧等。例如,该FST帧可以是FST设置请求帧(FST Setup Request)、FST设置响应帧(FST Setup Response)、FST拆除会话帧(FST Teardown)、FST确认请求帧(FST Ack Request)、 FST确认响应帧(FST Ack Response)等。
值得注意的是,相关技术中的FST机制已经支持flow-level多链路聚合,但不支持packet-level多链路聚合。示例地,图6是相关技术提供的一种FST帧中包括的多频段元素的格式示意图。如图6所示,该多频段元素可以包括多个字段,如可以包括元素标识符(Element ID)、长度(Length)、多频段控制(Multi-band Control)、频段标识符(Band ID)、操作类别(Operating Class)、信道数(Channel Number)、基本服务集(Basic Service Set,BSS)标识符(BSSID)、信标间隔(Beacon Interval)、定时同步功能(timing synchronization function,TSF)偏置(TSF offset)、多频段连接能力(Multi-band connection capability)、FST会话超时(FST Session Timeout)、STA MAC地址(STA MAC Address)、成对加密套件数(Pairwise Cipher Suite count)、成对加密套件列表(Pairwise Cipher Suite list)等字段。其中,Multi-band Control字段可以包括STA角色(STA Role)、STA MAC地址是否出现(STA MAC Address Present)、成对加密套件是否出现(Pairwise Cipher Suite Present)、FST不支持(FST Not Supported)、信道透传(On-channel tunneling,OCT)不支持(OCT Not Supporte)等信息。Multi-band connection capability字段可以包括AP、个域基本服务集(Personal BSS,PBSS)控制点(即PBSS控制点(PBSS control point,PCP))、隧道直连链路建立(Tunneled direct link setup,TDLS)、独立基本服务集(Independent Basic Service Set,IBSS)等信息。
本申请实施例是在相关技术中的FST机制的基础上进行扩展,来新定义packet-level多链路聚合的操作信令指示。也即是,在多频段元素中增加packet-level MLA supported字段,以指示是否支持packet-level多链路聚合。如此,进行FST的两个ML设备就可以获知彼此是否支持packet-level多链路聚合,并根据彼此是否支持packet-level多链路聚合来进行FST,从而便于双方更为快速准确地完成FST。
一种可能的实现方式中,这两个ML设备中的一个ML设备是STA设备,另一个ML设备是AP设备。该STA设备发送给该AP设备的FST帧中的多频段元素包括非同一位置支持(Noncollocated supported)字段,该Noncollocated supported字段用于指示是否支持Noncollocated多链路聚合。
本申请实施例中还可以在多频段元素中增加Noncollocated supported字段,以指示是否支持Noncollocated多链路聚合。也即是,该STA设备可以在向该AP设备发送的FST帧中的多频段元素中携带Noncollocated supported字段,以指示该STA设备是否支持与分属不同的物理设备的多个AP进行多链路聚合。如此,可以便于该AP设备据此调整与该STA设备之间的通信策略。
另一种可能的实现方式中,这两个ML设备中的一个ML设备是STA设备,另一个ML设备是AP设备,该STA设备发送给该AP设备的FST帧中包括移动性域元素(mobility domain element)。该移动性域元素中包括Noncollocated supported字段,该Noncollocated supported字段用于指示是否支持Noncollocated多链路聚合。或者,该移动性域元素中包括非同一位置流级多链路聚合支持(Noncollocated flow-level MLA Supported)字段和非同一位置包级多链路聚合支持(Noncollocated packet-level MLA Supported)字段,该Noncollocated flow-level MLA Supported字段用于指示在进行flow-level多链路聚合时是否支持Noncollocated多链路聚合,该Noncollocated packet-level MLA Supported字段用于指示在进行packet-level多链路聚合时是否支持Noncollocated多链路聚合。
本申请实施例中可以在FST帧中的移动性域元素中增加Noncollocated supported字段,以指示是否支持Noncollocated多链路聚合。也即是,该STA设备可以在向该AP设备发送的FST帧中的移动性域元素中携带Noncollocated supported字段,以指示该STA设备是否支持与分属不同的物理设备的多个AP进行多链路聚合。如此,可以便于该AP设备据此调整与该STA设备之间的通信策略。
或者,本申请实施例中可以在FST帧中的移动性域元素中增加Noncollocated flow-level MLA Supported字段和Noncollocated packet-level MLA Supported字段,以分别指示在进行flow-level多链路聚合和packet-level多链路聚合时是否支持Noncollocated多链路聚合。也即是,该STA设备可以在向该AP设备发送的FST帧中的移动性域元素中携带Noncollocated flow-level MLA Supported字段和Noncollocated packet-level MLA Supported字段,以分别指示该STA设备在进行flow-level多链路聚合和packet-level多链路聚合时是否支持与分属不同的物理设备的多个AP进行多链路聚合。如此,可以便于该AP设备据此调整与该STA设备之间的通信策略。
又一种可能的实现方式中,两个ML设备中的一个ML设备是STA设备,另一个ML设备是AP设备。该AP设备发送给该STA设备的FST帧中的多频段元素包括多频段连接能力字段,该多频段连接能力字段中包含非同一位置接入点(Noncollocated AP)指示位,该Noncollocated AP指示位用于指示是否支持与属于其它物理设备的AP进行多链路聚合。
本申请实施例中还可以在多频段元素中的多频段连接能力字段中增加Noncollocated AP指示位,以指示是否支持与属于其它物理设备的AP进行多链路聚合。也即是,该AP设备可以在向该STA设备发送的FST帧中的多频段元素中的多频段连接能力字段中携带Noncollocated AP指示位,以指示该AP设备中的AP是否支持与属于其它物理设备的AP进行多链路聚合。如此,可以便于该STA设备据此调整与该AP设备之间的通信策略。
进一步地,上述多频段元素中还可以包括第一标志位,第一标志位用于指示该多频段元素中是否包括链路标识(link identity)字段。具体地,当第一标志位的值为预设的值(如1)时,该多频段元素中包括链路标识字段;当第一标志位的值不为预设的值时,该多频段元素中不包括链路标识字段。该链路标识字段用于指示这两个ML设备要将FST会话转移到的频段,即该链路标识字段的值用于标识这两个ML设备要将FST会话转移到的频段。
进一步地,上述多频段元素中还可以包括第二标志位,第二标志位用于指示该多频段元素中是否包括多频段控制字段。具体地,当第二标志位的值为预设的值(如1)时,该多频段元素中包括多频段控制字段;当第二标志位的值不为预设的值时,该多频段元素中不包括多频段控制字段。该多频段控制字段中可以包括上述的packet-level MLA supported字段、Noncollocated supported字段、链路标识字段等。
在本申请实施例中,在两个ML设备进行FST的过程中,一个ML设备向另一个ML设备发送FST帧,该FST帧中包括多频段元素,该多频段元素中包括packet-level MLA supported字段,该packet-level MLA supported字段用于指示是否支持packet-level多链路聚合。如此,进行FST的两个ML设备就可以获知彼此是否支持packet-level多链路聚合,并根据彼此是否支持packet-level多链路聚合来进行FST,从而便于双方更为快速准确地完成FST。
图7是本申请实施例提供的一种多频段通信方法的流程图。参见图7,该方法包括:
步骤701:两个ML设备在进行packet-level多链路聚合的过程中,这两个ML设备使用各自的SAP的MAC地址进行通信。
需要说明的是,对于这两个ML设备中的任意一个ML设备,这一个ML设备的SAP对应这一个ML设备包括的多个网络接口。也即是,这一个ML设备的SAP是这一个ML设备中进行packet-level多链路聚合的多个网络接口对应的一个ML-SAP。这一个ML设备的SAP的MAC地址可以是新分配的一个MAC地址,也可以是该多个网络接口中的一个网络接口的MAC地址。
可选地,在这两个ML设备的通信过程中,这两个ML设备中的一个ML设备向另一个ML设备发送的数据帧的地址字段中包含该另一个ML设备的SAP的MAC地址,用于指示该数据帧是对该另一个ML设备的SAP对应的多个网络接口进行操作。
可选地,在第一种可能的实现方式中,在这两个ML设备的通信过程中,这两个ML设备中的一个ML设备向另一个ML设备发送的控制帧的地址字段中包含该另一个ML设备的SAP的MAC地址或包含该另一个ML设备的一个网络接口的MAC地址,且这一个ML设备向该另一个ML设备发送的管理帧的地址字段中包含该另一个ML设备的SAP的MAC地址或包含该另一个ML设备的一个网络接口的MAC地址。
需要说明的是,当该控制帧的地址字段中包含的是该另一个ML设备的SAP的MAC地址时,指示该控制帧是对该另一个ML设备的SAP对应的多个网络接口进行操作。当该控制帧的地址字段中包含的是该另一个ML设备的一个网络接口的MAC地址时,指示该控制帧是对该另一个ML设备的这一个网络接口进行操作。同理,当该管理帧的地址字段中包含的是该另一个ML设备的SAP的MAC地址时,指示该管理帧是对该另一个ML设备的SAP对应的多个网络接口进行操作。当该管理帧的地址字段中包含的是该另一个ML设备的一个网络接口的MAC地址时,指示该管理帧是对该另一个ML设备的这一个网络接口进行操作。
在第二种可能的实现方式中,在这两个ML设备的通信过程中,这两个ML设备中的一个ML设备向另一个ML设备发送的控制帧和管理帧的地址字段中均包含该另一个ML设备的一个网络接口的MAC地址。此时该控制帧和该管理帧均是用于对该另一个ML设备的这一个网络接口进行操作。
在第三种可能的实现方式中,在这两个ML设备的通信过程中,这两个ML设备中的一个ML设备向另一个ML设备发送的指定控制帧的地址字段中包含该另一个ML设备的SAP的MAC地址,且这一个ML设备向该另一个ML设备发送的管理帧和除该指定控制帧之外的控制帧的地址字段中均包含该另一个ML设备的一个网络接口的MAC地址。该指定控制帧可以预先进行设置,此时该指定控制帧是用于对该另一个ML设备的SAP对应的多个网络接口进行操作。该管理帧和除该指定控制帧之外的控制帧均是用于对该另一个ML设备的这一个网络接口进行操作。
值得注意的是,本申请实施例中允许一条链路同时属于多个多链路实体(ML-entity),即一个网络接口可以对应多个ML-entity。这种情况下,每个ML-entity除了拥有一个MAC地址(即是每个ML-entity对应的ML-SAP的MAC地址)之外,还分配有一个多链路实体标识符,该多链路实体标识符可以用在除了多链路聚合设置(MLA setup)阶段之外的其它阶段中。
例如,在这两个ML设备的通信过程中,这两个ML设备中的一个ML设备向另一个ML设备发送的控制帧的帧头中可以包括聚合控制(Aggregation Control,A-Control)字段,该聚 合控制字段中可以包括多链路实体标识符和控制信息,以指示对该多链路实体标识符所表示的ML-entity对应的多个网络接口执行该控制信息所指示的操作。
下面对相关技术中提供的管理帧中的行动帧(Action frame)的格式进行说明。示例地,图8是相关技术提供的一种行动帧的格式示意图。如图8所示,该行动帧包括帧控制(Frame control)、时长(Duration)、地址1(目的地址(Destination Address,DA))、地址2(源地址(Sender Address,SA))、BSSID、序列控制、帧体(Frame body)、帧校验(Frame Check Sequence,FCS)等字段。其中,帧体字段中可以包括类别(Category)、功能(Action)、信息元素列表(IE List)等字段。
一种可能的实现方式中,本申请实施例中,在这两个ML设备的通信过程中,这两个ML设备中的一个ML设备向另一个ML设备发送的行动帧中包括类别字段,该类别字段的值与FST帧中包括的类别字段的值相同。这种情况下,本申请实施例中的行动帧与FST帧共享一个类别值(Category value),从而可以利用FST机制来实现多链路聚合操作。
当然,实际应用中,本申请实施例中的行动帧也可以与FST帧分属不同的Category value。这种情况下,既需要重新定义flow-level多链路聚合操作,也需要新定义packet-level多链路聚合操作。此时多链路聚合操作的实现不依赖FST机制,新定义的多链路聚合操作可以用于进一步改进FST机制。示例地,对于flow-level多链路聚合,可以既支持Transparent模式,也支持Nontransparent模式;对于packet-level多链路聚合,可以只支持Transparent模式。特别地,对于Noncollocated多链路聚合,存在一种可能性是只能由STA发起。
值得注意的是,本申请实施例中提供的行动帧可以为称为多链路聚合行动帧(MLA Action frame)。下面给出在FST机制上实现该行动帧的相关设计。示例地,该行动帧的格式可以如下表1所示:
表1
次序(Order) 信息(Information)
1 Category字段
2 FST Action字段
…… ……
其中,当FST Action字段的值不同时,该行动帧中携带的固定字段和信息元素会不同。示例地,FST Action字段的不同值对应的含义可以如下表2所示:
表2
FST Action字段 含义
0 FST Setup Request
1 FST Setup Response
2 FST Teardown
3 FST Ack Request
4 FST Ack Response
5 On-channel Tunnel Request(频段上的隧道请求)
6 MLA Setup Request(多链路聚合设置请求)
7 MLA Setup Response(多链路聚合设置响应)
…… ……
需要说明的是,本申请实施例仅以上表1和表2为例对该行动帧的格式进行说明,上表1和表2并不对本申请实施例构成限定。
其中,当该行动帧是多链路聚合设置请求帧或多链路聚合设置响应帧时,该行动帧中可以包括第四信息元素,第四信息元素用于指示多链路实体信息。如此,在多链路聚合设置过程中,ML设备就可以根据第四信息元素中包含的多链路实体信息来快速准确地进行多链路聚合设置。
示例地,图9是本申请实施例提供的一种第四信息元素的格式示意图。如图9所示,第四信息元素中可以包括元素标识符(Element ID)、长度(Length)、多链路聚合控制(MLA Control)、多链路实体标识符(ML-Entity ID)、多链路聚合发起端MAC地址(MLA initiator MAC Address)、多链路聚合响应端MAC地址(MLA responder MAC Address)、成对加密套件数(Pairwise Cipher Suite count)、导航信道信息(Home link info)、成员链路数(Number of member links)、成员链路信息列表(Member link info list)等字段。其中,MLA Control字段中可以包括STA角色(STA role)、是否是同一位置(Collocated or not)、透明模式或非透明模式(Transparent or nontransparent)等字段。Member link info list字段中可以包括链路标识符(Link ID)、STA MAC地址(STA MAC Address)、BSS标识符(BSSID)、操作类别(Operating Class)、频段标识符(Band ID)、信道号(Channel Number)、信标间隔(Beacon Interval)、TSF偏置(TSF offset)等字段。
具体地,Collocated or not字段用于指示设置的多链路聚合是Collocated多链路聚合还是Noncollocated多链路聚合。MLA initiator MAC Address字段和MLA responder MAC Address字段用于指示链路两端的两个ML设备的SAP的MAC地址。Home link info字段用于指示ML-entity的导航信道,用于限制多链路聚合管理通过导航信道执行,也可以限制块确认请求(Block Ack Requst,BAR)/块确认(Block Ack,BA)操作只能通过导航信道执行。Number of member links字段用于指示ML-entity包含几条成员链路。Member link info list字段用于指示每条成员链路的信息,Member link info list字段中可以包括多个link info字段,每个link info字段用于指示一条成员链路的信息;Member link info list字段具体可以通过携带多个现有的多频段元素来进行指示,也可以新定义一个扩展多频段元素来进行指示,还可以是新定义一个扩展多频段元素并将该扩展多频段元素与现有的多频段元素结合起来进行指示;此外,还可以携带用于指示Member link info list字段中是否包含某个多频段元素的指示位。
在另一种可能的实现方式中,对于Collocated or not字段,可以不携带于多链路聚合控制字段中,而是在每个link info字段中携带Collocated Transparent or not字段,Collocated Transparent or not字段用于指示AP是否支持Collocated多链路聚合下的Transparent模式,且指示设置的多链路聚合是Transparent模式还是Nontransparent模式。当设置的多链路聚合是Transparent模式,每个link info字段中可以不携带成员链路两端的地址信息;否则,每个link info字段中需要携带成员链路两端的地址信息。进一步地,每个link info字段还可以包括一个指示位,指示在Transparent模式下,成员链路对应的ML-SAP的MAC地址是否和网络接口的MAC地址相同;如果相同,每个link info字段中只需要携带成员链路对应的ML-SAP的MAC地址;如果不同,每个link info字段中既要携带成员链路对应的ML-SAP的MAC 地址,也要携带成员链路对应的ML-SAP对应的多个网络接口的MAC地址。
对于Number of pairwise cipher suite字段和Pairwise cipher suite list字段,在Transparent模式时,这两个字段可以直接携带于第四信息元素下;而在Nontransparent模式时,这两个字段可以不携带于第四信息元素下,而是携带于每个link info字段中。
对于MLA initiator MAC Address字段和MLA responder MAC Address字段,这两个字段可以不携带于第四信息元素中,而是直接携带在该行动帧中的FST Action字段后面。
进一步地,第四信息元素中还可以携带用于指示ML-Entity的成员链路之间的操作模式的指示信息,该操作模式可以是异步模式(Asynchronous)或同步模式(Synchronous)。如果是同步模式,第四信息元素中还可以携带用于指示相应传输是单个协议数据单元(Presentation Protocol Data Unit,PPDU)还是多个独立的PPDU的指示信息。
需要说明的是,与FST机制类似,多链路聚合操作允许将一个会话从一个ML-entity整体切换到另一个ML-entity,为此新定义一个多链路聚合会话转换元素(MLA session Transition element),该多链路聚合会话转换元素可以携带于行动帧中。
示例地,该多链路聚合会话转换元素的格式可以如图10所示。该多链路聚合会话转换元素中可以包括元素标识符(Element ID)、长度(Length)、多链路聚合会话标识符(MLA Session ID)、多链路聚合会话控制(MLA Session Control)、新的多链路实体信息(New ML-entity info)、旧的多链路实体信息(Old ML-entity info)等字段。其中,MLA Session Control字段中包括会话类型(Session Type)字段。New ML-entity info字段中包括多链路实体标识符(ML-entity ID)、多链路聚合发起端的SAP地址(ML-SAP Address of initiator)、多链路聚合响应端的SAP地址(ML-SAP Address of responder)等字段,多链路实体标识符可以是单独设置的一个标识符或者可以是多链路实体对应ML-SAP的MAC地址。
另外,与FST机制类似,多链路聚合操作也可以将ML-entity中某个数据流切换到另一个ML-entity上。为此,新定义一个多链路聚合转换流元素(MLA Switching stream element),该多链路聚合转换流元素可以携带于行动帧中。
示例地,该多链路聚合转换流元素的格式可以如图11所示。该多链路聚合转换流元素中包括元素标识符(Element ID)、长度(Length)、旧的多链路实体标识符(Old ML-entity ID)、新的多链路实体标识符(New ML-entity ID)、非QoS数据帧(Non-QoS data frame)、时延敏感帧(Time-Sensitive Networking,TSN)、切换的流数(Number of streams switching)、流信息列表(Stream info list)等字段。其中,Stream info list字段中可以包括业务标识(TID)、方向(Direction)等字段。Direction字段可以是1bit(比特)指示,用于指示是发起端到响应端之间的单向TID切换,还是发起端到响应端之间的双向TID切换;或者,Direction字段可以是2bits指示,用于指示是发起端到响应端之间的单向TID切换,还是响应端到发起端之间的单向TID切换,还可以是发起端到响应端之间的双向TID切换。
再者,也可以是链路两端的设备一次建立多个ML-entity,并在行动帧中携带多个第四信息元素,以及携带一个新定义的转向流元素(Stream Steering element)。该转向流元素用于指示每个ML-entity所承载的数据包的TID。
示例地,该转向流元素的格式可以如图12所示。该转向流元素中可以包括元素标识符(Element ID)、长度(Length)、多链路实体个数(Number of ML-entities)、多链路实体标识符(ML-entity ID)、业务信息(Traffic info)等字段。
最后,多链路聚合操作还应支持将一条链路添加到某个ML-entity中,或者将某条链路从一个ML-entity中移除,甚至直接删除整个ML-entity。因而,一种可能的情况中,可以在行动帧中新定义一个信息元素,其携带一个子行动(sub-action)字段来具体指示是执行什么操作,同时携带link info字段和ML-entity info信息字段,来指示该操作所对应的链路和ML-entity;另一种可能的情况中,可以直接利用FST Action字段来具体指示是执行什么操作。
在本申请实施例中,两个ML设备在进行packet-level多链路聚合的过程中,这两个ML设备使用各自的SAP的MAC地址进行通信。如此,这两个ML设备可以快速且准确地实现多频段通信。
接下来对本申请实施例提供的一种接口参数更新方法进行说明。
图13是本申请实施例提供的一种接口参数更新方法的流程图。参见图13,该方法包括:
步骤1301:ML设备根据自身包括的多个网络接口中每个网络接口的状态变化,更新该多个网络接口中已开启的网络接口的参数。
需要说明的是,该ML设备包括的多个网络接口工作在不同的频段上,且该多个网络接口共享该ML设备中配置的天线。例如,该ML设备配置有3根天线,且该ML设备包括3个网络接口,当3个网络接口都开启时,每个网络接口可以分别使用1根天线,只能收发一个流;而当只开启1个网络接口时,这1个网络接口可以使用全部的3根天线,对应可以收发3个流。
例如,在如图14所示的该ML设备的一种可能的框图中,该ML设备有3根独立的天线和相应的发送/接收链以及基带处理模块。当开启3个网络接口时,每个网络接口分别使用1根天线,每个网络接口有各自的MAC、MAC层管理实体(MAC sublayer management entity,MLME)、站点管理实体(STA management entity,SME)和1个物理层(Physical layer,PHY)收发链(即最大支持1个流);当只开启1个网络接口时,可以将其配置成只有1个MAC、MLME、SME和3个PHY收发链(即最大支持3个流);当开启2个网络接口时,每个网络接口有各自的MAC、MLME和SME,可以配置成其中一个网络接口使用1个PHY收发链(即最大支持1个流),另外一个网络接口使用剩余的2个PHY收发链(即最大支持2个流)。其中,一个PHY收发链可以包括扰码器、前向纠错码(forward error correction,FEC)编码器、流解析器、交织器、星座映射器、循环时延分集(cyclic shift diversity,CSD)、空间映射器、离散傅里叶反变换(inverse discrete fouriertransform,IDFT)、插入保护间隔(Guard interval,GI)与窗口、模拟与射频(radio frequency,RF)、天线。并且,这3个PHY收发链可以共用流解析器和空间映射器。
另外,网络接口的状态变化是指该网络接口由开启状态转为关闭状态,或者由关闭状态转为开启状态。当一个网络接口出现状态变化时,该多个网络接口对该ML设备中配置的天线的共享情况会发生变化,此时该多个网络接口中已开启的网络接口的参数会发生变化,因而该ML设备可以更新已开启的网络接口的参数,以保证已开启的网络接口的正常使用,从而保证该ML设备的正常通信。
再者,网络接口的参数包括能力信息、或操作参数等中的至少一个。例如,网络接口的参数可以包括配置的收发天线数、最大可支持的发送或接收的流数、是否支持与其它网络接口同时收发、当链路存在邻近信道干扰时该链路两端的设备所允许采用的最高调制编码方式 及该链路的发送端需要预留的安全余量、信道带宽、或发射功率等中的至少一个。
具体地,步骤1301的操作可以为:该ML设备在开启该多个网络接口中的一个网络接口或在关闭该多个网络接口中的一个网络接口后,配置该多个网络接口中已开启的所有网络接口中每个网络接口的参数,并通过已开启的每个网络接口发送已开启的所有网络接口的参数。
需要说明的是,该ML设备在开启该多个网络接口中的一个网络接口或在关闭该多个网络接口中的一个网络接口后,该多个网络接口中已开启的网络接口会发生变化,此时该多个网络接口对该ML设备中配置的天线的共享情况会发生变化,因而该ML设备需要据此重新配置该多个网络接口中已开启的所有网络接口中每个网络接口的参数。并且,该ML设备在完成网络接口的参数配置后,还可以将已开启的所有网络接口的参数通过已开启的每个网络接口发送出去。如此,与该ML设备中的任一网络接口建立通信连接的其它设备就可以在这一网络接口发送的信息中获取到该ML设备中已开启的所有网络接口的参数,从而便于该其它设备根据该ML设备中已开启的所有网络接口的参数及时调整自身的通信策略,如该其它设备可以据此与已开启的所有网络接口建立通信连接,或者据此从当前连接的网络接口切换到另一网络接口等,本申请实施例对此不作限定。
在本申请实施例中,ML设备包括多个网络接口,该多个网络接口工作在不同的频段上,且该多个网络接口共享该ML设备中配置的天线。ML设备根据自身包括的多个网络接口中每个网络接口的状态变化,更新该多个网络接口中已开启的网络接口的参数。如此,可以保证已开启的网络接口的正常使用,从而保证该ML设备的正常通信。
图15是本申请实施例提供的一种AP设备的结构示意图。参见图15,该AP设备包括:
发送模块1401,用于在AP设备对STA设备进行认证的过程中,向STA设备发送目标报文,AP设备包括多个AP,多个AP工作在不同的频段上。其中,目标报文中包括多个多频段元素,多个多频段元素与多个AP一一对应,多个多频段元素中的每个多频段元素中包含对应的AP的频段信息,多个多频段元素用于指示STA设备与多个AP进行关联和秘钥派生。
可选地,目标报文是在关联过程中产生的关联响应帧,和/或,目标报文是在秘钥派生过程中产生的秘钥消息。
可选地,当目标报文是在秘钥派生过程中产生的秘钥消息时,目标报文中还包括健壮安全网络信息元素,健壮安全网络信息元素中包含请求类型,请求类型是单链路关联类型及对应的秘钥派生类型,或者请求类型是多链路关联类型及对应的秘钥派生类型。
可选地,STA设备包括多个STA,多个STA工作在不同的频段上,多个STA的MAC地址不同,多个STA对应第一SAP,多个AP对应第二SAP;
STA设备向AP设备发送的关联请求帧中包括第一信息元素,第一信息元素中包含第一SAP的MAC地址;或者,STA设备向AP设备发送的关联请求帧的帧头的地址字段中包含第一SAP的MAC地址;其中,第一SAP的MAC地址用于在秘钥派生过程中生成秘钥;
AP设备向STA设备发送的关联响应帧中包括第二信息元素,第二信息元素中包含第二SAP的MAC地址;或者,AP设备向STA设备发送的关联响应帧的帧头的地址字段中包含第二SAP的MAC地址;其中,第二SAP的MAC地址用于在秘钥派生过程中生成秘钥。
可选地,第一信息元素中还包含用于指示STA设备优先采用的加密算法的指示信息,和/或,第一信息元素中还包含多个STA中每个STA的MAC地址;
第二信息元素中还包含用于指示AP设备优先采用的加密算法的指示信息,和/或,第二信息元素中还包含多个AP中每个AP的MAC地址。
可选地,STA设备向AP设备发送的关联请求帧中包括第三信息元素,第三信息元素中包含多AP关联指示信息,多AP关联指示信息用于请求同时与多个AP进行关联和秘钥派生;
AP设备向STA设备发送的关联响应帧中包括第二信息元素,第二信息元素中包含第二SAP的MAC地址;或者,AP设备向STA设备发送的关联响应帧的帧头的地址字段中包含第二SAP的MAC地址;其中,第二SAP的MAC地址用于在秘钥派生过程中生成秘钥。
可选地,多个AP中每个AP发送的信标帧中包括接入控制策略信息元素,接入控制策略信息元素中包含多个AP的数量、多个AP中每个AP的接入策略、切换阈值指示信息、或STA关联限制中的至少一个;
其中,切换阈值指示信息用于指示STA设备在信号质量下降到第一阈值时进行AP切换,STA关联限制用于指示多个AP中每个AP允许关联的STA类型。
可选地,对于多个AP中的任意一个AP,一个AP的接入策略包括业务策略、或超时信息中的至少一个;
其中,业务策略用于指示一个AP允许传输的数据包的最高AC或TID,超时信息用于指示STA设备在预设时长内未接收到一个AP允许传输的最高AC或TID的数据包时进行AP切换。
在本申请实施例中,AP设备包括多个AP,该多个AP工作在不同的频段上。在该AP设备对STA设备进行认证的过程中,该AP设备可以向该STA设备发送携带有多个多频段元素的目标报文,从而可以将自身包括的多个AP所工作的频段的相关信息发送给该STA设备,以指示该STA设备与该多个AP进行关联和秘钥派生。如此,可以便于该STA设备在该多个AP之间快速切换。
图16是本申请实施例提供的一种ML设备的结构示意图。参见图16,该ML设备包括:
发送模块1501,用于在该ML设备与其它ML设备进行FST的过程中,向其它ML设备发送FST帧,FST帧中包括多频段元素;
其中,多频段元素中包括packet-level MLA supported字段,packet-level MLA supported字段用于指示是否支持packet-level多链路聚合。
可选地,该ML设备是STA设备,其它ML设备是AP设备;STA设备发送给AP设备的FST帧中的多频段元素包括Noncollocated supported字段,Noncollocated supported字段用于指示是否支持Noncollocated多链路聚合。
可选地,该ML设备是STA设备,其它ML设备是AP设备;
AP设备发送给STA设备的FST帧中的多频段元素包括多频段连接能力字段,多频段连接能力字段中包含Noncollocated AP指示位,Noncollocated AP指示位用于指示是否支持与属于其它物理设备的AP进行多链路聚合。
可选地,该ML设备是STA设备,其它ML设备是AP设备,STA设备发送给AP设备的FST帧中包括移动性域元素;
移动性域元素中包括Noncollocated supported字段,Noncollocated supported字段用于指示是否支持Noncollocated多链路聚合;或者,移动性域元素中包括Noncollocated flow-level  MLA Supported字段和Noncollocated packet-level MLA Supported字段,Noncollocated flow-level MLA Supported字段用于指示在进行flow-level多链路聚合时是否支持Noncollocated多链路聚合,Noncollocated packet-level MLA Supported字段用于指示在进行packet-level多链路聚合时是否支持Noncollocated多链路聚合。
可选地,多频段元素中还包括第一标志位,第一标志位用于指示多频段元素中是否包括链路标识字段,链路标识字段用于指示该ML设备和其它ML设备要将FST会话转移到的频段。
可选地,多频段元素中还包括第二标志位,第二标志位用于指示多频段元素中是否包括多频段控制字段,多频段控制字段中包括packet-level MLA supported字段。
在本申请实施例中,在两个ML设备进行FST的过程中,一个ML设备向另一个ML设备发送FST帧,该FST帧中包括多频段元素,该多频段元素中包括packet-level MLA supported字段,该packet-level MLA supported字段用于指示是否支持packet-level多链路聚合。如此,进行FST的两个ML设备就可以获知彼此是否支持packet-level多链路聚合,并根据彼此是否支持packet-level多链路聚合来进行FST,从而便于双方更为快速准确地完成FST。
图17是本申请实施例提供的一种ML设备的结构示意图。参见图17,该ML设备包括:
通信模块1601,用于在该ML设备与其它ML设备进行packet-level多链路聚合的过程中,使用该ML设备的SAP的MAC地址与其它ML设备进行通信,该ML设备的SAP对应该ML设备包括的多个网络接口。
可选地,在该ML设备与其它ML设备的通信过程中,该ML设备向其它ML设备发送的数据帧的地址字段中包含其它ML设备的SAP的MAC地址。
可选地,在该ML设备与其它ML设备的通信过程中,该ML设备向其它ML设备发送的控制帧的地址字段中包含其它ML设备的SAP的MAC地址或包含其它ML设备的一个网络接口的MAC地址,且该ML设备向其它ML设备发送的管理帧的地址字段中包含其它ML设备的SAP的MAC地址或包含其它ML设备的一个网络接口的MAC地址;或者
在该ML设备与其它ML设备的通信过程中,该ML设备向其它ML设备发送的控制帧和管理帧的地址字段中均包含其它ML设备的一个网络接口的MAC地址;或者
在该ML设备与其它ML设备的通信过程中,该ML设备向其它ML设备发送的指定控制帧的地址字段中包含其它ML设备的SAP的MAC地址,且该ML设备向其它ML设备发送的管理帧和除指定控制帧之外的控制帧的地址字段中均包含其它ML设备的一个网络接口的MAC地址。
可选地,在该ML设备与其它ML设备的通信过程中,该ML设备向其它ML设备发送的控制帧的帧头中包括聚合控制字段,聚合控制字段中包括多链路实体标识符和控制信息。
可选地,在该ML设备与其它ML设备的通信过程中,该ML设备向其它ML设备发送的行动帧中包括类别字段,类别字段的值与FST帧中包括的类别字段的值相同。
可选地,当行动帧是多链路聚合设置请求帧或多链路聚合设置响应帧时,行动帧中包括第四信息元素,第四信息元素用于指示多链路实体信息。
可选地,第四信息元素包括是否是同一位置字段、多链路聚合发起端MAC地址字段、多链路聚合响应端MAC地址字段、多链路实体标识符字段、导航信道信息字段、或成员链 路信息列表字段中的至少一个,成员链路信息列表字段用于指示每个成员链路的信息。
在本申请实施例中,两个ML设备在进行packet-level多链路聚合的过程中,这两个ML设备使用各自的SAP的MAC地址进行通信。如此,这两个ML设备可以快速且准确地实现多频段通信。
图18是本申请实施例提供的一种ML设备的结构示意图。参见图18,该ML设备包括:
更新模块1701,用于根据自身包括的多个网络接口中每个网络接口的状态变化,更新多个网络接口中已开启的网络接口的参数,参数包括能力信息、或操作参数中的至少一个,多个网络接口工作在不同的频段上,多个网络接口共享ML设备中配置的天线。
可选地,根据自身包括的多个网络接口中每个网络接口的状态变化,更新多个网络接口中已开启的网络接口的参数,包括:
在开启多个网络接口中的一个网络接口或在关闭多个网络接口中的一个网络接口后,配置多个网络接口中已开启的所有网络接口中每个网络接口的参数,并通过已开启的每个网络接口发送已开启的所有网络接口的参数。
可选地,参数包括配置的收发天线数、最大可支持的发送或接收的流数、是否支持与其它网络接口同时收发、当链路存在邻近信道干扰时该链路两端的设备所允许采用的最高调制编码方式及该链路的发送端需要预留的安全余量、信道带宽、或发射功率中的至少一个。
在本申请实施例中,ML设备包括多个网络接口,该多个网络接口工作在不同的频段上,且该多个网络接口共享该ML设备中配置的天线。ML设备根据自身包括的多个网络接口中每个网络接口的状态变化,更新该多个网络接口中已开启的网络接口的参数。如此,可以保证已开启的网络接口的正常使用,从而保证该ML设备的正常通信。
需要说明的是:上述实施例提供的设备在工作时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的设备与本申请的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图19是本申请实施例提供的一种计算机设备的结构示意图,该计算机设备可以是图15所示AP设备,或者是图16-图18任一所示的ML设备。参见图19,该计算机设备包括至少一个处理器1801、通信总线1802、存储器1803以及至少一个通信接口1804。
处理器1801可以是一个通用中央处理器(Central Processing Unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者可以是一个或多个用于控制本申请方案程序执行的集成电路。
通信总线1802可包括一通路,用于在上述组件之间传送信息。
存储器1803可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc  Read-Only Memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器1803可以是独立存在,并通过通信总线1802与处理器1801相连接。存储器1803也可以和处理器1801集成在一起。
通信接口1804使用任何收发器一类的装置,用于与其它设备或通信网络通信,如以太网,无线接入网(Radio Access Network,RAN)、无线局域网(Wireless Local Area Networks,WLAN)等。
在具体实现中,作为一种实施例,处理器1801可以包括一个或多个CPU,如图19中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,计算机设备可以包括多个处理器,如图19中所示的处理器1801和处理器1805。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(如计算机程序指令)的处理核。
上述的计算机设备可以是一个通用计算机设备或一个专用计算机设备。在具体实现中,计算机设备可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备或嵌入式设备,本申请实施例不限定计算机设备的类型。
其中,存储器1803用于存储执行本申请方案的程序代码1810,处理器1801用于执行存储器1803中存储的程序代码1810。该计算机设备可以通过处理器1801以及存储器1803中的程序代码210,来实现本申请中对应的方法实施例。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(Digital Subscriber Line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质,或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(Digital Versatile Disc,DVD))或半导体介质(例如:固态硬盘(Solid State Disk,SSD))等。
以上所述为本申请提供的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种多频段通信方法,其特征在于,所述方法包括:
    在接入点AP设备对站点STA设备进行认证的过程中,所述AP设备向所述STA设备发送目标报文,所述AP设备包括多个AP,所述多个AP工作在不同的频段上;
    其中,所述目标报文中包括多个多频段元素,所述多个多频段元素与所述多个AP一一对应,所述多个多频段元素中的每个多频段元素中包含对应的AP的频段信息,所述多个多频段元素用于指示所述STA设备与所述多个AP进行关联和秘钥派生。
  2. 如权利要求1所述的方法,其特征在于,所述目标报文是在关联过程中产生的关联响应帧,和/或,所述目标报文是在秘钥派生过程中产生的秘钥消息。
  3. 如权利要求2所述的方法,其特征在于,当所述目标报文是在秘钥派生过程中产生的秘钥消息时,所述目标报文中还包括健壮安全网络信息元素,所述健壮安全网络信息元素中包含请求类型,所述请求类型是单链路关联类型及对应的秘钥派生类型,或者所述请求类型是多链路关联类型及对应的秘钥派生类型。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述STA设备包括多个STA,所述多个STA工作在不同的频段上,所述多个STA的介质访问控制MAC地址不同,所述多个STA对应第一服务访问点SAP,所述多个AP对应第二服务访问点SAP;
    所述STA设备向所述AP设备发送的关联请求帧中包括第一信息元素,所述第一信息元素中包含所述第一SAP的MAC地址;或者,所述STA设备向所述AP设备发送的关联请求帧的帧头的地址字段中包含所述第一SAP的MAC地址;其中,所述第一SAP的MAC地址用于在秘钥派生过程中生成秘钥;
    所述AP设备向所述STA设备发送的关联响应帧中包括第二信息元素,所述第二信息元素中包含所述第二SAP的MAC地址;或者,所述AP设备向所述STA设备发送的关联响应帧的帧头的地址字段中包含所述第二SAP的MAC地址;其中,所述第二SAP的MAC地址用于在秘钥派生过程中生成秘钥。
  5. 如权利要求4所述的方法,其特征在于,所述第一信息元素中还包含用于指示所述STA设备优先采用的加密算法的指示信息,和/或,所述第一信息元素中还包含所述多个STA中每个STA的MAC地址;
    所述第二信息元素中还包含用于指示所述AP设备优先采用的加密算法的指示信息,和/或,所述第二信息元素中还包含所述多个AP中每个AP的MAC地址。
  6. 如权利要求1-3任一所述的方法,其特征在于,所述STA设备向所述AP设备发送的关联请求帧中包括第三信息元素,所述第三信息元素中包含多AP关联指示信息,所述多AP关联指示信息用于请求同时与所述多个AP进行关联和秘钥派生;
    所述AP设备向所述STA设备发送的关联响应帧中包括第二信息元素,所述第二信息元素中包含所述第二SAP的MAC地址;或者,所述AP设备向所述STA设备发送的关联响应帧的帧头的地址字段中包含所述第二SAP的MAC地址;其中,所述第二SAP的MAC地址用于在秘钥派生过程中生成秘钥。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述多个AP中每个AP发送的信标帧中包括接入控制策略信息元素,所述接入控制策略信息元素中包含所述多个AP的数量、所述多个AP中每个AP的接入策略、切换阈值指示信息、或STA关联限制中的至少一个;
    其中,所述切换阈值指示信息用于指示STA设备在信号质量下降到第一阈值时进行AP切换,所述STA关联限制用于指示所述多个AP中每个AP允许关联的STA类型。
  8. 如权利要求7所述的方法,其特征在于,对于所述多个AP中的任意一个AP,所述一个AP的接入策略包括业务策略、或超时信息中的至少一个;
    其中,所述业务策略用于指示所述一个AP允许传输的数据包的最高接入类别AC或通信标识符TID,所述超时信息用于指示STA设备在预设时长内未接收到所述一个AP允许传输的最高AC或TID的数据包时进行AP切换。
  9. 一种多频段通信方法,其特征在于,所述方法包括:
    在两个多链路ML设备进行快速会话转移FST的过程中,一个ML设备向另一个ML设备发送FST帧,所述FST帧中包括多频段元素;
    其中,所述多频段元素中包括包级多链路聚合支持packet-level MLA supported字段,所述packet-level MLA supported字段用于指示是否支持packet-level多链路聚合。
  10. 如权利要求9所述的方法,其特征在于,所述两个ML设备中的一个ML设备是站点STA设备,另一个ML设备是接入点AP设备;
    所述STA设备发送给所述AP设备的FST帧中的多频段元素包括非同一位置支持Noncollocated supported字段,所述Noncollocated supported字段用于指示是否支持Noncollocated多链路聚合。
  11. 如权利要求9或10所述的方法,其特征在于,所述两个ML设备中的一个ML设备是STA设备,另一个ML设备是AP设备;
    所述AP设备发送给所述STA设备的FST帧中的多频段元素包括多频段连接能力字段,所述多频段连接能力字段中包含非同一位置接入点Noncollocated AP指示位,所述Noncollocated AP指示位用于指示是否支持与属于其它物理设备的AP进行多链路聚合。
  12. 如权利要求9所述的方法,其特征在于,所述两个ML设备中的一个ML设备是STA设备,另一个ML设备是AP设备,所述STA设备发送给所述AP设备的FST帧中包括移动性域元素;
    所述移动性域元素中包括Noncollocated supported字段,所述Noncollocated supported字 段用于指示是否支持Noncollocated多链路聚合;或者,所述移动性域元素中包括非同一位置流级多链路聚合支持Noncollocated flow-level MLA Supported字段和非同一位置包级多链路聚合支持Noncollocated packet-level MLA Supported字段,所述Noncollocated flow-level MLA Supported字段用于指示在进行flow-level多链路聚合时是否支持Noncollocated多链路聚合,所述Noncollocated packet-level MLA Supported字段用于指示在进行packet-level多链路聚合时是否支持Noncollocated多链路聚合。
  13. 如权利要求9-12任一所述的方法,其特征在于,所述多频段元素中还包括第一标志位,所述第一标志位用于指示所述多频段元素中是否包括链路标识字段,所述链路标识字段用于指示所述两个ML设备要将FST会话转移到的频段。
  14. 如权利要求9-12任一所述的方法,其特征在于,所述多频段元素中还包括第二标志位,所述第二标志位用于指示所述多频段元素中是否包括多频段控制字段,所述多频段控制字段中包括所述packet-level MLA supported字段。
  15. 一种多频段通信方法,其特征在于,所述方法包括:
    两个多链路ML设备在进行包级packet-level多链路聚合的过程中,所述两个ML设备使用各自的服务访问点SAP的介质访问控制MAC地址进行通信,每个ML设备的SAP对应所述每个ML设备包括的多个网络接口。
  16. 如权利要求15所述的方法,其特征在于,在所述两个ML设备的通信过程中,所述两个ML设备中的一个ML设备向另一个ML设备发送的数据帧的地址字段中包含所述另一个ML设备的SAP的MAC地址。
  17. 如权利要求15或16所述的方法,其特征在于,
    在所述两个ML设备的通信过程中,所述两个ML设备中的一个ML设备向另一个ML设备发送的控制帧的地址字段中包含所述另一个ML设备的SAP的MAC地址或包含所述另一个ML设备的一个网络接口的MAC地址,且所述一个ML设备向所述另一个ML设备发送的管理帧的地址字段中包含所述另一个ML设备的SAP的MAC地址或包含所述另一个ML设备的一个网络接口的MAC地址;或者
    在所述两个ML设备的通信过程中,所述两个ML设备中的一个ML设备向另一个ML设备发送的控制帧和管理帧的地址字段中均包含所述另一个ML设备的一个网络接口的MAC地址;或者
    在所述两个ML设备的通信过程中,所述两个ML设备中的一个ML设备向另一个ML设备发送的指定控制帧的地址字段中包含所述另一个ML设备的SAP的MAC地址,且所述一个ML设备向所述另一个ML设备发送的管理帧和除所述指定控制帧之外的控制帧的地址字段中均包含所述另一个ML设备的一个网络接口的MAC地址。
  18. 如权利要求15-17任一所述的方法,其特征在于,在所述两个ML设备的通信过程 中,所述两个ML设备中的一个ML设备向另一个ML设备发送的控制帧的帧头中包括聚合控制字段,所述聚合控制字段中包括多链路实体标识符和控制信息。
  19. 如权利要求15-18任一所述的方法,其特征在于,在所述两个ML设备的通信过程中,所述两个ML设备中的一个ML设备向另一个ML设备发送的行动帧中包括类别字段,所述类别字段的值与快速会话转移FST帧中包括的类别字段的值相同。
  20. 如权利要求19所述的方法,其特征在于,当所述行动帧是多链路聚合设置请求帧或多链路聚合设置响应帧时,所述行动帧中包括第四信息元素,所述第四信息元素用于指示多链路实体信息。
  21. 如权利要求20所述的方法,其特征在于,所述第四信息元素包括是否是同一位置字段、多链路聚合发起端MAC地址字段、多链路聚合响应端MAC地址字段、多链路实体标识符字段、导航信道信息字段、或成员链路信息列表字段中的至少一个,所述成员链路信息列表字段用于指示每个成员链路的信息。
  22. 一种接口参数更新方法,其特征在于,所述方法包括:
    多链路ML设备根据自身包括的多个网络接口中每个网络接口的状态变化,更新所述多个网络接口中已开启的网络接口的参数,所述参数包括能力信息、或操作参数中的至少一个,所述多个网络接口工作在不同的频段上,所述多个网络接口共享所述ML设备中配置的天线。
  23. 如权利要求22所述的方法,其特征在于,所述多链路ML设备根据自身包括的多个网络接口中每个网络接口的状态变化,更新所述多个网络接口中已开启的网络接口的参数,包括:
    所述ML设备在开启所述多个网络接口中的一个网络接口或在关闭所述多个网络接口中的一个网络接口后,配置所述多个网络接口中已开启的所有网络接口中每个网络接口的参数,并通过已开启的每个网络接口发送已开启的所有网络接口的参数。
  24. 如权利要求22或23所述的方法,其特征在于,所述参数包括配置的收发天线数、最大可支持的发送或接收的流数、是否支持与其它网络接口同时收发、当链路存在邻近信道干扰时所述链路两端的设备所允许采用的最高调制编码方式及所述链路的发送端需要预留的安全余量、信道带宽、或发射功率中的至少一个。
  25. 一种接入点AP设备,其特征在于,所述AP设备包括用于实现权利要求1-8中的任一方法的模块。
  26. 一种多链路ML设备,其特征在于,所述ML设备包括用于实现权利要求9-24中的任一方法的模块。
  27. 一种接入点AP设备,其特征在于,所述AP设备包括存储器和处理器,所述存储器存储用于执行权利要求1-8中的任一方法的程序,所述处理器调用所述存储器中存储的程序,以执行权利要求1-8中的任一方法。
  28. 一种多链路ML设备,其特征在于,所述ML设备包括存储器和处理器,所述存储器存储用于执行权利要求9-24中的任一方法的程序,所述处理器调用所述存储器中存储的程序,以执行权利要求9-24中的任一方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1-24中的任一方法。
  30. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1-24中的任一方法。
  31. 一种芯片,其特征在于,所述芯片包括处理电路和接口电路,所述接口电路用于接收指令并传输至所述处理电路,所述处理电路用于执行权利要求1-24中的任一方法。
PCT/CN2020/120951 2019-11-22 2020-10-14 多频段通信、接口参数更新方法及相关设备 WO2021098415A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022529747A JP2023502719A (ja) 2019-11-22 2020-10-14 マルチバンド通信、インターフェース・パラメータ更新方法、および関連装置
BR112022009776A BR112022009776A2 (pt) 2019-11-22 2020-10-14 Método de comunicação de múltiplas bandas, de atualização de parâmetro de interface, e dispositivo relacionado
EP20890893.9A EP4050922A4 (en) 2019-11-22 2020-10-14 MULTI-BAND COMMUNICATIONS AND INTERFACE PARAMETERS UPDATE PROCEDURES AND ASSOCIATED DEVICES
US17/749,349 US20220286194A1 (en) 2019-11-22 2022-05-20 Multi-band communication, interface parameter update method, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911159823.8A CN112839332A (zh) 2019-11-22 2019-11-22 多频段通信、接口参数更新方法、ap设备和ml设备
CN201911159823.8 2019-11-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/749,349 Continuation US20220286194A1 (en) 2019-11-22 2022-05-20 Multi-band communication, interface parameter update method, and related device

Publications (1)

Publication Number Publication Date
WO2021098415A1 true WO2021098415A1 (zh) 2021-05-27

Family

ID=75921950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120951 WO2021098415A1 (zh) 2019-11-22 2020-10-14 多频段通信、接口参数更新方法及相关设备

Country Status (6)

Country Link
US (1) US20220286194A1 (zh)
EP (1) EP4050922A4 (zh)
JP (1) JP2023502719A (zh)
CN (1) CN112839332A (zh)
BR (1) BR112022009776A2 (zh)
WO (1) WO2021098415A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063046A1 (ja) * 2022-09-21 2024-03-28 キヤノン株式会社 通信装置、通信装置の制御方法およびプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115776735A (zh) * 2021-09-07 2023-03-10 华为技术有限公司 一种应用于通道直接链路建立的传输方法及装置
CN116170780A (zh) * 2021-11-24 2023-05-26 华为技术有限公司 P2p链路的信息指示方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130156005A1 (en) * 2010-04-29 2013-06-20 Nokia Corporation Carrier allocation in wireless network
US20150117357A1 (en) * 2013-10-30 2015-04-30 Qualcomm Incorporated Techniques for aggregating data from wwan and wlan
US20190082373A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated Techniques for multi-link aggregation signaling
CN110167201A (zh) * 2018-09-30 2019-08-23 腾讯科技(深圳)有限公司 一种数据传输的方法、相关装置以及系统
CN110199549A (zh) * 2017-01-19 2019-09-03 高通股份有限公司 基于分组的链路聚合架构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345158A (ja) * 2005-06-08 2006-12-21 Nec Infrontia Corp 無線lan端末装置、無線lanシステム及びプログラム
KR101377948B1 (ko) * 2006-04-28 2014-03-25 엘지전자 주식회사 멀티모드 이동 단말의 제어 정보 송수신 방법
EP1858210A1 (en) * 2006-05-19 2007-11-21 Whitestein Information Technology Group AG Method and system for adaptive communication service access
US8340578B2 (en) * 2009-10-05 2012-12-25 Apple Inc. Methods and apparatus for enhanced coexistence algorithms in wireless systems
WO2014065002A1 (ja) * 2012-10-26 2014-05-01 株式会社日立国際電気 マルチチャネル無線通信システム、基地局、チャネル利用方法
US20150289299A1 (en) * 2014-04-03 2015-10-08 Qualcomm Incorporated Multichannel link aggregation with tdls
US20180192122A1 (en) * 2017-01-05 2018-07-05 Blackfire Research Corporation Enhanced home media experience using a wireless media hub
JP6901082B2 (ja) * 2017-03-30 2021-07-14 株式会社国際電気通信基礎技術研究所 無線通信装置および無線通信方法
US11032207B2 (en) * 2017-11-17 2021-06-08 Qualcomm Incorporated Link aggregation with floating primary link
US10742374B2 (en) * 2018-01-12 2020-08-11 Samsung Electronics Co., Ltd. Systems and methods for providing high data throughput in 6 GHz Wi-Fi network
US11510261B2 (en) * 2019-09-26 2022-11-22 Qualcomm Incorporated Address translation for multi-link operation in a wireless local area network (WLAN)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130156005A1 (en) * 2010-04-29 2013-06-20 Nokia Corporation Carrier allocation in wireless network
US20150117357A1 (en) * 2013-10-30 2015-04-30 Qualcomm Incorporated Techniques for aggregating data from wwan and wlan
CN110199549A (zh) * 2017-01-19 2019-09-03 高通股份有限公司 基于分组的链路聚合架构
US20190082373A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated Techniques for multi-link aggregation signaling
CN110167201A (zh) * 2018-09-30 2019-08-23 腾讯科技(深圳)有限公司 一种数据传输的方法、相关装置以及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050922A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063046A1 (ja) * 2022-09-21 2024-03-28 キヤノン株式会社 通信装置、通信装置の制御方法およびプログラム

Also Published As

Publication number Publication date
BR112022009776A2 (pt) 2022-08-09
EP4050922A1 (en) 2022-08-31
US20220286194A1 (en) 2022-09-08
EP4050922A4 (en) 2022-12-14
CN112839332A (zh) 2021-05-25
JP2023502719A (ja) 2023-01-25

Similar Documents

Publication Publication Date Title
US10966139B2 (en) Apparatus and method for routing data packet to user equipment in LTE-WLAN aggregation system
US11438941B2 (en) Communication method and communications apparatus
US20220303356A1 (en) Multi-link device (mld) configured for multi-band operation using single mac service access point (sap)
WO2021098415A1 (zh) 多频段通信、接口参数更新方法及相关设备
CN106465178B (zh) 集成rat系统以及控制集成rat架构的方法和设备
ES2658915T3 (es) Agregación oportuna de portadoras para una conmutación de flujos dinámica entre tecnologías de acceso radioeléctrico
TWI486088B (zh) 在無線網路及蜂巢式網路之間的互通基地台
US9426649B2 (en) Apparatus, system and method of securing communications of a user equipment (UE) in a wireless local area network
US11924823B2 (en) Multi-link device association and reassociation
US9258817B2 (en) Direct link setup method and channel allocation method in multi-channel wireless communication network
US10555356B2 (en) Methods of operating network nodes in a communication network, and network nodes implementing the same
AU2018202590A1 (en) Apparatus, system and method of securing communications of a user equipment (ue) in a wireless local area network
US10999757B2 (en) Method and apparatus for reducing processing load between terminal and base station when applying new QoS model in next-generation mobile communication system
WO2022052708A1 (zh) 无线通信系统中的多链路建立方法及通信装置
WO2013166907A1 (zh) 网络接入方法及装置
US20150117310A1 (en) Method and apparatus to route packet flows over two transport radios
KR20200131482A (ko) 무선 통신 시스템에서 임베디드 rrc 연결 재개 절차를 수행하는 방법 및 장치
JP2015518689A (ja) データ分流のための方法およびデバイス
KR20200039518A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2020156385A1 (zh) 传输方法和装置
US20220217593A1 (en) Communication method and apparatus
WO2023115301A1 (zh) 数据传输方法、装置、计算机设备及存储介质
WO2023044610A1 (zh) 一种识别mac ce类型的方法及装置、终端设备、网络设备
WO2020062176A1 (zh) 无线通信方法、终端设备和接入网设备
KR20240066843A (ko) 멀티 링크를 지원하는 무선 통신 시스템에서 블록 ack의 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529747

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022009776

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020890893

Country of ref document: EP

Effective date: 20220525

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022009776

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220519