WO2020156385A1 - 传输方法和装置 - Google Patents

传输方法和装置 Download PDF

Info

Publication number
WO2020156385A1
WO2020156385A1 PCT/CN2020/073574 CN2020073574W WO2020156385A1 WO 2020156385 A1 WO2020156385 A1 WO 2020156385A1 CN 2020073574 W CN2020073574 W CN 2020073574W WO 2020156385 A1 WO2020156385 A1 WO 2020156385A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
transmission
processing
time
transmission time
Prior art date
Application number
PCT/CN2020/073574
Other languages
English (en)
French (fr)
Inventor
刘哲
冯淑兰
柴洪林
张兴炜
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20748983.2A priority Critical patent/EP3911079A4/en
Publication of WO2020156385A1 publication Critical patent/WO2020156385A1/zh
Priority to US17/388,699 priority patent/US11895045B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to communication technology, and in particular to a transmission method and device.
  • CA Carrier Aggregation
  • LTE and NR dual connectivity defined in 38.213 protocol including intraband E-UTRA and NR dual connectivity with MCG using E-UTRA and SCG using NR, EN-DC
  • interband EN-DC power control description
  • the terminal device configures the maximum power P LTE through the high-level parameter p-MaxEUTRA, for SCG transmission
  • the terminal device configures the maximum power P NR through the high-level parameter p- NR
  • the terminal device uses P LTE as the maximum transmission power for MCG transmission
  • the terminal equipment uses P NR as the maximum transmission power as the SCG transmission power constraint.
  • the dynamic power sharing of EN-DC means that the terminal equipment If the terminal equipment reports that E-UTRA and NR dynamic power sharing is possible, and Is the transmit power of MCG, Is the SCG transmit power, by putting To reduce the power limit to ensure with The sum does not exceed
  • intraband CA and intraband EN-DC when the terminal device performs CA, there is only one power amplifier (PA).
  • PA power amplifier
  • the channels transmitted by carrier 1 and carrier 2 are not aligned in the time domain. And there are parts of overlapping transmission, so the power transmitted by carrier 1 and carrier 2 is divided into three parts, which cannot be handled in the case of only one PA, because PA power adjustment requires excessive power conversion time. Generally Is 10 microseconds.
  • a solution is to report the capability of a terminal device to indicate whether the terminal device supports the ability to handle unaligned overlapping transmissions, but this does not substantially solve the problem of how to handle unaligned overlapping transmissions.
  • This application provides a transmission method and device to avoid frequent power conversion and solve the power control problem in transmission.
  • the present application provides a transmission method including: determining a processing channel, the processing channel is the first channel or the second channel, the first channel is transmitted on the first carrier, and the second channel is transmitted on the second carrier.
  • the first channel and the second channel have different start transmission time or end transmission time, and the first channel and the second channel have overlapping transmission parts in the time domain; the overlapping transmission part in the processing channel is not sent.
  • This application avoids frequent power conversion and solves the power control problem in overlapping transmissions by not sending the part of a certain channel that is overlapped with other channels.
  • it further includes: not sending the conversion part in the processing channel, the conversion part is a part corresponding to the predefined duration in the processing channel, and the conversion part and the overlapping transmission part are adjacent in the time domain.
  • determining the processing channel includes: determining a channel transmitted by a sub-carrier spacing of the partial bandwidth BWP of the first carrier and the second carrier with a smaller SCS or a carrier with a smaller SCS as the processing channel.
  • determining the processing channel further includes: if the SCS of the BWP of the first carrier and the second carrier are equal or the SCS of the carrier is equal, according to the initial transmission time of the first channel and the second channel The initial transmission time, the channel with the later initial transmission time is determined as the processing channel, or the channel with the later end transmission time is determined as the processing channel according to the end transmission time of the first channel and the end transmission time of the second channel .
  • determining the processing channel further includes: if the SCS of the BWP of the first carrier and the second carrier are equal or the SCS of the carriers are equal, then the priority of the channel of the first channel and the second channel is lower Determined as the processing channel.
  • determining the processing channel includes: determining the first channel and the second channel with a lower channel priority as the processing channel.
  • determining the processing channel further includes: if the channel priorities of the first channel and the second channel are equal, according to the initial transmission time of the first channel and the initial transmission time of the second channel, The channel with the later start transmission time is determined as the processing channel, or the channel with the later end transmission time is determined as the processing channel according to the end transmission time of the first channel and the end transmission time of the second channel.
  • determining the processing channel includes: determining the longer transmission duration of the first channel and the second channel as the processing channel, and the transmission duration includes the number of symbols occupied by the channel in the time domain.
  • determining the processing channel includes: when the overlapping transmission part of the first channel or the overlapping transmission part of the second channel includes the demodulation reference signal DMRS, combining the first channel and the second channel The channel that does not include DMRS is determined as the processing channel; when the overlapping transmission part of the first channel and the second channel include DMRS, the channel including the lower priority DMRS is determined as the processing channel.
  • the priority of the additional DMRS is lower; or the priority of the DMRS in the channel with a longer transmission duration is lower, and the transmission duration includes the number of symbols occupied by the channel in the time domain; or, the first The priority of the DMRS in the channel transmitted by the smaller SCS of the BWP or the smaller SCS of the carrier of the first carrier and the second carrier has a lower priority.
  • determining the processing channel further includes: if the priority of the DMRS included in the overlapping transmission part of the first channel and the overlapping transmission part of the second channel is equal, then according to the start of the first channel The initial transmission time and the initial transmission time of the second channel, the channel with the later initial transmission time is determined as the processing channel, or the transmission time will be terminated according to the termination transmission time of the first channel and the termination transmission time of the second channel The later channel is determined as the processing channel.
  • the method further includes: if the number of symbols in the overlapped transmission part is greater than the first preset threshold or the code rate of the overlapped transmission part is greater than the second preset threshold, then the processing channel is not sent, and the first preset The threshold and the second preset threshold are related to the modulation order and/or code rate.
  • it further includes: if the sum of the number of symbols of the overlapped transmission part and the conversion part is greater than the first preset threshold or the code rate of the overlap transmission part and the conversion part is greater than the second preset threshold, then The processing channel is not sent, and the first preset threshold and the second preset threshold are related to the modulation order and/or the code rate.
  • the channel when the number of symbols occupied by the non-sending part of the processing channel is too large, the channel may not be demodulated normally, and the terminal device can directly not send the entire channel to avoid transmission and demodulation, which wastes resources Case.
  • the present application provides an overlapping transmission method, including: when the third channel and the fourth channel are overlapped and transmitted in the time domain, the demodulation reference signal DMRS is included, and the DMRS in the third channel and the fourth channel are When the DMRS in the time domain are separated from each other by more than the predefined time length, the third channel and the fourth channel are both determined as the processing channel, and the start transmission time or the end transmission time of the third channel and the fourth channel are different; the processing channel is not sent The part of the overlapping transmission.
  • This application does not send part of the channel on both channels at the same time, does not send the part that overlaps the DMRS in the fourth channel on the third channel, and does not send the part that overlaps the DMRS in the third channel on the fourth channel In the transmission part, frequent power conversion is avoided, and the power control problem in overlapping transmission is solved.
  • not sending the part of the overlapping transmission processing channel including: abandoning the transmission of the first part of the third channel, and the first part is the overlapping transmission of the DMRS in the fourth channel in the time domain. Part; the second part of the fourth channel is abandoned for transmission, and the second part is the part that overlaps the transmission of the DMRS in the third channel in the time domain; the third part is abandoned for transmission, and the third part is the third channel or the third channel. Conversion part in four channels.
  • this application provides a transmission method, including: determining a processing channel, the processing channel is the fifth channel or the sixth channel, and the transmission link of the processing channel adopts NR access technology, and the fifth channel and the sixth channel In addition to the processing channel, the transmission link of another channel adopts LTE access technology.
  • the start transmission time or the end transmission time of the fifth channel and the sixth channel are different, and the fifth channel and the sixth channel overlap in the time domain.
  • the part of the transmission; the part that handles the overlapping transmission in the channel is not sent.
  • it further includes: not sending the conversion part in the processing channel, the conversion part is a part corresponding to the predefined duration in the processing channel, and the conversion part and the overlapping transmission part are adjacent in the time domain.
  • the method further includes: if the number of symbols in the overlapped transmission part is greater than the first preset threshold or the code rate of the overlapped transmission part is greater than the second preset threshold, then the processing channel is not sent, and the first preset The threshold and the second preset threshold are related to the modulation order and/or code rate.
  • it further includes: if the sum of the number of symbols of the overlapped transmission part and the conversion part is greater than the first preset threshold or the code rate of the overlap transmission part and the conversion part is greater than the second preset threshold, then The processing channel is not sent, and the first preset threshold and the second preset threshold are related to the modulation order and/or the code rate.
  • the channel when the number of symbols occupied by the non-sending part of the processing channel is too large, the channel may not be demodulated normally, and the terminal device can directly not send the entire channel to avoid transmission and demodulation, which wastes resources Case.
  • the processing channel is a random access channel
  • the method further includes: when it is confirmed that the random access channel needs to be sent again, sending the random access channel again with the power of the previous random access channel; or When it is confirmed that the random access channel needs to be sent again, the sum of the power of the random access channel sent last time and the preset power increment is sent again.
  • this application provides a power control method, including: performing power reduction on the random access channel, the transmission link of the random access channel adopts NR access technology; sending the random access channel; When accessing the channel, the random access channel is sent again with the power of the random access channel sent last time, or the random access channel is sent again with the sum of the power of the random access channel sent last time and the preset power increment.
  • this application provides a transmission device, including:
  • the first determining module is used to determine the processing channel.
  • the processing channel is the first channel or the second channel.
  • the first channel is transmitted on the first carrier, and the second channel is transmitted on the second carrier.
  • the start transmission time or the end transmission time are different, and the first channel and the second channel have overlapping transmission parts in the time domain; the first processing module is used for not sending the overlapping transmission part in the processing channel.
  • the first processing module is also used to not send the conversion part in the processing channel.
  • the conversion part is the part corresponding to the predefined duration in the processing channel, and the conversion part and the overlapping transmission part are in the time domain. Upper adjacent.
  • the first determining module is specifically configured to determine the channel transmitted by the subcarrier interval of the partial bandwidth BWP of the first carrier and the second carrier with the smaller SCS or the carrier with the smaller SCS as processing channel.
  • the first determining module is further configured to, if the SCS of the BWP of the first carrier and the second carrier are equal or the SCS of the carrier are equal, according to the initial transmission time of the first channel and the second channel
  • the channel with the later start transmission time is determined as the processing channel, or the channel with the later end transmission time is determined as the processing channel according to the end transmission time of the first channel and the end transmission time of the second channel channel.
  • the first determining module is further configured to compare the priority of the channels in the first channel and the second channel if the SCS of the BWP of the first carrier and the second carrier are equal or the SCS of the carriers are equal The lower one is determined as the processing channel.
  • the first determining module is specifically configured to determine the lower channel priority of the first channel and the second channel as the processing channel.
  • the first determining module is further configured to, if the channel priorities of the first channel and the second channel are equal, according to the initial transmission time of the first channel and the initial transmission time of the second channel , The channel with the later start transmission time is determined as the processing channel, or the channel with the later end transmission time is determined as the processing channel according to the end transmission time of the first channel and the end transmission time of the second channel.
  • the first determining module is specifically configured to determine the longer transmission duration of the first channel and the second channel as the processing channel, and the transmission duration includes the number of symbols occupied by the channel in the time domain.
  • the first determining module is specifically configured to combine the first channel and the second channel when the overlapping transmission part of the first channel or the second channel overlapping transmission part includes the demodulation reference signal DMRS
  • the channel that does not include the DMRS is determined as the processing channel; when the overlapping transmission part of the first channel and the overlapping transmission part of the second channel include DMRS, the channel including the lower priority DMRS is determined as the processing channel.
  • the priority of the additional DMRS is lower; or the priority of the DMRS in the channel with a longer transmission duration is lower, and the transmission duration includes the number of symbols occupied by the channel in the time domain; or, the first The priority of the DMRS in the channel transmitted by the smaller SCS of the BWP or the smaller SCS of the carrier of the first carrier and the second carrier has a lower priority.
  • the first determining module is further configured to: if the priority of the DMRS included in the overlapping transmission part of the first channel and the overlapping transmission part of the second channel is equal, then according to the first channel The initial transmission time and the initial transmission time of the second channel, the channel with the later initial transmission time is determined as the processing channel, or the transmission will be terminated according to the termination transmission time of the first channel and the termination transmission time of the second channel The later channel is determined as the processing channel.
  • the first processing module is further configured to not send processing if the number of symbols in the overlapped part is greater than the first preset threshold or the code rate of the overlapped part is greater than the second preset threshold.
  • the first preset threshold and the second preset threshold are related to the modulation order and/or the code rate.
  • the first processing module is further configured to: if the sum of the number of symbols of the overlapped transmission part and the conversion part is greater than the first preset threshold or the code rate of the overlap transmission part and the conversion part is greater than the second If the threshold is preset, the processing channel is not sent, and the first preset threshold and the second preset threshold are related to the modulation order and/or code rate.
  • this application provides an overlapping transmission device, including:
  • the second determining module is used when the part of the third channel and the fourth channel overlapped and transmitted in the time domain includes the demodulation reference signal DMRS, and the DMRS in the third channel and the DMRS in the fourth channel are separated from each other in the time domain
  • the duration is greater than the predefined duration
  • both the third channel and the fourth channel are determined as the processing channels, and the start transmission time or the end transmission time of the third channel and the fourth channel are different; the second processing module is used in the non-transmission processing channel Part of the overlapping transmission.
  • the second processing module is specifically configured to abandon the transmission of the first part of the third channel.
  • the first part is the part that overlaps the transmission of the DMRS in the fourth channel in the time domain;
  • the second part of the channel is abandoning transmission, and the second part is the part that overlaps the transmission of the DMRS in the third channel in the time domain;
  • the third part is abandoning the transmission, and the third part is the conversion in the third channel or the fourth channel section.
  • the present application provides a transmission device, including:
  • the third determining module is used to determine the processing channel, the processing channel is the fifth channel or the sixth channel, and the transmission link of the processing channel adopts the NR access technology, and the fifth channel and the sixth channel are other than the processing channel
  • the transmission link of the channel adopts LTE access technology, the start transmission time or the end transmission time of the fifth channel and the sixth channel are different, and the fifth channel and the sixth channel have overlapping transmission parts in the time domain; third processing The module is used to not send the part of the overlapping transmission processing channel.
  • the third processing module is also used to not send the conversion part in the processing channel.
  • the conversion part is the part corresponding to the predefined duration in the processing channel, and the conversion part and the overlapping transmission part are in the time domain. Upper adjacent.
  • the third processing module is further configured to not send processing if the number of symbols in the overlapped part is greater than the first preset threshold or the code rate of the overlapped part is greater than the second preset threshold.
  • the first preset threshold and the second preset threshold are related to the modulation order and/or the code rate.
  • the third processing module is further configured to: if the sum of the number of symbols of the overlapped transmission part and the conversion part is greater than the first preset threshold or the code rate of the overlap transmission part and the conversion part is greater than the second If the threshold is preset, the processing channel is not sent, and the first preset threshold and the second preset threshold are related to the modulation order and/or code rate.
  • the processing channel is a random access channel
  • the third processing module is also used for when it is confirmed that the random access channel needs to be sent again, then the power of the random access channel sent last time is sent again. Or, when it is confirmed that the random access channel needs to be sent again, the sum of the power of the random access channel sent last time and the preset power increment is sent again.
  • the present application provides a power control device, including:
  • the reduction module is used to reduce the power of the random access channel.
  • the transmission link of the random access channel adopts NR access technology; the sending module is used to send the random access channel; the processing module is used to send the random access channel again when the confirmation is required.
  • the random access channel is sent again with the power of the random access channel sent last time, or the random access channel is sent again with the sum of the power of the random access channel sent last time and the preset power increment.
  • this application provides a user equipment, including:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors implement the method in any one of the first to fourth aspects.
  • the present application provides a computer-readable storage medium, which stores instructions, and when the instructions are run on a computer, they are used in the method of any one of the first to fourth aspects.
  • this application provides a computer program, when the computer program is executed by a computer, it is used to execute the method in any one of the first to fourth aspects.
  • Figure 1 is a schematic diagram of channel transmission in the prior art
  • Figure 2 shows a schematic diagram of a communication system suitable for the present application
  • FIG. 3 shows a schematic diagram of another communication system suitable for the present application
  • FIG. 5 is a schematic diagram of channel transmission in Embodiment 1 of the transmission method of this application.
  • FIG. 6 is another schematic diagram of channel transmission in Embodiment 1 of the transmission method of this application.
  • FIG. 7 is another schematic diagram of channel transmission in Embodiment 1 of the transmission method of this application.
  • Embodiment 9 is a schematic diagram of channel transmission in Embodiment 2 of the transmission method of this application.
  • Embodiment 1 of a transmission device of this application.
  • Embodiment 11 is a schematic structural diagram of Embodiment 2 of a transmission device of this application.
  • FIG. 13 is a schematic structural diagram of an embodiment of a power control device according to this application.
  • FIG. 14 is a schematic structural diagram of an embodiment of a user equipment of this application.
  • FIG. 2 shows a schematic diagram of a communication system suitable for this application.
  • multiple terminal devices can access the same network device.
  • the network device sends downlink information to the terminal device for communication, and the terminal device sends the network device to the network device.
  • LTE access technology or NR access technology can be used for communication between network equipment and terminal equipment.
  • a terminal device can access the network device through two channels respectively through two access technologies.
  • a terminal device can access the network device through LTE access technology and NR access technology respectively.
  • Fig. 3 shows a schematic diagram of another communication system suitable for the present application.
  • the communication system may include at least two network devices, such as the two network devices shown in FIG. 3; the communication system may also include at least one terminal device, such as the terminal device shown in FIG.
  • the terminal device can establish wireless links with two network devices respectively through DC technology or multi-connection technology.
  • one network device may be a primary base station, and the other network device may be a secondary base station, for example.
  • the primary base station network device is the network device when the terminal device is initially connected, and is responsible for radio resource control (RRC) communication with the terminal device.
  • RRC radio resource control
  • the secondary base station network device can be added during RRC reconfiguration. , Used to provide additional wireless resources.
  • the terminal device can also establish wireless links with more network devices.
  • Each communication device such as the network device and terminal device in Figure 3, can be equipped with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , Demodulator, demultiplexer or antenna, etc.). Therefore, multiple antenna technology can be used to communicate between network devices and terminal devices.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal equipment in the embodiments of the present application may refer to user equipment, access terminals, subscriber units, user stations, mobile stations, mobile stations, remote stations, remote terminals, and mobile devices. , User terminal, terminal, wireless communication equipment, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the application does not limit this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to pass items through communication technology. Connect with the network to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the LTE system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evolved) in the LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evolved evolved base station
  • NodeB, eNB or eNodeB it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc. can be the access point (AP) in the WLAN, or the gNB in the new radio system (new radio, NR) system
  • the embodiment is not limited.
  • the access network device provides services for the cell, and the terminal device communicates with the access network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • It can be a cell corresponding to an access network device (such as a base station).
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: metro cell, micro cell ( Micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • a carrier in an LTE system or a 5G system can have multiple cells working at the same frequency at the same time.
  • the concept of the above-mentioned carrier and cell can also be considered equivalent.
  • CA carrier aggregation
  • the carrier index of the secondary carrier and the cell identification (Cell ID) of the secondary cell working on the secondary carrier will be carried at the same time.
  • Cell ID cell identification
  • the concept of carrier and cell is equivalent.
  • a terminal device accessing a carrier is equivalent to accessing a cell.
  • the core network device can be connected to multiple access network devices to control the access network device, and can distribute data received from the network side (for example, the Internet) to the access network device.
  • the network side for example, the Internet
  • the network equipment may include base stations (gNB), such as macro stations, micro base stations, indoor hotspots, and relay nodes, etc.
  • gNB base stations
  • the function is to send radio waves to terminal equipment, on the one hand to achieve downlink data transmission, and on the other
  • the aspect sends scheduling information to control uplink transmission, and receives radio waves sent by terminal equipment, and receives uplink data transmission.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • FIG. 4 is a flowchart of Embodiment 1 of the transmission method of this application.
  • the execution subject of this embodiment may be a terminal device, and the method may include:
  • Step 101 Determine the processing channel.
  • the processing channel is the first channel or the second channel, the first channel is transmitted on the first carrier, and the second channel is transmitted on the second carrier.
  • Channel transmission will occupy time-frequency resources on the carrier or bandwidth part (BWP).
  • Time-frequency resources refer to resources in the time domain and frequency domain.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the start transmission time or the end transmission time of the first channel and the second channel are different, and the first channel and the second channel have overlapping transmission parts in the time domain.
  • it is necessary to determine which channel is the processing channel in the first channel and the second channel which may include the following methods:
  • the channel with the later initial transmission time is determined as the processing channel according to the initial transmission time of the first channel and the initial transmission time of the second channel, or, According to the termination transmission time of the first channel and the termination transmission time of the second channel, the channel with the later termination transmission time is determined as the processing channel.
  • SCS subcarrier spacing
  • This method uses the SCS of the BWP of the first carrier and the second carrier or the SCS of the carrier as the main judgment condition, and the channel transmitted by the smaller one is the processing channel. If the main judgment condition cannot determine the processing channel, the channel priority is used as the secondary judgment condition, that is, the lower channel priority is the processing channel.
  • the channel priority can be determined by the information transmitted in the channel carried on the carrier.
  • the first channel is a physical uplink shared channel (PUSCH)
  • the PUSCH only carries data (data)
  • the second channel is also the PUSCH
  • the information carried by the PUSCH includes uplink control information (UCI), and UCI may include channel-state information (CSI), hybrid automatic repeat request (HARQ), scheduling request ( Scheduling request, SR), etc.
  • the second channel has a higher priority than the first channel. It should be noted that the determination of the channel priority also includes other implementation examples, which are not limited. If the secondary judgment condition cannot determine the processing channel, the transmission time of the channel is used as the third judgment condition, that is, the processing channel is the processing channel if the initial transmission time is later or the termination transmission time is later.
  • the channel with the later start transmission time is determined according to the start transmission time of the first channel and the start transmission time of the second channel.
  • the processing channel, or, according to the termination transmission time of the first channel and the termination transmission time of the second channel, the channel with the later termination transmission time is determined as the processing channel.
  • This method uses the SCS of the BWP of the first carrier and the second carrier or the SCS of the carrier as the main judgment condition, and the channel transmitted by the smaller one is the processing channel. If the main judgment condition cannot determine the processing channel, the transmission time of the channel is used as the secondary judgment condition, that is, the processing channel is the processing channel if the initial transmission time is later or the termination transmission time is later.
  • the channel with the later initial transmission time is determined as the processing channel according to the initial transmission time of the first channel and the initial transmission time of the second channel, or, According to the termination transmission time of the first channel and the termination transmission time of the second channel, the channel with the later termination transmission time is determined as the processing channel.
  • This method takes the channel priority as the main judgment condition without considering the SCS of the BWP or the SCS of the carrier, that is, the channel with the lower priority is the processing channel. If the main judgment condition cannot determine the processing channel, the transmission time of the channel is used as the secondary judgment condition, that is, the processing channel is the processing channel if the initial transmission time is later or the termination transmission time is later.
  • the transmission time includes the number of symbols occupied by the channel in the time domain, or the transmission of the channel is at the time slot level, or mini time slot (mini time slot). -slot) level.
  • PUSCH channel transmission in NR may occupy a different number of symbols, or the priority of channel transmission at slot level is lower than channel transmission at mini-slot level.
  • the method uses the transmission duration as the judgment condition.
  • the transmission duration includes the number of symbols occupied by the channel in the time domain.
  • the first channel and the second channel with the larger number of symbols are the processing channel.
  • the first channel is a mini-slot
  • the second channel is the transmission of the ordinary time slot, and the number of symbols occupied by the mini time slot is less than the number of symbols occupied by the ordinary time slot, then the second channel is the processing channel.
  • the channel with the later initial transmission time is determined as Processing channel.
  • This method uses the initial transmission time of the two channels as the judgment condition. Considering the time when the terminal device obtains the scheduling information of the first channel and the second channel, if the channel with the earlier initial transmission time starts to transmit, the terminal device has not Obtain the scheduling information of the channel with the later start transmission time. At this time, the terminal device may ignore other factors, including channel priority, BWP SCS size, carrier SCS size, etc., and directly transfer the channel with the later start transmission time As a processing channel. For example, the initial transmission time of the first channel is earlier than the initial transmission time of the second channel. When the initial transmission time of the first channel arrives, the terminal device has not received or demodulated the scheduling information of the second channel. Then the terminal device directly determines the second channel as the processing channel.
  • DMRS demodulation reference signal
  • the start transmission time of the first channel and the start transmission time of the second channel will start
  • the channel with the later transmission time is determined as the processing channel, or, according to the termination transmission time of the first channel and the termination transmission time of the second channel, the channel with the later transmission time termination is determined as the processing channel.
  • DMRS is used as the main judgment condition. If the overlapping transmission part of one of the first channel and the second channel includes DMRS, the other channel that does not include DMRS is the processing channel. That is, in order to ensure the demodulation of the PUSCH and PUCCH, it is necessary to ensure that the DMRS is transmitted, so the channel that does not include the DMRS can be sacrificed. If the overlapping transmission parts of the first channel and the second channel both include DMRS, the channel including the lower priority DMRS may be the processing channel according to the priority of the included DMRS. For example, the first channel includes front loaded DMRS (front loaded DMRS), and the second channel includes additional DMRS (additional DMRS).
  • the priority of additional DMRS is lower than front loaded DMRS, so the second channel is a processing channel.
  • the first channel is the transmission of mini time slots
  • the second channel is the transmission of ordinary time slots
  • the second channel is the processing channel.
  • the SCS of the BWP of the first carrier where the first channel is located is smaller than the SCS of the BWP of the second carrier where the second channel is located, so the first channel is a processing channel. If the main judgment condition cannot determine the processing channel when both channels include DMRS, the transmission time of the channel is used as the secondary judgment condition, that is, the processing channel is the one with the later start transmission time or the later end transmission time.
  • Step 102 Do not send the part of the overlapping transmission processing channel.
  • the terminal device After determining the processing channel, the terminal device solves the power control problem in the overlap transmission by not sending the overlapped transmission part of the processing channel, that is, at the symbol or time slot or subframe corresponding to the overlap transmission part, only send The channel is not processed to avoid frequent switching of power.
  • Step 102 may also be equivalent to sending a part of the processing channel except for the part of overlapping transmission.
  • the terminal device may also not send the conversion part in the processing channel.
  • the conversion part is a part corresponding to the predefined duration in the processing channel, and the conversion part to which it belongs is adjacent to the overlapping transmission part in the time domain. Similarly, it can be considered that the terminal device is a part of the transmission processing channel except for the part of the overlap transmission and the conversion part.
  • the predefined duration may be the duration required by the terminal device to perform power conversion, and it may be in units of symbols. For example, usually power conversion requires a conversion duration of 10 microseconds, and the terminal device may not transmit the corresponding portion of 10 microseconds before or after the overlapping transmission portion of the channel is processed, so that there is enough time to switch the power from transmitting and not processing the channel.
  • the terminal device may also not send m symbols corresponding to 10 microseconds according to the BWP or the SCS of the carrier, and m is a positive integer. For example, for a subcarrier interval of 15KHz, 10 microseconds corresponds to 1 symbol.
  • This embodiment avoids frequent power conversion and solves the problem of power control in overlapping transmissions by not sending parts of a certain channel that are overlapped with other channels.
  • the terminal device can determine whether the number of symbols in the overlapping transmission part is greater than the first preset threshold or whether the code rate of the overlapping transmission part is greater than the second preset threshold, if the number of symbols in the overlapping transmission part is If the code rate of the part that is greater than the first preset threshold or the overlapping transmission is greater than the second preset threshold, the processing channel is not sent.
  • the first preset threshold and the second preset threshold can be indicated by high-level signaling, for example, RRC signaling, MAC CE, or SIB, etc., or they can be pre-defined by network equipment and then configured to terminal equipment, or pre-defined
  • the first preset threshold and the second preset threshold are both related to the modulation order and/or code rate, for example, a possibility, modulation order And/or the code rate is high, the first preset threshold and the second preset threshold are small. If the modulation order or code rate is high, the channel has a large number of effective bits in the transmission of each symbol.
  • the transmission part and/or the conversion part that is, not sending a part of the effective transmission part, will cause the channel to fail to be demodulated.
  • the channel may not be demodulated normally, and the terminal device can directly not send the entire channel to avoid the situation that the transmission is not demodulated, thereby wasting resources.
  • the terminal equipment if the terminal equipment does not send the overlapped transmission part and the conversion part, the terminal equipment must judge the overlap transmission part and the conversion part together, that is, if the sum of the number of symbols of the overlap transmission part and the conversion part is greater than the first If a preset threshold or the code rate of the overlapping transmission part and the conversion part is greater than the second preset threshold, the processing channel is not sent.
  • carrier 1 transmits channel 1 and carrier 2 transmits channel 2.
  • Carrier 1 and carrier 2 are two carriers in the same band.
  • the initial transmission time of channel 1 is longer than that of channel 2.
  • the initial transmission time is early, channel 1 is PUSCH with data, and channel 2 is PUSCH with CSI, so the priority of channel 2 is higher than that of channel 1, and the processing channel is channel 1.
  • the terminal device does not send the overlapping transmission part and the conversion part in channel 1.
  • the conversion part is before the overlapping transmission part.
  • channel 1 is transmitted on carrier 1
  • channel 2 is transmitted on carrier 2.
  • Carrier 1 and carrier 2 are two carriers in the same band.
  • the initial transmission time of channel 1 is longer than the initial transmission time of channel 2.
  • channel 1 was PUSCH with CSI
  • channel 2 was PUSCH with data. Therefore, channel 1 has a higher priority than channel 2, and the processing channel is channel 2.
  • the terminal device does not send the overlapping transmission part and the conversion part in channel 2.
  • the conversion part is after the overlapping transmission part.
  • channel 1 is transmitted on carrier 1, and channel 2 is transmitted on carrier 2.
  • Carrier 1 and carrier 2 are two carriers in the same band, and the initial transmission time of channel 1 is longer than that of channel 2. The initial transmission time is early, channel 1 is PUSCH with data, and channel 2 is PUSCH with CSI, but the overlapping transmission part of channel 1 includes DMRS, so the processing channel is channel 2. At this time, the terminal device does not send the overlapping transmission part and the conversion part in channel 2. In view of the transmission sequence of channel 1 and channel 2, the conversion part is after the overlapping transmission part. As shown in Figure 8, carrier 1 transmits channel 1 and carrier 2 transmits channel 2. Carrier 1 and carrier 2 are two carriers in the same band.
  • the initial transmission time of channel 1 is longer than the initial transmission time of channel 2.
  • channel 1 was PUSCH with CSI
  • channel 2 was PUSCH with data
  • the overlapping transmission part of channel 2 included DMRS, so the processing channel was channel 1.
  • the terminal device does not send the overlapping transmission part and the conversion part in channel 1.
  • the conversion part is before the overlapping transmission part.
  • the overlapping transmission part of the third channel and the fourth channel of the terminal equipment includes DMRS, if the DMRS in the third channel and the DMRS in the fourth channel If the distance between each other in the time domain is greater than the predefined time, the third channel and the fourth channel are both determined as the processing channel, that is, the first part of the third channel is abandoned for transmission, and the first part is the time domain and the fourth channel.
  • the predefined duration may be the duration corresponding to the conversion part.
  • the two channels are not sent part of the channel at the same time, the part that overlaps the DMRS transmission in the fourth channel is not sent on the third channel, and the part of the DMRS in the third channel is not sent on the fourth channel.
  • DMRS overlaps the transmission part.
  • the terminal device may not transmit the portion of the third channel or the fourth channel that corresponds to the time required for power conversion, so that there is enough time to convert the power from the transmission unprocessed channel to the processed channel.
  • carrier 3 transmits channel 3
  • carrier 4 transmits channel 4
  • carrier 3 and carrier 4 are two carriers in the same band
  • the initial transmission time of channel 3 is longer than that of channel 4.
  • the initial transmission time is early
  • channel 3 is PUSCH with data
  • channel 4 is PUSCH with CSI
  • the overlapping transmission part of channel 3 and channel 4 includes DMRS
  • the DMRS in channel 3 and DMRS in channel 4 are in the time domain
  • the interval between each other is greater than the predefined duration.
  • the terminal device does not transmit the overlapping transmission parts in channel 3 and channel 4, and does not transmit the converted part of one of the channels.
  • whether the conversion part of channel 3 or channel 4 is not sent may depend on the priority and transmission sequence of the two channels, and there is no limitation on this.
  • the terminal device determines the processing channel.
  • the processing channel is the fifth channel or the sixth channel, and the transmission link of the processing channel adopts NR access technology.
  • the transmission link of the other channel in the sixth channel except the processing channel adopts LTE access technology.
  • the start transmission time or the end transmission time of the fifth channel and the sixth channel are different, and the fifth channel and the sixth channel are in time.
  • the channel on the transmission link using the NR access technology will not send the overlap transmission. Part of the processing. At this time, it has nothing to do with the channel priority and the signals included on the channel. If the number of symbols in the overlapping transmission part that is not sent in the processing channel is greater than the first preset threshold or the code rate of the overlapping transmission part is greater than the second preset threshold, the processing channel is not sent.
  • the first preset threshold and the second The preset thresholds are all related to the modulation order and/or code rate.
  • the channel may not be demodulated normally, and the terminal device can directly not send the entire channel to avoid the situation that the transmission is not demodulated, thereby wasting resources.
  • the terminal equipment if the terminal equipment does not send the overlapped transmission part and the conversion part, the terminal equipment must judge the overlap transmission part and the conversion part together, that is, if the sum of the number of symbols of the overlap transmission part and the conversion part is greater than the first If a preset threshold or the code rate of the overlapping transmission part and the conversion part is greater than the second preset threshold, the processing channel is not sent.
  • the terminal device may send the random access channel again with the power of the random access channel last time, or send the random access channel again by the sum of the power of the random access channel last time and the preset power increment.
  • the value of the preset power increment in this embodiment is smaller than the existing general power increment. For example, the power is usually increased by 3dB as a step size when doing power climbing. In this embodiment, in order to avoid random access channel transmission power Waste, save power, increase power in steps of 1dB.
  • the terminal device in order not to affect the transmission link using the LTE access technology, the terminal device reduces the power of the random access channel using the NR access technology on the transmission link and sends the random access channel.
  • Access channel if the terminal device confirms that the random access channel needs to be sent again, the power of the random access channel sent last time is sent again to the random access channel, or the power of the random access channel sent last time and the preset The sum of the power increments is sent again on the random access channel.
  • the value of the preset power increment in this embodiment is smaller than the existing general power increment. For example, the power is usually increased by 3dB as a step size when doing power climbing. In this embodiment, in order to avoid random access channel transmission power Waste, save power, increase power in steps of 1dB.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a transmission device of this application.
  • the device of this embodiment may include: a first determining module 11 and a first processing module 12, where the first determining module 11 is configured to Determine the processing channel, the processing channel is the first channel or the second channel, the first channel is transmitted on the first carrier, and the second channel is transmitted on the second carrier.
  • the start transmission time or the end transmission time of the two channels are different, and the first channel and the second channel have overlapping transmission parts in the time domain; the first processing module 12 is used for not sending the processing channel Part of the overlapping transmission.
  • the first processing module 12 is further configured to not send the conversion part in the processing channel, and the conversion part is the part corresponding to the predefined duration in the processing channel.
  • the conversion part and the overlapping transmission part are adjacent in the time domain.
  • the first determining module 11 is specifically configured to determine the sub-carrier spacing SCS of the partial bandwidth BWP of the first carrier and the second carrier, whichever is smaller, or the SCS of the carrier is smaller
  • the channel transmitted by the user is determined as the processing channel.
  • the first determining module 11 is further configured to: if the SCS of the BWP of the first carrier and the second carrier are equal or the SCS of the carriers are equal, according to the first channel
  • the initial transmission time of the first channel and the initial transmission time of the second channel, the channel with a later initial transmission time is determined as the processing channel, or according to the termination transmission time of the first channel and the second channel
  • the channel whose termination transmission time is later is determined as the processing channel.
  • the first determining module 11 is further configured to: if the SCS of the BWP of the first carrier and the second carrier are equal or the SCS of the carriers are equal, then the first channel And the second channel with a lower channel priority is determined as the processing channel.
  • the first determining module 11 is specifically configured to determine the lower channel priority of the first channel and the second channel as the processing channel.
  • the first determining module 11 is further configured to, if the channel priorities of the first channel and the second channel are equal, according to the initial transmission time of the first channel And the start transmission time of the second channel, the channel with the later start transmission time is determined as the processing channel, or according to the end transmission time of the first channel and the end transmission time of the second channel , The channel whose transmission time is terminated later is determined as the processing channel.
  • the first determining module 11 is specifically configured to determine the longer transmission time of the first channel and the second channel as the processing channel, and the transmission time includes The number of symbols occupied by the channel in the time domain.
  • the first determining module 11 is specifically configured to: when the overlapping transmission part of the first channel or the overlapping transmission part of the second channel includes a demodulation reference When the signal is DMRS, the channel that does not include the DMRS among the first channel and the second channel is determined as the processing channel; when the overlapped transmission part of the first channel and the second channel When the part of the overlapping transmission includes the DMRS, the channel including the lower priority DMRS is determined as the processing channel.
  • the priority of the additional DMRS is lower; or, the priority of the DMRS in a channel with a longer transmission duration is lower, and the transmission duration includes the number of symbols occupied by the channel in the time domain.
  • the first determining module 11 is further configured to: if the overlapping transmission part of the first channel and the overlapping transmission part of the second channel each include all If the priorities of the DMRS are equal, the channel with the later transmission time is determined as the processing channel according to the initial transmission time of the first channel and the initial transmission time of the second channel, or according to For the termination transmission time of the first channel and the termination transmission time of the second channel, a channel with a later termination transmission time is determined as the processing channel.
  • the first processing module 12 is further configured to: if the number of symbols of the overlapping transmission part is greater than a first preset threshold or the code rate of the overlapping transmission part is greater than the second preset If a threshold is set, the processing channel is not sent, and the first preset threshold and the second preset threshold are related to the modulation order and/or code rate.
  • the first processing module 11 is further configured to: if the sum of the number of symbols of the overlapped transmission part and the conversion part is greater than a first preset threshold or the overlapped transmission part If the code rate of the conversion part is greater than the second preset threshold, the processing channel is not sent, and the first preset threshold and the second preset threshold are related to the modulation order and/or the code rate.
  • the device in this embodiment can be used to implement the technical solutions of any of the method embodiments shown in FIGS. 4-8, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of the transmission device of this application.
  • the device of this embodiment may include: a second determining module 21 and a second processing module 22, wherein the second determining module 21 is used for When the third channel and the fourth channel overlapped and transmitted in the time domain, the demodulation reference signal DMRS is included, and the DMRS in the third channel and the DMRS in the fourth channel are mutually in the time domain.
  • the third channel and the fourth channel are both determined as processing channels, and the start transmission time or the end transmission time of the third channel and the fourth channel are different; second processing The module 22 is configured to not send the part of the overlapping transmission in the processing channel.
  • the second processing module 22 is specifically configured to abandon the transmission of the first part of the third channel, and the first part is the time domain and the fourth channel.
  • the device of this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 9, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a transmission device of this application.
  • the device of this embodiment may include: a third determining module 31 and a third processing module 32, wherein the third determining module 31 is used for Determine the processing channel, the processing channel is the fifth channel or the sixth channel, and the transmission link of the processing channel adopts NR access technology, except for the processing channel in the fifth channel and the sixth channel
  • the transmission link of the other channel adopts LTE access technology, the start transmission time or the end transmission time of the fifth channel and the sixth channel are different, and the fifth channel and the sixth channel are in time
  • the third processing module 32 is configured to not send the overlapping transmission part in the processing channel.
  • the third processing module 32 is further configured to not send the conversion part in the processing channel, and the conversion part is the part corresponding to the predefined duration in the processing channel.
  • the conversion part and the overlapping transmission part are adjacent in the time domain.
  • the third processing module 32 is further configured to: if the number of symbols of the overlapped transmission part is greater than a first preset threshold or the code rate of the overlapped transmission part is greater than the second preset If a threshold is set, the processing channel is not sent, and the first preset threshold and the second preset threshold are related to the modulation order and/or code rate.
  • the third processing module 32 is further configured to: if the sum of the number of symbols of the overlapped transmission part and the conversion part is greater than a first preset threshold or the overlapped transmission part If the code rate of the conversion part is greater than the second preset threshold, the processing channel is not sent, and the first preset threshold and the second preset threshold are related to the modulation order and/or the code rate.
  • the processing channel is a random access channel
  • the third processing module 32 is further configured to send the random access channel last time when it is confirmed that the random access channel needs to be sent again.
  • the power of the access channel sends the random access channel again; or, when it is confirmed that the random access channel needs to be sent again, the sum of the power of the random access channel sent last time and the preset power increment is sent again Sending the random access channel.
  • FIG. 13 is a schematic structural diagram of an embodiment of a power control device of this application.
  • the device of this embodiment may include: a reduction module 41, a sending module 42 and a processing module 43.
  • the reduction module 41 is used to The access channel performs power reduction, and the transmission link of the random access channel adopts NR access technology;
  • the sending module 42 is used to send the random access channel;
  • the processing module 43 is used to send the In the case of random access channel, the power of the random access channel was sent last time and the random access channel is sent again, or the sum of the power of the random access channel sent last time and the preset power increment is sent again The random access channel.
  • FIG. 14 is a schematic structural diagram of an embodiment of a user equipment of this application.
  • the user equipment includes a processor 50, a memory 51, and a communication device 52; the number of processors 50 in the user equipment may be one or more.
  • a processor 50 is taken as an example in 14; the processor 50, the memory 51, and the communication device 52 in the user equipment may be connected through a bus or other methods. In FIG. 14, the connection through a bus is taken as an example.
  • the memory 51 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the method in any of the embodiments shown in FIGS. 4-9 of this application.
  • the processor 50 executes various functional applications and data processing of the user equipment by running the software programs, instructions, and modules stored in the memory 51, that is, realizes the aforementioned transmission method.
  • the memory 51 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, etc.
  • the memory 51 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 51 may further include a memory remotely provided with respect to the processor 50, and these remote memories may be connected to the user equipment through a network. Examples of the aforementioned networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication device 52 can be used to receive or transmit data.
  • this application provides a computer-readable storage medium that stores an instruction, and when the instruction is run on a computer, it is used to execute any of the above-mentioned Figures 4-9 Show the method in the embodiment.
  • this application provides a computer program, when the computer program is executed by a computer, it is used to execute the method in any one of the embodiments shown in FIGS. 4-9.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种传输方法和装置。本申请传输方法,包括:确定处理信道,所述处理信道为第一信道或第二信道,所述第一信道在第一载波上传输,所述第二信道在第二载波上传输,所述第一信道和所述第二信道的起始传输时间或终止传输时间不同,且所述第一信道和所述第二信道在时域上有重叠传输的部分;不发送所述处理信道中的所述重叠传输的部分。本申请通过不发送某个信道上与其他信道重叠传输的部分,避免功率的频繁转换,解决传输中的功率控制问题。

Description

传输方法和装置
本申请要求于2019年1月31日提交中国专利局、申请号为201910101433.9、申请名称为“一种传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种传输方法和装置。
背景技术
5G标准(New-RAT,NR)38.213协议中定义的载波聚合(Carrier Aggregation,CA)时的功控描述可以概括为:如果载波1传输的信道1的功率与载波2传输的信道2的功率之和超过了终端设备的最大发射功率,则按照信道的优先级做功率的缩减。38.213协议中定义的长期演进(Long Term Evolution,LTE)和NR双连接(包括intraband E-UTRA和NR双连接(E-UTRA NR dual connectivity with MCG using E-UTRA and SCG using NR,EN-DC)和interband EN-DC)的功率控制描述可以概括为:如果终端设备配置了主小区组(Master Cell Group,MCG)为LTE无线接入,辅小区组(Second Cell Group,SCG)为NR无线接入,对于MCG传输,终端设备通过高层参数p-MaxEUTRA配置最大功率P LTE,对于SCG传输,终端设备通过高层参数p-NR配置最大功率P NR,终端设备用P LTE作为最大传输功率作为MCG的传输功率的约束,终端设备用P NR作为最大传输功率作为SCG的传输功率的约束。
EN-DC的动态功率共享是指终端设备在
Figure PCTCN2020073574-appb-000001
时,如果终端设备上报能够进行E-UTRA和NR动态功率共享,且
Figure PCTCN2020073574-appb-000002
Figure PCTCN2020073574-appb-000003
为MCG的发射功率,
Figure PCTCN2020073574-appb-000004
为SCG的发射功率,通过把
Figure PCTCN2020073574-appb-000005
缩减的方式来进行功率限制以保证
Figure PCTCN2020073574-appb-000006
Figure PCTCN2020073574-appb-000007
的总和不超过
Figure PCTCN2020073574-appb-000008
但是,对于intraband CA和intraband EN-DC存在一个问题:终端设备进行CA时只有一个功率放大器(Power Amplifier,PA),例如图1所示,载波1和载波2传输的信道在时域上没有对齐且存在重叠传输的部分,因此载波1和载波2传输的功率分为3个部分,这对于只有一个PA的情况下是无法处理的,因为PA做功率的调整需要有功率转换的过度时间,一般为10微秒。
目前有一种方案是通过上报一个终端设备能力来说明终端设备是否支持处理不对齐的重叠传输的能力,但这并没有实质性的解决不对齐的重叠传输应该如何处理的问题。
发明内容
本申请提供一种传输方法和装置,以避免功率的频繁转换,解决传输中的功率控制问题。
第一方面,本申请提供一种传输方法,包括:确定处理信道,处理信道为第一信道或第二信道,第一信道在第一载波上传输,第二信道在第二载波上传输,第一信道和第二信道的起始传输时间或终止传输时间不同,且第一信道和第二信道在时域上有重叠传输的部 分;不发送处理信道中的重叠传输的部分。
本申请通过不发送某个信道上与其他信道重叠传输的部分,避免功率的频繁转换,解决重叠传输中的功率控制问题。
在一种可能的实现方式中,还包括:不发送处理信道中的转换部分,转换部分为处理信道中预定义时长对应的部分,其转换部分与重叠传输的部分在时域上相邻。
在一种可能的实现方式中,确定处理信道,包括:将第一载波和第二载波中部分带宽BWP的子载波间隔SCS较小者或者载波的SCS较小者传输的信道确定为处理信道。
在一种可能的实现方式中,确定处理信道,还包括:若第一载波和第二载波的BWP的SCS相等或者载波的SCS相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
在一种可能的实现方式中,确定处理信道,还包括:若第一载波和第二载波的BWP的SCS相等或者载波的SCS相等,则将第一信道和第二信道中信道优先级较低者确定为处理信道。
在一种可能的实现方式中,确定处理信道,包括:将第一信道和第二信道中信道优先级较低者确定为处理信道。
在一种可能的实现方式中,确定处理信道,还包括:若第一信道和第二信道的信道优先级相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
在一种可能的实现方式中,确定处理信道,包括:将第一信道和第二信道中传输时长较长者确定为处理信道,传输时长包括信道在时域上占用的符号数。
在一种可能的实现方式中,确定处理信道,包括:当第一信道的重叠传输的部分或第二信道的重叠传输的部分包括解调参考信号DMRS时,将第一信道和第二信道中不包括DMRS的信道确定为处理信道;当第一信道的重叠传输的部分和第二信道的重叠传输的部分包括DMRS时,将包括较低优先级DMRS的信道确定为处理信道。
在一种可能的实现方式中,附加DMRS的优先级较低;或者,传输时长较长的信道中的DMRS的优先级较低,传输时长包括信道在时域上占用的符号数;或者,第一载波和第二载波中BWP的SCS较小者或者载波的SCS较小者传输的信道中的DMRS的优先级较低。
在一种可能的实现方式中,确定处理信道,还包括:若第一信道的重叠传输的部分和第二信道的重叠传输的部分各自包括的DMRS的优先级相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
在一种可能的实现方式中,还包括:若重叠传输的部分的符号数大于第一预设阈值或者重叠传输的部分的码率大于第二预设阈值,则不发送处理信道,第一预设阈值和第二预设阈值与调制阶数和/或码率相关。
在一种可能的实现方式中,还包括:若重叠传输的部分和转换部分的符号数之和大于 第一预设阈值或者重叠传输的部分和转换部分的码率大于第二预设阈值,则不发送处理信道,第一预设阈值和第二预设阈值与调制阶数和/或码率相关。
本申请中当处理信道中不发送部分占用的符号数较多,可能会导致该信道无法正常解调,终端设备就可以直接不发送这整个信道,避免传输了又解调不出来,从而浪费资源的情况。
第二方面,本申请提供一种重叠传输方法,包括:当第三信道和第四信道在时域上重叠传输的部分包括解调参考信号DMRS,且第三信道中的DMRS和第四信道中的DMRS在时域上彼此间隔大于预定义时长时,将第三信道和第四信道均确定为处理信道,第三信道和第四信道的起始传输时间或终止传输时间不同;不发送处理信道中的重叠传输的部分。
本申请同时对两个信道都做不发送部分信道的处理,在第三信道上不发送与第四信道中的DMRS重叠传输的部分,在第四信道上不发送与第三信道中的DMRS重叠传输的部分,避免功率的频繁转换,解决重叠传输中的功率控制问题。
在一种可能的实现方式中,不发送处理信道中的重叠传输的部分,包括:将第三信道中的第一部分放弃传输,第一部分为在时域上与第四信道中的DMRS重叠传输的部分;将第四信道中的第二部分放弃传输,第二部分为在时域上与第三信道中的DMRS重叠传输的部分;将第三部分放弃传输,第三部分为第三信道或第四信道中的转换部分。
第三方面,本申请提供一种传输方法,包括:确定处理信道,处理信道为第五信道或第六信道,且处理信道的传输链路采用NR接入技术,第五信道和第六信道中除处理信道外的另一信道的传输链路采用LTE接入技术,第五信道和第六信道的起始传输时间或终止传输时间不同,且第五信道和第六信道在时域上有重叠传输的部分;不发送处理信道中的重叠传输的部分。
本申请为了不对采用LTE接入技术的传输链路造成影响,一旦两个信道有重叠传输的部分,就对其中采用NR接入技术的传输链路上的信道做不发送重叠传输的部分的处理,避免功率的频繁转换,解决重叠传输中的功率控制问题。
在一种可能的实现方式中,还包括:不发送处理信道中的转换部分,转换部分为处理信道中预定义时长对应的部分,其转换部分与重叠传输的部分在时域上相邻。
在一种可能的实现方式中,还包括:若重叠传输的部分的符号数大于第一预设阈值或者重叠传输的部分的码率大于第二预设阈值,则不发送处理信道,第一预设阈值和第二预设阈值与调制阶数和/或码率相关。
在一种可能的实现方式中,还包括:若重叠传输的部分和转换部分的符号数之和大于第一预设阈值或者重叠传输的部分和转换部分的码率大于第二预设阈值,则不发送处理信道,第一预设阈值和第二预设阈值与调制阶数和/或码率相关。
本申请中当处理信道中不发送部分占用的符号数较多,可能会导致该信道无法正常解调,终端设备就可以直接不发送这整个信道,避免传输了又解调不出来,从而浪费资源的情况。
在一种可能的实现方式中,处理信道为随机接入信道,方法还包括:当确认需要再次发送随机接入信道时,则以上一次发送随机接入信道的功率再次发送随机接入信道;或者,当确认需要再次发送随机接入信道时,则以上一次发送随机接入信道的功率与预设功率增 量的和再次发送随机接入信道。
第四方面,本申请提供一种功率控制方法,包括:对随机接入信道进行功率缩减,随机接入信道的传输链路采用NR接入技术;发送随机接入信道;当确认需要再次发送随机接入信道时,则以上一次发送随机接入信道的功率再次发送随机接入信道,或者,以上一次发送随机接入信道的功率与预设功率增量的和再次发送随机接入信道。
第五方面,本申请提供一种传输装置,包括:
第一确定模块,用于确定处理信道,处理信道为第一信道或第二信道,第一信道在第一载波上传输,第二信道在第二载波上传输,第一信道和第二信道的起始传输时间或终止传输时间不同,且第一信道和第二信道在时域上有重叠传输的部分;第一处理模块,用于不发送处理信道中的重叠传输的部分。
在一种可能的实现方式中,第一处理模块,还用于不发送处理信道中的转换部分,转换部分为处理信道中预定义时长对应的部分,其转换部分与重叠传输的部分在时域上相邻。
在一种可能的实现方式中,第一确定模块,具体用于将第一载波和第二载波中部分带宽BWP的子载波间隔SCS较小者或者载波的SCS较小者传输的信道确定为处理信道。
在一种可能的实现方式中,第一确定模块,还用于若第一载波和第二载波的BWP的SCS相等或者载波的SCS相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
在一种可能的实现方式中,第一确定模块,还用于若第一载波和第二载波的BWP的SCS相等或者载波的SCS相等,则将第一信道和第二信道中信道优先级较低者确定为处理信道。
在一种可能的实现方式中,第一确定模块,具体用于将第一信道和第二信道中信道优先级较低者确定为处理信道。
在一种可能的实现方式中,第一确定模块,还用于若第一信道和第二信道的信道优先级相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
在一种可能的实现方式中,第一确定模块,具体用于将第一信道和第二信道中传输时长较长者确定为处理信道,传输时长包括信道在时域上占用的符号数。
在一种可能的实现方式中,第一确定模块,具体用于当第一信道的重叠传输的部分或第二信道的重叠传输的部分包括解调参考信号DMRS时,将第一信道和第二信道中不包括DMRS的信道确定为处理信道;当第一信道的重叠传输的部分和第二信道的重叠传输的部分包括DMRS时,将包括较低优先级DMRS的信道确定为处理信道。
在一种可能的实现方式中,附加DMRS的优先级较低;或者,传输时长较长的信道中的DMRS的优先级较低,传输时长包括信道在时域上占用的符号数;或者,第一载波和第二载波中BWP的SCS较小者或者载波的SCS较小者传输的信道中的DMRS的优先级较低。
在一种可能的实现方式中,第一确定模块,还用于若第一信道的重叠传输的部分和第 二信道的重叠传输的部分各自包括的DMRS的优先级相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
在一种可能的实现方式中,第一处理模块,还用于若重叠传输的部分的符号数大于第一预设阈值或者重叠传输的部分的码率大于第二预设阈值,则不发送处理信道,第一预设阈值和第二预设阈值与调制阶数和/或码率相关。
在一种可能的实现方式中,第一处理模块,还用于若重叠传输的部分和转换部分的符号数之和大于第一预设阈值或者重叠传输的部分和转换部分的码率大于第二预设阈值,则不发送处理信道,第一预设阈值和第二预设阈值与调制阶数和/或码率相关。
第六方面,本申请提供一种重叠传输装置,包括:
第二确定模块,用于当第三信道和第四信道在时域上重叠传输的部分包括解调参考信号DMRS,且第三信道中的DMRS和第四信道中的DMRS在时域上彼此间隔大于预定义时长时,将第三信道和第四信道均确定为处理信道,第三信道和第四信道的起始传输时间或终止传输时间不同;第二处理模块,用于不发送处理信道中的重叠传输的部分。
在一种可能的实现方式中,第二处理模块,具体用于将第三信道中的第一部分放弃传输,第一部分为在时域上与第四信道中的DMRS重叠传输的部分;将第四信道中的第二部分放弃传输,第二部分为在时域上与第三信道中的DMRS重叠传输的部分;将第三部分放弃传输,第三部分为第三信道或第四信道中的转换部分。
第七方面,本申请提供一种传输装置,包括:
第三确定模块,用于确定处理信道,处理信道为第五信道或第六信道,且处理信道的传输链路采用NR接入技术,第五信道和第六信道中除处理信道外的另一信道的传输链路采用LTE接入技术,第五信道和第六信道的起始传输时间或终止传输时间不同,且第五信道和第六信道在时域上有重叠传输的部分;第三处理模块,用于不发送处理信道中的重叠传输的部分。
在一种可能的实现方式中,第三处理模块,还用于不发送处理信道中的转换部分,转换部分为处理信道中预定义时长对应的部分,其转换部分与重叠传输的部分在时域上相邻。
在一种可能的实现方式中,第三处理模块,还用于若重叠传输的部分的符号数大于第一预设阈值或者重叠传输的部分的码率大于第二预设阈值,则不发送处理信道,第一预设阈值和第二预设阈值与调制阶数和/或码率相关。
在一种可能的实现方式中,第三处理模块,还用于若重叠传输的部分和转换部分的符号数之和大于第一预设阈值或者重叠传输的部分和转换部分的码率大于第二预设阈值,则不发送处理信道,第一预设阈值和第二预设阈值与调制阶数和/或码率相关。
在一种可能的实现方式中,处理信道为随机接入信道,第三处理模块,还用于当确认需要再次发送随机接入信道时,则以上一次发送随机接入信道的功率再次发送随机接入信道;或者,当确认需要再次发送随机接入信道时,则以上一次发送随机接入信道的功率与预设功率增量的和再次发送随机接入信道。
第八方面,本申请提供一种功率控制装置,包括:
缩减模块,用于对随机接入信道进行功率缩减,随机接入信道的传输链路采用NR接入技术;发送模块,用于发送随机接入信道;处理模块,用于当确认需要再次发送随机接入信道时,则以上一次发送随机接入信道的功率再次发送随机接入信道,或者,以上一次发送随机接入信道的功率与预设功率增量的和再次发送随机接入信道。
第九方面,本申请提供一种用户设备,包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如上述第一至四方面中任一的方法。
第十方面,本申请提供一种计算机可读存储介质,计算机可读存储介质存储有指令,当指令在计算机上运行时,用于上述第一至四方面中任一项的方法。
第十一方面,本申请提供一种计算机程序,当计算机程序被计算机执行时,用于执行上述第一至四方面中任一项的方法。
附图说明
图1为现有技术信道传输示意图;
图2示出了一种适用于本申请的通信系统的示意图;
图3示出了另一种适用于本申请的通信系统的示意图
图4为本申请传输方法实施例一的流程图;
图5为本申请传输方法实施例一的一个信道传输示意图;
图6为本申请传输方法实施例一的另一个信道传输示意图;
图7为本申请传输方法实施例一的再一个信道传输示意图;
图8为本申请传输方法实施例一的又一个信道传输示意图;
图9为本申请传输方法实施例二的信道传输示意图;
图10为本申请传输装置实施例一的结构示意图;
图11为本申请传输装置实施例二的结构示意图;
图12为本申请传输装置实施例三的结构示意图;
图13为本申请功率控制装置实施例的结构示意图;
图14为本申请用户设备实施例的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图2示出了一种适用于本申请的通信系统的示意图,如图2所示,多个终端设备可以接入同一网络设备,网络设备向终端设备发送下行信息进行通信,终端设备向网络设备发送上行信息进行通信,网络设备和终端设备之间可以采用LTE接入技术或NR接入技术进行通信。
在一个实现方式中,一个终端设备可以通过两种接入技术分别通过两个通道接入到网络设备中。例如,一个终端设备可以分别通过LTE接入技术和NR接入技术接入到网络设备。图3示出了另一种适用于本申请的通信系统的示意图。如图3所示,该通信系统可以包括至少两个网络设备,例如图3中所示的两个网络设备;该通信系统还可以包括至少一个终端设备,例如图3中所示的终端设备。该终端设备可以通过DC技术或者多连接技术分别与两个网络设备建立无线链路。其中,一个网络设备例如可以为主基站,另一个网络设备例如可以为辅基站。此情况下,主基站网络设备为终端设备初始接入时的网络设备,负责与终端设备之间的无线资源控制(radio resource control,RRC)通信,辅基站网络设备可以是RRC重配置时添加的,用于提供额外的无线资源。
另外,图中仅为便于理解,示出了两个网络设备与终端设备之间无线连接的情形,但这不应对本申请所适用的场景构成任何限定。终端设备还可以与更多的网络设备建立无线链路。
各通信设备,如图3中的网络设备和终端设备,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
作为示例而非限定,在本申请实施例中,本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜 等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB本申请实施例并不限定。
另外,在本申请实施例中,接入网设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与接入网设备进行通信,该小区可以是接入网设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(carrier aggregation,CA)场景下,当为终端设备配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(cell indentification,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如终端设备接入一个载波和接入一个小区是等同的。
核心网设备可以与多个接入网设备连接,用于控制接入网设备,并且,可以将从网络侧(例如,互联网)接收到的数据分发至接入网设备。
此外,在本申请中,网络设备可以包括基站(gNB),例如宏站、微基站、室内热点、以及中继节点等,功能是向终端设备发送无线电波,一方面实现下行数据传输,另一方面发送调度信息控制上行传输,并接收终端设备发送的无线电波,接收上行数据传输。
其中,以上列举的终端设备、接入网设备和核心网设备的功能和具体实现方式仅为示例性说明,本申请并未限定于此。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够 通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
图4为本申请传输方法实施例一的流程图,如图4所示,本实施例的执行主体可以是终端设备,该方法可以包括:
步骤101、确定处理信道。
该处理信道为第一信道或第二信道,第一信道在第一载波上传输,第二信道在第二载波上传输。信道的传输会占用载波或部分带宽(bandwidth part,BWP)上的时频资源,时频资源是指时域和频域的资源,例如,物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)等会占用时频资源传输。第一信道和第二信道的起始传输时间或终止传输时间不同,且第一信道和第二信道在时域上有重叠传输的部分。本实施例需要在第一信道和第二信道中确定出哪个信道是处理信道,可以包括以下几种方法:
一、将第一载波和第二载波中BWP的子载波间隔(subcarrier spacing,SCS)较小者或者载波的SCS较小者传输的信道确定为处理信道。若第一载波和第二载波的BWP的SCS相等或者载波的SCS相等,则将第一信道和第二信道中信道优先级较低者确定为处理信道。若第一信道和第二信道的信道优先级相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
该方法以第一载波和第二载波的BWP的SCS或者载波的SCS作为主要判断条件,其中较小者传输的信道为处理信道。若主要判断条件无法确定出处理信道,就以信道优先级作为次要判断条件,即信道优先级较低者为处理信道。信道优先级可以由载波上承载的信道中传输的信息确定,例如,第一信道为物理上行共享信道(physical uplink shared channel,PUSCH),该PUSCH只承载了数据(data),第二信道也是PUSCH,该PUSCH承载的信息包括上行控制信道(uplink control information,UCI),UCI可以包括信道状态信息(channel-state information,CSI),混合自动重传请求(Hybrid automatic repeat request,HARQ),调度请求(Scheduling request,SR)等,UCI要优先于data传输,因此第二信道的优先级高于第一信道。需要说明的是,信道优先级的确定还包括其他实现实例,对此不做限定。若次要判断条件无法确定出处理信道,就以信道的传输时间作为第三判断条件,即起始传输时间较晚者或终止传输时间较晚者为处理信道。
二、将第一载波和第二载波中BWP的SCS较小者或者载波的SCS较小者传输的信道确定为处理信道。若第一载波和第二载波的BWP的SCS相等或者载波的SCS相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
该方法以第一载波和第二载波的BWP的SCS或者载波的SCS作为主要判断条件,其中较小者传输的信道为处理信道。若主要判断条件无法确定出处理信道,就以信道的传输时间作为次要判断条件,即起始传输时间较晚者或终止传输时间较晚者为处理信道。
三、将第一信道和第二信道中信道优先级较低者确定为处理信道。若第一信道和第二信道的信道优先级相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
该方法在不考虑BWP的SCS或者载波的SCS的情况下,以信道优先级作为主要判断条件,即信道优先级较低者为处理信道。若主要判断条件无法确定出处理信道,就以信道的传输时间作为次要判断条件,即起始传输时间较晚者或终止传输时间较晚者为处理信道。
四、将第一信道和第二信道中传输时长较长者确定为处理信道,传输时长包括信道在时域上占用的符号数,或信道的传输是时隙级别的,或迷你时隙(mini-slot)级别的。例如,NR中PUSCH信道传输可以占用不同的符号数,或者时隙级别的信道传输的优先级低于迷你时隙级别的信道传输。
该方法以传输时长作为判断条件,传输时长包括信道在时域上占用的符号数,第一信道和第二信道中占用的符号数较多者就是处理信道,例如,第一信道是迷你时隙的传输,第二信道是普通时隙的传输,迷你时隙占用的符号数比普通时隙占用的符号数少,那么第二信道为处理信道。
五、若第一信道与第二信道中起始传输时间较晚的信道的调度信息在起始传输时间较早的信道发送前没有成功解调,则将起始传输时间较晚的信道确定为处理信道。
该方法以两个信道的起始传输时间作为判断条件,考虑到终端设备获取第一信道和第二信道的调度信息的时刻,如果起始传输时间较早的信道开始传输了,终端设备还没有获取到起始传输时间较晚的信道的调度信息,此时终端设备可以不考虑其他因素,包括信道优先级、BWP的SCS大小、载波的SCS大小等,直接将起始传输时间较晚的信道作为处理信道。例如,第一信道的起始传输时间早于第二信道的起始传输时间,在第一信道的起始传输时间到达时,终端设备还没有收到或解调出第二信道的调度信息,那么终端设备就直接将第二信道确定为处理信道。
六、判断第一信道的重叠传输的部分和/或第二信道的重叠传输的部分是否包括解调参考信号(Demodulation Reference Signal,DMRS);若第一信道的重叠传输的部分或第二信道的重叠传输的部分包括DMRS,则将第一信道和第二信道中不包括DMRS的信道确定为处理信道;若第一信道的重叠传输的部分和第二信道的重叠传输的部分包括DMRS,则将包括较低优先级DMRS的信道确定为处理信道。若第一信道的重叠传输的部分和第二信道的重叠传输的部分各自包括的DMRS的优先级相等,则根据第一信道的起始传输时间和第二信道的起始传输时间,将起始传输时间较晚的信道确定为处理信道,或者,根据第一信道的终止传输时间和第二信道的终止传输时间,将终止传输时间较晚的信道确定为处理信道。
该方法与上述两种方法的区别在于,以DMRS作为主要判断条件。如果第一信道和第二信道的其中之一的重叠传输的部分包括DMRS,那么另一个不包括DMRS的信道就是处理信道。即为了保证PUSCH和PUCCH的解调,需要确保DMRS被传输,因此只能牺牲不包括DMRS的信道。如果第一信道和第二信道的重叠传输的部分都包括DMRS,那么可以根据所包括的DMRS的优先级,包括较低优先级DMRS的信道为处理信道。例 如,第一信道包括前载DMRS(front loaded DMRS),第二信道包括附加DMRS(additional DMRS),additional DMRS的优先级低于front loaded DMRS,因此第二信道是处理信道。又例如,第一信道是迷你时隙的传输,第二信道是普通时隙的传输,因此第二信道为处理信道。再例如,第一信道所在第一载波的BWP的SCS小于第二信道所在第二载波的BWP的SCS,因此第一信道是处理信道。若主要判断条件在两个信道均包括DMRS的情况下无法确定处理信道,就以信道的传输时间作为次要判断条件,即起始传输时间较晚者或终止传输时间较晚者为处理信道。
步骤102、不发送处理信道中的重叠传输的部分。
终端设备在确定出处理信道后,以不发送处理信道中的重叠传输的部分来解决重叠传输中的功率控制问题,即在重叠传输的部分对应的符号或或时隙或子帧处,只发送不处理信道,避免功率的频繁转换。步骤102也可以等同于发送处理信道中除重叠传输的部分之外的部分。
终端设备还可以不发送处理信道中的转换部分,该转换部分为处理信道中预定义时长对应的部分,其所属转换部分与重叠传输的部分在时域上相邻。同样的,可以认为终端设备是发送处理信道中除重叠传输的部分和转换部分之外的部分。预定义时长可以是终端设备在做功率转换时所需要的时长,其可以以符号为单位。例如,通常功率转换需要10微秒的转换时长,终端设备可以在处理信道的重叠传输的部分之前或之后不发送10微秒对应的部分,以便于有足够的时间将功率从传输不处理信道转换为处理信道,终端设备也可以根据BWP或载波的SCS,不发送10微秒对应的m个符号,m为正整数,例如对于15KHz的子载波间隔吗,10微秒对应1个符号。
本实施例通过不发送某个信道上与其他信道重叠传输的部分,避免功率的频繁转换,解决重叠传输中的功率控制问题。
在上述技术方案的基础上,终端设备可以判断重叠传输的部分的符号数是否大于第一预设阈值或者重叠传输的部分的码率是否大于第二预设阈值,若重叠传输的部分的符号数大于第一预设阈值或者重叠传输的部分的码率大于第二预设阈值,则不发送处理信道。第一预设阈值和第二预设阈值可以通过高层信令指示,例如,RRC信令、MAC CE或SIB等,也可以是由网络设备预先定义,再配置给终端设备,还可以是预定义的值,或通过查表的形式获取到的预定义的值,该第一预设阈值和第二预设阈值均与调制阶数和/或码率相关,例如一种可能性,调制阶数和/或码率高,则第一预设阈值和第二预设阈值小,若调制阶数或码率很高,则信道在每个符号的传输承载的有效比特数多,若不发送重叠传输的部分和/或转换部分,即不发送一部分有效传输部分,会导致信道无法解调。当处理信道中不发送部分占用的符号数较多,可能会导致该信道无法正常解调,终端设备就可以直接不发送这整个信道,避免传输了又解调不出来,从而浪费资源的情况。另外,如果终端设备是对重叠传输的部分和转换部分都不发送,那么终端设备就要根据重叠传输的部分和转换部分共同判断,即若重叠传输的部分和转换部分的符号数之和大于第一预设阈值或者重叠传输的部分和转换部分的码率大于第二预设阈值,则不发送处理信道。
示例性的,如图5所示,载波1上传输信道1,载波2上传输信道2,载波1和载波2为同一个band内的两个载波,信道1的起始传输时间比信道2的起始传输时间早,信道1为PUSCH with data,信道2为PUSCH with CSI,因此信道2的优先级高于信道1,处理 信道是信道1。此时,终端设备是对信道1中的重叠传输的部分和转换部分不发送,鉴于信道1和信道2的传输先后,转换部分在重叠传输的部分之前。如图6所示,载波1上传输信道1,载波2上传输信道2,载波1和载波2为同一个band内的两个载波,信道1的起始传输时间比信道2的起始传输时间早,信道1为PUSCH with CSI,信道2为PUSCH with data,因此信道1的优先级高于信道2,处理信道是信道2。此时,终端设备是对信道2中的重叠传输的部分和转换部分不发送,鉴于信道1和信道2的传输先后,转换部分在重叠传输的部分之后。
示例性的,如图7所示,载波1上传输信道1,载波2上传输信道2,载波1和载波2为同一个band内的两个载波,信道1的起始传输时间比信道2的起始传输时间早,信道1为PUSCH with data,信道2为PUSCH with CSI,但是信道1的重叠传输的部分包括DMRS,因此处理信道是信道2。此时,终端设备是对信道2中的重叠传输的部分和转换部分不发送,鉴于信道1和信道2的传输先后,转换部分在重叠传输的部分之后。如图8所示,载波1上传输信道1,载波2上传输信道2,载波1和载波2为同一个band内的两个载波,信道1的起始传输时间比信道2的起始传输时间早,信道1为PUSCH with CSI,信道2为PUSCH with data,但是信道2的重叠传输的部分包括DMRS,因此处理信道是信道1。此时,终端设备是对信道1中的重叠传输的部分和转换部分不发送,鉴于信道1和信道2的传输先后,转换部分在重叠传输的部分之前。
与上述方法实施例一不同,本申请方法实施例二中,终端设备在第三信道和第四信道的重叠传输的部分均包括DMRS时,如果第三信道中的DMRS和第四信道中的DMRS在时域上彼此间隔大于预定义时长,则将第三信道和第四信道均确定为处理信道,即将第三信道中的第一部分放弃传输,该第一部分为在时域上与第四信道中的DMRS重叠传输的部分;将第四信道中的第二部分放弃传输,该第二部分为在时域上与第三信道中的DMRS重叠传输的部分;将第三部分放弃传输,该第三部分为第三信道或第四信道中的转换部分。预定义时长可以是转换部分对应的时长。
本实施例是同时对两个信道都做不发送部分信道的处理,在第三信道上不发送与第四信道中的DMRS重叠传输的部分,在第四信道上不发送与第三信道中的DMRS重叠传输的部分。另外,终端设备还可以不发送第三信道或第四信道中对应功率转换所需时长的部分,以便于有足够的时间将功率从传输不处理信道转换为处理信道。
示例性的,如图9所示,载波3上传输信道3,载波4上传输信道4,载波3和载波4为同一个band内的两个载波,信道3的起始传输时间比信道4的起始传输时间早,信道3为PUSCH with data,信道4为PUSCH with CSI,信道3和信道4的重叠传输的部分均包括DMRS,且信道3中的DMRS和信道4中的DMRS在时域上彼此间隔大于预定义时长。此时,终端设备是对信道3和信道4中的重叠传输的部分均不发送,且其中一个信道的转换部分也不发送。此时是信道3还是信道4的转换部分不发送,可以取决于两个信道的优先级、传输先后等,对此不做限定。
本申请方法实施例三中,Intraband EN-DC场景下,终端设备确定处理信道,该处理信道为第五信道或第六信道,且处理信道的传输链路采用NR接入技术,第五信道和第六 信道中除处理信道外的另一信道的传输链路采用LTE接入技术,第五信道和第六信道的起始传输时间或终止传输时间不同,且第五信道和第六信道在时域上有重叠传输的部分;不发送处理信道中的重叠传输的部分。甚至终端设备还可以不发送处理信道中的转换部分。
本实施例中,为了不对采用LTE接入技术的传输链路造成影响,一旦两个信道有重叠传输的部分,就对其中采用NR接入技术的传输链路上的信道做不发送重叠传输的部分的处理。此时与信道优先级、信道上包括的信号都无关。如果处理信道中不发送的重叠传输的部分的符号数大于第一预设阈值或者重叠传输的部分的码率大于第二预设阈值,则不发送处理信道,该第一预设阈值和第二预设阈值均与调制阶数和/或码率相关。当处理信道中不发送部分占用的符号数较多,可能会导致该信道无法正常解调,终端设备就可以直接不发送这整个信道,避免传输了又解调不出来,从而浪费资源的情况。另外,如果终端设备是对重叠传输的部分和转换部分都不发送,那么终端设备就要根据重叠传输的部分和转换部分共同判断,即若重叠传输的部分和转换部分的符号数之和大于第一预设阈值或者重叠传输的部分和转换部分的码率大于第二预设阈值,则不发送处理信道。
在上述技术方案的基础上,Intraband ENDC场景下,如果处理信道是随机接入信道,那么如果是由于不发送重叠传输部分导致随机接入信道发送失败,即终端设备确认需要再次发送该随机接入信道,则终端设备可以以上一次发送该随机接入信道的功率再次发送随机接入信道,或者,以上一次发送该随机接入信道的功率与预设功率增量的和再次发送随机接入信道。本实施例中预设功率增量的取值小于现有通用的功率增量,例如,通常在做功率攀升是以3dB作为步长增加功率,本实施例中为了避免随机接入信道传输的功率浪费,节省功率,以1dB作为步长增加功率。
本申请方法实施例四中,Interband ENDC场景下,为了不对采用LTE接入技术的传输链路造成影响,终端设备对传输链路采用NR接入技术的随机接入信道进行功率缩减后发送该随机接入信道;若终端设备确认需要再次发送该随机接入信道,则以上一次发送该随机接入信道的功率再次发送随机接入信道,或者,以上一次发送该随机接入信道的功率与预设功率增量的和再次发送随机接入信道。本实施例中预设功率增量的取值小于现有通用的功率增量,例如,通常在做功率攀升是以3dB作为步长增加功率,本实施例中为了避免随机接入信道传输的功率浪费,节省功率,以1dB作为步长增加功率。
图10为本申请传输装置实施例一的结构示意图,如图10所示,本实施例的装置可以包括:第一确定模块11和第一处理模块12,其中,第一确定模块11,用于确定处理信道,所述处理信道为第一信道或第二信道,所述第一信道在第一载波上传输,所述第二信道在第二载波上传输,所述第一信道和所述第二信道的起始传输时间或终止传输时间不同,且所述第一信道和所述第二信道在时域上有重叠传输的部分;第一处理模块12,用于不发送所述处理信道中的所述重叠传输的部分。
在一种可能的实现方式中,所述第一处理模块12,还用于不发送所述处理信道中的转换部分,所述转换部分为所述处理信道中预定义时长对应的部分,其所述转换部分与所述重叠传输的部分在时域上相邻。
在一种可能的实现方式中,所述第一确定模块11,具体用于将所述第一载波和所述 第二载波中部分带宽BWP的子载波间隔SCS较小者或者载波的SCS较小者传输的信道确定为所述处理信道。
在一种可能的实现方式中,所述第一确定模块11,还用于若所述第一载波和所述第二载波的BWP的SCS相等或者载波的SCS相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
在一种可能的实现方式中,所述第一确定模块11,还用于若所述第一载波和所述第二载波的BWP的SCS相等或者载波的SCS相等,则将所述第一信道和所述第二信道中信道优先级较低者确定为所述处理信道。
在一种可能的实现方式中,所述第一确定模块11,具体用于将所述第一信道和所述第二信道中信道优先级较低者确定为所述处理信道。
在一种可能的实现方式中,所述第一确定模块11,还用于若所述第一信道和所述第二信道的信道优先级相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
在一种可能的实现方式中,所述第一确定模块11,具体用于将所述第一信道和所述第二信道中传输时长较长者确定为所述处理信道,所述传输时长包括信道在时域上占用的符号数。
在一种可能的实现方式中,所述第一确定模块11,具体用于当所述第一信道的所述重叠传输的部分或所述第二信道的所述重叠传输的部分包括解调参考信号DMRS时,将所述第一信道和所述第二信道中不包括所述DMRS的信道确定为所述处理信道;当所述第一信道的所述重叠传输的部分和所述第二信道的所述重叠传输的部分包括所述DMRS时,将包括较低优先级DMRS的信道确定为所述处理信道。
在一种可能的实现方式中,附加DMRS的优先级较低;或者,传输时长较长的信道中的所述DMRS的优先级较低,所述传输时长包括信道在时域上占用的符号数;或者,所述第一载波和所述第二载波中BWP的SCS较小者或者载波的SCS较小者传输的信道中的所述DMRS的优先级较低。
在一种可能的实现方式中,所述第一确定模块11,还用于若所述第一信道的所述重叠传输的部分和所述第二信道的所述重叠传输的部分各自包括的所述DMRS的优先级相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
在一种可能的实现方式中,所述第一处理模块12,还用于若所述重叠传输的部分的符号数大于第一预设阈值或者所述重叠传输的部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
在一种可能的实现方式中,所述第一处理模块11,还用于若所述重叠传输的部分和所述转换部分的符号数之和大于第一预设阈值或者所述重叠传输的部分和所述转换部分 的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
本实施例的装置,可以用于执行图4-8任一所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本申请传输装置实施例二的结构示意图,如图11所示,本实施例的装置可以包括:第二确定模块21和第二处理模块22,其中,第二确定模块21,用于当第三信道和第四信道在时域上重叠传输的部分包括解调参考信号DMRS,且所述第三信道中的所述DMRS和所述第四信道中的所述DMRS在时域上彼此间隔大于预定义时长时,将所述第三信道和所述第四信道均确定为处理信道,所述第三信道和所述第四信道的起始传输时间或终止传输时间不同;第二处理模块22,用于不发送所述处理信道中的所述重叠传输的部分。
在一种可能的实现方式中,所述第二处理模块22,具体用于将所述第三信道中的第一部分放弃传输,所述第一部分为在时域上与所述第四信道中的所述DMRS重叠传输的部分;将所述第四信道中的第二部分放弃传输,所述第二部分为在时域上与所述第三信道中的所述DMRS重叠传输的部分;将第三部分放弃传输,所述第三部分为所述第三信道或所述第四信道中的所述转换部分。
本实施例的装置,可以用于执行图9所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图12为本申请传输装置实施例三的结构示意图,如图12所示,本实施例的装置可以包括:第三确定模块31和第三处理模块32,其中,第三确定模块31,用于确定处理信道,所述处理信道为第五信道或第六信道,且所述处理信道的传输链路采用NR接入技术,所述第五信道和所述第六信道中除所述处理信道外的另一信道的传输链路采用LTE接入技术,所述第五信道和所述第六信道的起始传输时间或终止传输时间不同,且所述第五信道和所述第六信道在时域上有重叠传输的部分;第三处理模块32,用于不发送所述处理信道中的所述重叠传输的部分。
在一种可能的实现方式中,所述第三处理模块32,还用于不发送所述处理信道中的转换部分,所述转换部分为所述处理信道中预定义时长对应的部分,其所述转换部分与所述重叠传输的部分在时域上相邻。
在一种可能的实现方式中,所述第三处理模块32,还用于若所述重叠传输的部分的符号数大于第一预设阈值或者所述重叠传输的部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
在一种可能的实现方式中,所述第三处理模块32,还用于若所述重叠传输的部分和所述转换部分的符号数之和大于第一预设阈值或者所述重叠传输的部分和所述转换部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
在一种可能的实现方式中,所述处理信道为随机接入信道,所述第三处理模块32,还用于当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率再次发送所述随机接入信道;或者,当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率与预设功率增量的和再次发送所述随机接入信道。
图13为本申请功率控制装置实施例的结构示意图,如图13所示,本实施例的装置可以包括:缩减模块41、发送模块42和处理模块43,其中,缩减模块41,用于对随机接入信道进行功率缩减,所述随机接入信道的传输链路采用NR接入技术;发送模块42,用于发送所述随机接入信道;处理模块43,用于当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率再次发送所述随机接入信道,或者,以上一次发送所述随机接入信道的功率与预设功率增量的和再次发送所述随机接入信道。
图14为本申请用户设备实施例的结构示意图,如图14所示,该用户设备包括处理器50、存储器51和通信装置52;用户设备中处理器50的数量可以是一个或多个,图14中以一个处理器50为例;用户设备中的处理器50、存储器51和通信装置52可以通过总线或其他方式连接,图14中以通过总线连接为例。
存储器51作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图4-9任一所示实施例中的方法对应的程序指令/模块。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行用户设备的各种功能应用以及数据处理,即实现上述的传输方法。
存储器51可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器51可进一步包括相对于处理器50远程设置的存储器,这些远程存储器可以通过网络连接至用户设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信装置52可用于接收或发送数据。
在一种可能的实现方式中,本申请提供一种计算机可读存储介质,该计算机可读存储介质存储有指令,当该指令在计算机上运行时,用于执行上述图4-9任一所示实施例中的方法。
在一种可能的实现方式中,本申请提供一种计算机程序,当所述计算机程序被计算机执行时,用于执行上述图4-9任一所示实施例中的方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (45)

  1. 一种传输方法,其特征在于,包括:
    确定处理信道,所述处理信道为第一信道或第二信道,所述第一信道在第一载波上传输,所述第二信道在第二载波上传输,所述第一信道和所述第二信道的起始传输时间或终止传输时间不同,且所述第一信道和所述第二信道在时域上有重叠传输的部分;
    不发送所述处理信道中的所述重叠传输的部分。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    不发送所述处理信道中的转换部分,所述转换部分为所述处理信道中预定义时长对应的部分,其所述转换部分与所述重叠传输的部分在时域上相邻。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定处理信道,包括:
    将所述第一载波和所述第二载波中部分带宽BWP的子载波间隔SCS较小者或者载波的SCS较小者传输的信道确定为所述处理信道。
  4. 根据权利要求3所述的方法,其特征在于,所述确定处理信道,还包括:
    若所述第一载波和所述第二载波的BWP的SCS相等或者载波的SCS相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
  5. 根据权利要求3所述的方法,其特征在于,所述确定处理信道,还包括:
    若所述第一载波和所述第二载波的BWP的SCS相等或者载波的SCS相等,则将所述第一信道和所述第二信道中信道优先级较低者确定为所述处理信道。
  6. 根据权利要求1或2所述的方法,其特征在于,所述确定处理信道,包括:
    将所述第一信道和所述第二信道中信道优先级较低者确定为所述处理信道。
  7. 根据权利要求5或6所述的方法,其特征在于,所述确定处理信道,还包括:
    若所述第一信道和所述第二信道的信道优先级相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
  8. 根据权利要求1或2所述的方法,其特征在于,所述确定处理信道,包括:
    将所述第一信道和所述第二信道中传输时长较长者确定为所述处理信道,所述传输时长包括信道在时域上占用的符号数。
  9. 根据权利要求1或2所述的方法,其特征在于,所述确定处理信道,包括:
    当所述第一信道的所述重叠传输的部分或所述第二信道的所述重叠传输的部分包括解调参考信号DMRS时,将所述第一信道和所述第二信道中不包括所述DMRS的信道确定为所述处理信道;
    当所述第一信道的所述重叠传输的部分和所述第二信道的所述重叠传输的部分包括所述DMRS时,将包括较低优先级DMRS的信道确定为所述处理信道。
  10. 根据权利要求9所述的方法,其特征在于,附加DMRS的优先级较低;或者,传输时长较长的信道中的所述DMRS的优先级较低,所述传输时长包括信道在时域 上占用的符号数;或者,
    所述第一载波和所述第二载波中BWP的SCS较小者或者载波的SCS较小者传输的信道中的所述DMRS的优先级较低。
  11. 根据权利要求9或10所述的方法,其特征在于,所述确定处理信道,还包括:
    若所述第一信道的所述重叠传输的部分和所述第二信道的所述重叠传输的部分各自包括的所述DMRS的优先级相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,还包括:
    若所述重叠传输的部分的符号数大于第一预设阈值或者所述重叠传输的部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
  13. 根据权利要求2-11中任一项所述的方法,其特征在于,还包括:
    若所述重叠传输的部分和所述转换部分的符号数之和大于第一预设阈值或者所述重叠传输的部分和所述转换部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
  14. 一种传输方法,其特征在于,包括:
    当第三信道和第四信道在时域上重叠传输的部分包括解调参考信号DMRS,且所述第三信道中的所述DMRS和所述第四信道中的所述DMRS在时域上彼此间隔大于预定义时长时,将所述第三信道和所述第四信道均确定为处理信道,所述第三信道和所述第四信道的起始传输时间或终止传输时间不同;
    不发送所述处理信道中的所述重叠传输的部分。
  15. 根据权利要求14所述的方法,其特征在于,所述不发送所述处理信道中的所述重叠传输的部分,包括:
    将所述第三信道中的第一部分放弃传输,所述第一部分为在时域上与所述第四信道中的所述DMRS重叠传输的部分;
    将所述第四信道中的第二部分放弃传输,所述第二部分为在时域上与所述第三信道中的所述DMRS重叠传输的部分;
    将第三部分放弃传输,所述第三部分为所述第三信道或所述第四信道中的所述转换部分。
  16. 一种传输方法,其特征在于,包括:
    确定处理信道,所述处理信道为第五信道或第六信道,且所述处理信道的传输链路采用NR接入技术,所述第五信道和所述第六信道中除所述处理信道外的另一信道的传输链路采用LTE接入技术,所述第五信道和所述第六信道的起始传输时间或终止传输时间不同,且所述第五信道和所述第六信道在时域上有重叠传输的部分;
    不发送所述处理信道中的所述重叠传输的部分。
  17. 根据权利要求16所述的方法,其特征在于,还包括:
    不发送所述处理信道中的转换部分,所述转换部分为所述处理信道中预定义时长对应 的部分,其所述转换部分与所述重叠传输的部分在时域上相邻。
  18. 根据权利要求16或17所述的方法,其特征在于,还包括:
    若所述重叠传输的部分的符号数大于第一预设阈值或者所述重叠传输的部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
  19. 根据权利要求17所述的方法,其特征在于,还包括:
    若所述重叠传输的部分和所述转换部分的符号数之和大于第一预设阈值或者所述重叠传输的部分和所述转换部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
  20. 根据权利要求16-19中任一项所述的方法,其特征在于,所述处理信道为随机接入信道,所述方法还包括:
    当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率再次发送所述随机接入信道;或者,
    当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率与预设功率增量的和再次发送所述随机接入信道。
  21. 一种功率控制方法,其特征在于,包括:
    对随机接入信道进行功率缩减,所述随机接入信道的传输链路采用NR接入技术;
    发送所述随机接入信道;
    当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率再次发送所述随机接入信道,或者,以上一次发送所述随机接入信道的功率与预设功率增量的和再次发送所述随机接入信道。
  22. 一种传输装置,其特征在于,包括:
    第一确定模块,用于确定处理信道,所述处理信道为第一信道或第二信道,所述第一信道在第一载波上传输,所述第二信道在第二载波上传输,所述第一信道和所述第二信道的起始传输时间或终止传输时间不同,且所述第一信道和所述第二信道在时域上有重叠传输的部分;
    第一处理模块,用于不发送所述处理信道中的所述重叠传输的部分。
  23. 根据权利要求22所述的装置,其特征在于,所述第一处理模块,还用于不发送所述处理信道中的转换部分,所述转换部分为所述处理信道中预定义时长对应的部分,其所述转换部分与所述重叠传输的部分在时域上相邻。
  24. 根据权利要求22或23所述的装置,其特征在于,所述第一确定模块,具体用于将所述第一载波和所述第二载波中部分带宽BWP的子载波间隔SCS较小者或者载波的SCS较小者传输的信道确定为所述处理信道。
  25. 根据权利要求24所述的方法,其特征在于,所述第一确定模块,还用于若所述第一载波和所述第二载波的BWP的SCS相等或者载波的SCS相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
  26. 根据权利要求24所述的方法,其特征在于,所述第一确定模块,还用于若所述 第一载波和所述第二载波的BWP的SCS相等或者载波的SCS相等,则将所述第一信道和所述第二信道中信道优先级较低者确定为所述处理信道。
  27. 根据权利要求22或23所述的装置,其特征在于,所述第一确定模块,具体用于将所述第一信道和所述第二信道中信道优先级较低者确定为所述处理信道。
  28. 根据权利要求26或27所述的装置,其特征在于,所述第一确定模块,还用于若所述第一信道和所述第二信道的信道优先级相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
  29. 根据权利要求22或23所述的装置,其特征在于,所述第一确定模块,具体用于将所述第一信道和所述第二信道中传输时长较长者确定为所述处理信道,所述传输时长包括信道在时域上占用的符号数。
  30. 根据权利要求22或23所述的装置,其特征在于,所述第一确定模块,具体用于当所述第一信道的所述重叠传输的部分或所述第二信道的所述重叠传输的部分包括解调参考信号DMRS时,将所述第一信道和所述第二信道中不包括所述DMRS的信道确定为所述处理信道;当所述第一信道的所述重叠传输的部分和所述第二信道的所述重叠传输的部分包括所述DMRS时,将包括较低优先级DMRS的信道确定为所述处理信道。
  31. 根据权利要求30所述的装置,其特征在于,附加DMRS的优先级较低;或者,传输时长较长的信道中的所述DMRS的优先级较低,所述传输时长包括信道在时域上占用的符号数;或者,所述第一载波和所述第二载波中BWP的SCS较小者或者载波的SCS较小者传输的信道中的所述DMRS的优先级较低。
  32. 根据权利要求30或31所述的装置,其特征在于,所述第一确定模块,还用于若所述第一信道的所述重叠传输的部分和所述第二信道的所述重叠传输的部分各自包括的所述DMRS的优先级相等,则根据所述第一信道的起始传输时间和所述第二信道的起始传输时间,将起始传输时间较晚的信道确定为所述处理信道,或者,根据所述第一信道的终止传输时间和所述第二信道的终止传输时间,将终止传输时间较晚的信道确定为所述处理信道。
  33. 根据权利要求22-32中任一项所述的装置,其特征在于,所述第一处理模块,还用于若所述重叠传输的部分的符号数大于第一预设阈值或者所述重叠传输的部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
  34. 根据权利要求23-32中任一项所述的装置,其特征在于,所述第一处理模块,还用于若所述重叠传输的部分和所述转换部分的符号数之和大于第一预设阈值或者所述重叠传输的部分和所述转换部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
  35. 一种传输装置,其特征在于,包括:
    第二确定模块,用于当第三信道和第四信道在时域上重叠传输的部分包括解调参考信号DMRS,且所述第三信道中的所述DMRS和所述第四信道中的所述DMRS在时域上彼此间隔大于预定义时长时,将所述第三信道和所述第四信道均确定为处理信道,所述第三 信道和所述第四信道的起始传输时间或终止传输时间不同;
    第二处理模块,用于不发送所述处理信道中的所述重叠传输的部分。
  36. 根据权利要求35所述的装置,其特征在于,所述第二处理模块,具体用于将所述第三信道中的第一部分放弃传输,所述第一部分为在时域上与所述第四信道中的所述DMRS重叠传输的部分;将所述第四信道中的第二部分放弃传输,所述第二部分为在时域上与所述第三信道中的所述DMRS重叠传输的部分;将第三部分放弃传输,所述第三部分为所述第三信道或所述第四信道中的所述转换部分。
  37. 一种传输装置,其特征在于,包括:
    第三确定模块,用于确定处理信道,所述处理信道为第五信道或第六信道,且所述处理信道的传输链路采用NR接入技术,所述第五信道和所述第六信道中除所述处理信道外的另一信道的传输链路采用LTE接入技术,所述第五信道和所述第六信道的起始传输时间或终止传输时间不同,且所述第五信道和所述第六信道在时域上有重叠传输的部分;
    第三处理模块,用于不发送所述处理信道中的所述重叠传输的部分。
  38. 根据权利要求37所述的装置,其特征在于,所述第三处理模块,还用于不发送所述处理信道中的转换部分,所述转换部分为所述处理信道中预定义时长对应的部分,其所述转换部分与所述重叠传输的部分在时域上相邻。
  39. 根据权利要求37或38所述的装置,其特征在于,所述第三处理模块,还用于若所述重叠传输的部分的符号数大于第一预设阈值或者所述重叠传输的部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
  40. 根据权利要求38所述的装置,其特征在于,所述第三处理模块,还用于若所述重叠传输的部分和所述转换部分的符号数之和大于第一预设阈值或者所述重叠传输的部分和所述转换部分的码率大于第二预设阈值,则不发送所述处理信道,所述第一预设阈值和所述第二预设阈值与调制阶数和/或码率相关。
  41. 根据权利要求37-40中任一项所述的装置,其特征在于,所述处理信道为随机接入信道,所述第三处理模块,还用于当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率再次发送所述随机接入信道;或者,当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率与预设功率增量的和再次发送所述随机接入信道。
  42. 一种功率控制装置,其特征在于,包括:
    缩减模块,用于对随机接入信道进行功率缩减,所述随机接入信道的传输链路采用NR接入技术;
    发送模块,用于发送所述随机接入信道;
    处理模块,用于当确认需要再次发送所述随机接入信道时,则以上一次发送所述随机接入信道的功率再次发送所述随机接入信道,或者,以上一次发送所述随机接入信道的功率与预设功率增量的和再次发送所述随机接入信道。
  43. 一种用户设备,其特征在于,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-21中任一所述的方法。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令在计算机上运行时,用于执行权利要求1-21中任一项所述的方法。
  45. 一种计算机程序,其特征在于,当所述计算机程序被计算机执行时,用于执行权利要求1-21中任一项所述的方法。
PCT/CN2020/073574 2019-01-31 2020-01-21 传输方法和装置 WO2020156385A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20748983.2A EP3911079A4 (en) 2019-01-31 2020-01-21 TRANSMISSION METHOD AND DEVICE
US17/388,699 US11895045B2 (en) 2019-01-31 2021-07-29 Transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910101433.9 2019-01-31
CN201910101433.9A CN111511024B (zh) 2019-01-31 2019-01-31 一种传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/388,699 Continuation US11895045B2 (en) 2019-01-31 2021-07-29 Transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2020156385A1 true WO2020156385A1 (zh) 2020-08-06

Family

ID=71841996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073574 WO2020156385A1 (zh) 2019-01-31 2020-01-21 传输方法和装置

Country Status (4)

Country Link
US (1) US11895045B2 (zh)
EP (1) EP3911079A4 (zh)
CN (1) CN111511024B (zh)
WO (1) WO2020156385A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511024B (zh) * 2019-01-31 2023-10-13 华为技术有限公司 一种传输方法和装置
CN116981063A (zh) * 2022-04-14 2023-10-31 维沃移动通信有限公司 传输处理方法、装置、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106717077A (zh) * 2014-09-25 2017-05-24 株式会社Ntt都科摩 用户终端、无线通信方法以及无线通信系统
WO2019017746A1 (ko) * 2017-07-21 2019-01-24 엘지전자 주식회사 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
CN110831140A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率确定方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014342B2 (en) * 2007-03-06 2011-09-06 Telefonaktiebolaget L M Ericsson (Publ) Data sharing among radio access technologies
JP2013102398A (ja) * 2011-11-09 2013-05-23 Ntt Docomo Inc 無線通信システム、ユーザ端末及び無線通信方法
US8923858B2 (en) * 2012-02-21 2014-12-30 Marvell World Trade Ltd. Parallel multi-RAT PLMN search
US11582704B2 (en) * 2012-04-16 2023-02-14 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US9107206B2 (en) * 2012-06-18 2015-08-11 Ofinne Technologies, LLC Carrier grouping in multicarrier wireless networks
US11622372B2 (en) * 2012-06-18 2023-04-04 Comcast Cable Communications, Llc Communication device
DK3806576T3 (da) * 2015-11-10 2023-01-30 Ericsson Telefon Ab L M Uplink- og/eller downlink-signalering relateret til forskellige radioadgangsteknologier
CN117255423A (zh) * 2017-06-08 2023-12-19 Lg电子株式会社 在无线通信系统中由用户设备ue执行的方法和ue
WO2019157752A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 随机接入方法及装置
US11405932B2 (en) * 2018-08-08 2022-08-02 Hannibal Ip Llc Method and apparatus for power control of wireless communications
US11050535B2 (en) * 2018-08-09 2021-06-29 FG Innovation Company Limited Method and apparatus for performing sidelink communication in wireless communication systems
CN111511024B (zh) * 2019-01-31 2023-10-13 华为技术有限公司 一种传输方法和装置
US11228990B2 (en) * 2019-03-28 2022-01-18 Ofinno, Llc Random access power control
US20210051672A1 (en) * 2019-08-14 2021-02-18 Comcast Cable Communications, Llc Access Procedure Resource Configuration
US11627501B2 (en) * 2020-09-11 2023-04-11 Qualcomm Incorporated Enabling multi-RAT co-channel coexistence

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106717077A (zh) * 2014-09-25 2017-05-24 株式会社Ntt都科摩 用户终端、无线通信方法以及无线通信系统
WO2019017746A1 (ko) * 2017-07-21 2019-01-24 엘지전자 주식회사 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
CN110831140A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率确定方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Details for Uplink Power Control with CA", 3GPP TSG RAN WG1 MEETING #92, R1-1801808, 16 February 2018 (2018-02-16), pages 1 - 6, XP051397431, DOI: 20200311103057A *

Also Published As

Publication number Publication date
EP3911079A4 (en) 2022-04-06
CN111511024A (zh) 2020-08-07
EP3911079A1 (en) 2021-11-17
CN111511024B (zh) 2023-10-13
US11895045B2 (en) 2024-02-06
US20210359802A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US10313890B2 (en) Method and device for receiving service through different wireless communication systems
JP2022539715A (ja) Rrc状態の間でのue支援型高速遷移
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
WO2019029333A1 (zh) 一种资源调度方法及装置
WO2021087678A1 (zh) 一种小区状态管理方法及装置、终端设备、网络设备
WO2020087524A1 (zh) 非授权频段上ssb的传输方法和设备
US11950308B2 (en) Optimized secondary node reporting for multi-radio access technology dual connectivity
WO2019072170A1 (zh) 通信方法和通信装置
WO2021047478A1 (zh) 一种通信方法及装置
US11895045B2 (en) Transmission method and apparatus
WO2021253150A1 (en) Dynamic disabling of cli measurements
WO2020015715A1 (zh) 一种数据发送的方法和装置
WO2020227995A1 (zh) 一种d2d系统中的通信方法及终端设备、网络设备
US20240007227A1 (en) Harq retransmission termination based on lost redundancy version
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
US20220007425A1 (en) Method and apparatus for transmitting a system information request and system
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备
US20210211341A1 (en) Gap enhancement with indication of transition instances
WO2022082791A1 (zh) 通信方法和通信装置
WO2023280085A1 (zh) 频带范围上报的方法和通信装置
US11818725B2 (en) Methods and apparatus for flexible resource allocation
WO2022267604A1 (zh) 信道检测的方法和装置
WO2022183462A1 (zh) 一种scg的管理方法及装置、终端设备
WO2023011180A1 (zh) 载波配置方法及通信装置
WO2023044610A1 (zh) 一种识别mac ce类型的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020748983

Country of ref document: EP

Effective date: 20210810