WO2021098400A1 - 一种必经结点最短路径搜索方法 - Google Patents

一种必经结点最短路径搜索方法 Download PDF

Info

Publication number
WO2021098400A1
WO2021098400A1 PCT/CN2020/119986 CN2020119986W WO2021098400A1 WO 2021098400 A1 WO2021098400 A1 WO 2021098400A1 CN 2020119986 W CN2020119986 W CN 2020119986W WO 2021098400 A1 WO2021098400 A1 WO 2021098400A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
polygons
polygon
adjacent
merged
Prior art date
Application number
PCT/CN2020/119986
Other languages
English (en)
French (fr)
Inventor
卢玉南
魏金占
朱兆旻
吴宁
覃伟荣
陆韦春
陈明辉
唐媛
Original Assignee
广西华蓝岩土工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西华蓝岩土工程有限公司 filed Critical 广西华蓝岩土工程有限公司
Priority to US17/284,777 priority Critical patent/US20220018669A1/en
Publication of WO2021098400A1 publication Critical patent/WO2021098400A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/343Calculating itineraries, i.e. routes leading from a starting point to a series of categorical destinations using a global route restraint, round trips, touristic trips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3446Details of route searching algorithms, e.g. Dijkstra, A*, arc-flags, using precalculated routes

Definitions

  • the invention belongs to the field of computer graphics and geographic information science, and particularly relates to a method for searching the shortest path of a necessary node.
  • the shortest path search method under the necessary nodes is a research hotspot of mathematics and computer graphics, and it has great application potential in the fields of logistics, resource allocation, and military.
  • the traditional shortest path search methods under the necessary nodes are mostly carried out from the perspective of graph theory and mathematics, and the search efficiency and accuracy are not satisfactory and the geographic information of the spatial location is ignored.
  • the shortest path search method under the necessary nodes can reach a certain level of sample data complexity, and computers and traditional algorithms will be powerless.
  • the shortest path search method under the necessary nodes belongs to the path search problem of the necessary nodes in the obstacle environment, so the traditional path search method is suitable for the shortest path search field under the necessary nodes.
  • the sequential optimization combination of the necessary node and the geographic location information have not been considered in depth, so no scholars in the research use the traditional path search method for the necessary node Download the shortest path search field to reduce the difficulty, cost and time of processing.
  • the purpose of the present invention is to provide a method for searching the shortest path of a necessary node, which is efficient and stable, can effectively reduce the difficulty, cost and time of processing, and improve the search efficiency.
  • the present invention provides a method for searching the shortest path of a necessary node.
  • the method includes the following processing steps:
  • the starting point must pass through the node and the end point must pass through the node are the same must pass through node, it is the return mode, and the must pass through node and the must pass through node with the farthest distance to the must pass through node
  • the connection between the points divides all the necessary nodes into two parts, and then performs S3 processing on the two parts respectively.
  • the steps for selecting the shorter side in S7 according to the principle of closing the two sides of the figure are as follows:
  • this search method is used for plane solving.
  • the present invention has the following beneficial effects:
  • the Tyson polygons and Denaulay triangles are established through the necessary nodes to perform route search, which is efficient and stable, can effectively reduce the difficulty, cost and time of processing, and improve the search efficiency.
  • Ascending dimensionality represents infinite possibilities, and dimensionality reduction represents simplified solution of the problem.
  • the difficulty of the point-to-point connection problem is that the divergence space of the solution is multi-dimensional (two-dimensional), which is not an extension of traditional logical thinking, so it is difficult to solve multi-dimensional problems without the help of multi-dimensional thinking;
  • the point connection problem proposed by the present invention extends to lines, and the line problem extends to surfaces.
  • the connectivity of the line is analyzed through the surface, and the local optimization of the point connection is ensured by the line, which is a concrete realization of the direct dimension increase solution of the point-to-point connection problem.
  • the method of the present invention is a brand-new solution to the traveler problem. It is the first time that mathematical logic problems are solved through spatial information science and technology. It has important academic value and practical significance, and has huge application potential in both civilian and military fields. .
  • Figure 1 is a structural block diagram of the present invention
  • Fig. 2 is a schematic diagram of the structure of Tyson polygons constructed with necessary nodes in the first embodiment
  • FIG. 3 is a schematic diagram of the structure of merged polygons formed after merging in the first embodiment
  • Figure 4 is a schematic diagram of the Denaulay triangle structure constructed with the necessary nodes in the first embodiment
  • FIG. 5 is a schematic diagram of a structure in which the node degree is greater than three parts removed in the first embodiment
  • FIG. 6 is a schematic diagram of the connection structure of the necessary nodes in the merged polygon in the first embodiment
  • Figure 7 is a schematic diagram of the overall connection structure of the obligatory nodes in the first embodiment
  • FIG. 8 is a schematic diagram of the structure of the Tyson polygon constructed by the necessary nodes in the second embodiment
  • FIG. 9 is a schematic diagram of the structure of merged polygons formed after merging in the second embodiment.
  • FIG. 10 is a schematic diagram of the Denaulay triangle structure constructed with the obligatory nodes in the second embodiment
  • FIG. 11 is a schematic diagram of the connection structure of the necessary nodes in the merged polygon in the second embodiment
  • FIG. 12 is a schematic diagram of the first structure in which the node degree is greater than three parts in the second embodiment
  • FIG. 13 is a schematic diagram of a second structure in which the node degree is greater than three parts removed in the second embodiment
  • FIG. 14 is a schematic diagram of a third structure in which the node degree is greater than three parts removed in the second embodiment
  • 15 is a schematic diagram of the overall connection structure of the obligatory nodes in the second embodiment.
  • the present invention provides a search method for the shortest path that must pass a node, which is realized through the path centerline and the spatial topological relationship.
  • the search method is used for plane solving;
  • the method includes the following processing steps:
  • the difference between this embodiment and the first embodiment is: in S2, if the starting point must pass through the node and the end point must pass through the same node, it is the return mode, and the must pass through
  • the connection between the node and the must-pass node with the farthest distance to the must-pass node is the boundary to divide all the must-pass nodes into two parts, and then S3 processing is performed on the two parts respectively.
  • the upper left corner of Figure 8-15 is the starting point must pass through the node and the end point must pass through the node.
  • the processing process is to divide all the necessary nodes into two parts through the connection between the starting point must pass the node and the must pass node farthest from the starting point, and the two parts shall be processed as in Example 1 to form two Connection, connecting the corresponding ends of the two connections to form a closed loop is the result, which can effectively reduce the difficulty, cost and time of processing, and improve search efficiency and stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Generation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

一种必经结点最短路径搜索方法,包括如下处理步骤:S1、构建泰森多边形;S2、起点必经结点和终点必经结点不是同一必经结点进行S3处理;S3、以起点必经结点所在的泰森多边形为起始,查询相邻的泰森多边形合并成第一合并多边形;S4、以第一合并多边形为基准,查询相邻的未处理泰森多边形合并成第二合并多边形;S5、将孤立的泰森多边形合并到相邻共边的某个合并多边形中;S6、将Denaulay三角形中两个顶点不在同一个合并多边形中的边删除;S7、若合并多边形中剩余的边线不存在节点度大于等于三的情况,则进行S8处理;S8、将每个合并多边形中边线首尾相连,连线短者为结果。必经结点最短路径搜索方法能够有效降低处理难度、成本和时间,提高搜索效率。

Description

一种必经结点最短路径搜索方法 技术领域
本发明属于计算机图形学与地理信息科学领域,尤其涉及一种必经结点最短路径搜索方法。
背景技术
必经结点下最短路径搜索方法是数学与计算机图形学的研究热点,在物流、资源配置、军事等领域具有巨大应用潜力。但是传统的必经结点下最短路径搜索方法多从图论及数学角度进行,其搜索效率和准确度都不尽人意而且忽略了空间位置的地理信息。另外,在必经结点下最短路径搜索方法在样本数据复杂程度达到一定级别,计算机和传统算法将无能为力。
必经结点下最短路径搜索方法属于障碍物环境下必经结点的路径搜索问题,因此传统的路径搜索方法适用于必经结点下最短路径搜索领域。但鉴于必经结点下最短路径搜索方法的特殊性,必经结点的先后优化组合及地理位置信息等未作深入考虑,因此研究中没有学者将传统的路径搜索方法用于必经结点下最短路径搜索领域以降低处理的难度、成本和时间。
发明内容
本发明的目的为提供一种必经结点最短路径搜索方法,高效稳定,能够有效降低处理的难度、成本和时间,提高搜索效率。
为实现目的,本发明提供了一种必经结点最短路径搜索方法,该方法包括如下处理步骤:
S1、获取各必经结点并且通过各必经结点构建泰森多边形;
S2、判断起点必经结点和终点必经结点是否为同一必经结点,若不是则直接进行S3处理;
S3、以起点必经结点所在的泰森多边形为起始,查询与该泰森多边形相邻的泰森多边形;然后将相邻的泰森多边形中依次相邻的泰森多边形合并成第一合并多边形然后进行S4处理,若查询的相邻的泰森多边形中有不相邻孤立的泰森多边形则对应将不相邻孤立的泰森多边形进行S5处理;
S4、以第一合并多边形为基准,查询与第一合并多边形相邻的未处理泰森多边形,然后将相邻的未处理泰森多边形中依次相邻的未处理泰森多边形合并成第二合并多边形,若相邻的未处理泰森多边形中有不相邻孤立的未处理泰森多边形则对应将不相邻孤立的未处理泰森多边形进行S5处理;直到处理完所有泰森多边形;
S5、若起点必经结点所在的泰森多边形的相邻的泰森多边形中或某个合并多边形的相邻的未处理泰森多边形中有不相邻孤立的泰森多边形,则将该孤立的泰森多边形合并到相邻共边的某个合并多边形中,确保除起点必经结点所在的泰森多边形和终点必经结点所在的泰森多边形外的各合并多边形都有且仅有两个临近的合并多边形;
S6、通过各必经结点构建Denaulay三角形,将Denaulay三角形中两个顶点不在同一个合并多边形中的边删除;
S7、若合并多边形中剩余的边线不存在节点度大于等于三的情况,则进行S8处理,否则按照图形闭合两边原则选取较短边;
S8、将每个合并多边形中边线首尾相连,连线短者即为结果。
优选地,在S2中,若起点必经结点和终点必经结点为同一必经结点即为返回模式,以该必经结点和到该必经结点距离最远的必经结点间的连线为界将全部必经结点分为两部分,然后分别对两部分进行S3处理。
优选地,在S8中,将每个合并多边形中的边线进行首尾相连时,若连线出现自相交,则将自相交连线所在的合并多边形再次合并,重新进行S6-S8的处理。
优选地,在S7中按照图形闭合两边原则选取较短边的步骤如下:
S71、若存在三角形,则将最长的边剔除,剔除最长的边后若图形依然闭合则再次剔除闭合图形中最长的边;
S72、若不存在三角形,则选取该节点度大于三的必经结点周边的Denaulay三角形,再次返回S71进行处理确保没有必经结点的节点度大于等于三。
优选地,本搜索方法用于平面求解。
本发明与现有技术相比,其有益效果在于:
在本发明中通过必经结点建立泰森多边形和Denaulay三角形进行线路搜索,高效稳定,能够有效降低处理的难度、成本和时间,提高搜索效率。
升维代表无限可能,降维代表问题简化求解,点点连接问题的难点就在于解的发散空间为多维(二维),不是传统逻辑思维的拓展,因此不借助多维思维很难求解多维问题;本发明提出的点连接问题拓展到线,线问题拓展到面,通过面分析线的连通性,通过线来确保点连线的局部最优,是点点连接问题直接升维解决的具体实现。本发明的方法是旅行者问题的全新解算思路,是首次将数学逻辑问题通过空间信息科学技术手段来实现解算,具有重要的学术价值和现实意义,在民用及军用领域都具有巨大应用潜力。
附图说明
图1为本发明的结构框图;
图2为实施例一中以必经结点构建泰森多边形结构示意图;
图3为实施例一中合并后形成合并多边形结构示意图;
图4为实施例一中以必经结点构建Denaulay三角形结构示意图;
图5为实施例一中去除节点度大于三部分的结构示意图;
图6为实施例一中合并多边形中必经结点连接结构示意图;
图7为实施例一中必经结点整体连接结构示意图;
图8为实施例二中以必经结点构建泰森多边形结构示意图;
图9为实施例二中合并后形成合并多边形结构示意图;
图10为实施例二中以必经结点构建Denaulay三角形结构示意图;
图11为实施例二中合并多边形中必经结点连接结构示意图;
图12为实施例二中去除节点度大于三部分的第一结构示意图;
图13为实施例二中去除节点度大于三部分的第二结构示意图;
图14为实施例二中去除节点度大于三部分的第三结构示意图;
图15为实施例二中必经结点整体连接结构示意图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下。
实施例一
如图1-7所示,本发明提供了本发明提供了一种必经结点最短路径搜索方法,通过路径中线和空间拓扑关系实现,本搜索方法用于平面求解;
该方法包括如下处理步骤:
S1、获取各必经结点并且通过各必经结点构建泰森多边形;
S2、判断起点必经结点和终点必经结点是否为同一必经结点,若不是则直接进行S3处理;
S3、以起点必经结点所在的泰森多边形为起始,查询与该泰森多边形相邻的泰森多边形;然后将相邻的泰森多边形中依次相邻的泰森多边形合并成第一合并多边形然后进行S4处理,若查询的相邻的泰森多边形中有不相邻孤立的泰森多边形则对应将不相邻孤立的泰森多边形进行S5处理;
S4、以第一合并多边形为基准,查询与第一合并多边形相邻的未处理泰森多边形,然后将相邻的未处理泰森多边形中依次相邻的未处理泰森多边形合并成第二合并多边形,若相邻的未处理泰森多边形中有不相邻孤立的未处理泰森多边形则对应将不相邻孤立的未处理泰森多边形进行S5处理;直到处理完所有泰森多边形;包括终点必经结点所在的泰森多边形。
S5、若起点必经结点所在的泰森多边形的相邻的泰森多边形中或某个合并多边形的相邻的未处理泰森多边形中有不相邻孤立的泰森多边形,则将该孤立的泰森多边形合并到相邻共边的某个合并多边形中,确保除起点必经结点所在的泰森多边形和终点必经结点所在的泰森多边形外的各合并多边形都有且仅有两个临近的合并多边形;
S6、通过各必经结点构建Denaulay三角形,将Denaulay三角形中两个顶点不在同一个合并多边形中的边删除;
S7、若合并多边形中剩余的边线不存在节点度大于等于三的情况,则进行S8处理,否则按照图形闭合两边原则选取较短边;
S8、将每个合并多边形中边线首尾相连,连线短者即为结果。
在S8中,将每个合并多边形中的边线进行首尾相连时,若连线出现自相交,则将自相交连线所在的合并多边形再次合并,重新进行S6-S8的处理。即为将每个合并多边形中的边线进行首尾相连时,若出现相交情况,则将出现相交所在的两个合并多边形合并起来再进行S6-S8的处理,形成不相交的连线。
在S7中按照图形闭合两边原则选取较短边的步骤如下:
S71、若存在三角形,则将最长的边剔除,剔除最长的边后若图形依然闭合则再次剔除闭合图形中最长的边;
S72、若不存在三角形,则选取该节点度大于三的必经结点周边的Denaulay三角形,再次返回S71进行处理确保没有必经结点的节点度大于等于三。从而确保各合并多边形中必经结点依次连接形成一条不相交的连线。
在本实施例中,在图2-7中左上角为起点必经结点,右下角最远点为终点必经结点。
实施例二
如图8-15所示,本实施例与实施例一的区别在于:在S2中,若起点必经结点和终点必经结点为同一必经结点即为返回模式,以该必经结点和到该必经结点距离最远的必经结点间的连线为界将全部必经结点分为两部分,然后分别对两部分进行S3处理。在本实施例中,图8-15左上角为起点必经结点和终点必经结点。处理过程即为通过起点必经结点和离起点必经结点最远的必经结点连线将全部必经结点分成两部分,分别对两部分进行实施例一的处理,形成两条连线,将两条连线相对应的两端连接形成一个闭合的回路即为结果,能够有效降低处理的难度、成本和时间,提高搜索效率和稳定性。
以上仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环 境,并能够在本文构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (5)

  1. 一种必经结点最短路径搜索方法,其特征在于,该方法包括如下处理步骤:
    S1、获取各必经结点并且通过各必经结点构建泰森多边形;
    S2、判断起点必经结点和终点必经结点是否为同一必经结点,若不是则直接进行S3处理;
    S3、以起点必经结点所在的泰森多边形为起始,查询与该泰森多边形相邻的泰森多边形;然后将相邻的泰森多边形中依次相邻的泰森多边形合并成第一合并多边形然后进行S4处理,若查询的相邻的泰森多边形中有不相邻孤立的泰森多边形则对应将不相邻孤立的泰森多边形进行S5处理;
    S4、以第一合并多边形为基准,查询与第一合并多边形相邻的未处理泰森多边形,然后将相邻的未处理泰森多边形中依次相邻的未处理泰森多边形合并成第二合并多边形,若相邻的未处理泰森多边形中有不相邻孤立的未处理泰森多边形则对应将不相邻孤立的未处理泰森多边形进行S5处理;直到处理完所有泰森多边形;
    S5、若起点必经结点所在的泰森多边形的相邻的泰森多边形中或某个合并多边形的相邻的未处理泰森多边形中有不相邻孤立的泰森多边形,则将该孤立的泰森多边形合并到相邻共边的某个合并多边形中,确保除起点必经结点所在的泰森多边形和终点必经结点所在的泰森多边形外的各合并多边形都有且仅有两个临近的合并多边形;
    S6、通过各必经结点构建Denaulay三角形,将Denaulay三角形中两个顶点不在同一个合并多边形中的边删除;
    S7、若合并多边形中剩余的边线不存在节点度大于等于三的情况,则进行S8处理,否则按照图形闭合两边原则选取较短边;
    S8、将每个合并多边形中边线首尾相连,连线短者即为结果。
  2. 根据权利要求1所述的一种必经结点最短路径搜索方法,其特征在于,在S2中,若起点必经结点和终点必经结点为同一必经结点即为返回模式,以该必经结点和到该必经结点距离最远的必经结点间的连线为界将全部必经结点分为两部分,然后分别对两部分进行S3处理。
  3. 根据权利要求1所述的一种必经结点最短路径搜索方法,其特征在于,在S8中,将每个合并多边形中的边线进行首尾相连时,若连线出现自相交,则将自相交连线所在的合并多边形再次合并,重新进行S6-S8的处理。
  4. 根据权利要求1所述的一种必经结点最短路径搜索方法,其特征在于,在S7中按照图形闭合两边原则选取较短边的步骤如下:
    S71、若存在三角形,则将最长的边剔除,剔除最长的边后若图形依然闭合则再次剔除闭合图形中最长的边;
    S72、若不存在三角形,则选取该节点度大于三的必经结点周边的Denaulay三角形,再次返回S71进行处理确保没有必经结点的节点度大于等于三。
  5. 根据权利要求1所述的一种必经结点最短路径搜索方法,其特征在于,本搜索方法用于平面求解。
PCT/CN2020/119986 2019-11-18 2020-10-09 一种必经结点最短路径搜索方法 WO2021098400A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/284,777 US20220018669A1 (en) 2019-11-18 2020-10-09 A method for searching the shortest path of must-pass nodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911129998.4 2019-11-18
CN201911129998.4A CN110887502B (zh) 2019-11-18 2019-11-18 一种必经结点最短路径搜索方法

Publications (1)

Publication Number Publication Date
WO2021098400A1 true WO2021098400A1 (zh) 2021-05-27

Family

ID=69747840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119986 WO2021098400A1 (zh) 2019-11-18 2020-10-09 一种必经结点最短路径搜索方法

Country Status (3)

Country Link
US (1) US20220018669A1 (zh)
CN (1) CN110887502B (zh)
WO (1) WO2021098400A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117217396A (zh) * 2023-09-12 2023-12-12 广西交科集团有限公司 一种基于路网的多目标派送路径存在判定方法及系统
CN117852731A (zh) * 2023-12-06 2024-04-09 珠海市规划设计研究院 边角涟漪思维的多目标点路径搜索方法、系统及介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035681B2 (en) * 2018-07-20 2021-06-15 Verizon Patent And Licensing Inc. Preserving original route information after recalculation of a route
CN110887502B (zh) * 2019-11-18 2020-09-04 广西华蓝岩土工程有限公司 一种必经结点最短路径搜索方法
CN111865404B (zh) * 2020-06-09 2021-05-14 烽火通信科技股份有限公司 保护环路径查找方法、装置、设备及可读存储介质
CN112070167A (zh) * 2020-09-09 2020-12-11 深圳市城市规划设计研究院有限公司 一种基于tin三角形网络的哈密顿路径快速求解方法
CN112070166A (zh) * 2020-09-09 2020-12-11 深圳市城市规划设计研究院有限公司 一种基于临近矩形的哈密顿路径快速求解方法
CN112070165A (zh) * 2020-09-09 2020-12-11 深圳市城市规划设计研究院有限公司 一种基于三角拓展的哈密顿路径快速求解方法
CN112347312A (zh) * 2020-11-10 2021-02-09 北部湾大学 一种基于等高线思维的哈密顿路径求解方法
CN113589808B (zh) * 2021-07-23 2024-05-03 浙江工业大学 一种基于岛桥模型的全局路径规划方法
CN113781648B (zh) * 2021-08-06 2023-05-26 清华大学建筑设计研究院有限公司 一种建筑平面交通空间的骨架提取与特征识别方法
CN117371897B (zh) * 2023-10-16 2024-06-21 广西交科集团有限公司 一种基于路网的多目标点物流派送路径的规划方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130304434A1 (en) * 2012-05-11 2013-11-14 Samsung Electronics Co., Ltd. Computing system with high-throughput topical analysis for solid state electrolyte mechanism and method of operation thereof
CN105489000A (zh) * 2015-09-08 2016-04-13 同济大学 一种夜班公交车站点及路径选择方法
CN106022531A (zh) * 2016-05-27 2016-10-12 西安电子科技大学 经过必经顶点的最短路径搜索方法
CN106643783A (zh) * 2016-12-28 2017-05-10 国网天津市电力公司东丽供电分公司 基于最短路径泰森多边形的电动汽车充电站搜索方法
CN110309248A (zh) * 2019-06-26 2019-10-08 东南大学 一种基于Voronoi图的交通道路网络自动划分交通小区的方法
CN110887502A (zh) * 2019-11-18 2020-03-17 广西华蓝岩土工程有限公司 一种必经结点最短路径搜索方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105512169B (zh) * 2016-03-10 2018-05-15 珠海市规划设计研究院 基于路径和权的最短路径搜索方法
CN105894587B (zh) * 2016-04-01 2018-10-16 南京师范大学 一种基于规则约束的山脊线和山谷线过滤方法
EP3339806B1 (en) * 2016-12-22 2019-05-22 Gestalt Systems GmbH Navigation for vehicle based on parallel processing to determine collision-free paths
CN110322694A (zh) * 2019-07-16 2019-10-11 青岛海信网络科技股份有限公司 一种城市交通控制片区划分的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130304434A1 (en) * 2012-05-11 2013-11-14 Samsung Electronics Co., Ltd. Computing system with high-throughput topical analysis for solid state electrolyte mechanism and method of operation thereof
CN105489000A (zh) * 2015-09-08 2016-04-13 同济大学 一种夜班公交车站点及路径选择方法
CN106022531A (zh) * 2016-05-27 2016-10-12 西安电子科技大学 经过必经顶点的最短路径搜索方法
CN106643783A (zh) * 2016-12-28 2017-05-10 国网天津市电力公司东丽供电分公司 基于最短路径泰森多边形的电动汽车充电站搜索方法
CN110309248A (zh) * 2019-06-26 2019-10-08 东南大学 一种基于Voronoi图的交通道路网络自动划分交通小区的方法
CN110887502A (zh) * 2019-11-18 2020-03-17 广西华蓝岩土工程有限公司 一种必经结点最短路径搜索方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117217396A (zh) * 2023-09-12 2023-12-12 广西交科集团有限公司 一种基于路网的多目标派送路径存在判定方法及系统
CN117217396B (zh) * 2023-09-12 2024-06-11 广西交科集团有限公司 一种基于路网的多目标派送路径存在判定方法及系统
CN117852731A (zh) * 2023-12-06 2024-04-09 珠海市规划设计研究院 边角涟漪思维的多目标点路径搜索方法、系统及介质

Also Published As

Publication number Publication date
CN110887502B (zh) 2020-09-04
US20220018669A1 (en) 2022-01-20
CN110887502A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2021098400A1 (zh) 一种必经结点最短路径搜索方法
Carr et al. Computing contour trees in all dimensions
De Floriani et al. Morse complexes for shape segmentation and homological analysis: discrete models and algorithms
Han et al. Point cloud simplification with preserved edge based on normal vector
JP6294072B2 (ja) 剛体運動によって変換される幾何学要素
Benmansour et al. Fast object segmentation by growing minimal paths from a single point on 2D or 3D images
Bose et al. A survey of geodesic paths on 3D surfaces
Rao Robot navigation in unknown generalized polygonal terrains using vision sensors
JP2005038219A (ja) 境界表現データからボリュームデータを生成する方法及びそのプログラム
Owen et al. Parallel hex meshing from volume fractions
CN106447777A (zh) 布尔运算支持下的三维拓扑关系表达与映射
CN112070165A (zh) 一种基于三角拓展的哈密顿路径快速求解方法
CN103817938A (zh) 一种包含多个洞的多边形区域快速桥接方法
Chang et al. Parallel implicit hole-cutting method for unstructured Chimera Grid
Franklin Efficient polyhedron intersection and union
US7181377B1 (en) Method of modifying a volume mesh using sheet extraction
Sabharwal et al. Reducing 9-Intersection to 4-Intersection for identifying relations in region connection calculus
Czyzowicz et al. Worst-case optimal exploration of terrains with obstacles
US20140172388A1 (en) Generating a mesh of geometric elements
Liu et al. The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces
Lee et al. Computing the medial surface of a 3-D boundary representation model
CN112362073B (zh) 一种基于凸包特征的导航路径建模及最短路径求解方法
Xu et al. An improved isogeometric analysis method for trimmed geometries
Staten et al. Mesh matching–creating conforming interfaces between hexahedral meshes
CN108415267B (zh) 基于apdl语言用于机床等效结合面快速定义的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890486

Country of ref document: EP

Kind code of ref document: A1