WO2021098246A1 - 一种电能表寿命预测方法、装置及存储介质 - Google Patents

一种电能表寿命预测方法、装置及存储介质 Download PDF

Info

Publication number
WO2021098246A1
WO2021098246A1 PCT/CN2020/102505 CN2020102505W WO2021098246A1 WO 2021098246 A1 WO2021098246 A1 WO 2021098246A1 CN 2020102505 W CN2020102505 W CN 2020102505W WO 2021098246 A1 WO2021098246 A1 WO 2021098246A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure mode
failure
distribution model
electric energy
weibull distribution
Prior art date
Application number
PCT/CN2020/102505
Other languages
English (en)
French (fr)
Inventor
刘金权
王军
李志鹏
方旭
王文浩
阎鹏
李明哲
薛晨光
Original Assignee
河南许继仪表有限公司
许继集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南许继仪表有限公司, 许继集团有限公司 filed Critical 河南许继仪表有限公司
Publication of WO2021098246A1 publication Critical patent/WO2021098246A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/04Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current

Definitions

  • the application relates to a method, a device and a storage medium for predicting the life of an electric energy meter, and belongs to the technical field of reliability evaluation of an electric energy meter.
  • the field reliability data of the smart electric energy meter during the on-site operation reflects the reliability level of the product under real use conditions. It is the basis for product reliability statistics and analysis, and is also based on big data for the operation and maintenance management and life of the intelligent electric energy meter.
  • One of the key technologies such as forecasting.
  • the recording of the reliability data of smart electric energy meters in the field has gradually realized softwareization and systematization, which makes it more convenient to carry out the analysis and evaluation of the reliability information of smart electric energy meters.
  • the first method is to use the overall Weibull distribution fitting method of the electric energy meter to process the reliability data of the faulty electric energy meter, which can discover the batch life of the intelligent electric energy meter, but this method is often for the entire electric energy meter batch. , Does not consider the difference between the types of specific failures, therefore, the accuracy of the prediction results is often biased, and it has little support for subsequent failure mechanism analysis.
  • the second method is to use each failure mode as the object of statistical analysis, establish a Weibull distribution model of each failure mode, predict the individual stage failure rate and cumulative failure rate of each failure mode, and calculate the stage failure rate of each failure mode. And the cumulative failure rate is added together to obtain the overall predicted life.
  • This method is a commonly used method to predict life. However, due to different failure mechanisms and induced stresses, the distribution characteristics of each failure mode are not consistent. Therefore, the overall evaluation according to the unified Weibull distribution model of failure modes is not accurate.
  • the purpose of this application is to provide a life prediction method for electric energy meters to solve the problem of low prediction accuracy of current electric energy meter life prediction methods, and to provide a life prediction device and storage medium for electric energy meters to solve current electric energy meters
  • the life prediction device predicts the problem of low accuracy.
  • this application proposes a method for predicting the life of an electric energy meter, which includes the following steps:
  • the Weibull distribution model of the failure mode is obtained according to the historical failure data of the failure mode;
  • the Weibull distribution model of each influencing factor under the failure mode is obtained according to the historical failure data corresponding to each influencing factor of the failure mode model;
  • the Weibull distribution model of the failure mode is corrected according to the influence coefficient of each influencing factor, the predicted failure rate is obtained according to the corrected Weibull distribution model of the failure mode, and a group of electric energy meters to be predicted is predicted through the predicted failure rate The batch life.
  • this application also proposes a device for predicting the life of an electric energy meter, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor implements the foregoing when the computer program is executed. Life prediction method of electric energy meter.
  • this application obtains the influence coefficient of each influence factor by fitting the Weibull distribution of the influence factors in each failure mode, and corrects the Weibull distribution model of the failure mode through the fitting coefficients, which is more realistic Reflects the influence of the influence factor on the fault distribution, and then obtains a more accurate Weibull distribution model for each failure mode, so as to more accurately predict the batch life of the electric energy meter.
  • the influence coefficient of the influence factor includes the slope influence coefficient and/or the intercept influence coefficient.
  • the process of correcting the Weibull distribution model of the failure mode includes: multiplying the slope influence coefficients of the influence factors to obtain the comprehensive slope influence Coefficient, multiply the intercept influence coefficient of each influence factor to obtain the comprehensive intercept influence coefficient; modify the slope and/or intercept in the Weibull distribution model of the failure mode according to the comprehensive slope influence coefficient and/or the comprehensive intercept influence coefficient .
  • the slope in the Weibull distribution model of the failure mode b′ i is the intercept in the Weibull distribution model of the i-th failure mode after correction, and b i is the intercept in the Weibull distribution model of the i-th failure mode Distance
  • a i is the slope in the Weibull distribution model of the i-th failure mode
  • N is the number of influencing factors corresponding to the i-th failure mode
  • Is the comprehensive intercept influence coefficient is the comprehensive intercept influence coefficient.
  • the predicted failure rate includes a stage failure rate and a cumulative failure rate
  • the stage failure rate and the cumulative failure rate are:
  • ⁇ i (t) is the stage failure rate within the i-th failure mode time period t
  • F i (t) is the cumulative failure rate before the i-th failure mode time period t.
  • the embodiment of the present application further provides a storage medium storing an executable program, and the executable program is executed by a processor to realize the above-mentioned method for predicting the life of an electric energy meter.
  • An embodiment of the present application also provides a transformer monitoring device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned electric energy meter when the computer program is running. The steps of the life prediction method.
  • Figure 1 is a flow chart of the life prediction method of the electric energy meter of the application
  • Fig. 2 is a schematic diagram of the hardware composition structure of an electric energy meter life prediction device according to an embodiment of the present application.
  • the life prediction method of the electric energy meter proposed in this embodiment, as shown in FIG. 1, includes the following steps:
  • influencing factor refers to various external factors that affect the reliability of electric energy meters, such as temperature, humidity, and production quality levels.
  • the Weibull distribution model of the failure mode is obtained according to the historical failure data of the failure mode; according to the historical failure data corresponding to each influencing factor in the failure mode, the power of each influencing factor under the failure mode is obtained. Boolean distribution model.
  • the temperature influence factor of a certain failure mode also uses the same method to count its historical failure rate and historical cumulative failure rate, and calculates each point in the orthogonal coordinate (ie X, Y). The specific data is not listed here.
  • the influence coefficient of the influence factor includes the slope influence coefficient and the intercept influence coefficient.
  • the slope influence coefficient or only the intercept influence coefficient may be included.
  • the calculation process of the slope influence coefficient and the intercept influence coefficient is:
  • the method of calculating the slope influence coefficient and the intercept influence coefficient is not limited to the above formulas, and can be adjusted as needed, and this application is not limited.
  • the process of correcting the Weibull distribution model of the failure mode includes: multiplying the slope influence coefficients of each influencing factor to obtain a comprehensive slope influence coefficient, and multiplying the intercept influence coefficients of each influencing factor to obtain a comprehensive intercept Distance influence coefficient; According to the comprehensive slope influence coefficient and the comprehensive intercept influence coefficient, the slope and intercept in the Weibull distribution model of the failure mode are corrected.
  • the influence coefficient includes only the slope influence coefficient or only the intercept influence coefficient, it is only necessary to calculate the comprehensive slope influence coefficient or the comprehensive intercept influence coefficient for correction, and the comprehensive slope influence coefficient and the comprehensive intercept influence coefficient
  • the calculation of the distance influence coefficient is not limited to the multiplication of the influence coefficients, and the specific calculation method can be adjusted according to actual needs.
  • the slope in the Weibull distribution model of the failure mode b′ i is the intercept in the Weibull distribution model of the i-th failure mode after correction, and b i is the intercept in the Weibull distribution model of the i-th failure mode Distance
  • a i is the slope in the Weibull distribution model of the i-th failure mode
  • N is the number of influencing factors corresponding to the i-th failure mode
  • Is the comprehensive intercept influence coefficient is the comprehensive intercept influence coefficient.
  • the revised predicted failure rate includes the stage failure rate ⁇ i (t) and the cumulative failure rate F i (t).
  • the stage failure rate and cumulative failure rate are:
  • ⁇ i (t) is the stage failure rate within the i-th failure mode time period t
  • F i (t) is the cumulative failure rate before the i-th failure mode time period t.
  • the following takes a certain failure mode and the main influencing factor of the failure mode is temperature as an example to describe the life prediction method of the present application.
  • the batch of a group of electric energy meters to be predicted is a batch of electric energy meters put into operation by a certain manufacturer in 2016, and a certain number of failures have occurred during the operation process, and the information is used to predict the recent life changes of the batch of electric energy meters .
  • a certain failure mode is taken as an example to illustrate the life prediction method of the present application, and the main influencing factor of the failure mode is temperature.
  • Table 1 The number of phase failures and cumulative failures of a certain failure mode of a batch of electric energy meters running for 660 days
  • the temperature influence factor of the failure mode also uses the same method to count its historical failure rate and historical cumulative failure rate, and calculates each point in the orthogonal coordinate (ie X, Y). The specific data is not listed here.
  • This application uses the Weibull fitting method to obtain a matrix based on different failure modes and different influencing factors under different failure modes by counting the number of failures in each failure mode and the number of failures in the history of each failure mode under different influencing factors and the number of historical cumulative failures. The relationship between each influencing factor and each time period a ij and a i , b ij and b i of different failure modes is established. In this way, a matrix Weibull distribution model based on failure modes and external influence factors is established. Make the forecast more accurate.
  • An embodiment of the present application also provides a device for predicting the life of an electric energy meter, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above-mentioned computer program when the computer program is running. The steps of the life prediction method for electric energy meters.
  • the electric energy meter life prediction apparatus 700 includes: at least one processor 701, a memory 702, and at least one network interface 703.
  • the components in the device 700 for predicting the life of the electric energy meter are coupled together through the bus system 704. It can be understood that the bus system 704 is used to implement connection and communication between these components.
  • the bus system 704 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clear description, various buses are marked as the bus system 704 in FIG. 2.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM (CD) -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the device 700 for predicting the life of the electric energy meter. Examples of these data include: any computer program used to operate on the electric energy meter life prediction device 700, such as the application program 7022. A program for implementing the method of the embodiment of the present application may be included in the application program 7022.
  • the method disclosed in the foregoing embodiments of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the energy meter life prediction device 700 may be implemented by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device. It is implemented by a device (CPLD, Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components, and is used to execute the foregoing method.
  • ASIC Application Specific Integrated Circuit
  • DSP programmable logic device
  • PLD Programmable Logic Device
  • complex programmable logic device It is implemented by a device (CPLD, Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components, and is used to execute the foregoing method.
  • the embodiment of the present application also provides a storage medium for storing a computer program.
  • the computer program enables the computer to execute the corresponding process in the method for predicting the life of the electric energy meter in the embodiment of the present application. For the sake of brevity, details are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种电能表寿命预测方法、装置(700)及存储介质。其中方法包括:确定各故障模式对应的影响因子;获取其每种故障模式的历史失效数据,以及每种故障模式下各影响因子对应的历史失效数据;根据该故障模式的历史失效数据得到该故障模式的威布尔分布模型;根据该故障模式下各影响因子对应的历史失效数据分别得到该故障模式下各影响因子的威布尔分布模型;进而得到各影响因子的影响系数;根据各影响因子的影响系数对该故障模式的威布尔分布模型进行修正,进而修正预测失效率,通过预测失效率预测电能表的批量寿命。本方法真实的反映影响因子对故障分布的影响,得到更加准确的每种故障模式的威布尔分布模型,从而更加准确的预测电能表的批量寿命。

Description

一种电能表寿命预测方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201911137429.4、申请日为2019年11月19日的中国专利申请提出,并要求中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及一种电能表寿命预测方法、装置及存储介质,属于电能表可靠性评估技术领域。
背景技术
智能电能表在现场运行过程中的外场可靠性数据反映了产品在真实使用条件下的可靠性水平,是产品可靠性统计、分析工作的基础,也是基于大数据对智能电能表运维管理、寿命预测等关键技术之一。随着网络和信息化技术的发展,智能电能表的外场使用可靠性数据的记录已逐步实现软件化与系统化,使得开展智能电能表的使用可靠性信息分析与评估工作更加方便。为了更加准确的获取批量电能表的使用寿命,为运维管理决策提供依据,在线对智能电能表的使用寿命进行预测,成为必然。
利用现场可靠性数据对智能电能表进行寿命预测,通常有两种方法:一是基于电能表整体威布尔分布模型的预测方法,另一种是基于多种故障模式的威布尔分布模型的预测方法。
第一种方法是利用电能表整体威布尔分布拟合的方法对故障电能表的可靠性数据进行处理,可以发掘出智能电能表批量寿命,但这种方法往往是对整个电能表批而言的,并不考虑具体故障的类型之间的差异,因而,预测结果的准确性往往有偏差,且对于后续的故障机理分析的支撑作用不大。
第二种方法是以每种故障模式分别作为统计分析对象,建立各个故障模式 的威布尔分布模型,预计各种故障模式单独的阶段失效率和累积失效率,将各种故障模式的阶段失效率和累积失效率进行累加,进而获得整体的预测寿命。这种方法为常用的预测寿命的方法,然而每种故障模式由于其失效机理及诱发应力不同,其分布特征并不一致,因此,按照统一的故障模式的威布尔分布模型进行整体评估并不准确。
发明内容
本申请的目的是提供一种电能表寿命预测方法,用以解决目前电能表寿命预测方法预测准确度低的问题,同时还提供一种电能表寿命预测装置及存储介质,用以解决目前电能表寿命预测装置预测准确度低的问题。
为实现上述目的,本申请提出一种电能表寿命预测方法,包括以下步骤:
确定各故障模式对应的影响因子;
对于待预测的一组电能表,获取其每种故障模式的历史失效数据,以及每种故障模式下各影响因子对应的历史失效数据;
对于一种故障模式,根据该故障模式的历史失效数据得到该故障模式的威布尔分布模型;根据该故障模式下各影响因子对应的历史失效数据分别得到该故障模式下各影响因子的威布尔分布模型;
根据该故障模式下各影响因子的威布尔分布模型和该故障模式的威布尔分布模型得到各影响因子的影响系数;
根据各影响因子的影响系数对该故障模式的威布尔分布模型进行修正,根据修正后的该故障模式的威布尔分布模型得到预测失效率,通过所述预测失效率预测待预测的一组电能表的批量寿命。
另外,本申请还提出一种电能表寿命预测装置,包括存储器、处理器以及存储在所述存储器中并可在处理器上运行的计算机程序,所述处理器在执行所述计算机程序时实现上述电能表寿命预测方法。
有益效果是:本申请通过对每种故障模式下的影响因子进行威布尔分布拟合,进而得到各影响因子的影响系数,并且通过拟合系数对故障模式的威布尔 分布模型进行修正,更加真实的反映影响因子对故障分布的影响,进而得到更加准确的每种故障模式的威布尔分布模型,从而更加准确的预测电能表的批量寿命。
上述方案中,上述电能表寿命预测方法及装置中,为了更加直接的修正每种故障模式的威布尔分布模型,影响因子的影响系数包括斜率影响系数和/或截距影响系数。
上述方案中,上述电能表寿命预测方法及装置中,为了提高修正的准确性,对该故障模式的威布尔分布模型进行修正的过程包括:将各影响因子的斜率影响系数相乘得到综合斜率影响系数,将各影响因子的截距影响系数相乘得到综合截距影响系数;根据综合斜率影响系数和/或综合截距影响系数修正该故障模式的威布尔分布模型中的斜率和/或截距。
上述方案中,上述电能表寿命预测方法及装置中,修正后的第i个故障模式的威布尔分布模型中的斜率和截距为:
Figure PCTCN2020102505-appb-000001
其中,K ij为第j个影响因子对第i个故障模式的斜率影响系数;E ij为第j个影响因子对第i个故障模式的截距影响系数,a′ i为修正后的第i个故障模式的威布尔分布模型中的斜率,b′ i为修正后的第i个故障模式的威布尔分布模型中的截距,b i为第i个故障模式的威布尔分布模型中的截距,a i为第i个故障模式的威布尔分布模型中的斜率,N为第i个故障模式对应的影响因子的数量,
Figure PCTCN2020102505-appb-000002
为综合斜率影响系数,
Figure PCTCN2020102505-appb-000003
为综合截距影响系数。
上述方案中,上述电能表寿命预测方法及装置中,所述预测失效率包括阶段失效率和累积失效率,所述阶段失效率和累积失效率为:
Figure PCTCN2020102505-appb-000004
其中,λ i(t)为第i个故障模式时间段t内的阶段失效率,F i(t)为第i个故障模式时间段t以前的累积失效率。
上述方案中,上述电能表寿命预测方法及装置中,为了得到更加准确的影 响系数,所述斜率影响系数和截距影响系数的计算过程为:
Figure PCTCN2020102505-appb-000005
其中,a ij为第i个故障模式下第j个影响因子的威布尔分布模型中的斜率;a i为第i个故障模式的威布尔分布模型的斜率;K ij为第j个影响因子对第i个故障模式的斜率影响系数;b ij为第i个故障模式下第j个影响因子的威布尔分布模型中的截距;b i为第i个故障模式的威布尔分布模型的截距;E ij为第j个影响因子对第i个故障模式的截距影响系数。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述的电能表寿命预测方法。
本申请实施例还提供一种变压器监测装置,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述的电能表寿命预测方法的步骤。
附图说明
图1为本申请电能表寿命预测方法的流程图;
图2是本申请实施例的电能表寿命预测装置的硬件组成结构示意图。
具体实施方式
下电能表寿命预测方法实施例:
本实施例提出的电能表寿命预测方法,如图1所示,包括以下步骤:
1)确定各故障模式对应的影响因子。
一般来说,现场导致智能电能表不同故障模式的失效机理不同,各影响因素(即影响因子)对不同故障模式的影响程度也存在差异。这些影响因素是指各种来自外界的影响电能表产品可靠性的因素,如温度、湿度、生产质量等级等。
2)对于待预测的一组电能表,获取其每种故障模式的历史失效数据,以及每种故障模式下各影响因子对应的历史失效数据。
3)对于某种故障模式,根据该故障模式的历史失效数据得到该故障模式的威布尔分布模型;根据该故障模式下各影响因子对应的历史失效数据分别得到该故障模式下各影响因子的威布尔分布模型。
针对某种故障模式,统计其历史失效率λ' i(t)和历史累积失效率F' i(t),并计算正交坐标(即X,Y)内的各个点,得到的结果如表二所示:
同理,某种故障模式的温度影响因子也利用同样的方法统计其历史失效率和历史累积失效率,并计算正交坐标(即X,Y)内的各个点,具体数据这里不做列举。
对某种故障模式的各个点利用线性拟合函数进行拟合,得到某种故障模式的威布尔拟合直线公式Y=a iX+b i,i为第i个故障模式,对第i个故障模式的第j个影响因子的各个点利用线性拟合函数进行拟合,得到第i个故障模式的第j个影响因子的威布尔拟合直线公式Y=a ijX+b ij,上述两个直线公式中,a为斜率,b为截距,在威布尔分布模型中,形状参数m=a,尺度参数η=exp(b/a)。
4)根据该故障模式下各影响因子的威布尔分布模型和该故障模式的威布尔分布模型得到各影响因子的影响系数。
本实施例中,为了使得寿命预测更加准确,影响因子的影响系数包括斜率影响系数和截距影响系数。作为其他实施方式,也可以只包括斜率影响系数或只包括截距影响系数。
本实施例中,斜率影响系数和截距影响系数的计算过程为:
Figure PCTCN2020102505-appb-000006
其中,a ij为第i个故障模式下第j个影响因子的威布尔分布模型中的斜率;a i为第i个故障模式的威布尔分布模型的斜率;K ij为第j个影响因子对第i个故障模式的斜率影响系数;b ij为第i个故障模式下第j个影响因子的威布尔分布模型中的截距;b i为第i个故障模式的威布尔分布模型的截距;E ij为第j个影响因子对第i个故障模式的截距影响系数。
作为其他实施方式,计算斜率影响系数和截距影响系数的方式并不局限 于上述公式,可以根据需要进行调整,本申请并不做限制。
5)根据各影响因子的影响系数对该故障模式的威布尔分布模型进行修正,根据修正后的该故障模式的威布尔分布模型得到预测失效率,通过预测失效率预测待预测的一组电能表的寿命。
本实施例中,对该故障模式的威布尔分布模型进行修正的过程包括:将各影响因子的斜率影响系数相乘得到综合斜率影响系数,将各影响因子的截距影响系数相乘得到综合截距影响系数;根据综合斜率影响系数和综合截距影响系数修正该故障模式的威布尔分布模型中的斜率和截距。作为其他实施方式,若影响系数只包括斜率影响系数或只包括截距影响系数的情况下,只需计算综合斜率影响系数或综合截距影响系数进行修正即可,而且综合斜率影响系数和综合截距影响系数计算并不局限于各影响系数相乘,具体的计算方式可以根据实际的需求进行调整。
修正后的第i个故障模式的威布尔分布模型中的斜率和截距为:
Figure PCTCN2020102505-appb-000007
其中,K ij为第j个影响因子对第i个故障模式的斜率影响系数;E ij为第j个影响因子对第i个故障模式的截距影响系数,a′ i为修正后的第i个故障模式的威布尔分布模型中的斜率,b′ i为修正后的第i个故障模式的威布尔分布模型中的截距,b i为第i个故障模式的威布尔分布模型中的截距,a i为第i个故障模式的威布尔分布模型中的斜率,N为第i个故障模式对应的影响因子的数量,
Figure PCTCN2020102505-appb-000008
为综合斜率影响系数,
Figure PCTCN2020102505-appb-000009
为综合截距影响系数。
进而修正第i个故障模式的威布尔分布模型中的形状参数和尺度参数:
修正后的形状参数:
Figure PCTCN2020102505-appb-000010
修正后的尺度参数:
Figure PCTCN2020102505-appb-000011
进而得到修正后的预测失效率包括阶段失效率λ i(t)和累积失效率F i(t),阶段失效率和累积失效率为:
Figure PCTCN2020102505-appb-000012
Figure PCTCN2020102505-appb-000013
其中,λ i(t)为第i个故障模式时间段t内的阶段失效率,F i(t)为第i个故障模式时间段t以前的累积失效率。
以下以某一种故障模式、且该故障模式的主要影响因子为温度为例对本申请的寿命预测方法进行说明。
待预测的一组电能表的批次为某厂家2016年投入运行的一批电能表,目前在运行过程中已经出现一定数量的失效,借此信息来预测该批次电能表近期寿命的变化情况。本实施例中,以某种故障模式为例对本申请的寿命预测方法进行说明,该故障模式的主要影响因子为温度。
以t=30天为时间单位,统计某厂家该批次各时段电能表某种故障模式的阶段故障数和累积故障数(即历史失效数据),结果如表一所示:
表一 某批次电能表运行660天某种故障模式的阶段故障数和累积故障数
时间(天) 30 60 90 120 150 180 210 240 270 300 330
阶段故障数 14 12 11 9 8 8 6 4 4 3 4
累积故障数 14 26 37 46 54 62 68 72 76 79 83
时间(天) 360 390 420 450 480 510 540 570 600 630 660
阶段故障数 1 5 1 2 3 1 3 2 0 0 0
累积故障数 84 89 90 92 95 96 99 101 101 101 101
由于该种故障模式的主要影响因子为温度,因此只讨论温度影响对电能表的影响,关于某种故障模式下温度影响因子对应的历史失效数据在此不做列举。
对于该故障模式,统计的历史阶段失效率、历史累积失效率、计算正交坐标(即X,Y)内的各个点,得到的结果如表二所示:
表二 某种故障模式的统计结果
Figure PCTCN2020102505-appb-000014
Figure PCTCN2020102505-appb-000015
同理,该故障模式的温度影响因子也利用同样的方法统计其历史失效率和历史累积失效率,并计算正交坐标(即X,Y)内的各个点,具体数据这里不做列举。
根据表二中的数据对该故障模式的各个点利用线性拟合函数进行拟合,得到每个时间段该故障模式的威布尔拟合直线公式Y=a 1X+b 1,同理,对该故障模式的温度影响因子的各个点利用线性拟合函数进行拟合,得到每个时间段该故障模式的温度影响因子的威布尔拟合直线公式Y=a 11X+b 11,进而
Figure PCTCN2020102505-appb-000016
修正后的形状参数m 1=a′ 1=a 1×K 11
修正后的尺度参数η 1=exp(b′ 1/a′ 1)=exp[(b 1×E 11)/(a 1×K 11)]。
所得到的结果如表三所示:
时间t(天) a 11 b 11 a 1 b 1 K 11 E 11 m 1 η 1
60 1.022314 -6.97604 1.04417 -7.37248 0.979068 0.946228 1.022314 919.4544
90 1.003894 -6.90995 1.095334 -7.55606 0.916518 0.914492 1.003894 975.6962
120 1.000353 -6.89672 1.052471 -7.39585 0.95048 0.932512 1.000353 986.6203
150 0.978332 -6.81165 1.004321 -7.20984 0.974122 0.944771 0.978332 1056.286
180 0.959894 -6.73843 0.96275 -7.04474 0.997034 0.956518 0.959894 1118.748
210 0.938502 -6.65142 0.934421 -6.92953 1.004368 0.959867 0.938502 1196.645
240 0.912895 -6.54509 0.913468 -6.84252 0.999373 0.956532 0.912895 1299.322
270 0.888331 -6.44118 0.887692 -6.73349 1.000719 0.956589 0.888331 1409.348
300 0.864081 -6.33688 0.864652 -6.63439 0.99934 0.955157 0.864081 1530.979
330 0.84359 -6.2474 0.844611 -6.54688 0.998791 0.954257 0.84359 1645.386
360 0.82122 -6.14836 0.823759 -6.45455 0.996918 0.952561 0.82122 1784.429
390 0.804774 -6.0746 0.805909 -6.3745 0.998592 0.952953 0.804774 1897.343
420 0.787328 -5.99543 0.787773 -6.2922 0.999435 0.952835 0.787328 2028.222
450 0.770989 -5.92047 0.770527 -6.21307 1.0006 0.952905 0.770989 2162.575
480 0.756967 -5.85546 0.75387 -6.13586 1.004107 0.954302 0.756967 2287.995
510 0.742889 -5.78956 0.737565 -6.05953 1.007218 0.955447 0.742889 2424.339
540 0.730928 -5.73306 0.722634 -5.989 1.011477 0.957265 0.730928 2549.215
570 0.719895 -5.68049 0.708603 -5.92214 1.015936 0.959196 0.719895 2672.375
600 0.708153 -5.62408 0.694412 -5.85397 1.019787 0.960729 0.708153 2812.71
630 0.696026 -5.56537 0.680277 -5.78553 1.02315 0.961945 0.696026 2968.826
660 0.68374 -5.50544 0.666652 -5.71908 1.025633 0.962646 0.68374 3139.911
进而修正预测的阶段失效率λ 1(t)和累积失效率F 1(t),通过上述公式可得如表四的结果。
表四 修正前后的阶段失效率和累积失效率
Figure PCTCN2020102505-appb-000017
从表四可以看出,当在t=660天时,该批次电能表预期的累积失效率达 到29.1236%,而修正前的预累积失效率将达到18.5%。通过与电网运行实际监测结果对比,修正后的预测结果更加准确。30天为第一阶段,不可预测,故而不予体现在表三、表四中。
本申请通过统计各故障模式以及各故障模式在不同影响因子下的历史阶段失效数和历史累计失效数,利用威布尔拟合方法,获得基于不同故障模式和不同故障模式下的不同影响因子的矩阵式的分布模型,建立起各影响因子与不同故障模式各时段a ij和a i、b ij和b i的关联关系,这样就建立起基于故障模式和外界影响因子的矩阵式威布尔分布模型,使得预测更加准确。
本申请实施例还提供一种电能表寿命预测装置,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述的电能表寿命预测方法的步骤。
图2是本申请实施例的电能表寿命预测装置的硬件组成结构示意图,电能表寿命预测装置700包括:至少一个处理器701、存储器702和至少一个网络接口703。电能表寿命预测装置700中的各个组件通过总线系统704耦合在一起。可理解,总线系统704用于实现这些组件之间的连接通信。总线系统704除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图2中将各种总线都标为总线系统704。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如 静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持电能表寿命预测装置700的操作。这些数据的示例包括:用于在电能表寿命预测装置700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电能表寿命预测装置700可以被一个或多个应用专用 集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请实施例还提供了一种存储介质,用于存储计算机程序,该计算机程序使得计算机执行本申请实施例电能表寿命预测方法中的相应流程,为了简洁,在此不再赘述。
电能表寿命预测方法的具体实施过程在上述电能表寿命预测方法实施例中已经介绍,这里不做赘述。

Claims (8)

  1. 一种电能表寿命预测方法,包括以下步骤:
    确定各故障模式对应的影响因子;
    对于待预测的一组电能表,获取其每种故障模式的历史失效数据,以及每种故障模式下各影响因子对应的历史失效数据;
    对于一种故障模式,根据该故障模式的历史失效数据得到该故障模式的威布尔分布模型;根据该故障模式下各影响因子对应的历史失效数据分别得到该故障模式下各影响因子的威布尔分布模型;
    根据该故障模式下各影响因子的威布尔分布模型和该故障模式的威布尔分布模型得到各影响因子的影响系数;
    根据各影响因子的影响系数对该故障模式的威布尔分布模型进行修正,根据修正后的该故障模式的威布尔分布模型得到预测失效率,通过所述预测失效率预测待预测的一组电能表的批量寿命。
  2. 根据权利要求1所述的电能表寿命预测方法,其中,所述影响因子的影响系数包括斜率影响系数和/或截距影响系数。
  3. 根据权利要求2所述的电能表寿命预测方法,其中,对该故障模式的威布尔分布模型进行修正的过程包括:将各影响因子的斜率影响系数相乘得到综合斜率影响系数,将各影响因子的截距影响系数相乘得到综合截距影响系数;根据综合斜率影响系数和/或综合截距影响系数修正该故障模式的威布尔分布模型中的斜率和/或截距。
  4. 根据权利要求3所述的电能表寿命预测方法,其中,修正后的第i个故障模式的威布尔分布模型中的斜率和截距为:
    Figure PCTCN2020102505-appb-100001
    其中,K ij为第j个影响因子对第i个故障模式的斜率影响系数;E ij为第j个影响因子对第i个故障模式的截距影响系数,a′ i为修正后的第i个故障模式的威布尔分布模型中的斜率,b′ i为修正后的第i个故障模式的威布尔分布模型中的 截距,b i为第i个故障模式的威布尔分布模型中的截距,a i为第i个故障模式的威布尔分布模型中的斜率,N为第i个故障模式对应的影响因子的数量,
    Figure PCTCN2020102505-appb-100002
    为综合斜率影响系数,
    Figure PCTCN2020102505-appb-100003
    为综合截距影响系数。
  5. 根据权利要求4所述的电能表寿命预测方法,其中,所述预测失效率包括阶段失效率和累积失效率,所述阶段失效率和累积失效率为:
    Figure PCTCN2020102505-appb-100004
    其中,λ i(t)为第i个故障模式时间段t内的阶段失效率,F i(t)为第i个故障模式时间段t以前的累积失效率。
  6. 根据权利要求2或3或4或5所述的电能表寿命预测方法,其中,所述斜率影响系数和截距影响系数的计算过程为:
    Figure PCTCN2020102505-appb-100005
    其中,a ij为第i个故障模式下第j个影响因子的威布尔分布模型中的斜率;a i为第i个故障模式的威布尔分布模型的斜率;K ij为第j个影响因子对第i个故障模式的斜率影响系数;b ij为第i个故障模式下第j个影响因子的威布尔分布模型中的截距;b i为第i个故障模式的威布尔分布模型的截距;E ij为第j个影响因子对第i个故障模式的截距影响系数。
  7. 一种电能表寿命预测装置,包括存储器、处理器以及存储在所述存储器中并可在处理器上运行的计算机程序,所述处理器在执行所述计算机程序时实现如权利要求1至6中任一项所述的电能表寿命预测方法。
  8. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至6任一项所述的电能表寿命预测方法。
PCT/CN2020/102505 2019-11-19 2020-07-16 一种电能表寿命预测方法、装置及存储介质 WO2021098246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911137429.4A CN112904266B (zh) 2019-11-19 2019-11-19 一种电能表寿命预测方法及装置
CN201911137429.4 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021098246A1 true WO2021098246A1 (zh) 2021-05-27

Family

ID=75980240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102505 WO2021098246A1 (zh) 2019-11-19 2020-07-16 一种电能表寿命预测方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN112904266B (zh)
WO (1) WO2021098246A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089257A (zh) * 2021-10-27 2022-02-25 国网湖南省电力有限公司 一种电能表烧表在线监测方法、系统及介质
CN114252794A (zh) * 2021-11-24 2022-03-29 国电南瑞科技股份有限公司 一种拆回智能电能表剩余寿命预测方法及装置
CN115291157A (zh) * 2022-07-14 2022-11-04 国网山东省电力公司营销服务中心(计量中心) 一种基于时钟偏差的电能表剩余寿命预测方法及系统
CN115936166A (zh) * 2022-09-28 2023-04-07 海南电网有限责任公司 一种电能表检定误差分析预测方法
CN116644590A (zh) * 2023-05-31 2023-08-25 中国人民解放军国防科技大学 通信测试设备可靠性预计方法、装置、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750185B2 (ja) * 2007-12-06 2011-08-17 日本電気計器検定所 電子化計量装置の寿命推定方法および装置
CN102708306A (zh) * 2012-06-19 2012-10-03 华北电网有限公司计量中心 一种智能电表可靠寿命的预测方法
CN105022019A (zh) * 2015-06-23 2015-11-04 国家电网公司 单相智能电能表可靠性综合评价的方法
CN106054105A (zh) * 2016-05-20 2016-10-26 国网新疆电力公司电力科学研究院 一种智能电表的可靠性预计修正模型建立方法
CN109697525A (zh) * 2018-12-06 2019-04-30 国网浙江省电力有限公司电力科学研究院 一种批次电能表多故障模式近期寿命预测方法
CN110146840A (zh) * 2019-05-23 2019-08-20 国网浙江省电力有限公司电力科学研究院 一种基于多应力影响的批次电能表近期寿命预测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311738B (zh) * 2007-05-21 2010-08-11 中芯国际集成电路制造(上海)有限公司 可靠性测试分析方法
CN103426030A (zh) * 2013-04-24 2013-12-04 华北电力大学 计及老化因素的电力设备故障率预测方法
CN106291437A (zh) * 2015-05-21 2017-01-04 中国电力科学研究院 一种智能电能表的可靠性评价方法
CN109522517B (zh) * 2018-10-11 2023-11-10 中国电力科学研究院有限公司 一种电表失效率计算方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750185B2 (ja) * 2007-12-06 2011-08-17 日本電気計器検定所 電子化計量装置の寿命推定方法および装置
CN102708306A (zh) * 2012-06-19 2012-10-03 华北电网有限公司计量中心 一种智能电表可靠寿命的预测方法
CN105022019A (zh) * 2015-06-23 2015-11-04 国家电网公司 单相智能电能表可靠性综合评价的方法
CN106054105A (zh) * 2016-05-20 2016-10-26 国网新疆电力公司电力科学研究院 一种智能电表的可靠性预计修正模型建立方法
CN109697525A (zh) * 2018-12-06 2019-04-30 国网浙江省电力有限公司电力科学研究院 一种批次电能表多故障模式近期寿命预测方法
CN110146840A (zh) * 2019-05-23 2019-08-20 国网浙江省电力有限公司电力科学研究院 一种基于多应力影响的批次电能表近期寿命预测方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089257A (zh) * 2021-10-27 2022-02-25 国网湖南省电力有限公司 一种电能表烧表在线监测方法、系统及介质
CN114089257B (zh) * 2021-10-27 2023-08-18 国网湖南省电力有限公司 一种电能表烧表在线监测方法、系统及介质
CN114252794A (zh) * 2021-11-24 2022-03-29 国电南瑞科技股份有限公司 一种拆回智能电能表剩余寿命预测方法及装置
CN114252794B (zh) * 2021-11-24 2024-04-09 国电南瑞科技股份有限公司 一种拆回智能电能表剩余寿命预测方法及装置
CN115291157A (zh) * 2022-07-14 2022-11-04 国网山东省电力公司营销服务中心(计量中心) 一种基于时钟偏差的电能表剩余寿命预测方法及系统
CN115291157B (zh) * 2022-07-14 2023-09-22 国网山东省电力公司营销服务中心(计量中心) 一种基于时钟偏差的电能表剩余寿命预测方法及系统
CN115936166A (zh) * 2022-09-28 2023-04-07 海南电网有限责任公司 一种电能表检定误差分析预测方法
CN116644590A (zh) * 2023-05-31 2023-08-25 中国人民解放军国防科技大学 通信测试设备可靠性预计方法、装置、设备和存储介质
CN116644590B (zh) * 2023-05-31 2024-03-19 中国人民解放军国防科技大学 通信测试设备可靠性预计方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN112904266A (zh) 2021-06-04
CN112904266B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2021098246A1 (zh) 一种电能表寿命预测方法、装置及存储介质
TWI539298B (zh) 具取樣率決定機制的量測抽樣方法 與其電腦程式產品
US10739741B2 (en) Systems and methods for detecting changes in energy usage in a building
CN108038040A (zh) 计算机集群性能指标检测方法、电子设备及存储介质
US20110257911A1 (en) Systems and methods for detecting changes in energy usage in a building
CN108445435B (zh) 一种电能表检定装置误差在线评估方法
CN108428017B (zh) 基于核极限学习机分位数回归的风电功率区间预测方法
CN106776288B (zh) 一种基于Hadoop的分布式系统的健康度量方法
CN111008727A (zh) 一种配电台区负荷预测方法及装置
CN109213057B (zh) 智能诊断装置和方法
CN112926807A (zh) 考虑预测误差的机柜设备发热量超短期预测方法及系统
CN113991711B (zh) 一种光伏电站储能系统容量配置方法
CN110728008A (zh) 一种用于确定智能电表的期望寿命的方法及装置
CN112213681B (zh) 一种电能表寿命预测方法及装置
CN111756031A (zh) 一种电网运行趋势估算方法和系统
CN113642248B (zh) 定位设备剩余使用时间的评估方法及装置
CN114417549B (zh) 一种基于超级计算机的数字孪生目标场数据处理系统
CN115907192A (zh) 风电功率波动区间预测模型的生成方法、装置及电子设备
CN113610266A (zh) 汽车零件的故障预测方法、装置、计算机设备和存储介质
CN113376564A (zh) 基于数据分析的智能电表计量校正方法、装置及终端
CN113673759A (zh) 一种水文资料实时整编方法及终端
CN107292486B (zh) 电网资产保险支出测算模型
CN102096624B (zh) 一种对机群运行状况进行预测的方法和机群平台管理装置
CN117150191B (zh) 一种数字化电表错接线追退电量计算方法及系统
CN113701275B (zh) 一种基于机器学习的冰蓄冷空调蓄冷量预测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889781

Country of ref document: EP

Kind code of ref document: A1