WO2021097932A1 - 一种激光加热的单传感器快速扫描量热仪 - Google Patents

一种激光加热的单传感器快速扫描量热仪 Download PDF

Info

Publication number
WO2021097932A1
WO2021097932A1 PCT/CN2019/123148 CN2019123148W WO2021097932A1 WO 2021097932 A1 WO2021097932 A1 WO 2021097932A1 CN 2019123148 W CN2019123148 W CN 2019123148W WO 2021097932 A1 WO2021097932 A1 WO 2021097932A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
sample
sensor
heater
heating
Prior art date
Application number
PCT/CN2019/123148
Other languages
English (en)
French (fr)
Inventor
周东山
朱逸夫
姜菁
薛奇
罗少川
王晓亮
江伟
季青
Original Assignee
南京大学射阳高新技术研究院
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911140788.5A external-priority patent/CN110715956A/zh
Priority claimed from CN201922015753.0U external-priority patent/CN211292676U/zh
Application filed by 南京大学射阳高新技术研究院, 南京大学 filed Critical 南京大学射阳高新技术研究院
Priority to US17/773,042 priority Critical patent/US20220390398A1/en
Publication of WO2021097932A1 publication Critical patent/WO2021097932A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/006Microcalorimeters, e.g. using silicon microstructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece

Definitions

  • the invention belongs to the field of detection equipment, in particular to a laser-heated single-sensor fast scanning calorimeter.
  • the ultra-fast scanning calorimeter uses nano-micron-scale thin film chip sensors to perform up to 10 6 K/s heating and cooling scanning calorimetry studies on micron-scale samples.
  • the heater and thermopile built into the sensor film can be used to Highly sensitive detection and regulation of sample temperature.
  • there is still a significant thermal resistance between the sample and the heater At present, the thermal contact between the sample and the heater is mainly improved by pre-melting the sample or using thermally conductive glue/oil, but this is not suitable for all samples.
  • the internal heater will also heat the sensors around the sample, causing energy loss and increasing the additional heat capacity of the system.
  • thermopile instead of heating by the internal heater of the sensor can provide energy input to the sample as directly as possible, avoid the thermal lag between the sensor heater and the sample, and greatly reduce the additional heat capacity of the sensor electronic components.
  • laser heating can be used to place the sample directly above the thermopile, and the coupling between the sample and the thermopile can be maximized, thereby reducing the need to obtain accurate thermal signals
  • the number of thermopile, for example, a single thermopile sensor can be used to detect smaller samples.
  • the combination of laser heating and fast scanning calorimeter can simulate the laser melting process of the additive manufacturing industry, and the experiment simulates the heating and solidification process of the printing material in the 3D printing process, providing parameter reference and material performance characterization and screening for industrial production.
  • the current combination of laser heating and fast scanning calorimetry is limited to the use of laser for auxiliary heating, and its heating is uncontrollable, mainly using laser pulses to perform temperature jump experiments on heated samples.
  • a PID control system above 100kHz and more accurate laser aiming are needed to avoid heating of areas outside the sample (including sensor heaters and thermopiles, etc.).
  • the present invention originates from the demand for the improvement and upgrade of the ultra-fast scanning calorimeter (FSC), and uses laser heating to completely replace the internal heater of the traditional FSC sensor, which can provide the most direct energy input.
  • the focused heat input can heat the sample the fastest, avoid the thermal delay between the heater and the sample, and achieve faster cooling after the heating is turned off.
  • a laser-heated single-sensor fast scanning calorimeter including an FSC sample chamber, a chip sensor for carrying samples in the FSC sample chamber, a laser heater for heating the sample, an infrared camera for taking sample images, and a communication terminal And control electronics;
  • the center of the FSC sample chamber is provided with a see-through window as an optical path channel, and the laser heater and infrared camera are located on the top of the see-through window and can be aimed at the sample in the FSC sample room;
  • the infrared camera is connected to the communication terminal, and the photographed photos are sent to the communication terminal through infrared imaging; one end of the control electronic component is connected to the communication terminal, and the other end is connected to the laser heater and the chip sensor respectively.
  • the communication terminal receives the infrared imaging photos taken by the infrared camera, and assists the laser heater to focus and precisely target the sample for heating; on the one hand, the control electronics controls the heating power of the laser heater, and on the other hand, it obtains the sample feedback from the chip sensor in real time
  • the temperature information provides information for adjusting the heating power of the laser heater in the next step.
  • control electronic component is provided with a PID temperature controller for outputting heating power to the laser heater, and a data acquisition card for recording the real-time temperature value of the sample fed back by the chip sensor;
  • One end of the PID temperature controller is connected to the communication terminal, and the other end is connected to the laser heater; it is used to send the laser heater heating power information to the PID temperature controller through the communication terminal control page;
  • the data acquisition card receives the real-time temperature value of the sample fed back by the chip sensor, saves it and sends it to the communication terminal, and provides information for adjusting the heating power of the laser heater in the next step .
  • the FSC sample chamber includes a sealed cavity, a cold and hot stage located in the sealed cavity, and a PCB contact plate;
  • the chip sensor is located above the cold and hot stage, and the PCB contact board is pressed on the chip sensor through an embedded metal pin, and the signal is transmitted with the FSC outside the sample chamber through a wire;
  • One end of the hot and cold stage is connected to the cold source outside the sample room through a pipe, and the other end is connected to the environmental control equipment outside the sample room through a wire;
  • a gas inlet and a gas outlet are respectively left on both sides of the sealed cavity.
  • thermopile a heater and a thermopile are provided in the chip sensor.
  • a laser beam guide such as an optical fiber may be used.
  • the infrared camera is equipped with a microscope lens.
  • the present invention also provides a method for laser heating by a single-sensor rapid scanning calorimeter for laser heating, which includes the following steps:
  • the temperature-time curve is sent to the control electronic component in the form of voltage vs. time.
  • the control electronic component drives the laser heater to output heating power according to the voltage vs. time signal.
  • the control electronics receives the real-time temperature value of the sample fed back by the chip sensor, saves it and sends it to the communication terminal for comparison with the set temperature.
  • the fast scanning calorimeter of the present invention uses a laser heater to perform fully controllable and rapid heating of the sample for the first time, and uses an infrared camera to assist laser aiming to avoid heating the area around the sample; compared to the traditional heating in the sensor, it can provide the most direct Energy input; the focused heat input can heat the sample the fastest, avoid the thermal lag between the sensor heater and the sample, have a higher response rate of temperature control, and can achieve faster heating and cooling scanning.
  • Fig. 1 is a schematic diagram of the overall structure of the laser heating fast scanning calorimeter of the present invention.
  • Figure 2 is a schematic diagram of the sample chamber structure of the laser heating fast scanning calorimeter of the present invention.
  • Figure 3A is a diagram of the melting and solidification process of Al7075 particles observed by a conventional ultrafast scanning calorimeter.
  • Fig. 3B is a diagram of the melting and solidification process of Al7075 particles observed by the laser heating fast scanning calorimeter of the present invention.
  • Figure 4A shows the measured temperature vs. time curve of the laser heating fast scanning calorimeter and the sensor built-in heater.
  • Figure 4B shows the heating and starting process curve of the laser heating fast scanning calorimeter and the sensor built-in heater.
  • the reference signs respectively represent: 1FSC sample chamber; 101 sealed cavity; 102 see-through window; 103 cold and hot stage; 104 PCB contact plate; 105 metal pin; 106FSC; 107 environmental control equipment; 108 gas inlet; 109 gas outlet 2 chip sensor; 21 heater; 22 thermopile; 3 laser heater; 31 laser beam guide; 4 infrared camera; 5 communication terminal; 6 control electronics; 61 PID temperature controller; 62 data acquisition card; 200 samples.
  • the fast scanning calorimeter of the present invention includes an FSC sample chamber 1, a chip sensor for carrying a sample 200 in the FSC sample chamber 1, a laser heater 3 for heating the sample, and a The infrared camera 4, the communication terminal 5 and the control electronics 6 of the sample image.
  • the center of the FSC sample chamber 1 is provided with a see-through window 102 as a light path channel.
  • the laser heater 3 and the infrared camera 4 are both located on the top of the window 102 and can be aligned with the sample 200 in the FSC sample chamber 1.
  • the infrared camera 4 is connected to the communication terminal 5, and sends the photographed photos to the communication terminal 5 through infrared imaging; one end of the control electronics 6 is connected to the communication terminal 5, and the other end is connected to the laser heater 3 and the chip sensor 2 respectively.
  • the control electronics 6 is provided with a PID temperature controller 61 for outputting heating power to the laser heater 3 and a data acquisition card 62 for recording the real-time temperature value of the sample fed back by the chip sensor 2.
  • One end of the PID temperature controller 61 is connected to the communication terminal 5, and the other end is connected to the laser heater 3; it is used to send the laser heater heating power information to the PID temperature controller through the communication terminal control page;
  • the data acquisition card 62 receives the real-time temperature value of the sample fed back by the chip sensor, saves and sends it to the communication terminal, and provides for the next adjustment of the heating power of the laser heater information.
  • the FSC sample chamber 1 includes a sealed cavity 101, a cold and hot stage 103 located in the sealed cavity 101, and a PCB contact plate 104; the chip sensor 2 is located above the cold and hot stage 103, and the PCB contact plate 104 is passed through an embedded metal pin 105 is pressed on the chip sensor 2 and performs signal transmission with the FSC106 outside the sample chamber through wires; a light path channel is left in the center of the cold and hot stage 103, the chip sensor 2, and the PCB contact plate 104, and corresponds to the see-through window 102.
  • One end of the cold and hot stage 103 is connected to the cold source outside the sample room through a pipe, and the other end is connected to the environmental control equipment 107 outside the sample room through a wire; the two sides of the sealed cavity 101 are respectively left with a gas inlet 108 and a gas outlet 109, depending on the difference
  • the use requires the use of different atmospheres or gas purging from the gas inlet and outlet.
  • molecular valves or other gas valves that can be used for fine-tuning of ultra-slow gas flow can be used.
  • the chip sensor 2 can be all chip sensors (XEN393, Xensor Integration) containing thermocouples available in an ultrafast scanning calorimeter.
  • the film contains a heater 21 and a thermopile 22.
  • the heater can be used for extra ultra-fast scanning calorimetry measurement.
  • the thermopile provides a temperature signal in volts for controlling and recording samples temperature.
  • the sample is placed on the heater and thermopile.
  • the sample can be any particle, spherical particles with diameters of 1-500 ⁇ m.
  • the powder particles recommended by the International Organization for Standardization (ISO) for additive manufacturing (20-200 ⁇ m in diameter) are perfect for this invention.
  • the internal heater of the sensor here is not used for heating the sample, but the modular structure of the present invention allows the internal heater to be quickly connected to a single sensor, or even to a differential ultra-fast scanning volume. In the heat setting, the laser heating process is simulated, which helps to quantitatively measure the actual heat flow.
  • the method of using the fast scanning calorimeter is as follows: the sample 200 is loaded on the chip sensor 2, the laser heater 3 is turned on, and the temperature of the sample is observed through the infrared camera 4 to adjust the laser's aiming focus; the required settings are set in the user interface of the communication terminal 5.
  • the temperature program (temperature-time curve) is sent to the control electronics 6 (National Instrumentsusb6365 data acquisition card, SRSSIM960 PID controller), and the control electronics 6 is equipped with a PID temperature controller 61 for outputting heating power to the laser heater 3, and
  • the data acquisition card 62 used to record the real-time temperature value of the sample fed back by the chip sensor 2; the PID temperature controller 61 outputs the heating power to the laser heater 3 according to the received setting value, and the data acquisition card 62 receives the thermopile 22 in the chip sensor 2
  • the feedback real-time temperature value of the sample is saved and sent to the communication terminal 5 to provide information for adjusting the heating power of the laser heater 3 in the next step.
  • the internal heater 21 of the chip sensor 2 can be used to repeat the temperature program to perform an ultra-fast scanning calorimetry experiment and record the same sample temperature.
  • the power adjustment of the laser heater 3 is to adjust the input voltage value through the PID temperature controller 61, and the laser heater adjusts the corresponding output power according to the input voltage.
  • Infrared camera 4 FLIRSC7000 infrared camera plus 7 times microscope lens
  • the user interface on the communication terminal edits the required heat treatment process (temperature vs. time).
  • the temperature-time curve will be provided to the control electronics of the device in the form of voltage vs. time.
  • the control electronics modulate the power of the laser through the PID temperature controller, and set the PID output setting according to the voltage input range of the laser heater. For example, if the input voltage of the laser heater is 0-1V (corresponding to the laser power from 0-100%), the PID output is set to 0 to 1.
  • the user can change the PID setting value according to different lasers.
  • the control electronics output voltage to the laser according to the experimental program, and the laser heats the sample.
  • thermopile on the chip sensor measures the temperature and uses the voltage value to feed back to the control electronics.
  • the PID controller of the control electronics adjusts the driving voltage of the laser accordingly to complete the set temperature-time curve.
  • the data acquisition card records the temperature change of the sample during the experiment, and sends the data to the communication terminal for storage and further analysis.
  • the control electronic components require electronic devices with extremely high response rates, with a minimum bandwidth of 100kHz.
  • the user interface is programmed with Labview software and has been widely used in existing FSC equipment, and has been improved according to usage.
  • the purchased commercial laser heater is equipped with a laser controller to control the output power of the laser with the input voltage value. You only need to connect the laser controller to the control electronics of this application and apply a certain voltage to control the laser output power. heating.
  • This application mainly uses a laser heater (instead of the internal heater of the chip sensor) to heat the sample. According to the sample temperature signal fed back by the thermopile voltage, the PID controller is used to quickly adjust and feed back the laser heater, thereby realizing a fast and controllable program heating.
  • a laser beam guide such as an optical fiber (CNI polarization maintaining fiber) can be used. Fixing the optical fiber to the sample chamber can reduce the shaking of the laser beam on the sample, and correspondingly reduce the interference to the calorimetric signal.
  • the laser beam guide is only suitable for certain types of lasers, and a light focusing element needs to be added after the guide.
  • Focusing the laser directly on the sample can provide maximum energy to the sample and avoid heating the surrounding sensor elements.
  • the infrared imaging camera can be used to assist laser aiming and focusing.
  • the specific experimental steps are: first place the infrared display card under the infrared camera and perform laser irradiation, observe the laser heating position through the infrared camera and adjust the laser focus (laser focus lens adjustment) until the laser The spot is the brightest (laser spot diameter is about 8 ⁇ m); the sample (diameter about 15 ⁇ m) is placed at the position of the infrared display card, the laser irradiation makes the temperature of the sample rise, and the sample position is fine-tuned according to the sample diameter and thickness (microscope stage fine-tuning) so that The focused laser spot is located at the center of the sample, completing the laser position adjustment and laser focusing.
  • infrared imaging records the temperature of the sample while the thermopile on the sensor also measures the internal temperature of the sample, which can be compared.
  • the infrared thermal imager can detect the thermal radiation of the sensor area of approximately 100x100 ⁇ m 2 under the corresponding magnification.
  • an infrared imaging camera with high frame rate and high sensitivity is required. For example, heating from room temperature to 1000K at a rate of 100000K/s takes about 7ms, and every 10K is required. At least 1 frame of data requires an infrared imaging camera with a frame rate of at least 10kHz.
  • the heater of the sensor is placed in the film, so there is a significant thermal resistance between the sample and the heater, and the heater also heats the sensor around the sample.
  • Laser heating can provide energy to the sample as directly as possible through focusing and proper aiming, avoiding the thermal lag between the sensor heater and the sample.
  • laser heating can also avoid the coupling of the sensor heater and the thermopile. The thermal resistance between the sample and the thermopile still exists. So far, there is no faster and more accurate way to remotely measure the temperature of the sample.
  • thermopile using laser heating, the sample can be placed directly above the thermopile, and the coupling between the sample and the thermopile can be increased to the maximum possible, thereby reducing the number of thermopiles required to obtain an accurate thermal signal.
  • a single thermopile sensor can be used to detect Smaller samples. Ultra-fast temperature control allows the execution of any linear, non-linear temperature-time heat treatment program up to 1000000K/s or faster.
  • the temperature of the thermopile will be recorded.
  • the temperature of the sample will deviate from the set value and a corresponding endothermic or exothermic peak will appear, indicating the sample.
  • the melting or crystallization process that occurs in the This information has important value for additive manufacturing, basic theoretical research, and industrial application research fields that require ultra-rapid heat treatment.
  • the ultra-fast scanning calorimeter can quantitatively analyze the changes in the heat flow in the sample.
  • the internal heater of the sensor can be used to repeat the experiment to obtain quantitative heat flow data for heat capacity analysis.
  • the temperature of the sample under the same conditions can also be provided for comparison with the temperature data measured by the thermopile.
  • Laser pulses have been used to heat the sample and record the heating temperature of the sample through a thermocouple, but the heating process is uncontrollable.
  • the temperature of the sample is recorded only after the laser pulse is emitted.
  • the present invention feeds back the temperature measured by the thermocouple to the laser controller for the first time, and adjusts the laser power accordingly in real time, so that the laser heating is completely controllable heating.
  • the speed of receiving and adjusting the signal is very fast.
  • the following experimental results show that a controllable and rapid temperature rise and fall program can be realized, the thermal hysteresis is eliminated, and the temperature control response rate and the controllable temperature rise and fall rate have been increased by an order of magnitude.
  • laser heating alone cannot obtain thermal physical information such as heat flow and heat capacity.
  • the present invention can switch between laser heating and traditional FSC internal heater heating at any time, and use FSC to repeat the temperature vs. time program recorded during laser heating. , So as to obtain the physical meaning of heat flow and heat capacity data.
  • the laser heating single sensor fast scanning calorimeter uses a single sensor to achieve a higher scanning rate.
  • 3A and 3B respectively show the conventional ultrafast scanning calorimeter and the laser heating calorimeter of the present invention to observe the melting and crystallization process of two adjacent Al7075 particles.
  • the samples were subjected to temperature raising and lowering experiments at different scanning rates (conventional internal sensor heating and controllable laser heating), and the melting peak and crystallization peak of the sample were observed.
  • the melting peak moves to the low temperature with the increase of the scanning rate, and the crystallization peak As the scanning rate increases and moves toward high temperature, it indicates that the laser heating can ensure that the sample temperature is higher than the sensor temperature, avoiding the thermal lag between the sample and the heater, and obtaining more accurate thermal analysis results.
  • Figure 4A and Figure 4B show the comparison of temperature control performance between laser heating and sensor built-in heater.
  • the temperature rise and fall rate is 10,000 K/s
  • Fig. 4A is the actual measured temperature vs. time curve
  • Fig. 4B is the heating start process. It can be seen from Figure 4A that the response rate of the laser heating temperature control is fast enough, and the temperature compensation can be performed quickly when the sample melts and crystallizes so that the heating curve conforms to the set program, and the sensor’s built-in heater ( Figure 4B) is hot with the sample. Hysteresis, obvious temperature jump can be seen on the heating curve.
  • laser heating can complete temperature adjustment and stability within 0.2ms, while the built-in heater needs 2m to achieve temperature adjustment, and it takes 4.5ms to complete the overshoot to reach a stable temperature.
  • the temperature control response of laser heating The rate is about an order of magnitude faster than the sensor's built-in heater.
  • the present invention provides a laser-heated single-sensor fast scanning calorimeter idea and method. There are many methods and ways to implement this technical solution. The above are only the preferred embodiments of the present invention. It should be pointed out that for this technology, without departing from the principle of the present invention, several improvements and modifications can be made, and these improvements and modifications should also be regarded as the protection scope of the present invention. All the components that are not clear in this embodiment can be implemented using existing technology.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种激光加热的单传感器快速扫描量热仪,包括FSC样品室(1),位于FSC样品室(1)内用于承载样品(200)的芯片传感器(2)、用于加热样品(200)的激光加热器(3)、用于拍摄样品(200)图像的红外相机(4)、通信终端(5)以及控制电子元件(6);FSC样品室(1)中心设有一作为光路通道的透视窗口(102),激光加热器(3)、红外相机(4)均位于透视窗口(102)顶部;红外相机(4)与通信终端(5)连接;控制电子元件(6)一端连接通信终端(5),另一端分别与激光加热器(3)和芯片传感器(2)连接。该快速扫描量热仪首次采用激光加热器(3)对样品(200)进行完全可控的快速加热,并使用红外相机(4)来辅助激光瞄准,避免对样品(200)周围区域加热;相比传统的传感器内加热,能够提供最直接的能量输入,避免传感器加热器和样品之间的热滞后,具有更高的温度控制响应速率,可实现更快的升降温扫描。

Description

一种激光加热的单传感器快速扫描量热仪 技术领域
本发明属于检测设备领域,具体是一种激光加热的单传感器快速扫描量热仪。
背景技术
超快扫描量热仪(FSC)使用纳微米级薄膜芯片传感器可对微米级样品进行高达10 6K/s的升降温扫描量热研究,通过内置于传感器薄膜的加热器和热电堆,可对样品温度进行高灵敏度检测和调控。然而样品与加热器之间依然存在显著的热阻,目前主要通过样品预熔或者使用导热胶/油等方法提高样品与加热器之间的热接触,但并不适用于所有样品。另外内部加热器同时还会对样品周围的传感器进行加热,造成能量损失,增加体系附加热容。使用激光加热,代替传感器内部加热器加热,则可以尽可能直接的为样品提供能量输入,避免传感器加热器与样品之间的热滞后,并且大幅减少传感器电子元件的附加热容。虽然样品与热电堆之间的热阻仍然存在,但使用激光加热,可将样品直接置于热电堆上方,样品与热电堆之间的耦合可增加到最大,从而减少获得准确热信号所需要的热电堆数目,例如可使用单热电堆传感器检测更小的样品。
将激光加热与快速扫描量热仪结合,能够模拟增材制造工业的激光熔融过程,实验模拟3D打印过程中打印材料受热与固化过程,为工业生产提供参数参考及材料性能表征和筛选。然而目前激光加热与快速扫描量热的联用仅限于使用激光进行辅助加热,且其加热不可控,主要是使用激光脉冲对已加热的样品进行温度跳变实验。要实现快速可控的激光加热则需要100kHz以上PID控制系统,以及更准确的激光瞄准以避免对样品以外区域(包括传感器加热器和热电堆等)的加热。
发明内容
发明目的:本发明来源于对超快扫描量热仪(FSC)改进升级的需求,利用激光加热完全取代传统FSC的传感器内部加热器,能够提供最直接的能量输入。聚焦的热量输入可以最快地加热样品,避免加热器和样品之间的热延迟,并在加热关闭后实现更快的冷却。
为了实现上述发明目的,本发明采取的技术方案如下:
一种激光加热的单传感器快速扫描量热仪,包括FSC样品室,位于FSC样品室内 用于承载样品的芯片传感器、用于加热样品的激光加热器、用于拍摄样品图像的红外相机、通信终端以及控制电子元件;
所述FSC样品室中心设有一作为光路通道的透视窗口,所述激光加热器、红外相机均位于透视窗口顶部,并能够对准FSC样品室内的样品;
所述红外相机与通信终端连接,通过红外成像将所拍摄的照片发送至通信终端内;所述控制电子元件一端连接通信终端,另一端分别与激光加热器和芯片传感器连接。
其中,通信终端接收到红外相机拍摄的红外成像照片,辅助激光加热器聚焦并精准瞄准样品进行加热;控制电子元件一方面控制激光加热器的加热功率,另一方面实时获得芯片传感器反馈回的样品温度信息,为下一步调整激光加热器的加热功率提供信息。
具体地,所述控制电子元件内部设有用于向激光加热器输出加热功率的PID温度控制器,以及用于记录芯片传感器反馈的样品实时温度值的数据采集卡;
PID温度控制器一端与通信终端连接,另一端与激光加热器连接;用于通过通信终端控制页面,向PID温度控制器发送激光加热器加热功率信息;
所述数据采集卡一端与芯片传感器连接;另一端与通信终端连接,数据采集卡接收芯片传感器反馈的样品实时温度值,保存并发生至通信终端,为下一步调整激光加热器的加热功率提供信息。
具体地,所述FSC样品室包括密封腔体、位于密封腔体内的冷热台以及PCB接触板;
所述芯片传感器位于冷热台上方,所述PCB接触板通过嵌入式的金属插针压设在芯片传感器上,并通过导线与样品室外部的FSC进行信号传输;
冷热台、芯片传感器、PCB接触板中心留有一光路通道,并与透视窗口对应;
冷热台的一端通过管道连接样品室外部的冷源,另一端通过导线连接样品室外部的环境控制设备;
密封腔体的两侧分别留有气体进口和气体出口。
具体地,所述芯片传感器内设有加热器和热电堆。
进一步地,为了避免激光加热器对芯片传感器造成机械振动从而产生噪音,可使用诸如光纤的激光束引导器。
进一步地,所述红外相机配有显微镜镜头。
本发明还提供激光加热的单传感器快速扫描量热仪进行激光加热的方法,包括如下步骤:
(1)将FSC样品室、激光加热器红外相机、通信终端、控制电子元件安装完毕;
(2)在FSC样品室内的芯片传感器载样位置处放置红外显示卡,开启激光加热器进行激光照射,通过红外相机观察激光加热位置并调整激光聚焦,直到激光点最亮;
(3)将红外显示卡移除,在芯片传感器上装载待检测的样品,开启激光加热器进行激光照射,根据样品直径和厚度微调样品位置,完成激光位置调整以及激光聚焦;
(4)通过通信终端编辑所需的热处理过程,该温度-时间曲线以电压vs时间的形式发送至发送给控制电子元件,控制电子元件根据电压vs时间信号,驱动激光加热器输出加热功率,同时控制电子元件接收芯片传感器反馈的样品实时温度值,保存并发生至通信终端与设定温度进行对照。
有益效果:
本发明快速扫描量热仪首次采用激光加热器对样品进行完全可控的快速加热,并使用红外相机来辅助激光瞄准,避免对样品周围区域加热;相比传统的传感器内加热,能够提供最直接的能量输入;聚焦的热量输入可以最快地加热样品,避免传感器加热器和样品之间的热滞后,具有更高的温度控制响应速率,可实现更快的升降温扫描。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为本发明激光加热快速扫描量热仪的整体结构示意图。
图2为本发明激光加热快速扫描量热仪的样品室结构示意图。
图3A为常规超快扫描量热仪观测的Al7075颗粒熔融和固化过程图。
图3B为本发明激光加热快速扫描量热仪观测的Al7075颗粒熔融和固化过程图。
图4A为激光加热快速扫描量热仪与传感器内置加热器实测温度vs时间曲线。
图4B为激光加热快速扫描量热仪与传感器内置加热器加热启动过程曲线。
其中,各附图标记分别代表:1FSC样品室;101密封腔体;102透视窗口;103冷热台;104PCB接触板;105金属插针;106FSC;107环境控制设备;108气体进口; 109气体出口;2芯片传感器;21加热器;22热电堆;3激光加热器;31激光束引导器;4红外相机;5通信终端;6控制电子元件;61PID温度控制器;62数据采集卡;200样品。
具体实施方式
根据下述实施例,可以更好地理解本发明。
说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“前”、“后”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
如图1和2所示,本发明快速扫描量热仪包括FSC样品室1,位于FSC样品室1内用于承载样品200的芯片传感器2、用于加热样品的激光加热器3、用于拍摄样品图像的红外相机4、通信终端5以及控制电子元件6。
FSC样品室1中心设有一作为光路通道的透视窗口102,所述激光加热器3、红外相机4均位于窗口102顶部,并能够对准FSC样品室1内的样品200。
红外相机4与通信终端5连接,通过红外成像将所拍摄的照片发送至通信终端5内;所述控制电子元件6一端连接通信终端5,另一端分别与激光加热器3和芯片传感器2连接。控制电子元件6内部设有用于向激光加热器3输出加热功率的PID温度控制器61,以及用于记录芯片传感器2反馈的样品实时温度值的数据采集卡62。
PID温度控制器61一端与通信终端5连接,另一端与激光加热器3连接;用于通过通信终端控制页面,向PID温度控制器发送激光加热器加热功率信息;
数据采集卡62一端与芯片传感器2连接;另一端与通信终端5连接,数据采集卡接收芯片传感器反馈的样品实时温度值,保存并发生至通信终端,为下一步调整激光加热器的加热功率提供信息。
FSC样品室1包括密封腔体101、位于密封腔体101内的冷热台103以及PCB接触板104;芯片传感器2位于冷热台103上方,所述PCB接触板104通过嵌入式的金 属插针105压设在芯片传感器2上,并通过导线与样品室外部的FSC106进行信号传输;冷热台103、芯片传感器2、PCB接触板104中心留有一光路通道,并与透视窗口102对应。
冷热台103的一端通过管道连接样品室外部的冷源,另一端通过导线连接样品室外部的环境控制设备107;密封腔体101的两侧分别留有气体进口108和气体出口109,根据不同使用要求从气体进出口使用不同气氛或者气体吹扫,为避免由于气流湍流引起的样品温度波动,可使用分子阀或其它可用于超慢气流微调的气阀。
芯片传感器2可以是超快扫描量热仪可用的含有热电偶的所有芯片传感器(XEN393,XensorIntegration)。芯片传感器上有氮化硅薄膜,薄膜内包含加热器21和热电堆22,加热器可用于额外的超快扫描量热测量,热电堆提供以伏特为单位的温度信号,用于控制和记录样品的温度。样品置于加热器和热电堆上,样品可以是任何颗粒、1-500μm直径的类球形颗粒,例如,国际标准化组织ISO推荐用于增材制造的粉末颗粒(直径为20-200μm)完美适用于本发明。为了实现更快的温度控制,优选小颗粒样品以避免样品内部的热滞后问题。与常规的快速量热仪不同,这里传感器的内部加热器不用于样品的加热,但是本发明的模块化结构允许将内部加热器重新快速连接入单传感器,甚至是连接入差示超快扫描量热设置中,从而模拟激光加热过程,这有助于对实际热流的定量测量。
该快速扫描量热仪的使用方法如下:样品200装载于芯片传感器2上,打开激光加热器3,通过红外相机4观察样品温度从而调整激光的瞄准聚焦;在通信终端5的用户界面设置所需的温度程序(温度-时间曲线)发送给控制电子元件6(NationalInstrumentsusb6365数据采集卡,SRSSIM960PID控制器),控制电子元件6内部设有用于向激光加热器3输出加热功率的PID温度控制器61,以及用于记录芯片传感器2反馈的样品实时温度值的数据采集卡62;PID温度控制器61根据接收的设定值向激光加热器3输出加热功率,数据采集卡62接收芯片传感器2中热电堆22反馈的样品实时温度值,保存并发生至通信终端5,为下一步调整激光加热器3的加热功率提供信息。
在激光加热过程中,只记录了样品温度值而不能测量样品具体吸收的能量值,因此可使用芯片传感器2内部加热器21重复该温度程序进行超快扫描量热实验,记录实 现相同的样品温度变化时热流的变化,从而计算热容等物理参数的变化。
激光加热器3(长春新产业光电技术有限公司MXL-III-880红外激光器)的功率调整是通过PID温度控制器61调整输入电压值,激光加热器根据输入电压调整相应的输出功率。红外相机4(FLIRSC7000红外相机加配7倍显微镜镜头)观察样品温度变化,根据样品受热判断激光的瞄准。如使用超快红外成像相机(10kHz以上)则可同时记录激光加热实验中样品温度,与传感器热电堆22反馈的温度值对照。
通信终端(PC/笔记本电脑/平板电脑等)上的用户界面编辑所需的热处理过程(温度vs时间),该温度-时间曲线将以电压vs时间的形式提供给设备的控制电子元件。控制电子元件通过PID温度控制器调制激光的功率,根据激光加热器的电压输入范围设定PID输出设置。例如,激光加热器的输入电压为0-1V(对应激光功率从0-100%),则PID输出设置为0到1。用户可根据不同的激光器更改PID设置值。控制电子元件根据实验程序向激光器输出电压,激光对样品进行加热,芯片传感器上的热电堆测量温度并以电压值向控制电子元件反馈,当热电堆的电压高于或低于设定值,则控制电子元件PID控制器相应调整激光的驱动电压,以完成设定温度-时间曲线,数据采集卡记录实验过程中样品的温度变化,并将数据发送至通信终端进行保存和进一步分析。为达到快速的温度控制,控制电子元件需要具有极高响应速率的电子器件,最小带宽100kHz。
该用户界面使用Labview软件编程,已广泛使用于现有的FSC设备中,且一直在根据使用情况改进。购买的商用激光加热器带有激光控制器,以输入电压值控制激光的输出功率,只需将激光控制器连接本申请的控制电子元件,并给与一定的电压,即可控制激光输出功率进行加热。本申请主要使用激光加热器(代替芯片传感器内部加热器)对样品进行加热,根据热电堆电压反馈的样品温度信号,通过PID控制器进行快速调控并反馈激光加热器,从而实现快速可控的程序加热。
为避免激光对芯片传感器造成机械振动从而产生噪音,可使用诸如光纤的激光束引导器(CNI保偏光纤)。将光纤固定到样品室可减少激光束在样品上的摇晃,同时相应的减少对量热信号的干扰。当然,激光束引导器只适用于某些类型的激光器,并且需要在引导器后加入光聚焦元件。
将激光直接聚焦在样品上能够向样品提供最大能量并避免加热周围的传感器元件。 可通过红外成像相机辅助激光瞄准和聚焦,具体实验步骤为:首先在红外相机下放置红外显示卡并进行激光照射,通过红外相机观察激光加热位置并调整激光聚焦(激光聚焦透镜调整),直到激光点最亮(激光点直径约8μm);将样品(直径约15μm)放置于红外显示卡所在的位置,激光照射使得样品温度升高,根据样品直径和厚度微调样品位置(显微镜台微调),使得聚焦的激光点位于样品中心,完成激光位置调整以及激光聚焦。另外,红外成像记录样品温度的同时传感器上热电堆也测量样品内部温度,可进行对照。红外热成像仪能够在相应放大倍率下检测大约100x100μm 2传感器区域的热辐射。如需在测试过程中实时记录样品颗粒及传感器的温度,则需要具有高帧速率和高灵敏度的红外成像摄像机,例如,以100000K/s的速率从室温加热到1000K大约需要7ms,要得到每10K至少1帧的数据,则需要红外成像相机具有至少10kHz的帧速率。
在传统的超快扫描量热仪中,传感器的加热器置于薄膜中,因此样品和加热器之间存在显著的热阻,且加热器也同时加热样品周围的传感器。激光加热则可通过聚焦和适当的瞄准,尽可能直接地为样品提供能量,避免传感器加热器与样品之间的热滞后。另外,激光加热还可以避免传感器加热器与热电堆的耦合。样品与热电堆之间的热阻则仍然存在,目前为止还没有更快和更精确的远程测量样品温度的方式。但使用激光加热,可将样品直接置于热电堆上方,样品与热电堆之间的耦合可增加到最大可能,从而减少获得准确热信号所需要的热电堆数目,例如可使用单热电堆传感器检测更小的样品。超快温度控制允许执行高达1000000K/s或更快的任何线性、非线性温度-时间的热处理程序。
在执行用户设定的温度曲线期间将记录热电堆的温度,当发生吸热或放热相转变时,由于潜热,样品的温度将偏离设定值出现相应的吸热或放热峰,指示样品中发生的熔融或结晶过程。该信息对于需要超快速热处理的增材制造、基础理论研究以及工业应用研究领域均具有重要价值。超快扫描量热仪可定量分析样品内热流的变化,激光加热实验后,可使用传感器内部加热器重复实验以获得定量的热流数据从而进行热容分析。配合快速红外成像相机,也可提供相同条件下样品的温度,与热电堆测得的温度数据进行对照。
激光脉冲已经被用于加热样品,并通过热电偶记录样品受热温度,但是该加热过 程不可控。只是发射激光脉冲后记录样品温度。本发明首次将热电偶测得的温度反馈到激光控制器,并实时快速的相应调整激光功率,使得该激光加热是完全可控加热。这个接收信号并调整的速度是非常快的,通过以下的实验结果显示能够实现可控快速升降温程序,消除了热滞后现象,并且温度调控响应速率及可控的升降温速率提高了一个数量级。同时,单独的激光加热并不能获得热流和热容等量热物理信息,本发明可在激光加热和传统的FSC内部加热器加热之间随时切换,使用FSC重复激光加热时记录的温度vs时间程序,从而获得具有物理意义的热流和热容等数据。另外,相对于传统FSC使用两个传感器(参比及样品传感器),激光加热单传感器快速扫描量热仪使用单传感器可实现更高的扫描速率。
图3A和图3B分别给出了常规超快扫描量热仪和本发明激光加热量热仪观测两个相邻Al7075颗粒的熔融和结晶过程。以不同的扫描速率(常规的内部传感器加热和可控的激光加热)对样品进行升降温实验,观察样品的熔融峰和结晶峰,结果显示1)激光加热快速量热仪能够实现可控的快速扫描,并且其最高扫描速率(如图3B中100,000K/s)可比常规的超快扫描量热仪(图3A中10,000K/s)高出一个数量级;2)常规内部传感器加热时,样品的熔融峰随着扫描速率的升高向高温移动,说明样品与加热器之间存在明显的热滞后,而激光加热实验中,熔融峰随着扫描速率的升高向低温移动,同时结晶峰随着扫描速率升高向高温移动,说明激光加热能够保证样品温度高于传感器温度,避免了样品与加热器之间的热滞后,获得更准确的热分析结果。
图4A和图4B为激光加热与传感器内置加热器温度控制性能的对比。其中,升降温速率为10,000K/s,图4A为实际测量的温度vs时间曲线,图4B为加热启动过程。从图4A中可以看出激光加热温度控制的响应速率足够快,在样品发生熔融和结晶时能够快速进行温度补偿使得加热曲线符合设定程序,而传感器内置加热器(图4B)与样品存在热滞后,在加热曲线上能够看到明显的温度跳变。图4B中可以看到,激光加热能够在0.2ms内完成温度调整并稳定,而内置加热器需要2m才能实现温度调整,并且在4.5ms后才能完成过冲达到稳定温度,激光加热的温度控制响应速率比传感器内置加热器大约快一个数量级。
本发明提供了一种激光加热的单传感器快速扫描量热仪的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对 于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (7)

  1. 一种激光加热的单传感器快速扫描量热仪,其特征在于,包括FSC样品室(1),位于FSC样品室(1)内用于承载样品(200)的芯片传感器(2)、用于加热样品的激光加热器(3)、用于拍摄样品图像的红外相机(4)、通信终端(5)以及控制电子元件(6);
    所述FSC样品室(1)中心设有一作为光路通道的透视窗口(102),所述激光加热器(3)、红外相机(4)均位于透视窗口(102)顶部,并能够对准FSC样品室(1)内的样品(200);
    所述红外相机(4)与通信终端(5)连接,通过红外成像将所拍摄的照片发送至通信终端(5)内;所述控制电子元件(6)一端连接通信终端(5),另一端分别与激光加热器(3)和芯片传感器(2)连接。
  2. 根据权利要求1所述的激光加热的单传感器快速扫描量热仪,其特征在于,所述控制电子元件(6)内部设有用于向激光加热器(3)输出加热功率的PID温度控制器(61),以及用于记录芯片传感器(2)反馈的样品实时温度值的数据采集卡(62);
    PID温度控制器(61)一端与通信终端(5)连接,另一端与激光加热器(3)连接;
    所述数据采集卡(62)一端与芯片传感器(2)连接;另一端与通信终端(5)连接。
  3. 根据权利要求1所述的激光加热的单传感器快速扫描量热仪,其特征在于,所述FSC样品室(1)包括密封腔体(101)、位于密封腔体(101)内的冷热台(103)以及PCB接触板(104);
    所述芯片传感器(2)位于冷热台(103)上方,所述PCB接触板(104)通过嵌入式的金属插针(105)压设在芯片传感器(2)上,并通过导线与样品室外部的FSC(106)进行信号传输;
    冷热台(103)、芯片传感器(2)、PCB接触板(104)中心留有一光路通道,并与透视窗口(102)对应;
    冷热台(103)的一端通过管道连接样品室外部的冷源,另一端通过导线连接样品室外部的环境控制设备(107);
    密封腔体(101)的两侧分别留有气体进口(108)和气体出口(109)。
  4. 根据权利要求1所述的激光加热的单传感器快速扫描量热仪,其特征在于,所述芯片传感器(2)内设有加热器(21)和热电堆(22)。
  5. 根据权利要求1所述的激光加热的单传感器快速扫描量热仪,其特征在于,所述激光加热器(3)的前端设有激光束引导器(31)。
  6. 根据权利要求1所述的激光加热的单传感器快速扫描量热仪,其特征在于,所述红外相机(4)配有显微镜镜头。
  7. 权利要求1所述激光加热的单传感器快速扫描量热仪进行激光加热的方法,其特征在于,包括如下步骤:
    (1)将FSC样品室(1)、激光加热器(3)、红外相机(4)、通信终端(5)、控制电子元件(6)安装完毕;
    (2)在FSC样品室(1)内的芯片传感器(2)载样位置处放置红外显示卡,开启激光加热器(3)进行激光照射,通过红外相机(4)观察激光加热位置并调整激光聚焦,直到激光点最亮;
    (3)将红外显示卡移除,在芯片传感器(2)上装载待检测的样品,开启激光加热器(3)进行激光照射,根据样品直径和厚度微调样品位置,完成激光位置调整以及激光聚焦;
    (4)通过通信终端(5)编辑所需的热处理过程,该温度-时间曲线以电压vs时间的形式发送至发送给控制电子元件(6),控制电子元件(6)根据电压vs时间信号,驱动激光加热器(3)输出加热功率,同时控制电子元件(6)接收芯片传感器(2)反馈的样品实时温度值,保存并发生至通信终端(5)与设定温度进行对照。
PCT/CN2019/123148 2019-11-20 2019-12-05 一种激光加热的单传感器快速扫描量热仪 WO2021097932A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/773,042 US20220390398A1 (en) 2019-11-20 2019-12-05 Laser heating single-sensor fast scanning calorimeter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201922015753.0 2019-11-20
CN201911140788.5A CN110715956A (zh) 2019-11-20 2019-11-20 一种激光加热的单传感器快速扫描量热仪
CN201911140788.5 2019-11-20
CN201922015753.0U CN211292676U (zh) 2019-11-20 2019-11-20 一种激光加热的单传感器快速扫描量热仪

Publications (1)

Publication Number Publication Date
WO2021097932A1 true WO2021097932A1 (zh) 2021-05-27

Family

ID=75980981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123148 WO2021097932A1 (zh) 2019-11-20 2019-12-05 一种激光加热的单传感器快速扫描量热仪

Country Status (2)

Country Link
US (1) US20220390398A1 (zh)
WO (1) WO2021097932A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117607058B (zh) * 2023-11-22 2024-05-28 重庆师范大学 近红外双光源光热分析传感成像装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009149333A1 (en) * 2008-06-06 2009-12-10 Perkinelmer Health Sciences, Inc. Calorimeter and methods of using it and control systems therefor
CN103743775A (zh) * 2013-10-22 2014-04-23 南京大学 一种可与其它显微结构表征技术联用的冷热台型高速量热仪
CN107271479A (zh) * 2017-06-14 2017-10-20 天津城建大学 纳米材料热性能测试装置
CN107884259A (zh) * 2017-11-06 2018-04-06 南京大学 利用液滴冷却实现微量材料高速降温的装置及方法
CN107941850A (zh) * 2017-11-21 2018-04-20 宁波英飞迈材料科技有限公司 一种快速测量薄膜材料热容的装置和方法
CN109900738A (zh) * 2019-03-29 2019-06-18 中北大学 基于大功率激光器加热材料的装置及方法
CN110823943A (zh) * 2019-11-20 2020-02-21 南京大学射阳高新技术研究院 一种模块化结构超快扫描量热仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009149333A1 (en) * 2008-06-06 2009-12-10 Perkinelmer Health Sciences, Inc. Calorimeter and methods of using it and control systems therefor
CN103743775A (zh) * 2013-10-22 2014-04-23 南京大学 一种可与其它显微结构表征技术联用的冷热台型高速量热仪
CN107271479A (zh) * 2017-06-14 2017-10-20 天津城建大学 纳米材料热性能测试装置
CN107884259A (zh) * 2017-11-06 2018-04-06 南京大学 利用液滴冷却实现微量材料高速降温的装置及方法
CN107941850A (zh) * 2017-11-21 2018-04-20 宁波英飞迈材料科技有限公司 一种快速测量薄膜材料热容的装置和方法
CN109900738A (zh) * 2019-03-29 2019-06-18 中北大学 基于大功率激光器加热材料的装置及方法
CN110823943A (zh) * 2019-11-20 2020-02-21 南京大学射阳高新技术研究院 一种模块化结构超快扫描量热仪

Also Published As

Publication number Publication date
US20220390398A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
CN110823943A (zh) 一种模块化结构超快扫描量热仪
JP7089631B2 (ja) 試験中の装置の光学画像を収集するためのプローブシステムおよび方法
CN101919236B (zh) 热成像摄像机
CN102023614B (zh) 激光焊接装置
CN110715956A (zh) 一种激光加热的单传感器快速扫描量热仪
WO2021097932A1 (zh) 一种激光加热的单传感器快速扫描量热仪
JP2005249427A (ja) 熱物性測定方法及び装置
GB2491684A (en) Using resistance to determine ambient temperature of SMA actuator
FR2923604A1 (fr) Procede et systeme de correction en boucle ouverte du gradient vertical d'un four d'etalonnage a puits sec
CN112630261B (zh) 材料多热物性参数的测量装置及其测量方法
CN104731131A (zh) 航天器热真空试验温度控制方法
CN211292676U (zh) 一种激光加热的单传感器快速扫描量热仪
CN109352182A (zh) 阵列样品激光加热系统
CN103033446A (zh) 焊球测试设备
CN110579283A (zh) Hdr动态红外辐射源阵列靶标
JP2011024891A (ja) Sfeキャリブレーション装置およびsfeキャリブレーション方法
JP4953061B2 (ja) 物体加熱方法及び装置
WO2021203507A1 (zh) 基于图像处理的温控器双金属片温度特性筛选系统及方法
CN110470404A (zh) 一种红外热像仪netd与mrtd快速测试装置及方法
RU2689457C1 (ru) Стенд измерения параметров тепловизионных каналов
RU20968U1 (ru) Установка для визуально-термического исследования фазовых превращений в неорганических материалах
RU61284U1 (ru) Устройство для лазерной термической обработки материалов
CN213516038U (zh) 一种具有温度补偿功能的卡片式热像仪
KR102631869B1 (ko) 온도 제어 가능한 spr 센서 장치 및 그 온도 제어 방법
CN108563256A (zh) 一种基于LabVIWE的多通道温度闭环控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953242

Country of ref document: EP

Kind code of ref document: A1