WO2021095830A1 - Sealing sheet - Google Patents

Sealing sheet Download PDF

Info

Publication number
WO2021095830A1
WO2021095830A1 PCT/JP2020/042364 JP2020042364W WO2021095830A1 WO 2021095830 A1 WO2021095830 A1 WO 2021095830A1 JP 2020042364 W JP2020042364 W JP 2020042364W WO 2021095830 A1 WO2021095830 A1 WO 2021095830A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
layer
resin composition
sealing
mass
Prior art date
Application number
PCT/JP2020/042364
Other languages
French (fr)
Japanese (ja)
Inventor
賢 大橋
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2021556163A priority Critical patent/JPWO2021095830A1/ja
Priority to DE112020005543.4T priority patent/DE112020005543T5/en
Priority to KR1020227019049A priority patent/KR20220100902A/en
Priority to CN202080078624.9A priority patent/CN114731744A/en
Publication of WO2021095830A1 publication Critical patent/WO2021095830A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sealing sheet useful for sealing an electronic device.
  • Patent Document 1 proposes a sealing sheet having a first moisture-proof film, a resin composition layer, and a second moisture-proof film in order to suppress moisture absorption of the resin composition layer during storage. ..
  • the present invention has been made by paying attention to the above circumstances, and an object of the present invention is to be able to efficiently dry the resin composition layer and prevent contamination of the resin composition layer during the drying.
  • the purpose is to provide a sealing sheet.
  • Water vapor permeability of the first sheet and third sheet are each independently, 5 (g / m 2 / 24hr) or less, Water vapor permeability of the second sheet, 10 (g / m 2 / 24hr) or more, and the sheet for sealing which can be peeled off the third sheet.
  • the sealing sheet according to the above [1], wherein the 90-degree peel strength between the second sheet and the third sheet is 0.1 gf / inch or more and 250 gf / inch or less.
  • the sealing sheet of the present invention can efficiently dry the resin composition layer, and can prevent the resin composition layer from being contaminated during the drying.
  • the sealing sheet of the present invention is a sealing sheet having a laminated structure containing the first sheet, the resin composition layer, the second sheet, and the third sheet in this order.
  • water vapor transmission rate of the first sheet and the third sheet are each independently a 5 (g / m 2 / 24hr ) or less That is, one of the features is that the first sheet and the third sheet are moisture-proof sheets. Further, the present invention is the water vapor permeability of the second sheet, 10 (g / m 2 / 24hr) or that it is, namely, the one wherein the second sheet is a non-moisture-proof sheet. Another feature of the present invention is that the third sheet can be peeled off.
  • the third sheet which is a moisture-proof sheet
  • the resin composition layer is protected by the second sheet, which is a non-moisture-proof sheet.
  • the resin composition layer can be dried efficiently. After the resin composition layer is dried, the peeled third sheet or a new third sheet may be laminated on the second sheet.
  • the structures of the first sheet, the second sheet, and the third sheet may be a single-layer structure or a laminated structure, preferably a laminated structure.
  • the first sheet and the third sheet which are moisture-proof sheets, are both sheets having a laminated structure including a barrier layer and a base material, more preferably.
  • the second sheet which is a non-moisture-proof sheet, may be a sheet composed of only a base material, or may be a sheet having a laminated structure including a release layer and a base material.
  • WVTR of the first sheet and third sheet are each independently, preferably 4 (g / m 2 / 24hr ) or less.
  • the lower limit of the WVTR of the first sheet and the third sheet is not particularly limited, and a lower value is preferable.
  • WVTR of the first sheet and third sheet is most preferably are each ideally 0 (g / m 2 / 24hr ). WVTR is a value measured by the method described in Examples described later.
  • the sealing sheet of the present invention is used for sealing an electronic device, and at that time, the first sheet is used as a highly moisture-proof layer in an electronic device without peeling off, the first sheet in the present invention.
  • the, WVTR is preferably used moisture-proof sheet of less than 0.01 (g / m 2 / 24hr ).
  • WVTR of the sheet is more preferably 0.005 (g / m 2 / 24hr ) or less, more preferably 0.001 (g / m 2 / 24hr ) or less, particularly preferably 0.0005 (g / m 2 / 24 hr) or less.
  • the lower limit of WVTR of this sheet is not particularly limited, and a lower value is preferable.
  • the WVTR is ideally 0 (g / m 2 / 24hr ) are most preferred.
  • WVTR of the second sheet is preferably 15 (g / m 2 / 24hr ) or more.
  • the upper limit is not particularly limited, WVTR of the second sheet is typically 20,000 (g / m 2 / 24hr ) or less, preferably 15,000 (g / m 2 / 24hr ) or less.
  • an opaque moisture-proof sheet such as a sheet with metal leaf is used as both the first sheet and the third sheet, it becomes difficult to inspect the quality of the resin composition layer. Therefore, it is opaque as one of the first sheet and the third sheet.
  • a moisture-proof sheet it is desirable to use a transparent moisture-proof sheet as the other. Regardless of the thickness of the transparent moisture-proof sheet, it is desirable that the total light transmittance with D65 light is 85% or more.
  • An "opaque moisture-proof sheet” is defined as a "moisture-proof sheet having a total light transmittance of 50% or less with D65 light". The total light transmittance can be measured with D65 light using an air meter HZ-V3 (halogen lamp) manufactured by Suga Test Instruments Co., Ltd. as a reference.
  • WVTR described above can 0.01 (g / m 2 / 24hr ) or 1 (g / m 2 / 24hr ) It is preferable to use the following moisture-proof sheet.
  • WVTR is 0.01 (g / m 2 / 24hr ) less moisture-proof sheet, especially WVTR is 0.005 (g / m 2 / 24hr ) or less of moisture-proof sheet, for example, silicon oxide (silica to the substrate surface ), Aluminum oxide, magnesium oxide, silicon nitride, silicon nitride, SiCN, amorphous silicon, etc., by chemical vapor deposition (for example, heat, plasma, ultraviolet rays, vacuum heat, vacuum plasma, or chemical vapor deposition by vacuum ultraviolet rays).
  • the moisture-proof sheet produced by such a method is a transparent sheet.
  • a metal foil such as SUS foil or aluminum foil
  • a moisture-proof sheet manufactured by a method such as laminating a base material and a metal foil with an adhesive.
  • a metal leaf, or a moisture-proof sheet consisting of a substrate and a metal leaf, is usually opaque.
  • the moisture-proof sheet is a method of depositing an inorganic film containing an inorganic substance such as silicon oxide (silica), aluminum oxide, magnesium oxide, silicon nitride, silicon nitride, SiCN, and amorphous silicon on the surface of the base material as a barrier layer, or It can be produced by a method of applying a coating liquid made of a metal oxide and an organic resin having a barrier property to a base material and drying the substrate (see, for example, JP2013-108103A, Patent No. 4028353, etc.). ..
  • the moisture-proof sheet produced by such a method is a transparent sheet.
  • a commercially available product may be used as the moisture-proof sheet.
  • Examples of commercially available products include “Clarista CI” manufactured by Kuraray, “Tech Barrier HX”, “Tech Barrier LX” and “Tech Barrier L” manufactured by Mitsubishi Plastics, and “IB-PET-PXB” manufactured by Dai Nippon Printing Co., Ltd. , "GL, GX series” manufactured by Toppan Printing Co., Ltd., “PET Tsuki AL1N30” manufactured by Toyo Aluminum Co., Ltd., “X-BARRIER” manufactured by Mitsubishi Plastics, etc.
  • the first sheet may be a sheet having no release layer. Further, the first sheet may be a sheet having a release layer, and the release layer may be in contact with the resin composition layer.
  • the first sheet which is a sheet having a release layer, include a sheet having a laminated structure containing a barrier layer, a base material, and a release layer in this order, and a base material, a barrier layer, and a release layer. Examples thereof include a sheet having a laminated structure containing the above in order, and a sheet having a laminated structure containing a barrier layer, a base material, an adhesive layer, a base material, and a release layer in this order. Examples of the base material and the barrier layer include those described above.
  • the adhesive is not particularly limited, and a commercially available adhesive can be used.
  • the second sheet is a sheet having a release layer and the release layer is in contact with the resin composition layer.
  • the second sheet which is a sheet having a release layer, include a sheet having a laminated structure including a release layer and a base material.
  • the base material include those described above.
  • the release agent examples include a silicone-based release agent, an alkyd-based release agent, a fluorine-based release agent, an olefin-based release agent, and the like.
  • the release layer is preferably formed from a silicone-based release agent or an alkyd-based release agent.
  • the thickness of the release layer is preferably 0.05 to 5 ⁇ m, more preferably 0.05 to 3 ⁇ m, and even more preferably 0.05 to 2 ⁇ m.
  • the second sheet may have a release layer.
  • the configuration in which the third sheet is a sheet having an adhesive layer, the second sheet is a sheet having a release layer, and the adhesive layer is in contact with the release layer is included in the configuration (1).
  • the description of the release layer is as described above.
  • the second sheet may have release layers on both sides.
  • the third sheet is a sheet having an adhesive layer
  • the second sheet is a sheet having a release layer on both sides
  • the adhesive layer is in contact with one of the release layers
  • the other of the release layers is The configuration in contact with the resin composition layer. The description of the release layer is as described above.
  • the third sheet may have a release layer.
  • the configuration in which the second sheet is a sheet having an adhesive layer, the third sheet is a sheet having a release layer, and the adhesive layer is in contact with the release layer is included in the configuration (2).
  • the third sheet may have release layers on both sides.
  • the configuration in which the second sheet is a sheet having an adhesive layer, the third sheet is a sheet having a release layer on both sides, and the adhesive layer is in contact with one of the release layers is the configuration (2). Is included in. The description of the release layer is as described above.
  • the configuration (1) is preferable.
  • the 90-degree peel strength between the second sheet and the third sheet is preferably 0.1 gf / inch or more, more preferably 0.2 gf / inch or more, still more preferably 0.25 gf / inch or more, and is preferable. Is 250 gf / inch or less, more preferably 200 gf / inch or less, still more preferably 150 gf / inch or less.
  • This 90-degree peel strength is a value measured by the method described in Examples described later.
  • the “90 degree peel strength between the second sheet and the third sheet” is “the adhesive layer of the second sheet and the third sheet”. It means “90 degree peel strength between”.
  • the second sheet has a release layer and the release layer is in contact with the adhesive layer of the third sheet, "between the second sheet and the third sheet”.
  • “90 degree peel strength” means “90 degree peel strength between the release layer and the adhesive layer”.
  • the “90 degree peel strength between the second sheet and the third sheet” is “the adhesive layer of the second sheet and the third sheet. It means “90 degree peel strength between”.
  • the third sheet has a release layer and the release layer is in contact with the adhesive layer of the second sheet, "between the second sheet and the third sheet”.
  • “90 degree peel strength” means “90 degree peel strength between the release layer and the adhesive layer”.
  • the 90-degree peel strength between the resin composition layer and the second sheet is preferably larger than the 90-degree peel strength between the second sheet and the third sheet. With such a configuration, it is possible to prevent the second sheet from being peeled off when the third sheet is peeled off.
  • the 90-degree peel strength between the resin composition layer and the second sheet is preferably 0.2 gf / inch or more, more preferably 0.25 gf / inch or more, still more preferably 0.30 gf / inch or more, and is preferable. Is 300 gf / inch or less, more preferably 250 gf / inch or less, still more preferably 200 gf / inch or less.
  • the "90 degree peel strength between the resin composition layer and the second sheet” is ". It means "90 degree peel strength between the release layer and the resin composition layer”.
  • the thickness of the adhesive layer is preferably 0.5 to 50 ⁇ m, more preferably 1 to 40 ⁇ m, and even more preferably 1 to 30 ⁇ m.
  • a resin composition prepared by appropriately adding an alicyclic saturated hydrocarbon resin to various base polymers can also be used for forming an adhesive layer.
  • the base polymer include olefin elastomers such as tough selenium X1102, X1104, X1105, and X1107 (all manufactured by Sumitomo Chemical Co., Ltd.), Septon 1020, 2002, 2004, 2005, 2006, 2063, 2104, 4033, 4044, 4055, Examples thereof include styrene-based thermoplastic elastomers such as 4077 and 4099 (both manufactured by Kuraray Co., Ltd.).
  • a resin composition containing an olefin-based resin described later can also be used to form an adhesive layer. In order to form the adhesive layer, a resin composition containing no semi-baked hydrotalcite or other inorganic filler described later may be used.
  • the adhesive layer can be formed, for example, by applying a liquid adhesive to the second sheet or the third sheet and drying it. Further, a pressure-sensitive adhesive varnish obtained by dissolving a pressure-sensitive adhesive in a solvent may be used for forming the pressure-sensitive adhesive layer.
  • the resin composition layer is not particularly limited, and a known resin composition can be used to form the resin composition layer.
  • the resin composition layer preferably contains an olefin resin and / or an epoxy resin.
  • the olefin resin is not particularly limited as long as it has a skeleton derived from an olefin monomer.
  • an ethylene-based resin, a propylene-based resin, a butene-based resin, and an isobutylene-based resin are preferable.
  • These olefin-based resins may be homopolymers, or copolymers such as random copolymers and block copolymers.
  • copolymer examples include a copolymer of two or more kinds of olefins and a copolymer of an olefin and a monomer other than the olefin such as a non-conjugated diene or styrene.
  • preferred copolymers are ethylene-non-conjugated diene copolymer, ethylene-propylene copolymer, ethylene-propylene-non-conjugated diene copolymer, ethylene-butene copolymer, propylene-butene copolymer, propylene.
  • olefin-based resin for example, isobutylene-modified resin, styrene-isobutylene-modified resin, modified propylene-butene resin and the like are preferably used.
  • the acid anhydride group examples include a group derived from succinic anhydride, a group derived from maleic anhydride, a group derived from glutaric anhydride, and the like.
  • the olefin resin having an acid anhydride group is, for example, an unsaturated compound having an acid anhydride group, and is obtained by graft-modifying the olefin resin under radical reaction conditions. Further, an unsaturated compound having an acid anhydride group may be radically copolymerized together with an olefin or the like.
  • the olefin resin having an epoxy group is an unsaturated compound having an epoxy group such as glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether, and allyl glycidyl ether, and the olefin resin is subjected to radical reaction conditions. It is obtained by graft modification with. Further, an unsaturated compound having an epoxy group may be radically copolymerized together with an olefin or the like.
  • the concentration of the acid anhydride group in the olefin resin having an acid anhydride group is preferably 0.05 to 10 mmol / g, more preferably 0.1 to 5 mmol / g.
  • the concentration of the acid anhydride group is obtained from the value of the acid value defined as the number of mg of potassium hydroxide required to neutralize the acid present in 1 g of the resin according to the description of JIS K2501.
  • the amount of the olefin resin having an acid anhydride group in the olefin resin is preferably 0 to 70% by mass, more preferably 10 to 50% by mass.
  • the ratio of the olefin resin having an acid anhydride group to the olefin resin having an epoxy group is not particularly limited as long as an appropriate crosslinked structure can be formed, but the molar ratio of the epoxy group to the acid anhydride group (epoxide group: acid anhydride).
  • the group) is preferably 100:10 to 100: 200, more preferably 100: 50 to 100: 150, and particularly preferably 100: 90 to 100: 110.
  • the olefin resin is preferably amorphous from the viewpoint of suppressing a decrease in fluidity due to thickening of the varnish.
  • amorphous means that the olefin resin does not have a clear melting point, and for example, when the melting point is measured by DSC (differential scanning calorimetry) of the olefin resin, no clear peak is observed. You can use things.
  • the olefin resin includes BASF's "Opanol B100" (viscosity average molecular weight: 1,110,000) and BASF's "B50SF” (viscosity average molecular weight: 400,000).
  • butene resin examples include "HV-1900” (polybutene, number average molecular weight: 2,900) manufactured by ENEOS (former company name "JXTG Energy”) and "HV-300M” (maleic anhydride) manufactured by Toho Chemical Industry Co., Ltd. Acid-modified liquid polybutene (modified product of "HV-300” (number average molecular weight: 1,400)), number average molecular weight: 2,100, number of carboxy groups constituting acid anhydride groups: 3.2 / 1 Molecule, acid value: 43.4 mgKOH / g, acid anhydride group concentration: 0.77 mmol / g).
  • HV-1900 polybutene, number average molecular weight: 2,900
  • ENEOS former company name "JXTG Energy”
  • HV-300M maleic anhydride manufactured by Toho Chemical Industry Co., Ltd.
  • Acid-modified liquid polybutene modified product of "HV-300” (number average molecular
  • styrene-isobutylene copolymer examples include “SIBSTAR T102” manufactured by Kaneka (styrene-isobutylene-styrene block copolymer, number average molecular weight: 100,000, styrene content: 30% by mass), manufactured by Seikou PMC.
  • TiBSTAR T102 styrene-isobutylene-styrene block copolymer, number average molecular weight: 100,000, styrene content: 30% by mass
  • Seikou PMC Specific examples of the styrene-isobutylene copolymer.
  • T-YP757B maleic anhydride-modified styrene-isobutylene-styrene block copolymer, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 100,000
  • T-YP766 manufactured by Seikou PMC.
  • T-YP429 manufactured by Seikou PMC (maleic anhydride-modified ethylene-methylmethacrylate copolymer (methylmethacrylate per 100% by mass in total of ethylene unit and methylmethacrylate unit)).
  • propylene-butene copolymer "T-YP341” manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer (amount of butene units per 100% by mass of propylene units and butene units in total:): 29% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 155,000) 20% by mass swazole solution), Seikou PMC "T-YP279” (maleic anhydride-modified propylene-butene random copolymer) Amount of butene unit per 100% by mass of total of propylene unit and butene unit: 36% by mass, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 35,000), Seikou PMC "T” -YP276 "(glycidyl methacrylate-modified propylene-butene random copolymer
  • the olefin resin contains an olefin resin having an epoxy group
  • an olefin resin having a functional group other than an acid anhydride group that can react with the epoxy group may be used.
  • the functional group include a hydroxyl group, a phenolic hydroxyl group, an amino group, a carboxy group and the like.
  • an olefin resin having a functional group other than the epoxy group that can react with the acid anhydride group may be used.
  • the functional group include a hydroxyl group, a primary or secondary amino group, a thiol group, an oxetane group and the like.
  • the epoxy resin can be used without limitation as long as it has two or more epoxy groups per molecule on average.
  • examples of the epoxy resin include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, and phosphorus.
  • Epoxy resin bisphenol S type epoxy resin, aromatic glycidyl amine type epoxy resin (for example, tetraglycidyl diaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyl toluidin, diglycidyl aniline, etc.), alicyclic epoxy resin, aliphatic Chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, epoxy resin with butadiene structure, diglycidyl etherified product of bisphenol, diglycidyl etherified product of naphthalene diol, diglycidyl etherified product of phenols Examples thereof include glycidyl etherified products, diglycidyl etherified products of alcohols, alkyl substituents, halides and hydrogenated products of these epoxy resins. Only one type of epoxy resin may be used, or two or more types may be used.
  • the epoxy resin may be either liquid or solid, and both liquid epoxy resin and solid epoxy resin may be used.
  • liquid and solid are states of the epoxy resin at normal temperature (25 ° C.) and normal pressure (1 atm).
  • the amount of epoxy resin is not particularly limited. When an epoxy resin is used, the amount thereof is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and 50 to 50% by mass per whole resin composition layer (that is, per total non-volatile content of the resin composition). 65% by mass is more preferable.
  • Unfired hydrotalcite is, for example, a metal hydroxide having a layered crystal structure typified by natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O), for example, It consists of a basic skeleton layer [Mg 1-X Al X (OH) 2 ] X + and an intermediate layer [(CO 3 ) X / 2 ⁇ mH 2 O] X ⁇ .
  • the uncalcined hydrotalcite in the present invention is a concept including hydrotalcite-like compounds such as synthetic hydrotalcite. Examples of the hydrotalcite-like compound include those represented by the following formulas (I) and (II).
  • M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, M 3+ represents a trivalent metal ion such as Al 3+, Fe 3+, A n- is CO 3 2-, Cl -, NO 3 - represents a n-valent anion, such as a 0 ⁇ x ⁇ 1, a 0 ⁇ m ⁇ 1, n is a positive number).
  • M 2+ is preferably Mg 2+
  • M 3+ is preferably Al 3+
  • a n- is preferably CO 3 2-.
  • Semi-calcined hydrotalcite refers to a metal hydroxide having a layered crystal structure in which the amount of interlayer water is reduced or eliminated, which is obtained by calcining uncalcined hydrotalcite.
  • interlayer water refers to "H 2 O" described in the above-mentioned composition formulas of uncalcined natural hydrotalcite and hydrotalcite-like compounds, if it is described using a composition formula.
  • calcined hydrotalcite refers to a metal oxide having an amorphous structure obtained by calcining uncalcined hydrotalcite or semi-calcined hydrotalcite, in which not only interlayer water but also hydroxyl groups are eliminated by condensation dehydration.
  • Unfired hydrotalcite, semi-fired hydrotalcite and fired hydrotalcite can be distinguished by the saturated water absorption rate.
  • the saturated water absorption rate of the semi-baked hydrotalcite is 1% by mass or more and less than 20% by mass.
  • the saturated water absorption rate of uncalcined hydrotalcite is less than 1% by mass, and the saturated water absorption rate of calcined hydrotalcite is 20% by mass or more.
  • the saturated water absorption rate of the semi-baked hydrotalcite is preferably 3% by mass or more and less than 20% by mass, and more preferably 5% by mass or more and less than 20% by mass.
  • uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the thermogravimetric reduction rate measured by thermogravimetric analysis.
  • the thermogravimetric reduction rate of the semi-baked hydrotalcite at 280 ° C. is less than 15% by mass, and the thermogravimetric reduction rate at 380 ° C. is 12% by mass or more.
  • the thermogravimetric reduction rate of uncalcined hydrotalcite at 280 ° C. is 15% by mass or more
  • the thermogravimetric reduction rate of calcined hydrotalcite at 380 ° C. is less than 12% by mass.
  • thermogravimetric reduction rate 100 ⁇ (mass before heating-mass when a predetermined temperature is reached) / mass before heating (ii) Can be obtained at.
  • Powder X-ray diffraction measurement is performed by a powder X-ray diffractometer (PANalytical, Empyrean) with anti-cathode CuK ⁇ (1.5405 ⁇ ), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: 0.
  • the measurement was performed under the conditions of .0657 ° / s and the measurement diffraction angle range (2 ⁇ ): 5.0131 to 79.9711 °.
  • the peak search uses the peak search function of the software attached to the diffractometer, and "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It can be performed under the condition of "0.00 °, method: minimum value of second derivative".
  • the particle size of the semi-baked hydrotalcite is preferably 1 to 1,000 nm, more preferably 10 to 800 nm.
  • the particle size of the semi-baked hydrotalcite is the median size of the particle size distribution when the particle size distribution is prepared on a volume basis by laser diffraction scattering type particle size distribution measurement (JIS Z8825).
  • alkylsilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltrimethoxysilane, and n-octadecyl. Examples thereof include dimethyl (3- (trimethoxysilyl) propyl) ammonium chloride. One or more of these can be used.
  • Examples of the semi-baked hydrotalcite include “DHT-4C” (manufactured by Kyowa Chemical Industry Co., Ltd., particle size: 400 nm), “DHT-4A-2” (manufactured by Kyowa Chemical Industry Co., Ltd., particle size: 400 nm) and the like. ..
  • examples of the fired hydrotalsite include “KW-2200” (manufactured by Kyowa Chemical Industry Co., Ltd., particle size: 400 nm)
  • examples of the unfired hydrotalsite include “DHT-4A” (Kyowa Chemical Industry).
  • STABIACE HT-1, HT-7, HT-P manufactured by Sakai Chemical Industry Co., Ltd.
  • the resin composition layer may contain another inorganic filler different from the semi-calcined hydrotalcite.
  • inorganic fillers include, for example, unfired hydrotalcite, fired hydrotalcite, talcite, silica, alumina, barium sulfate, clay, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, boron nitride. , Aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate and the like.
  • the sealing sheet of the present invention is useful as a sheet used for sealing an electronic device that is sensitive to moisture.
  • the electronic device is preferably an organic EL device, a quantum dot device or a solar cell.
  • Comparative Example 2 A sealing sheet was produced in the same manner as in Comparative Example 1 except that the sheet C was used as the second sheet.
  • Table 3 below lists the first to third sheets used in Examples 1 and 2 and Comparative Examples 1 and 2.
  • the sealing sheet of Comparative Example 1 having a laminated structure with the moisture-proof sheet (first sheet) / resin composition layer / moisture-proof sheet (second sheet) is stored. Although it is possible to suppress an increase in the water content in the resin composition layer at that time, the resin composition layer cannot be dried efficiently. Further, the sealing sheet of Comparative Example 2 having a laminated structure with the moisture-proof sheet (first sheet) / resin composition layer / non-moisture-proof sheet (second sheet) is contained in the resin composition layer at the time of storage. The increase in water content cannot be suppressed, and the water content after drying also increases.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a sealing sheet having a laminated structure including a first sheet, a resin composition layer, a second sheet, and a third sheet, in this order. The water vapor transmission rates of the first sheet and the third sheet are each independently 1 (g/m2/24 hr) or less, and the water vapor transmission rate of the second sheet is 10 (g/m2/24 hr) or more. In addition, the third sheet can be detached.

Description

封止用シートSealing sheet
 本発明は、電子デバイスの封止に有用な封止用シートに関する。 The present invention relates to a sealing sheet useful for sealing an electronic device.
 有機EL(Electroluminescence)デバイス、太陽電池などの電子デバイスは水分に弱く、水分によって輝度や効率が低下するなどの問題がある。電子デバイスを保護するため、樹脂組成物を有する封止用シートを用いて素子を封止することが行われている。 Electronic devices such as organic EL (Electroluminescence) devices and solar cells are vulnerable to moisture, and there are problems such as deterioration of brightness and efficiency due to moisture. In order to protect the electronic device, the element is sealed using a sealing sheet having a resin composition.
 水分を含有する樹脂組成物層を有する封止用シートでは、電子デバイスを充分に保護することができない。そのため、特許文献1では、保管時の樹脂組成物層の吸湿を抑えるために、第1の防湿性フィルム、樹脂組成物層および第2の防湿性フィルムを有する封止用シートが提案されている。 The sealing sheet having a resin composition layer containing water cannot sufficiently protect the electronic device. Therefore, Patent Document 1 proposes a sealing sheet having a first moisture-proof film, a resin composition layer, and a second moisture-proof film in order to suppress moisture absorption of the resin composition layer during storage. ..
国際公開第2018/181426号International Publication No. 2018/181426
 特許文献1に記載に記載されているような、樹脂組成物層の両側に防湿性フィルムが設けられた構造を有する封止用シートは、樹脂組成物層からの水分の除去が防湿性フィルムによって妨げられるため、樹脂組成物層を効率的に乾燥することができない。また、前記封止用シートから第2の防湿性フィルムを剥離した後、樹脂組成物層が露出したシートを乾燥すると、乾燥時に樹脂組成物層が汚染される可能性がある。 As described in Patent Document 1, in the sealing sheet having a structure in which moisture-proof films are provided on both sides of the resin composition layer, moisture can be removed from the resin composition layer by the moisture-proof film. The resin composition layer cannot be dried efficiently because it is hindered. Further, if the sheet with the exposed resin composition layer is dried after the second moisture-proof film is peeled off from the sealing sheet, the resin composition layer may be contaminated during drying.
 本発明は上記のような事情に着目してなされたものであって、その目的は、樹脂組成物層を効率的に乾燥することができ、その乾燥時に樹脂組成物層の汚染を防止し得る封止用シートを提供することにある。 The present invention has been made by paying attention to the above circumstances, and an object of the present invention is to be able to efficiently dry the resin composition layer and prevent contamination of the resin composition layer during the drying. The purpose is to provide a sealing sheet.
 上記目的を達成し得る本発明は以下の通りである。
 [1] 第1シートと、樹脂組成物層と、第2シートと、第3シートとを、これらの順に含んだ積層構造を有する封止用シートであって、
 第1シートおよび第3シートの水蒸気透過度が、それぞれ独立に、5(g/m/24hr)以下であり、
 第2シートの水蒸気透過度が、10(g/m/24hr)以上であり、並びに
 第3シートを剥離することができる封止用シート。
 [2] 第2シートと第3シートとの間の90度剥離強度が、0.1gf/inch以上250gf/inch以下である前記[1]に記載の封止用シート。
 [3] 第3シートが粘着層を有するシートであり、且つ前記粘着層が第2シートと接触している前記[1]または[2]に記載の封止用シート。
 [4] 第2シートが離型層を有するシートであり、且つ前記離型層が樹脂組成物層と接触している前記[1]~[3]のいずれか一つに記載の封止用シート。
 [5] 第1シートが離型層を有するシートであり、且つ前記離型層が樹脂組成物層と接触している前記[1]~[4]のいずれか一つに記載の封止用シート。
 [6] 樹脂組成物層が、半焼成ハイドロタルサイトを含む前記[1]~[5]のいずれか一つに記載の封止用シート。
 [7] 電子デバイスの封止に用いられるシートである前記[1]~[6]のいずれか一つに記載の封止用シート。
 [8] 電子デバイスが、有機ELデバイス、量子ドットデバイスまたは太陽電池である前記[7]に記載の封止用シート。
The present invention that can achieve the above object is as follows.
[1] A sealing sheet having a laminated structure containing the first sheet, the resin composition layer, the second sheet, and the third sheet in this order.
Water vapor permeability of the first sheet and third sheet are each independently, 5 (g / m 2 / 24hr) or less,
Water vapor permeability of the second sheet, 10 (g / m 2 / 24hr) or more, and the sheet for sealing which can be peeled off the third sheet.
[2] The sealing sheet according to the above [1], wherein the 90-degree peel strength between the second sheet and the third sheet is 0.1 gf / inch or more and 250 gf / inch or less.
[3] The sealing sheet according to the above [1] or [2], wherein the third sheet is a sheet having an adhesive layer, and the adhesive layer is in contact with the second sheet.
[4] The sealing agent according to any one of [1] to [3], wherein the second sheet is a sheet having a release layer, and the release layer is in contact with the resin composition layer. Sheet.
[5] The sealing agent according to any one of [1] to [4], wherein the first sheet is a sheet having a release layer, and the release layer is in contact with the resin composition layer. Sheet.
[6] The sealing sheet according to any one of [1] to [5] above, wherein the resin composition layer contains semi-baked hydrotalcite.
[7] The sealing sheet according to any one of the above [1] to [6], which is a sheet used for sealing an electronic device.
[8] The sealing sheet according to the above [7], wherein the electronic device is an organic EL device, a quantum dot device, or a solar cell.
 本発明の封止用シートは、樹脂組成物層を効率的に乾燥することができ、その乾燥時に樹脂組成物層の汚染を防止することができる。 The sealing sheet of the present invention can efficiently dry the resin composition layer, and can prevent the resin composition layer from being contaminated during the drying.
 本発明の封止用シートは、第1シートと、樹脂組成物層と、第2シートと、第3シートとを、これらの順に含んだ積層構造を有する封止用シートである。 The sealing sheet of the present invention is a sealing sheet having a laminated structure containing the first sheet, the resin composition layer, the second sheet, and the third sheet in this order.
 本発明は、第1シートおよび第3シートの水蒸気透過度(water vapour transmission rate、以下「WVTR」と略称することがある)が、それぞれ独立に、5(g/m/24hr)以下であること、即ち、第1シートおよび第3シートが防湿性シートであることを特徴の一つとする。また、本発明は、第2シートの水蒸気透過度が、10(g/m/24hr)以上であること、即ち、第2シートが非防湿性シートであることを特徴の一つとする。また、本発明は、第3シートを剥離し得ることを特徴の一つとする。 The present invention, water vapor transmission rate of the first sheet and the third sheet (water vapour transmission rate, sometimes hereinafter abbreviated as "WVTR") are each independently a 5 (g / m 2 / 24hr ) or less That is, one of the features is that the first sheet and the third sheet are moisture-proof sheets. Further, the present invention is the water vapor permeability of the second sheet, 10 (g / m 2 / 24hr) or that it is, namely, the one wherein the second sheet is a non-moisture-proof sheet. Another feature of the present invention is that the third sheet can be peeled off.
 上述のような構成を有する本発明の封止用シートは、乾燥前に防湿性シートである第3シートを剥離し、非防湿性シートである第2シートで樹脂組成物層を保護した状態で、樹脂組成物層を効率的に乾燥することができる。なお、樹脂組成物層の乾燥後に、剥離した第3シートまたは新たな第3シートを、第2シート上に積層させてもよい。 In the sealing sheet of the present invention having the above-mentioned structure, the third sheet, which is a moisture-proof sheet, is peeled off before drying, and the resin composition layer is protected by the second sheet, which is a non-moisture-proof sheet. , The resin composition layer can be dried efficiently. After the resin composition layer is dried, the peeled third sheet or a new third sheet may be laminated on the second sheet.
 第1シート、第2シートおよび第3シートの構造は、いずれも、単層構造でもよく、積層構造でもよく、好ましくは積層構造である。防湿性シートである第1シートおよび第3シートは、いずれも、より好ましくはバリア層と基材とを含んだ積層構造を有するシートである。非防湿性シートである第2シートは、基材のみからから構成されるシートでもよく、離型層と基材とを含んだ積層構造を有するシートでもよい。 The structures of the first sheet, the second sheet, and the third sheet may be a single-layer structure or a laminated structure, preferably a laminated structure. The first sheet and the third sheet, which are moisture-proof sheets, are both sheets having a laminated structure including a barrier layer and a base material, more preferably. The second sheet, which is a non-moisture-proof sheet, may be a sheet composed of only a base material, or may be a sheet having a laminated structure including a release layer and a base material.
 第1シートおよび第3シートのWVTRは、それぞれ独立に、好ましくは4(g/m/24hr)以下である。第1シートおよび第3シートのWVTRの下限は特に限定されず、より低い値が好ましい。第1シートおよび第3シートのWVTRは、それぞれ理想的には0(g/m/24hr)であることが最も好ましい。WVTRは、後述する実施例に記載する方法によって測定される値である。 WVTR of the first sheet and third sheet are each independently, preferably 4 (g / m 2 / 24hr ) or less. The lower limit of the WVTR of the first sheet and the third sheet is not particularly limited, and a lower value is preferable. WVTR of the first sheet and third sheet is most preferably are each ideally 0 (g / m 2 / 24hr ). WVTR is a value measured by the method described in Examples described later.
 例えば、本発明の封止用シートを電子デバイスの封止に使用し、その際、第1シートを剥離せずに、電子デバイス中で高防湿性層として使用する場合、本発明における第1シートには、WVTRが0.01(g/m/24hr)未満の防湿性シートを使用するのが好ましい。このシートのWVTRは、より好ましくは0.005(g/m/24hr)以下、さらに好ましくは0.001(g/m/24hr)以下、特に好ましくは0.0005(g/m/24hr)以下である。このシートのWVTRの下限は特に限定されず、より低い値が好ましい。このWVTRは理想的には0(g/m/24hr)が最も好ましい。 For example, when the sealing sheet of the present invention is used for sealing an electronic device, and at that time, the first sheet is used as a highly moisture-proof layer in an electronic device without peeling off, the first sheet in the present invention. the, WVTR is preferably used moisture-proof sheet of less than 0.01 (g / m 2 / 24hr ). WVTR of the sheet is more preferably 0.005 (g / m 2 / 24hr ) or less, more preferably 0.001 (g / m 2 / 24hr ) or less, particularly preferably 0.0005 (g / m 2 / 24 hr) or less. The lower limit of WVTR of this sheet is not particularly limited, and a lower value is preferable. The WVTR is ideally 0 (g / m 2 / 24hr ) are most preferred.
 第3シートは、樹脂組成物層の乾燥前に剥離される。そのため第3シートとして、保管時の樹脂組成物層の吸水抑制と、封止用シートの製造コスト抑制とを同時に達成する観点から、WVTRが0.01(g/m/24hr)以上1(g/m/24hr)以下の防湿性シートを使用するのが好ましい。このシートのWVTRは、防湿性とコストのバランスから、0.05(g/m/24hr)以上であり、より好ましくは0.8(g/m/24hr)以下、さらに好ましく0.6(g/m/24hr)以下である。 The third sheet is peeled off before the resin composition layer is dried. Therefore the third sheet, the water absorption inhibition of the resin composition layer during storage, from the viewpoint of achieving the manufacturing cost containment seat for sealing at the same time, WVTR is 0.01 (g / m 2 / 24hr ) or 1 ( g / m 2 / 24hr) preferably used less moisture-proof sheet. WVTR of the sheet from the balance of moisture resistance and cost, a 0.05 (g / m 2 / 24hr ) or more, more preferably 0.8 (g / m 2 / 24hr ) or less, more preferably 0.6 (g / m 2 / 24hr) or less.
 第2シートのWVTRは、好ましくは15(g/m/24hr)以上である。その上限は特に限定されないが、第2シートのWVTRは、通常20,000(g/m/24hr)以下、好ましくは15,000(g/m/24hr)以下である。 WVTR of the second sheet is preferably 15 (g / m 2 / 24hr ) or more. The upper limit is not particularly limited, WVTR of the second sheet is typically 20,000 (g / m 2 / 24hr ) or less, preferably 15,000 (g / m 2 / 24hr ) or less.
 第1シートおよび第3シートの両方として、金属箔付シートなどの不透明な防湿性シートを使用すると、樹脂組成物層の品質検査が困難となるため、第1シートおよび第3シートの一方として不透明な防湿性シートを使用する場合、もう一方としては透明な防湿性シートを使用するのが望ましい。透明な防湿性シートの透明性は、その厚さによらず、D65光での全光線透過率が85%以上であるのが望ましい。「不透明な防湿性シート」とは、「D65光での全光線透過率が50%以下である防湿性シート」であると定義される。全光線透過率は、スガ試験機社製ヘーズメーター HZ-V3(ハロゲンランプ)を用いて、空気をリファレンスとして、D65光にて測定することができる。 If an opaque moisture-proof sheet such as a sheet with metal leaf is used as both the first sheet and the third sheet, it becomes difficult to inspect the quality of the resin composition layer. Therefore, it is opaque as one of the first sheet and the third sheet. When using a moisture-proof sheet, it is desirable to use a transparent moisture-proof sheet as the other. Regardless of the thickness of the transparent moisture-proof sheet, it is desirable that the total light transmittance with D65 light is 85% or more. An "opaque moisture-proof sheet" is defined as a "moisture-proof sheet having a total light transmittance of 50% or less with D65 light". The total light transmittance can be measured with D65 light using an air meter HZ-V3 (halogen lamp) manufactured by Suga Test Instruments Co., Ltd. as a reference.
 本発明の封止用シートを用いて有機EL素子を封止する電子デバイスの構造において、樹脂組成物層から形成される封止層上に直接無機膜を設ける場合や、高防湿性層が不要であり、高防湿性層が設けられない場合は、第1シートおよび第3シートの両方として、上述したWVTRが0.01(g/m/24hr)以上1(g/m/24hr)以下の防湿性シートを用いるのが好ましい。 In the structure of an electronic device that seals an organic EL element using the sealing sheet of the present invention, when an inorganic film is directly provided on the sealing layer formed from the resin composition layer, or a highly moisture-proof layer is unnecessary. , and the case where high moisture resistance layer is not provided, as both of the first sheet and third sheet, WVTR described above can 0.01 (g / m 2 / 24hr ) or 1 (g / m 2 / 24hr ) It is preferable to use the following moisture-proof sheet.
 基材の構造は、単層構造でもよく、積層構造でもよい。基材としては、例えば、ポリエチレン、ポリプロピレン(PP)、ポリメチルペンテン等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリイミド(PI)、シクロオレフィンポリマー(COP)、ポリ塩化ビニル等のプラスチックフィルムが挙げられる。プラスチックフィルムは、1種のみを使用してもよく、2種以上を使用してもよい。基材は、好ましくはポリエチレンテレフタレートフィルム、シクロオレフィンポリマーフィルム、ポリエチレンナフタレートフィルムまたはポリカーボネートフィルムであり、より好ましくはポリエチレンテレフタレートフィルムまたはシクロオレフィンポリマーフィルムである。基材の厚さは、好ましくは10~100μm、より好ましくは10~75μm、さらに好ましくは10~50μmである。 The structure of the base material may be a single layer structure or a laminated structure. Examples of the base material include polyolefins such as polyethylene, polypropylene (PP) and polymethylpentene, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate (PC), polyimide (PI) and cycloolefin polymers. (COP), plastic films such as polyvinyl chloride can be mentioned. Only one type of plastic film may be used, or two or more types may be used. The base material is preferably a polyethylene terephthalate film, a cycloolefin polymer film, a polyethylene naphthalate film or a polycarbonate film, and more preferably a polyethylene terephthalate film or a cycloolefin polymer film. The thickness of the base material is preferably 10 to 100 μm, more preferably 10 to 75 μm, and even more preferably 10 to 50 μm.
 バリア層としては、例えば、金属箔(例、アルミニウム箔)、シリカ蒸着膜、窒化ケイ素膜、酸化ケイ素膜等の無機膜が挙げられる。バリア層は、複数の無機膜の複数層(例えば、金属箔およびシリカ蒸着膜)で構成されていてもよい。また、バリア層は、有機物と無機物から構成されていてもよく、有機層と無機膜の複合多層であってもよい。バリア層の厚さは、好ましくは0.01~100μm、より好ましくは0.05~50μm、さらに好ましくは0.05~30μmである。 Examples of the barrier layer include inorganic films such as metal foil (eg, aluminum foil), silica-deposited film, silicon nitride film, and silicon oxide film. The barrier layer may be composed of a plurality of layers of a plurality of inorganic films (for example, a metal foil and a silica-deposited film). Further, the barrier layer may be composed of an organic substance and an inorganic substance, or may be a composite multilayer of an organic layer and an inorganic film. The thickness of the barrier layer is preferably 0.01 to 100 μm, more preferably 0.05 to 50 μm, and even more preferably 0.05 to 30 μm.
 WVTRが0.01(g/m/24hr)未満の防湿性シート、特にWVTRが0.005(g/m/24hr)以下の防湿性シートは、例えば、基材表面に酸化ケイ素(シリカ)、酸化アルミニウム、酸化マグネシウム、窒化ケイ素、窒化酸化ケイ素、SiCN、アモルファスシリコン等の無機膜を、化学気相成長法(例えば、熱、プラズマ、紫外線、真空熱、真空プラズマまたは真空紫外線による化学気相成長法)、または物理気相成長法(例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザー堆積法、分子線エピタキシー法)等により単層または複層で積層することによって、製造することができる(例えば、特開2016-185705号公報、特許第5719106号公報、特許第5712509号公報、特許第5292358号公報等参照)。無機膜のクラックを防止するため、無機膜と透明平坦化層(例えば、透明プラスチック層)を交互に積層することが好ましい。このような方法で製造された防湿性シートは、透明性を有するシートである。 WVTR is 0.01 (g / m 2 / 24hr ) less moisture-proof sheet, especially WVTR is 0.005 (g / m 2 / 24hr ) or less of moisture-proof sheet, for example, silicon oxide (silica to the substrate surface ), Aluminum oxide, magnesium oxide, silicon nitride, silicon nitride, SiCN, amorphous silicon, etc., by chemical vapor deposition (for example, heat, plasma, ultraviolet rays, vacuum heat, vacuum plasma, or chemical vapor deposition by vacuum ultraviolet rays). It is produced by laminating in a single layer or multiple layers by a physical vapor deposition method (for example, vacuum deposition method, sputtering method, ion plating method, laser deposition method, molecular beam epitaxy method) or the like. (For example, see Japanese Patent Application Laid-Open No. 2016-185705, Japanese Patent No. 5719106, Japanese Patent Application Laid-Open No. 5712509, Japanese Patent Application Laid-Open No. 5292358, etc.). In order to prevent cracks in the inorganic film, it is preferable that the inorganic film and the transparent flattening layer (for example, a transparent plastic layer) are alternately laminated. The moisture-proof sheet produced by such a method is a transparent sheet.
 また上記方法で製造された防湿性シートの他、例えば、SUS箔、アルミニウム箔等の金属箔、または基材と金属箔とを接着剤を介して張り合わせる等の方法で製造された防湿性シートが挙げられる。金属箔、または基材と金属箔からなる防湿性シートは、通常、不透明である。 Further, in addition to the moisture-proof sheet manufactured by the above method, for example, a metal foil such as SUS foil or aluminum foil, or a moisture-proof sheet manufactured by a method such as laminating a base material and a metal foil with an adhesive. Can be mentioned. A metal leaf, or a moisture-proof sheet consisting of a substrate and a metal leaf, is usually opaque.
 また防湿性シートは、バリア層として、基材表面に酸化ケイ素(シリカ)、酸化アルミニウム、酸化マグネシウム、窒化ケイ素、窒化酸化ケイ素、SiCN、アモルファスシリコン等の無機物を含む無機膜を蒸着する方法、または基材に金属酸化物とバリア性を有する有機樹脂からなるコーティング液を塗布し、乾燥する方法等で製造することができる(例えば、特開2013-108103号公報、特許第4028353号公報等参照)。このような方法で製造された防湿性シートは、透明性を有するシートである。 The moisture-proof sheet is a method of depositing an inorganic film containing an inorganic substance such as silicon oxide (silica), aluminum oxide, magnesium oxide, silicon nitride, silicon nitride, SiCN, and amorphous silicon on the surface of the base material as a barrier layer, or It can be produced by a method of applying a coating liquid made of a metal oxide and an organic resin having a barrier property to a base material and drying the substrate (see, for example, JP2013-108103A, Patent No. 4028353, etc.). .. The moisture-proof sheet produced by such a method is a transparent sheet.
 防湿性シートは市販品を使用してもよい。その市販品としては、例えば、クラレ社製「クラリスタCI」、三菱樹脂社製「テックバリアHX」、「テックバリアLX」および「テックバリアL」、大日本印刷社製「IB-PET-PXB」、凸版印刷社製「GL,GXシリーズ」、東洋アルミニウム社製「PETツキAL1N30」、三菱樹脂社製「X-BARRIER」等が挙げられる。 A commercially available product may be used as the moisture-proof sheet. Examples of commercially available products include "Clarista CI" manufactured by Kuraray, "Tech Barrier HX", "Tech Barrier LX" and "Tech Barrier L" manufactured by Mitsubishi Plastics, and "IB-PET-PXB" manufactured by Dai Nippon Printing Co., Ltd. , "GL, GX series" manufactured by Toppan Printing Co., Ltd., "PET Tsuki AL1N30" manufactured by Toyo Aluminum Co., Ltd., "X-BARRIER" manufactured by Mitsubishi Plastics, etc.
 防湿性シートである第1シートおよび第3シートは、いずれも、基材とバリア層以外の層を有していていもよい。例えば、バリア層と基材とを含んだ積層構造を有するシートに、接着剤を用いて基材をさらに貼り合わせることによって得られる積層シート(例えば、基材と接着剤層とバリア層と基材とをこれらの順に含んだ積層構造を有するシート、または基材と接着剤層と基材とバリア層とをこれらの順に含んだ積層構造を有するシート)を、第1シートおよび/または第3シートとして使用してもよい。基材としては、例えば、上述のものが挙げられる。本発明において接着剤に特に限定はなく、市販の接着剤を使用することができる。 Both the first sheet and the third sheet, which are moisture-proof sheets, may have a layer other than the base material and the barrier layer. For example, a laminated sheet obtained by further adhering a base material to a sheet having a laminated structure including a barrier layer and a base material using an adhesive (for example, a base material, an adhesive layer, a barrier layer, and a base material). A sheet having a laminated structure containing the above and, or a sheet having a laminated structure containing a base material, an adhesive layer, a base material, and a barrier layer in these orders) is a first sheet and / or a third sheet. May be used as. Examples of the base material include those described above. In the present invention, the adhesive is not particularly limited, and a commercially available adhesive can be used.
 第1シートは、離型層を有さないシートでもよい。また、第1シートが離型層を有するシートであり、且つ前記離型層が樹脂組成物層と接触していてもよい。離型層を有するシートである第1シートとしては、例えば、バリア層と基材と離型層とをこれらの順に含んだ積層構造を有するシート、基材とバリア層と離型層とをこれらの順に含んだ積層構造を有するシート、およびバリア層と基材と接着剤層と基材と離型層とをこれらの順に含んだ積層構造を有するシートが挙げられる。基材およびバリア層としては、例えば、上述のものが挙げられる。本発明において接着剤に特に限定はなく、市販の接着剤を使用することができる。 The first sheet may be a sheet having no release layer. Further, the first sheet may be a sheet having a release layer, and the release layer may be in contact with the resin composition layer. Examples of the first sheet, which is a sheet having a release layer, include a sheet having a laminated structure containing a barrier layer, a base material, and a release layer in this order, and a base material, a barrier layer, and a release layer. Examples thereof include a sheet having a laminated structure containing the above in order, and a sheet having a laminated structure containing a barrier layer, a base material, an adhesive layer, a base material, and a release layer in this order. Examples of the base material and the barrier layer include those described above. In the present invention, the adhesive is not particularly limited, and a commercially available adhesive can be used.
 第2シートが離型層を有するシートであり、且つ前記離型層が樹脂組成物層と接触していることが、本発明の好ましい一態様である。離型層を有するシートである第2シートとしては、例えば、離型層と基材とを含んだ積層構造を有するシートが挙げられる。基材としては、例えば、上述のものが挙げられる。 It is a preferable aspect of the present invention that the second sheet is a sheet having a release layer and the release layer is in contact with the resin composition layer. Examples of the second sheet, which is a sheet having a release layer, include a sheet having a laminated structure including a release layer and a base material. Examples of the base material include those described above.
 離型層は、例えば、基材に離型剤を塗布し、乾燥することによって形成することができる。また、プラスチックフィルムに離型剤を塗布し、乾燥することによって、離型層を有するプラスチックフィルムを形成し、次いで接着剤を用いて、離型層を有するプラスチックフィルムと上述の基材とバリア層から構成される防湿性シートとを貼り合せて、離形層を有する防湿性シートを形成してもよい。離型剤の塗布後の乾燥温度は、例えば100~150℃であり、乾燥時間は、例えば5~120分である。 The release layer can be formed, for example, by applying a release agent to a base material and drying it. Further, a release agent is applied to the plastic film and dried to form a plastic film having a release layer, and then an adhesive is used to form the plastic film having the release layer and the above-mentioned base material and barrier layer. A moisture-proof sheet having a release layer may be formed by laminating with a moisture-proof sheet composed of. The drying temperature after application of the release agent is, for example, 100 to 150 ° C., and the drying time is, for example, 5 to 120 minutes.
 離型剤としては、例えば、シリコーン系離型剤、アルキッド系離型剤、フッ素系離型剤、オレフィン系離型剤等が挙げられる。離型層は、シリコーン系離型剤またはアルキッド系離型剤から形成されていることが好ましい。離型層の厚さは、好ましくは0.05~5μm、より好ましくは0.05~3μm、さらに好ましくは0.05~2μmである。 Examples of the release agent include a silicone-based release agent, an alkyd-based release agent, a fluorine-based release agent, an olefin-based release agent, and the like. The release layer is preferably formed from a silicone-based release agent or an alkyd-based release agent. The thickness of the release layer is preferably 0.05 to 5 μm, more preferably 0.05 to 3 μm, and even more preferably 0.05 to 2 μm.
 第1シートの厚さ(第1シートが積層シートである場合は、その全体の厚さ)は、好ましくは10~100μm、より好ましくは10~62.5μm、さらに好ましくは10~55μmである。第2シートの厚さ(第2シートが積層シートである場合は、その全体の厚さ)は、好ましくは5~50μm、より好ましくは7.5~40μm、さらに好ましくは10~40μmである。第3シートの厚さ(第3シートが積層シートである場合は、その全体の厚さ)は、好ましくは10~100μm、より好ましくは10~62.5μm、さらに好ましくは10~55μmである。 The thickness of the first sheet (when the first sheet is a laminated sheet, the total thickness thereof) is preferably 10 to 100 μm, more preferably 10 to 62.5 μm, and further preferably 10 to 55 μm. The thickness of the second sheet (if the second sheet is a laminated sheet, the total thickness thereof) is preferably 5 to 50 μm, more preferably 7.5 to 40 μm, and even more preferably 10 to 40 μm. The thickness of the third sheet (if the third sheet is a laminated sheet, the total thickness thereof) is preferably 10 to 100 μm, more preferably 10 to 62.5 μm, and further preferably 10 to 55 μm.
 上述したように本発明は、樹脂組成物層の乾燥前に第3シートを剥離し得ることを特徴の一つとする。そのための構成としては、例えば、以下のものが挙げられる:
 (1)第3シートが粘着層を有するシートであり、且つ前記粘着層が第2シートと接触している構成、
 (2)第2シートが粘着層を有するシートであり、且つ前記粘着層が第3シートと接触している構成。
As described above, one of the features of the present invention is that the third sheet can be peeled off before the resin composition layer is dried. The configuration for this is, for example:
(1) A configuration in which the third sheet is a sheet having an adhesive layer and the adhesive layer is in contact with the second sheet.
(2) The second sheet is a sheet having an adhesive layer, and the adhesive layer is in contact with the third sheet.
 前記構成(1)では、第2シートは離型層を有していてもよい。第3シートが粘着層を有するシートであり、第2シートが離型層を有するシートであり、且つ前記粘着層が前記離型層と接触している構成は、前記構成(1)に包含される。離型層の説明は上述の通りである。 In the above configuration (1), the second sheet may have a release layer. The configuration in which the third sheet is a sheet having an adhesive layer, the second sheet is a sheet having a release layer, and the adhesive layer is in contact with the release layer is included in the configuration (1). To. The description of the release layer is as described above.
 また、前記構成(1)では、第2シートは、両面に離型層を有していてもよい。第3シートが粘着層を有するシートであり、第2シートが両面に離型層を有するシートであり、記粘着層が前記離型層の一方と接触し、且つ前記離型層の他方が、樹脂組成物層と接触している構成は、前記構成(1)に包含される。離型層の説明は上述の通りである。 Further, in the above configuration (1), the second sheet may have release layers on both sides. The third sheet is a sheet having an adhesive layer, the second sheet is a sheet having a release layer on both sides, the adhesive layer is in contact with one of the release layers, and the other of the release layers is The configuration in contact with the resin composition layer is included in the configuration (1). The description of the release layer is as described above.
 前記構成(2)では、第3シートは離型層を有していてもよい。第2シートが粘着層を有するシートであり、第3シートが離型層を有するシートであり、且つ前記粘着層が前記離型層と接触している構成は、前記構成(2)に包含される。 In the above configuration (2), the third sheet may have a release layer. The configuration in which the second sheet is a sheet having an adhesive layer, the third sheet is a sheet having a release layer, and the adhesive layer is in contact with the release layer is included in the configuration (2). To.
 また、前記構成(2)では、第3シートは、両面に離型層を有していてもよい。第2シートが粘着層を有するシートであり、第3シートが両面に離型層を有するシートであり、前記粘着層が前記離型層の一方と接触している構成は、前記構成(2)に包含される。離型層の説明は上述の通りである。 Further, in the above configuration (2), the third sheet may have release layers on both sides. The configuration in which the second sheet is a sheet having an adhesive layer, the third sheet is a sheet having a release layer on both sides, and the adhesive layer is in contact with one of the release layers is the configuration (2). Is included in. The description of the release layer is as described above.
 前記構成(2)は、第3シートを剥離した後に第2シートに粘着層が残り、乾燥時に、それにゴミが付着する可能性がある。これらの観点から、前記構成(1)が好ましい。 In the above configuration (2), an adhesive layer remains on the second sheet after the third sheet is peeled off, and there is a possibility that dust adheres to the adhesive layer when it dries. From these viewpoints, the configuration (1) is preferable.
 第第2シートと第3シートとの間の90度剥離強度は、好ましくは0.1gf/inch以上、より好ましくは0.2gf/inch以上、さらに好ましくは0.25gf/inch以上であり、好ましくは250gf/inch以下、より好ましくは200gf/inch以下、さらに好ましくは150gf/inch以下である。この90度剥離強度は、後述する実施例に記載する方法によって測定される値である。 The 90-degree peel strength between the second sheet and the third sheet is preferably 0.1 gf / inch or more, more preferably 0.2 gf / inch or more, still more preferably 0.25 gf / inch or more, and is preferable. Is 250 gf / inch or less, more preferably 200 gf / inch or less, still more preferably 150 gf / inch or less. This 90-degree peel strength is a value measured by the method described in Examples described later.
 本発明の封止用シートが前記構成(1)を有する場合、「第2シートと第3シートとの間の90度剥離強度」は、「第2シートと第3シートが有する粘着層との間の90度剥離強度」を意味する。この態様において、第2シートが離型層を有し、且つ前記離型層と、第3シートが有する粘着層とが接触している場合は、「第2シートと第3シートとの間の90度剥離強度」は、「前記離型層と前記粘着層との間の90度剥離強度」を意味する。 When the sealing sheet of the present invention has the above configuration (1), the "90 degree peel strength between the second sheet and the third sheet" is "the adhesive layer of the second sheet and the third sheet". It means "90 degree peel strength between". In this embodiment, when the second sheet has a release layer and the release layer is in contact with the adhesive layer of the third sheet, "between the second sheet and the third sheet". "90 degree peel strength" means "90 degree peel strength between the release layer and the adhesive layer".
 本発明の封止用シートが前記構成(2)を有する場合、「第2シートと第3シートとの間の90度剥離強度」は、「第2シートが有する粘着層と第3シートとの間の90度剥離強度」を意味する。この態様において、第3シートが離型層を有し、且つ前記離型層と、第2シートが有する粘着層とが接触している場合は、「第2シートと第3シートとの間の90度剥離強度」は、「前記離型層と前記粘着層との間の90度剥離強度」を意味する。 When the sealing sheet of the present invention has the above configuration (2), the "90 degree peel strength between the second sheet and the third sheet" is "the adhesive layer of the second sheet and the third sheet. It means "90 degree peel strength between". In this embodiment, when the third sheet has a release layer and the release layer is in contact with the adhesive layer of the second sheet, "between the second sheet and the third sheet". "90 degree peel strength" means "90 degree peel strength between the release layer and the adhesive layer".
 樹脂組成物層と第2シートとの間の90度剥離強度は、第2シートと第3シートとの間の90度剥離強度がよりも大きいことが好ましい。このような構成によって、第3シートの剥離の際に、第2シートが剥がれることを抑制することができる。樹脂組成物層と第2シートとの間の90度剥離強度は、好ましくは0.2gf/inch以上、より好ましくは0.25gf/inch以上、さらに好ましくは0.30gf/inch以上であり、好ましくは300gf/inch以下、より好ましくは250gf/inch以下、さらに好ましくは200gf/inch以下である。 The 90-degree peel strength between the resin composition layer and the second sheet is preferably larger than the 90-degree peel strength between the second sheet and the third sheet. With such a configuration, it is possible to prevent the second sheet from being peeled off when the third sheet is peeled off. The 90-degree peel strength between the resin composition layer and the second sheet is preferably 0.2 gf / inch or more, more preferably 0.25 gf / inch or more, still more preferably 0.30 gf / inch or more, and is preferable. Is 300 gf / inch or less, more preferably 250 gf / inch or less, still more preferably 200 gf / inch or less.
 第2シートが離型層を有し、且つ前記離型層が樹脂組成物層と接触している場合は、「樹脂組成物層と第2シートとの間の90度剥離強度」は、「前記離型層と樹脂組成物層との間の90度剥離強度」を意味する。 When the second sheet has a release layer and the release layer is in contact with the resin composition layer, the "90 degree peel strength between the resin composition layer and the second sheet" is ". It means "90 degree peel strength between the release layer and the resin composition layer".
 粘着層の厚さは、好ましくは0.5~50μm、より好ましくは1~40μm、さらに好ましくは1~30μmである。 The thickness of the adhesive layer is preferably 0.5 to 50 μm, more preferably 1 to 40 μm, and even more preferably 1 to 30 μm.
 粘着層は、粘着剤を使用して形成することができる。粘着剤としては、公知のものを使用することができる。好ましい粘着剤としては、例えば、KR-3704、X-40-3270-1、X-40-3323、X-40-3306、KR-100、KR-101-10、KR-130、KR-3700、KR-3701、X-40-3327、X-40-3240、X-40-3291-1(いずれも信越化学工業社製)、TSR1512、TSR1516、YR3340、YR3286、PSA610-SM、XR37-B9024,XR37-B6722(いずれもモメンティブ・パフォーマンス・マテリアルズ社製)等のシリコーン系粘着剤、BUTYL065、BUTYL268、BUTYL365、CHLOROBUTYL1066、BROMOBUTYL2222、BROMOBUTYL2244,BROMOBUTYL2255(いずれも日本ブチル社製)、RB100、RB402、RB301、RB101-3(いずれもランクセス社製)等のブチルゴム系粘着剤、タフセレン X1102、X1104、X1105、X1107(いずれも住友化学社製)等のオレフィン系エラストマー、アロンタックS-1511X、S-1511改、S-3403、S-3452YKF、S-1601、S-1605(いずれも東亞合成社製)、ファインタックCT-5020、CT-5030、SPS-900-LV、SPS-945NT、SPS-1040NT-25、CT-3088、CT-3850、CT-6030(いずれもDIC社製)、SKダイン 1501BS4、RE-4、RE-339(いずれも綜研化学社製)、クラリティ LA3320、LA2330、LA2250、LA2270、LA4285(いずれもクラレ社製)等のアクリル系粘着剤等が挙げられる。また各種ベースポリマーに対し脂環族飽和炭化水素樹脂を適宜添加することで調製した樹脂組成物を、粘着層の形成のために用いることもできる。ベースポリマーとしては、例えば、タフセレン X1102、X1104、X1105、X1107(いずれも住友化学社製)等のオレフィン系エラストマー、セプトン 1020、2002、2004、2005、2006、2063、2104、4033、4044、4055、4077、4099(いずれもクラレ社製)等のスチレン系熱可塑性エラストマー等が挙げられる。また後述のオレフィン系樹脂を含む樹脂組成物も粘着層を形成するために使用できる。粘着層を形成するために、後述の半焼成ハイドロタルサイトや他の無機充填剤を含まない樹脂組成物を使用してもよい。 The adhesive layer can be formed using an adhesive. As the pressure-sensitive adhesive, known ones can be used. Preferred adhesives include, for example, KR-3704, X-40-3270-1, X-40-3323, X-40-3306, KR-100, KR-101-10, KR-130, KR-3700, KR-3701, X-40-3327, X-40-3240, X-40-3291-1 (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSR1512, TSR1516, YR3340, YR3286, PSA610-SM, XR37-B9024, XR37 -Silicone adhesives such as B6722 (all manufactured by Momentive Performance Materials), BUTYL065, BUTYL268, BUTYL365, CHLOROBUTYL1066, BROMOBUTYL2222, BROMOBUTYL2244, BROMOBUTYL2244, BROMOBUTYL2244, BROMOBUTYL2244, Butyl rubber adhesives such as -3 (all manufactured by Rankses), olefin elastomers such as tough selenium X1102, X1104, X1105, X1107 (all manufactured by Sumitomo Chemical Corporation), Arontack S-1511X, S-1511 modified, S- 3403, S-3452YKF, S-1601, S-1605 (all manufactured by Toagosei Co., Ltd.), Fine Tack CT-5020, CT-5030, SPS-900-LV, SPS-945NT, SPS-1040NT-25, CT- 3088, CT-3850, CT-6030 (all manufactured by DIC), SK Dyne 1501BS4, RE-4, RE-339 (all manufactured by Soken Kagaku Co., Ltd.), Clarity LA3320, LA2330, LA2250, LA2270, LA4285 (all manufactured by Soken Kagaku Co., Ltd.) An acrylic adhesive such as (manufactured by Kuraray Co., Ltd.) can be mentioned. Further, a resin composition prepared by appropriately adding an alicyclic saturated hydrocarbon resin to various base polymers can also be used for forming an adhesive layer. Examples of the base polymer include olefin elastomers such as tough selenium X1102, X1104, X1105, and X1107 (all manufactured by Sumitomo Chemical Co., Ltd.), Septon 1020, 2002, 2004, 2005, 2006, 2063, 2104, 4033, 4044, 4055, Examples thereof include styrene-based thermoplastic elastomers such as 4077 and 4099 (both manufactured by Kuraray Co., Ltd.). Further, a resin composition containing an olefin-based resin described later can also be used to form an adhesive layer. In order to form the adhesive layer, a resin composition containing no semi-baked hydrotalcite or other inorganic filler described later may be used.
 粘着層は、例えば、第2シートまたは第3シートに液状の粘着剤を塗布および乾燥することで形成することができる。また、粘着層の形成には、粘着剤を溶媒に溶かして得られた粘着剤ワニスを使用してもよい。 The adhesive layer can be formed, for example, by applying a liquid adhesive to the second sheet or the third sheet and drying it. Further, a pressure-sensitive adhesive varnish obtained by dissolving a pressure-sensitive adhesive in a solvent may be used for forming the pressure-sensitive adhesive layer.
 本発明において樹脂組成物層に特に限定は無く、公知の樹脂組成物を使用して樹脂組成物層を形成することができる。有機EL素子等を良好に封止するために、樹脂組成物層は、オレフィン系樹脂および/またはエポキシ樹脂を含んでいることが好ましい。 In the present invention, the resin composition layer is not particularly limited, and a known resin composition can be used to form the resin composition layer. In order to satisfactorily seal the organic EL element and the like, the resin composition layer preferably contains an olefin resin and / or an epoxy resin.
 オレフィン系樹脂は、1種のみを使用してもよく、2種以上を使用してもよい。オレフィン系樹脂としては、オレフィンモノマー由来の骨格を有するものであれば特に限定されない。オレフィン系樹脂としては、エチレン系樹脂、プロピレン系樹脂、ブテン系樹脂、イソブチレン系樹脂が好ましい。これらオレフィン系樹脂は、単独重合体でもよく、ランダム共重合体、ブロック共重合体等の共重合体でもよい。共重合体としては、2種以上のオレフィンの共重合体、およびオレフィンと非共役ジエン、スチレン等のオレフィン以外のモノマーとの共重合体が挙げられる。好ましい共重合体の例として、エチレン-非共役ジエン共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン共重合体、プロピレン-ブテン共重合体、プロピレン-ブテン-非共役ジエン共重合体、スチレン-イソブチレン共重合体、スチレン-イソブチレン-スチレン共重合体等が挙げられる。オレフィン系樹脂としては、例えば、イソブチレン変性樹脂、スチレン-イソブチレン変性樹脂、変性プロピレン-ブテン樹脂等が好ましく用いられる。 Only one type of olefin resin may be used, or two or more types may be used. The olefin resin is not particularly limited as long as it has a skeleton derived from an olefin monomer. As the olefin-based resin, an ethylene-based resin, a propylene-based resin, a butene-based resin, and an isobutylene-based resin are preferable. These olefin-based resins may be homopolymers, or copolymers such as random copolymers and block copolymers. Examples of the copolymer include a copolymer of two or more kinds of olefins and a copolymer of an olefin and a monomer other than the olefin such as a non-conjugated diene or styrene. Examples of preferred copolymers are ethylene-non-conjugated diene copolymer, ethylene-propylene copolymer, ethylene-propylene-non-conjugated diene copolymer, ethylene-butene copolymer, propylene-butene copolymer, propylene. -Butene-non-conjugated diene copolymer, styrene-isobutylene copolymer, styrene-isobutylene-styrene copolymer and the like can be mentioned. As the olefin-based resin, for example, isobutylene-modified resin, styrene-isobutylene-modified resin, modified propylene-butene resin and the like are preferably used.
 オレフィン系樹脂は、接着性等の優れた物性を付与する観点から、好ましくは酸無水物基(即ち、カルボニルオキシカルボニル基(-CO-O-CO-))を有するオレフィン系樹脂およびエポキシ基を有するオレフィン系樹脂からなる群から選ばれる少なくとも一つを含み、より好ましくは酸無水物基を有するオレフィン系樹脂およびエポキシ基を有するオレフィン系樹脂を含む。 The olefin resin preferably contains an olefin resin having an acid anhydride group (that is, a carbonyloxycarbonyl group (-CO-O-CO-)) and an epoxy group from the viewpoint of imparting excellent physical properties such as adhesiveness. It contains at least one selected from the group consisting of olefin resins having an olefin resin, and more preferably contains an olefin resin having an acid anhydride group and an olefin resin having an epoxy group.
 酸無水物基としては、例えば、無水コハク酸に由来する基、無水マレイン酸に由来する基、無水グルタル酸に由来する基等が挙げられる。酸無水物基を有するオレフィン系樹脂は、例えば、酸無水物基を有する不飽和化合物で、オレフィン系樹脂をラジカル反応条件下にてグラフト変性することで得られる。また、酸無水物基を有する不飽和化合物を、オレフィン等とともにラジカル共重合するようにしてもよい。同様に、エポキシ基を有するオレフィン系樹脂は、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、アリルグリシジルエーテル等のエポキシ基を有する不飽和化合物で、オレフィン系樹脂をラジカル反応条件下にてグラフト変性することで得られる。また、エポキシ基を有する不飽和化合物を、オレフィン等とともにラジカル共重合するようにしてもよい。 Examples of the acid anhydride group include a group derived from succinic anhydride, a group derived from maleic anhydride, a group derived from glutaric anhydride, and the like. The olefin resin having an acid anhydride group is, for example, an unsaturated compound having an acid anhydride group, and is obtained by graft-modifying the olefin resin under radical reaction conditions. Further, an unsaturated compound having an acid anhydride group may be radically copolymerized together with an olefin or the like. Similarly, the olefin resin having an epoxy group is an unsaturated compound having an epoxy group such as glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether, and allyl glycidyl ether, and the olefin resin is subjected to radical reaction conditions. It is obtained by graft modification with. Further, an unsaturated compound having an epoxy group may be radically copolymerized together with an olefin or the like.
 酸無水物基を有するオレフィン系樹脂中の酸無水物基の濃度は、0.05~10mmol/gが好ましく、0.1~5mmol/gがより好ましい。酸無水物基の濃度はJIS K 2501の記載に従い、樹脂1g中に存在する酸を中和するのに必要な水酸化カリウムのmg数として定義される酸価の値より得られる。また、オレフィン系樹脂中の酸無水物基を有するオレフィン系樹脂の量は、好ましくは0~70質量%、より好ましくは10~50質量%である。 The concentration of the acid anhydride group in the olefin resin having an acid anhydride group is preferably 0.05 to 10 mmol / g, more preferably 0.1 to 5 mmol / g. The concentration of the acid anhydride group is obtained from the value of the acid value defined as the number of mg of potassium hydroxide required to neutralize the acid present in 1 g of the resin according to the description of JIS K2501. The amount of the olefin resin having an acid anhydride group in the olefin resin is preferably 0 to 70% by mass, more preferably 10 to 50% by mass.
 エポキシ基を有するオレフィン系樹脂中のエポキシ基の濃度は、0.05~10mmol/gが好ましく、0.1~5mmol/gがより好ましい。エポキシ基濃度はJIS K 7236-1995に基づいて得られるエポキシ当量から求められる。また、オレフィン系樹脂中のエポキシ基を有するオレフィン系樹脂の量は、好ましくは0~70質量%、より好ましくは10~50質量%である。 The concentration of the epoxy group in the olefin resin having an epoxy group is preferably 0.05 to 10 mmol / g, more preferably 0.1 to 5 mmol / g. The epoxy group concentration is determined from the epoxy equivalent obtained based on JIS K 7236-1995. The amount of the olefin resin having an epoxy group in the olefin resin is preferably 0 to 70% by mass, more preferably 10 to 50% by mass.
 オレフィン系樹脂は、防湿性等の優れた物性を付与する観点から、酸無水物基を有するオレフィン系樹脂およびエポキシ基を有するオレフィン系樹脂の両方を含むことが好ましい。このようなオレフィン系樹脂は、酸無水物基とエポキシ基を加熱により反応させ架橋構造を形成し、防湿性等に優れた封止層(樹脂組成物層)を形成することができる。架橋構造形成は封止後に行うこともできるが、例えば有機EL素子等、封止対象が熱に弱いものである場合、封止用シートを製造する際に架橋構造を形成しておくのが望ましい。酸無水物基を有するオレフィン系樹脂とエポキシ基を有するオレフィン系樹脂の割合は適切な架橋構造が形成できれば特に限定されないが、エポキシ基と酸無水物基とのモル比(エポキシ基:酸無水物基)は、好ましくは100:10~100:200、より好ましくは100:50~100:150、特に好ましくは100:90~100:110である。 The olefin resin preferably contains both an olefin resin having an acid anhydride group and an olefin resin having an epoxy group from the viewpoint of imparting excellent physical properties such as moisture resistance. In such an olefin resin, an acid anhydride group and an epoxy group are reacted by heating to form a crosslinked structure, and a sealing layer (resin composition layer) having excellent moisture resistance and the like can be formed. The crosslinked structure can be formed after sealing, but when the object to be sealed is heat-sensitive, such as an organic EL element, it is desirable to form the crosslinked structure when manufacturing the sealing sheet. .. The ratio of the olefin resin having an acid anhydride group to the olefin resin having an epoxy group is not particularly limited as long as an appropriate crosslinked structure can be formed, but the molar ratio of the epoxy group to the acid anhydride group (epoxide group: acid anhydride). The group) is preferably 100:10 to 100: 200, more preferably 100: 50 to 100: 150, and particularly preferably 100: 90 to 100: 110.
 オレフィン系樹脂の数平均分子量は、特に限定はされないが、樹脂組成物ワニスの良好な塗工性と樹脂組成物における他の成分との良好な相溶性をもたらすという観点から、1,000,000以下が好ましく、750,000以下がより好ましく、500,000以下がより一層好ましく、400,000以下がさらに好ましく、300,000以下がさらに一層好ましく、200,000以下が特に好ましく、150,000以下が最も好ましい。一方、樹脂組成物ワニスの塗工時のハジキを防止し、形成される樹脂組成物層の防湿性を発現させ、機械強度を向上させるという観点から、この数平均分子量は、1,000以上が好ましく、3,000以上がより好ましく、5,000以上がより一層好ましく、10,000以上がさらに好ましく、30,000以上がさらに一層好ましく、50,000以上が特に好ましい。なお、本発明における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定される。GPC法による数平均分子量は、具体的には、測定装置として島津製作所社製LC-9A/RID-6Aを、カラムとして昭和電工社製Shodex K-800P/K-804L/K-804Lを、移動相としてトルエン等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The number average molecular weight of the olefin resin is not particularly limited, but is 1,000,000 from the viewpoint of providing good coatability of the resin composition varnish and good compatibility with other components in the resin composition. The following is preferable, 750,000 or less is more preferable, 500,000 or less is further preferable, 400,000 or less is further preferable, 300,000 or less is further preferable, 200,000 or less is particularly preferable, and 150,000 or less. Is the most preferable. On the other hand, from the viewpoint of preventing repelling during coating of the resin composition varnish, exhibiting the moisture-proof property of the formed resin composition layer, and improving the mechanical strength, the number average molecular weight is 1,000 or more. Preferably, 3,000 or more is more preferable, 5,000 or more is further preferable, 10,000 or more is further preferable, 30,000 or more is further preferable, and 50,000 or more is particularly preferable. The number average molecular weight in the present invention is measured by gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the number average molecular weight by the GPC method is measured by moving Shimadzu LC-9A / RID-6A as a measuring device and Showa Denko Shodex K-800P / K-804L / K-804L as a column. It can be measured using toluene or the like as a phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.
 オレフィン系樹脂は、ワニスの増粘による流動性の低下を抑制する観点から非晶性であるのが好ましい。ここで、非晶性とは、オレフィン系樹脂が明確な融点を有しないことを意味し、例えば、オレフィン系樹脂のDSC(示差走査熱量測定)で融点を測定した場合に明確なピークが観察されないものを使用することができる。 The olefin resin is preferably amorphous from the viewpoint of suppressing a decrease in fluidity due to thickening of the varnish. Here, amorphous means that the olefin resin does not have a clear melting point, and for example, when the melting point is measured by DSC (differential scanning calorimetry) of the olefin resin, no clear peak is observed. You can use things.
 オレフィン系樹脂の量に特に限定はない。良好な塗工性等の観点から、オレフィン系樹脂を使用する場合、その量は、樹脂組成物層の全体あたり(即ち、樹脂組成物の不揮発分全体あたり)、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がより一層好ましく、60質量%以下がさらに好ましく、55質量%以下がさらに一層好ましく、50質量%以下が特に好ましい。一方、防湿性を向上させ、透明性も向上させるという観点から、オレフィン系樹脂の量は、樹脂組成物層の全体あたり(即ち、樹脂組成物の不揮発分全体)あたり、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がより一層好ましく、7質量%以上がさらに好ましく、10質量%以上がさらに一層好ましく、35質量%以上が特に好ましく、40質量%以上が最も好ましい。 There is no particular limitation on the amount of olefin resin. When an olefin resin is used from the viewpoint of good coatability and the like, the amount thereof is preferably 80% by mass or less per whole resin composition layer (that is, per whole non-volatile content of the resin composition), and is 75%. It is more preferably 0% by mass or less, further preferably 70% by mass or less, further preferably 60% by mass or less, further preferably 55% by mass or less, and particularly preferably 50% by mass or less. On the other hand, from the viewpoint of improving moisture resistance and transparency, the amount of the olefin resin is preferably 1% by mass or more per whole resin composition layer (that is, the whole non-volatile content of the resin composition). 3, 3% by mass or more is more preferable, 5% by mass or more is further preferable, 7% by mass or more is further preferable, 10% by mass or more is further preferable, 35% by mass or more is particularly preferable, and 40% by mass or more is most preferable. ..
 次に、オレフィン系樹脂の具体例を説明する。イソブチレン系樹脂の具体例としては、BASF社製「オパノールB100」(粘度平均分子量:1,110,000)、BASF社製「B50SF」(粘度平均分子量:400,000)が挙げられる。 Next, a specific example of the olefin resin will be described. Specific examples of the isobutylene resin include BASF's "Opanol B100" (viscosity average molecular weight: 1,110,000) and BASF's "B50SF" (viscosity average molecular weight: 400,000).
 ブテン系樹脂の具体例としては、ENEOS社(旧社名「JXTGエネルギー」)製「HV-1900」(ポリブテン、数平均分子量:2,900)、東邦化学工業社製「HV-300M」(無水マレイン酸変性液状ポリブテン(「HV-300」(数平均分子量:1,400)の変性品)、数平均分子量:2,100、酸無水物基を構成するカルボキシ基の数:3.2個/1分子、酸価:43.4mgKOH/g、酸無水物基濃度:0.77mmol/g)が挙げられる。 Specific examples of the butene resin include "HV-1900" (polybutene, number average molecular weight: 2,900) manufactured by ENEOS (former company name "JXTG Energy") and "HV-300M" (maleic anhydride) manufactured by Toho Chemical Industry Co., Ltd. Acid-modified liquid polybutene (modified product of "HV-300" (number average molecular weight: 1,400)), number average molecular weight: 2,100, number of carboxy groups constituting acid anhydride groups: 3.2 / 1 Molecule, acid value: 43.4 mgKOH / g, acid anhydride group concentration: 0.77 mmol / g).
 スチレン-イソブチレン共重合体の具体例としては、カネカ社製「SIBSTAR T102」(スチレン-イソブチレン-スチレンブロック共重合体、数平均分子量:100,000、スチレン含量:30質量%)、星光PMC社製「T-YP757B」(無水マレイン酸変性スチレン-イソブチレン-スチレンブロック共重合体、酸無水物基濃度:0.464mmol/g、数平均分子量:100,000)、星光PMC社製「T-YP766」(グリシジルメタクリレート変性スチレン-イソブチレン-スチレンブロック共重合体、エポキシ基濃度:0.638mmol/g、数平均分子量:100,000)、星光PMC社製「T-YP8920」(無水マレイン酸変性スチレン-イソブチレン-スチレン共重合体、酸無水物基濃度:0.464mmol/g、数平均分子量:35,800)、星光PMC社製「T-YP8930」(グリシジルメタクリレート変性スチレン-イソブチレン-スチレン共重合体、エポキシ基濃度:0.638mmol/g、数平均分子量:48,700)が挙げられる。 Specific examples of the styrene-isobutylene copolymer include "SIBSTAR T102" manufactured by Kaneka (styrene-isobutylene-styrene block copolymer, number average molecular weight: 100,000, styrene content: 30% by mass), manufactured by Seikou PMC. "T-YP757B" (maleic anhydride-modified styrene-isobutylene-styrene block copolymer, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 100,000), "T-YP766" manufactured by Seikou PMC. (Glysidyl methacrylate-modified styrene-isobutylene-styrene block copolymer, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 100,000), "T-YP8920" manufactured by Seikou PMC (maleic anhydride-modified styrene-isobutylene anhydride) -Styrene copolymer, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 35,800), "T-YP8930" manufactured by Seikou PMC (glycidyl methacrylate-modified styrene-isobutylene-styrene copolymer, epoxy Group concentration: 0.638 mmol / g, number average molecular weight: 48,700).
 エチレン系樹脂またはプロピレン系樹脂の具体例としては、三井化学社製「EPT X-3012P」(エチレン-プロピレン-5-エチリデン-2-ノルボルネン共重合体、三井化学社製「EPT1070」(エチレン-プロピレン-ジシクロペンタジエン共重合体)、三井化学社製「タフマーA4085」(エチレン-ブテン共重合体)が挙げられる。 Specific examples of the ethylene-based resin or the propylene-based resin include "EPT X-3012P" manufactured by Mitsui Chemicals, Inc. (ethylene-propylene-5-ethylidene-2-norbornene copolymer, "EPT1070" manufactured by Mitsui Chemicals, Ltd. (ethylene-propylene). -Dicyclopentadiene copolymer), "Toughmer A4085" (ethylene-butene copolymer) manufactured by Mitsui Chemicals, Inc. can be mentioned.
 エチレン-メチルメタクリレート共重合体の具体例としては、星光PMC社製「T-YP429」(無水マレイン酸変性エチレン-メチルメタクリレート共重合体(エチレン単位とメチルメタクリレート単位の合計100質量%あたりのメチルメタクリレート単位の量:32質量%、酸無水物基濃度:0.46mmol/g、数平均分子量:2,300)の20質量%トルエン溶液)、星光PMC社製「T-YP430」(無水マレイン酸変性エチレン-メチルメタクリレート共重合体、エチレン単位とメチルメタクリレート単位の合計100質量%あたりのメチルメタクリレート単位の量:32質量%、酸無水物基濃度:1.18mmol/g、数平均分子量:4,500)、星光PMC社製「T-YP431」(グリシジルメタクリレート変性エチレン-メチルメタクリレート共重合体(エポキシ基濃度:0.64mmol/g、数平均分子量:2,400)の20質量%トルエン溶液)、星光PMC社製「T-YP432」(グリシジルメタクリレート変性エチレン-メチルメタクリレート共重合体、エポキシ基濃度:1.63mmol/g、数平均分子量:3,100)が挙げられる。 As a specific example of the ethylene-methylmethacrylate copolymer, "T-YP429" manufactured by Seikou PMC (maleic anhydride-modified ethylene-methylmethacrylate copolymer (methylmethacrylate per 100% by mass in total of ethylene unit and methylmethacrylate unit)). Unit amount: 32% by mass, acid anhydride group concentration: 0.46 mmol / g, number average molecular weight: 2,300) 20% by mass toluene solution), Seikou PMC "T-YP430" (maleic anhydride modified) Ethylene-methylmethacrylate copolymer, amount of methylmethacrylate unit per 100% by mass of ethylene unit and methylmethacrylate unit: 32% by mass, acid anhydride group concentration: 1.18 mmol / g, number average molecular weight: 4,500 ), Starlight PMC "T-YP431" (20% by mass toluene solution of glycidyl methacrylate-modified ethylene-methylmethacrylate copolymer (epoxy group concentration: 0.64 mmol / g, number average molecular weight: 2,400)), Starlight Examples thereof include "T-YP432" manufactured by PMC (glycidyl methacrylate-modified ethylene-methyl methacrylate copolymer, epoxy group concentration: 1.63 mmol / g, number average molecular weight: 3,100).
 プロピレン-ブテン共重合体の具体例としては、星光PMC社製「T-YP341」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体(プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)の20質量%スワゾール溶液)、星光PMC社製「T-YP279」(無水マレイン酸変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:36質量%、酸無水物基濃度:0.464mmol/g、数平均分子量:35,000)、星光PMC社製「T-YP276」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体、プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:36質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:57,000)、星光PMC社製「T-YP312」(無水マレイン酸変性プロピレン-ブテンランダム共重合体(プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、酸無水物基濃度:0.464mmol/g、数平均分子量:60,900)の40質量%トルエン溶液)、星光PMC社製「T-YP313」(グリシジルメタクリレート変性プロピレン-ブテンランダム共重合体(プロピレン単位とブテン単位の合計100質量%あたりのブテン単位の量:29質量%、エポキシ基濃度:0.638mmol/g、数平均分子量:155,000)の20質量%トルエン溶液)が挙げられる。 As a specific example of the propylene-butene copolymer, "T-YP341" manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer (amount of butene units per 100% by mass of propylene units and butene units in total:): 29% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 155,000) 20% by mass swazole solution), Seikou PMC "T-YP279" (maleic anhydride-modified propylene-butene random copolymer) Amount of butene unit per 100% by mass of total of propylene unit and butene unit: 36% by mass, acid anhydride group concentration: 0.464 mmol / g, number average molecular weight: 35,000), Seikou PMC "T" -YP276 "(glycidyl methacrylate-modified propylene-butene random copolymer, amount of butene units per 100% by mass of propylene units and butene units in total: 36% by mass, epoxy group concentration: 0.638 mmol / g, number average molecular weight: 57,000), "T-YP312" manufactured by Seikou PMC (maleic anhydride-modified propylene-butene random copolymer (amount of butene units per 100% by mass of propylene units and butene units in total: 29% by mass, acid anhydride) 40% by mass toluene solution of material concentration: 0.464 mmol / g, number average molecular weight: 60,900), "T-YP313" manufactured by Seikou PMC (glycidyl methacrylate-modified propylene-butene random copolymer (with propylene unit) A 20% by mass toluene solution of the amount of butene units per 100% by mass of the total butene units: 29% by mass, the epoxy group concentration: 0.638 mmol / g, and the number average molecular weight: 155,000).
 オレフィン系樹脂がエポキシ基を有するオレフィン系樹脂を含む場合、エポキシ基と反応し得る、酸無水物基以外の官能基を有するオレフィン系樹脂を使用してもよい。前記官能基としては、例えば、水酸基、フェノール性水酸基、アミノ基、カルボキシ基等が挙げられる。 When the olefin resin contains an olefin resin having an epoxy group, an olefin resin having a functional group other than an acid anhydride group that can react with the epoxy group may be used. Examples of the functional group include a hydroxyl group, a phenolic hydroxyl group, an amino group, a carboxy group and the like.
 オレフィン系樹脂が酸無水物基を有するオレフィン系樹脂を含む場合、酸無水物基と反応し得る、エポキシ基以外の官能基を有するオレフィン系樹脂を使用してもよい。前記官能基としては、例えば、水酸基、1級または2級のアミノ基、チオール基、オキセタン基等が挙げられる。 When the olefin resin contains an olefin resin having an acid anhydride group, an olefin resin having a functional group other than the epoxy group that can react with the acid anhydride group may be used. Examples of the functional group include a hydroxyl group, a primary or secondary amino group, a thiol group, an oxetane group and the like.
 エポキシ樹脂は、平均して1分子当り2個以上のエポキシ基を有するものであれば、制限なく使用できる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のジグリシジルエーテル化物、およびアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物および水素添加物等が挙げられる。エポキシ樹脂は、1種のみを使用してもよく、2種以上を使用してもよい。 The epoxy resin can be used without limitation as long as it has two or more epoxy groups per molecule on average. Examples of the epoxy resin include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, and phosphorus. Epoxy resin, bisphenol S type epoxy resin, aromatic glycidyl amine type epoxy resin (for example, tetraglycidyl diaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyl toluidin, diglycidyl aniline, etc.), alicyclic epoxy resin, aliphatic Chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, epoxy resin with butadiene structure, diglycidyl etherified product of bisphenol, diglycidyl etherified product of naphthalene diol, diglycidyl etherified product of phenols Examples thereof include glycidyl etherified products, diglycidyl etherified products of alcohols, alkyl substituents, halides and hydrogenated products of these epoxy resins. Only one type of epoxy resin may be used, or two or more types may be used.
 エポキシ樹脂のエポキシ当量は、反応性等の観点から、好ましくは50~5,000、より好ましくは50~3,000、より好ましくは80~2,000、より好ましくは100~1,000、より好ましくは120~1,000、より好ましくは140~300である。なお、「エポキシ当量」とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K 7236に規定された方法に従って測定される。また、エポキシ樹脂の重量平均分子量は、好ましくは5,000以下である。 The epoxy equivalent of the epoxy resin is preferably 50 to 5,000, more preferably 50 to 3,000, more preferably 80 to 2,000, and more preferably 100 to 1,000, from the viewpoint of reactivity and the like. It is preferably 120 to 1,000, more preferably 140 to 300. The "epoxy equivalent" is the number of grams (g / eq) of the resin containing an epoxy group equivalent to 1 gram, and is measured according to the method specified in JIS K 7236. The weight average molecular weight of the epoxy resin is preferably 5,000 or less.
 エポキシ樹脂は、液状または固形状のいずれでもよく、液状エポキシ樹脂と固形状エポキシ樹脂の両方を用いてもよい。ここで、「液状」および「固形状」とは、常温(25℃)および常圧(1気圧)でのエポキシ樹脂の状態である。 The epoxy resin may be either liquid or solid, and both liquid epoxy resin and solid epoxy resin may be used. Here, "liquid" and "solid" are states of the epoxy resin at normal temperature (25 ° C.) and normal pressure (1 atm).
 エポキシ樹脂の量は特に制限はない。エポキシ樹脂を使用する場合、その量は、樹脂組成物層の全体あたり(即ち、樹脂組成物の不揮発分全体あたり)、20~80質量%が好ましく、30~70質量%がより好ましく、50~65質量%がさらに好ましい。 The amount of epoxy resin is not particularly limited. When an epoxy resin is used, the amount thereof is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and 50 to 50% by mass per whole resin composition layer (that is, per total non-volatile content of the resin composition). 65% by mass is more preferable.
 本発明の封止用シートの水分遮断性の観点から、樹脂組成物層は、好ましくは半焼成ハイドロタルサイトを含む。半焼成ハイドロタルサイトは、1種のみを使用してもよく、2種以上を使用してもよい。 From the viewpoint of moisture blocking property of the sealing sheet of the present invention, the resin composition layer preferably contains semi-baked hydrotalcite. As the semi-baked hydrotalcite, only one kind may be used, or two or more kinds may be used.
 ハイドロタルサイトは、未焼成ハイドロタルサイト、半焼成ハイドロタルサイト、および焼成ハイドロタルサイトに分類することができる。 Hydrotalcite can be classified into uncalcined hydrotalcite, semi-calcined hydrotalcite, and calcined hydrotalcite.
 未焼成ハイドロタルサイトは、例えば、天然ハイドロタルサイト(MgAl(OH)16CO・4HO)に代表されるような層状の結晶構造を有する金属水酸化物であり、例えば、基本骨格となる層[Mg1-XAl(OH)X+と中間層[(COX/2・mHO]X-からなる。本発明における未焼成ハイドロタルサイトは、合成ハイドロタルサイト等のハイドロタルサイト様化合物を含む概念である。ハイドロタルサイト様化合物としては、例えば、下記式(I)および下記式(II)で表されるものが挙げられる。 Unfired hydrotalcite is, for example, a metal hydroxide having a layered crystal structure typified by natural hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O), for example, It consists of a basic skeleton layer [Mg 1-X Al X (OH) 2 ] X + and an intermediate layer [(CO 3 ) X / 2 · mH 2 O] X− . The uncalcined hydrotalcite in the present invention is a concept including hydrotalcite-like compounds such as synthetic hydrotalcite. Examples of the hydrotalcite-like compound include those represented by the following formulas (I) and (II).
 [M2+ 1-x3+ (OH)x+・[(An-x/n・mHO]x-   (I)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、M3+はAl3+、Fe3+などの3価の金属イオンを表し、An-はCO 2-、Cl、NO などのn価のアニオンを表し、0<x<1であり、0≦m<1であり、nは正の数である。)
 式(I)中、M2+は、好ましくはMg2+であり、M3+は、好ましくはAl3+であり、An-は、好ましくはCO 2-である。
[M 2+ 1-x M 3+ x (OH) 2] x + · [(A n-) x / n · mH 2 O] x- (I)
(Wherein, M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, M 3+ represents a trivalent metal ion such as Al 3+, Fe 3+, A n- is CO 3 2-, Cl -, NO 3 - represents a n-valent anion, such as a 0 <x <1, a 0 ≦ m <1, n is a positive number).
Wherein (I), M 2+ is preferably Mg 2+, M 3+ is preferably Al 3+, A n-is preferably CO 3 2-.
 M2+ Al(OH)2x+6-nz(An-・mHO   (II)
(式中、M2+はMg2+、Zn2+などの2価の金属イオンを表し、An-はCO 2-、Cl、NO3-などのn価のアニオンを表し、xは2以上の正の数であり、zは2以下の正の数であり、mは正の数であり、nは正の数である。)
 式(II)中、M2+は、好ましくはMg2+であり、An-は、好ましくはCO 2-である。
M 2+ x Al 2 (OH) 2x + 6-nz (A n-) z · mH 2 O (II)
(Wherein, M 2+ is Mg 2+, a divalent metal ion such as Zn 2+, A n- is CO 3 2-, Cl -, represents an n-valent anion such as NO 3-, x is 2 or more Is a positive number, z is a positive number less than or equal to 2, m is a positive number, and n is a positive number.)
Wherein (II), M 2+ is preferably Mg 2+, A n-is preferably CO 3 2-.
 半焼成ハイドロタルサイトは、未焼成ハイドロタルサイトを焼成して得られる、層間水の量が減少または消失した層状の結晶構造を有する金属水酸化物をいう。「層間水」とは、組成式を用いて説明すれば、上述した未焼成の天然ハイドロタルサイトおよびハイドロタルサイト様化合物の組成式に記載の「HO」を指す。 Semi-calcined hydrotalcite refers to a metal hydroxide having a layered crystal structure in which the amount of interlayer water is reduced or eliminated, which is obtained by calcining uncalcined hydrotalcite. The term "interlayer water" refers to "H 2 O" described in the above-mentioned composition formulas of uncalcined natural hydrotalcite and hydrotalcite-like compounds, if it is described using a composition formula.
 一方、焼成ハイドロタルサイトは、未焼成ハイドロタルサイトまたは半焼成ハイドロタルサイトを焼成して得られ、層間水だけでなく、水酸基も縮合脱水によって消失した、アモルファス構造を有する金属酸化物をいう。 On the other hand, calcined hydrotalcite refers to a metal oxide having an amorphous structure obtained by calcining uncalcined hydrotalcite or semi-calcined hydrotalcite, in which not only interlayer water but also hydroxyl groups are eliminated by condensation dehydration.
 未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、飽和吸水率により区別することができる。半焼成ハイドロタルサイトの飽和吸水率は、1質量%以上20質量%未満である。一方、未焼成ハイドロタルサイトの飽和吸水率は、1質量%未満であり、焼成ハイドロタルサイトの飽和吸水率は、20質量%以上である。 Unfired hydrotalcite, semi-fired hydrotalcite and fired hydrotalcite can be distinguished by the saturated water absorption rate. The saturated water absorption rate of the semi-baked hydrotalcite is 1% by mass or more and less than 20% by mass. On the other hand, the saturated water absorption rate of uncalcined hydrotalcite is less than 1% by mass, and the saturated water absorption rate of calcined hydrotalcite is 20% by mass or more.
 本発明における「飽和吸水率」とは、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトまたは焼成ハイドロタルサイトを天秤にて1.5g量り取り、初期質量を測定した後、大気圧下、60℃、90%RH(相対湿度)に設定した小型環境試験器(エスペック社製SH-222)に200時間静置した場合の、初期質量に対する質量増加率を言い、下記式(i):
 飽和吸水率(質量%)
=100×(吸湿後の質量-初期質量)/初期質量   (i)
で求めることができる。
The "saturated water absorption rate" in the present invention means that 1.5 g of unfired hydrotalcite, semi-baked hydrotalcite or fired hydrotalcite is weighed with a balance, the initial mass is measured, and then the temperature is 60 ° C. under atmospheric pressure. , The mass increase rate with respect to the initial mass when left to stand for 200 hours in a small environmental tester (SH-222 manufactured by Espec Co., Ltd.) set to 90% RH (relative humidity).
Saturated water absorption rate (mass%)
= 100 × (mass after moisture absorption-initial mass) / initial mass (i)
Can be obtained at.
 半焼成ハイドロタルサイトの飽和吸水率は、好ましくは3質量%以上20質量%未満、より好ましくは5質量%以上20質量%未満である。 The saturated water absorption rate of the semi-baked hydrotalcite is preferably 3% by mass or more and less than 20% by mass, and more preferably 5% by mass or more and less than 20% by mass.
 また、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、熱重量分析で測定される熱重量減少率により区別することができる。半焼成ハイドロタルサイトの280℃における熱重量減少率は15質量%未満であり、かつその380℃における熱重量減少率は12質量%以上である。一方、未焼成ハイドロタルサイトの280℃における熱重量減少率は、15質量%以上であり、焼成ハイドロタルサイトの380℃における熱重量減少率は、12質量%未満である。 Further, uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the thermogravimetric reduction rate measured by thermogravimetric analysis. The thermogravimetric reduction rate of the semi-baked hydrotalcite at 280 ° C. is less than 15% by mass, and the thermogravimetric reduction rate at 380 ° C. is 12% by mass or more. On the other hand, the thermogravimetric reduction rate of uncalcined hydrotalcite at 280 ° C. is 15% by mass or more, and the thermogravimetric reduction rate of calcined hydrotalcite at 380 ° C. is less than 12% by mass.
 熱重量分析は、日立ハイテクサイエンス社製TG/DTA EXSTAR6300を用いて、アルミニウム製のサンプルパンにハイドロタルサイトを5mg秤量し、蓋をせずオープンの状態で、窒素流量200mL/分の雰囲気下、30℃から550℃まで昇温速度10℃/分の条件で行うことができる。熱重量減少率は、下記式(ii):
 熱重量減少率(質量%)
=100×(加熱前の質量-所定温度に達した時の質量)/加熱前の質量   (ii)
で求めることができる。
For thermogravimetric analysis, 5 mg of hydrotalcite was weighed in an aluminum sample pan using TG / DTA EXSTAR6300 manufactured by Hitachi High-Tech Science Co., Ltd., and the nitrogen flow rate was 200 mL / min in an open state without a lid. It can be carried out from 30 ° C. to 550 ° C. under the condition of a heating rate of 10 ° C./min. The thermogravimetric reduction rate is calculated by the following formula (ii):
Thermogravimetric reduction rate (mass%)
= 100 × (mass before heating-mass when a predetermined temperature is reached) / mass before heating (ii)
Can be obtained at.
 また、未焼成ハイドロタルサイト、半焼成ハイドロタルサイトおよび焼成ハイドロタルサイトは、粉末X線回折で測定されるピークおよび相対強度比により区別することができる。半焼成ハイドロタルサイトは、粉末X線回折により2θが8~18°付近に二つにスプリットしたピーク、または二つのピークの合成によりショルダーを有するピークを示し、低角側に現れるピークまたはショルダーの回折強度(=低角側回折強度)と、高角側に現れるピークまたはショルダーの回折強度(=高角側回折強度)の相対強度比(低角側回折強度/高角側回折強度)は、0.001~1,000である。一方、未焼成ハイドロタルサイトは8~18°付近で一つのピークしか有しないか、または低角側に現れるピークまたはショルダーと高角側に現れるピークまたはショルダーの回折強度の相対強度比が前述の範囲外となる。焼成ハイドロタルサイトは8°~18°の領域に特徴的ピークを有さず、43°に特徴的なピークを有する。粉末X線回折測定は、粉末X線回折装置(PANalytical社製、Empyrean)により、対陰極CuKα(1.5405Å)、電圧:45V、電流:40mA、サンプリング幅:0.0260°、走査速度:0.0657°/s、測定回折角範囲(2θ):5.0131~79.9711°の条件で行った。ピークサーチは、回折装置付属のソフトウエアのピークサーチ機能を利用し、「最小有意度:0.50、最小ピークチップ:0.01°、最大ピークチップ:1.00°、ピークベース幅:2.00°、方法:2次微分の最小値」の条件で行うことができる。 Further, uncalcined hydrotalcite, semi-calcined hydrotalcite and calcined hydrotalcite can be distinguished by the peak and relative intensity ratio measured by powder X-ray diffraction. Semi-baked hydrotalcite shows a peak in which 2θ is split into two in the vicinity of 8 to 18 ° by powder X-ray diffraction, or a peak with a shoulder due to the combination of the two peaks, and the peak or shoulder that appears on the low angle side. The relative intensity ratio (low-angle side diffraction intensity / high-angle side diffraction intensity) of the diffraction intensity (= low-angle side diffraction intensity) and the diffraction intensity of the peak or shoulder appearing on the high-angle side (= high-angle side diffraction intensity) is 0.001. ~ 1,000. On the other hand, uncalcined hydrotalcite has only one peak near 8 to 18 °, or the relative intensity ratio of the diffraction intensity of the peak or shoulder appearing on the low angle side and the peak or shoulder appearing on the high angle side is in the above range. Be outside. The calcined hydrotalcite does not have a characteristic peak in the region of 8 ° to 18 °, but has a characteristic peak in the region of 43 °. Powder X-ray diffraction measurement is performed by a powder X-ray diffractometer (PANalytical, Empyrean) with anti-cathode CuKα (1.5405 Å), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: 0. The measurement was performed under the conditions of .0657 ° / s and the measurement diffraction angle range (2θ): 5.0131 to 79.9711 °. The peak search uses the peak search function of the software attached to the diffractometer, and "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It can be performed under the condition of "0.00 °, method: minimum value of second derivative".
 半焼成ハイドロタルサイトのBET比表面積は、1~250m/gが好ましく、5~200m/gがより好ましい。半焼成ハイドロタルサイトのBET比表面積は、BET法に従って、比表面積測定装置(Macsorb HM Model 1210 マウンテック社製)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて算出することができる。 BET specific surface area of the semi-sintered hydrotalcite is preferably 1 ~ 250m 2 / g, more preferably 5 ~ 200m 2 / g. The BET specific surface area of semi-calcined hydrotalcite is calculated by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM Model 1210 Mountec) according to the BET method and using the BET multipoint method. Can be done.
 半焼成ハイドロタルサイトの粒子径は、1~1,000nmが好ましく、10~800nmがより好ましい。半焼成ハイドロタルサイトの粒子径は、レーザー回折散乱式粒度分布測定(JIS Z 8825)により粒度分布を体積基準で作成したときの該粒度分布のメディアン径である。 The particle size of the semi-baked hydrotalcite is preferably 1 to 1,000 nm, more preferably 10 to 800 nm. The particle size of the semi-baked hydrotalcite is the median size of the particle size distribution when the particle size distribution is prepared on a volume basis by laser diffraction scattering type particle size distribution measurement (JIS Z8825).
 半焼成ハイドロタルサイトは、表面処理剤で表面処理したものを用いることができる。表面処理に使用する表面処理剤としては、例えば、高級脂肪酸、アルキルシラン類、シランカップリング剤等を使用することができ、なかでも、高級脂肪酸、アルキルシラン類が好適である。表面処理剤は、1種または2種以上を使用できる。 As the semi-baked hydrotalcite, one that has been surface-treated with a surface treatment agent can be used. As the surface treatment agent used for the surface treatment, for example, higher fatty acids, alkylsilanes, silane coupling agents and the like can be used, and among them, higher fatty acids and alkylsilanes are preferable. As the surface treatment agent, one kind or two or more kinds can be used.
 高級脂肪酸としては、例えば、ステアリン酸、モンタン酸、ミリスチン酸、パルミチン酸などの炭素数14以上の高級脂肪酸が挙げられ、中でも、ステアリン酸が好ましい。これらは、1種または2種以上を使用できる。 Examples of higher fatty acids include higher fatty acids having 14 or more carbon atoms such as stearic acid, montanic acid, myristic acid, and palmitic acid, and stearic acid is preferable. These can be used alone or in combination of two or more.
 アルキルシラン類としては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、ジメチルジメトキシシラン、オクチルトリエトキシシラン、n-オクタデシルジメチル(3-(トリメトキシシリル)プロピル)アンモニウムクロライド等が挙げられる。これら、1種または2種以上を使用できる。 Examples of alkylsilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltrimethoxysilane, and n-octadecyl. Examples thereof include dimethyl (3- (trimethoxysilyl) propyl) ammonium chloride. One or more of these can be used.
 シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシランおよび11-メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランおよびN-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3-アクリルオキシプロピルトリメトキシシランおよび3-メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤;ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。これらは、1種または2種以上を使用できる。 Examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy. Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane 3-Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N- (2) Amino-based silane coupling agents such as -aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane; ureido-based silanes such as 3-ureidopropyltriethoxysilane Coupling agents, vinyl-based silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldiethoxysilane; styryl-based silane coupling agents such as p-styryltrimethoxysilane; 3-acrylicoxypropyltrimethoxy Acrylate-based silane coupling agents such as silane and 3-methacryloxypropyltrimethoxysilane; isocyanate-based silane coupling agents such as 3-isocyanoxidetrimethoxysilane; bis (triethoxysilylpropyl) disulfide, bis (triethoxysilylpropyl) ) A sulfide-based silane coupling agent such as tetrasulfide; phenyltrimethoxysilane, methacryloxypropyltrimethoxysilane, imidazole silane, triazinesilane and the like can be mentioned. These can be used alone or in combination of two or more.
 半焼成ハイドロタルサイトの表面処理は、例えば、未処理の半焼成ハイドロタルサイトを混合機で常温にて攪拌分散させながら、表面処理剤を添加噴霧して5~60分間攪拌することによって行なうことができる。混合機としては、公知の混合機を使用することができ、例えば、Vブレンダー、リボンブレンダー、バブルコーンブレンダー等のブレンダー、ヘンシェルミキサーおよびコンクリートミキサー等のミキサー、ボールミル、カッターミル等が挙げられる。又、ボールミルなどで半焼成ハイドロタルサイトを粉砕する際に、前記の高級脂肪酸、アルキルシラン類またはシランカップリング剤を添加し、表面処理を行うこともできる。表面処理剤の使用量は、半焼成ハイドロタルサイトの種類または表面処理剤の種類等によっても異なるが、表面処理されていない半焼成ハイドロタルサイト100質量部に対して1~10質量部が好ましい。本発明においては、表面処理された半焼成ハイドロタルサイトも、「半焼成ハイドロタルサイト」に包含される。 The surface treatment of the semi-baked hydrotalcite is performed, for example, by stirring and dispersing the untreated semi-baked hydrotalcite at room temperature with a mixer, adding and spraying a surface treatment agent, and stirring for 5 to 60 minutes. Can be done. As the mixer, a known mixer can be used, and examples thereof include blenders such as V blenders, ribbon blenders and bubble cone blenders, mixers such as Henshell mixers and concrete mixers, ball mills and cutter mills. Further, when the semi-baked hydrotalcite is pulverized with a ball mill or the like, the above-mentioned higher fatty acid, alkylsilanes or silane coupling agent can be added to perform surface treatment. The amount of the surface treatment agent used varies depending on the type of semi-fired hydrotalcite, the type of surface treatment agent, etc., but is preferably 1 to 10 parts by mass with respect to 100 parts by mass of unsurface-treated semi-fired hydrotalcite. .. In the present invention, the surface-treated semi-firing hydrotalcite is also included in the "semi-firing hydrotalcite".
 半焼成ハイドロタルサイトの量に特に限定はない。封止用シートの水分遮断性の観点から、半焼成ハイドロタルサイトを使用する場合、その量は、樹脂組成物層の全体あたり(即ち、樹脂組成物の不揮発分全体あたり)、3~50質量%が好ましく、5~45質量%がより好ましく、10~40質量%がさらに好ましい。 There is no particular limitation on the amount of semi-baked hydrotalcite. When semi-baked hydrotalcite is used from the viewpoint of moisture blocking property of the sealing sheet, the amount thereof is 3 to 50 mass per whole resin composition layer (that is, per total non-volatile content of the resin composition). % Is preferable, 5 to 45% by mass is more preferable, and 10 to 40% by mass is further preferable.
 半焼成ハイドロタルサイトとしては、例えば「DHT-4C」(協和化学工業社製、粒子径:400nm)、「DHT-4A-2」(協和化学工業社製、粒子径:400nm)等が挙げられる。一方、焼成ハイドロタルサイトとしては、例えば「KW-2200」(協和化学工業社製、粒子径:400nm)等が挙げられ、未焼成ハイドロタルサイトとしては、例えば「DHT-4A」(協和化学工業社製、粒子径:400nm)、「STABIACE HT-1、HT-7、HT-P」(堺化学工業社製)等が挙げられる。 Examples of the semi-baked hydrotalcite include "DHT-4C" (manufactured by Kyowa Chemical Industry Co., Ltd., particle size: 400 nm), "DHT-4A-2" (manufactured by Kyowa Chemical Industry Co., Ltd., particle size: 400 nm) and the like. .. On the other hand, examples of the fired hydrotalsite include "KW-2200" (manufactured by Kyowa Chemical Industry Co., Ltd., particle size: 400 nm), and examples of the unfired hydrotalsite include "DHT-4A" (Kyowa Chemical Industry). Manufactured by the company, particle size: 400 nm), "STABIACE HT-1, HT-7, HT-P" (manufactured by Sakai Chemical Industry Co., Ltd.) and the like.
 樹脂組成物層は、上述したオレフィン系樹脂、エポキシ樹脂および半焼成ハイドロタルサイトとは異なる他の成分を含んでいてもよい。他の成分に制限はなく、封止用の樹脂組成物の成分として公知のものを使用することができる。他の成分としては、例えば、硬化剤、硬化促進剤、オレフィン系樹脂およびエポキシ樹脂とは異なる他の樹脂、半焼成ハイドロタルサイトとは異なる他の無機充填剤、シランカップリング剤等が挙げられる。これらの他の成分は、いずれも、1種のみを使用してもよく、2種以上を使用してもよい。 The resin composition layer may contain other components different from the above-mentioned olefin resin, epoxy resin and semi-calcined hydrotalcite. The other components are not limited, and known components of the resin composition for sealing can be used. Examples of other components include curing agents, curing accelerators, other resins different from olefin resins and epoxy resins, other inorganic fillers different from semi-calcined hydrotalcites, silane coupling agents and the like. .. As for any of these other components, only one kind may be used, or two or more kinds may be used.
 エポキシ基を有するオレフィン系樹脂および/またはエポキシ樹脂を使用する場合、その硬化のために、硬化剤を使用するか、または硬化剤および硬化促進剤を併用することが好ましい。 When an olefin resin and / or an epoxy resin having an epoxy group is used, it is preferable to use a curing agent or a curing agent and a curing accelerator in combination for curing the epoxy resin.
 本発明において、樹脂組成物層は、オレフィン系樹脂およびエポキシ樹脂とは異なる他の樹脂を含んでいてもよい。他の樹脂としては、例えば、粘着付与樹脂、オレフィン系樹脂とは異なる熱可塑性樹脂(例えば、フェノキシ樹脂等)が挙げられる。フェノキシ樹脂は、エポキシ樹脂と同様に、エポキシ基を有し得る。フェノキシ樹脂のエポキシ当量は、好ましくは5,000超16,000以下、より好ましくは10,000以上16,000以下である。 In the present invention, the resin composition layer may contain an olefin resin and another resin different from the epoxy resin. Examples of other resins include tackifier resins and thermoplastic resins different from olefin resins (for example, phenoxy resins). The phenoxy resin, like the epoxy resin, may have an epoxy group. The epoxy equivalent of the phenoxy resin is preferably more than 5,000 and 16,000 or less, more preferably 10,000 or more and 16,000 or less.
 本発明において、樹脂組成物層は、半焼成ハイドロタルサイトとは異なる他の無機充填剤を含んでいてもよい。他の無機充填剤としては、例えば、未焼成ハイドロタルサイト、焼成ハイドロタルサイト、タルク、シリカ、アルミナ、硫酸バリウム、クレー、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。他の無機充填剤の量は、樹脂組成物層の全体あたり(即ち、樹脂組成物の不揮発分全体あたり)、好ましくは0~12質量%、より好ましくは0~10質量%、さらに好ましくは0~8質量%である。 In the present invention, the resin composition layer may contain another inorganic filler different from the semi-calcined hydrotalcite. Other inorganic fillers include, for example, unfired hydrotalcite, fired hydrotalcite, talcite, silica, alumina, barium sulfate, clay, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, boron nitride. , Aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate and the like. The amount of the other inorganic filler is preferably 0 to 12% by mass, more preferably 0 to 10% by mass, still more preferably 0, per entire layer of the resin composition (ie, per total non-volatile content of the resin composition). ~ 8% by mass.
 樹脂組成物層の厚さは、好ましくは5~75μm、より好ましくは5~50μm、さらに好ましくは5~30μmである。 The thickness of the resin composition layer is preferably 5 to 75 μm, more preferably 5 to 50 μm, and even more preferably 5 to 30 μm.
 本発明の封止用シートは、例えば、第1シートに樹脂組成物ワニスを塗布および乾燥して、樹脂組成物層を形成し、得られた樹脂組成物層に第2シートおよび第3シートを順次積層することによって製造することができる。 In the sealing sheet of the present invention, for example, a resin composition varnish is applied to the first sheet and dried to form a resin composition layer, and the second sheet and the third sheet are applied to the obtained resin composition layer. It can be manufactured by sequentially laminating.
 樹脂組成物ワニスは、樹脂組成物の成分と有機溶剤とを、混練ローラーや回転ミキサーなどを用いて混合することで調製される。樹脂組成物ワニスの不揮発分は、好ましくは20~80質量%、より好ましくは30~70質量%である。 The resin composition varnish is prepared by mixing the components of the resin composition and the organic solvent using a kneading roller, a rotary mixer, or the like. The non-volatile content of the resin composition varnish is preferably 20 to 80% by mass, more preferably 30 to 70% by mass.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類;セロソルブ、ブチルカルビトール等のカルビトール類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等;ソルベントナフサ等の芳香族系混合溶剤を挙げることができる。また、芳香族系混合溶剤の商品として、例えば、「スワゾール」(丸善石油社製)、「イプゾール」(出光興産社製)が挙げられる。有機溶剤は、1種のみを使用してもよく、2種以上を使用してもよい。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone; acetate esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate; cellosolve, butyl carbitol and the like. Carbitols; aromatic hydrocarbons such as toluene and xylene; dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like; aromatic mixed solvents such as solvent naphtha. Examples of aromatic mixed solvent products include "Swazole" (manufactured by Maruzen Oil Co., Ltd.) and "Ipsol" (manufactured by Idemitsu Kosan Co., Ltd.). Only one kind of organic solvent may be used, or two or more kinds may be used.
 樹脂組成物層を形成するための乾燥条件に特に制限はないが、乾燥温度は、例えば80~130℃であり、乾燥時間は、例えば3~60分である。樹脂組成物層がエポキシ樹脂を含む場合、乾燥温度は、好ましくは80~100℃であり、乾燥時間は、好ましくは5~90分である。樹脂組成物層が、エポキシ樹脂を含まず、オレフィン系樹脂を含む場合、乾燥温度は、好ましくは80~130℃であり、乾燥時間は、好ましくは15~60分である。 The drying conditions for forming the resin composition layer are not particularly limited, but the drying temperature is, for example, 80 to 130 ° C., and the drying time is, for example, 3 to 60 minutes. When the resin composition layer contains an epoxy resin, the drying temperature is preferably 80 to 100 ° C., and the drying time is preferably 5 to 90 minutes. When the resin composition layer does not contain an epoxy resin but contains an olefin resin, the drying temperature is preferably 80 to 130 ° C., and the drying time is preferably 15 to 60 minutes.
 第1シート上に樹脂組成物層を形成した後、得られた樹脂組成物層に第2シートおよび第3シートを順次積層することによって、本発明の封止用シートを製造することができる。積層のために、公知の機器、例えば、ロールラミネーター、プレス機、真空加圧式ラミネーター等を使用することができる。 After forming the resin composition layer on the first sheet, the sealing sheet of the present invention can be produced by sequentially laminating the second sheet and the third sheet on the obtained resin composition layer. For laminating, known equipment such as roll laminators, presses, vacuum pressurized laminators and the like can be used.
 本発明の封止用シートは、水分に弱い電子デバイスの封止に用いられるシートとして有用である。電子デバイスは、好ましくは有機ELデバイス、量子ドットデバイスまたは太陽電池である。 The sealing sheet of the present invention is useful as a sheet used for sealing an electronic device that is sensitive to moisture. The electronic device is preferably an organic EL device, a quantum dot device or a solar cell.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and is appropriately modified to the extent that it can be adapted to the above and the following objectives. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.
<シート>
 以下の実施例および比較例で使用した各シート(各防湿性シートおよび各離型層付きポリエチレンテレフタレート(PET)フィルム)について、後述する方法で測定した水蒸気透過度(WVTR)等を下記表1に記載する。
<Sheet>
Table 1 below shows the water vapor permeability (WVTR) and the like measured by the method described later for each sheet (each moisture-proof sheet and each polyethylene terephthalate (PET) film with a release layer) used in the following Examples and Comparative Examples. Describe.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載のシートA(バリア層付きPET)は、PETフィルムの片面にバリア層(シリカ蒸着膜)が設けられた、バリア層/PETフィルムとの積層構造を有する防湿性シートであり、シートB(シリコーン離型層付きPET1)およびシートC(シリコーン離型層付きPET2)は、いずれも、PETフィルムの片面にシリコーン離型層が設けられた、シリコーン離型層/PETフィルムとの積層構造を有するシートであり、シートE(シリコーン離型層付きPET3)は、PETフィルムの両面にシリコーン離型層が設けられた、シリコーン離型層/PETフィルム/シリコーン離型層との積層構造を有するシートである。 The sheet A (PET with a barrier layer) shown in Table 1 is a moisture-proof sheet having a laminated structure with a barrier layer / PET film, in which a barrier layer (silica vapor-deposited film) is provided on one side of the PET film. Both B (PET1 with silicone release layer) and Sheet C (PET2 with silicone release layer) have a laminated structure with a silicone release layer / PET film in which a silicone release layer is provided on one side of the PET film. Sheet E (PET3 with silicone release layer) has a laminated structure with a silicone release layer / PET film / silicone release layer in which silicone release layers are provided on both sides of the PET film. It is a sheet.
 実施例1および2並びに比較例1および2における第1シートとして、以下の防湿性シートを使用した。
シートF:シートB(シリコーン離型層付きPET1)の離型層の反対側の面とシートAのバリア層の面とを接着剤で貼り合わせて得られた、PETフィルム/バリア層/接着剤層/PETフィルム/シリコーン離型層の積層構造を有する防湿性シート(防湿性シート全体の厚さ:50μm、防湿性シート全体の水蒸気透過度(WVTR):0.06(g/m/24hr))
The following moisture-proof sheets were used as the first sheets in Examples 1 and 2 and Comparative Examples 1 and 2.
Sheet F: PET film / barrier layer / adhesive obtained by bonding the surface of sheet B (PET1 with a silicone release layer) on the opposite side of the release layer and the surface of the barrier layer of sheet A with an adhesive. moisture-proof sheet (moisture-proof sheet total thickness having a laminated structure of the layer / PET film / silicone release layer: 50 [mu] m, the moisture-proof sheet overall water vapor transmission rate (WVTR): 0.06 (g / m 2 / 24hr )))
 比較例1における第2シートとして、以下の防湿性シートを使用した。
シートG:シートC(シリコーン離型層付きPET2)の離型層の反対側の面とシートAのバリア層の面とを接着剤で貼り合わせて得られた、PETフィルム/バリア層/接着剤層/PETフィルム/シリコーン離型層の積層構造を有する防湿性シート(防湿性シート全体の厚さ:37μm、防湿性シート全体の水蒸気透過度(WVTR):0.12((g/m/24hr))
The following moisture-proof sheet was used as the second sheet in Comparative Example 1.
Sheet G: PET film / barrier layer / adhesive obtained by bonding the surface of sheet C (PET2 with a silicone release layer) on the opposite side of the release layer and the surface of the barrier layer of sheet A with an adhesive. Moisture-proof sheet having a laminated structure of layer / PET film / silicone release layer (thickness of the entire moisture-proof sheet: 37 μm, water vapor permeability (WVTR) of the entire moisture-proof sheet: 0.12 ((g / m 2 /) 24hr)))
 実施例1および2における第3シートを製造するために、以下の防湿性シートを使用した。
シートH:シートD(PETフィルム)とシートAのバリア層の面とを接着剤で貼り合わせて得られた、PETフィルム/バリア層/接着剤層/PETフィルムの積層構造を有する防湿性シート(防湿性シート全体の厚さ:37μm、防湿性シート全体の水蒸気透過度(WVTR):0.12((g/m/24hr))
The following moisture-proof sheets were used to produce the third sheets of Examples 1 and 2.
Sheet H: A moisture-proof sheet having a laminated structure of PET film / barrier layer / adhesive layer / PET film, which is obtained by bonding the surface of sheet D (PET film) and the surface of the barrier layer of sheet A with an adhesive. moisture-proof sheet total thickness: 37 [mu] m, the moisture-proof sheet overall water vapor transmission rate (WVTR): 0.12 ((g / m 2 / 24hr))
 実施例1および2並びに比較例1および2において、第2シートが電子デバイスの封止層形成時に剥離されることを前提とした封止用シートを作製した。また、実施例1および2において、第3シートが樹脂組成物層の乾燥前に剥離されることを前提とした封止用シートを作製した。 In Examples 1 and 2 and Comparative Examples 1 and 2, sealing sheets were prepared on the premise that the second sheet was peeled off when the sealing layer of the electronic device was formed. Further, in Examples 1 and 2, sealing sheets were prepared on the premise that the third sheet was peeled off before the resin composition layer was dried.
 実施例1および2の封止用シートにおける第3シートとして、それぞれ、以下の防湿性シートを使用した。
粘着層A付きシートH:シートHのバリア層を積層したPETフィルムの反対側の面にシリコーン系粘着層(5μm)が設けられた、シリコーン系粘着層/PETフィルム/バリア層/接着剤層/PETフィルムの積層構造を有する防湿性シート(防湿性シート全体の厚さ:42μm)
粘着層B付きシートH:シートHのバリア層を積層したPETフィルムの反対側の面にブチルゴム系粘着層(5μm)が設けられた、ブチルゴム系粘着層/PETフィルム/バリア層/接着剤層/PETフィルムとの積層構造を有する防湿性シート(防湿性シート全体の厚さ:42μm)
The following moisture-proof sheets were used as the third sheets in the sealing sheets of Examples 1 and 2, respectively.
Sheet H with adhesive layer A: Silicone adhesive layer / PET film / barrier layer / adhesive layer / with a silicone adhesive layer (5 μm) provided on the opposite surface of the PET film on which the barrier layer of the sheet H is laminated. Moisture-proof sheet having a laminated structure of PET film (total thickness of moisture-proof sheet: 42 μm)
Sheet H with adhesive layer B: Butyl rubber adhesive layer / PET film / barrier layer / adhesive layer / in which a butyl rubber adhesive layer (5 μm) is provided on the opposite surface of the PET film on which the barrier layer of the sheet H is laminated. Moisture-proof sheet having a laminated structure with PET film (total thickness of moisture-proof sheet: 42 μm)
 粘着層A付きシートHは、以下のようにして製造した。まず、シリコーン樹脂(信越化学工業社製「KR-3704」)100質量部をトルエン50質量部に溶解させた後、得られた溶液に架橋剤(信越化学工業社製「CAT-PL-50T」)0.5質量部を添加し、得られた混合物を高速回転ミキサーで均一に撹拌して、ワニスを得た。ワニスをシートHにダイコーターにて均一に塗布し、130℃1分間加熱することで微粘着材層A付きシートH(防湿性シート全体の厚さ:42μm)を得た。 The sheet H with the adhesive layer A was manufactured as follows. First, 100 parts by mass of a silicone resin (“KR-3704” manufactured by Shin-Etsu Chemical Co., Ltd.) is dissolved in 50 parts by mass of toluene, and then a cross-linking agent (“CAT-PL-50T” manufactured by Shin-Etsu Chemical Co., Ltd.” is added to the obtained solution. ) 0.5 parts by mass was added, and the obtained mixture was uniformly stirred with a high-speed rotary mixer to obtain a varnish. The varnish was uniformly applied to the sheet H with a die coater and heated at 130 ° C. for 1 minute to obtain a sheet H with a slightly adhesive layer A (thickness of the entire moisture-proof sheet: 42 μm).
 粘着層B付きシートHは、以下のようにして製造した。まず、ブチルゴム(日本ブチル社製「IIR065」)15質量部とトルエン85質量部の混合物を高速回転ミキサーで均一に撹拌して、ワニスを得た。ワニスをシートHにダイコーターにて均一に塗布し、130℃3分間加熱することで微粘着材層B付きシートH(防湿性シート全体の厚さ:42μm)を得た。 The sheet H with the adhesive layer B was manufactured as follows. First, a mixture of 15 parts by mass of butyl rubber (“IIR065” manufactured by Nippon Butyl Co., Ltd.) and 85 parts by mass of toluene was uniformly stirred with a high-speed rotary mixer to obtain a varnish. The varnish was uniformly applied to the sheet H with a die coater and heated at 130 ° C. for 3 minutes to obtain a sheet H with a slightly adhesive layer B (thickness of the entire moisture-proof sheet: 42 μm).
<樹脂組成物ワニスの製造>
製造例1:オレフィン系樹脂組成物ワニスの製造
 シクロヘキサン環含有飽和炭化水素樹脂(荒川化学社製「アルコンP125」)の60質量%スワゾール溶液130質量部に、無水マレイン酸変性液状ポリイソブチレン(東邦化学工業社製「HV-300M」)35質量部、ポリブテン(JXTGエネルギー社製「HV-1900」)60質量部、および市販の半焼成ハイドロタルサイト(BET比表面積:15m/g、平均粒子径:400nm)100質量部を3本ロールで分散させて、混合物を得た。得られた混合物に、グリシジルメタクリレート変性ポリプロピレン-ポリブテン共重合体の20質量%スワゾール溶液(星光PMC社製「T-YP341」)200質量部、硬化促進剤(2,4,6-トリス(ジメチルアミノメチル)フェノール)0.5質量部およびトルエン16質量部を配合し、得られた混合物を高速回転ミキサーで均一に分散して、オレフィン系樹脂組成物ワニスを得た。
<Manufacturing of resin composition varnish>
Production Example 1: Production of olefin resin composition varnish In 130 parts by mass of a 60 mass% swazole solution of a cyclohexane ring-containing saturated hydrocarbon resin (“Arcon P125” manufactured by Arakawa Chemical Co., Ltd.), maleic anhydride-modified liquid polyisobutylene (Toho Chemical Co., Ltd.) 35 parts by mass of "HV-300M" manufactured by Kogyo Co., Ltd., 60 parts by mass of polybutene ("HV-1900" manufactured by JXTG Energy Co., Ltd.), and commercially available semi-baked hydrotalcite (BET specific surface area: 15 m 2 / g, average particle size) : 400 nm) 100 parts by mass was dispersed with 3 rolls to obtain a mixture. To the obtained mixture, 200 parts by mass of a 20 mass% swazole solution of a glycidyl methacrylate-modified polypropylene-polybutene copolymer (“T-YP341” manufactured by Seikou PMC), a curing accelerator (2,4,6-tris (dimethylamino)). 0.5 parts by mass of methyl) phenol) and 16 parts by mass of toluene were blended, and the obtained mixture was uniformly dispersed with a high-speed rotary mixer to obtain an olefin resin composition varnish.
<ハイドロタルサイトの吸水率>
 実施例および比較例で用いたハイドロタルサイトを天秤にて1.5g量りとり、初期質量を測定した。大気圧下、60℃、90%RH(相対湿度)に設定した小型環境試験器(エスペック社製 SH-222)に200時間静置して、吸湿後の質量を測定し、上記式(i)を用いて飽和吸水率を求めた。結果を表2に示す。
<Water absorption rate of hydrotalcite>
1.5 g of hydrotalcite used in Examples and Comparative Examples was weighed with a balance, and the initial mass was measured. It was allowed to stand for 200 hours in a small environmental tester (SH-222 manufactured by ESPEC) set at 60 ° C. and 90% RH (relative humidity) under atmospheric pressure, and the mass after moisture absorption was measured. Was used to determine the saturated water absorption rate. The results are shown in Table 2.
<ハイドロタルサイトの熱重量減少率>
 日立ハイテクサイエンス社製TG/DTA EXSTAR6300を用いて、実施例および比較例で用いたハイドロタルサイトの熱重量分析を行った。アルミニウム製のサンプルパンにハイドロタルサイトを10mg秤量し、蓋をせずオープンの状態で、窒素流量200mL/分の雰囲気下で、30℃から550℃まで10℃/分で昇温した。上記式(ii)を用いて、280℃および380℃における熱重量減少率を求めた。結果を表2に表す。
<Thermogravimetric reduction rate of hydrotalcite>
Thermogravimetric analysis of hydrotalcite used in Examples and Comparative Examples was performed using TG / DTA EXSTAR 6300 manufactured by Hitachi High-Tech Science Corporation. 10 mg of hydrotalcite was weighed in an aluminum sample pan, and the temperature was raised from 30 ° C. to 550 ° C. at 10 ° C./min under an atmosphere of a nitrogen flow rate of 200 mL / min in an open state without a lid. The thermogravimetric reduction rate at 280 ° C. and 380 ° C. was determined using the above formula (ii). The results are shown in Table 2.
<粉末X線回折>
 粉末X線回折の測定は、粉末X線回折装置(PANalytical社製,Empyrean)により、対陰極CuKα(1.5405Å)、電圧:45V、電流:40mA、サンプリング幅:0.0260°、走査速度:0.0657°/s、測定回折角範囲(2θ):5.0131~79.9711°の条件で行った。ピークサーチは、回折装置付属のソフトウエアのピークサーチ機能を利用し、「最小有意度:0.50、最小ピークチップ:0.01°、最大ピークチップ:1.00°、ピークベース幅:2.00°、方法:2次微分の最小値」の条件で行った。2θが8~18°の範囲内で現れたスプリットした二つのピーク、または二つのピークの合成によりショルダーを有するピークを検出し、低角側に現れたピークまたはショルダーの回折強度(=低角側回折強度)と、高角側に現れるピークまたはショルダーの回折強度(=高角側回折強度)を測定し、相対強度比(=低角側回折強度/高角側回折強度)を算出した。結果を表2に表す。
<Powder X-ray diffraction>
The powder X-ray diffraction is measured by a powder X-ray diffractometer (PANalytical, Empyrena) with anti-cathode CuKα (1.5405 Å), voltage: 45 V, current: 40 mA, sampling width: 0.0260 °, scanning speed: The measurement was performed under the conditions of 0.0657 ° / s and the measurement diffraction angle range (2θ): 5.0131 to 79.9711 °. The peak search uses the peak search function of the software attached to the diffractometer, and "minimum significance: 0.50, minimum peak tip: 0.01 °, maximum peak tip: 1.00 °, peak base width: 2". It was carried out under the condition of "0.00 °, method: minimum value of second derivative". Two split peaks in which 2θ appears in the range of 8 to 18 °, or a peak with a shoulder is detected by combining the two peaks, and the peak appearing on the low angle side or the diffraction intensity of the shoulder (= low angle side) Diffraction intensity) and the diffraction intensity of the peak or shoulder appearing on the high angle side (= high angle side diffraction intensity) were measured, and the relative intensity ratio (= low angle side diffraction intensity / high angle side diffraction intensity) was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 飽和吸水率、熱重量減少率および粉末X線回折の結果より、実施例および比較例で用いたハイドロタルサイトが「半焼成ハイドロタルサイト」であることを確認した。 From the results of saturated water absorption rate, thermogravimetric reduction rate and powder X-ray diffraction, it was confirmed that the hydrotalcite used in Examples and Comparative Examples was "semi-fired hydrotalcite".
<封止用シートの製造>
実施例1
 第1シートとしてシートFを使用し、第2シートとしてシートCを使用し、第3シートとして「粘着層A付きシートH」を使用した。
<Manufacturing of sealing sheet>
Example 1
Sheet F was used as the first sheet, sheet C was used as the second sheet, and "sheet H with adhesive layer A" was used as the third sheet.
 製造例1で得られたオレフィン系樹脂組成物ワニスを第1シート(シートF)のシリコーン離型層に、ダイコーターにて均一に塗布し、130℃60分間加熱することにより、第1シート(=PETフィルム/バリア層/接着剤層/PETフィルム/シリコーン離型層)/樹脂組成物層との積層構造を有する積層品1(樹脂組成物層の厚さ:20μm)を得た。 The olefin resin composition varnish obtained in Production Example 1 was uniformly applied to the silicone release layer of the first sheet (sheet F) with a die coater, and heated at 130 ° C. for 60 minutes to obtain the first sheet (sheet F). = A laminated product 1 (thickness of the resin composition layer: 20 μm) having a laminated structure with the PET film / barrier layer / adhesive layer / PET film / silicone release layer) / resin composition layer was obtained.
 次いで、第2シート(シートC)のPETフィルムに第3シート(粘着層A付きシートH)の粘着層を貼り合わせて、第2シート(=シリコーン離型層/PETフィルム)/第3シート(=シリコーン系粘着層/PETフィルム/バリア層/接着剤層/PETフィルム)との積層構造を有する積層品2を調製した。 Next, the adhesive layer of the third sheet (sheet H with adhesive layer A) is bonded to the PET film of the second sheet (sheet C), and the second sheet (= silicone release layer / PET film) / third sheet ( = A laminated product 2 having a laminated structure with a silicone-based adhesive layer / PET film / barrier layer / adhesive layer / PET film) was prepared.
 得られた積層品1の樹脂組成物層に、得られた積層品2のシリコーン離型層が接触するように貼り合わせて、第1シート(=バリア層/PETフィルム/接着剤層/PETフィルム/シリコーン離型層)/樹脂組成物層/第2シート(=シリコーン離型層/PETフィルム)/第3シート(=シリコーン系粘着層/PETフィルム/バリア層/接着剤層/PETフィルム)との積層構造を有する封止用シートを製造し、ロール状に巻き取った。ロール状の封止用シートを幅507mmにスリットし、サイズ507×336mmの封止用シートを得た。 The resin composition layer of the obtained laminated product 1 is bonded to the silicone release layer of the obtained laminated product 2 so as to be in contact with the first sheet (= barrier layer / PET film / adhesive layer / PET film). / Silicone release layer) / Resin composition layer / Second sheet (= Silicone release layer / PET film) / Third sheet (= Silicone adhesive layer / PET film / Barrier layer / Adhesive layer / PET film) A sealing sheet having a laminated structure of the above was produced and wound into a roll. The roll-shaped sealing sheet was slit to a width of 507 mm to obtain a sealing sheet having a size of 507 × 336 mm.
 第2シートと第3シートとの間の90度剥離強度(詳しくは、第2シート(シートC)と、第3シート(粘着剤層A付きシートH)が有する粘着層Aとの間の90度剥離強度)を、後述する方法によって測定したところ、75gf/inchであった。 90 degree peel strength between the second sheet and the third sheet (specifically, 90 between the second sheet (sheet C) and the adhesive layer A of the third sheet (sheet H with adhesive layer A). Degree peel strength) was measured by the method described later and found to be 75 gf / inch.
 樹脂組成物層と第2シートとの間の90度剥離強度(詳しくは、樹脂組成物層と第2シート(シートC)が有するシリコーン離型層との間の90度剥離強度)を、後述する方法によって測定したところ、80gf/inchであった。 The 90-degree peel strength between the resin composition layer and the second sheet (specifically, the 90-degree peel strength between the resin composition layer and the silicone release layer of the second sheet (sheet C)) will be described later. It was 80 gf / inch as measured by the method.
実施例2
 第3シートとして「粘着層B付きシートH」を使用し、第2シートとしてシートEを使用したこと以外は実施例1と同様にして、封止用シートを製造した。
Example 2
A sealing sheet was produced in the same manner as in Example 1 except that "Sheet H with Adhesive Layer B" was used as the third sheet and Sheet E was used as the second sheet.
 第2シートと第3シートとの間の90度剥離強度(詳しくは、第2シート(シートE)が有するシリコーン離型層と、第3シート(粘着剤層B付きシートH)が有する粘着層Bとの間の90度剥離強度)を、後述する方法によって測定したところ、30gf/inchであった。 90 degree peel strength between the second sheet and the third sheet (specifically, the silicone release layer of the second sheet (sheet E) and the adhesive layer of the third sheet (sheet H with adhesive layer B). The 90-degree peel strength with B) was measured by the method described later and found to be 30 gf / inch.
 樹脂組成物層と第2シートとの間の90度剥離強度(詳しくは、樹脂組成物層と第2シート(シートE)が有するシリコーン離型層との間の90度剥離強度)を、後述する方法によって測定したところ、75gf/inchであった。 The 90-degree peel strength between the resin composition layer and the second sheet (specifically, the 90-degree peel strength between the resin composition layer and the silicone release layer of the second sheet (sheet E)) will be described later. It was 75 gf / inch as measured by the method.
比較例1
 第1シートとしてシートFを使用し、第2シートとしてシートGを使用した。
Comparative Example 1
Sheet F was used as the first sheet, and sheet G was used as the second sheet.
 製造例1で得られたオレフィン系樹脂組成物ワニスを第1シート(シートF)のシリコーン離型層に、ダイコーターにて均一に塗布し、130℃60分間加熱することにより、第1シート(=PETフィルム/バリア層/接着剤層/PETフィルム/シリコーン離型層)/樹脂組成物層との積層構造を有する積層品1(樹脂組成物層の厚さ:20μm)を得た。 The olefin resin composition varnish obtained in Production Example 1 was uniformly applied to the silicone release layer of the first sheet (sheet F) with a die coater, and heated at 130 ° C. for 60 minutes to obtain the first sheet (sheet F). = A laminated product 1 (thickness of the resin composition layer: 20 μm) having a laminated structure with the PET film / barrier layer / adhesive layer / PET film / silicone release layer) / resin composition layer was obtained.
 得られた積層品1の樹脂組成物層に、第2シート(シートG)のシリコーン離型層が接触するように貼り合わせて、第1シート(=PETフィルム/バリア層/接着剤層/PETフィルム/シリコーン離型層)/樹脂組成物層/第2シート(=シリコーン離型層/PETフィルム/接着剤層/バリア層/PETフィルム)との積層構造を有する封止用シートを製造し、ロール状に巻き取った。ロール状の封止用シートを幅507mmにスリットし、サイズ507×336mmの封止用シートを得た。 The first sheet (= PET film / barrier layer / adhesive layer / PET) is bonded to the resin composition layer of the obtained laminated product 1 so that the silicone release layer of the second sheet (sheet G) is in contact with the resin composition layer. A sealing sheet having a laminated structure with a film / silicone release layer) / resin composition layer / second sheet (= silicone release layer / PET film / adhesive layer / barrier layer / PET film) was manufactured. It was wound into a roll. The roll-shaped sealing sheet was slit to a width of 507 mm to obtain a sealing sheet having a size of 507 × 336 mm.
比較例2
 第2シートとしてシートCを使用したこと以外は比較例1と同様にして、封止用シートを製造した。
Comparative Example 2
A sealing sheet was produced in the same manner as in Comparative Example 1 except that the sheet C was used as the second sheet.
 以下の表3に、実施例1および2並びに比較例1および2で使用した第1シート~第3シートを記載する。 Table 3 below lists the first to third sheets used in Examples 1 and 2 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<測定方法>
(1)水蒸気透過度(WVTR)の測定
 シートの水蒸気透過度を、JIS K7129Bに準じた赤外線センサ法により求めた。具体的には、シートの水蒸気透過率(g/m/24hr)を、水蒸気透過率測定装置(モコン(MOCON)社製、PERMATRAN-W 3/34)を使用して、温度40℃および相対湿度90%の雰囲気で測定した。
<Measurement method>
(1) Measurement of Water Vapor Transmittance (WVTR) The water vapor permeability of the sheet was determined by an infrared sensor method according to JIS K7129B. Specifically, the water vapor transmission rate of sheet (g / m 2 / 24hr) , water vapor transmission rate measurement device (MOCON (MOCON) Co., PERMATRAN-W 3/34) using a temperature of 40 ° C. and a relative The measurement was performed in an atmosphere with a humidity of 90%.
(2)90度剥離強度の測定
 実施例1および2における第2シートと第3シートとの間の90度剥離強度を、以下のようにして測定した。まず実施例1および2にて作製した封止シートを25mm×140mmの長さに切り出し、25mm×100mmの長さにカットしたガラスエポキシ基板に第1シートが接するようにして両面テープで固定した。調製したサンプルを協和界面科学社製 引張試験機VPA-H100にセットし、第2シートと第3シートとの間の剥離強度を、90度およびスピード300mm/秒の条件にて測定した。
 また、実施例1および2における樹脂組成物層と第2シートとの間の90度剥離強度を同様にして測定した。
(2) Measurement of 90-degree peel strength The 90-degree peel strength between the second sheet and the third sheet in Examples 1 and 2 was measured as follows. First, the sealing sheets prepared in Examples 1 and 2 were cut out to a length of 25 mm × 140 mm, and fixed with double-sided tape so that the first sheet was in contact with the glass epoxy substrate cut to a length of 25 mm × 100 mm. The prepared sample was set in a tensile tester VPA-H100 manufactured by Kyowa Interface Science Co., Ltd., and the peel strength between the second sheet and the third sheet was measured under the conditions of 90 degrees and a speed of 300 mm / sec.
Moreover, the 90 degree peel strength between the resin composition layer and the second sheet in Examples 1 and 2 was measured in the same manner.
(3)含水量の測定
 実施例1および2並びに比較例1および2で製造した封止用シートの放置前後および乾燥後の樹脂組成物層の含水量を以下のようにして測定した。
(3) Measurement of Moisture Content The water content of the resin composition layer before and after leaving and drying the sealing sheet produced in Examples 1 and 2 and Comparative Examples 1 and 2 was measured as follows.
(3-1)放置前の含水量A
 製造してから8時間以内の封止用シートを7cm角にカットし、それから取り出した樹脂組成物層を放置前のサンプルとして用いて、その含水量を、電量滴定法のカールフィッシャー水分測定装置(三菱化学アナリテック社製「微量水分測定装置CA-310」)を用いて測定した。放置前の含水量Aを下記表4に示す。
(3-1) Moisture content A before leaving
A sealing sheet within 8 hours after production is cut into 7 cm squares, and the resin composition layer taken out from the sheet is used as a sample before being left to stand, and its water content is measured by a Karl Fischer water content measuring device (coulometric titration method). The measurement was performed using a "trace moisture measuring device CA-310" manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The water content A before leaving is shown in Table 4 below.
 装置は、加熱可能なサンプルを設置するガラス容器と、サンプルを加熱する際に気化した水分を滴定する反応液が入った滴定装置から構成される。気化した水分は、流量:250±25ml/minの窒素を流すことでガラス容器から滴定装置の反応液側に移動する。測定は、窒素雰囲気下(水蒸気量<0.1ppm(質量基準))に置換したガラス容器内に、サンプルを投入し、250℃の条件下で気化した水分の量を滴定し、樹脂組成物層の含水量を算出した。なお、以下に記載する含水量の単位「ppm」は、質量基準である。 The device consists of a glass container in which a heatable sample is placed and a titrator containing a reaction solution that titrates the vaporized water when the sample is heated. The vaporized water moves from the glass container to the reaction solution side of the titrator by flowing nitrogen at a flow rate of 250 ± 25 ml / min. For the measurement, the sample was placed in a glass container replaced with a nitrogen atmosphere (water vapor content <0.1 ppm (mass standard)), the amount of water vaporized under the condition of 250 ° C. was titrated, and the resin composition layer was measured. The water content of was calculated. The unit "ppm" of water content described below is based on mass.
(3-2)放置後の含水量B
 7cm角にカットした封止用シートを温度25℃および湿度50%RHの雰囲気下で24時間放置した後、封止用シートから取り出した樹脂組成物層を放置後のサンプルとして用いて、上記と同様にして、その含水量を測定した。放置後の含水量Bを下記表4に示す。
(3-2) Moisture content B after leaving
The sealing sheet cut into 7 cm squares was left to stand in an atmosphere of a temperature of 25 ° C. and a humidity of 50% RH for 24 hours, and then the resin composition layer taken out from the sealing sheet was used as a sample after standing, as described above. In the same way, the water content was measured. The water content B after being left to stand is shown in Table 4 below.
 上記のようにして測定した放置後の含水量Bと放置前の含水量Aとの比(即ち、放置後の含水量B/放置前の含水量A、以下「B/A」と記載することがある。)を算出した。この比も下記表4に示す。 The ratio of the water content B after standing and the water content A before leaving measured as described above (that is, the water content B after leaving / the water content A before leaving, hereinafter referred to as "B / A". There is.) Was calculated. This ratio is also shown in Table 4 below.
 B/Aから、以下の基準1で封止用シートを評価した。この結果も下記表4に示す。
(基準1)
 〇(良好):B/Aが2.0未満
 ×(不良):B/Aが2.0以上
From B / A, the sealing sheet was evaluated according to the following criteria 1. This result is also shown in Table 4 below.
(Criteria 1)
〇 (Good): B / A is less than 2.0 × (Defective): B / A is 2.0 or more
(3-3)乾燥後の含水量C
 7cm角にカットし、温度25℃および湿度50%RHの雰囲気下で24時間放置した封止用シートを150℃30分間加熱して乾燥した。実施例1および2の封止用シートは、第3シートを剥離して乾燥した。実施例1および2並びに比較例1および2の封止用シートは、いずれも第2シートを剥離せずに乾燥した。乾燥後に、封止用シートから取り出した樹脂組成物層を乾燥後のサンプルとして用いて、上記と同様にして、その含水量を測定した。乾燥後の含水量Cを下記表4に示す。
(3-3) Moisture content after drying C
The sealing sheet, which was cut into 7 cm squares and left at a temperature of 25 ° C. and a humidity of 50% RH for 24 hours, was heated at 150 ° C. for 30 minutes and dried. The sealing sheets of Examples 1 and 2 were dried by peeling off the third sheet. The sealing sheets of Examples 1 and 2 and Comparative Examples 1 and 2 were all dried without peeling the second sheet. After drying, the resin composition layer taken out from the sealing sheet was used as a sample after drying, and the water content thereof was measured in the same manner as described above. The moisture content C after drying is shown in Table 4 below.
 上記のようにして測定した乾燥後の含水量Cと放置前の含水量Aとの比(即ち、乾燥後の含水量C/放置前の含水量A、以下「C/A」と記載することがある)を算出した。この比も下記表4に示す。 The ratio of the water content C after drying and the water content A before standing measured as described above (that is, the water content C after drying / the water content A before leaving, hereinafter referred to as "C / A". There is) was calculated. This ratio is also shown in Table 4 below.
 乾燥後の含水量CおよびC/Aから、以下の基準2で封止用シートを評価した。この結果も下記表に示す。
(基準2)
 〇(良好):C/Aが0.5未満
 △(可):C/Aが0.5以上0.8未満
 ×(不良):C/Aが0.8以上
From the water content C and C / A after drying, the sealing sheet was evaluated according to the following criteria 2. The results are also shown in the table below.
(Criteria 2)
〇 (Good): C / A is less than 0.5 Δ (Yes): C / A is 0.5 or more and less than 0.8 × (Defective): C / A is 0.8 or more
(4)Ca面劣化挙動の測定
 有機EL素子の代わりにCa膜を形成したガラス基板を用いる模擬実験によって、「(2-3)乾燥後の含水量C」に記載の方法と同様にして乾燥した封止用シートの封止性能を評価した。
(4) Measurement of Ca surface deterioration behavior Drying in the same manner as in "(2-3) Moisture content C after drying" by a simulated experiment using a glass substrate on which a Ca film is formed instead of an organic EL element. The sealing performance of the sealing sheet was evaluated.
 詳しくは、まず、ガラス基板(厚さ:700μm、横:50mm、縦:50mm)にCaを蒸着させて、Ca膜(厚さ:約300nm、横:40mm、縦:40mm)を形成した。得られたガラス基板は、Ca膜の周りに2mmの封止幅(即ち、Ca膜が形成されていないガラス基板と封止用シートとが接触する幅)を有していた。 Specifically, first, Ca was vapor-deposited on a glass substrate (thickness: 700 μm, width: 50 mm, length: 50 mm) to form a Ca film (thickness: about 300 nm, width: 40 mm, length: 40 mm). The obtained glass substrate had a sealing width of 2 mm (that is, a width in which the glass substrate on which the Ca film was not formed and the sealing sheet contacted) around the Ca film.
 次いで、封止用シートを乾燥後、第1シートを剥離し、封止用シートの樹脂組成物層が東洋アルミニウム社製「PETツキAL1N30」と接するように、封止用シートとPETツキAL1N30とを積層し、次いで封止用シートの第2シートを剥離し、樹脂組成物層がCa膜と接するよう封止用シートとガラス基板とを積層することでCa膜を封止して、積層品を得た。これらの積層は、ロールラミネーター(フジプラ社製「LPD2325」、ロールの材質:ゴム)を、ロール温度:90℃、ロール速度:360mm/分、ロール圧:0.2MPa、窒素雰囲気下の条件で用いて行った。 Next, after the sealing sheet is dried, the first sheet is peeled off, and the sealing sheet and PET Tsuki AL1N30 are contacted so that the resin composition layer of the sealing sheet is in contact with "PET Tsuki AL1N30" manufactured by Toyo Aluminum K.K. Then, the second sheet of the sealing sheet is peeled off, and the Ca film is sealed by laminating the sealing sheet and the glass substrate so that the resin composition layer is in contact with the Ca film. Got For these lamination, a roll laminator (“LPD2325” manufactured by Fujipura Co., Ltd., roll material: rubber) is used under the conditions of roll temperature: 90 ° C., roll speed: 360 mm / min, roll pressure: 0.2 MPa, and nitrogen atmosphere. I went.
 上述のようにして得られた積層品を、加速試験機(エスペック社製「小型環境試験機SH-222」)に入れ、積層品を温度85℃および湿度85%RHの条件で24時間放置する加速試験を行い、Ca(不透明)+2HO→Ca(OH)(透明)という反応によるCa膜面の劣化挙動を評価した。
 具体的にはそれぞれ850nmにおける、加速試験前の反射率Dおよび加速試験後の反射率Eを計測し、加速試験後の反射率Eと加速試験前の反射率Dとの比(即ち、加速試験後の反射率E/加速試験前の反射率D、以下「E/D」と記載することがある)を算出し、以下の基準3で評価した。なおE/Dが高いほど、封止用シートの封止性能は優れていると判断できる。結果を下記表4に示す。
(基準3)
○(良好):E/Dが0.85以上
△(可):E/Dが0.50以上0.85未満
×(不良):E/Dが0.50未満
The laminated product obtained as described above is placed in an accelerated tester (“Small Environmental Tester SH-222” manufactured by ESPEC CORPORATION), and the laminated product is left for 24 hours under the conditions of a temperature of 85 ° C. and a humidity of 85% RH. An accelerated test was performed to evaluate the deterioration behavior of the Ca film surface due to the reaction of Ca (opaque) + 2H 2 O → Ca (OH) 2 (transparent).
Specifically, the reflectance D before the acceleration test and the reflectance E after the acceleration test are measured at 850 nm, respectively, and the ratio of the reflectance E after the acceleration test to the reflectance D before the acceleration test (that is, the acceleration test). The reflectance E afterwards / the reflectance D before the acceleration test (hereinafter sometimes referred to as “E / D”) was calculated and evaluated according to the following criteria 3. It can be judged that the higher the E / D, the better the sealing performance of the sealing sheet. The results are shown in Table 4 below.
(Criteria 3)
○ (good): E / D is 0.85 or more Δ (possible): E / D is 0.50 or more and less than 0.85 × (bad): E / D is less than 0.50
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から示されるように、防湿性シート(第1シート)/樹脂組成物層/防湿性シート(第2シート)との積層構造を有する比較例1の封止用シートは、その保管時の樹脂組成物層中含水量の増大を抑えることができるが、樹脂組成物層を効率的に乾燥することができない。また防湿性シート(第1シート)/樹脂組成物層/非防湿性シート(第2シート)との積層構造を有する比較例2の封止用シートは、その保管時の樹脂組成物層中の含水量の増大を抑えることが出来ず、乾燥後の含水量も高くなってしまう。一方、防湿性シート(第1シート)/樹脂組成物層/非防湿性シート(第2シート)/剥離可能な防湿性シート(第3シート)との積層構造を有する実施例1および2の封止用シートは、保管時の樹脂組成物層の含水量の増大を抑制できるとともに、第3シートを剥離して乾燥することによって、樹脂組成物層の汚染を抑制しながら、樹脂組成物層を効率的に乾燥することができる。 As shown from the results in Table 4, the sealing sheet of Comparative Example 1 having a laminated structure with the moisture-proof sheet (first sheet) / resin composition layer / moisture-proof sheet (second sheet) is stored. Although it is possible to suppress an increase in the water content in the resin composition layer at that time, the resin composition layer cannot be dried efficiently. Further, the sealing sheet of Comparative Example 2 having a laminated structure with the moisture-proof sheet (first sheet) / resin composition layer / non-moisture-proof sheet (second sheet) is contained in the resin composition layer at the time of storage. The increase in water content cannot be suppressed, and the water content after drying also increases. On the other hand, the seals of Examples 1 and 2 having a laminated structure with a moisture-proof sheet (first sheet) / resin composition layer / non-moisture-proof sheet (second sheet) / peelable moisture-proof sheet (third sheet). The stop sheet can suppress an increase in the water content of the resin composition layer during storage, and by peeling and drying the third sheet, the resin composition layer can be prevented from being contaminated. It can be dried efficiently.
 本発明の封止用シートは、水分に弱い電子デバイスの封止に有用である。 The sealing sheet of the present invention is useful for sealing electronic devices that are sensitive to moisture.
 本願は、日本で出願された特願2019-205828号を基礎としており、その内容は本願明細書に全て包含される。 This application is based on Japanese Patent Application No. 2019-205828 filed in Japan, the contents of which are all included in the specification of the present application.

Claims (8)

  1.  第1シートと、樹脂組成物層と、第2シートと、第3シートとを、これらの順に含んだ積層構造を有する封止用シートであって、
     第1シートおよび第3シートの水蒸気透過度が、それぞれ独立に、5(g/m/24hr)以下であり、
     第2シートの水蒸気透過度が、10(g/m/24hr)以上であり、並びに
     第3シートを剥離することができる封止用シート。
    A sealing sheet having a laminated structure containing the first sheet, the resin composition layer, the second sheet, and the third sheet in this order.
    Water vapor permeability of the first sheet and third sheet are each independently, 5 (g / m 2 / 24hr) or less,
    Water vapor permeability of the second sheet, 10 (g / m 2 / 24hr) or more, and the sheet for sealing which can be peeled off the third sheet.
  2.  第2シートと第3シートとの間の90度剥離強度が、0.1gf/inch以上250gf/inch以下である請求項1に記載の封止用シート。 The sealing sheet according to claim 1, wherein the 90-degree peel strength between the second sheet and the third sheet is 0.1 gf / inch or more and 250 gf / inch or less.
  3.  第3シートが粘着層を有するシートであり、且つ前記粘着層が第2シートと接触している請求項1または2に記載の封止用シート。 The sealing sheet according to claim 1 or 2, wherein the third sheet is a sheet having an adhesive layer, and the adhesive layer is in contact with the second sheet.
  4.  第2シートが離型層を有するシートであり、且つ前記離型層が樹脂組成物層と接触している請求項1~3のいずれか一項に記載の封止用シート。 The sealing sheet according to any one of claims 1 to 3, wherein the second sheet is a sheet having a release layer, and the release layer is in contact with the resin composition layer.
  5.  第1シートが離型層を有するシートであり、且つ前記離型層が樹脂組成物層と接触している請求項1~4のいずれか一項に記載の封止用シート。 The sealing sheet according to any one of claims 1 to 4, wherein the first sheet is a sheet having a release layer, and the release layer is in contact with the resin composition layer.
  6.  樹脂組成物層が、半焼成ハイドロタルサイトを含む請求項1~5のいずれか一項に記載の封止用シート。 The sealing sheet according to any one of claims 1 to 5, wherein the resin composition layer contains semi-baked hydrotalcite.
  7.  電子デバイスの封止に用いられるシートである請求項1~6のいずれか一項に記載の封止用シート。 The sealing sheet according to any one of claims 1 to 6, which is a sheet used for sealing an electronic device.
  8.  電子デバイスが、有機ELデバイス、量子ドットデバイスまたは太陽電池である請求項7に記載の封止用シート。 The sealing sheet according to claim 7, wherein the electronic device is an organic EL device, a quantum dot device, or a solar cell.
PCT/JP2020/042364 2019-11-13 2020-11-13 Sealing sheet WO2021095830A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021556163A JPWO2021095830A1 (en) 2019-11-13 2020-11-13
DE112020005543.4T DE112020005543T5 (en) 2019-11-13 2020-11-13 sealing film
KR1020227019049A KR20220100902A (en) 2019-11-13 2020-11-13 sealing sheet
CN202080078624.9A CN114731744A (en) 2019-11-13 2020-11-13 Sheet for sealing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019205828 2019-11-13
JP2019-205828 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021095830A1 true WO2021095830A1 (en) 2021-05-20

Family

ID=75912759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042364 WO2021095830A1 (en) 2019-11-13 2020-11-13 Sealing sheet

Country Status (6)

Country Link
JP (1) JPWO2021095830A1 (en)
KR (1) KR20220100902A (en)
CN (1) CN114731744A (en)
DE (1) DE112020005543T5 (en)
TW (1) TW202128939A (en)
WO (1) WO2021095830A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280598A1 (en) * 2021-07-08 2023-01-12 Agfa-Gevaert Nv A separator for alkaline water electrolysis
WO2023182493A1 (en) * 2022-03-25 2023-09-28 味の素株式会社 Resin sheet and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043062A (en) * 2015-08-28 2017-03-02 富士フイルム株式会社 Production method of gas barrier film
JP2017043060A (en) * 2015-08-28 2017-03-02 富士フイルム株式会社 Gas barrier film and transfer method of gas barrier film
JP2018065328A (en) * 2016-10-21 2018-04-26 コニカミノルタ株式会社 Water vapor barrier laminate and organic electroluminescent element
WO2018181426A1 (en) * 2017-03-29 2018-10-04 味の素株式会社 Sealing sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4028353B2 (en) 2002-10-25 2007-12-26 大日本印刷株式会社 Method for forming laminate with gas barrier film
JP5712509B2 (en) 2009-07-09 2015-05-07 コニカミノルタ株式会社 Barrier film manufacturing method
JP5719106B2 (en) 2009-10-17 2015-05-13 コニカミノルタ株式会社 Transparent gas barrier film and method for producing transparent gas barrier film
JP5292358B2 (en) 2010-05-28 2013-09-18 富士フイルム株式会社 Water vapor barrier film
US9219018B2 (en) 2011-04-05 2015-12-22 Toray Industries, Inc. Gas barrier film
JP2013108103A (en) 2011-11-17 2013-06-06 Mitsubishi Plastics Inc Method for producing gas barrier film
US11037096B2 (en) 2017-12-28 2021-06-15 Business Objects Software Ltd. Delivery prediction with degree of delivery reliability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043062A (en) * 2015-08-28 2017-03-02 富士フイルム株式会社 Production method of gas barrier film
JP2017043060A (en) * 2015-08-28 2017-03-02 富士フイルム株式会社 Gas barrier film and transfer method of gas barrier film
JP2018065328A (en) * 2016-10-21 2018-04-26 コニカミノルタ株式会社 Water vapor barrier laminate and organic electroluminescent element
WO2018181426A1 (en) * 2017-03-29 2018-10-04 味の素株式会社 Sealing sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280598A1 (en) * 2021-07-08 2023-01-12 Agfa-Gevaert Nv A separator for alkaline water electrolysis
WO2023182493A1 (en) * 2022-03-25 2023-09-28 味の素株式会社 Resin sheet and production method therefor

Also Published As

Publication number Publication date
CN114731744A (en) 2022-07-08
KR20220100902A (en) 2022-07-18
TW202128939A (en) 2021-08-01
DE112020005543T5 (en) 2022-09-01
JPWO2021095830A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
CN108026430B (en) Sealing resin composition
JP7283381B2 (en) Sealing sheet
JP6903992B2 (en) Encapsulating resin composition and encapsulating sheet
JP6680295B2 (en) Sealing resin composition
JP5768718B2 (en) Resin composition
JP6821985B2 (en) Resin composition for sealing
WO2021095830A1 (en) Sealing sheet
CN114762144A (en) Sealing agent, sealing sheet, electronic device, and perovskite-type solar cell
WO2020196826A1 (en) Resin composition and resin sheet
TWI843699B (en) Sealing sheet
WO2023182493A1 (en) Resin sheet and production method therefor
WO2021095792A1 (en) Method for manufacturing sealing sheet
JP7099441B2 (en) Sealing sheet
TW202128864A (en) Resin composition and resin sheet
TW202224917A (en) Sealing sheet
JP2024091938A (en) Adhesive Composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556163

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019049

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20886749

Country of ref document: EP

Kind code of ref document: A1