WO2021095718A1 - 生体組織透明化方法及びその試薬 - Google Patents

生体組織透明化方法及びその試薬 Download PDF

Info

Publication number
WO2021095718A1
WO2021095718A1 PCT/JP2020/041890 JP2020041890W WO2021095718A1 WO 2021095718 A1 WO2021095718 A1 WO 2021095718A1 JP 2020041890 W JP2020041890 W JP 2020041890W WO 2021095718 A1 WO2021095718 A1 WO 2021095718A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
tissue
meth
ethylenically unsaturated
water
Prior art date
Application number
PCT/JP2020/041890
Other languages
English (en)
French (fr)
Inventor
千恵 児島
哲朗 成相
Original Assignee
公立大学法人大阪
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪, 住友化学株式会社 filed Critical 公立大学法人大阪
Priority to JP2021556100A priority Critical patent/JPWO2021095718A1/ja
Publication of WO2021095718A1 publication Critical patent/WO2021095718A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides

Definitions

  • the present invention relates to a method for clearing a living tissue and a reagent for that purpose.
  • living tissue is mainly composed of proteins, lipids, nucleic acids, etc., but since these have different refractive indexes, the refractive index becomes non-uniform in the living tissue, and therefore light is transmitted through the living tissue. However, it is difficult to observe the inside of living tissue from its surface.
  • Non-Patent Document 2 Patent Documents 1 and 2
  • tissue destruction is unlikely to occur with this method, it takes a long time (2 to 3 weeks) to remove lipids by shaking.
  • hydrogels are formed with a monomer containing a water-soluble ethylenically unsaturated monomer having an ionic dissociating group (preferably an anionic dissociating group) so that the structure of the structure does not require a long time.
  • An ionic dissociating group preferably an anionic dissociating group
  • the present invention has been made in view of such circumstances: (i) at least one diionic water-soluble ethylenically unsaturated before, during, or after fixing a biological tissue with a fixing agent. A step of infiltrating a water-soluble ethylenically unsaturated monomer containing a monomer into the living tissue and polymerizing the water-soluble ethylenically unsaturated monomer in the living tissue to form a hydrogel. (Ii) A step of fixing the biological tissue with a fixing agent before, during, or after the hydrogel forming step, and (iii) a step of removing lipid from the living tissue after the fixing step. Provided is a method for making a characteristic biological tissue transparent.
  • the present invention also provides a method for producing a living tissue embedded in hydrogel, which comprises applying the above-mentioned method for clearing a living tissue.
  • the present invention also provides the use of diionic, water-soluble ethylenically unsaturated monomers for clearing living tissue or for producing hydrogels in which clearing living tissue is embedded.
  • the present invention provides a biological tissue clearing reagent or kit having a twinionic water-soluble ethylenically unsaturated monomer containing at least one twinionic water-soluble ethylenically unsaturated monomer.
  • the degree of transparency of a living tissue can be further increased as compared with a conventionally known method.
  • a photograph of a living tissue piece (cancer tissue) to which an embodiment of a conventional clearing method using an acrylic acid monomer and a clearing method of the present invention using a DAPS monomer is applied is shown.
  • the piece of biological tissue is placed on a grid board.
  • a photograph of a living tissue piece (skin tissue) to which an embodiment of a conventional clearing method using an acrylic acid monomer and a clearing method of the present invention using a DAPS monomer is applied is shown.
  • the piece of biological tissue is placed on a grid board.
  • the photograph of the living tissue piece (cancer tissue) to which the embodiment of the transparency method of this invention using MPC monomer was applied is shown.
  • the piece of biological tissue is placed on a grid board.
  • A A photograph of a living tissue piece (brain tissue) to which a conventional clearing method using an acrylic acid monomer (AcA75) and an embodiment of the clearing method of the present invention (DAPS75) is applied is shown.
  • B It is a graph which shows the transparency action rate by the conventional method (AcA75) and the embodiment (DAPS75) of the transparency method of this invention.
  • C A nuclear-stained image of a living tissue piece (brain tissue) to which an embodiment (DAPS75) of the transparency method of the present invention is applied is shown.
  • A A photograph of a living tissue piece (cancer tissue) to which a conventional clearing method using an acrylic acid monomer (AcA75) and an embodiment of the clearing method of the present invention (DAPS75) is applied is shown.
  • AcA75 it is a graph which shows the improvement rate of the transparency action by the conventional method (AcA75) and the embodiment (DAPS75) of the transparency method of this invention.
  • the photograph of the living tissue piece (brain tissue) to which the conventional clearing method (AAM monomer) and the embodiment of the clearing method of this invention using MPC monomer or DAPS monomer are applied is shown.
  • the living piece is placed on a film.
  • the photograph of the living tissue piece (cancer tissue) to which the conventional clearing method (AAM monomer) and the embodiment of the clearing method of this invention using MPC monomer or DAPS monomer are applied is shown.
  • the living piece is placed on a film.
  • the photograph of the living tissue piece (brain tissue) to which the embodiment of the transparency method of this invention using MPC monomer was applied is shown.
  • the living piece is placed on a film.
  • a photograph of a living tissue piece (cancer tissue) to which an embodiment of the conventional clearing method (AAM monomer) and the clearing method of the present invention using an MPC monomer is applied is shown.
  • the living piece is placed on a film.
  • a nuclear-stained image and a vascular smooth muscle-stained image of a living tissue piece (brain tissue) to which an embodiment of the clearing method of the present invention using an MPC monomer or a DAPS monomer is applied are shown.
  • a nuclear-stained image and a Ku80-stained image of a living tissue piece (cancer tissue) to which an embodiment of the transparency method of the present invention using a DAPS monomer is applied are shown.
  • a water-soluble ethylenically unsaturated monomer is infiltrated into the living tissue before, during, or after fixing the living tissue with a fixing agent, and the water-soluble is expressed in the living tissue. It comprises the step of forming a hydrogel by polymerizing a sex ethylenically unsaturated monomer. The step includes a step of infiltrating a water-soluble ethylenically unsaturated monomer into a biological tissue and a polymerization step of polymerizing the monomer to form a hydrogel.
  • the water-soluble ethylenically unsaturated monomer contains at least one zwitterionic water-soluble ethylenically unsaturated monomer.
  • the step including the infiltration step and the polymerization step may be performed before the step of fixing the biological tissue with the fixing agent described later, may be performed at the same time, or may be performed after the step.
  • the water-soluble ethylenically unsaturated monomer used in the present invention has a hydrophilic property regardless of its solubility in water, and may be a monomer having an ethylenically unsaturated bond in the molecule.
  • a hydrogel that contributes to physically immobilizing the biological tissue is formed in the living body, and at least one kind of twinionic as a monomer unit constituting the hydrogel is formed.
  • a water-soluble ethylenic monomer also referred to herein as a "dual monomer”
  • lipid removal ie, clearing
  • transmission that can be achieved by the transparency method means, for example, when visible light or a part thereof, ultraviolet light or infrared light is irradiated, the light is transmitted through the living tissue. It means that the light transmittance (that is, the transmittance) of the living tissue is higher than that before the treatment of the method.
  • the "living tissue" to be made transparent is not particularly limited as long as it includes tissues / organs derived from living organisms, and may be the whole tissue / organ or a part thereof. Good.
  • the tissue may be biopsy tissue or autopsy tissue, may be healthy tissue, and may be associated with or cause the disease (eg, histochemical, biochemical, morphological) abnormalities. Alternatively, it may be a tissue having a change.
  • Organisms from which tissues / organs are derived are not limited, but are preferably animals such as mammals, birds, fish, amphibians, reptiles, and particularly preferably mammals.
  • the biological tissue may be stained / labeled with a fluorescent label or the like before being subjected to the clearing method of the present invention, or may be stained / labeled after clearing.
  • the living tissue may be, for example, the brain (whole brain or brain block or section) or other tissue / organ.
  • This step is a step of infiltrating a living tissue with a water-soluble ethylenically unsaturated monomer containing at least one diionic water-soluble ethylenically unsaturated monomer.
  • the water-soluble ethylenically unsaturated monomer that infiltrates the living tissue contains at least one diionic water-soluble ethylenically unsaturated monomer and contains other monomers that can be polymerized to form a hydrogel. May be good.
  • the "biionic" monomer means a monomer having a cation portion and an anion portion in one molecule and having a neutral charge as a whole molecule.
  • the cations and anions that impart zwitterion are not particularly limited.
  • the cation include a quaternary ammonium ion, a sulfonium ion, and a quaternary phosphonium ion, and a quaternary ammonium ion is preferable.
  • the anion include an anion derived from an acid (for example, sulfonic acid, carboxylic acid, phosphoric acid), and preferably selected from a sulfonic acid anion, a carboxylic acid anion, and a phosphoric acid anion.
  • the water-soluble ethylenically unsaturated monomer used in the present invention contains at least one type of bi-monomer, but may contain a plurality of types of bi-monomers such as two or three types.
  • the zwitterionic water-soluble ethylenically unsaturated monomer is preferably a betaine-type monomer.
  • the "betaine-type monomer” refers to an intramolecular salt having a structure in which a cation is given as a cation moiety in the molecule (for example, a quaternary ammonium structure) and an acid structure as an anion moiety.
  • betaine-type monomer examples include a sulfobetaine-type monomer having a sulfonic acid group, a carboxybetaine-type monomer having a carboxyl group, and a phosphobetaine-type monomer having a phosphoric acid group, preferably a sulfobetaine-type monomer and a phosphobetaine-type monomer. It is selected from the group consisting of monomers or the group consisting of carboxybetaine type monomers and phosphobetaine type monomers.
  • X is an oxygen atom or a group represented by NR 7 (R 7 is a hydrogen atom or a linear or branched alkyl or alkoxy of C1 to C3).
  • R 2 is a linear or branched alkylene of C1 to C5.
  • R 3 and R 4 are independently linear or branched alkyl or alkoxy groups of C1 to C4, respectively.
  • R 6 is a linear or branched alkylene of C1 to C5.
  • the monomer represented by may be mentioned.
  • R 1 When R 1 is alkyl, its carbon number is preferably 1 to 3. Specific examples of R 1 are methyl, ethyl, n-propyl and isopropyl. R 1 is preferably a hydrogen atom or methyl.
  • X is -NR 7 - is a group represented by, when R 7 is alkyl or alkoxy, the number of carbon atoms is preferably 1-2. Group -NR 7 - Specific examples of the alkyl or alkoxy is methyl, ethyl, n- propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy.
  • X is preferably an oxygen atom or group -NH-.
  • the carbon number of the alkylene of R 2 is preferably 1 to 4, more preferably 1 to 3, and even more preferably 2 to 3.
  • Specific examples of the alkylene of R 2 are methylene, ethylene, propylene, 2-methylpropylene, butylene and pentylene.
  • R 2 is preferably ethylene, propylene or 2-methylpropylene.
  • the alkyl or alkoxy carbon number of R 3 and R 4 is preferably 1 to 3.
  • R 3 and R 4 are methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy.
  • R 3 and R 4 are preferably methyl or ethyl, respectively.
  • the carbon number of the alkylene of R 6 is preferably 1 to 4, more preferably 1 to 3, and even more preferably 2 to 3.
  • the alkylene of R 6 may be substituted with one or more hydroxys.
  • Specific examples of the alkylene of R 6 are methylene, ethylene, propylene, 2-methylpropylene, butylene, pentylene, 2-hydroxyethylene and 2-hydroxypropylene.
  • R 6 is preferably ethylene, propylene, 2-methylpropylene, or 2-hydroxypropylene.
  • sulfobetaine type monomer examples include, for example, N, N-dimethyl (3- (meth) acrylamidepropyl) ammonium propanesulfonate, N, N-dimethyl (2- (meth) acrylamidepropyl) ammonium propanesulfonate, N, N.
  • the monomer is preferably N, N-dimethyl (3- (meth) acrylamidepropyl) ammonium propanesulfonate, N, N-dimethyl.
  • the sulfobetaine type monomer can be obtained by reacting the corresponding tertiary amine compound with the corresponding ⁇ -haloalkylsulfonic acid or a salt thereof to quaternize it.
  • the sulfobetaine-type monomer can be obtained by reacting the corresponding tertiary amine compound with the corresponding salton compound (for example, J. Ning, G. Li, & K. Haraguchi, Macromolecules, 46, 5317-5328 (2013) or Lee, WF and Tsai, CC, Polymer, 35, 2210-2217 (1994)).
  • the salton compounds that can be used include 1,2-ethanesaltone, 1,3-propanesalton, 1,4-butansalton, 2,4-butanesaltone, and 2,5-pentanesaltone.
  • the monomer represented by may be mentioned.
  • carboxybetaine type monomer examples include, for example, 3-[(3- (meth) acrylamidepropyl) -dimethylammonio] propanoate and 3-[(2- (meth) acrylamide-2-methylpropyl) -dimethylammonio.
  • the monomer is preferably 3-[(3- (meth) acrylamidepropyl) -dimethylammonio] propanoate, 3-[(.
  • the carboxybetaine type monomer can be obtained by reacting the corresponding tertiary amine compound with the corresponding ⁇ -haloalkylcarboxylic acid or a salt thereof to quaternize it (Japanese Patent Laid-Open No. 7-278071, JP-A-P. 8-99945).
  • the carboxybetaine type monomer can be obtained by reacting the corresponding tertiary amine compound with the corresponding lactone compound.
  • lactone compound that can be used include ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, and ⁇ -valerolactone.
  • R 5 is a linear or branched alkyl group or alkoxy group of C1 to C4.
  • R 7 is a linear or branched alkyl group or alkoxy group of C1 to C4.
  • the monomer represented by may be mentioned.
  • the alkyl or alkoxy of R 5 has preferably 1 to 3 carbon atoms.
  • Specific examples of R 5 are methyl, ethyl, n-propyl, 2'-isopropyl, methoxy, ethoxy, propoxy, isopropoxy.
  • R 5 is preferably methyl or ethyl.
  • the alkyl or alkoxy of R 7 has preferably 1 to 3 carbon atoms.
  • Specific examples of R 7 are methyl, ethyl, n-propyl, 2'-isopropyl, methoxy, ethoxy, propoxy, isopropoxy.
  • R 7 is preferably methyl or ethyl.
  • phosphobetaine-type monomers include 2-acryloyloxyethyl phosphorylcholine, 2-methacryloyloxyethylphosphorylcholine (MPC), 2-[(3-acrylamidepropyl) dimethylammonio] ethyl-2'-isopropylphosphate and 2 -(Meta) acryloyloxyethyl-2'-(trimethylammonio) ethyl phosphate can be mentioned.
  • the monomer is preferably 2- (meth) acryloyloxyethyl phosphorylcholine, 2-[(3-acrylamidepropyl) dimethylammonio]. It is selected from the group consisting of ethyl-2'-isopropylphosphate and 2- (meth) acryloyloxyethyl-2'-(trimethylammonio) ethyl phosphate.
  • the phosphobetaine-type monomer can be a corresponding tertiary amine compound with a corresponding haloalkyl phosphate, dihalo phosphate, haloalkyl dihalophosphate or halophosphorane (eg, 2-chloro-2-oxo-1,3,2-dioxaphospho). It can be obtained by reacting with orchid).
  • the water-soluble ethylenically unsaturated monomer infiltrated into the living tissue may contain a water-soluble ethylenically unsaturated monomer other than the bilayer monomer.
  • Such other monomers can be electrically neutral monomers in aqueous solution, preferably monomers having an amino group (particularly a primary amino group), for example having a (meth) acrylamide group. Monomers can be mentioned.
  • monomers having a (meth) acrylamide group include N-vinylacetamide, (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and N- n-propyl (meth) acrylamide, N-methyl-N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-ethylmethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide And so on. Of these, (meth) acrylamide is preferable.
  • the ratio of the twin monomers to all the monomers constituting the hydrogel formed in the living body is not particularly limited as long as the effects of the present invention can be obtained, but is preferably at least 10 mol%, more preferably at least 25 mol%, and even more preferably. Is at least 35 mol%, even more preferably at least 40 mol%, and particularly even more preferably at least 50 mol%.
  • the upper limit of the ratio of the twin monomer to all the monomers is not particularly limited as long as the effect of the present invention can be obtained, and may be 100 mol%, for example, 90 mol%, 85 mol%, 80 mol%, 75 mol%, and the like. It can be 70 mol%, 65 mol%, 60 mol%. Therefore, the water-soluble ethylenically unsaturated monomer used in the present invention may contain 10 to 100 mol% of a bi-monomer, and the remainder may be another monomer.
  • At least one kind of twin monomer water-soluble ethylenically unsaturated monomer can be infiltrated into the living tissue by contacting the living tissue as a solution dissolved in a solvent (hereinafter, water-soluble ethylene used in the present invention).
  • a solution of sex unsaturated monomer is also simply referred to as a "monomer solution").
  • a physiological saline solution or a physiological saline solution to which a buffer solution is added can be used as the solvent constituting the monomer solution.
  • the buffer solution can be appropriately selected from those known in the art, and for example, a phosphate buffer solution, a borate buffer solution, a Tris hydrochloric acid buffer solution, a citric acid buffer solution, a carbonate buffer solution, a succinate buffer solution, and an acetate buffer solution.
  • a phosphate buffer solution for example, those having 0.01 to 1 M [preferably 0.01 to 0.1 M] and pH 6 to 10 [preferably pH 7 to 9]).
  • the buffer may optionally contain NaCl, a surfactant (see below) and / or a preservative (eg, sodium azide).
  • Specific examples of the buffer solution include PBS, PBS-T, BB or BB-T.
  • the monomer solution preferably contains a nonionic surfactant (see below; eg, Tween 20, Triton X-100, saponin), especially if the infiltration step is performed by a method other than perfusion.
  • concentration (molar concentration) of the monomer in the monomer solution is not particularly limited, but is, for example, 0.05 to 2M, more specifically 0.1 to 1.5M, and more specifically 0.2 to 1M. obtain.
  • the monomer solution is prepared at a low temperature (for example, 0 to 5 ° C.) (for example, on ice) to prevent the initiation of the polymerization reaction, and the obtained monomer solution is stored at a low temperature even after the preparation. Is preferable.
  • the monomer solution may contain a cross-linking agent.
  • the cross-linking agent include N, N'-methylenebisacrylamide, ethylene glycol di (meth) acrylate (EG (M) A), and polyethylene glycol di (meth) acrylate (for example, tetraethylene glycol dimethacrylate: tetra-EGMA).
  • the cross-linking agent can be contained in the monomer solution in an amount of, for example, 0.1 to 10 parts by mass, preferably 0.2 to 8 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the monomer. ..
  • the cross-linking agent has a concentration (mass / volume) of 0.01 to 1%, preferably 0.05 to 0.5%, more preferably 0.08 to 0.3% in the monomer solution, for example, with respect to the solvent. ) Can be used.
  • the monomer solution may contain a polymerization initiator for efficient polymerization reaction.
  • a polymerization initiator for example, known ones (for example, a thermal polymerization initiator or a photopolymerization initiator) can be used, but a thermal polymerization initiator is preferable, and an azo-based polymerization initiator is more preferable.
  • Specific examples of the polymerization initiator are 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile).
  • the polymerization initiator may be, for example, 10 to 60 parts by mass, preferably 20 to 40 parts by mass, based on 100 parts by mass of the monomer.
  • the polymerization initiator has a concentration (mass) of, for example, 0.01 to 1%, preferably 0.05 to 0.5%, and more preferably 0.1 to 0.5% with respect to the solvent in the monomer solution. / Volume) can be used.
  • the method of infiltration is not particularly limited as long as the monomer solution can be brought into contact with the living tissue.
  • infiltration can be performed by applying or injecting the monomer solution into the biological tissue, or by immersing the biological tissue in the monomer solution.
  • the monomer solution may be infiltrated into the living tissue by perfusion (for example, cardiac perfusion).
  • the perfusion rate can be, for example, 10-100 ml / min, depending on the size of the animal or tissue (including the organ or organ) to be treated.
  • the target biological tissue may be taken out from the animal, and then the monomer solution may be further infiltrated by immersion.
  • the time for contacting the monomer solution with the biological tissue can be appropriately determined in consideration of the size of the biological tissue and the tissue permeability of the monomer solution. For example, 15 minutes or more, 30 minutes or more, 1 hour or more, 6 hours or more, It can be 12 hours or more, 1 day or more, 2 days or more, and 3 days or more.
  • the upper limit is not particularly limited, but can be, for example, a maximum of one week.
  • the temperature of the monomer solution upon contact / infiltration of the monomer solution can be, for example, 0-10 ° C, preferably 2-8 ° C, preferably 2-5 ° C. When the infiltration is performed by a method other than infiltration, it is preferable to maintain the living tissue itself at a low temperature (for example, 0 to 5 ° C.).
  • the infiltration step may be performed before, during and / or after the fixation of the biological tissue performed with the fixing agent.
  • a hydrogel is formed by polymerizing the monomer in a biological tissue.
  • the polymerization step can be carried out by applying heat and / or irradiating with light or radiation.
  • the conditions for heat application and / or light or radiation irradiation are not particularly limited as long as the monomers infiltrated into the living tissue can be polymerized to form a hydrogel, and can be appropriately adopted from known conditions.
  • the polymerization in the biological tissue can be carried out by placing the biological tissue (preferably in a monomer solution) in a constant temperature bath or a hot water bath.
  • the temperature at which the polymerization step is carried out can be, for example, 25-60 ° C, preferably 30-50 ° C, more preferably 35-40 ° C.
  • the polymerization time is not particularly limited, and it is sufficient that the hydrogel is sufficiently formed by the monomer polymerization reaction in the living tissue, but it is usually 15 minutes to 48 hours, for example, 1 hour to 48 hours, preferably 2 hours to. It can be 36 hours, more preferably 3 to 24 hours.
  • an inert gas for example, nitrogen
  • Oxygen which can inhibit the polymerization reaction may be removed.
  • oxygen may be removed from the monomer solution and the biological tissue under vacuum or reduced pressure, and the polymerization step may be further carried out in an inert gas atmosphere.
  • the monomer solution may also be shaken during the polymerization step.
  • the dissolved oxygen in the monomer solution may be removed before the infiltration step.
  • the living tissue is fixed using a fixing agent.
  • a fixing agent commonly used for fixing a living tissue can be used.
  • the fixative include formaldehyde, paraformaldehyde, glutaraldehyde and the like. Of these, paraformaldehyde is preferable.
  • the concentration (volume / volume) of the fixing agent used is not particularly limited, but is usually 50% or less, for example 1% to 40%, preferably 1% to 20%, more preferably 1% to 10% with respect to the solvent. %, More preferably 1% to 5%.
  • the solvent may be the same as that of the monomer solution, and for example, a physiological saline solution or a physiological saline solution containing a buffer solution may be used.
  • the step of fixing the living tissue with the fixing agent can be carried out by bringing the fixing agent into contact with the living tissue. For example, at a temperature of about 4 ° C. or higher and room temperature or lower, the target biological tissue is immersed and permeated into a tissue in a sufficient amount of the above-mentioned working concentration for about 1 hour to about 48 hours. can do.
  • the fixing agent at the above concentration is preferably used in an amount of 10 times by weight or more with respect to the target living tissue, but may be 5 to 10 times by weight with respect to the living tissue.
  • the immersion / permeation may be carried out, for example, at about 4 ° C. for about 24 hours.
  • the fixing may be performed before the hydrogel forming step including the polymerization step described above, at the same time, or after the hydrogel forming step. That is, the fixation of the biological tissue performed by using the fixing agent may be performed before, at the same time, or after the monomer infiltration step.
  • the infiltration step can be carried out by adding the fixing agent to the water-soluble ethylenically unsaturated monomer solution.
  • the infiltration step is performed after the fixation with the fixing agent, the monomer solution used for infiltration may or may not contain the fixing agent.
  • the biological tissue after being fixed with the fixing agent may be brought into contact with a monomer solution containing or not containing the fixing agent (preferably by immersion).
  • Lipid removal step In this step, lipids are mainly removed from living tissue. Lipids are relatively abundant in living tissues, their refractive index is different from that of proteins, and insoluble lipids scatter light. Therefore, the removal of lipids suppresses light scattering and brings the refractive index of living tissue closer to uniform (that is, closer to the refractive index of protein), resulting in transparency of living tissue. Therefore, this process can also be called a "transparency process".
  • constituent components (excluding proteins) other than lipids may be removed from living tissues together with lipids as long as the positional relationship of cells is maintained. Prior to the lipid removal step, excess hydrogel protruding from the living tissue may be removed.
  • Lipid removal can be performed, for example, by passively diffusing a surfactant into the tissue.
  • the surfactant can be used, for example, as a solution of 0.5 to 30%, preferably 1 to 15%, more preferably 2 to 10%, more preferably 2 to 8% (mass / volume).
  • a buffer solution may be used as the solvent for dissolving the surfactant.
  • the above-mentioned buffer solution can be used, but the boric acid buffer solution is preferable because it has a bactericidal action.
  • the pH of the buffer solution that can be used here is preferably 7 to 9. Specific examples of the buffer can be 0.1 to 1 M borate buffer (pH 8 to 9) and 0.01 to 0.1 M PBS (pH 7.4 to 8.5).
  • the surfactant may be an ionic surfactant or a nonionic surfactant, but an ionic surfactant is preferable, and an anionic surfactant is more preferable.
  • nonionic surfactant examples include saponin, jigitonin, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, and polyvinyl alcohol. Examples thereof include polyoxyethylene octylphenyl ether.
  • anionic surfactant examples include sodium alkyl sulfate (for example, sodium lauryl sulfate), sodium alkyl sulfonate, sodium polyoxyethylene alkyl ether sulfate, bile acid salt (for example, sodium colate, sodium deoxycholate), and the like. Examples include N-lauryl sarcosin.
  • sodium lauryl sulfate is preferable.
  • the cationic surfactant include alkyl quaternized ammonium.
  • the amphoteric tenside include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine, 3-[(3-colamide propyl) dimethylammonio] -1-propanesulfonate (CHAPS), and the like. Can be mentioned.
  • Lipids can be removed, for example, by passive diffusion of a surfactant into living tissue.
  • passive diffusion refers to the diffusion of a substance that does not use a technique such as electrophoresis that actively (forces) moves the substance.
  • passive diffusion is performed, for example, by keeping the biological tissue warm (preferably with shaking) in a buffer containing a surfactant (eg, 0.01 to 1 M, pH 6 to 10). be able to.
  • the heat retention temperature may be, for example, room temperature, or 25 to 50 ° C., preferably 30 to 50 ° C., more preferably 35 to 45 ° C.
  • the heat retention time can be appropriately determined according to the situation such as the size of the living tissue, but according to the method of the present invention, it may be shorter than the conventional method, for example, 12 days or less. It can be preferably 10 days or less, more preferably 8 days or less, and even more preferably 7 days or less. Typically, the heat retention time (preferably with shaking) can be, for example, 4-12 days, further 3-12 days, even 2-12 days, and even more 1-12 days. Can be. As long as the effect of the present invention is obtained, the heat retention time may be one day or less.
  • lipid removal can be performed by active diffusion.
  • active diffusion refers to the diffusion of a substance using a technique of actively (forced) moving the substance.
  • active diffusion is carried out by electrophoresis using an ionic surfactant (preferably an anionic surfactant, particularly sodium lauryl sulfate) and optionally adding a buffer solution. May be good.
  • Electrophoresis can be performed at 20 to 60 ° C. using, for example, a direct current of 100 mA to 2000 mA.
  • the time for performing electrophoresis may be shorter than that of the conventional method, for example, 2 hours to 7 days, preferably 6 hours to 4 days, more preferably 12 hours. It can be up to 2 days.
  • lipid removal when lipid removal is performed by electrophoresis, a clearing action can be obtained in a short time as compared with the conventional method, and tissue destruction can be suppressed.
  • the biological tissue Before performing the electrophoresis, the biological tissue is washed once or several times (for example, 2 to 3 times) with a buffer solution containing the ionic surfactant to be used to remove residual fixing agents and unreacted monomers. It may be removed.
  • the surfactant-containing buffer used may be replaced with a fresh one as needed, eg, at any time (eg, every 12-24 hours) or at all times. You may replace it.
  • a nonionic surfactant is further used to remove the ionic surfactant from the living tissue, and a buffer solution is contained as necessary. It is preferable to keep the living tissue warm (preferably while shaking). In this case, the concentration (volume / volume) of the nonionic surfactant can be, for example, 0.01 to 1%.
  • buffer solutions containing nonionic surfactants are BB-T or PBS-T.
  • a surfactant-free buffer may be brought into contact (preferably with shaking) to keep it warm.
  • the conditions of the treatment can be, for example, 30 to 40 ° C. for 12 hours to 2 days.
  • the obtained biological tissue Before, during, or after the lipid removal step, the obtained biological tissue may be subjected to a treatment suitable for observing the tissue, for example, nuclear staining treatment, immunostaining, or the like.
  • a treatment suitable for observing the tissue for example, nuclear staining treatment, immunostaining, or the like.
  • a solvent in the living tissue in most cases, water which is a solvent such as a buffer solution
  • Matches or is close to the index of refractive index of living tissue from which lipids have been removed in most cases, a value close to or close to the index of refraction of proteins [1.4 to 1.6, especially 1.45-1.55]). It may be replaced with a solution having a refractive index (hereinafter, also referred to as a "refractive index uniform solution” or a "refractive index compatible solution”).
  • Such substances include ethylene glycol, polyethylene glycol (eg, 90% PEG400 solution), glycerol (eg, 20-90% glycerol solution, 75% glycerol + 20-40% glucose mixed solution), sucrose (eg, sucrose). 75% sucrose solution), fluctose, polyvinylpyrrolidone, FocusClear® (CelExplorer Labs), 80-90% (mass / volume) Histodenz® (Sigma Aldrich), CUBIC-R + (Tokyo Kasei), etc. Be done. The replacement can be performed, for example, by bringing the biological tissue into contact with the solution and keeping it warm at 20-40 ° C. (preferably with shaking).
  • the time of the replacement is not particularly limited, but may be the time to achieve the desired further clearing, for example, 10 minutes to 3 days (depending on the size of the tissue).
  • the biological tissue obtained by making it transparent by the method of the present invention can be stored in a buffer solution (preferably containing a preservative).
  • the biological tissue clearing reagent provided in the present invention is characterized by containing a water-soluble ethylenically unsaturated monomer containing at least one dichotomous monomer.
  • the twin monomer is the monomer described in the section ⁇ Method for clearing biological tissue>.
  • the reagent of the present invention may contain a water-soluble ethylenically unsaturated monomer other than the twin monomer. Examples of such other monomers include other monomers as described in the section ⁇ Method for clearing biological tissue>.
  • the reagents of the present invention include a dimeric monomer and a monomer having a (meth) acrylamide group.
  • the reagents of the present invention may also further contain a cross-linking agent and / or a polymerization initiator.
  • a cross-linking agent and the polymerization initiator include the cross-linking agent and the polymerization initiator described in the section ⁇ Method for clearing biological tissue>.
  • the reagents of the present invention include a bimodal monomer, a monomer having a (meth) acrylamide group, a cross-linking agent and / or a polymerization initiator.
  • the reagents of the present invention include a bimodal monomer, a monomer of styrene sulfonic acid or a salt thereof, an acrylamide monomer, and N, N'-methylenebisacrylamide.
  • the ratio of the twin monomer to another monomer, optionally a cross-linking agent and / or a polymerization initiator may be such that the ratio described in the section ⁇ Method for clearing biological tissue> can be realized.
  • the reagents provided in the present invention may be provided in a frozen state. If the reagents of the invention contain a bimodal monomer and other monomers, any cross-linking agent and / or polymerization initiator, they may be provided, each encapsulated in a different container.
  • This embodiment can also be expressed as a "(reagent) kit".
  • the kit may have, for example, a water-soluble ethylenically unsaturated monomer containing at least one type of bi-monomer enclosed in a container.
  • the kit may include a buffer solution.
  • the reagent / kit of the present invention may contain a buffer solution for dissolving a water-soluble ethylenically unsaturated monomer or the like.
  • the buffer solution examples include those described in the section ⁇ Method for clearing living tissue>.
  • the reagents / kits of the present invention may contain a fixing agent. Examples of the fixing agent include those described in the section ⁇ Method for clearing living tissue>.
  • the reagents / kits of the present invention may contain a refractive index compatible solution. Examples of such a solution include those described in the section ⁇ Method for clearing living tissue>.
  • the biological tissue clearing reagent of the present invention is suitable for use in the above-mentioned biological tissue clearing method.
  • the present invention provides a method for producing a hydrogel-embedded biological tissue, which comprises applying the above-mentioned biological tissue clearing method to a biological tissue.
  • a transparent biological tissue can be produced in a shorter time than the conventional method, and in particular, when the lipid removal step is performed by passive diffusion, tissue destruction can be suppressed and costs are also increased. It can be kept low.
  • the biological tissue produced by the production method of the present invention can be used for pathological examination of tissue, for research or learning, or for sample specimen for promotion of the tissue clearing method or reagent of the present invention. ..
  • AAM 0.28 M (0.1 g), DAPS 0.28 M (0.389 g), bisAA 6.5 ⁇ 10 -3 M (0.0049 g)
  • a solution containing AAM monomer and DAPS monomer at a molar ratio of AAM / DAPS 25/75 (DAPS75)
  • AAM 0.14 M (0.05 g), DAPS 0.42 M (0.584 g), bisAA 6.5 ⁇ 10 -3 M (0.0049 g)
  • the following monomer solution was prepared with 2.5 mL PBS solution.
  • a solution containing AAM monomer and 2-methacryloyloxyethyl phosphorylcholine (MPC) monomer at a molar ratio of AAM / DAPS 50/50 (MPC50) AAM 0.28 M (0.05 g), MPC 0.28 M (0.21 g), bisAA 6.5 ⁇ 10 -3 M (0.0025 g)
  • a solution containing AAM monomer and MPC monomer at a molar ratio of AAM / MPC 25/75 (MPC75) AAM 0.14 M (0.03 g), MPC 0.42 M (0.31 g), bisAA 6.5 ⁇ 10 -3 M (0.0025 g)
  • a hydrogel prepared from a monomer solution containing 50 mol% or more of a dichotomous monomer showed a high swelling rate when immersed in PBS and an aqueous boric acid solution. This is considered to be due to the interaction between the zwitterions in the molecular chain and the ions in PBS or boric acid aqueous solution. From this result, it is considered that a hydrogel having a large gel network can be formed in PBS and in an aqueous boric acid solution by using a monomer solution containing 50 mol% or more of a dichotomous monomer.
  • each piece of biological tissue from which the surrounding gel has been removed is incubated in 30 ml of 0.8 M borate buffer (adjusted to pH 8.5 with sodium hydroxide) containing 4% (wt / vol) sodium lauryl sulfate. Incubation was carried out at 37 ° C. for 4 days with shaking (120 / min) using BIO-CHAMBER BCP 120-F (Titec) and a small shaker rotary shaker (NR-2; Titec).
  • Removal of Surfactant The living tissue piece was incubated at 37 ° C. for 2 days while shaking in distilled water containing 0.1% by volume of Triton X-100.
  • FIG. 3 Results Photographs of skin tissue before and after shaking (during shaking, if applicable) and after solvent replacement are shown in FIG.
  • the living tissue piece is placed on the intersection of the squares on a 1 cm square grid board.
  • the transparency rate was calculated as described above.
  • the skin tissue hydrogel-formed with DAPS75 did not increase in transparency after shaking for 4 days (after lipid removal), but the transparency rate reached 95% by solvent substitution.
  • the skin tissue in which hydrogel was formed with DAPS50 reached a clearing rate of 99% after solvent replacement. That is, it became almost completely transparent.
  • the skin tissue hydrogel-formed with AcA75 had a clearing rate of 13% and 20% after shaking for 17 days and 47 days, respectively, and a clearing rate of 67% after solvent replacement. From this result, it was confirmed that by using the bidirectional monomer as the monomer, it is possible to realize high transparency of the living tissue in a shorter time than the conventional method. From this result, by using a bidirectional monomer as the monomer, even after removing the lipid by shaking (that is, before solvent replacement), higher transparency of the biological tissue can be realized as compared with the conventional method, and further solvent replacement is performed. It was confirmed that higher transparency can be efficiently achieved than the conventional method.
  • the cancer tissue hydrogel-formed with the monomer solution M100-1 showed a clearing rate of 89% after shaking for 4 days (after removing the lipid), and the clearing rate was increased by solvent replacement. It reached 94%. That is, it became almost completely transparent.
  • the cancer tissue in which hydrogel was formed with the monomer solution M'100-1 or M "100-1 showed almost no increase in transparency after shaking for 4 days (after lipid removal), but became transparent by solvent substitution. The rates increased to 74% and 65%, respectively. From this result, it was confirmed that high transparency of living tissue can be realized in a short time with the polymer gel prepared without using acrylamide.
  • FIG. 4A Results Photographs of brain tissue without shaking and after shaking for 6 and 11 days are shown in FIG. 4A.
  • the data obtained by imaging the biological tissue pieces placed on the film was converted into a monochrome image by ImageJ, the average intensity of transmitted light in a certain area was obtained, and the transparency effect was calculated from the average intensity using the following equation.
  • Clearing action rate (%) Strength of area where tissue is placed / Strength of area excluding tissue ⁇ 100
  • FIG. 4B shows the transparency action rate (%) calculated by the above formula.
  • the hydrogel-formed brain tissue with DAPS75 became almost completely clear after 6 days of shaking to remove lipids (clearing effect rate 82%), and after 11 days of shaking to remove lipids. Achieved even higher transparency (transparency rate 90%).
  • FIG. 4C shows a photograph of nuclear tissue stained with DAPS75-cleared brain tissue. It was confirmed that fluorescence imaging can be performed even in the brain tissue gelled by DAPS75.
  • FIG. 5A shows the improvement rate of the clearing action (difference from "no shaking") calculated by the above formula.
  • the hydrogel-formed cancer tissue with DAPS75 became nearly clear after lipid removal by shaking for 11 days (FIGS. 5A and 5B).
  • FIG. 5B shows that after 11 days of shaking, the improvement rate of the clearing effect was 37% for DAPS75, which was more than twice the improvement rate (16%) for AcA75. There is.
  • the use of the bidirectional monomer as the monomer can realize more efficient transparency of the living tissue than the conventional method (AAM).
  • AAM conventional method
  • the improvement rate of the clearing effect was 31% and 41% for 0.56 M MPC and 1.68 M MPC, respectively, as compared with no shaking. , It can be understood that transparency progresses more quickly.
  • Results A photograph of the cancerous tissue without shaking or after shaking for a predetermined period is shown in FIG. Below the photograph, the improvement rate of the transparency effect (difference from "no shaking") calculated by the above formula is shown.
  • the results as in the case of using the brain tissue sample as the biological tissue sample of 7.2, the cancer tissue is also made transparent more efficiently than the conventional method (AAM) by using the bidirectional monomer as the monomer. It was confirmed that it could be realized.
  • AAM conventional method
  • mice brain tissue pieces were mixed with 0.1 M phosphate buffer (pH 7.4) containing 0.5 M NaCl to a final concentration of 5 ⁇ g / mL of Propidium Iodide (Thermo Fisher Scientific). , Using a locking tube roller (LSM-80; Wakenby Tech), kept warm at room temperature for 2 days while shaking (25 rpm).
  • phosphate buffer pH 7.4
  • Propidium Iodide Thermo Fisher Scientific
  • Results A photograph of a mouse brain tissue sample taken with an optical sheet microscope is shown in FIG. The results of nuclear staining and the results of vascular smooth muscle staining are shown, respectively. Good stained images were obtained in the samples clarified with both DAPS50 and 0.56 M MPC monomers. It was also confirmed that a good stained image was obtained in the sample (EP (+)) that was made transparent with 0.56 M MPC monomer and subjected to electrophoresis. Therefore, it was confirmed that in the sample clarified by the present invention, fluorescence imaging can be performed satisfactorily while suppressing tissue destruction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、(i)生体組織を固定剤で固定する前、若しくは間、又は固定した後、少なくとも1種の双イオン性の水溶性エチレン性不飽和モノマーを含む水溶性エチレン性不飽和モノマーを該生体組織に浸潤させ、生体組織内で、前記水溶性エチレン性不飽和モノマーを重合させることによりヒドロゲルを形成する工程、(ii)前記ヒドロゲル形成工程の前、若しくは間、又はその後に、生体組織を固定剤で固定する工程、及び(iii)前記固定工程後の生体組織から脂質を除去する工程を含んでなることを特徴とする生体組織の透明化方法に関する。

Description

生体組織透明化方法及びその試薬
 本発明は、生体組織の透明化方法及びそのための試薬に関する。
 蛍光イメージングをはじめ、生体の複雑な臓器や組織の情報を詳細に得ることは、生命現象の解明や病気の診断に際して非常に重要である。
 一般に、生体組織は主にタンパク質、脂質、核酸などで構成されているが、これらはそれぞれ屈折率が異なるため、生体組織内で屈折率は不均一な状態となり、したがって生体組織を光が透過せず、生体組織内部をその表面から観察することは困難を伴う。
 そこで、生体組織全体の屈折率を、その主要構成成分であるタンパク質のものに近づけることにより生体組織内での光の散乱を抑制し、生体組織を透明化する技術が開発されている。
 例えば、Chungらによる「CLARITY」法においては、光散乱及び屈折率不均一の主因である脂質を、タンパク質をポリアクリルアミドのヒドロゲルに固定した後に電気泳動により除去し、組織内の液体を、屈折率がタンパク質のものに近い溶液に置換することにより、組織を透明化する(非特許文献1、特許文献1)。
 しかしながらこの方法によると、電気泳動による組織破壊が起き易く、又、組織の透明化の度合いは、十分ではない。これを解決するため、電気泳動に代えて振盪により徐々に脂質を除去し、組織破壊を低減させる方法が開発されている(非特許文献2、特許文献1、2)。しかし、この方法では、組織破壊は起こり難い一方で、振盪による脂質の除去に長時間(2~3週間)を要する。
 これに対処するため、ヒドロゲルを、イオン性解離基(好ましくは、アニオン性解離基)を有する水溶性エチレン性不飽和モノマーを含むモノマーを用いて形成することにより、長時間を要することなく組織の透明化を実現する技術が開発されている(特許文献3)。しかしながら、この方法によっても、組織の透明化の度合いは必ずしも十分ではなく、より高い透明化を達成し得る生体組織の透明化方法が求められていた。
特表2016-538569 特表2015-533210 国際公開第WO2019/009300号パンフレット
K. Chung et al. Nature 497(7449), 332-337 (2013) R. Tomer et al. Nature Protocols, 9(7), 1682-1697 (2014)
 本発明は、係る事情に鑑みてなされたものであり、(i)生体組織を固定剤で固定する前、若しくは間、又は固定した後、少なくとも1種の双イオン性の水溶性エチレン性不飽和モノマーを含む水溶性エチレン性不飽和モノマーを該生体組織に浸潤させ、生体組織内で、前記水溶性エチレン性不飽和モノマーを重合させることによりヒドロゲルを形成する工程、
 (ii)前記ヒドロゲル形成工程の前、若しくは間、又はその後に、生体組織を固定剤で固定する工程、及び
 (iii)前記固定工程後の生体組織から脂質を除去する工程を含んでなることを特徴とする生体組織の透明化方法を提供する。
 また、本発明は、上記の生体組織の透明化方法を適用することを特徴とする、ヒドロゲルで包埋された生体組織の製造方法を提供する。
 本発明はまた、生体組織透明化のため又は透明化生体組織が包埋されたヒドロゲルの製造ための、双イオン性の水溶性エチレン性不飽和モノマーの使用を提供する。
 更に、本発明は、少なくとも1種の双イオン性の水溶性エチレン性不飽和モノマーを含む双イオン性の水溶性エチレン性不飽和モノマーを有する生体組織透明化試薬又はキットを提供する。
 本発明によれば、生体組織の透明化の度合いを、従来知られていた方法に比べて、より高めることが可能となる。
アクリル酸モノマーを用いる従来の透明化方法及びDAPSモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(がん組織)の写真を示す。生体組織片は方眼ボード上に載置されている。 アクリル酸モノマーを用いる従来の透明化方法及びDAPSモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(皮膚組織)の写真を示す。生体組織片は方眼ボード上に載置されている。 MPCモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(がん組織)の写真を示す。生体組織片は方眼ボード上に載置されている。 A:アクリル酸モノマーを用いる従来の透明化方法(AcA75)及び本発明の透明化方法の実施形態(DAPS75)を適用した生体組織片(脳組織)の写真を示す。B:従来方法(AcA75)及び本発明の透明化方法の実施形態(DAPS75)による透明化作用率を示すグラフである。C:本発明の透明化方法の実施形態(DAPS75)を適用した生体組織片(脳組織)の核染色画像を示す。 A:アクリル酸モノマーを用いる従来の透明化方法(AcA75)及び本発明の透明化方法の実施形態(DAPS75)を適用した生体組織片(がん組織)の写真を示す。B:従来方法(AcA75)及び本発明の透明化方法の実施形態(DAPS75)による透明化作用の向上率を示すグラフである。 従来の透明化方法(AAMモノマー)及びMPCモノマー又はDAPSモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(脳組織)の写真を示す。生体片はフィルム上に載置されている。 従来の透明化方法(AAMモノマー)及びMPCモノマー又はDAPSモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(がん組織)の写真を示す。生体片はフィルム上に載置されている。 MPCモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(脳組織)の写真を示す。生体片はフィルム上に載置されている。 従来の透明化方法(AAMモノマー)及びMPCモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(がん組織)の写真を示す。生体片はフィルム上に載置されている。 MPCモノマー又はDAPSモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(脳組織)の核染色画像および血管平滑筋染色像を示す。 DAPSモノマーを用いる本発明の透明化方法の実施形態を適用した生体組織片(がん組織)の核染色画像およびKu80染色像を示す。
<生体組織透明化方法>
 本発明における生体組織の透明化方法は、生体組織を固定剤で固定する前、若しくは間、又は固定した後、生体組織に水溶性エチレン性不飽和モノマーを浸潤させ、生体組織内で、前記水溶性エチレン性不飽和モノマーを重合させることによりヒドロゲルを形成する工程を含む。当該工程は、生体組織に水溶性エチレン性不飽和モノマーを浸潤させる工程と、当該モノマーを重合させてヒドロゲルを形成する重合工程とを含む。ここで水溶性エチレン性不飽和モノマーは、少なくとも1種の双イオン性の水溶性エチレン性不飽和モノマーを含む。浸潤工程と重合工程とを含む当該工程は、後に説明する固定剤を用いて生体組織を固定する工程よりも前に行ってもよいし、同時に行ってもよいし、その後に行ってもよい。
 本発明において用いられる水溶性エチレン性不飽和モノマーは、水への溶解性の大小を問わず親水性の性質を有するものであり、分子内にエチレン性不飽和結合を有するモノマーであればよい。
 本発明においては、生体組織を透明化するに際し、生体組織を物理的に固定化するに寄与するヒドロゲルを当該生体内で形成させるが、当該ヒドロゲルを構成するモノマー単位として少なくとも1種の双イオン性の水溶性エチレン性モノマー(本明細書中「双性モノマー」とも呼ぶ)を用いることにより、脂質除去(すなわち、透明化)が受動拡散であっても短時間に達成できる。
 本発明において、透明化方法で達成し得る「透明化」とは、例えば、可視光若しくはその一部、紫外光又は赤外光を照射させた場合に、当該光が生体組織を透過して、当該方法の処理前と比較して、生体組織の光透過性(すなわち、透過率)が高くなることをいう。
 透明化を行う対象となる「生体組織」は、生物に由来する組織/器官を含むものであれば、特に制限されず、組織/器官の全体であってもよいし、その一部分であってもよい。組織は生検組織又は剖検組織であってもよく、健常な組織であってもよいし、疾患に伴うか又は疾患の原因である(例えば、組織化学的、生化学的、形態学的)異常又は変化を有する組織であってもよい。組織/器官が由来する生物は、限定されないが、好ましくは、哺乳類、鳥類、魚類、両生類、爬虫類などの動物であり、特に好ましくは哺乳動物である。生体組織は、本発明の透明化方法に供される前に、蛍光標識などを用いて染色/標識されていてもよく、透明化後に染色/標識されてもよい。
 生体組織は、例えば、脳(全脳又は脳ブロック若しくは切片)であってもよいし、他の組織/器官であってもよい。
(1)-1.浸潤工程
 この工程は、少なくとも1種の双イオン性の水溶性エチレン性不飽和モノマーを含む水溶性エチレン性不飽和モノマーを生体組織に浸潤させる工程である。
 生体組織に浸潤させる水溶性エチレン性不飽和モノマーは、少なくとも1種の双イオン性の水溶性エチレン性不飽和モノマーを含み、それと重合してヒドロゲルを構成することができる他のモノマーを含んでいてもよい。ここで、「双イオン性」モノマーとは、1分子中に陽イオン部分と陰イオン部分とを有し、分子全体として中性電荷であるモノマーをいう。双イオン性を与える陽イオン及び陰イオンは特に限定されない。
 陽イオンとしては、例えば、第四級アンモニウムイオン、スルホニウムイオン、第四級ホスホニウムイオンが挙げられ、好ましくは、第四級アンモニウムイオンである。
 陰イオンとしては、例えば、酸(例えば、スルホン酸、カルボン酸、リン酸)に由来する陰イオンが挙げられ、好ましくは、スルホン酸陰イオン、カルボン酸陰イオン及びリン酸陰イオンから選択され、より好ましくはスルホン酸陰イオン及びリン酸陰イオンからなる群又はカルボン酸陰イオン及びリン酸陰イオンからなる群より選択される。
 本発明で用いられる水溶性エチレン性不飽和モノマーは、少なくとも1種の双性モノマーを含むが、2種類や3種類など複数種の双性モノマーを含んでいてもよい。
 双イオン性の水溶性エチレン性不飽和モノマーは、好ましくは、ベタイン型モノマーである。ここで、「ベタイン型モノマー」とは、分子中に陽イオン部分として陽イオンを与える構造(例えば、第四級アンモニウム構造)と陰イオン部分として酸構造を有する分子内塩をいう。ベタイン型モノマーとしては、例えば、スルホン酸基を有するスルホベタイン型モノマー、カルボキシル基を有するカルボキシベタイン型モノマー及びリン酸基を有するホスホベタイン型モノマーが挙げられ、好ましくはスルホベタイン型モノマー及びホスホベタイン型モノマーからなる群又はカルボキシベタイン型モノマー及びホスホベタイン型モノマーからなる群より選択される。
 スルホベタイン型モノマーとしては、スルホベタイン型の構造(-N+R'R”-R-SO3 -;ここでR'及びR”は1価の基であり、Rは2価の基である)を有する水溶性エチレン性不飽和モノマーである限り特に限定されず、例えば、下記式(1):
1-C(=CH2)-CO-X-R2-N+34-R6-SO3 -   (1)
(式中、
 R1は水素原子又はC1~C4の直鎖又は分岐のアルキルであり、
 Xは酸素原子又はNR7(R7は水素原子又はC1~C3の直鎖又は分岐のアルキル若しくはアルコキシである)で表される基であり、
 R2はC1~C5の直鎖又は分岐のアルキレンであり、
 R3及びR4は各々独立してC1~C4の直鎖又は分岐のアルキル基又はアルコキシ基であり、
 R6はC1~C5の直鎖又は分岐のアルキレンである。)
で表されるモノマーが挙げられ得る。
 R1がアルキルである場合、その炭素数は、好ましくは1~3である。R1の具体例は、メチル、エチル、n-プロピル、イソプロピルである。R1は、好ましくは、水素原子又はメチルである。
 Xが-NR7-で表される基であり、R7がアルキル又はアルコキシである場合、その炭素数は、好ましくは1~2である。基-NR7-におけるアルキル又はアルコキシの具体例は、メチル、エチル、n-プロピル、イソプロピル、メトキシ、エトキシ、プロポキシ、イソプロポキシである。Xは好ましくは酸素原子又は基-NH-である。
 R2のアルキレンの炭素数は、好ましくは1~4であり、より好ましくは1~3であり、更により好ましくは2~3である。R2のアルキレンの具体例は、メチレン、エチレン、プロピレン、2-メチルプロピレン、ブチレン、ペンチレンである。R2は、好ましくはエチレン、プロピレン、2-メチルプロピレンである。
 R3及びR4のアルキル又はアルコキシの炭素数は、好ましくは1~3である。R3及びR4の具体例は、メチル、エチル、n-プロピル、イソプロピル、メトキシ、エトキシ、プロポキシ、イソプロポキシである。R3及びR4は、好ましくは、各々独立してメチル又はエチルである。
 R6のアルキレンの炭素数は、好ましくは1~4であり、より好ましくは1~3であり、より好ましくは2~3である。R6のアルキレンは、1以上のヒドロキシで置換されていてもよい。R6のアルキレンの具体例は、メチレン、エチレン、プロピレン、2-メチルプロピレン、ブチレン、ペンチレン、2-ヒドロキシエチレン、2-ヒドロキシプロピレンである。R6は、好ましくはエチレン、プロピレン、2-メチルプロピレン、2-ヒドロキシプロピレンである。
 スルホベタイン型モノマーの具体例は、例えば、N,N-ジメチル(3-(メタ)アクリルアミドプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミドプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミド-2-メチルプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミドエチル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリロイルオキシエチル)アンモニウムプロパンスルホネート及びN,N-ジメチル(3-(メタ)アクリロイルオキシプロピル)アンモニウムプロパンスルホネートが挙げられる。なお、本発明において、例えば、「(メタ)アクリルアミドプロピル」は、「アクリルアミドプロピル」及び「メタアクリルアミドプロピル」を意味する。
 双イオン性の水溶性エチレン性不飽和モノマーとしてスルホベタイン型モノマーを用いる場合、そのモノマーは、好ましくは、N,N-ジメチル(3-(メタ)アクリルアミドプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミドプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミド-2-メチルプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミドエチル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリロイルオキシエチル)アンモニウムプロパンスルホネート及びN,N-ジメチル(3-(メタ)アクリロイルオキシプロピル)アンモニウムプロパンスルホネートからなる群より選択される。
 スルホベタイン型モノマーは、対応する第三級アミン化合物を、対応するω-ハロアルキルスルホン酸又はその塩と反応させて四級化することにより得ることができる。或いは、スルホベタイン型モノマーは、対応する第三級アミン化合物と対応するサルトン化合物とを反応させることにより得ることができる(例えば、J. Ning, G. Li, & K. Haraguchi, Macromolecules, 46, 5317-5328 (2013)又はLee, W.F. and Tsai, C.C., Polymer, 35, 2210-2217 (1994))。使用できるサルトン化合物としては、1,2-エタンサルトン、1,3-プロパンサルトン、1,4-ブタンサルトン、2,4-ブタンサルトン、2,5-ペンタンサルトンが挙げられる。
 カルボキシベタイン型モノマーとしては、カルボキシベタイン型の構造(-N+R'R”-R-CO2 -)を有する水溶性エチレン性不飽和モノマーである限り特に限定されず、例えば、下記式(2):
1-C(=CH2)-CO-X-R2-N+34-R6-CO2 -   (2)
(式中、R1~R4、R6及びXは式(1)のものと同義である。)
で表されるモノマーが挙げられ得る。
 カルボキシベタイン型モノマーの具体例は、例えば、3-[(3-(メタ)アクリルアミドプロピル)-ジメチルアンモニオ]プロパノエート、3-[(2-(メタ)アクリルアミド-2-メチルプロピル)-ジメチルアンモニオ]プロパノエート、3-[(2-(メタ)アクリルアミドエチル)-ジメチルアンモニオ]プロパノエート、3-[(3-(メタ)アクリロイルオキシプロピル)-ジメチルアンモニオ]プロパノエート、3-[(2-(メタ)アクリロイルオキシエチル)-ジメチルアンモニオ]プロパノエート、4-[(3-(メタ)アクリルアミドプロピル)-ジメチルアンモニオ]ブタノエート、4-[(2-(メタ)アクリルアミド-2-メチルプロピル)-ジメチルアンモニオ]ブタノエート、4-[(2-(メタ)アクリルアミドエチル)-ジメチルアンモニオ]ブタノエート、4-[(3-(メタ)アクリロイルオキシプロピル)-ジメチルアンモニオ]プロパノエート、4-[(2-(メタ)アクリロイルオキシエチル)-ジメチルアンモニオ]ブタノエート、3-(メタ)アクリルアミドプロピル-ジメチルアンモニオアセテート、2-(メタ)アクリルアミドエチル-ジメチルアンモニオアセテート、4-(メタ)アクリロイルオキシブチル-ジメチルアンモニオアセテート、3-(メタ)アクリロイルオキシプロピル-ジメチルアンモニオアセテート、2-(メタ)アクリロイルオキシエチル-ジメチルアンモニオアセテート及び(メタ)アクリロイルオキシメチル-ジメチルアンモニオアセテートが挙げられる。
 双イオン性の水溶性エチレン性不飽和モノマーとしてカルボキシルベタイン型モノマーを用いる場合、そのモノマーは、好ましくは、3-[(3-(メタ)アクリルアミドプロピル)-ジメチルアンモニオ]プロパノエート、3-[(2-(メタ)アクリロイルオキシエチル)-ジメチルアンモニオ]プロパノエート、4-[(2-(メタ)アクリルアミド-2-メチルプロピル)-ジメチルアンモニオ]ブタノエート、4-[(3-(メタ)アクリルアミドプロピル)-ジメチルアンモニオ]ブタノエート及び4-[(2-(メタ)アクリロイルオキシエチル)-ジメチルアンモニオ]ブタノエートからなる群より選択される。
 カルボキシベタイン型モノマーは、対応する第三級アミン化合物を、対応するω-ハロアルキルカルボン酸又はその塩と反応させて四級化することにより得ることができる(特開平7-278071号公報、特開平8-99945号公報)。或いは、カルボキシベタイン型モノマーは、対応する第三級アミン化合物と対応するラクトン化合物とを反応させることにより得ることができる。使用できるラクトン化合物としては、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトンが挙げられる。
 ホスホベタイン型モノマーとしては、ホスホベタイン型の構造(-OPO3 --R-N+R'R”R'”)を有する水溶性エチレン性不飽和モノマーである限り特に限定されず、例えば、下記式(3)又は(4):
1-C(=CH2)-CO-X-R2-OPO3 --R6-N+345   (3)
1-C(=CH2)-CO-X-R2-N+34-R6-OPO3 --R7   (4)
(式中
 R1~R4、R6及びXは式(1)のものと同義であり、
 R5はC1~C4の直鎖又は分岐のアルキル基又はアルコキシ基であり、
 R7はC1~C4の直鎖又は分岐のアルキル基又はアルコキシ基である。)
で表されるモノマーが挙げられ得る。
 R5のアルキル又はアルコキシの炭素数は、好ましくは1~3である。R5の具体例は、メチル、エチル、n-プロピル、2'-イソプロピル、メトキシ、エトキシ、プロポキシ、イソプロポキシである。R5は、好ましくはメチル又はエチルである。
 R7のアルキル又はアルコキシの炭素数は、好ましくは1~3である。R7の具体例は、メチル、エチル、n-プロピル、2'-イソプロピル、メトキシ、エトキシ、プロポキシ、イソプロポキシである。R7は、好ましくはメチル又はエチルである。
 ホスホベタイン型モノマーの具体例は、例えば、2-アクリロイルオキシエチルホスホリルコリン、2-メタクリロイルオキシエチルホスホリルコリン(MPC)、2-[(3-アクリルアミドプロピル)ジメチルアンモニオ]エチル-2'-イソプロピルホスフェート及び2-(メタ)アクリロイルオキシエチル-2'-(トリメチルアンモニオ)エチルホスフェートが挙げられる。
 双イオン性の水溶性エチレン性不飽和モノマーとしてホスホベタイン型モノマーを用いる場合、そのモノマーは、好ましくは、2-(メタ)アクリロイルオキシエチルホスホリルコリン、2-[(3-アクリルアミドプロピル)ジメチルアンモニオ]エチル-2'-イソプロピルホスフェート及び2-(メタ)アクリロイルオキシエチル-2'-(トリメチルアンモニオ)エチルホスフェートからなる群より選択される。
 ホスホベタイン型モノマーは、対応する第三級アミン化合物を、対応するハロアルキルホスフェート、ジハロホスフェート、ハロアルキルジハロホスフェート又はハロホスホラン(例えば、2-クロロ-2-オキソ-1,3,2-ジオキサホスホラン)と反応させることにより得ることができる。
 生体組織に浸潤させる水溶性エチレン性不飽和モノマーは、双性モノマー以外の水溶性エチレン性不飽和モノマーを含んでいてもよい。そのような他のモノマーとしては、水溶液中で電気的に中性のモノマーであることができ、好ましくはアミノ基(特に一級アミノ基)を有するモノマーであり、例えば、(メタ)アクリルアミド基を有するモノマーが挙げられる。
 (メタ)アクリルアミド基を有するモノマーの具体例としては、N-ビニルアセトアミド、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-メチル-N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-エチルメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドなどであり得る。なかでも、(メタ)アクリルアミドが好ましい。
 生体内で形成させるヒドロゲルを構成する全モノマーに対する双性モノマーの割合は、本発明の効果が得られる限り特に限定されないが、好ましくは少なくとも10モル%、より好ましくは少なくとも25モル%、更により好ましくは少なくとも35モル%、なお更により好ましくは少なくとも40モル%、とりわけ更に好ましくは少なくとも50モル%である。
 上記全モノマーに対する双性モノマーの割合の上限は、本発明の効果が得られる限り特に限定されず、100モル%であり得、例えば90モル%、85モル%、80モル%、75モル%、70モル%、65モル%、60モル%であり得る。
 よって、本発明で用いられる水溶性エチレン性不飽和モノマーは、10~100モル%の双性モノマーを含み、残余は他のモノマーであってもよい。
 少なくとも1種の双性モノマー水溶性エチレン性不飽和モノマーは、溶媒に溶解させた溶液として生体組織に接触させることにより、該生体組織に浸潤させることができる(以下、本発明で用いる水溶性エチレン性不飽和モノマーの溶液を単に「モノマー溶液」とも呼ぶ)。
 モノマー溶液を構成する溶媒としては、生理食塩水又は緩衝液が加えられた生理食塩水を用いることができる。緩衝液は、当該分野において公知のものから適宜選択できるが、例えば、リン酸緩衝液、ホウ酸緩衝液、トリス塩酸緩衝液、クエン酸緩衝液、炭酸緩衝液、コハク酸緩衝液、酢酸緩衝液などである(例えば、0.01~1M[好ましくは0.01~0.1M]、pH6~10[好ましくはpH7~9]のもの)。緩衝液は、必要に応じて、NaCl、界面活性剤(下記参照)及び/又は防腐剤(例えば、アジ化ナトリウム)を含んでいてもよい。緩衝液の具体例としては、PBS、PBS-T、BB又はBB-Tが挙げられる。浸潤工程が灌流以外の方法により行われる場合には特に、モノマー溶液は非イオン性界面活性剤(下記参照;例えば、Tween 20、Triton X-100、サポニン)を含むことが好ましい。
 モノマー溶液中のモノマーの濃度(モル濃度)は、特に制限されないが、例えば0.05~2M、より具体的には0.1~1.5M、より具体的には0.2~1Mであり得る。
 モノマー溶液の調製は、重合反応の開始を防止するため、(例えば氷上で)低温下(例えば0~5℃)で行い、得られたモノマー溶液は、調製後も、溶液を低温にて保存することが好ましい。
 モノマー溶液は架橋剤を含んでいてもよい。
 架橋剤としては、例えば、N,N'-メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート(EG(M)A)、ポリエチレングリコールジ(メタ)アクリレート(例えば、テトラエチレングリコールジメタクリレート:tetra-EGMA)、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、メタクリル酸アリル、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジビニルベンゼン、ビスフェノールジ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、テトラアリルオキシエタン、トリアリルアミン、ポリエチレングリコールジ(β-アクリロイルオキシプロピオネート)、トリメチロールプロパントリ(β-アクリロイルオキシプロピオネート)、ポリ(メタ)アリロキシアルカンなどが挙げられる。なかでも、N,N'-メチレンビスアクリルアミド、メタクリル酸アリルが好ましく、N,N'-メチレンビスアクリルアミドがより好ましい。
 架橋剤は、モノマー100質量部に対して、例えば0.1~10質量部、好ましくは0.2~8質量部、より好ましくは0.5~5質量部でモノマー溶液に含まれることができる。或いは、架橋剤は、モノマー溶液中、例えば溶媒に対して0.01~1%、好ましくは0.05~0.5%、より好ましくは0.08~0.3%の濃度(質量/体積)で用いることができる。
 モノマー溶液は、効率的な重合反応のために、重合開始剤を含んでいてもよい。
 重合開始剤としては、公知のもの(例えば、熱重合開始剤又は光重合開始剤)を用いることができるが、熱重合開始剤が好ましく、アゾ系重合開始剤がより好ましい。
 重合開始剤の具体例は、2,2'-アゾビス(イソブチロニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジハイドロクロライド(VA-044)、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジサルフェートジハイドレート、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2'-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジハイドロクロライド、2,2'-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジハイドロクロリド、2,2'-アゾビス[N-(2-カルボキシエチル)-2-メチル]ハイドレート、2,2'-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]n-ハイドレート、過硫酸アンモニウム、ジ-tert-ブチルペルオキシド、tert-ブチルヒドロペルオキシド、過酸化ベンゾイルなどが挙げられる。好ましくは、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジハイドロクロライド、2,2'-アゾビスイソブチロニトリル、過硫酸アンモニウム、より好ましくは2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジハイドロクロライドである。
 重合開始剤は、モノマー100質量部に対して、例えば10~60質量部、好ましくは20~40質量部とすることができる。或いは、重合開始剤は、モノマー溶液中、溶媒に対して、例えば0.01~1%、好ましくは0.05~0.5%、より好ましくは0.1~0.5%の濃度(質量/体積)で用いることができる。
 浸潤の方法は、モノマー溶液を生体組織に接触させることができるものであれば、特に制限されない。例えば、浸潤は、モノマー溶液を生体組織に塗布するか若しくは注入し、又は生体組織をモノマー溶液に浸漬させることにより行うことができる。
 或いは、モノマー溶液を灌流(例えば心臓灌流)により生体組織に浸潤させてもよい。灌流速度は処理の対象とする動物や組織(臓器や器官を含む)のサイズにより、例えば10~100ml/分であり得る。動物に対してモノマー溶液の浸潤を灌流により行った場合には、動物から目的の生体組織を取り出した後、更に浸漬によるモノマー溶液の浸潤を行なってもよい。
 モノマー溶液を生体組織に接触させる時間は、生体組織の大きさ及びモノマー溶液の組織浸透性を考慮して適宜決定できるが、例えば、15分間以上、30分間以上、1時間以上、6時間以上、12時間以上、1日間以上、2日間以上、3日間以上であり得る。上限は特に制限されないが、例えば最大1週間であり得る。
 モノマー溶液の接触/浸潤に際するモノマー溶液の温度は、例えば0~10℃、好ましくは2~8℃、好ましくは2~5℃であり得る。浸潤が浸漬以外の方法による場合には、生体組織自体も低温(例えば、0~5℃)に維持することが好ましい。
 浸潤工程は、固定剤を用いて行われる生体組織の固定の前、間及び/又は後に行なってもよい。
(1)-2.重合工程
 水溶性エチレン性不飽和モノマーの重合工程では、生体組織内で、当該モノマーを重合させることによりヒドロゲルを形成する。
 当該重合工程は、熱を付与するか及び/又は光若しくは放射線を照射することにより行うことができる。熱付与及び/又は光若しくは放射線の照射の条件は、生体組織内に浸潤させたモノマーが重合してヒドロゲルを形成することができれば、特に限定されず、公知の条件から適宜採用することができる。例えば(特に、熱重合開始剤を用いる場合)、生体組織内での重合は、(好ましくはモノマー溶液中の)生体組織を恒温槽又は温水浴槽内に置くことにより行うことができる。
 当該重合工程が実施される温度は、例えば25~60℃、好ましくは30~50℃、より好ましくは35~40℃であり得る。
 重合時間は特に限定されず、生体組織内でのモノマー重合反応によるヒドロゲルの形成が十分に行われればよいが、通常15分間~48時間であり、例えば1時間~48時間、好ましくは2時間~36時間、より好ましくは3時間~24時間であり得る。
 生体組織をモノマー溶液中に維持したままで重合工程を行う場合には特に、重合反応を促進するため、重合工程の前に、モノマー溶液に不活性ガス(例えば窒素)を通気してモノマー溶液中の(重合反応を阻害し得る)酸素を除去してもよい。或いは、重合工程の前に、真空又は減圧下で、モノマー溶液及び生体組織から酸素を除去してもよく、更に重合工程を不活性ガス雰囲気下で行なってもよい。また、重合工程の間、モノマー溶液を振盪させてもよい。なお、モノマー溶液中の溶存酸素の除去は、浸潤工程の前に行っていてもよい。
(2)固定工程
 この工程では、固定剤を用いて生体組織を固定する。
 当該固定には、生体組織の固定に際して常用される固定剤を用いることができる。固定剤としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、グルタルアルデヒドなどが挙げられる。なかでも、パラホルムアルデヒドが好ましい。固定剤の使用濃度(体積/体積)は、特に制限されないが、通常は溶媒に対して、50%以下、例えば1%~40%、好ましくは1%~20%、より好ましくは1%~10%、より好ましくは1%~5%であり得る。固定剤を希釈するには溶媒としては、モノマー溶液の溶媒と同じであってもよく、例えば、生理食塩水や緩衝液を含ませた生理食塩水を用いてもよい。
 固定剤で生体組織を固定する工程は、当該生体組織に固定剤を接触させることにより実施することができる。例えば、約4℃以上、室温以下の温度下において、組織に対して十分な量の上記使用濃度の固定剤に、対象の生体組織を約1時間から約48時間、浸漬・浸透させることにより実施することができる。上記使用濃度の固定剤は、対象の生体組織に対して10重量倍以上の量を用いることが好ましいが、生体組織に対して5~10重量倍であってもよい。上記浸漬・浸透は、例えば、約4℃、約24時間で実施してもよい。
 当該固定は、前述した重合工程を含むヒドロゲル形成工程より前に行ってもよいし、同時に行ってもよいし、その後に行ってもよい。
 すなわち、上記固定剤を用いて行われる生体組織の固定は、モノマーの浸潤工程よりも前に行ってもよいし、同時に行ってもよいし、後に行ってもよい。浸潤工程を固定剤による固定の間に行う場合には、水溶性エチレン性不飽和モノマー溶液に固定剤を含ませて実施することができる。浸潤工程を固定剤による固定より後に行う場合には、浸潤に用いるモノマー溶液が固定剤を含んでいてもよいし、含んでいなくてもよい。具体的には、固定剤で固定した後の生体組織を固定剤を含むか又は含まないモノマー溶液に(好ましくは浸漬により)接触させてもよい。
(3)脂質除去工程
 この工程において、生体組織から主に脂質を除去する。
 脂質は生体組織中に比較的多く存在し、その屈折率はタンパク質のものと異なっており、また不溶性の脂質は光を散乱させる。そのため、脂質の除去は光散乱を抑制すると共に、生体組織の屈折率を均一に近づけ(すなわち、タンパク質の屈折率に近づけ)、生体組織の透明化をもたらす。よって、本工程は「透明化工程」とも呼べる。なお、本工程において、細胞の位置関係が保たれている限り、脂質以外の構成成分(タンパク質を除く)が脂質と共に生体組織から除去されてもよい。
 脂質除去工程に先立ち、生体組織からはみ出た余分なヒドロゲルを除去してもよい。
 脂質の除去は、例えば、界面活性剤を組織に受動拡散させることにより実施することができる。界面活性剤は、例えば0.5~30%、好ましくは1~15%、より好ましくは2~10%、より好ましくは2~8%(質量/体積)の溶液として用いることができる。界面活性剤の溶解させる溶媒としては、緩衝液を用いてもよい。緩衝液としては上記のものを用い得るが、ホウ酸緩衝液は殺菌作用を有するため好ましい。ここで用いることができる緩衝液のpHは7~9であることが好ましい。緩衝液の具体例は、0.1~1Mホウ酸緩衝液(pH8~9)及び0.01~0.1M PBS(pH7.4~8.5)であり得る。
 界面活性剤は、イオン性界面活性剤であってもよく、非イオン性界面活性剤であってもよいが、イオン性界面活性剤が好ましく、アニオン性界面活性剤がより好ましい。
 非イオン性界面活性剤としては、例えば、サポニン、ジギトニン、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリビニルアルコール、ポリオキシエチレンオクチルフェニルエーテルなどが挙げられる。
 アニオン性界面活性剤としては、例えば、アルキル硫酸ナトリウム(例えば、ラウリル硫酸ナトリウム)、アルキルスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、胆汁酸塩(例えば、コール酸ナトリウム、デオキシコール酸ナトリウム)、N-ラウリルサルコシンなどが挙げられる。なかでも、ラウリル硫酸ナトリウムが好ましい。
 カチオン性界面活性剤としては、例えば、アルキル四級化アンモニウムなどが挙げられる。両性界面活性剤としては、例えば、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、3-[(3-コールアミドプロピル)ジメチルアンモニオ]-1-プロパンスルホネート(CHAPS)などが挙げられる。
 脂質の除去は、例えば、例えば界面活性剤の生体組織内への受動拡散により行うことができる。ここで、「受動拡散」とは、電気泳動のような能動的(強制的)に物質を移動させる技法を用いない物質の拡散をいう。具体的には、受動拡散は、例えば、生体組織を、界面活性剤を含む緩衝液(例えば、0.01~1M、pH6~10)中で、(好ましくは振盪させながら)保温することにより行うことができる。当該保温温度は、例えば室温、又は25~50℃、好ましくは30~50℃、より好ましくは35~45℃であり得る。保温時間は、生体組織の大きさなどの状況に応じて適宜決定することができるが、本発明の方法によれば、従来の方法に比べ、より短時間であってもよく、例えば12日間以下、好ましくは10日間以下、より好ましくは8日間以下、更により好ましくは7日間以下であり得る。典型的には、(好ましくは振盪させながら)保温時間は例えば4~12日間であり得、更に3~12日間であり得、更には2~12日間であり得、尚更には1~12日間であり得る。本発明の効果が得られる限り、当該保温時間は1日以下であってもよい。
 或いは、脂質の除去は、能動拡散により行うことができる。ここで、能動的(強制的)に物質を移動させる技法を用いる物質の拡散をいう。具体的には、能動拡散は、イオン性界面活性剤(好ましくはアニオン性界面活性剤、特にはラウリル硫酸ナトリウム)を用いて、必要に応じて緩衝液を含ませて、電気泳動により行なわれてもよい。
 電気泳動は、例えば、100mA~2000mAの直流電流を用いて、20~60℃にて行うことができる。電気泳動を行う時間は、本発明の方法によれば、従来の方法に比べ、より短時間であってもよく、例えば2時間~7日間、好ましくは6時間~4日間、より好ましくは12時間~2日間であり得る。本発明の方法によれば、電気泳動で脂質除去を行う場合、従来の方法に比べて短時間で透明化作用が得られ、組織破壊も抑制することができる。
 当該電気泳動を実施する前に、用いるイオン性界面活性剤を含む緩衝液で生体組織を1回又は数回(例えば2~3回)洗浄して、残留する固定剤や未反応のモノマーなどを除去してもよい。
 脂質除去工程の間、用いられる界面活性剤を含む緩衝液は、必要に応じて新鮮なものに交換してもよく、例えば、随時(例えば12~24時間ごとに)又は常時、新鮮なものに交換してもよい。
 脂質除去工程でイオン性界面活性剤を用いた場合には、当該イオン性界面活性剤を生体組織から除去するために、更に非イオン性界面活性剤を用いて、必要に応じて緩衝液を含ませて、生体組織を(好ましくは振盪させながら)保温することが好ましい。この場合、非イオン性界面活性剤の濃度(体積/体積)は例えば0.01~1%であり得る。非イオン性界面活性剤を含む緩衝液の具体例は、BB-T又はPBS-Tである。また、脂質除去工程で非イオン性界面活性剤を用いた場合又は脂質除去工程後に非イオン性界面活性剤を用いた場合には、それら界面活性剤の除去のために、生体組織に対して、界面活性剤を含まない緩衝液を接触させ(好ましくは振盪させながら)保温する処理を行ってもよい。当該処理の条件は、例えば、30~40℃にて12時間~2日間であり得る。
 脂質の除去工程の前、若しくは間、又は除去工程の後、得られた生体組織に対し、組織を観察するに適した処理、例えば、核染色処理、免疫染色等を行ってもよい。
(4)更なる透明化工程
 脂質の除去により生体組織の透明化を達成できるが、更なる透明化のために、生体組織内の溶媒(ほとんどの場合、緩衝液などの溶媒である水)を、脂質を除去した生体組織の屈折率(ほとんどの場合、タンパク質の屈折率に近似する値[1.4~1.6、特に1.45~1.55])と一致するか又はこれに近似する屈折率を有する溶液(以下、「屈折率均一溶液」又は「屈折率適合溶液」とも呼ぶ)に置換してもよい。そのような物質としては、エチレングリコール、ポリエチレングリコール(例えば、90%のPEG400溶液)、グリセロール(例えば、20~90%のグリセロール溶液、75%グリセロール+20~40%グルコース混合溶液)、スクロース(例えば、75%スクロース溶液)、フルクトース、ポリビニルピロリドン、FocusClear(登録商標)(CelExplorer Labs)、80~90%(質量/体積)のHistodenz(登録商標)(SigmaAldrich)、CUBIC-R+(東京化成)などが挙げられる。
 当該置換は、例えば、生体組織を前記溶液と接触させ、20~40℃にて(好ましくは振盪させながら)保温することにより行うことができる。当該置換の時間は、特に限定されないが、所望する更なる透明化を達成するまでの時間であってよく、例えば、(組織の大きさに応じて)10分間~3日間であり得る。
 なお、本発明の方法により透明化して得られた生体組織は、(好ましくは防腐剤を含む)緩衝液中に保存することができる。
<生体組織透明化試薬/キット>
 本発明において提供される生体組織透明化試薬は、少なくとの1種の双性モノマーを含む水溶性エチレン性不飽和モノマーを含むことを特徴とする。
 ここで双性モノマーは、<生体組織透明化方法>の項に記載したモノマーである。
 当該本発明の試薬は、双性モノマー以外の水溶性エチレン性不飽和モノマーを含んでいてもよい。そのような他のモノマーとしては、<生体組織透明化方法>の項に記載したような他のモノマーが例示される。1つの具体的実施形態において、本発明の試薬は、双性モノマーと(メタ)アクリルアミド基を有するモノマーとを含む。
 本発明の試薬はまた、架橋剤及び/又は重合開始剤を更に含んでいてもよい。架橋剤及び重合開始剤としては、<生体組織透明化方法>の項に記載した架橋剤及び重合開始剤が挙げられる。1つの具体的実施形態において、本発明の試薬は、双性モノマーと(メタ)アクリルアミド基を有するモノマーと、架橋剤及び/又は重合開始剤を含む。1つの実施形態において、本発明の試薬は、双性モノマーと、スチレンスルホン酸又はその塩のモノマーとアクリルアミドモノマーとN,N'-メチレンビスアクリルアミドとを含む。
 本発明の試薬において、双性モノマーと、他のモノマー、任意に架橋剤及び/又は重合開始剤の比率は、<生体組織透明化方法>の項に記載した比率を実現できるものであり得る。
 本発明において提供される試薬は、凍結状態で提供されてもよい。
 本発明の試薬が双性モノマーと、他のモノマー、任意の架橋剤及び/又は重合開始剤を含む場合、それらは各々が異なる容器内に封入されて提供されてもよい。この実施形態は、「(試薬)キット」とも表現できる。当該キットは、少なくとも1種の双性モノマーを含む水溶性エチレン性不飽和モノマーを、例えば容器内に封入して有していればよい。当該キットには、緩衝液が含まれていてもよい。
 本発明の試薬/キットは、水溶性エチレン性不飽和モノマー等の溶解用の緩衝液を含んでいてもよい。緩衝液としては、例えば、<生体組織透明化方法>の項に記載したものが挙げられる。
 本発明の試薬/キットは、固定剤を含んでいてもよい。固定剤としては、例えば、<生体組織透明化方法>の項に記載したものが挙げられる。
 本発明の試薬/キットは、屈折率適合溶液を含んでいてもよい。そのような溶液としては、例えば、<生体組織透明化方法>の項に記載したものが挙げられる。
 本発明の生体組織透明化試薬は、上記の生体組織透明化方法における使用に適する。
<ヒドロゲル包埋された生体組織の製造方法>
 本発明においては、生体組織に上記の生体組織透明化方法を適用することを特徴とする、ヒドロゲル包埋された生体組織の製造方法を提供する。当該製造方法によれば、透明化生体組織を従来法より短時間に作製することができ、特に、脂質除去工程を受動拡散により行う場合、組織破壊を抑制することができることに加えて、コストも低く抑えることができる。
 本発明の製造方法により製造された生体組織は、組織の病理検査用に、又は研究用若しくは学習用に、又は本発明の組織透明化方法若しくは試薬の宣伝用のサンプル標本用に用いることができる。
1.AAM/DAPS共重合ヒドロゲルの物性評価
1.1.ゲルの作製
 下記のモノマー溶液を5 mL PBS溶液で調製した。なお、アクリル酸(AcA)モノマーを50モル%含む溶液(AcA50)については、水酸化ナトリウムを加えてpH 7.4に調整した。
(i) 重合モノマーとしてアクリルアミド(AAM)モノマーのみを含む溶液
   AAM 0.56 M (0.2 g), N,N'-メチレンビスアクリルアミド(bisAA) 6.5×10-3 M (0.0049 g)
(ii) AAMモノマーとAcAモノマーとをモル比AAM/AcA=50/50で含む溶液(AcA50)
   AAM 0.28 M (0.1 g), AcA 0.28 M (0.096 ml), bisAA 6.5×10-3 M (0.0049 g)
(iii) AAMモノマーとスチレンスルホン酸ナトリウム(SS)モノマーとをモル比AAM/SS=50/50で含む溶液(SS50)
   AAM 0.28 M (0.1 g), SS 0.28 M (0.29 g), bisAA 6.5×10-3 M (0.0049 g)
(iv) AAMモノマーと2-アクリルアミド-メチルプロパンスルホン酸ナトリウム塩(AMPS)モノマーとをモル比AAM/AMPS=50/50で含む溶液(AMPS50)
   AAM 0.28 M (0.1 g), 50 wt% AMPS 0.28 M (0.54 ml), bisAA 6.5×10-3 M (0.0049 g)
(v) AAMモノマーとN,N-ジメチル(アクリルアミドプロピル)アンモニウムプロパンスルホネート(DAPS)モノマーとをモル比AAM/DAPS=50/50で含む溶液(DAPS50)
   AAM 0.28 M (0.1 g), DAPS 0.28 M (0.389 g), bisAA 6.5×10-3 M (0.0049 g)
(vi) AAMモノマーとDAPSモノマーとをモル比AAM/DAPS=25/75で含む溶液(DAPS75)
   AAM 0.14 M (0.05 g), DAPS 0.42 M (0.584 g), bisAA 6.5×10-3 M (0.0049 g)
 下記のモノマー溶液を2.5 mL PBS溶液で調製した。
(vii) AAMモノマーと2-メタクリロイルオキシエチルホスホリルコリン(MPC)モノマーとをモル比AAM/DAPS=50/50で含む溶液(MPC50)
   AAM 0.28 M (0.05 g), MPC 0.28 M (0.21 g), bisAA 6.5×10-3 M (0.0025 g)
(viii) AAMモノマーとMPCモノマーとをモル比AAM/MPC=25/75で含む溶液(MPC75)
   AAM 0.14 M (0.03 g), MPC 0.42 M (0.31 g), bisAA 6.5×10-3 M (0.0025 g)
(ix) MPCモノマーのみを含む溶液(MPC100)
   MPC 0.56 M (0.41 g), bisAA 6.5×10-3M (0.0025 g)
 溶存酸素を除去するため、各モノマー溶液に対して窒素バブリングを氷冷下で5分間行った。次いで、重合開始剤(VA-044;13 mg(PBS:5 ml)、6 mg(PBS:2.5 ml))を加えた後、重合管内で37℃にて24時間重合させてヒドロゲルを作製した。得られたヒドロゲルを蒸留水に48時間浸漬することによりゲルから可溶部を洗浄除去した。
1.2.ゲル分率の測定
 洗浄したゲルを16時間凍結乾燥し(EYELA FDU-1200;東京理化株式会社)、乾燥ゲルの重量を測定した。ゲル分率を下記式を用いて算出した:
  ゲル分率(%)=(乾燥ゲルの重量)/(仕込み総重量) × 100
  (仕込み総重量:ゲル作製のために仕込んだモノマー、架橋剤及び開始剤の総重量)
1.3.結果
 各ゲルについて得られたゲル分率を下記の表に示す。
Figure JPOXMLDOC01-appb-T000001
1.4.膨潤率の測定
 洗浄したゲルを凍結乾燥後、乾燥重量を測定した。次に、乾燥ゲルに蒸留水、PBS溶液又はホウ酸溶液に24時間浸漬した後、湿潤重量を測定した。測定した乾燥重量及び湿潤重量から、蒸留水、PBS溶液又はホウ酸溶液のそれぞれについての膨潤率を下記式により算出した:
  膨潤率(%)=([湿潤質量]-[乾燥質量])/[乾燥質量]×100
1.5.結果
 各ゲルについて得られた膨潤率を下記の表に示す。なお、表に示された値は3つの試料で得られた値の平均値である。
Figure JPOXMLDOC01-appb-T000002
 双性モノマーを50モル%以上含むモノマー溶液から作製されたヒドロゲルは、PBS中及びホウ酸水溶液中での浸漬により高い膨潤率を示した。これは、分子鎖中の双性イオンとPBS中又はホウ酸水溶液中のイオンとの相互作用によるものと考えられる。この結果から、双性モノマーを50モル%以上含むモノマー溶液を用いると、PBS中及びホウ酸水溶液中で、ゲルの網目が大きいヒドロゲルを形成できると考えられる。
2.生体組織の透明化(1)
2.1.透明化手順
(1)モノマー溶液の調製
 下記のモノマー溶液を5 mL PBS溶液(緩衝液)で調製した。
(i) AAMモノマーとAcAモノマーとをモル比AAM/AcA=25/75で含む溶液(AcA75)
   AAM 0.14 M (0.05 g), AcA 0.42 M (0.144 ml), bisAA 6.5×10-3 M (0.0049 g)
(ii) AAMモノマーとDAPSモノマーとをモル比AAM/DAPS=50/50で含む溶液(DAPS50)
   AAM 0.28 M (0.1 g), DAPS 0.28 M (0.389 g), bisAA 6.5×10-3 M (0.0049 g)
(iii) AAMモノマーとDAPSモノマーとをモル比AAM/DAPS=25/75で含む溶液(DAPS75)
   AAM 0.14 M (0.05 g), DAPS 0.42 M (0.584 g), bisAA 6.5×10-3 M (0.0049 g)
 
 重合管において、調製した各モノマー溶液にパラホルムアルデヒド0.2 gを加えて約80℃湯浴で溶解させた後、開始剤VA-044を12.5 mg加えた。
 
(2)生体組織内へのモノマーの浸透(「浸潤工程」)
 重合管中の各モノマー溶液にがん組織サンプル(担癌マウス由来ヒトがんサンプル、厚さ2 mm)を浸漬し、冷蔵庫(4℃)内で一日放置することにより、生体組織片にモノマー溶液を浸透させた。
 
(3)モノマーの重合(「重合工程」)
 次いで、重合管を37℃の恒温槽内に置くことにより、生体組織内に浸潤したモノマーの重合反応を開始させ、24時間の重合反応を行った。その結果、組織包埋ゲルが作製された。
 
(4)脂質の除去(「脂質除去工程」又は「透明化工程」)
 コニカルチューブにおいて、周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.8 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)30 ml中、インキュベーター(BIO-CHAMBER BCP 120-F;タイテック)及び小型振盪機ロータリーシェーカー(NR-2;タイテック)を用いて、振盪(120/分)させながら37℃にて4日間インキュベートした。
 
(5)界面活性剤の除去
 生体組織片を、0.1体積%のTriton X-100を含む蒸留水中で振盪させながら37℃にて2日間インキュベートした。
 
(6)組織内の溶媒置換(屈折率均一溶液への置換)
 ラウリル硫酸ナトリウムを除去した組織片をエチレングリコール(屈折率1.42)に1時間浸漬させ、組織内の溶媒と置換を行った。
2.2.結果
 振盪前及び4日間の振盪後並びに溶媒置換後のがん組織の写真を図1に示す。図において、生体組織片は1cm角の方眼ボード上でマス目の交点の上に載せられている。
 方眼ボード上に載せられた生体組織片を撮像したデータをImageJでモノクロ画像化し、同一面積における黒線(マス目線)の平均強度を求め、平均強度から次式を用いて透明化率を算出した。
   透明化率(%) = 組織を除いた黒線の強度 / 組織を置く前の黒線の強度 × 100
 図1から明らかなように、モル比AAM/DAPS=50/50のモノマー(DAPS50)でヒドロゲルを形成したがん組織は、4日間の振盪後(脂質除去後)で58%の透明化率を示した。また、溶媒置換によって透明化率は96%に達した。すなわち、ほぼ完全に透明化した。また、モル比AAM/DAPS=25/75のモノマー(DAPS75)でヒドロゲルを形成したがん組織は、4日間の振盪後の透明化率が59%であり、更に溶媒置換後の透明化率は95%であった。
 一方、モル比AAM/AcA=25/75のモノマー(AcA75)でヒドロゲルを形成したがん組織は、4日間の振盪後の透明化率は19%であり、更に溶媒置換後の透明化率は32%であった。
 この結果より、モノマーとして双性モノマーを用いることにより、振盪による脂質除去後(すなわち、溶媒置換前)でも、従来の方法に比べて生体組織の高い透明化を実現できることが確認できた。
3.生体組織の透明化(2)
3.1.透明化手順
(1)モノマー溶液の調製
 上記「生体組織の透明化(1)」に記載のモノマー溶液を調製した。
 重合管において、調製した各モノマー溶液にパラホルムアルデヒド0.2 gを加えて約80℃湯浴で溶解させた後、開始剤VA-044を12.5 mg加えた。
 
(2)生体組織内へのモノマーの浸透(「浸潤工程」)
 重合管中の各モノマー溶液に皮膚組織サンプル(ヌードマウスから採取した皮膚サンプル)を浸漬し、冷蔵庫(4℃)内で一日放置することにより、生体組織片にモノマー溶液を浸透させた。
 
(3)モノマーの重合(「重合工程」)
 次いで、重合管を37℃の恒温槽内に置くことにより、生体組織内に浸潤したモノマーの重合反応を開始させ、24時間の重合反応を行った。その結果、組織包埋ゲルが作製された。
 
(4)脂質の除去(「脂質除去工程」又は「透明化工程」)
 コニカルチューブにおいて、周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.8 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)30 ml中、インキュベーター(BIO-CHAMBER BCP 120-F;タイテック)及び小型振盪機ロータリーシェーカー(NR-2;タイテック)を用いて、振盪(120/分)させながら37℃にて、モノマー溶液DAPS50及びDAPS75を用いた場合には19日間、モノマー溶液AcA75を用いた場合には47日間インキュベートした。
 
(5)界面活性剤の除去
 生体組織片を、0.1体積%のTriton X-100を含む蒸留水中で振盪させながら37℃にて2日間インキュベートした。
 
(6)組織内の溶媒置換(屈折率均一溶液への置換)
 ラウリル硫酸ナトリウムを除去した組織片をエチレングリコール(屈折率1.42)に1時間浸漬させ、組織内の溶媒と置換を行った。
3.2.結果
 振盪前及び振盪後(該当する場合には振盪中)並びに溶媒置換後の皮膚組織の写真を図2に示す。図において、生体組織片は1cm角の方眼ボード上でマス目の交点の上に載せられている。
 透明化率は上記のとおりに算出した。
 図2から明らかなように、DAPS75でヒドロゲルを形成した皮膚組織は、4日間の振盪後(脂質除去後)は透明度はあがらなかったが、溶媒置換によって透明化率は95%に達した。また、DAPS50でヒドロゲルを形成した皮膚組織は、溶媒置換後の透明化率は99%に達した。すなわち、ほぼ完全に透明化した。
 一方、AcA75でヒドロゲルを形成した皮膚組織は、17日間及び47日間の振盪後の透明化率はそれぞれ13%及び20%であり、溶媒置換後の透明化率は67%であった。
 この結果より、モノマーとして双性モノマーを用いることにより、従来の方法よりも短時間でかつ高い生体組織の透明化を実現できることが確認できた。
 この結果より、モノマーとして双性モノマーを用いることにより、振盪による脂質除去後(すなわち、溶媒置換前)でも、従来の方法に比べて高い生体組織の透明化を実現でき、更に溶媒置換を行うと、従来方法より高い透明化を効率的に実現できることが確認できた。
 
4.生体組織の透明化(3)
4.1.透明化手順
(1)モノマー溶液の調製
以下の表にしたがって、重合モノマーとしてMPCモノマーのみを含むPBS溶液(モノマー溶液)2.5mLを作製した。
Figure JPOXMLDOC01-appb-T000003
 重合管において、開始剤VA-044を6 mg加えた。

(2)生体組織内へのモノマーの浸透(「浸潤工程」)
 重合管中の各モノマー溶液に、パラホルムアルデヒドで予め固定したがん組織サンプル(担癌マウス由来ヒトがんサンプル、厚さ2 mm)を浸漬し、冷蔵庫(4℃)内で一日放置することにより、生体組織片にモノマー溶液を浸透させた。
 
(3)モノマーの重合(「重合工程」)
 次いで、重合管を37℃の恒温槽内に置くことにより、生体組織内に浸潤したモノマーの重合反応を開始させ、24時間の重合反応を行った。その結果、組織包埋ゲルが作製された。
 
(4)脂質の除去(「脂質除去工程」又は「透明化工程」)
 コニカルチューブにおいて、周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.8 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)30 ml中、インキュベーター(BIO-CHAMBER BCP 120-F;タイテック)及び小型振盪機ロータリーシェーカー(NR-2;タイテック)を用いて、振盪(120/分)させながら37℃にて、4日間インキュベートした。
 
(5)界面活性剤の除去
 生体組織片を、0.1体積%のTriton X-100を含む蒸留水中で振盪させながら37℃にて2日間インキュベートした。
 
(6)組織内の溶媒置換(屈折率均一溶液への置換)
 ラウリル硫酸ナトリウムを除去した組織片をエチレングリコール(屈折率1.42)に1時間浸漬させ、組織内の溶媒と置換を行った。
4.2.結果
 振盪前及び4日間の振盪後並びに溶媒置換後のがん組織の写真を図3に示す。図において、生体組織片は1cm角の方眼ボード上でマス目の交点の上に載せられている。
 方眼ボード上に載せられた生体組織片を撮像したデータをImageJでモノクロ画像化し、同一面積における黒線(マス目線)の平均強度を求め、平均強度から次式を用いて透明化率を算出した。
   透明化率(%) = 組織を除いた黒線の強度 / 組織を置く前の黒線の強度 × 100
 図3から明らかなように、モノマー溶液M100-1でヒドロゲルを形成したがん組織は、4日間の振盪後(脂質除去後)で89%の透明化率を示し、溶媒置換によって透明化率は94%に達した。すなわち、ほぼ完全に透明化した。また、モノマー溶液M'100-1又はM”100-1でヒドロゲルを形成したがん組織は、4日間の振盪後(脂質除去後)は透明度はほとんど上昇しなかったが、溶媒置換によって透明化率はそれぞれ74%及び65%に上昇した。この結果より、アクリルアミドを用いずに作製した高分子ゲルで、生体組織の高い透明化を短時間で実現できることが確認できた。
5.生体組織の透明化(4)
5.1.透明化手順
(1)モノマー溶液の調製
 下記のモノマー溶液を5 mL PBS溶液で調製した。
(i) AAMモノマーとAcAモノマーとをモル比AAM/AcA=25/75で含む溶液(AcA75)
   AAM 0.14 M (0.05 g), AcA 0.42 M (0.144 ml), bisAA 6.5×10-3 M (0.0049 g)
(ii) AAMモノマーとDAPSモノマーとをモル比AAM/DAPS=25/75で含む溶液(DAPS75)
   AAM 0.14 M (0.05 g), DAPS 0.42 M (0.584 g), bisAA 6.5×10-3 M (0.0049 g)
 重合管において、調製した各モノマー溶液にパラホルムアルデヒド0.2 gを加えて約80℃湯浴で溶解させた後、開始剤VA-044を12.5 mg加えた。
 
(2)生体組織内へのモノマーの浸透(「浸潤工程」)
 重合管中の各モノマー溶液にマウス(ICR系統)の脳組織サンプル(厚さ2 mm)を浸漬し、冷蔵庫(4℃)内で一日放置することにより、生体組織片にモノマー溶液を浸透させた。
 
(3)モノマーの重合(「重合工程」)
 次いで、重合管を37℃の恒温槽内に置くことにより、生体組織内に浸潤したモノマーの重合反応を開始させ、24時間の重合反応を行った。その結果、組織包埋ゲルが作製された。
 
(4)脂質の除去(「脂質除去工程」又は「透明化工程」)
 コニカルチューブにおいて、周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.8 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)30 ml中、インキュベーター(MIR-154-PJ;PHCホールディングス)及びロッキングチューブローラー(LSM-80;ワケンビーテック)を用いて、振盪(25 rpm)させながら37℃にて6日間及び11日間保温した。
 
(5)生体組織の染色および撮影
 5mLのアシストチューブにおいて、生体組織片をPropidium Iodide(Thermo Fisher Scientific)終濃度5μg/mLとなるように0.5 M NaCl を含む0.1 M リン酸緩衝液(pH7.4)で、ロッキングチューブローラー(LSM-80;ワケンビーテック)を用いて、振盪(25 rpm)させながら室温にて2日間保温した。その後、屈折率均一溶液に置換し、光シート顕微鏡(Olympus)にて核染色像を撮影した。
5.2.結果
 振盪なし並びに6日間及び11日間の振盪後の脳組織の写真を図4Aに示す。
フィルム上に載せられた生体組織片を撮像したデータをImageJでモノクロ画像化し、一定面積における透過光の平均強度を求め、平均強度から次式を用いて透明化作用を算出した。
   透明化作用率(%) = 組織を置いた面積の強度 / 組織を除いた面積の強度 × 100
図4Bに、上記式により算出した透明化作用率(%)を示す。図から明らかなように、DAPS75でヒドロゲルを形成した脳組織は、6日間の振盪による脂質除去後によりほぼ完全に透明化し(透明化作用率82%)、また、11日間の振盪による脂質除去後には更に高い透明化を達成した(透明化作用率90%)。一方、AcA75でヒドロゲルを形成した脳組織においては、6日間の振盪後では若干の不透明部分が観察され(透明化作用率75%)、11日間の振盪後にようやく高い透明化に足した(透明化作用率87%)。
 この結果より、モノマーとして双性モノマーを用いることにより、従来の方法に比べてより効率的に高い生体組織の透明化を実現できることが確証された。
 図4Cに、DAPS75で透明化した脳組織を核染色した写真を示す。DAPS75でゲル化した脳組織においても蛍光イメージングできることが確認できた。
6.生体組織の透明化(5)
6.1.透明化手順
 生体組織サンプルとしてパラホルムアルデヒドで予め固定したがん組織サンプル(担癌マウス由来ヒトがんサンプル、厚さ2 mm)を用い、よってモノマー溶液にパラホルムアルデヒドを加えなかったこと以外は、上記「生体組織の透明化(4)」に記載したとおりである。
6.2.結果
 振盪なし又は所定期間の振盪後のがん組織の写真を図5Aに示す。図5Bに、上記式により算出した透明化作用の向上率(「振盪なし」との差分)を示す。
 DAPS75でヒドロゲルを形成したがん組織は、11日間の振盪による脂質除去後にほぼ透明化した(図5A及び5B)。一方、AcA75でヒドロゲルを形成したがん組織においては、11日間の振盪後ではかなりの不透明部分が観察された(図5A)。図5Bは、11日間の振盪後において、振盪なしと比較した透明化作用の向上率が、DAPS75については37%であり、AcA75の向上率(16%)の2倍以上であることを示している。このことから、DAPS75を用いると、AcA75を用いる場合より透明化が迅速に進行し、振盪によりさらにより高い透明化を達成することが理解できる。
 この結果より、モノマーとして双性モノマーを用いることにより、従来の方法より効率的な生体組織の透明化を実現できることが確証された。
7.生体組織の透明化(6)
7.1.透明化手順
(1)モノマー溶液の調製
 下記のモノマー溶液を5 mL PBS溶液で調製した。
(i) モノマー濃度0.56 MのAAMで構成される溶液
   AAM 0.56 M, bisAA 6.5×10-3 M
(ii) モノマー濃度0.56 MのMPCで構成される溶液
   MPC 0.56 M, tetra-EGMA 6.5×10-3 M
(iii) モノマー濃度1.68 MのMPCで構成される溶液
   MPC 1.68 M, tetra-EGMA 6.5×10-3 M
(iv) 総モノマー濃度0.56 MのAAM及びDAPS(モル比AAM/DAPS=50/50)で構成される溶液(DAPS50)
   AAM 0.28 M, DAPS 0.28 M, bisAA 6.5×10-3M
 重合管において、調製した各モノマー溶液に、開始剤VA-044を12.5 mg加えた。
 
(2)生体組織内へのモノマーの浸透(「浸潤工程」)
 重合管中の各モノマー溶液に、パラホルムアルデヒドで予め固定したマウス(ICR系統)の脳組織サンプル(厚さ2 mm)を浸漬し、冷蔵庫(4℃)内で一日放置することにより、生体組織片にモノマー溶液を浸透させた。
 
(3)モノマーの重合(「重合工程」)
 次いで、重合管を37℃の恒温槽内に置くことにより、生体組織内に浸潤したモノマーの重合反応を開始させ、24時間の重合反応を行った。その結果、組織包埋ゲルが作製された。
 
(4)脂質の除去(「脂質除去工程」又は「透明化工程」)
 コニカルチューブにおいて、周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.8 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)30 ml中、インキュベーター(MIR-154-PJ;PHCホールディングス)及びロッキングチューブローラー(LSM-80;ワケンビーテック)を用いて、振盪(25 rpm)させながら37℃にて1日間及び2日間保温した。
7.2.結果
 振盪なし又は所定期間の振盪後の脳組織の写真を図6に示す。写真の下に、上記式により算出した透明化作用の向上率(「振盪なし」との差分)を示す。
 0.56 MのMPC、1.68 MのMPC、及びDAPS50でヒドロゲルを形成した脳組織は、2日間の振盪による脂質除去後にほぼ透明化した。一方、AAMでヒドロゲルを形成した脳組織においては、2日間の振盪後でも不透明部分が観察された。2日間の振盪後において、振盪なしと比較した透明化作用の向上率が、0.56 MのMPC、1.68 MのMPC、DAPS50についてはそれぞれ43、44、46%であり、AAMの向上率(38%)よりも高いことを示している。この結果より、モノマーとして双性モノマーを用いることにより、従来の方法(AAM)より効率的な生体組織の透明化を実現できることが確証された。また、1日間の振盪後において、振盪なしと比較した透明化作用の向上率が、0.56 MのMPC、1.68 MのMPCについてはそれぞれ31%および41%であることから、MPCモノマー濃度を高くすると、透明化がより迅速に進行すると理解できる。
8.生体組織の透明化(7)
8.1.透明化手順
 生体組織サンプルとしてがん組織サンプル(担癌マウス由来ヒトがんサンプル、厚さ2 mm)を用い、脂質の除去を3~7日間行った以外は、上記「生体組織の透明化(6)」に記載したとおりである。
8.2.結果
 振盪なし又は所定期間の振盪後のがん組織の写真を図7に示す。写真の下に、上記式により算出した透明化作用の向上率(「振盪なし」との差分)を示す。結果についても、7.2の生体組織サンプルとして脳組織サンプルを用いた時と同様に、がん組織においても、モノマーとして双性モノマーを用いることにより、従来の方法(AAM)より効率的に透明化を実現できることが確認された。
9.生体組織の透明化(8)
9.1.透明化手順
 (1)モノマー溶液の調製、(2)生体組織内へのモノマーの浸透(「浸潤工程」)、(3)モノマーの重合(「重合工程」)は、7.1.透明化手順と同様に実施した。
 
(4)脂質の除去(「脂質除去工程」又は「透明化工程」)
 周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.2 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)で循環させながら、脂質除去電気泳動槽(NA-1880、日本エイドー)において、0.5A、1.0Aの直流電流を用いて、42℃にて4、8時間の電気泳動(EP)に供することより脂質除去を実施した。
9.2.結果
 電気泳動なし又は所定期間の電気泳動後の脳組織の写真を図8に示す。合わせて写真の下に、上記式により算出した透明化作用の向上率(「電気泳動なし」との差分)を示す。電気泳動を行うことで、8時間後には、何れのサンプルも完全に透明化した。EP1.0Aでは、4時間後でもほぼ完全に透明化したことより、マウス脳組織において、電流負荷を上げることで透明化がより加速化できることが確認できた。電気泳動で脂質除去を行うことで、従来の浸透方法に比べて透明化にかかる時間が大幅に短縮化できると考えられる。
10.生体組織の透明化(9)
10.1.透明化手順
 (1)モノマー溶液の調製、(2)生体組織内へのモノマーの浸透(「浸潤工程」)、(3)モノマーの重合(「重合工程」)は、生体組織サンプルとしてがん組織サンプル(担癌マウス由来ヒトがんサンプル、厚さ2 mm)を用いた以外、7.1.透明化手順と同様に実施した。
 
 周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.2 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)で循環させながら、脂質除去電気泳動槽(NA-1880、日本エイドー)において、1.0Aの直流電流を用いて、42℃にて、1日あたり8時間の電気泳動(EP)に2日間供することにより脂質除去を実施した。
10.2.結果
 電気泳動なし又は所定期間の電気泳動後のがん組織の写真を図9に示す。合わせて写真の下に、上記式により算出した透明化作用の向上率(「電気泳動なし」との差分)を示す。2日間の電気泳動後において、電気泳動なしと比較した透明化作用の向上率が、AAMおよび0.56 MのMPCについてはそれぞれ28%および36%となり、モノマーとして双性モノマーを用いることにより、従来の方法(AAM)より効率的な生体組織の透明化を実現できることが確認された。また、がん組織サンプルにおいても、電気泳動で脂質除去を行うことで、従来の浸透方法に比べて透明化作用にかかる時間が大幅に短縮化できると考えられる。
11.生体組織の透明化(10)
11.1.透明化手順
 (1)モノマー溶液の調製、(2)生体組織内へのモノマーの浸透(「浸潤工程」)、(3)モノマーの重合(「重合工程」)は、7.1.透明化手順と同様に実施した。
 
(4)脂質の除去(「脂質除去工程」又は「透明化工程」)
 コニカルチューブにおいて、周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.8 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)30 ml中、インキュベーター(MIR-154-PJ;PHCホールディングス)及びロッキングチューブローラー(LSM-80;ワケンビーテック)を用いて、振盪(25 rpm)させながら37℃にて6日間保温した。
 或いは、周囲のゲルを除去した各生体組織片を、4%(wt/vol)のラウリル硫酸ナトリウムを含む0.2 Mホウ酸バッファー(水酸化ナトリウムでpH 8.5に調整)で循環させながら、脂質除去電気泳動槽(NA-1880、日本エイドー)において、1.0Aの直流電流を用いて、42℃にて8時間の電気泳動(EP)に供することより脂質除去を実施した。
 
11.2.生体組織の染色および撮影
 5mLのアシストチューブにおいて、マウス脳組織片をPropidium Iodide(Thermo Fisher Scientific)終濃度5μg/mLとなるように0.5 M NaCl を含む0.1 M リン酸緩衝液(pH7.4)で、ロッキングチューブローラー(LSM-80;ワケンビーテック)を用いて、振盪(25 rpm)させながら室温にて2日間保温した。その後、5mLのアシストチューブにおいて、生体組織片をMonoclonal Anti-Actin, α-Smooth Muscle - FITC antibody produced in mouse clone 1A4 (Thermo Fisher Scientific)を0.5% TritonX-100(ナカライテスク)、0.25% Casein(Thermo Fisher Scientific)を含むPBS(-)(ナカライテスク)で40倍希釈し、ロッキングチューブローラー(LSM-80;ワケンビーテック)を用いて、振盪(25 rpm)させながら室温にて7日間保温した。その後、屈折率均一溶液に置換し、光シート顕微鏡(Olympus)にて撮影した。
11.3.結果
 光シート顕微鏡で撮影したマウス脳組織サンプルの写真を図10に示す。それぞれ、核染色の結果と血管平滑筋染色の結果を示している。DAPS50、0.56 MのMPCのいずれのモノマーで透明化したサンプルにおいても、良好な染色像が得られた。また、0.56 MのMPCのモノマーで透明化し電気泳動を実施したサンプル(EP(+))においても、良好な染色像が得られることを確認した。よって、本発明で透明化したサンプルにおいては、組織破壊を抑制しつつ良好に蛍光イメージングができることが確認できた。
12.生体組織の透明化(11)
12.1.透明化手順
 生体組織サンプルとしてがん組織サンプル(担癌マウス由来ヒトがんサンプル、厚さ2 mm)を用い、脂質の除去を4日間行った以外は、上記「生体組織の透明化(6)」に記載したとおりである。
 
12.2.生体組織の染色および撮影
 5mLのアシストチューブにおいて、生体組織片をヒトKu80細胞核マーカー特異的マウスモノクローナル抗体(TAKARA)を0.5% TritonX-100(ナカライテスク)、0.25% Casein(Thermo Fisher Scientific)を含むPBS(-)(ナカライテスク)で40倍希釈し、ロッキングチューブローラー(LSM-80;ワケンビーテック)を用いて、振盪(25 rpm)させながら室温にて7日間保温した。その後、Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 647を0.5%TritonX-100(ナカライテスク)、0.25% Casein(Thermo Fisher Scientific)を含むPBS(-)(ナカライテスク)で100倍希釈し、ロッキングチューブローラー(LSM-80;ワケンビーテック)を用いて、振盪(25 rpm)させながら室温にて7日間保温した。その後、屈折率均一溶液に置換し、光シート顕微鏡(Olympus)にて撮影した。
 
12.3.結果
 光シート顕微鏡で撮影したヒトがん組織サンプルの写真を図11に示す。それぞれ、核染色の結果とKu80染色の結果を示している。0.28 MのDAPSのモノマーで透明化したサンプルにおいて、がん組織サンプルでも良好な染色像が得られた。よって、本発明で透明化したサンプルにおいては、ヒトがん組織においても、良好に蛍光イメージングができると考えられる。
 上記の実施形態および実施例は、本発明の理解を容易にするために例示として記載されたものであって、本発明は本明細書又は添付図面に記載された具体的な構成及び配置のみに限定されるものではないことに留意すべきである。本明細書に記載した具体的構成、手段、方法及び装置は、本発明の精神および範囲を逸脱することなく、当該分野において公知の他の多くのものと置換可能であることを、当業者は理解し、容易に認識する。また、1つの実施形態に関して記載された本発明の態様を、そのように具体的に記載されていなくとも、異なる実施形態に組み込んでもよいことに留意すべきである。すなわち、全ての実施形態および/または任意の実施形態の全ての特徴を、如何なる様式および/または組合せでも組み合わせることができる。
 本明細書に記載された学術文献及び特許文献の全てを、本明細書に参考文献として援用される。本明細書に引用した特許、特許出願及びその他の文献は、適用される法が許す範囲内で、言及によって、その内容自体が具体的に本明細書に記載されているのと同様にその内容全体が本明細書に組み込まれているものとみなされる。

Claims (14)

  1.  (i)生体組織を固定剤で固定する前、若しくは間、又は固定した後、少なくとも1種の双イオン性の水溶性エチレン性不飽和モノマーを含む水溶性エチレン性不飽和モノマーを該生体組織に浸潤させ、生体組織内で、前記水溶性エチレン性不飽和モノマーを重合させることによりヒドロゲルを形成する工程、
     (ii)前記ヒドロゲル形成工程の前、若しくは間、又はその後に、生体組織を固定剤で固定する工程、及び
     (iii)前記固定工程後の生体組織から脂質を除去する工程
    を含んでなることを特徴とする生体組織の透明化方法。
  2. 前記双イオン性の水溶性エチレン性不飽和モノマーがベタイン型モノマーである、請求項1に記載の方法。
  3. 前記ベタインモノマー型がホスホベタイン型モノマー、スルホベタイン型モノマー及びカルボキシベタイン型モノマーからなる群より選択される、請求項2に記載の方法。
  4. 前記双イオン性の水溶性エチレン性不飽和モノマーが(メタ)アクリロイル基、マレオイル基及びフマロイル基からなる群より選択される基を有する、請求項1~3のいずれか1項に記載の方法。
  5. 前記双イオン性の水溶性エチレン性不飽和モノマーが2-アクリロイルオキシエチルホスホリルコリン、2-メタクリロイルオキシエチルホスホリルコリン、2-[(3-アクリルアミドプロピル)ジメチルアンモニオ]エチル-2'-イソプロピルホスフェート及び2-(メタ)アクリロイルオキシエチル-2'-(トリメチルアンモニオ)エチルホスフェートからなる群より選択される、請求項1~4のいずれか1項に記載の方法。
  6. 前記双イオン性の水溶性エチレン性不飽和モノマーがN,N-ジメチル(3-(メタ)アクリルアミドプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミドプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミド-2-メチルプロピル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリルアミドエチル)アンモニウムプロパンスルホネート、N,N-ジメチル(2-(メタ)アクリロイルオキシエチル)アンモニウムプロパンスルホネート及びN,N-ジメチル(3-(メタ)アクリロイルオキシプロピル)アンモニウムプロパンスルホネートからなる群より選択される、請求項1~4のいずれか1項に記載の方法。
  7. 前記双イオン性の水溶性エチレン性不飽和モノマーが3-[(3-(メタ)アクリルアミドプロピル)-ジメチルアンモニオ]プロパノエート、3-[(2-(メタ)アクリロイルオキシエチル)-ジメチルアンモニオ]プロパノエート、4-[(2-(メタ)アクリルアミド-2-メチルプロピル)-ジメチルアンモニオ]ブタノエート、4-[(3-(メタ)アクリルアミドプロピル)-ジメチルアンモニオ]ブタノエート及び4-[(2-(メタ)アクリロイルオキシエチル)-ジメチルアンモニオ]ブタノエートからなる群より選択される、請求項1~4のいずれか1項に記載の方法。
  8. 前記水溶性エチレン性不飽和モノマー中の前記双イオン性の水溶性エチレン性不飽和モノマーの割合が10~100モル%である、請求項1~7のいずれか1項に記載の方法。
  9. 前記水溶性エチレン性不飽和モノマーが(メタ)アクリルアミドベースのモノマーを含む、請求項1~8のいずれか1項に記載の方法。
  10. 脂質の除去が受動拡散又は能動拡散により行われる、請求項1~9のいずれか1項に記載の方法。
  11. 前記生体組織から脂質を除去する工程の後に、該生体組織内の溶媒を、該生体組織の屈折率と一致または近似する屈折率を有する溶液に置換する工程を更に含んでなる、請求項1~10のいずれか1項に記載の方法。
  12. 請求項1~11のいずれか1項に記載の生体組織の透明化方法を適用することを特徴とする、ヒドロゲルで包埋された生体組織の製造方法。
  13. 生体組織透明化のため又は透明化生体組織が包埋されたヒドロゲルの製造ための、双イオン性の水溶性エチレン性不飽和モノマーの使用。
  14. 少なくとも1種の双イオン性の水溶性エチレン性不飽和モノマーを含む双イオン性の水溶性エチレン性不飽和モノマーを有する生体組織透明化試薬又はキット。
PCT/JP2020/041890 2019-11-11 2020-11-10 生体組織透明化方法及びその試薬 WO2021095718A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021556100A JPWO2021095718A1 (ja) 2019-11-11 2020-11-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-203871 2019-11-11
JP2019203871 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021095718A1 true WO2021095718A1 (ja) 2021-05-20

Family

ID=75912957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041890 WO2021095718A1 (ja) 2019-11-11 2020-11-10 生体組織透明化方法及びその試薬

Country Status (2)

Country Link
JP (1) JPWO2021095718A1 (ja)
WO (1) WO2021095718A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640520A (zh) * 2021-07-16 2021-11-12 南方医科大学珠江医院 一种组织透明方法和组织学方法联合用于检测肿瘤内细菌的应用
CN117054182A (zh) * 2023-07-31 2023-11-14 广东湛江海洋医药研究院 一种可塑形的组织透明化试剂及其制备方法和使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533210A (ja) * 2012-08-09 2015-11-19 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 顕微分析のための生体標本を調製するための方法および組成物
JP2016538569A (ja) * 2013-09-20 2016-12-08 カリフォルニア インスティチュート オブ テクノロジー 無傷全組織の表現型分類のための方法
WO2019009300A1 (ja) * 2017-07-06 2019-01-10 公立大学法人大阪府立大学 生体組織透明化法及びその試薬
WO2019078655A1 (ko) * 2017-10-19 2019-04-25 재단법인대구경북과학기술원 설포베타인계 쯔비터이온성 계면활성제를 포함하는 생물학적 분자의 조직침투용 조성물 및 이의 용도
JP2020026975A (ja) * 2018-08-09 2020-02-20 学校法人東京理科大学 生体試料の透明化方法及び生体試料脱色剤
KR20200095882A (ko) * 2019-02-01 2020-08-11 주식회사 바이나리 조직 투명화를 이용한 암 조직에서의 신생혈관 형성 평가 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533210A (ja) * 2012-08-09 2015-11-19 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 顕微分析のための生体標本を調製するための方法および組成物
JP2016538569A (ja) * 2013-09-20 2016-12-08 カリフォルニア インスティチュート オブ テクノロジー 無傷全組織の表現型分類のための方法
WO2019009300A1 (ja) * 2017-07-06 2019-01-10 公立大学法人大阪府立大学 生体組織透明化法及びその試薬
WO2019078655A1 (ko) * 2017-10-19 2019-04-25 재단법인대구경북과학기술원 설포베타인계 쯔비터이온성 계면활성제를 포함하는 생물학적 분자의 조직침투용 조성물 및 이의 용도
JP2020026975A (ja) * 2018-08-09 2020-02-20 学校法人東京理科大学 生体試料の透明化方法及び生体試料脱色剤
KR20200095882A (ko) * 2019-02-01 2020-08-11 주식회사 바이나리 조직 투명화를 이용한 암 조직에서의 신생혈관 형성 평가 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640520A (zh) * 2021-07-16 2021-11-12 南方医科大学珠江医院 一种组织透明方法和组织学方法联合用于检测肿瘤内细菌的应用
CN117054182A (zh) * 2023-07-31 2023-11-14 广东湛江海洋医药研究院 一种可塑形的组织透明化试剂及其制备方法和使用方法
CN117054182B (zh) * 2023-07-31 2024-03-15 广东湛江海洋医药研究院 一种可塑形的组织透明化试剂及其制备方法和使用方法

Also Published As

Publication number Publication date
JPWO2021095718A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
US11719606B2 (en) Method and reagent for clearing biological tissue
WO2021095718A1 (ja) 生体組織透明化方法及びその試薬
Mahinroosta et al. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications
Sun et al. NIR laser‐triggered microneedle‐based liquid band‐aid for wound Care
Brahim et al. Synthesis and hydration properties of pH-sensitive p (HEMA)-based hydrogels containing 3-(trimethoxysilyl) propyl methacrylate
Klouda et al. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation
US20080119930A1 (en) Artificial Meniscus
JP2004501381A (ja) 眼科用レンズおよび組成物、並びにそれらの製造方法
JP6945881B2 (ja) 生体組織透明化用組成物及びそれを用いた生体組織の透明化方法
Yamaguchi et al. Supramolecular polymeric hydrogels for ultrasound‐guided protein release
JP2013510179A (ja) 架橋した双性イオンヒドロゲル
US20090117166A1 (en) Sequential coupling of biomolecule layers to polymers
Sacco et al. On the correlation between the microscopic structure and properties of phosphate-cross-linked chitosan gels
CN105295073A (zh) 一种高柔韧性两性离子水凝胶制备方法
JP2017026680A (ja) 3dプリンタ用ゲル材料
KR20200134197A (ko) 생체 조직 투명화용 조성물 및 이를 이용한 생체 조직 투명화 방법
US9050180B1 (en) Microvascular stamp for patterning of functional neovessels
KR20180037355A (ko) 3d 프린터용 하이드로겔 잉크 조성물 및 이를 이용한 하이드로겔 구조체의 제조 방법
KR102015368B1 (ko) 오일을 이용한 조직재생용 탈세포 지지체의 제조방법 및 조직 탈세포 처리 조성물
KR20190116872A (ko) 3차원 형광 이미지화를 위한 생체조직 투명화 키트 및 이를 이용한 투명화 방법
KR20170119936A (ko) 생체조직의 굴절률 균질화 조성물
Chalal et al. Imaging the structure of macroporous hydrogels by two-photon fluorescence microscopy
EP2543401B1 (en) Material for skin, and method for producing material for skin
Sagar et al. Nanogels for biomedical applications: Challenges and prospects
KR102541797B1 (ko) 전기장 감응성 하이드로겔 액추에이터 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886821

Country of ref document: EP

Kind code of ref document: A1