WO2021095495A1 - Conductive silicone composition, cured conductive silicone product, production method for cured conductive silicone product, and conductive silicone laminate - Google Patents
Conductive silicone composition, cured conductive silicone product, production method for cured conductive silicone product, and conductive silicone laminate Download PDFInfo
- Publication number
- WO2021095495A1 WO2021095495A1 PCT/JP2020/040036 JP2020040036W WO2021095495A1 WO 2021095495 A1 WO2021095495 A1 WO 2021095495A1 JP 2020040036 W JP2020040036 W JP 2020040036W WO 2021095495 A1 WO2021095495 A1 WO 2021095495A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive silicone
- group
- component
- silicone composition
- conductive
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/07—Aldehydes; Ketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
Definitions
- the present invention relates to a conductive silicone composition, a cured product thereof, a method for producing the cured product, and a laminate having the cured product.
- Patent Document 1 a conductive composition called a conductive adhesive or a conductive paste in which conductive particles are dispersed in a resin has been widely used for applications such as mounting an element on a substrate and forming a circuit by printing.
- Epoxy resins which have been widely used as binders for these conductive compositions, have excellent mechanical strength such as adhesive strength, but are inferior in flexibility and elasticity, and the base material itself forming a circuit such as a so-called wearable device is bent. , It was difficult to apply it to expansion and contraction applications.
- Patent Document 2 As a method for curing the silicone resin, addition curing using a hydrosilylation reaction between an unsaturated carbon group and a SiH group is mainly used. This reaction proceeds rapidly in the presence of a catalyst composed of an unsaturated carbon group, a SiH group, a platinum compound, a ruthenium compound, or the like, and is easily cured at room temperature. Therefore, it is common to use a so-called reaction control agent which has an effect of partially inhibiting or delaying a catalytic reaction in order to impart an appropriate pot life and storage stability.
- the catalyst may be inactivated due to the influence of the conductive particles or the surface treatment agent thereof, and the curability may decrease after long-term storage.
- a conductive adhesive to which a large amount of catalyst is added in order to ensure sufficient curability requires the addition of a large amount of reaction control agent and has many restrictions such as storage at a low temperature.
- Patent Document 3 uses a microencapsulated hydrosilylation catalyst that is stable under environmental conditions, but still requires the addition of a reaction control agent, and can be stored at room temperature and thermoset without using a reaction control agent. A conductive adhesive capable of achieving both properties has been desired.
- a conductive adhesive containing a high proportion of conductive particles requires the addition of a large amount of catalyst, a large amount of reaction control agent, and storage at a low temperature in order to ensure sufficient curability.
- the curable silicone containing a high proportion of silver powder and the like tends to have poor curability under air-deficient conditions, and when such a conductive composition is used as an adhesive, the temperature is about 80 to 150 ° C.
- the inside of the bonded portion did not harden when heated at a relatively low temperature. This tendency is remarkable when the reaction control agent is added, and there is a problem that it is difficult to achieve both storage stability and curability.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an addition-curable conductive silicone composition which does not require the addition of a reaction control agent and has excellent deep curability and storage stability.
- the group having the hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A) is an alkenyl group having 2 to 10 carbon atoms.
- the number of SiH groups in the component (B) is 0.5 to 10.0 with respect to one hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A). It is preferable to have.
- the content of the component (D) is preferably 50 to 99% by mass with respect to the total mass of the composition.
- the component (D) is silver powder.
- the adhesiveness to the resin can be improved.
- the component (E) is a compound having an ⁇ -silyl ester structure.
- the adhesiveness to the resin can be further improved.
- the present invention provides a cured product of the above-mentioned conductive silicone composition having a volume resistivity of 1.0 ⁇ 10 -3 ⁇ ⁇ cm or less.
- the present invention provides the above-mentioned method for producing a conductive silicone cured product, which is a method for producing a conductive silicone cured product in which the conductive silicone composition is cured at a temperature of 80 to 150 ° C.
- the present invention provides a laminate having the above-mentioned conductive silicone cured product.
- the conductive silicone composition of the present invention has high conductivity, excellent curability, and high storage stability.
- the conductive silicone composition of the present invention having such characteristics is useful as a conductive adhesive or a conductive paste for adhering electronic components or elements to a substrate, forming an electronic circuit, or the like.
- the present inventors have applied a hydrosilylation catalyst having a specific structure in a conductive composition in which an addition-curable liquid silicone rubber is filled with a conductive filler.
- the present invention has been completed by finding that a conductive composition having excellent storage stability at room temperature can be obtained without adding a reaction control agent while maintaining deep curability such as inside the mating portion.
- the present invention (A) An organopolysiloxane having at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule. (B) Organohydrogenpolysiloxane having at least two SiH groups in one molecule, (C) Bis ( ⁇ -diketonato) platinum complex, (D) Conductive particles, It is a conductive silicone composition characterized by containing.
- the conductive silicone composition of the present invention contains the following components (A) to (D).
- the component (A) in the conductive silicone composition of the present invention is an organopolysiloxane having at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule.
- an organopolysiloxane represented by the following average formula (1) can be used as the component (A).
- R 1 is a group having a hydrosilylation-reactive carbon-carbon unsaturated bond
- R 2 may be the same or different without the hydrosilylation-reactive carbon-carbon unsaturated bond. It is a substituted or unsubstituted monovalent hydrocarbon group.
- the sequence order of each siloxane unit is arbitrary.
- Examples of the group having a hydrosilylation-reactive carbon-carbon unsaturated bond of R 1 include a vinyl group, an allyl group, an ethynyl group, an octenyl group, a dodecenyl group, a norbornenyl group, an isonorbornenyl group, an acryloyl group and a methacryloyl group. It is preferably an alkenyl group having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and a vinyl group is particularly preferable.
- the organopolysiloxane of the component (A) contains at least two, preferably two to six, hydrosilylation-reactive carbon-carbon unsaturated bonds in one molecule. These groups may be located only at one of the molecular chain end and the molecular chain side chain (non-terminal of the molecular chain) of the component (A), or may be located at both of them.
- the R 2 hydrosilation reactive carbon - not particularly limited as long as it does not contain carbon unsaturated bond, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, n- butyl group, s- butyl group , Isobutyl group, t-butyl group, n-pentyl group, neopentyl group, isopentyl group, s-pentyl group, 2-pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group and other alkyl groups; cyclopentyl group , Cycloalkyl group such as cyclohexyl group; aryl group such as phenyl group, trill group, xsilyl group, mesityl group, naphthyl group; aralkyl group such as benzyl group, phenethyl
- component (A) examples include both-terminal dimethylvinylsiloxy group-blocking dimethylsiloxane, both-terminal trimethylsiloxy group-blocking methylvinylsiloxane, both-terminal dimethylvinylsiloxane / cyclic methylvinylsiloxane copolymer, and cyclic methylvinylsiloxane.
- Both-terminal dimethylvinylsiloxy group-blocking dimethylsiloxane / cyclic diphenylsiloxane copolymer, both-terminal dimethylvinylsiloxy group-blocking dimethylsiloxane / cyclic methylphenylsiloxane copolymer, both-terminal methylphenylvinylsiloxy group-blocking dimethylsiloxane, both-terminal methyl Phenylvinyl siloxy group-blocked diphenylsiloxane, both-terminal methylphenylvinyl siloxy group-blocked methylphenylsiloxane, both-terminal methylphenylvinylsiloxy group-blocked dimethylsiloxane / cyclic diphenylsiloxane copolymer, (CH 2 CH) (CH 3 ) 2 SiO Examples thereof include a copolymer composed of 1/2 unit and (CH 3 ) 3 SiO
- the kinematic viscosity of the component (A) is not particularly limited, but is preferably in the range of 10 to 100,000 mm 2 / s, more preferably 100 to 10,000 mm 2 / s.
- the kinematic viscosity is a value measured at 25 ° C. using an Ubbelohde viscometer. Within such a range, the handleability of the composition is excellent.
- the component (B) in the conductive silicone composition of the present invention acts as a cross-linking agent that crosslinks the hydrosilylation-reactive carbon-carbon unsaturated bond contained in the component (A) by a hydrosilylation reaction.
- the component (B) is an organohydrogenpolysiloxane having at least two hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule.
- an organohydrogenpolysiloxane represented by the following average formula (2) can be used as the component (B).
- R 3 is a substituted or unsubstituted monovalent hydrocarbon group that does not contain a hydrosilylation-reactive carbon-carbon unsaturated bond and may be the same or different.
- h, i, j, k, l, m, and n are numbers that satisfy h ⁇ 0, i ⁇ 0, j ⁇ 0, k ⁇ 0, l ⁇ 0, m ⁇ 0, and n ⁇ 0, respectively.
- I + j + l>0 and is a number satisfying h + i + j + k + l + m + n 1.
- the sequence order of each siloxane unit is arbitrary.
- R 3 include the same groups as R 2 , preferably having an unsubstituted or halogen-substituted carbon atom number of 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8.
- a monovalent hydrocarbon group is mentioned, and a methyl group is particularly preferable.
- the organohydrogenpolysiloxane compound of the component (B) has at least 2, preferably 3 to 300, particularly preferably 3 to 100 hydrogen atoms bonded to silicon atoms in one molecule.
- these SiH groups may be located only at either the molecular chain end or the molecular chain side chain (non-terminal of the molecular chain). , May be located in both.
- component (B) examples include, for example, both-terminal dimethylhydrogensiloxy group-blocking dimethylsiloxane, both-terminal trimethylsiloxy group-blocking methylhydrogensiloxane / dimethylsiloxane copolymer, and both-terminal dimethylhydrogensiloxy group-blocking.
- the organohydrogenpolysiloxane compound of the component (B) may be used alone or in combination of two or more.
- the kinematic viscosity of the component (B) is not particularly limited, but is preferably in the range of 10 to 1,000 mm 2 / s, more preferably 10 to 100 mm 2 / s.
- the kinematic viscosity can be measured at 25 ° C. using, for example, an Ubbelohde viscometer or a Canon Fenceke type viscometer. Within such a range, the handleability of the composition is excellent.
- the number of silicon atom-bonded hydrogen atoms in the component (B) is preferably 0.5 with respect to one hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A).
- the amount is in the range of ⁇ 10.0, more preferably 1.0 to 6.0. Within such a range, a cured product having excellent mechanical properties can be obtained.
- Component (C) The component (C) in the conductive silicone composition of the present invention is a bis ( ⁇ -diketonato) platinum complex, and the hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A) and the component (B). Silicon atom bond Acts as a hydrosilylation catalyst to promote the hydrosilylation reaction with hydrogen atoms.
- Examples of the bis ( ⁇ -diketonato) platinum complex include a bis (1,3-propanedionat) platinum complex, a bis (2,4-pentandionato) platinum complex, and a bis (2,4-hexandionato) platinum complex.
- Bis (2,4-heptandionat) platinum complex bis (3,5-heptandionat) platinum complex, bis (1-phenyl-1,3-butandionato) platinum complex, bis (1,3-diphenyl-1,3) -Propanedionat) platinum complex and the like, preferably a bis (1,3-propanedionat) platinum complex.
- the content of the component (C) is preferably 0.001 to 0.5 parts by mass, more preferably 0.01 to 0.1 parts by mass, as a platinum atomic mass with respect to 100 parts by mass of the component (A). preferable. Within such a range, a composition having excellent curability and storage stability can be obtained.
- the component (D) in the conductive silicone composition of the present invention is conductive particles.
- the component (D) may be any as long as it has conductivity, and for example, metal particles such as aluminum, nickel, copper, silver, gold, platinum, and palladium, alloys thereof, or alloys thereof.
- Metal-plated particles, zinc oxide, titanium oxide, antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), indium tin oxide (ITO), fluorine-doped tin oxide (FTO), etc. can be used and are conductive. From the viewpoint of the above, silver powder and silver-plated powder are preferable.
- silver powder for example, Mitsubishi Materials, Fukuda Metal Leaf Powder, Tokuriki Honten, DOWA Electronics, Tanaka Kikinzoku, etc. can be used.
- the conductive particles may have any shape such as spherical, flake-shaped, dendritic, and amorphous, and may be a mixture thereof, but flake-shaped is particularly preferable.
- the flaky shape also includes what is called a flat shape, a flaky shape, a scaly shape, or the like.
- the average particle size of the conductive particles is preferably in the range of 0.1 to 100 ⁇ m, more preferably in the range of 0.1 to 50 ⁇ m. If the conductive particles have an average grain shape in such a range, the uniformity of the composition can be further improved, the coatability can be further improved, and the conductivity can be further improved.
- the average particle size means a 50% cumulative diameter (median diameter) in a volume-based particle size distribution, and can be measured by, for example, Microtrac MT330OEX manufactured by Nikkiso Co., Ltd.
- the tap density of the component (D) is preferably 1.0 to 7.0 g / cm 3.
- the tap density measurement method conforms to JIS Z 2512: 2012.
- the filling amount of the component (D) is preferably in the range of 50 to 99% by mass, more preferably 60 to 95% by mass, and further preferably 75 to 93% by mass with respect to the total mass of the conductive silicone composition. Is. Within such a range, a composition having excellent curability and handleability can be obtained, and sufficient conductivity can be imparted to the cured product.
- Adhesive aid may be added to the conductive silicone composition of the present invention in order to enhance the adhesiveness to the resin.
- the adhesive aid from the viewpoint of imparting self-adhesiveness to the conductive silicone composition of the present invention, which is an addition reaction curing type, an organosilicon compound such as silane or siloxane containing a functional group that imparts adhesiveness, non-adhesive. Silicone-based organic compounds and the like are used.
- the functional group that imparts adhesiveness include a polymerizable group having a carbon-carbon unsaturated bond bonded to a silicon atom, a SiH group, and an epoxy group bonded to a silicon atom via a carbon atom (for example, ⁇ -).
- a polymerizable group having a carbon-carbon unsaturated bond bonded to a silicon atom, a SiH group, and an epoxy group bonded to a silicon atom via a carbon atom for example, ⁇ -.
- alkoxysilyl group for example, trimethoxysilyl group, triethoxysilyl group, methyldimethoxysilyl group, etc.
- Examples of compounds containing at least one of the above functional groups and an organosiloxane skeleton include those represented by the following structural formulas.
- Me represents a methyl group.
- non-silicone organic compound examples include an organic acid allyl ester compound represented by the following structural formula and an allyl ether compound.
- non-silicone adhesive aids examples include organic titanium compounds, organic zirconium compounds, and organoaluminum compounds.
- organic titanium compound examples include tetraethyl titanate, tetrapropyl titanate, tetrabutyl titanate, titanium tetraacetylacetonate, and diisopropoxytitanium bis (acetylacetonato).
- organic zirconium compounds include zirconium tetraethoxyd, zirconium propoxide, zirconium butoxide, zirconium acetylacetonate, and bisacetatooxozirconium.
- organoaluminum compounds include aluminum ethoxyde, aluminum propoxide, aluminum butoxide, aluminum isopropoxide, aluminum acetylacetonate, and the like.
- a compound having an ⁇ -silyl ester structure is preferable, and ethyl 2-trimethoxysilylpropanoate is particularly preferable.
- the conductive silicone composition of the present invention may contain fine powdered silica as a reinforcing material in order to improve tensile strength, elongation, tear strength and the like.
- the specific surface area (BET method) of this fine powder silica is preferably 50 m 2 / g or more, more preferably 50 to 400 m 2 / g, and particularly preferably 100 to 300 m 2 / g. When the specific surface area is 50 m 2 / g or more, sufficient reinforcing property can be imparted to the cured product.
- such fine powdered silica may be a known one that has a specific surface area within the above range (50 m 2 / g or more) and has been conventionally used as a reinforcing filler for silicone rubber, for example.
- Cigarette silica dry silica
- precipitated silica wet silica
- Fine powder silica may be used as it is, but in order to impart good fluidity to the composition, methylchlorosilanes such as trimethylchlorosilane, dimethyldichlorosilane and methyltrichlorosilane, dimethylpolysiloxane, hexamethyldisilazane and divinyl It is preferable to use one treated with an organosilicon compound such as hexaorganodisilazane such as tetramethyldisilazane and dimethyltetravinyldisilazane. Reinforcing silica may be used alone or in combination of two or more.
- the conductive silicone composition of the present invention can use a non-reactive diluent.
- a diluent By using a diluent, the viscosity of the composition before curing can be reduced without impairing the conductivity after curing, and workability can be improved.
- diluents include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate, propyl acetate, butyl acetate, pentyl acetate and propylene glycol methyl ether acetate, methyl ethyl ketone, cyclopentanone, etc.
- ketone solvents such as methylisobutylketone
- aliphatic hydrocarbon solvents such as hexane, heptane, octane, isooctane and isododecane.
- the present invention provides a cured product of the above-mentioned conductive silicone composition having a volume resistivity of 1.0 ⁇ 10 -3 ⁇ ⁇ cm or less.
- the cured product of the conductive silicone composition of the present invention preferably has a volume resistivity of 1.0 ⁇ 10 -3 ⁇ ⁇ cm or less.
- Such a conductive silicone cured product has sufficient conductivity as well as flexibility and extensibility, and is useful for mounting electronic components and elements on a substrate, forming an electronic circuit by printing, and the like. Become.
- the lower limit of the volume resistivity is not particularly limited, but can be 1.0 ⁇ 10 -5 ⁇ ⁇ cm or more.
- the present invention provides a laminate having the above-mentioned conductive silicone cured product.
- the conductive silicone composition of the present invention can form a highly conductive laminate by, for example, applying or printing on a substrate and then curing.
- the base material is not particularly limited, and for example, (meth) acrylic resin, epoxy resin, high-density polyethylene resin, low-density polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyacrylonitrile resin, etc.
- Organic materials such as polycarbonate resin, polyurethane resin, polyester resin, polyamide resin, polyimide resin, polyacetal resin, polyethylene oxide resin, polyetherimide resin, polyethersulfone resin, polyetheretherketone resin, polyphenylene sulfide resin, silicone resin, and alumina. , Zirconia, barium titanate, silicon nitride, aluminum nitride, silicon carbide, glass, metals and other inorganic materials can be used.
- surface treatment may be performed on the above-mentioned various base materials.
- Specific examples of the surface treatment include irradiation of active energy rays such as ultraviolet rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, and electron beams, plasma treatment, corona treatment, ozone treatment, and the like.
- the conductive silicone composition of the present invention can be used on a substrate, for example, by printing methods such as mesh screen printing, metal mask printing, gravure printing, offset printing, reverse offset printing, flexo printing, inkjet printing, roller coater, slit coater. , Dispenser, dipping and other coating methods.
- the present invention provides a method for producing the above-mentioned conductive silicone cured product, which is a method for producing the above-mentioned conductive silicone cured product, which cures the above-mentioned conductive silicone composition at a temperature of 80 to 150 ° C.
- the conductive silicone composition of the present invention is preferably cured by heating at 80 to 150 ° C., particularly 100 to 120 ° C. for 10 to 120 minutes. Within such a range, curing progresses sufficiently, and it is possible to prevent the composition from becoming brittle.
- the viscosity at 25 ° C. was measured with a rotational viscometer, and the kinematic viscosity at 25 ° C. was measured with an Ubbelohde viscometer or a Canon Fenceke type viscometer.
- Examples 1 to 4, Comparative Examples 1 to 5 The components (A) to (E) and other components shown below are mixed in the blending amounts shown in Tables 1 and 2 using a rotation / revolution mixer (manufactured by THINKY Co., Ltd.) for 5 minutes. A silicone composition was prepared. The numerical values of each component in Table 1 or Table 2 indicate parts by mass. The silver powder filling factor is the mass percentage of silver powder in the entire composition.
- [(A) component] a-1 Both-terminal dimethylvinylsilyl group-blocking dimethylpolysiloxane compound (kinematic viscosity at 25 ° C., 600 mm 2 / s).
- a-2 An organopolysiloxane having a weight average molecular weight of 4,500 represented by the following average formula (3). In the formula, Vi represents a vinyl group and Me represents a methyl group.
- [(B) component] b-1 Organohydrogenpolysiloxane compound represented by the following structural formula. (In the formula, the sequence order of the siloxane units in parentheses is indefinite.)
- c-1 A butyl carbitol acetate solution of a bis (1,3-propanedionate) platinum complex (containing 0.5% by mass as a platinum atom) (manufactured by Umicore).
- c-2 Toluene solution of (methylcyclopentadienyl) trimethyl platinum complex (containing 0.5% by mass as a platinum atom) (manufactured by Umicore).
- c-3 A dimethylpolysiloxane (viscosity 600 mPa ⁇ s) solution (containing 1.0% by mass as a platinum atom) of the reaction product of hexachloride platinum acid and 1,3-divinyltetramethyldisiloxane.
- [(D) component] d-1 Silver powder having an average particle size of 5.8 ⁇ m and a tap density of 5.3 g / cm 3.
- e-1 Ethyl 2-trimethoxysilylpropanoate.
- e-2 A compound represented by the following structural formula (Me represents a methyl group in the formula).
- e-3 A compound represented by the following structural formula (Me represents a methyl group in the formula).
- [Other ingredients] f-1 1-ethynyl-1-cyclohexanol (manufactured by Nisshin Chemical Industry Co., Ltd., reaction control agent).
- the characteristics of the conductive silicone composition and its cured product were evaluated as follows.
- the conductive silicone compositions of Examples 1 to 4 have good curability at the time of bonding and are excellent in storage stability even though no reaction control agent is added. It is a material.
- Comparative Example 1 a different kind of photoactive hydrosilylation catalyst is used instead of the component (C) of the present invention, and the curability is good, but the storage stability is extremely low.
- Comparative Example 2 a general hydrosilylation catalyst and a reaction control agent are used, and although the storage stability is excellent, the curability at the time of bonding is remarkably inferior.
- Comparative Example 3 the curability at the time of bonding was improved by reducing the amount of the reaction control agent of Comparative Example 2, but the result was that the storage stability was impaired.
- Comparative Example 4 in which both the hydrosilylation catalyst and the reaction control agent of Comparative Example 2 were reduced, the storage stability was improved, but the curability was not sufficient.
- Comparative Example 5 since the reaction control agent was not contained in the general hydrosilylation catalyst, the storage stability was inferior, and curing occurred immediately after mixing.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
The present invention is a conductive silicone composition characterized by including: (A) an organopolysiloxane having in each molecule at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond; (B) an organohydrogenpolysiloxane having in each molecule at least two SiH groups; (C) a bis(β-diketonato) platinum complex; and (D) conductive particles. Provided thereby is an addition-curable conductive silicone composition having excellent storability and deep curability without requiring the addition of a reaction control agent.
Description
本発明は、導電性シリコーン組成物、その硬化物、該硬化物の製造方法及び該硬化物を有する積層体に関する。
The present invention relates to a conductive silicone composition, a cured product thereof, a method for producing the cured product, and a laminate having the cured product.
従来、素子の基板への実装や、印刷による回路の形成等の用途に、導電性粒子を樹脂中に分散させた導電性接着剤や導電ペーストなどと呼称される導電性組成物が広く用いられている(特許文献1)。
Conventionally, a conductive composition called a conductive adhesive or a conductive paste in which conductive particles are dispersed in a resin has been widely used for applications such as mounting an element on a substrate and forming a circuit by printing. (Patent Document 1).
これらの導電性組成物のバインダーとして汎用されてきたエポキシ樹脂は接着強度等の機械強度に優れるものの、可撓性や伸縮性に劣り、いわゆるウェアラブルデバイスのような回路を形成する基材自体が屈曲、伸縮する用途への応用が難しかった。
Epoxy resins, which have been widely used as binders for these conductive compositions, have excellent mechanical strength such as adhesive strength, but are inferior in flexibility and elasticity, and the base material itself forming a circuit such as a so-called wearable device is bent. , It was difficult to apply it to expansion and contraction applications.
このような問題に対して、より柔軟性に優れるバインダーとしてシリコーン樹脂などの利用が検討されている(特許文献2)。シリコーン樹脂の硬化方法としては、主に不飽和炭素基とSiH基との間のヒドロシリル化反応を利用した付加硬化が用いられている。この反応は不飽和炭素基とSiH基と白金化合物やルテニウム化合物などからなる触媒存在下で迅速に進行する反応であり、常温で容易に硬化する。そのため、適当な可使時間と保存安定性を付与するために触媒反応を一部阻害ないしは遅延する効果を有する、所謂、反応制御剤を用いることが一般的である。
For such problems, the use of silicone resin or the like as a binder having more flexibility is being studied (Patent Document 2). As a method for curing the silicone resin, addition curing using a hydrosilylation reaction between an unsaturated carbon group and a SiH group is mainly used. This reaction proceeds rapidly in the presence of a catalyst composed of an unsaturated carbon group, a SiH group, a platinum compound, a ruthenium compound, or the like, and is easily cured at room temperature. Therefore, it is common to use a so-called reaction control agent which has an effect of partially inhibiting or delaying a catalytic reaction in order to impart an appropriate pot life and storage stability.
導電性粒子を高い割合で含むことを特徴とする導電性接着剤においては、導電性粒子もしくはその表面処理剤の影響により、触媒が不活性化し長期保存後に硬化性が低下する場合がみられる。十分な硬化性を担保するために多量の触媒を添加した導電接着剤は、多量の反応制御剤の添加を要するとともに、低温での保管を要するなどの制約が多い。
In a conductive adhesive characterized by containing a high proportion of conductive particles, the catalyst may be inactivated due to the influence of the conductive particles or the surface treatment agent thereof, and the curability may decrease after long-term storage. A conductive adhesive to which a large amount of catalyst is added in order to ensure sufficient curability requires the addition of a large amount of reaction control agent and has many restrictions such as storage at a low temperature.
また、銀粉等を高い割合で含む付加硬化型シリコーンは、空気欠乏条件下で硬化性が悪化する傾向があり、このような導電性組成物を接着剤として使用した場合、80~150℃程度の比較的低温で加熱した際に貼り合わせ部の内部が硬化しない問題があった。この傾向は反応制御剤を添加した際に顕著であり、保存性と硬化性との両立が困難であった。特許文献3では、環境条件下で安定となるミクロカプセル化したヒドロシリル化触媒を使用しているが、依然として反応制御剤の添加を必要としており、反応制御剤を用いずに常温保存性と熱硬化性とを両立可能な導電性接着剤が望まれていた。
Further, the curable silicone containing a high proportion of silver powder and the like tends to have poor curability under air-deficient conditions, and when such a conductive composition is used as an adhesive, the temperature is about 80 to 150 ° C. There was a problem that the inside of the bonded portion did not harden when heated at a relatively low temperature. This tendency was remarkable when the reaction control agent was added, and it was difficult to achieve both storage stability and curability. Patent Document 3 uses a microencapsulated hydrosilylation catalyst that is stable under environmental conditions, but still requires the addition of a reaction control agent, and can be stored at room temperature and thermoset without using a reaction control agent. A conductive adhesive capable of achieving both properties has been desired.
導電性粒子を高い割合で含む導電性接着剤は、十分な硬化性を担保するために多量の触媒を添加し、更に多量の反応制御剤の添加を必要とするとともに、低温での保管を要するなどの制約が多い問題があった。加えて、銀粉等を高い割合で含む付加硬化型シリコーンは、空気欠乏条件下で硬化性が悪化する傾向がありこのような導電性組成物を接着剤として使用した場合、80~150℃程度の比較的低温で加熱した際に貼り合わせ部の内部が硬化しない問題があった。この傾向は反応制御剤を添加した際に顕著であり、保存性と硬化性との両立が困難という問題があった。
A conductive adhesive containing a high proportion of conductive particles requires the addition of a large amount of catalyst, a large amount of reaction control agent, and storage at a low temperature in order to ensure sufficient curability. There was a problem with many restrictions such as. In addition, the curable silicone containing a high proportion of silver powder and the like tends to have poor curability under air-deficient conditions, and when such a conductive composition is used as an adhesive, the temperature is about 80 to 150 ° C. There was a problem that the inside of the bonded portion did not harden when heated at a relatively low temperature. This tendency is remarkable when the reaction control agent is added, and there is a problem that it is difficult to achieve both storage stability and curability.
本発明は、上記事情に鑑みなされたもので、反応制御剤の添加を必要とせず、深部硬化性及び保存性に優れる付加硬化型導電性シリコーン組成物を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an addition-curable conductive silicone composition which does not require the addition of a reaction control agent and has excellent deep curability and storage stability.
上記目的を達成するために、本発明では、
(A)ヒドロシリル化反応性炭素-炭素不飽和結合を有する基を1分子中に少なくとも2個有するオルガノポリシロキサン、
(B)SiH基を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン、
(C)ビス(β-ジケトナト)白金錯体、
(D)導電性粒子、
を含むものである導電性シリコーン組成物を提供する。 In order to achieve the above object, in the present invention,
(A) An organopolysiloxane having at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule.
(B) Organohydrogenpolysiloxane having at least two SiH groups in one molecule,
(C) Bis (β-diketonato) platinum complex,
(D) Conductive particles,
Provided is a conductive silicone composition comprising.
(A)ヒドロシリル化反応性炭素-炭素不飽和結合を有する基を1分子中に少なくとも2個有するオルガノポリシロキサン、
(B)SiH基を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン、
(C)ビス(β-ジケトナト)白金錯体、
(D)導電性粒子、
を含むものである導電性シリコーン組成物を提供する。 In order to achieve the above object, in the present invention,
(A) An organopolysiloxane having at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule.
(B) Organohydrogenpolysiloxane having at least two SiH groups in one molecule,
(C) Bis (β-diketonato) platinum complex,
(D) Conductive particles,
Provided is a conductive silicone composition comprising.
このようなものであれば、反応制御剤の添加を必要とせず、深部硬化性及び保存性に優れた高い導電性を有する付加硬化型導電性シリコーン組成物とすることができる。
With such a material, it is possible to obtain an add-curable conductive silicone composition having high conductivity excellent in deep curability and storage stability without the need for addition of a reaction control agent.
このとき、前記(A)成分中の前記ヒドロシリル化反応性炭素-炭素不飽和結合を有する基が炭素原子数2~10のアルケニル基であることが好ましい。
At this time, it is preferable that the group having the hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A) is an alkenyl group having 2 to 10 carbon atoms.
このようなものであれば、より確実に深部硬化性及び保存性に優れた付加硬化型導電性シリコーン組成物とすることができる。
With such a material, it is possible to more reliably obtain an add-curable conductive silicone composition having excellent deep curability and storage stability.
このとき、前記(B)成分中のSiH基の数が、前記(A)成分中のヒドロシリル化反応性炭素-炭素不飽和結合1個に対して0.5~10.0個となる量であることが好ましい。
At this time, the number of SiH groups in the component (B) is 0.5 to 10.0 with respect to one hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A). It is preferable to have.
このようなものであれば、機械特性に優れる硬化物が得られる。
With such a product, a cured product with excellent mechanical properties can be obtained.
このとき、前記(D)成分の含有量が、組成物の全質量に対し50~99質量%であることが好ましい。
At this time, the content of the component (D) is preferably 50 to 99% by mass with respect to the total mass of the composition.
このようなものであれば、更に硬化性および取り扱い性に優れる組成物が得られ、また、硬化物に十分な導電性を与えることができる。
With such a material, a composition having further excellent curability and handleability can be obtained, and sufficient conductivity can be imparted to the cured product.
このとき、前記(D)成分が銀粉であることが好ましい。
At this time, it is preferable that the component (D) is silver powder.
このようなものであれば、硬化物に更に導電性を与えることができる。
If it is such a thing, it is possible to give more conductivity to the cured product.
このとき、更に、(E)接着助剤を含むことができる。
At this time, (E) an adhesive aid can be further contained.
このようなものであれば、樹脂に対する接着性を高めることができる。
If it is such a thing, the adhesiveness to the resin can be improved.
このとき、前記(E)成分が、α-シリルエステル構造を有する化合物であることが好ましい。
At this time, it is preferable that the component (E) is a compound having an α-silyl ester structure.
このようなものであれば、樹脂に対する接着性を更に高めることができる。
If it is such a thing, the adhesiveness to the resin can be further improved.
また、本発明では、上記の導電性シリコーン組成物の硬化物であって、体積抵抗率が1.0×10-3Ω・cm以下のものである導電性シリコーン硬化物を提供する。
Further, the present invention provides a cured product of the above-mentioned conductive silicone composition having a volume resistivity of 1.0 × 10 -3 Ω · cm or less.
このようなものであれば、柔軟性・伸縮性と共に高い導電性の硬化物を得ることができる。
With such a product, a cured product having high conductivity as well as flexibility and elasticity can be obtained.
また、本発明では、上記の導電性シリコーン硬化物の製造方法であって、80~150℃の温度で前記導電性シリコーン組成物を硬化させる導電性シリコーン硬化物の製造方法を提供する。
Further, the present invention provides the above-mentioned method for producing a conductive silicone cured product, which is a method for producing a conductive silicone cured product in which the conductive silicone composition is cured at a temperature of 80 to 150 ° C.
このようにすれば、十分に硬化が進行し、また、組成物が脆くなることを抑制できる。
By doing so, curing progresses sufficiently, and it is possible to prevent the composition from becoming brittle.
また、本発明では、上記の導電性シリコーン硬化物を有するものである積層体を提供する。
Further, the present invention provides a laminate having the above-mentioned conductive silicone cured product.
このようなものであれば、高い導電性を有する積層体を得られる。
With such a material, a laminated body having high conductivity can be obtained.
本発明の導電性シリコーン組成物は、高い導電性を有するとともに、硬化性に優れ、かつ高い保存性を有する。このような特性を有する本発明の導電性シリコーン組成物は、導電性接着剤や導電ペーストとして、電子部品や素子の基板への接着、電子回路の形成等に有用である。
The conductive silicone composition of the present invention has high conductivity, excellent curability, and high storage stability. The conductive silicone composition of the present invention having such characteristics is useful as a conductive adhesive or a conductive paste for adhering electronic components or elements to a substrate, forming an electronic circuit, or the like.
以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
上述のように、高導電性でありながら、反応制御剤の添加を必要とせず、深部硬化性及び保存性に優れる付加硬化型導電性シリコーン組成物の開発が求められていた。
As described above, there has been a demand for the development of an add-curable conductive silicone composition which is highly conductive, does not require the addition of a reaction control agent, and has excellent deep curability and storage stability.
本発明者らは、上記問題について鋭意検討を重ねた結果、付加硬化型液状シリコーンゴムに導電性フィラーを充填した導電性組成物において、特定の構造を有するヒドロシリル化触媒を使用することで、貼り合わせ部内部など、深部硬化性を維持しつつ、反応制御剤の添加を要さずに常温での保存性に優れる導電性組成物が得られることを見出し、本発明を完成させた。
As a result of diligent studies on the above problems, the present inventors have applied a hydrosilylation catalyst having a specific structure in a conductive composition in which an addition-curable liquid silicone rubber is filled with a conductive filler. The present invention has been completed by finding that a conductive composition having excellent storage stability at room temperature can be obtained without adding a reaction control agent while maintaining deep curability such as inside the mating portion.
即ち、本発明は、
(A)ヒドロシリル化反応性炭素-炭素不飽和結合を有する基を1分子中に少なくとも2個有するオルガノポリシロキサン、
(B)SiH基を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン、
(C)ビス(β-ジケトナト)白金錯体、
(D)導電性粒子、
を含むものであることを特徴とする導電性シリコーン組成物である。 That is, the present invention
(A) An organopolysiloxane having at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule.
(B) Organohydrogenpolysiloxane having at least two SiH groups in one molecule,
(C) Bis (β-diketonato) platinum complex,
(D) Conductive particles,
It is a conductive silicone composition characterized by containing.
(A)ヒドロシリル化反応性炭素-炭素不飽和結合を有する基を1分子中に少なくとも2個有するオルガノポリシロキサン、
(B)SiH基を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン、
(C)ビス(β-ジケトナト)白金錯体、
(D)導電性粒子、
を含むものであることを特徴とする導電性シリコーン組成物である。 That is, the present invention
(A) An organopolysiloxane having at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule.
(B) Organohydrogenpolysiloxane having at least two SiH groups in one molecule,
(C) Bis (β-diketonato) platinum complex,
(D) Conductive particles,
It is a conductive silicone composition characterized by containing.
本発明の導電性シリコーン組成物は、下記(A)~(D)成分を含むものである。
The conductive silicone composition of the present invention contains the following components (A) to (D).
[(A)成分]
本発明の導電性シリコーン組成物における(A)成分は、ヒドロシリル化反応性炭素-炭素不飽和結合を有する基を1分子中に少なくとも2個有する、オルガノポリシロキサンである。 [(A) component]
The component (A) in the conductive silicone composition of the present invention is an organopolysiloxane having at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule.
本発明の導電性シリコーン組成物における(A)成分は、ヒドロシリル化反応性炭素-炭素不飽和結合を有する基を1分子中に少なくとも2個有する、オルガノポリシロキサンである。 [(A) component]
The component (A) in the conductive silicone composition of the present invention is an organopolysiloxane having at least two groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule.
(A)成分としては、例えば、下記平均式(1)で示されるオルガノポリシロキサンを用いることができる。
As the component (A), for example, an organopolysiloxane represented by the following average formula (1) can be used.
式(1)中、R1はヒドロシリル化反応性炭素-炭素不飽和結合を有する基であり、R2は前記ヒドロシリル化反応性炭素-炭素不飽和結合を含まない同一又は異なっていても良い、置換または非置換の1価の炭化水素基である。ただし、a,b,c,d,e,f,gはそれぞれ、a≧0、b≧0,c≧0、d≧0、e≧0,f≧0およびg≧0を満たす数であり、ただし、b+c+e>0であり、かつ、a+b+c+d+e+f+g=1を満たす数である。また、各シロキサン単位の配列順は任意である。
In formula (1), R 1 is a group having a hydrosilylation-reactive carbon-carbon unsaturated bond, and R 2 may be the same or different without the hydrosilylation-reactive carbon-carbon unsaturated bond. It is a substituted or unsubstituted monovalent hydrocarbon group. However, a, b, c, d, e, f, and g are numbers that satisfy a ≧ 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, f ≧ 0, and g ≧ 0, respectively. However, it is a number that satisfies b + c + e> 0 and a + b + c + d + e + f + g = 1. The sequence order of each siloxane unit is arbitrary.
R1のヒドロシリル化反応性炭素-炭素不飽和結合を有する基としては、ビニル基、アリル基、エチニル基、オクテニル基、ドデセニル基、ノルボルネニル基、イソノルボルネニル基、アクリロイル基、メタクリロイル基などが挙げられ、好ましくは炭素原子数2~10、より好ましくは2~6のアルケニル基であり、特にビニル基が好ましい。
Examples of the group having a hydrosilylation-reactive carbon-carbon unsaturated bond of R 1 include a vinyl group, an allyl group, an ethynyl group, an octenyl group, a dodecenyl group, a norbornenyl group, an isonorbornenyl group, an acryloyl group and a methacryloyl group. It is preferably an alkenyl group having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and a vinyl group is particularly preferable.
(A)成分のオルガノポリシロキサンは、1分子中に少なくとも2個、好ましくは2~6個の、ヒドロシリル化反応性炭素-炭素不飽和結合を有する基を含む。これらの基は、(A)成分の分子鎖末端及び分子鎖側鎖(分子鎖非末端)のどちらか一方にのみ位置していても、その両方に位置していてもよい。
The organopolysiloxane of the component (A) contains at least two, preferably two to six, hydrosilylation-reactive carbon-carbon unsaturated bonds in one molecule. These groups may be located only at one of the molecular chain end and the molecular chain side chain (non-terminal of the molecular chain) of the component (A), or may be located at both of them.
R2としては、ヒドロシリル化反応性炭素-炭素不飽和結合を含まないものであれば特に限定されず、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、s-ペンチル基、2-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、トリフルオロメチル基、3,3,3-トリフロロプロピル基等のハロゲン化アルキル基等の、好ましくは炭素原子数が1~12、より好ましくは1~10、更に好ましくは1~8の、非置換又はハロゲン置換の1価の炭化水素基が挙げられ、特にメチル基が好ましい。
The R 2, hydrosilation reactive carbon - not particularly limited as long as it does not contain carbon unsaturated bond, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, n- butyl group, s- butyl group , Isobutyl group, t-butyl group, n-pentyl group, neopentyl group, isopentyl group, s-pentyl group, 2-pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group and other alkyl groups; cyclopentyl group , Cycloalkyl group such as cyclohexyl group; aryl group such as phenyl group, trill group, xsilyl group, mesityl group, naphthyl group; aralkyl group such as benzyl group, phenethyl group; chloromethyl group, 3-chloropropyl group, trifluoro An substituent such as an alkyl halide group such as a methyl group or a 3,3,3-trifluoropropyl group, preferably having a carbon atom number of 1 to 12, more preferably 1 to 10, still more preferably 1 to 8, or not substituted. Examples thereof include a halogen-substituted monovalent hydrocarbon group, and a methyl group is particularly preferable.
(A)成分の具体的な例としては、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン、両末端トリメチルシロキシ基封鎖メチルビニルシロキサン、両末端ジメチルビニルシロキサン・環状メチルビニルシロキサン共重合体、環状メチルビニルシロキサン、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・環状ジフェニルシロキサン共重合体、両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・環状メチルフェニルシロキサン共重合体、両末端メチルフェニルビニルシロキシ基封鎖ジメチルシロキサン、両末端メチルフェニルビニルシロキシ基封鎖ジフェニルシロキサン、両末端メチルフェニルビニルシロキシ基封鎖メチルフェニルシロキサン、両末端メチルフェニルビニルシロキシ基封鎖ジメチルシロキサン・環状ジフェニルシロキサン共重合体、(CH2=CH)(CH3)2SiO1/2単位と(CH3)3SiO1/2単位とSiO4/2単位とからなる共重合体などが挙げられる。(A)成分は一種単独でも二種以上を併用してもよい。
Specific examples of the component (A) include both-terminal dimethylvinylsiloxy group-blocking dimethylsiloxane, both-terminal trimethylsiloxy group-blocking methylvinylsiloxane, both-terminal dimethylvinylsiloxane / cyclic methylvinylsiloxane copolymer, and cyclic methylvinylsiloxane. , Both-terminal dimethylvinylsiloxy group-blocking dimethylsiloxane / cyclic diphenylsiloxane copolymer, both-terminal dimethylvinylsiloxy group-blocking dimethylsiloxane / cyclic methylphenylsiloxane copolymer, both-terminal methylphenylvinylsiloxy group-blocking dimethylsiloxane, both-terminal methyl Phenylvinyl siloxy group-blocked diphenylsiloxane, both-terminal methylphenylvinyl siloxy group-blocked methylphenylsiloxane, both-terminal methylphenylvinylsiloxy group-blocked dimethylsiloxane / cyclic diphenylsiloxane copolymer, (CH 2 = CH) (CH 3 ) 2 SiO Examples thereof include a copolymer composed of 1/2 unit and (CH 3 ) 3 SiO 1/2 unit and SiO 4/2 unit. The component (A) may be used alone or in combination of two or more.
(A)成分の動粘度は特に限定されないが、好ましくは10~100,000mm2/s、より好ましくは100~10,000mm2/sの範囲である。なお、動粘度はウベローデ粘度計を用いた25℃における測定値である。このような範囲であれば組成物の取り扱い性に優れる。
The kinematic viscosity of the component (A) is not particularly limited, but is preferably in the range of 10 to 100,000 mm 2 / s, more preferably 100 to 10,000 mm 2 / s. The kinematic viscosity is a value measured at 25 ° C. using an Ubbelohde viscometer. Within such a range, the handleability of the composition is excellent.
[(B)成分]
本発明の導電性シリコーン組成物における(B)成分は、(A)成分中に含まれるヒドロシリル化反応性炭素-炭素不飽和結合とヒドロシリル化反応により架橋する架橋剤として作用する。(B)成分は、ケイ素原子に結合した水素原子(SiH基)を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである。 [(B) component]
The component (B) in the conductive silicone composition of the present invention acts as a cross-linking agent that crosslinks the hydrosilylation-reactive carbon-carbon unsaturated bond contained in the component (A) by a hydrosilylation reaction. The component (B) is an organohydrogenpolysiloxane having at least two hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule.
本発明の導電性シリコーン組成物における(B)成分は、(A)成分中に含まれるヒドロシリル化反応性炭素-炭素不飽和結合とヒドロシリル化反応により架橋する架橋剤として作用する。(B)成分は、ケイ素原子に結合した水素原子(SiH基)を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンである。 [(B) component]
The component (B) in the conductive silicone composition of the present invention acts as a cross-linking agent that crosslinks the hydrosilylation-reactive carbon-carbon unsaturated bond contained in the component (A) by a hydrosilylation reaction. The component (B) is an organohydrogenpolysiloxane having at least two hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule.
(B)成分としては、例えば、下記平均式(2)で示されるオルガノハイドロジェンポリシロキサンを用いることができる。
As the component (B), for example, an organohydrogenpolysiloxane represented by the following average formula (2) can be used.
式(2)中、R3はヒドロシリル化反応性炭素-炭素不飽和結合を含まない同一又は異なっていても良い、置換または非置換の1価の炭化水素基である。ただし、h,i,j,k,l,m,nはそれぞれ、h≧0、i≧0,j≧0、k≧0、l≧0,m≧0およびn≧0を満たす数であり、i+j+l>0であり、かつ、h+i+j+k+l+m+n=1を満たす数である。また、各シロキサン単位の配列順は任意である。
In formula (2), R 3 is a substituted or unsubstituted monovalent hydrocarbon group that does not contain a hydrosilylation-reactive carbon-carbon unsaturated bond and may be the same or different. However, h, i, j, k, l, m, and n are numbers that satisfy h ≧ 0, i ≧ 0, j ≧ 0, k ≧ 0, l ≧ 0, m ≧ 0, and n ≧ 0, respectively. , I + j + l> 0, and is a number satisfying h + i + j + k + l + m + n = 1. The sequence order of each siloxane unit is arbitrary.
R3の具体例としては、上記R2と同様の基が挙げられ、好ましくは炭素原子数が1~12、より好ましくは1~10、更に好ましくは1~8の、非置換又はハロゲン置換の1価の炭化水素基が挙げられ、特にメチル基が好ましい。
Specific examples of R 3 include the same groups as R 2 , preferably having an unsubstituted or halogen-substituted carbon atom number of 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8. A monovalent hydrocarbon group is mentioned, and a methyl group is particularly preferable.
(B)成分のオルガノハイドロジェンポリシロキサン化合物は、1分子中に少なくとも2個、好ましくは3~300個、特に好ましくは3~100個のケイ素原子に結合した水素原子を有する。(B)成分のオルガノハイドロジェンポリシロキサンが直鎖状構造を有する場合、これらのSiH基は、分子鎖末端及び分子鎖側鎖(分子鎖非末端)のどちらか一方にのみ位置していても、その両方に位置していてもよい。
The organohydrogenpolysiloxane compound of the component (B) has at least 2, preferably 3 to 300, particularly preferably 3 to 100 hydrogen atoms bonded to silicon atoms in one molecule. When the organohydrogenpolysiloxane of the component (B) has a linear structure, these SiH groups may be located only at either the molecular chain end or the molecular chain side chain (non-terminal of the molecular chain). , May be located in both.
(B)成分の具体的な例としては、例えば、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・環状メチルハイドロジェンシロキサン共重合体、環状メチルハイドロジェンシロキサン、両末端ジメチルフェニルシロキシ基封鎖メチルフェニルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端ジメチルフェニルシロキシ基封鎖ジフェニルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端メチルフェニルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサン、両末端メチルフェニルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジフェニルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン・メチルハイドロジェンシロキサン共重合体、片末端メチルフェニルハイドロジェン基片末端ジメチルハイドロジェン基封鎖ジフェニルポリシロキサン等が挙げられる。
Specific examples of the component (B) include, for example, both-terminal dimethylhydrogensiloxy group-blocking dimethylsiloxane, both-terminal trimethylsiloxy group-blocking methylhydrogensiloxane / dimethylsiloxane copolymer, and both-terminal dimethylhydrogensiloxy group-blocking. Dimethylsiloxane / cyclic methylhydrogensiloxane copolymer, cyclic methylhydrogensiloxane, both-terminal dimethylphenylsiloxy group-blocking methylphenylhydrogensiloxane / dimethylsiloxane cyclic copolymer, both-terminal dimethylphenylsiloxy group-blocking diphenylsiloxane / methylhydro Gensiloxane copolymer, both-terminal methylphenylhydrogensiloxy group-blocking diphenylpolysiloxane, both-terminal methylphenylhydrogensiloxy group-blocking dimethylsiloxane / diphenylsiloxane / methylhydrogensiloxane copolymer, both-terminal diphenylhydrogensiloxy group-blocking Examples thereof include dimethylsiloxane / diphenylsiloxane / methylhydrogensiloxane copolymer, one-terminal methylphenylhydrogen group, one-terminal dimethylhydrogen group-blocking diphenylpolysiloxane, and the like.
(B)成分のオルガノハイドロジェンポリシロキサン化合物は、単独で用いても二種以上併用してもよい。
The organohydrogenpolysiloxane compound of the component (B) may be used alone or in combination of two or more.
(B)成分の動粘度は、特に限定されないが、好ましくは10~1,000mm2/s、より好ましくは10~100mm2/sの範囲である。なお、動粘度は、例えば、ウベローデ粘度計又はキャノン・フェンスケ型粘度計を用いた25℃における測定値とすることができる。このような範囲であれば組成物の取り扱い性に優れる。
The kinematic viscosity of the component (B) is not particularly limited, but is preferably in the range of 10 to 1,000 mm 2 / s, more preferably 10 to 100 mm 2 / s. The kinematic viscosity can be measured at 25 ° C. using, for example, an Ubbelohde viscometer or a Canon Fenceke type viscometer. Within such a range, the handleability of the composition is excellent.
(B)成分の配合量は、(A)成分中のヒドロシリル化反応性炭素-炭素不飽和結合1個に対して(B)成分中のケイ素原子結合水素原子の数が、好ましくは0.5~10.0個、より好ましくは1.0~6.0個の範囲内となる量である。このような範囲であれば機械特性に優れる硬化物が得られる。
As for the blending amount of the component (B), the number of silicon atom-bonded hydrogen atoms in the component (B) is preferably 0.5 with respect to one hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A). The amount is in the range of ~ 10.0, more preferably 1.0 to 6.0. Within such a range, a cured product having excellent mechanical properties can be obtained.
[(C)成分]
本発明の導電性シリコーン組成物における(C)成分は、ビス(β-ジケトナト)白金錯体であり、(A)成分中のヒドロシリル化反応性炭素-炭素不飽和結合と、(B)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するためのヒドロシリル化触媒として作用する。 [Component (C)]
The component (C) in the conductive silicone composition of the present invention is a bis (β-diketonato) platinum complex, and the hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A) and the component (B). Silicon atom bond Acts as a hydrosilylation catalyst to promote the hydrosilylation reaction with hydrogen atoms.
本発明の導電性シリコーン組成物における(C)成分は、ビス(β-ジケトナト)白金錯体であり、(A)成分中のヒドロシリル化反応性炭素-炭素不飽和結合と、(B)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するためのヒドロシリル化触媒として作用する。 [Component (C)]
The component (C) in the conductive silicone composition of the present invention is a bis (β-diketonato) platinum complex, and the hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A) and the component (B). Silicon atom bond Acts as a hydrosilylation catalyst to promote the hydrosilylation reaction with hydrogen atoms.
ビス(β-ジケトナト)白金錯体としては、例えば、ビス(1,3-プロパンジオナト)白金錯体、ビス(2,4-ペンタンジオナト)白金錯体、ビス(2,4-へキサンジオナト)白金錯体、ビス(2,4-へプタンジオナト)白金錯体、ビス(3,5-ヘプタンジオナト)白金錯体、ビス(1-フェニル-1,3-ブタンジオナト)白金錯体、ビス(1,3-ジフェニル-1,3-プロパンジオナト)白金錯体などが挙げられ、好ましくはビス(1,3-プロパンジオナト)白金錯体である。
Examples of the bis (β-diketonato) platinum complex include a bis (1,3-propanedionat) platinum complex, a bis (2,4-pentandionato) platinum complex, and a bis (2,4-hexandionato) platinum complex. , Bis (2,4-heptandionat) platinum complex, bis (3,5-heptandionat) platinum complex, bis (1-phenyl-1,3-butandionato) platinum complex, bis (1,3-diphenyl-1,3) -Propanedionat) platinum complex and the like, preferably a bis (1,3-propanedionat) platinum complex.
(C)成分の含有量は、上記(A)成分100質量部に対して白金原子質量として0.001~0.5質量部が好ましく、0.01~0.1質量部であることがより好ましい。このような範囲であれば、優れた硬化性と保存性を有する組成物が得られる。
The content of the component (C) is preferably 0.001 to 0.5 parts by mass, more preferably 0.01 to 0.1 parts by mass, as a platinum atomic mass with respect to 100 parts by mass of the component (A). preferable. Within such a range, a composition having excellent curability and storage stability can be obtained.
[(D)成分]
本発明の導電性シリコーン組成物における(D)成分は、導電性粒子である。 [(D) component]
The component (D) in the conductive silicone composition of the present invention is conductive particles.
本発明の導電性シリコーン組成物における(D)成分は、導電性粒子である。 [(D) component]
The component (D) in the conductive silicone composition of the present invention is conductive particles.
(D)成分としては、導電性を有するものであればいかなるものであってもよいが、例えば、アルミニウム、ニッケル、銅、銀、金、白金、パラジウムなどの金属粒子またはこれらの合金ないしこれらの金属をメッキした粒子、酸化亜鉛、酸化チタン、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)、酸化インジウムスズ(ITO)、フッ素ドープ酸化スズ(FTO)などを用いることができ、導電性の観点から銀粉および銀メッキ粉が好ましい。
The component (D) may be any as long as it has conductivity, and for example, metal particles such as aluminum, nickel, copper, silver, gold, platinum, and palladium, alloys thereof, or alloys thereof. Metal-plated particles, zinc oxide, titanium oxide, antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), indium tin oxide (ITO), fluorine-doped tin oxide (FTO), etc. can be used and are conductive. From the viewpoint of the above, silver powder and silver-plated powder are preferable.
銀粉としては、例えば、三菱マテリアル社製、福田金属箔粉社製、徳力本店社製、DOWAエレクトロニクス社製、田中貴金属社製などを使用することができる。
As the silver powder, for example, Mitsubishi Materials, Fukuda Metal Leaf Powder, Tokuriki Honten, DOWA Electronics, Tanaka Kikinzoku, etc. can be used.
導電性粒子は、球状、フレーク状、樹状、不定形などいかなる形状でもよく、それらの混合物であってもよいが、フレーク状が特に好ましい。ここで、フレーク状とは、扁平状、薄片状、鱗片状などと呼称されるものも含まれる。導電性粒子の平均粒径は、0.1~100μmの範囲が好ましく、0.1~50μmの範囲がより好ましい。このような範囲の平均粒形の導電性粒子であれば、組成物の均一性がより向上し、塗布性もより向上し、更に導電性をより高くすることができる。なお、本発明において、平均粒径は、体積基準の粒度分布における50%累積径(メジアン径)を意味し、例えば日機装(株)製マイクロトラックMT330OEX等により測定が可能である。
The conductive particles may have any shape such as spherical, flake-shaped, dendritic, and amorphous, and may be a mixture thereof, but flake-shaped is particularly preferable. Here, the flaky shape also includes what is called a flat shape, a flaky shape, a scaly shape, or the like. The average particle size of the conductive particles is preferably in the range of 0.1 to 100 μm, more preferably in the range of 0.1 to 50 μm. If the conductive particles have an average grain shape in such a range, the uniformity of the composition can be further improved, the coatability can be further improved, and the conductivity can be further improved. In the present invention, the average particle size means a 50% cumulative diameter (median diameter) in a volume-based particle size distribution, and can be measured by, for example, Microtrac MT330OEX manufactured by Nikkiso Co., Ltd.
(D)成分のタップ密度は、1.0~7.0g/cm3が好ましい。なお、タップ密度の測定方法は、JIS Z 2512:2012に準ずる。
The tap density of the component (D) is preferably 1.0 to 7.0 g / cm 3. The tap density measurement method conforms to JIS Z 2512: 2012.
(D)成分の充填量は、好ましくは導電性シリコーン組成物の全質量に対し50~99質量%の範囲であり、より好ましくは60~95質量%、更に好ましくは75~93質量%の範囲である。このような範囲であれば、硬化性および取り扱い性に優れる組成物が得られ、また、硬化物に十分な導電性を与えることができる。
The filling amount of the component (D) is preferably in the range of 50 to 99% by mass, more preferably 60 to 95% by mass, and further preferably 75 to 93% by mass with respect to the total mass of the conductive silicone composition. Is. Within such a range, a composition having excellent curability and handleability can be obtained, and sufficient conductivity can be imparted to the cured product.
[(E)成分]
本発明の導電性シリコーン組成物には、樹脂に対する接着性を高めるために、(E)接着助剤を添加してもよい。接着助剤としては、付加反応硬化型である本発明の導電性シリコーン組成物に自己接着性を付与する観点から、接着性を付与する官能基を含有するシラン、シロキサン等の有機ケイ素化合物、非シリコーン系有機化合物等が用いられる。 [(E) component]
(E) Adhesive aid may be added to the conductive silicone composition of the present invention in order to enhance the adhesiveness to the resin. As the adhesive aid, from the viewpoint of imparting self-adhesiveness to the conductive silicone composition of the present invention, which is an addition reaction curing type, an organosilicon compound such as silane or siloxane containing a functional group that imparts adhesiveness, non-adhesive. Silicone-based organic compounds and the like are used.
本発明の導電性シリコーン組成物には、樹脂に対する接着性を高めるために、(E)接着助剤を添加してもよい。接着助剤としては、付加反応硬化型である本発明の導電性シリコーン組成物に自己接着性を付与する観点から、接着性を付与する官能基を含有するシラン、シロキサン等の有機ケイ素化合物、非シリコーン系有機化合物等が用いられる。 [(E) component]
(E) Adhesive aid may be added to the conductive silicone composition of the present invention in order to enhance the adhesiveness to the resin. As the adhesive aid, from the viewpoint of imparting self-adhesiveness to the conductive silicone composition of the present invention, which is an addition reaction curing type, an organosilicon compound such as silane or siloxane containing a functional group that imparts adhesiveness, non-adhesive. Silicone-based organic compounds and the like are used.
接着性を付与する官能基の具体例としては、ケイ素原子に結合した炭素-炭素不飽和結合を有する重合性基、SiH基、炭素原子を介してケイ素原子に結合したエポキシ基(例えば、γ-グリシドキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基等)や、アルコキシシリル基(例えば、トリメトキシシリル基、トリエトキシシリル基、メチルジメトキシシリル基等)等が挙げられる。
Specific examples of the functional group that imparts adhesiveness include a polymerizable group having a carbon-carbon unsaturated bond bonded to a silicon atom, a SiH group, and an epoxy group bonded to a silicon atom via a carbon atom (for example, γ-). Glycydoxypropyl group, β- (3,4-epoxycyclohexyl) ethyl group, etc.), alkoxysilyl group (for example, trimethoxysilyl group, triethoxysilyl group, methyldimethoxysilyl group, etc.) and the like can be mentioned.
上記官能基群のうちの少なくとも1種およびオルガノシロキサン骨格を含む化合物の例として、下記構造式で表されるものが挙げられる。なお、式中においてMeはメチル基を表す。
Examples of compounds containing at least one of the above functional groups and an organosiloxane skeleton include those represented by the following structural formulas. In the formula, Me represents a methyl group.
また、非シリコーン系有機化合物としては、例えば、下記構造式で表される有機酸アリルエステル化合物およびアリルエーテル化合物などが挙げられる。
Examples of the non-silicone organic compound include an organic acid allyl ester compound represented by the following structural formula and an allyl ether compound.
その他の非シリコーン系接着助剤としては、有機チタン化合物、有機ジルコニウム化合物、有機アルミニウム化合物等が挙げられる。
Examples of other non-silicone adhesive aids include organic titanium compounds, organic zirconium compounds, and organoaluminum compounds.
有機チタン化合物の例としては、チタン酸テトラエチル、チタン酸テトラプロピル、チタン酸テトラブチル、チタニウムテトラアセチルアセトネート、ジイソプロポキシチタニウムビス(アセチルアセトナト)などが挙げられる。
Examples of the organic titanium compound include tetraethyl titanate, tetrapropyl titanate, tetrabutyl titanate, titanium tetraacetylacetonate, and diisopropoxytitanium bis (acetylacetonato).
有機ジルコニウム化合物の例としては、ジルコニウムテトラエトキシド、ジルコニウムプロポキシド、ジルコニウムブトキシド、ジルコニウムアセチルアセトネート、ビスアセタトオキソジルコニウムなどが挙げられる。
Examples of organic zirconium compounds include zirconium tetraethoxyd, zirconium propoxide, zirconium butoxide, zirconium acetylacetonate, and bisacetatooxozirconium.
有機アルミニウム化合物の例としては、アルミニウムエトキシド、アルミニウムプロポキシド、アルミニウムブトキシド、アルミニウムイソプロポキシド、アルミニウムアセチルアセトネートなどが挙げられる。
Examples of organoaluminum compounds include aluminum ethoxyde, aluminum propoxide, aluminum butoxide, aluminum isopropoxide, aluminum acetylacetonate, and the like.
これらの中でも、α-シリルエステル構造を有する化合物が好ましく、2-トリメトキシシリルプロパン酸エチルが特に好ましい。
Among these, a compound having an α-silyl ester structure is preferable, and ethyl 2-trimethoxysilylpropanoate is particularly preferable.
[その他の成分]
<補強材>
本発明の導電性シリコーン組成物には引張強度、伸び、引き裂き強度などを向上させるために補強材として微粉末シリカを配合してもよい。この微粉末シリカは、比表面積(BET法)が50m2/g以上であることが好ましく、より好ましくは50~400m2/g、特に好ましくは100~300m2/gである。比表面積が50m2/g以上の場合には、硬化物に十分な補強性を付与することができる。 [Other ingredients]
<Reinforcing material>
The conductive silicone composition of the present invention may contain fine powdered silica as a reinforcing material in order to improve tensile strength, elongation, tear strength and the like. The specific surface area (BET method) of this fine powder silica is preferably 50 m 2 / g or more, more preferably 50 to 400 m 2 / g, and particularly preferably 100 to 300 m 2 / g. When the specific surface area is 50 m 2 / g or more, sufficient reinforcing property can be imparted to the cured product.
<補強材>
本発明の導電性シリコーン組成物には引張強度、伸び、引き裂き強度などを向上させるために補強材として微粉末シリカを配合してもよい。この微粉末シリカは、比表面積(BET法)が50m2/g以上であることが好ましく、より好ましくは50~400m2/g、特に好ましくは100~300m2/gである。比表面積が50m2/g以上の場合には、硬化物に十分な補強性を付与することができる。 [Other ingredients]
<Reinforcing material>
The conductive silicone composition of the present invention may contain fine powdered silica as a reinforcing material in order to improve tensile strength, elongation, tear strength and the like. The specific surface area (BET method) of this fine powder silica is preferably 50 m 2 / g or more, more preferably 50 to 400 m 2 / g, and particularly preferably 100 to 300 m 2 / g. When the specific surface area is 50 m 2 / g or more, sufficient reinforcing property can be imparted to the cured product.
本発明において、このような微粉末シリカとしては、比表面積が上記範囲内(50m2/g以上)である、従来からシリコーンゴムの補強性充填剤として使用されている公知のものでもよく、例えば、煙霧質シリカ(乾式シリカ)、沈降シリカ(湿式シリカ)等が挙げられる。微粉末シリカはそのまま使用してもよいが、組成物に良好な流動性を付与するため、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン等のメチルクロロシラン類、ジメチルポリシロキサン、ヘキサメチルジシラザン、ジビニルテトラメチルジシラザン、ジメチルテトラビニルジシラザン等のヘキサオルガノジシラザン等の有機ケイ素化合物で処理したものを使用することが好ましい。補強性シリカは単独で用いても二種以上を併用してもよい。
In the present invention, such fine powdered silica may be a known one that has a specific surface area within the above range (50 m 2 / g or more) and has been conventionally used as a reinforcing filler for silicone rubber, for example. , Cigarette silica (dry silica), precipitated silica (wet silica) and the like. Fine powder silica may be used as it is, but in order to impart good fluidity to the composition, methylchlorosilanes such as trimethylchlorosilane, dimethyldichlorosilane and methyltrichlorosilane, dimethylpolysiloxane, hexamethyldisilazane and divinyl It is preferable to use one treated with an organosilicon compound such as hexaorganodisilazane such as tetramethyldisilazane and dimethyltetravinyldisilazane. Reinforcing silica may be used alone or in combination of two or more.
<希釈剤>
本発明の導電性シリコーン組成物は、非反応性の希釈剤を使用することが出来る。希釈剤を使用することによって硬化後の導電性を損なうことなく組成物硬化前の粘度を低減することが出来、作業性を高めることが出来る。希釈剤の例としては、トルエン、キシレンなどの芳香族炭化水素系溶剤のほか、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、プロピレングリコールメチルエーテルアセテートなどのエステル系溶剤、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンなどのケトン系溶剤、ヘキサン、ヘプタン、オクタン、イソオクタン、イソドデカンなどの脂肪族炭化水素溶剤等が挙げられる。 <Diluent>
The conductive silicone composition of the present invention can use a non-reactive diluent. By using a diluent, the viscosity of the composition before curing can be reduced without impairing the conductivity after curing, and workability can be improved. Examples of diluents include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate, propyl acetate, butyl acetate, pentyl acetate and propylene glycol methyl ether acetate, methyl ethyl ketone, cyclopentanone, etc. Examples thereof include ketone solvents such as methylisobutylketone, and aliphatic hydrocarbon solvents such as hexane, heptane, octane, isooctane and isododecane.
本発明の導電性シリコーン組成物は、非反応性の希釈剤を使用することが出来る。希釈剤を使用することによって硬化後の導電性を損なうことなく組成物硬化前の粘度を低減することが出来、作業性を高めることが出来る。希釈剤の例としては、トルエン、キシレンなどの芳香族炭化水素系溶剤のほか、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、プロピレングリコールメチルエーテルアセテートなどのエステル系溶剤、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンなどのケトン系溶剤、ヘキサン、ヘプタン、オクタン、イソオクタン、イソドデカンなどの脂肪族炭化水素溶剤等が挙げられる。 <Diluent>
The conductive silicone composition of the present invention can use a non-reactive diluent. By using a diluent, the viscosity of the composition before curing can be reduced without impairing the conductivity after curing, and workability can be improved. Examples of diluents include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate, propyl acetate, butyl acetate, pentyl acetate and propylene glycol methyl ether acetate, methyl ethyl ketone, cyclopentanone, etc. Examples thereof include ketone solvents such as methylisobutylketone, and aliphatic hydrocarbon solvents such as hexane, heptane, octane, isooctane and isododecane.
[導電性シリコーン硬化物]
本発明では、上記の導電性シリコーン組成物の硬化物であって、体積抵抗率が1.0×10-3Ω・cm以下のものである導電性シリコーン硬化物を提供する。
本発明の導電性シリコーン組成物の硬化物は、その体積抵抗率が1.0×10-3Ω・cm以下であることが好ましい。このような導電性シリコーン硬化物であれば、柔軟性・伸張性と共に、十分な導電性を有するものとなり、電子部品や素子の基板への実装、印刷による電子回路の形成等に有用なものとなる。体積抵抗率の下限値は、特に限定されないが、1.0×10-5Ω・cm以上であることができる。 [Conductive silicone cured product]
The present invention provides a cured product of the above-mentioned conductive silicone composition having a volume resistivity of 1.0 × 10 -3 Ω · cm or less.
The cured product of the conductive silicone composition of the present invention preferably has a volume resistivity of 1.0 × 10 -3 Ω · cm or less. Such a conductive silicone cured product has sufficient conductivity as well as flexibility and extensibility, and is useful for mounting electronic components and elements on a substrate, forming an electronic circuit by printing, and the like. Become. The lower limit of the volume resistivity is not particularly limited, but can be 1.0 × 10 -5 Ω · cm or more.
本発明では、上記の導電性シリコーン組成物の硬化物であって、体積抵抗率が1.0×10-3Ω・cm以下のものである導電性シリコーン硬化物を提供する。
本発明の導電性シリコーン組成物の硬化物は、その体積抵抗率が1.0×10-3Ω・cm以下であることが好ましい。このような導電性シリコーン硬化物であれば、柔軟性・伸張性と共に、十分な導電性を有するものとなり、電子部品や素子の基板への実装、印刷による電子回路の形成等に有用なものとなる。体積抵抗率の下限値は、特に限定されないが、1.0×10-5Ω・cm以上であることができる。 [Conductive silicone cured product]
The present invention provides a cured product of the above-mentioned conductive silicone composition having a volume resistivity of 1.0 × 10 -3 Ω · cm or less.
The cured product of the conductive silicone composition of the present invention preferably has a volume resistivity of 1.0 × 10 -3 Ω · cm or less. Such a conductive silicone cured product has sufficient conductivity as well as flexibility and extensibility, and is useful for mounting electronic components and elements on a substrate, forming an electronic circuit by printing, and the like. Become. The lower limit of the volume resistivity is not particularly limited, but can be 1.0 × 10 -5 Ω · cm or more.
[積層体]
本発明では、上記の導電性シリコーン硬化物を有する積層体を提供する。
本発明の導電性シリコーン組成物は、例えば、基材に塗布または印刷した後に硬化させることによって高い導電性を有する積層体を形成することができる。上記基材は特に制限されず、例えば、(メタ)アクリル樹脂、エポキシ樹脂、高密度ポリエチレン樹脂、低密度ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリロニトリル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアセタール樹脂、ポリエチレンオキシド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、シリコーン樹脂等の有機材料およびアルミナ、ジルコニア、チタン酸バリウム、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ガラス、金属等の無機材料など公知の材料を用いることができる。 [Laminate]
The present invention provides a laminate having the above-mentioned conductive silicone cured product.
The conductive silicone composition of the present invention can form a highly conductive laminate by, for example, applying or printing on a substrate and then curing. The base material is not particularly limited, and for example, (meth) acrylic resin, epoxy resin, high-density polyethylene resin, low-density polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyacrylonitrile resin, etc. Organic materials such as polycarbonate resin, polyurethane resin, polyester resin, polyamide resin, polyimide resin, polyacetal resin, polyethylene oxide resin, polyetherimide resin, polyethersulfone resin, polyetheretherketone resin, polyphenylene sulfide resin, silicone resin, and alumina. , Zirconia, barium titanate, silicon nitride, aluminum nitride, silicon carbide, glass, metals and other inorganic materials can be used.
本発明では、上記の導電性シリコーン硬化物を有する積層体を提供する。
本発明の導電性シリコーン組成物は、例えば、基材に塗布または印刷した後に硬化させることによって高い導電性を有する積層体を形成することができる。上記基材は特に制限されず、例えば、(メタ)アクリル樹脂、エポキシ樹脂、高密度ポリエチレン樹脂、低密度ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリロニトリル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアセタール樹脂、ポリエチレンオキシド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、シリコーン樹脂等の有機材料およびアルミナ、ジルコニア、チタン酸バリウム、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ガラス、金属等の無機材料など公知の材料を用いることができる。 [Laminate]
The present invention provides a laminate having the above-mentioned conductive silicone cured product.
The conductive silicone composition of the present invention can form a highly conductive laminate by, for example, applying or printing on a substrate and then curing. The base material is not particularly limited, and for example, (meth) acrylic resin, epoxy resin, high-density polyethylene resin, low-density polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyacrylonitrile resin, etc. Organic materials such as polycarbonate resin, polyurethane resin, polyester resin, polyamide resin, polyimide resin, polyacetal resin, polyethylene oxide resin, polyetherimide resin, polyethersulfone resin, polyetheretherketone resin, polyphenylene sulfide resin, silicone resin, and alumina. , Zirconia, barium titanate, silicon nitride, aluminum nitride, silicon carbide, glass, metals and other inorganic materials can be used.
本発明の導電性シリコーンを塗布または印刷する前処理として、上記各種基材について表面処理を行ってもよい。表面処理の具体的な例としては、紫外線、X線、γ線、α線、β線、電子線等の活性エネルギー線の照射およびプラズマ処理、コロナ処理、オゾン処理などが挙げられる。
As a pretreatment for applying or printing the conductive silicone of the present invention, surface treatment may be performed on the above-mentioned various base materials. Specific examples of the surface treatment include irradiation of active energy rays such as ultraviolet rays, X-rays, γ-rays, α-rays, β-rays, and electron beams, plasma treatment, corona treatment, ozone treatment, and the like.
[塗布方法]
本発明の導電性シリコーン組成物は、例えば、基材上に、メッシュスクリーン印刷、メタルマスク印刷、グラビア印刷、オフセット印刷、反転オフセット印刷、フレキソ印刷、インクジェット印刷などの印刷方法、ローラーコーター、スリットコーター、ディスペンサー、ディッピングなどの塗布方法により使用することができる。 [Applying method]
The conductive silicone composition of the present invention can be used on a substrate, for example, by printing methods such as mesh screen printing, metal mask printing, gravure printing, offset printing, reverse offset printing, flexo printing, inkjet printing, roller coater, slit coater. , Dispenser, dipping and other coating methods.
本発明の導電性シリコーン組成物は、例えば、基材上に、メッシュスクリーン印刷、メタルマスク印刷、グラビア印刷、オフセット印刷、反転オフセット印刷、フレキソ印刷、インクジェット印刷などの印刷方法、ローラーコーター、スリットコーター、ディスペンサー、ディッピングなどの塗布方法により使用することができる。 [Applying method]
The conductive silicone composition of the present invention can be used on a substrate, for example, by printing methods such as mesh screen printing, metal mask printing, gravure printing, offset printing, reverse offset printing, flexo printing, inkjet printing, roller coater, slit coater. , Dispenser, dipping and other coating methods.
[導電性シリコーン硬化物の製造方法]
また、本発明では、上記の導電性シリコーン硬化物の製造方法であって、80~150℃の温度で上記の導電性シリコーン組成物を硬化させる導電性シリコーン硬化物の製造方法を提供する。
本発明の導電性シリコーン組成物は、80~150℃、特に100~120℃で10~120分間加熱することにより硬化させることが好ましい。このような範囲であれば、十分に硬化が進行し、また、組成物が脆くなることを抑制できる。 [Manufacturing method of conductive silicone cured product]
Further, the present invention provides a method for producing the above-mentioned conductive silicone cured product, which is a method for producing the above-mentioned conductive silicone cured product, which cures the above-mentioned conductive silicone composition at a temperature of 80 to 150 ° C.
The conductive silicone composition of the present invention is preferably cured by heating at 80 to 150 ° C., particularly 100 to 120 ° C. for 10 to 120 minutes. Within such a range, curing progresses sufficiently, and it is possible to prevent the composition from becoming brittle.
また、本発明では、上記の導電性シリコーン硬化物の製造方法であって、80~150℃の温度で上記の導電性シリコーン組成物を硬化させる導電性シリコーン硬化物の製造方法を提供する。
本発明の導電性シリコーン組成物は、80~150℃、特に100~120℃で10~120分間加熱することにより硬化させることが好ましい。このような範囲であれば、十分に硬化が進行し、また、組成物が脆くなることを抑制できる。 [Manufacturing method of conductive silicone cured product]
Further, the present invention provides a method for producing the above-mentioned conductive silicone cured product, which is a method for producing the above-mentioned conductive silicone cured product, which cures the above-mentioned conductive silicone composition at a temperature of 80 to 150 ° C.
The conductive silicone composition of the present invention is preferably cured by heating at 80 to 150 ° C., particularly 100 to 120 ° C. for 10 to 120 minutes. Within such a range, curing progresses sufficiently, and it is possible to prevent the composition from becoming brittle.
以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、25℃における粘度は回転粘度計により、25℃における動粘度はウベローデ粘度計又はキャノン・フェンスケ型粘度計により測定した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The viscosity at 25 ° C. was measured with a rotational viscometer, and the kinematic viscosity at 25 ° C. was measured with an Ubbelohde viscometer or a Canon Fenceke type viscometer.
[実施例1~4、比較例1~5]
下記に示される(A)~(E)成分およびその他の成分を、表1及び表2に示す配合量にて自転・公転式ミキサー((株)THINKY社製)を用いて5分間混合し、シリコーン組成物を調製した。なお、表1又は表2中の各成分の数値は質量部を示す。銀粉充填率は組成物全体に占める銀粉の質量百分率である。 [Examples 1 to 4, Comparative Examples 1 to 5]
The components (A) to (E) and other components shown below are mixed in the blending amounts shown in Tables 1 and 2 using a rotation / revolution mixer (manufactured by THINKY Co., Ltd.) for 5 minutes. A silicone composition was prepared. The numerical values of each component in Table 1 or Table 2 indicate parts by mass. The silver powder filling factor is the mass percentage of silver powder in the entire composition.
下記に示される(A)~(E)成分およびその他の成分を、表1及び表2に示す配合量にて自転・公転式ミキサー((株)THINKY社製)を用いて5分間混合し、シリコーン組成物を調製した。なお、表1又は表2中の各成分の数値は質量部を示す。銀粉充填率は組成物全体に占める銀粉の質量百分率である。 [Examples 1 to 4, Comparative Examples 1 to 5]
The components (A) to (E) and other components shown below are mixed in the blending amounts shown in Tables 1 and 2 using a rotation / revolution mixer (manufactured by THINKY Co., Ltd.) for 5 minutes. A silicone composition was prepared. The numerical values of each component in Table 1 or Table 2 indicate parts by mass. The silver powder filling factor is the mass percentage of silver powder in the entire composition.
[(A)成分]
a-1:両末端ジメチルビニルシリル基封鎖ジメチルポリシロキサン化合物(25℃における動粘度600mm2/s)。
a-2:下記平均式(3)で表される、重量平均分子量4,500のオルガノポリシロキサン。
なお、式中においてViはビニル基、Meはメチル基を表す。
[(A) component]
a-1: Both-terminal dimethylvinylsilyl group-blocking dimethylpolysiloxane compound (kinematic viscosity at 25 ° C., 600 mm 2 / s).
a-2: An organopolysiloxane having a weight average molecular weight of 4,500 represented by the following average formula (3).
In the formula, Vi represents a vinyl group and Me represents a methyl group.
a-1:両末端ジメチルビニルシリル基封鎖ジメチルポリシロキサン化合物(25℃における動粘度600mm2/s)。
a-2:下記平均式(3)で表される、重量平均分子量4,500のオルガノポリシロキサン。
a-1: Both-terminal dimethylvinylsilyl group-blocking dimethylpolysiloxane compound (kinematic viscosity at 25 ° C., 600 mm 2 / s).
a-2: An organopolysiloxane having a weight average molecular weight of 4,500 represented by the following average formula (3).
[(B)成分]
b-1:下記構造式で表されるオルガノハイドロジェンポリシロキサン化合物。
(式中、括弧内のシロキサン単位の配列順は不定である。)
[(B) component]
b-1: Organohydrogenpolysiloxane compound represented by the following structural formula.
(In the formula, the sequence order of the siloxane units in parentheses is indefinite.)
b-1:下記構造式で表されるオルガノハイドロジェンポリシロキサン化合物。
(式中、括弧内のシロキサン単位の配列順は不定である。)
b-1: Organohydrogenpolysiloxane compound represented by the following structural formula.
(In the formula, the sequence order of the siloxane units in parentheses is indefinite.)
[(C)成分]
c-1: ビス(1,3-プロパンジオナト)白金錯体のブチルカルビトールアセテート溶液(白金原子として0.5質量%含有)(Umicore社製)。
c-2:(メチルシクロペンタジエニル)トリメチル白金錯体のトルエン溶液(白金原子として0.5質量%含有)(Umicore社製)。
c-3:六塩化白金酸と1,3-ジビニルテトラメチルジシロキサンとの反応生成物の、ジメチルポリシロキサン(粘度600mPa・s)溶液(白金原子として1.0質量%含有)。 [Component (C)]
c-1: A butyl carbitol acetate solution of a bis (1,3-propanedionate) platinum complex (containing 0.5% by mass as a platinum atom) (manufactured by Umicore).
c-2: Toluene solution of (methylcyclopentadienyl) trimethyl platinum complex (containing 0.5% by mass as a platinum atom) (manufactured by Umicore).
c-3: A dimethylpolysiloxane (viscosity 600 mPa · s) solution (containing 1.0% by mass as a platinum atom) of the reaction product of hexachloride platinum acid and 1,3-divinyltetramethyldisiloxane.
c-1: ビス(1,3-プロパンジオナト)白金錯体のブチルカルビトールアセテート溶液(白金原子として0.5質量%含有)(Umicore社製)。
c-2:(メチルシクロペンタジエニル)トリメチル白金錯体のトルエン溶液(白金原子として0.5質量%含有)(Umicore社製)。
c-3:六塩化白金酸と1,3-ジビニルテトラメチルジシロキサンとの反応生成物の、ジメチルポリシロキサン(粘度600mPa・s)溶液(白金原子として1.0質量%含有)。 [Component (C)]
c-1: A butyl carbitol acetate solution of a bis (1,3-propanedionate) platinum complex (containing 0.5% by mass as a platinum atom) (manufactured by Umicore).
c-2: Toluene solution of (methylcyclopentadienyl) trimethyl platinum complex (containing 0.5% by mass as a platinum atom) (manufactured by Umicore).
c-3: A dimethylpolysiloxane (viscosity 600 mPa · s) solution (containing 1.0% by mass as a platinum atom) of the reaction product of hexachloride platinum acid and 1,3-divinyltetramethyldisiloxane.
[(D)成分]
d-1:平均粒径5.8μm、タップ密度5.3g/cm3の銀粉末。 [(D) component]
d-1: Silver powder having an average particle size of 5.8 μm and a tap density of 5.3 g / cm 3.
d-1:平均粒径5.8μm、タップ密度5.3g/cm3の銀粉末。 [(D) component]
d-1: Silver powder having an average particle size of 5.8 μm and a tap density of 5.3 g / cm 3.
[(E)成分]
e-1:2-トリメトキシシリルプロパン酸エチル。
e-2:下記構造式で表される化合物(式中、Meはメチル基を表す。)。
e-3:下記構造式で表される化合物(式中、Meはメチル基を表す。)。
[(E) component]
e-1: Ethyl 2-trimethoxysilylpropanoate.
e-2: A compound represented by the following structural formula (Me represents a methyl group in the formula).
e-3: A compound represented by the following structural formula (Me represents a methyl group in the formula).
e-1:2-トリメトキシシリルプロパン酸エチル。
e-2:下記構造式で表される化合物(式中、Meはメチル基を表す。)。
e-1: Ethyl 2-trimethoxysilylpropanoate.
e-2: A compound represented by the following structural formula (Me represents a methyl group in the formula).
[その他の成分]
f-1:1-エチニル-1-シクロヘキサノール(日信化学工業社製、反応制御剤)。 [Other ingredients]
f-1: 1-ethynyl-1-cyclohexanol (manufactured by Nisshin Chemical Industry Co., Ltd., reaction control agent).
f-1:1-エチニル-1-シクロヘキサノール(日信化学工業社製、反応制御剤)。 [Other ingredients]
f-1: 1-ethynyl-1-cyclohexanol (manufactured by Nisshin Chemical Industry Co., Ltd., reaction control agent).
導電性シリコーン組成物、及びその硬化物の特性は次のようにして評価した。
The characteristics of the conductive silicone composition and its cured product were evaluated as follows.
[大気下硬化性]
実施例1~4及び比較例1~4のシリコーン組成物をそれぞれスライドガラス上に厚み100μmでスキージ塗布し、大気下において120℃のオーブン中で1時間の加熱を行った後の硬化の有無を確認した。この際、シリコーン組成物が完全に硬化した場合を「○」、一部未硬化の場合を「△」、殆ど硬化が見られなかった場合を「×」として評価した。その結果を表1及び表2に示す。 [Curability in the atmosphere]
The silicone compositions of Examples 1 to 4 and Comparative Examples 1 to 4 were squeezed onto a slide glass to a thickness of 100 μm, respectively, and heated in an oven at 120 ° C. for 1 hour in the air to determine the presence or absence of curing. confirmed. At this time, the case where the silicone composition was completely cured was evaluated as "◯", the case where it was partially uncured was evaluated as "Δ", and the case where almost no curing was observed was evaluated as "x". The results are shown in Tables 1 and 2.
実施例1~4及び比較例1~4のシリコーン組成物をそれぞれスライドガラス上に厚み100μmでスキージ塗布し、大気下において120℃のオーブン中で1時間の加熱を行った後の硬化の有無を確認した。この際、シリコーン組成物が完全に硬化した場合を「○」、一部未硬化の場合を「△」、殆ど硬化が見られなかった場合を「×」として評価した。その結果を表1及び表2に示す。 [Curability in the atmosphere]
The silicone compositions of Examples 1 to 4 and Comparative Examples 1 to 4 were squeezed onto a slide glass to a thickness of 100 μm, respectively, and heated in an oven at 120 ° C. for 1 hour in the air to determine the presence or absence of curing. confirmed. At this time, the case where the silicone composition was completely cured was evaluated as "◯", the case where it was partially uncured was evaluated as "Δ", and the case where almost no curing was observed was evaluated as "x". The results are shown in Tables 1 and 2.
[貼り合わせ時硬化性]
実施例1~4及び比較例1~4のシリコーン組成物をそれぞれアルミニウム片上に1g載せ、厚み2mmとなるようにアルミニウム片を貼り合わせた。大気下において120℃のオーブン中で1時間の加熱を行った後これを引きはがし、内部の硬化性を確認した。この際、シリコーン組成物が完全に硬化した場合を「○」、一部未硬化の場合を「△」、殆ど硬化が見られなかった場合を「×」として評価した。その結果を表1及び表2に示す。 [Curability at the time of bonding]
1 g of each of the silicone compositions of Examples 1 to 4 and Comparative Examples 1 to 4 was placed on an aluminum piece, and the aluminum pieces were laminated so as to have a thickness of 2 mm. After heating in an oven at 120 ° C. for 1 hour in the atmosphere, this was peeled off to confirm the curability of the inside. At this time, the case where the silicone composition was completely cured was evaluated as "◯", the case where it was partially uncured was evaluated as "Δ", and the case where almost no curing was observed was evaluated as "x". The results are shown in Tables 1 and 2.
実施例1~4及び比較例1~4のシリコーン組成物をそれぞれアルミニウム片上に1g載せ、厚み2mmとなるようにアルミニウム片を貼り合わせた。大気下において120℃のオーブン中で1時間の加熱を行った後これを引きはがし、内部の硬化性を確認した。この際、シリコーン組成物が完全に硬化した場合を「○」、一部未硬化の場合を「△」、殆ど硬化が見られなかった場合を「×」として評価した。その結果を表1及び表2に示す。 [Curability at the time of bonding]
1 g of each of the silicone compositions of Examples 1 to 4 and Comparative Examples 1 to 4 was placed on an aluminum piece, and the aluminum pieces were laminated so as to have a thickness of 2 mm. After heating in an oven at 120 ° C. for 1 hour in the atmosphere, this was peeled off to confirm the curability of the inside. At this time, the case where the silicone composition was completely cured was evaluated as "◯", the case where it was partially uncured was evaluated as "Δ", and the case where almost no curing was observed was evaluated as "x". The results are shown in Tables 1 and 2.
[体積抵抗率]
上記大気下加熱硬化性試験において作製した硬化物について、三菱化学アナリテック社製ロレスターGXにより四探針法での体積抵抗率測定を行った。その結果を表1及び表2に示す。 [Volume resistivity]
The volume resistivity of the cured product prepared in the above atmospheric heat curability test was measured by the four-probe method using the Lorester GX manufactured by Mitsubishi Chemical Analytech. The results are shown in Tables 1 and 2.
上記大気下加熱硬化性試験において作製した硬化物について、三菱化学アナリテック社製ロレスターGXにより四探針法での体積抵抗率測定を行った。その結果を表1及び表2に示す。 [Volume resistivity]
The volume resistivity of the cured product prepared in the above atmospheric heat curability test was measured by the four-probe method using the Lorester GX manufactured by Mitsubishi Chemical Analytech. The results are shown in Tables 1 and 2.
[保存性]
実施例1~3及び比較例1~4のシリコーン組成物をそれぞれ1gずつ容器に取り、25℃および40℃の保存条件での硬化の有無を12時間ごとに確認した。その結果を表1に示す。実施例4については40℃100時間保存後の硬化の有無の確認を行い、また、保存後の体積抵抗率を上記手法に基づいて測定した。その結果を表2に示す。 [Preservation]
1 g of each of the silicone compositions of Examples 1 to 3 and Comparative Examples 1 to 4 was placed in a container, and the presence or absence of curing under the storage conditions of 25 ° C. and 40 ° C. was confirmed every 12 hours. The results are shown in Table 1. In Example 4, the presence or absence of curing after storage at 40 ° C. for 100 hours was confirmed, and the volume resistivity after storage was measured based on the above method. The results are shown in Table 2.
実施例1~3及び比較例1~4のシリコーン組成物をそれぞれ1gずつ容器に取り、25℃および40℃の保存条件での硬化の有無を12時間ごとに確認した。その結果を表1に示す。実施例4については40℃100時間保存後の硬化の有無の確認を行い、また、保存後の体積抵抗率を上記手法に基づいて測定した。その結果を表2に示す。 [Preservation]
1 g of each of the silicone compositions of Examples 1 to 3 and Comparative Examples 1 to 4 was placed in a container, and the presence or absence of curing under the storage conditions of 25 ° C. and 40 ° C. was confirmed every 12 hours. The results are shown in Table 1. In Example 4, the presence or absence of curing after storage at 40 ° C. for 100 hours was confirmed, and the volume resistivity after storage was measured based on the above method. The results are shown in Table 2.
表1および表2に示すように、実施例1~4の導電性シリコーン組成物は貼り合わせ時硬化性が良好であり、かつ反応制御剤を添加していないにも関わらず、保存性に優れる材料である。
As shown in Tables 1 and 2, the conductive silicone compositions of Examples 1 to 4 have good curability at the time of bonding and are excellent in storage stability even though no reaction control agent is added. It is a material.
一方、比較例1では本発明の(C)成分に代えて、異なる種類の光活性型ヒドロシリル化触媒を利用しており、硬化性は良好である一方、保存性は極めて低い。比較例2では一般的なヒドロシリル化触媒と反応制御剤を使用しており、保存性には優れるものの貼り合わせ時の硬化性に著しく劣る。比較例3では、比較例2の反応制御剤を減ずることで貼り合わせ時の硬化性が良好となったが、保存性を損ねる結果となった。比較例2のヒドロシリル化触媒と反応制御剤を共に減じた比較例4は保存性に改善は見られるものの硬化性が十分でなかった。比較例5では一般的なヒドロシリル化触媒に対して反応制御剤を含まないため保存性に劣り、混合直後に硬化が起こった。
On the other hand, in Comparative Example 1, a different kind of photoactive hydrosilylation catalyst is used instead of the component (C) of the present invention, and the curability is good, but the storage stability is extremely low. In Comparative Example 2, a general hydrosilylation catalyst and a reaction control agent are used, and although the storage stability is excellent, the curability at the time of bonding is remarkably inferior. In Comparative Example 3, the curability at the time of bonding was improved by reducing the amount of the reaction control agent of Comparative Example 2, but the result was that the storage stability was impaired. In Comparative Example 4 in which both the hydrosilylation catalyst and the reaction control agent of Comparative Example 2 were reduced, the storage stability was improved, but the curability was not sufficient. In Comparative Example 5, since the reaction control agent was not contained in the general hydrosilylation catalyst, the storage stability was inferior, and curing occurred immediately after mixing.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.
Claims (10)
- (A)ヒドロシリル化反応性炭素-炭素不飽和結合を有する基を1分子中に2個以上有するオルガノポリシロキサン、
(B)SiH基を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン、
(C)ビス(β-ジケトナト)白金錯体、
(D)導電性粒子、
を含むものであることを特徴とする導電性シリコーン組成物。 (A) An organopolysiloxane having two or more groups having a hydrosilylation-reactive carbon-carbon unsaturated bond in one molecule.
(B) Organohydrogenpolysiloxane having two or more SiH groups in one molecule,
(C) Bis (β-diketonato) platinum complex,
(D) Conductive particles,
A conductive silicone composition comprising. - 前記(A)成分中の前記ヒドロシリル化反応性炭素-炭素不飽和結合を有する基が炭素原子数2~10のアルケニル基であることを特徴とする請求項1に記載の導電性シリコーン組成物。 The conductive silicone composition according to claim 1, wherein the group having the hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A) is an alkenyl group having 2 to 10 carbon atoms.
- 前記(B)成分中のSiH基の数が、前記(A)成分中のヒドロシリル化反応性炭素-炭素不飽和結合1個に対して0.5~10.0個となる量であることを特徴とする請求項1又は請求項2に記載の導電性シリコーン組成物。 The number of SiH groups in the component (B) is 0.5 to 10.0 for each hydrosilylation-reactive carbon-carbon unsaturated bond in the component (A). The conductive silicone composition according to claim 1 or 2.
- 前記(D)成分の含有量が、組成物の全質量に対し50~99質量%であることを特徴とする請求項1から請求項3のいずれか一項に記載の導電性シリコーン組成物。 The conductive silicone composition according to any one of claims 1 to 3, wherein the content of the component (D) is 50 to 99% by mass with respect to the total mass of the composition.
- 前記(D)成分が銀粉であることを特徴とする請求項1から請求項4のいずれか一項に記載の導電性シリコーン組成物。 The conductive silicone composition according to any one of claims 1 to 4, wherein the component (D) is silver powder.
- 更に、(E)接着助剤を含むものであることを特徴とする請求項1から請求項5のいずれか一項に記載の導電性シリコーン組成物。 The conductive silicone composition according to any one of claims 1 to 5, further comprising (E) an adhesive aid.
- 前記(E)成分が、α-シリルエステル構造を有する化合物を含むことを特徴とする請求項6に記載の導電性シリコーン組成物。 The conductive silicone composition according to claim 6, wherein the component (E) contains a compound having an α-silyl ester structure.
- 請求項1から請求項7のいずれか一項に記載の導電性シリコーン組成物の硬化物であって、体積抵抗率が1.0×10-3Ω・cm以下のものであることを特徴とする導電性シリコーン硬化物。 The cured product of the conductive silicone composition according to any one of claims 1 to 7, characterized in that the volume resistivity is 1.0 × 10 -3 Ω · cm or less. Conductive silicone cured product.
- 請求項8に記載の導電性シリコーン硬化物の製造方法であって、80~150℃の温度で前記導電性シリコーン組成物を硬化させることを特徴とする導電性シリコーン硬化物の製造方法。 The method for producing a conductive silicone cured product according to claim 8, wherein the conductive silicone composition is cured at a temperature of 80 to 150 ° C.
- 請求項8に記載の導電性シリコーン硬化物を有するものであることを特徴とする積層体。 A laminate characterized by having the conductive silicone cured product according to claim 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-204586 | 2019-11-12 | ||
JP2019204586A JP2021075655A (en) | 2019-11-12 | 2019-11-12 | Conductive silicone composition, cured conductive silicone product, production method for cured conductive silicone product, and conductive silicone laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021095495A1 true WO2021095495A1 (en) | 2021-05-20 |
Family
ID=75900010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040036 WO2021095495A1 (en) | 2019-11-12 | 2020-10-26 | Conductive silicone composition, cured conductive silicone product, production method for cured conductive silicone product, and conductive silicone laminate |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2021075655A (en) |
TW (1) | TW202128882A (en) |
WO (1) | WO2021095495A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022196410A1 (en) * | 2021-03-17 | 2022-09-22 | 信越化学工業株式会社 | Electroconductive silicone composition, electroconductive silicone cured product and laminate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016047219A1 (en) * | 2014-09-25 | 2016-03-31 | 信越化学工業株式会社 | Uv-thickening thermally conductive silicone grease composition |
JP2016089127A (en) * | 2014-11-11 | 2016-05-23 | 信越化学工業株式会社 | Ultraviolet-viscosity-increasing-type thermo-conductive silicone grease composition |
JP2017075202A (en) * | 2015-10-13 | 2017-04-20 | 信越化学工業株式会社 | Additional one-pack type curable thermoconductive silicone grease composition |
JP2017165791A (en) * | 2016-03-14 | 2017-09-21 | 信越化学工業株式会社 | Addition one liquid heating curable thermal conductive silicone grease composition and manufacturing method of cured article thereof |
WO2018025502A1 (en) * | 2016-08-03 | 2018-02-08 | 信越化学工業株式会社 | Thermally conductive silicone composition |
WO2020100439A1 (en) * | 2018-11-16 | 2020-05-22 | 信越化学工業株式会社 | Conductive silicone composition, cured product, laminate, and electronic circuit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578249A (en) * | 1980-06-20 | 1982-01-16 | Toshiba Silicone Co Ltd | Curable composition |
JP4775993B2 (en) * | 2004-03-31 | 2011-09-21 | 東レ・ダウコーニング株式会社 | Semiconductor element sealant, semiconductor device, and mounting method of semiconductor device |
JP2021042332A (en) * | 2019-09-12 | 2021-03-18 | 信越化学工業株式会社 | Addition-curable silicone composition, and cured product thereof, light reflector, and light semiconductor device |
JP2021121652A (en) * | 2020-01-31 | 2021-08-26 | 信越化学工業株式会社 | Electroconductive silicone composition, cured electroconductive silicone, method for producing cured electroconductive silicone, and laminate |
JP2022143344A (en) * | 2021-03-17 | 2022-10-03 | 信越化学工業株式会社 | Conductive silicone composition, conductive silicone cured product, and laminate |
-
2019
- 2019-11-12 JP JP2019204586A patent/JP2021075655A/en active Pending
-
2020
- 2020-10-26 WO PCT/JP2020/040036 patent/WO2021095495A1/en active Application Filing
- 2020-11-04 TW TW109138381A patent/TW202128882A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016047219A1 (en) * | 2014-09-25 | 2016-03-31 | 信越化学工業株式会社 | Uv-thickening thermally conductive silicone grease composition |
JP2016089127A (en) * | 2014-11-11 | 2016-05-23 | 信越化学工業株式会社 | Ultraviolet-viscosity-increasing-type thermo-conductive silicone grease composition |
JP2017075202A (en) * | 2015-10-13 | 2017-04-20 | 信越化学工業株式会社 | Additional one-pack type curable thermoconductive silicone grease composition |
JP2017165791A (en) * | 2016-03-14 | 2017-09-21 | 信越化学工業株式会社 | Addition one liquid heating curable thermal conductive silicone grease composition and manufacturing method of cured article thereof |
WO2018025502A1 (en) * | 2016-08-03 | 2018-02-08 | 信越化学工業株式会社 | Thermally conductive silicone composition |
WO2020100439A1 (en) * | 2018-11-16 | 2020-05-22 | 信越化学工業株式会社 | Conductive silicone composition, cured product, laminate, and electronic circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022196410A1 (en) * | 2021-03-17 | 2022-09-22 | 信越化学工業株式会社 | Electroconductive silicone composition, electroconductive silicone cured product and laminate |
Also Published As
Publication number | Publication date |
---|---|
TW202128882A (en) | 2021-08-01 |
JP2021075655A (en) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021152972A1 (en) | Electroconductive silicone composition, cured electroconductive silicone, method for producing cured electroconductive silicone, and laminate | |
CN105008484B (en) | Curable organosilicon composition, conductive silicone adhesive, preparation and using they method and include their electric device | |
JP4525914B2 (en) | Addition-curing silicone rubber composition and adhesive rubber sheet | |
JP2819444B2 (en) | Conductive silicone rubber composition | |
JP5497241B1 (en) | Room temperature curable polyorganosiloxane composition and electrical / electronic equipment | |
JP6722581B2 (en) | Adhesion promoter, curable organopolysiloxane composition containing the same | |
JP7003029B2 (en) | Conductive silicone compositions, cured products, laminates, and electronic circuits | |
WO2021132345A1 (en) | Curable organopolysiloxane composition, cured product thereof, protective agent or adhesive, and electric/electronic device | |
JP2017082125A (en) | Conductive resin composition, wiring, wiring board and electronic device | |
JP2022545162A (en) | Curable organopolysiloxane composition, cured product, and electrical/electronic device | |
WO2022004462A1 (en) | Multilayer body composed of cured organopolysiloxane films, use of same, and method for producing same | |
TW201518438A (en) | Formation of conductive circuit, conductive circuit, and conductive ink composition | |
JP2868986B2 (en) | Conductive silicone rubber composition | |
WO2021095495A1 (en) | Conductive silicone composition, cured conductive silicone product, production method for cured conductive silicone product, and conductive silicone laminate | |
JP2007217693A (en) | Silicone rubber composite material and method for producing the same | |
WO2022196410A1 (en) | Electroconductive silicone composition, electroconductive silicone cured product and laminate | |
KR20150072426A (en) | Filler-containing silicone compositions | |
KR20210091754A (en) | Adhesive polyorganosiloxane composition | |
WO2023282270A1 (en) | Organopolysiloxane composition for transducer, laminate comprising cured film thereof, use therefor, and manucaturing method therefor | |
WO2021065990A1 (en) | Fluoro silicone rubber laminate body production method and fluoro silicone rubber laminate body | |
EP4186953A1 (en) | Anti-sulfurization coating material, cured product thereof, and electronic device | |
CN110023446B (en) | Condensation curable conductive silicone adhesive composition | |
CN112094590A (en) | Addition-curable silicone coating composition, silicone cured product, and optical semiconductor device | |
JP2022137416A (en) | Conductive silicone composition, adhesive, and conductive silicone cured material | |
JP5305558B2 (en) | Crimpable anisotropically conductive resin composition and elastic anisotropically conductive member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20887015 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20887015 Country of ref document: EP Kind code of ref document: A1 |