WO2021095378A1 - 光学部品及びアイソレータ - Google Patents

光学部品及びアイソレータ Download PDF

Info

Publication number
WO2021095378A1
WO2021095378A1 PCT/JP2020/036752 JP2020036752W WO2021095378A1 WO 2021095378 A1 WO2021095378 A1 WO 2021095378A1 JP 2020036752 W JP2020036752 W JP 2020036752W WO 2021095378 A1 WO2021095378 A1 WO 2021095378A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
light
region
lens portion
optical
Prior art date
Application number
PCT/JP2020/036752
Other languages
English (en)
French (fr)
Inventor
学良 宋
佐藤 望
Original Assignee
先端フォトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先端フォトニクス株式会社 filed Critical 先端フォトニクス株式会社
Priority to CN202080069600.7A priority Critical patent/CN114616493B/zh
Priority to US17/765,863 priority patent/US11688822B2/en
Publication of WO2021095378A1 publication Critical patent/WO2021095378A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/802Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections for isolation, e.g. using optocouplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements

Definitions

  • the present invention relates to optical components and isolators.
  • An isolator that intervenes between the host device and the device device is known (see, for example, Patent Document 1). Such an isolator electrically insulates the host device from the device device.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical component that increases communication speed while ensuring insulation performance, and an isolator provided with the optical component.
  • the present invention is an optical component used in pairs for an electrically insulating isolator, in which both opposing surfaces of the pair are abutted against each other, and are arranged on different optical paths.
  • the second in which the light in the first direction transmitted through the first lens portion is reflected in the second direction and guided to the second lens portion, or is transmitted through the second lens portion.
  • a pair of a reflecting portion that reflects light in a direction in the first direction and guides it to the first lens portion, a convex portion provided on the facing surface, and a concave portion provided on the facing surface.
  • the second lens portion provided by one optical component and the second lens portion provided by the other optical component of the pair are arranged so as to face each other with a gap from each other, and are made of resin. It is integrally molded and the convex portion provided by one pair of optical components is inserted into the concave portion provided by the other optical component of the pair, and the concave portion provided by the other optical component of the pair is inserted. It is an optical component characterized in that both optical components of the pair are connected to each other by inserting the convex portion included in the other optical component of the pair.
  • the present invention also has the pair of optical components described in (1) above, a first region, and a second region that is electrically isolated from the first region.
  • a first light projecting means which is arranged in the first region and irradiates light in the first direction toward the first lens portion provided by one of the pair of optical components.
  • the first that has passed through the first lens portion that is arranged in the second region, is provided by the other optical component of the pair, and is arranged on the same optical path as the first light projecting means.
  • An isolator comprising: a second light receiving means for incident light in the first direction transmitted through the first lens portion arranged on the same optical path as the light projecting means. is there.
  • the present invention also has the pair of optical components described in (1) above, a first region, and a second region that is electrically isolated from the first region.
  • It is an isolator characterized by including a light receiving means.
  • the communication speed can be increased while ensuring the insulation performance.
  • FIG. 5 is an external perspective view of the pair of optical components constituting the isolator of FIG. 1 as viewed from diagonally above.
  • FIG. 5 is an external perspective view of the pair of optical components constituting the isolator of FIG. 1 as viewed from diagonally below.
  • FIG. 5 is an exploded perspective view of a pair of optical components shown in FIG.
  • the isolator 1 according to the embodiment of the present invention will be described in detail with reference to the drawings.
  • the first direction D1 means a direction orthogonal to the substrate 2
  • the second direction D2 means a direction parallel to the substrate.
  • FIG. 1 is an external perspective view showing a main component of the isolator 1 according to the embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the main components of the isolator 1 of FIG.
  • FIG. 3 is a front view showing the main components of the isolator 1 of FIG.
  • FIG. 4 is a rear view showing the main components of the isolator 1 of FIG.
  • FIG. 5 is an external perspective view of the pair of optical components 7 and 7 constituting the isolator 1 of FIG. 1 as viewed from diagonally above.
  • FIG. 6 is an external perspective view of the pair of optical components 7 and 7 constituting the isolator 1 of FIG. 1 as viewed from diagonally below.
  • FIG. 7 is an exploded perspective view of the pair of optical components 7 and 7 shown in FIG. In each drawing, some configurations will be omitted as appropriate to simplify the drawings.
  • the isolator 1 shown in FIGS. 1 to 7 electrically insulates the first region 2A and the second region 2B of the substrate 2 and combines the first region 2A and the second region 2B of the substrate 2. Realize optical communication between them.
  • the isolator 1 includes a substrate 2, lasers 3 and 4, photodiodes 5 and 6, paired optical components 7 and 7, pads 8A and 8B and the like.
  • the substrate 2 has a first region 2A and a second region 2B.
  • the first region 2A and the second region 2B are electrically isolated from each other, and optical communication between them is realized by a pair of optical components 7 and 7.
  • the laser 3 is mounted on the pad 8A arranged in the first region 2A of the substrate 2 together with the photodiode 6.
  • the laser 3 is a first unit that irradiates light in the first direction D1 toward a first lens unit 71 provided by one of the pair of optical components 7 and arranged on an optical path different from that of the laser 4. Functions as a means of flooding.
  • the laser 4 is mounted on the pad 8B arranged in the second region 2B of the substrate 2 together with the photodiode 5.
  • the laser 4 has a second pair of optical components 7 that irradiates light in the first direction D2 toward a first lens unit 71 that is provided on an optical path different from that of the laser 3. Functions as a means of flooding.
  • the photodiode 5 is mounted together with the laser 4 on the pad 8B arranged in the second region 2B of the substrate 2.
  • the photodiode 5 receives light in the first direction D1 that is included in the other optical component 7 of the pair and that has passed through the first lens portion 71 that is arranged on the same optical path as the laser 3. It functions as a light receiving means of 1.
  • the photodiode 6 is mounted together with the laser 3 on the pad 8A arranged in the first region 2A of the substrate 2.
  • the photodiode 6 receives light in the first direction D1 that is included in the pair of optical components 7 and that has passed through the first lens unit 71 that is arranged on the same optical path as the laser 4. It functions as a light receiving means of 2.
  • the optical component 7 is used as a pair with the electrically insulating isolator 1.
  • the optical component 7 is used in a state in which both facing surfaces 740 facing each other are abutted against each other and connected to each other.
  • One of the pair of optical components 7 is arranged in the first region 2A of the substrate 2.
  • the other optical component 7 of the pair is arranged in the second region 2B of the substrate 2.
  • the optical component 7 includes a plurality of first lens portions 71, a plurality of second lens portions 72, a reflection portion 73, and a connecting portion 74, and is integrally molded with resin. ..
  • the plurality of first lens units 71 are arranged on different optical paths and transmit light in the first direction D1.
  • one first lens portion 71 is arranged so as to face the laser 3, and the other one first lens portion 71.
  • the lens unit 71 is arranged so as to face the photodiode 6.
  • one first lens portion 71 is arranged so as to face the laser 4, and the other one first lens portion 71 is arranged so as to face the laser 4.
  • the lens unit 71 is arranged so as to face the photodiode 5.
  • the plurality of second lens units 72 are arranged on different optical paths and transmit light in the second direction D2 orthogonal to the first direction D1.
  • the pair of optical components 7 includes each of the plurality of second lens portions 72 included in the pair of one optical component 7 and the plurality of second lens portions 72 included in the pair of the other optical component 7. They are arranged so as to face each other on a one-to-one basis with a space between them. There is a space between each of the plurality of second lens portions 72 included in the pair of one optical component 7 and each of the plurality of second lens portions 72 included in the pair of the other optical component 7. It has become.
  • the reflecting portion 73 is arranged above the plurality of first lens portions 71 and on the side of the plurality of second lens portions 72.
  • the reflecting unit 73 reflects the light in the first direction D1 transmitted through the first lens unit 71 in the second direction D2 and guides the light to the second lens unit 72, or the second lens unit 72.
  • the transmitted light in the second direction D2 is reflected in the first direction D1 and guided to the first lens unit 71.
  • the connecting portion 74 connects both of the pair of optical components 7 to each other.
  • the connecting portion 74 includes a convex portion 741 and a concave portion 742.
  • the convex portion 741 is provided on the facing surfaces 740 of both of the pair of optical components 7 facing each other.
  • the recess 742 is provided on the opposing surfaces 740 of both pairs of optical components 7 that face each other.
  • the convex portion 741 provided by one of the optical components 7 of the pair is inserted into the concave portion 742 provided by the other optical component 7 of the pair, and the optical component 7 of the pair is provided.
  • the pad 8A is arranged in the first region 2A of the substrate 2 and mounts the laser 3 and the photodiode 6.
  • the pad 8B is arranged in the second region 2B of the substrate 2 and mounts the laser 4 and the photodiode 5. These pads 8A and 8B are arranged on the substrate 2 at a necessary distance from each other so as not to cause a discharge between them.
  • the light in the first direction D1 emitted from the laser 3 arranged in the first region 2A of the substrate 2 is arranged in the first region 2A of the substrate 2. It passes through the first lens portion 71 included in the optical component 7 and enters the optical component 7 arranged in the first region 2A of the substrate 2.
  • the light in the first direction D1 that has entered the optical component 7 arranged in the first region 2A of the substrate 2 is reflected by the reflecting unit 73 in the second direction D2.
  • the light reflected by the reflecting unit 73 in the second direction D2 passes through the second lens unit 72 and goes out of the optical component 7 arranged in the first region 2A of the substrate 2.
  • the light emitted outside the optical component 7 arranged in the first region 2A of the substrate 2 is the second lens portion 72 included in the optical component 7 arranged in the second region 2B of the substrate 2. And enters the optical component 7 arranged in the second region 2B of the substrate 2.
  • the light in the second direction D2 that has entered the optical component 7 arranged in the second region 2B of the substrate 2 is reflected by the reflecting unit 73 in the first direction D1.
  • the light reflected by the reflecting unit 73 in the first direction D1 passes through the first lens unit 71 and goes out of the optical component 7 arranged in the second region 2B of the substrate 2.
  • the light emitted outside the optical component 7 arranged in the second region 2B of the substrate 2 is incident on the photodiode 5 arranged in the second region 2B of the substrate 2.
  • the light in the first direction D1 emitted from the laser 4 arranged in the second region 2B of the substrate 2 is arranged in the second region 2B of the substrate 2. It passes through the first lens portion 71 included in the optical component 7 and enters the optical component 7 arranged in the second region 2B of the substrate 2.
  • the light in the first direction D1 that has entered the optical component 7 arranged in the second region 2B of the substrate 2 is reflected by the reflecting unit 73 in the second direction D2.
  • the light reflected by the reflecting unit 73 in the second direction D2 passes through the second lens unit 72 and goes out of the optical component 7 arranged in the second region 2B of the substrate 2.
  • the light emitted outside the optical component 7 arranged in the second region 2B of the substrate 2 is the second lens portion 72 included in the optical component 7 arranged in the first region 2A of the substrate 2. And enters the optical component 7 arranged in the first region 2A of the substrate 2.
  • the light in the second direction D2 that has entered the optical component 7 arranged in the first region 2A of the substrate 2 is reflected by the reflecting unit 73 in the first direction D1.
  • the light reflected by the reflecting unit 73 in the first direction D1 passes through the first lens unit 71 and goes out of the optical component 7 arranged in the first region 2A of the substrate 2.
  • the light emitted outside the optical component 7 arranged in the first region 2A of the substrate 2 is incident on the photodiode 6 arranged in the first region 2A of the substrate 2.
  • the communication speed can be increased while ensuring the insulation performance.
  • the photodiodes 5 and 6 are provided as the first and second light receiving means
  • the present invention is not limited to this, and light is incident on the electricity.
  • Other photodetectors to be converted may be provided.
  • the isolator 1 performs bidirectional communication between the first region 2A and the second region 2B on the substrate 2 has been described as an example, but the present invention is not limited to this, and the substrate is not limited thereto. Communication may be performed in only one direction of the first region 2A and the second region 2B in 2.
  • the isolator 1 includes a pair of optical components 7 and 7, a first region 2A, and a substrate 2 having a second region 2B that is electrically isolated from the first region 2A.
  • a laser (light projecting means) 3 that is arranged in the first region 2A and irradiates light in the first direction D1 toward the first lens portion 71 included in one of the pair of optical components 7.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

[課題]絶縁性能を確保しつつ通信速度を高める光学部品、及びそれを備えているアイソレータを提供する。 [解決手段]光学部品7は、電気的に絶縁するアイソレータ1に対で用いられる。この光学部品7は、互いに異なる光路上に配置され、第1の方向D1の光を透過させる複数の第1のレンズ部71と、互いに異なる光路上に配置され、第1の方向D1に直交する第2の方向D2の光を透過させる複数の第2のレンズ部72と、第1のレンズ部71を透過した第1の方向D1の光を第2の方向D2に反射させて第2のレンズ部72に導き、又は、第2のレンズ部72を透過した第2の方向D2の光を第1の方向D1に反射させて第1のレンズ部71に導く反射部73と、を備え、対の一方の光学部品7が備えている第2のレンズ部72と、対の他方の光学部品7が備えている第2のレンズ部72と、が互いに間隔を空けて対向するように配置される。

Description

光学部品及びアイソレータ
 本発明は、光学部品及びアイソレータに関する。
 ホスト機器とデバイス機器との間に介在させるアイソレータが知られている(例えば、特許文献1参照)。このようなアイソレータは、ホスト機器とデバイス機器とを電気的に絶縁する。
特表2014-523556号公報
 例えば、医療機器の分野においては、人体が触れる可能性がある機器が完全に絶縁されている必要がある。医療機器の分野に限らず、種々の分野において、アイソレータの絶縁性能を確保することが望まれている。また、データ容量の増大に伴い、通信速度を高めることが望まれている。
 本発明は、上記課題を鑑みてなされたものであり、絶縁性能を確保しつつ通信速度を高める光学部品、及びそれを備えているアイソレータを提供することを目的とする。
 (1)本発明は、電気的に絶縁するアイソレータに対で用いられ、対の双方の互いに対向する対向面同士を突き当てて用いられる光学部品であって、互いに異なる光路上に配置され、第1の方向の光を透過させる複数の第1のレンズ部と、互いに異なる光路上に配置され、前記第1の方向に直交する第2の方向の光を透過させる複数の第2のレンズ部と、前記第1のレンズ部を透過した前記第1の方向の光を前記第2の方向に反射させて前記第2のレンズ部に導き、又は前記第2のレンズ部を透過した前記第2の方向の光を前記第1の方向に反射させて前記第1のレンズ部に導く反射部と、前記対向面に設けられた凸部と、前記対向面に設けられた凹部と、を備え、対の一方の光学部品が備えている前記第2のレンズ部と、対の他方の光学部品が備えている前記第2のレンズ部と、が互いに間隔を空けて対向するように配置され、樹脂で一体に成型され、対の一方の光学部品が備えている前記凸部が対の他方の光学部品が備えている前記凹部に挿入されると共に、対の一方の光学部品が備えている前記凹部に対の他方の光学部品が備えている前記凸部が挿入されることで、対の双方の光学部品が互いに連結されることを特徴とする光学部品である。
 (2)本発明はまた、上記(1)に記載の対の光学部品と、第1の領域と、前記第1の領域と電気的に絶縁されている第2の領域と、を有している基板と、前記第1の領域に配置され、対の一方の光学部品が備えている前記第1のレンズ部に向けて前記第1の方向の光を照射する第1の投光手段と、前記第2の領域に配置され、対の他方の光学部品が備えていて且つ前記第1の投光手段と同一の光路上に配置されている前記第1のレンズ部を透過した前記第1の方向の光を入射する第1の受光手段と、前記第2の領域に配置され、対の他方の光学部品が備えていて且つ前記第1の投光手段と異なる光路上に配置されている前記第1のレンズ部に向けて前記第1の方向の光を照射する第2の投光手段と、前記第1の領域に配置され、対の一方の光学部品が備えていて且つ前記第2の投光手段と同一の光路上に配置されている前記第1のレンズ部を透過した前記第1の方向の光を入射する第2の受光手段と、を備えていることを特徴とするアイソレータである。
 (3)本発明はまた、上記(1)に記載の対の光学部品と、第1の領域と、前記第1の領域と電気的に絶縁されている第2の領域と、を有している基板と、前記第1の領域に配置され、対の一方の光学部品が備えている前記第1のレンズ部に向けて前記第1の方向の光を照射する投光手段と、前記第2の領域に配置され、対の他方の光学部品が備えていて且つ前記投光手段と同一の光路上に配置されている前記第1のレンズ部を透過した前記第1の方向の光を入射する受光手段と、を備えていることを特徴とするアイソレータである。
 本発明の上記(1)に記載の光学部品、並びに上記(2)及び(3)に記載のアイソレータによれば、絶縁性能を確保しつつ通信速度を高めることができる。
本発明の実施形態に係るアイソレータの主要部品を示す外観斜視図である。 図1のアイソレータの主要部品を示す分解斜視図である。 図1のアイソレータの主要部品を示す正面図である。 図1のアイソレータの主要部品を示す背面図である。 図1のアイソレータを構成する対の光学部品の斜め上方から視た外観斜視図である。 図1のアイソレータを構成する対の光学部品の斜め下方から視た外観斜視図である 図5に示す対の光学部品の分解斜視図である。
 以下、図面を参照して、本発明の実施形態に係るアイソレータ1について詳細に説明する。なお、以下の説明において、第1の方向D1は基板2に直交する方向を意味し、第2の方向D2は基板と平行な方向を意味する。
 まず、図1~図7を用いて、アイソレータ1の構成について説明する。図1は、本発明の実施形態に係るアイソレータ1の主要部品を示す外観斜視図である。図2は、図1のアイソレータ1の主要部品を示す分解斜視図である。図3は、図1のアイソレータ1の主要部品を示す正面図である。図4は、図1のアイソレータ1の主要部品を示す背面図である。図5は、図1のアイソレータ1を構成する対の光学部品7,7の斜め上方から視た外観斜視図である。図6は、図1のアイソレータ1を構成する対の光学部品7,7の斜め下方から視た外観斜視図である。図7は、図5に示す対の光学部品7,7の分解斜視図である。なお、各図において、一部の構成を適宜省略して図面を簡略化する。
 図1~図7に示すアイソレータ1は、基板2における第1の領域2Aと第2の領域2Bとを電気的に絶縁すると共に、基板2における第1の領域2Aと第2の領域2Bとの間の光通信を実現する。具体的に、アイソレータ1は、基板2と、レーザ3,4と、フォトダイオード5,6と、対の光学部品7,7と、パッド8A,8B等を備えている。
 基板2は、第1の領域2Aと、第2の領域2Bと、を有している。第1の領域2A及び第2の領域2Bは、互いに電気的に絶縁されていると共に、対の光学部品7,7によって互いの間の光通信を実現している。
 レーザ3は、基板2の第1の領域2Aに配置されているパッド8Aに、フォトダイオード6と共に実装されている。このレーザ3は、対の一方の光学部品7が備えていて且つレーザ4と異なる光路上に配置されている第1のレンズ部71に向けて第1の方向D1の光を照射する第1の投光手段として機能する。
 レーザ4は、基板2の第2の領域2Bに配置されているパッド8Bに、フォトダイオード5と共に実装されている。このレーザ4は、対の他方の光学部品7が備えていて且つレーザ3と異なる光路上に配置されている第1のレンズ部71に向けて第1の方向D2の光を照射する第2の投光手段として機能する。
 フォトダイオード5は、基板2の第2の領域2Bに配置されているパッド8Bに、レーザ4と共に実装されている。このフォトダイオード5は、対の他方の光学部品7が備えていて且つレーザ3と同一の光路上に配置されている第1のレンズ部71を透過した第1の方向D1の光を入射する第1の受光手段として機能する。
 フォトダイオード6は、基板2の第1の領域2Aに配置されているパッド8Aに、レーザ3と共に実装されている。このフォトダイオード6は、対の一方の光学部品7が備えていて且つレーザ4と同一の光路上に配置されている第1のレンズ部71を透過した第1の方向D1の光を入射する第2の受光手段として機能する。
 光学部品7は、電気的に絶縁するアイソレータ1に対で用いられる。この光学部品7は、対の双方の互いに対向する対向面740同士を突き当てて互いに連結させた状態で用いられる。対の一方の光学部品7は、基板2の第1の領域2Aに配置されている。対の他方の光学部品7は、基板2の第2の領域2Bに配置されている。具体的に、光学部品7は、複数の第1のレンズ部71と、複数の第2のレンズ部72と、反射部73と、連結部74と、を備え、樹脂で一体に成型されている。
 複数の第1のレンズ部71は、互いに異なる光路上に配置され、第1の方向D1の光を透過させる。
 対の一方の光学部品7が備えている複数の第1のレンズ部71のうち、一つの第1のレンズ部71はレーザ3と対向するように配置されていて、他の一つの第1のレンズ部71はフォトダイオード6と対向するように配置されている。
 対の他方の光学部品7が備えている複数の第1のレンズ部71のうち、一つの第1のレンズ部71はレーザ4と対向するように配置されていて、他の一つの第1のレンズ部71はフォトダイオード5と対向するように配置されている。
 複数の第2のレンズ部72は、互いに異なる光路上に配置され、第1の方向D1に直交する第2の方向D2の光を透過させる。
 対の光学部品7は、対の一方の光学部品7が備えている複数の第2のレンズ部72の各々と、対の他方の光学部品7が備えている複数の第2のレンズ部72の各々と、が互いに間隔を空けて一対一で対向するように配置されている。対の一方の光学部品7が備えている複数の第2のレンズ部72の各々と、対の他方の光学部品7が備えている複数の第2のレンズ部72の各々と、の間は空間になっている。
 反射部73は、複数の第1のレンズ部71の上方で且つ複数の第2のレンズ部72の側方に配置されている。この反射部73は、第1のレンズ部71を透過した第1の方向D1の光を第2の方向D2に反射させて第2のレンズ部72に導き、又は、第2のレンズ部72を透過した第2の方向D2の光を第1の方向D1に反射させて第1のレンズ部71に導く。
 連結部74は、対の双方の光学部品7を互いに連結させる。具体的に、連結部74は、凸部741と、凹部742と、を備えている。
 凸部741は、対の双方の光学部品7の互いに対向する対向面740に設けられている。凹部742は、対の双方の光学部品7の互いに対向する対向面740に設けられている。対の双方の光学部品7は、対の一方の光学部品7が備えている凸部741が対の他方の光学部品7が備えている凹部742に挿入されると共に、対の一方の光学部品7が備えている凹部742に対の他方の光学部品7が備えている凸部741が挿入されることで、互いに連結される。
 パッド8Aは、基板2の第1の領域2Aに配置され、レーザ3及びフォトダイオード6を実装している。パッド8Bは、基板2の第2の領域2Bに配置され、レーザ4及びフォトダイオード5を実装している。これらのパッド8A,8Bは、互いの間で放電を起こすことのないよう、互いに必要な距離を置いて基板2に配置されている。
 次に、図3及び図4を用いて、アイソレータ1における光の流れを説明する。
 まず、図3に示すように、基板2の第1の領域2Aに配置されているレーザ3から照射された第1の方向D1の光は、基板2の第1の領域2Aに配置されている光学部品7が備えている第1のレンズ部71を透過して、基板2の第1の領域2Aに配置されている光学部品7の中に入る。基板2の第1の領域2Aに配置されている光学部品7の中に入った第1の方向D1の光は、反射部73で第2の方向D2に反射する。反射部73で第2の方向D2に反射した光は、第2のレンズ部72を透過して、基板2の第1の領域2Aに配置されている光学部品7の外に出る。
 基板2の第1の領域2Aに配置されている光学部品7の外に出た光は、基板2の第2の領域2Bに配置されている光学部品7が備えている第2のレンズ部72を透過して、基板2の第2の領域2Bに配置されている光学部品7の中に入る。基板2の第2の領域2Bに配置されている光学部品7の中に入った第2の方向D2の光は、反射部73で第1の方向D1に反射する。反射部73で第1の方向D1に反射した光は、第1のレンズ部71を透過して、基板2の第2の領域2Bに配置されている光学部品7の外に出る。基板2の第2の領域2Bに配置されている光学部品7の外に出た光は、基板2の第2の領域2Bに配置されているフォトダイオード5に入射される。
 また、図4に示すように、基板2の第2の領域2Bに配置されているレーザ4から照射された第1の方向D1の光は、基板2の第2の領域2Bに配置されている光学部品7が備えている第1のレンズ部71を透過して、基板2の第2の領域2Bに配置されている光学部品7の中に入る。基板2の第2の領域2Bに配置されている光学部品7の中に入った第1の方向D1の光は、反射部73で第2の方向D2に反射する。反射部73で第2の方向D2に反射した光は、第2のレンズ部72を透過して、基板2の第2の領域2Bに配置されている光学部品7の外に出る。
 基板2の第2の領域2Bに配置されている光学部品7の外に出た光は、基板2の第1の領域2Aに配置されている光学部品7が備えている第2のレンズ部72を透過して、基板2の第1の領域2Aに配置されている光学部品7の中に入る。基板2の第1の領域2Aに配置されている光学部品7の中に入った第2の方向D2の光は、反射部73で第1の方向D1に反射する。反射部73で第1の方向D1に反射した光は、第1のレンズ部71を透過して、基板2の第1の領域2Aに配置されている光学部品7の外に出る。基板2の第1の領域2Aに配置されている光学部品7の外に出た光は、基板2の第1の領域2Aに配置されているフォトダイオード6に入射される。
 このようなアイソレータ1によれば、絶縁性能を確保しつつ通信速度を高めることができる。
 本発明は、上記実施形態に限られるものではなく、その趣旨及び技術思想を逸脱しない範囲で種々の変形が可能である。すなわち、各構成の位置、大きさ、長さ、数量、形状、材質、などは適宜変更できる。
 例えば、上記実施形態では、第1及び第2の受光手段として、フォトダイオード5,6を備えている場合を例に説明したが、本発明はこれに限定されず、光を入射して電気に変換するその他のフォトディテクタを備えているようにしてもよい。
 あるいは、上記実施形態において、アイソレータ1は、基板2における第1の領域2A及び第2の領域2Bの双方向の通信を行う場合を例に説明したが、本発明はこれに限定されず、基板2における第1の領域2A及び第2の領域2Bの一方向のみの通信を行うようにしてもよい。
 すなわち、アイソレータ1は、対の光学部品7,7と、第1の領域2Aと、第1の領域2Aと電気的に絶縁されている第2の領域2Bと、を有している基板2と、第1の領域2Aに配置され、対の一方の光学部品7が備えている第1のレンズ部71に向けて第1の方向D1の光を照射するレーザ(投光手段)3と、第2の領域2Bに配置され、対の他方の光学部品7が備えていて且つレーザ(投光手段)3と同一の光路上に配置されている第1のレンズ部71を透過した第1の方向D1の光を入射するフォトダイオード(受光手段)5と、を備え、且つ、レーザ4及びフォトダイオード6を備えていなくてもよい。
 1 アイソレータ
 2 基板
 2A 第1の領域
 2B 第2の領域
 3 レーザ(第1の投光手段,投光手段)
 4 レーザ(第2の投光手段)
 5 フォトダイオード(第1の受光手段,受光手段)
 6 フォトダイオード(第2の受光手段)
 7 光学部品
 71 第1のレンズ部
 72 第2のレンズ部
 73 反射部
 74 連結部
 740 対向面
 741 凸部
 742 凹部
 8A,8B パッド
 D1 第1の方向
 D2 第2の方向

 

Claims (3)

  1.  電気的に絶縁するアイソレータに対で用いられ、対の双方の互いに対向する対向面同士を突き当てて用いられる光学部品であって、
     互いに異なる光路上に配置され、第1の方向の光を透過させる複数の第1のレンズ部と、
     互いに異なる光路上に配置され、前記第1の方向に直交する第2の方向の光を透過させる複数の第2のレンズ部と、
     前記第1のレンズ部を透過した前記第1の方向の光を前記第2の方向に反射させて前記第2のレンズ部に導き、又は、前記第2のレンズ部を透過した前記第2の方向の光を前記第1の方向に反射させて前記第1のレンズ部に導く反射部と、
     前記対向面に設けられた凸部と、
     前記対向面に設けられた凹部と、を備え、
     対の一方の光学部品が備えている前記第2のレンズ部と、対の他方の光学部品が備えている前記第2のレンズ部と、が互いに間隔を空けて対向するように配置され、
     樹脂で一体に成型され、
     対の一方の光学部品が備えている前記凸部が対の他方の光学部品が備えている前記凹部に挿入されると共に、対の一方の光学部品が備えている前記凹部に対の他方の光学部品が備えている前記凸部が挿入されることで、対の双方の光学部品が互いに連結されることを特徴とする
     光学部品。
  2.  請求項1に記載の対の光学部品と、
     第1の領域と、前記第1の領域と電気的に絶縁されている第2の領域と、を有している基板と、
     前記第1の領域に配置され、対の一方の光学部品が備えている前記第1のレンズ部に向けて前記第1の方向の光を照射する第1の投光手段と、
     前記第2の領域に配置され、対の他方の光学部品が備えていて且つ前記第1の投光手段と同一の光路上に配置されている前記第1のレンズ部を透過した前記第1の方向の光を入射する第1の受光手段と、
     前記第2の領域に配置され、対の他方の光学部品が備えていて且つ前記第1の投光手段と異なる光路上に配置されている前記第1のレンズ部に向けて前記第1の方向の光を照射する第2の投光手段と、
     前記第1の領域に配置され、対の一方の光学部品が備えていて且つ前記第2の投光手段と同一の光路上に配置されている前記第1のレンズ部を透過した前記第1の方向の光を入射する第2の受光手段と、を備えていることを特徴とする
     アイソレータ。
  3.  請求項1に記載の対の光学部品と、
     第1の領域と、前記第1の領域と電気的に絶縁されている第2の領域と、を有している基板と、
     前記第1の領域に配置され、対の一方の光学部品が備えている前記第1のレンズ部に向けて前記第1の方向の光を照射する投光手段と、
     前記第2の領域に配置され、対の他方の光学部品が備えていて且つ前記投光手段と同一の光路上に配置されている前記第1のレンズ部を透過した前記第1の方向の光を入射する受光手段と、を備えていることを特徴とする
     アイソレータ。

     
PCT/JP2020/036752 2019-11-13 2020-09-29 光学部品及びアイソレータ WO2021095378A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080069600.7A CN114616493B (zh) 2019-11-13 2020-09-29 光学部件以及隔离器
US17/765,863 US11688822B2 (en) 2019-11-13 2020-09-29 Optical component and isolator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-205843 2019-11-13
JP2019205843A JP6675701B1 (ja) 2019-11-13 2019-11-13 光学部品及びアイソレータ

Publications (1)

Publication Number Publication Date
WO2021095378A1 true WO2021095378A1 (ja) 2021-05-20

Family

ID=70001029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036752 WO2021095378A1 (ja) 2019-11-13 2020-09-29 光学部品及びアイソレータ

Country Status (4)

Country Link
US (1) US11688822B2 (ja)
JP (1) JP6675701B1 (ja)
CN (1) CN114616493B (ja)
WO (1) WO2021095378A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054803A1 (ko) * 2019-09-20 2021-03-25 주식회사 라이팩 초소형 광송신 모듈 및 반도체 패키징 방식을 이용한 그의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220482A (ja) * 1988-02-29 1989-09-04 Iwasaki Electric Co Ltd オプトアイソレータ
JPH02161782A (ja) * 1988-12-14 1990-06-21 Nec Corp 光センサ
US20080187013A1 (en) * 2007-02-07 2008-08-07 Finisar Corporation Opto-isolator including a vertical cavity surface emitting laser
US20090059987A1 (en) * 2007-09-05 2009-03-05 Finisar Corporation Monolithic opto-isolators
US20140151585A1 (en) * 2012-12-03 2014-06-05 Hon Hai Precision Industry Co., Ltd. Photoelectric conversion device
JP2015179125A (ja) * 2014-03-18 2015-10-08 株式会社エンプラス 光レセプタクルおよびこれを備えた光モジュール
JP2016533633A (ja) * 2013-09-26 2016-10-27 マイクロ モーション インコーポレイテッド プリント回路基板絶縁を用いた光アイソレータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010030946A (ko) * 1998-08-07 2001-04-16 오카야마 노리오 광 커넥터용 페룰, 그 성형용 금형, 광 커넥터용 페룰의제조 방법 및, 광 커넥터용 페룰의 검사 방법
CN101339277A (zh) * 2007-07-04 2009-01-07 珠海保税区光联通讯技术有限公司 单个无源光学器件的封装方法
JP5416639B2 (ja) * 2010-04-01 2014-02-12 ファイベスト株式会社 半導体レーザ装置
US9465170B1 (en) * 2010-10-19 2016-10-11 US Conec, Ltd Unitary multi-fiber optical ferrule with integrated lenses
WO2012159168A1 (en) 2011-05-25 2012-11-29 The Silanna Group Pty Ltd Usb isolator integrated circuit with usb 2.0 high speed mode and automatic speed detection
JP6089354B2 (ja) 2011-10-25 2017-03-08 株式会社エンプラス レンズアレイおよびその製造方法
WO2016058135A1 (en) * 2014-10-14 2016-04-21 Source Photonics (Chengdu) Co., Ltd. Optical transmitter and method of transmitting an optical signal
JP6821402B2 (ja) * 2016-11-15 2021-01-27 株式会社エンプラス 光学部品、光学部品の射出成形金型、及び光学部品の射出成形方法
CN111355533B (zh) * 2018-12-20 2022-06-28 福州高意光学有限公司 基于vcsel的自由空间有源光学收发组件
JP7396304B2 (ja) * 2019-01-24 2023-12-12 ソニーグループ株式会社 光通信装置、光通信方法および光通信システム
WO2021103958A1 (zh) * 2019-11-25 2021-06-03 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220482A (ja) * 1988-02-29 1989-09-04 Iwasaki Electric Co Ltd オプトアイソレータ
JPH02161782A (ja) * 1988-12-14 1990-06-21 Nec Corp 光センサ
US20080187013A1 (en) * 2007-02-07 2008-08-07 Finisar Corporation Opto-isolator including a vertical cavity surface emitting laser
US20090059987A1 (en) * 2007-09-05 2009-03-05 Finisar Corporation Monolithic opto-isolators
US20140151585A1 (en) * 2012-12-03 2014-06-05 Hon Hai Precision Industry Co., Ltd. Photoelectric conversion device
JP2016533633A (ja) * 2013-09-26 2016-10-27 マイクロ モーション インコーポレイテッド プリント回路基板絶縁を用いた光アイソレータ
JP2015179125A (ja) * 2014-03-18 2015-10-08 株式会社エンプラス 光レセプタクルおよびこれを備えた光モジュール

Also Published As

Publication number Publication date
CN114616493B (zh) 2023-11-14
JP2021077836A (ja) 2021-05-20
US20220328712A1 (en) 2022-10-13
CN114616493A (zh) 2022-06-10
JP6675701B1 (ja) 2020-04-01
US11688822B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
EP2831653B1 (en) Total-internal-reflection fiber optic interface modules with different optical paths and assemblies using same
CN108540230B (zh) 光收发器及光收发器的制造方法
JP6127053B2 (ja) マルチチャンネルトランシーバ
US9784919B2 (en) Wavelength division multiplexing and demultiplexing transistor outline (TO)-can assemblies for use in optical communications, and methods
JP2001296449A (ja) 角度が付けられた光学コネクタ
CN107045197B (zh) 光路控制系统及光模块
EP2548063A1 (en) Small-form-factor fiber optic interface assemblies for electronic devices
JP2006517675A (ja) 光ファイバの結合効率を改善した装置
US9632260B2 (en) Transmitter and receiver integrated optical sub-assembly and optical module
CN108957649B (zh) 一种平行光结构双收双发盒型密封封装光器件
KR20170137194A (ko) 광학 로터리 전기 연결부
WO2021095378A1 (ja) 光学部品及びアイソレータ
US9513448B2 (en) Optical assembly
CN111458815A (zh) 一种光模块
US6674941B2 (en) Optical coupling for optical fibers
CN111458817A (zh) 一种光模块
KR102167838B1 (ko) 좁은 파장 간격의 양방향 통신용 광모듈 패키지 구조
US7346240B1 (en) Integrated fiber tap monitor with variable optical attenuator
JP2004138749A (ja) 光送受信モジュール及びその実装方法並びに光送受信装置
CN107566045B (zh) 光接收模块和光通信装置
WO2019105048A1 (zh) 光发射次模块及光收发组件
KR20010084377A (ko) 광커넥터 모듈
CN111948767A (zh) 一种光模块
TWI578047B (zh) 光電兩用連接器
JP2016102834A (ja) 光アセンブリ及び光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886239

Country of ref document: EP

Kind code of ref document: A1