WO2021095311A1 - Transducer - Google Patents

Transducer Download PDF

Info

Publication number
WO2021095311A1
WO2021095311A1 PCT/JP2020/031098 JP2020031098W WO2021095311A1 WO 2021095311 A1 WO2021095311 A1 WO 2021095311A1 JP 2020031098 W JP2020031098 W JP 2020031098W WO 2021095311 A1 WO2021095311 A1 WO 2021095311A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam portions
connecting portion
transducer
electrode layer
layer
Prior art date
Application number
PCT/JP2020/031098
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 池内
青司 梅澤
勝之 鈴木
文弥 黒川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021095311A1 publication Critical patent/WO2021095311A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors

Definitions

  • the present invention can be used as a transmitter for transmitting sound waves and a sound wave receiver (microphone) for receiving sound waves with respect to a transducer, particularly an acoustic transducer.
  • the present invention relates to an ultrasonic transmitter / receiver capable of transmitting and receiving ultrasonic waves.
  • Patent Document 1 is a document that discloses the configuration of the transducer.
  • the transducer described in Patent Document 1 is a microphone, which includes a support frame, a first diaphragm, a second diaphragm, and a coupling body. Both the first diaphragm and one end of the second diaphragm are elastically supported by the support frame. The other end of the first diaphragm and the other end of the second diaphragm are arranged so as to face each other. The other end of the first diaphragm and the other end of the second diaphragm are connected by a connecting body.
  • the connector can be displaced with respect to the other end of the first diaphragm and the other end of the second diaphragm, so that the connector vibrates in parallel or in parallel with the vibration of the first diaphragm or the second diaphragm. It is configured to perform tilt vibration.
  • the present invention has been made in view of the above problems, and provides a transducer capable of suppressing a decrease in electromechanical conversion efficiency while suppressing vibration of a plurality of beam portions in a coupled vibration mode. With the goal.
  • the transducer based on the present invention includes a plurality of beam portions, a base portion, and a connecting portion.
  • the plurality of beam portions have a fixed end portion and a tip portion. The tip is located on the opposite side of the fixed end.
  • Each of the plurality of beams extends from the fixed end toward the tip.
  • Each fixed end of the plurality of beams is located in the same plane.
  • Each of the plurality of beams includes a piezoelectric layer, an upper electrode layer, and a lower electrode layer.
  • the upper electrode layer is arranged above the piezoelectric layer.
  • the lower electrode layer is arranged so as to face at least a part of the upper electrode layer with the piezoelectric layer interposed therebetween.
  • the base is connected to each fixed end of the plurality of beams.
  • the connecting portion connects the tips of the plurality of beam portions to each other.
  • the connecting portion is made of a material having a Young's modulus lower than that of the material constituting the piezo
  • the transducer With respect to the present invention, with respect to the transducer, it is possible to suppress a decrease in electromechanical conversion efficiency while suppressing vibration of a plurality of beam portions in a coupled vibration mode.
  • FIG. 5 is a perspective view showing a state in which the transducer according to the first embodiment of the present invention is vibrating in the basic vibration mode by simulation.
  • FIG. 5 is a cross-sectional view showing a state in which a laminated body is joined to a first support portion in the method for manufacturing a transducer according to the first embodiment of the present invention. It is sectional drawing which shows the state which formed the piezoelectric layer by scraping the piezoelectric single crystal substrate in the manufacturing method of the transducer which concerns on Embodiment 1 of this invention.
  • FIG. 5 is a cross-sectional view showing a state in which a slit is formed from a side opposite to the support layer side of the piezoelectric layer until it reaches the upper surface of the substrate layer in the method for manufacturing a transducer according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a state in which a through hole is formed from a side opposite to the support layer side of the piezoelectric layer to the upper surface of the lower electrode layer in the method for manufacturing a transducer according to the first embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of the transducer of FIG. 17 as viewed from the direction of the arrow along the line XVIII-XVIII.
  • FIG. 1 is a plan view of the transducer according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the transducer of FIG. 1 as viewed from the direction of the arrow along line II-II.
  • the transducer 100 according to the first embodiment of the present invention includes a plurality of beam portions 110, a base portion 120, and a connecting portion 130.
  • each of the plurality of beam portions 110 can bend and vibrate, and can be used as an ultrasonic transducer.
  • the plurality of beam portions 110 have a fixed end portion 111 and a tip portion 112.
  • the tip 112 is located on the opposite side of the fixed end 111.
  • Each fixed end 111 of the plurality of beam portions 110 is located in the same plane S.
  • Each of the plurality of beam portions 110 extends from the fixed end portion 111 toward the tip end portion 112.
  • each of the plurality of beam portions 110 extends along the plane S in a state where the transducer 100 is not driven.
  • each of the plurality of beam portions 110 has a tapered outer shape in the extending direction when viewed from the orthogonal direction of the plane S.
  • each of the plurality of beam portions 110 has a triangular outer shape when viewed from the direction orthogonal to the plane S.
  • this triangular shape is an isosceles triangle shape with the fixed end portion 111 as the base and the apex located at the tip portion 112. That is, the extending direction of each of the plurality of beam portions 110 is the direction connecting the midpoint and the apex of the base of the isosceles triangle shape which is the outer shape of each beam portion 110.
  • the length of each of the plurality of beam portions 110 in the extending direction is the dimension of the thickness of each of the plurality of beam portions 110 in the orthogonal direction of the plane S from the viewpoint of facilitating bending vibration. It is preferable that the amount is at least 5 times or more.
  • the transducer 100 includes four beam portions 110. Further, each of the plurality of beam portions 110 is arranged so as to be point-symmetrical with respect to the virtual center point of the transducer 100 when viewed from the direction orthogonal to the plane S. In the present embodiment, each of the four beam portions 110 extends in different directions in the plane S when viewed from the orthogonal direction of the plane S, and the extending directions of the adjacent beam portions 110 are mutually different. They are arranged so that they differ by 90 °.
  • each of the plurality of beam portions 110 has a tip surface 113 at the tip portion 112 along the direction orthogonal to the plane S.
  • "along" in a certain direction means that it may be parallel to the direction or may intersect so as not to be orthogonal to the direction.
  • each tip surface of the plurality of beam portions 110 faces toward the virtual center point of the transducer 100.
  • the gap 114 between the plurality of beam portions 110 is formed in a slit shape extending toward the tip end portion 112 of each of the plurality of beam portions 110.
  • the gap 114 located between the plurality of beam portions 110 extends radially from the virtual center point of the transducer 100 when viewed from the direction orthogonal to the plane S.
  • the width of the gap 114 is substantially constant in the extending direction of the gap 114.
  • the narrower the width of the gap 114 the better the device characteristics of the transducer 100.
  • the narrower the width of the gap 114 the more the force exerted by the plurality of beam portions 110 on the medium located around the plurality of beam portions 110, or the plurality of beam portions.
  • the force that 110 receives from the medium can be prevented from escaping from the gap 114.
  • the slit width is preferably, for example, 10 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the base portion 120 is connected to each fixed end portion 111 of the plurality of beam portions 110.
  • the base 120 has an annular outer shape when viewed from the direction orthogonal to the plane S, and specifically, has a rectangular annular outer shape.
  • the base portion 120 is connected to each fixed end portion 111 of the plurality of beam portions 110 so as to correspond one-to-one with the plurality of beam portions 110 on a plurality of sides of the inner peripheral surface of the rectangular ring.
  • the base portion 120 has a plurality of recesses 121 communicating with gaps 114 between the plurality of beam portions 110.
  • the recess 121 is formed so as to be continuous with the side of the gap 114 opposite to the tip 112 side.
  • each of the plurality of beam portions 110 is connected on the upper side of the base portion 120 in the orthogonal direction of the plane S. Therefore, in the transducer 100, an opening 101 that opens downward is formed below the plurality of beam portions 110.
  • the transducer 100 includes a piezoelectric layer 10, an upper electrode layer 20, a lower electrode layer 30, and a support layer 40.
  • each of the plurality of beam portions 110 includes a piezoelectric layer 10, an upper electrode layer 20, a lower electrode layer 30, and a support layer 40.
  • the piezoelectric layer 10 constitutes a part of the beam portion 110 and a part of the base portion 120.
  • the piezoelectric layer 10 is made of a single crystal.
  • the cut orientation of the piezoelectric layer 10 is appropriately selected so as to exhibit the desired device characteristics.
  • the piezoelectric layer 10 is a thinned single crystal substrate, and the single crystal substrate is specifically a rotating Y-cut substrate. Further, the cutting direction of the rotating Y-cut substrate is specifically 30 °.
  • the thickness of the piezoelectric layer 10 is, for example, 0.3 ⁇ m or more and 5.0 ⁇ m or less.
  • the piezoelectric layer 10 is made of an inorganic material. Specifically, the piezoelectric layer 10 is composed of an alkaline niobate compound or an alkaline tantalate compound. In the present embodiment, the alkali metal contained in the alkali niobate compound or the alkali tantalate compound comprises at least one of lithium, sodium and potassium. In the present embodiment, the piezoelectric layer 10 is composed of lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ).
  • each of the upper electrode layer 20 and the lower electrode layer 30 constitutes a part of a plurality of beam portions 110 and a part of a base portion 120.
  • the upper electrode layer 20 is arranged on the upper side of the piezoelectric layer 10, that is, on the side opposite to the support layer 40 side. In other words, the upper electrode layer 20 is arranged on one side of the piezoelectric layer 10 in the orthogonal direction.
  • the lower electrode layer 30 is arranged in each of the plurality of beam portions 110 so as to face at least a part of the upper electrode layer 20 with the piezoelectric layer 10 interposed therebetween.
  • an adhesion layer (not shown) is arranged between the upper electrode layer 20 and the piezoelectric layer 10 and between the lower electrode layer 30 and the piezoelectric layer 10.
  • a plurality of upper electrode layers 20 forming a part of each of the plurality of beam portions 110 are interposed via an upper electrode layer 20 forming a base portion 120. It is provided so as to be electrically connected to each other.
  • the plurality of lower electrode layers 30 forming a part of each of the plurality of beam portions 110 are electrically connected to each other via the lower electrode layer 30 forming the base portion 120. It is provided so that it can be connected as a target. Further, each of the upper electrode layer 20 and the lower electrode layer 30 is provided so as not to face the gap 114.
  • each of the upper electrode layer 20 and the lower electrode layer 30 is composed of Pt.
  • Each of the upper electrode layer 20 and the lower electrode layer 30 may be made of another material such as Al.
  • the adhesion layer is made of Ti.
  • the adhesion layer may be made of another material such as NiCr.
  • Each of the upper electrode layer 20, the lower electrode layer 30, and the adhesion layer may be an epitaxial growth film.
  • the piezoelectric layer 10 is composed of lithium niobate (LiNbO 3 )
  • the adhesion layer is from the viewpoint of suppressing the material constituting the adhesion layer from diffusing into the upper electrode layer 20 or the lower electrode layer 30. Is preferably composed of NiCr. This improves the reliability of the transducer 100.
  • the thickness of each of the upper electrode layer 20 and the lower electrode layer 30 is, for example, 0.05 ⁇ m or more and 0.2 ⁇ m or less.
  • the thickness of the adhesion layer is, for example, 0.005 ⁇ m or more and 0.05 ⁇ m or less.
  • the support layer 40 constitutes a part of the plurality of beam portions 110 and a part of the base portion 120.
  • the support layer 40 is arranged on the side opposite to the upper electrode layer 20 side of the piezoelectric layer 10 and on the side opposite to the piezoelectric layer 10 side of the lower electrode layer 30.
  • the support layer 40 has a first support portion 41 and a second support portion 42 laminated on the side of the first support portion 41 opposite to the piezoelectric layer 10 side.
  • the first support portion 41 is made of SiO 2
  • the second support portion 42 is made of single crystal Si.
  • the thickness of the support layer 40 is preferably thicker than that of the piezoelectric layer 10 from the viewpoint of bending vibration of the beam portion 110. The mechanism of bending vibration of the beam portion 110 will be described later.
  • the transducer 100 further includes a substrate layer 50.
  • the substrate layer 50 constitutes a part of the base 120.
  • the substrate layer 50 is arranged below the support layer 40.
  • the substrate layer 50 has a first substrate 51 and a second substrate 52 laminated on the side opposite to the support layer 40 side of the first substrate 51.
  • the first substrate 51 is made of SiO 2
  • the second substrate 52 is made of single crystal Si.
  • the connecting portion 130 connects the tip portions 112 of each of the plurality of beam portions 110 so that each of the plurality of beam portions 110 can be displaced from the fixed end portion 111 as a starting point. Connected to each other. Each of the plurality of beam portions 110 is connected to the connecting portion 130 at least by the tip surface 113.
  • the slit width of the portion of the gap 114 between the plurality of beam portions 110 facing the tip surface 113 is formed as narrow as possible.
  • the thickness of the connecting portion 130 is thicker than the thickness of each of the plurality of beam portions 110.
  • the thickness is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • a portion 131 located on the tip surface 113 from each of the plurality of beam portions 110 projects toward the upper electrode layer 20 of each of the plurality of beam portions 110.
  • the protruding portion 131 further extends toward the upper electrode layer 20 side of the piezoelectric layer 10. That is, as shown in FIG. 1, the diameter dimension of the portion 131 of the connection portion 130 is larger than the slit width dimension of the gap 114 when viewed from the orthogonal direction.
  • the portion 131 of the connecting portion 130 extends from the tip surface 113 to the upper electrode layer 20 when viewed from the orthogonal direction, and has a substantially circular outer shape. Seen from the orthogonal direction, the diameter of the portion 131 of the connecting portion 130 is, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the mass of the connecting portion 130 is 5% or less of the total mass of the plurality of beam portions 110. Further, the mass of the connecting portion 130 is preferably 2% or less of the total mass of the plurality of beam portions 110. The mass of the connecting portion 130 is more preferably 1% or less of the total mass of the plurality of beam portions 110.
  • the mass of the connecting portion 130 can be calculated from the density value described in the conventionally known material database for the material constituting the connecting portion 130 and the volume of the connecting portion 130 in the present embodiment.
  • the mass of each of the plurality of beam portions 110 can also be calculated by the same method as that of the connecting portion 130.
  • the mass of the connecting portion 130 is measured by measuring the difference between the total mass of the transducer 100 and the total mass of the transducer after the connecting portion 130 provided on the transducer 100 is removed by local heating or solvent application. It may be calculated by.
  • the connecting portion 130 is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer 10.
  • the Young's modulus of the material constituting the connecting portion 130 is 1 GPa or less.
  • the Young's modulus of the material constituting the connecting portion 130 is preferably 100 MPa or less.
  • the Young's modulus of the material constituting the connecting portion 130 is preferably 0.1 MPa or more.
  • the Young's modulus of each of the material constituting the piezoelectric layer 10 and the material constituting the connecting portion 130 the physical property values described in the conventionally known material database can be adopted for each of these materials.
  • the Young's modulus of each of the material constituting the piezoelectric layer 10 and the material constituting the connecting portion 130 is nano-indented with respect to the measurement sample collected from each of the piezoelectric layer 10 and the connecting portion 130 in the transducer 100. It can also be calculated by measuring the deformation rate when pressure is applied by the method. Further, in the present embodiment, it is preferable that the connecting portion 130 is made of a material having reflow resistance and relatively high heat resistance.
  • connection portion 130 is made of an organic material.
  • examples of the material constituting the connecting portion 130 include, for example, a silicone resin or a fluoroelastomer from the viewpoint of the Young's modulus described above.
  • the silicone resin has a lower Young's modulus at low temperatures than the fluoroelastomer. Therefore, the connecting portion 130 is preferably made of a silicone resin. If the connecting portion 130 is made of silicone resin, the transducer 100 can be used in a relatively wide temperature range.
  • polyimide resin and parylene parylene (paraxylylene-based polymer) are hard resins having a relatively high Young's modulus of more than 1 GPa. Therefore, depending on the Young's modulus of the material constituting the piezoelectric layer 10, the polyimide resin and parylene may not be adopted as the material constituting the connecting portion 130.
  • FIG. 3 is a cross-sectional view of the transducer of FIG. 1 as viewed from the direction of the arrow along line III-III.
  • the transducer 100 according to the present embodiment further includes a first connection electrode layer 140 and a second connection electrode layer 150.
  • the first connection electrode layer 140 is arranged on the base portion 120 on the side opposite to the piezoelectric layer 10 side of the upper electrode layer 20.
  • the first connection electrode layer 140 is electrically connected to the upper electrode layer 20 via an adhesion layer (not shown).
  • the second connection electrode layer 150 is arranged in the base portion 120 on the side opposite to the support layer 40 side of the lower electrode layer 30.
  • the second connection electrode layer 150 is electrically connected to the lower electrode layer 30 via an adhesion layer (not shown).
  • each of the first connection electrode layer 140 and the second connection electrode layer 150 is, for example, 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the thickness of each of the adhesion layer connected to the first connection electrode layer 140 and the adhesion layer connected to the second connection electrode layer 150 is, for example, 0.005 ⁇ m or more and 0.1 ⁇ m or less.
  • the first connection electrode layer 140 and the second connection electrode layer 150 are composed of Au.
  • the first connection electrode layer 140 and the second connection electrode layer 150 may be made of another conductive material such as Al.
  • the adhesion layer connected to the first connection electrode layer 140 and the adhesion layer connected to the second connection electrode layer 150 are made of, for example, Ti.
  • the adhesion layer may be made of NiCr.
  • each of the plurality of beam portions 110 can flex and vibrate.
  • the mechanism of bending vibration of the plurality of beam portions 110 will be described.
  • FIG. 4 is a cross-sectional view schematically showing a part of a beam portion of the transducer according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a part of a beam portion at the time of driving of the transducer according to the first embodiment of the present invention.
  • the upper electrode layer and the lower electrode layer are not shown in FIGS. 4 and 5.
  • the piezoelectric layer 10 functions as an elastic layer that can be expanded and contracted in the in-plane direction of the plane S, other than the piezoelectric layer 10.
  • the layer functions as a constraint layer.
  • the support layer 40 mainly functions as a restraint layer. In this way, the restraint layer is laminated in the direction orthogonal to the expansion / contraction direction of the expansion / contraction layer with respect to the expansion / contraction layer.
  • the plurality of beam portions 110 are reverse stretchable layers that can be contracted in the in-plane direction when the stretchable layer is stretched in the in-plane direction and can be stretched in the in-plane direction when the stretchable layer is contracted in the in-plane direction. , May be included in place of the restraint layer.
  • the support layer 40 which is a main part of the restraint layer expands and contracts the piezoelectric layer 10 at the joint surface with the piezoelectric layer 10. Restrain. Further, in the present embodiment, in the beam portion 110, the piezoelectric layer 10 which is an expansion / contraction layer is located only on one side of the stress neutral plane N of the beam portion 110. The position of the center of gravity of the support layer 40, which mainly constitutes the restraint layer, is located on the other side of the stress neutral plane N. As a result, as shown in FIGS.
  • the beam portion 110 bends in the direction orthogonal to the plane S.
  • the amount of displacement of the beam portion 110 when the beam portion 110 is bent increases as the distance between the stress neutral plane N and the piezoelectric layer 10 increases. Further, the amount of displacement increases as the stress at which the piezoelectric layer 10 tries to expand and contract increases. In this way, each of the plurality of beam portions 110 bends and vibrates starting from the fixed end portion 111 in the direction orthogonal to the plane S.
  • FIG. 6 is a perspective view showing a state in which the transducer according to the first embodiment of the present invention is vibrating in the basic vibration mode by simulation. Specifically, FIG. 6 shows the transducer 100 in a state in which each of the plurality of beam portions 110 is displaced toward the upper electrode layer 20 side. In FIG. 6, the color becomes lighter as the amount of displacement in which each of the plurality of beam portions 110 is displaced toward the upper electrode layer 20 increases. As shown in FIG. 6, the basic vibration mode is a mode in which the phases when each of the plurality of beam portions 110 bends and vibrates are aligned, and the entire plurality of beam portions 110 are displaced to either the upper or lower side. Is.
  • the coupled vibration mode is a mode in which at least one phase of the plurality of beam portions 110 is not aligned with the phase of the other beam portions 110 when each of the plurality of beam portions 110 bends and vibrates.
  • the occurrence of the coupled vibration mode is suppressed.
  • the transducer 100 according to the present embodiment tends to vibrate in the basic vibration mode and the generation of the coupled vibration mode is suppressed, the device characteristics are particularly improved when used as an ultrasonic transducer.
  • the functional operation of the transducer 100 when the transducer 100 according to the present embodiment is used as an ultrasonic transducer will be described.
  • each of the plurality of beam portions 110 has a unique mechanical resonance frequency. Therefore, when the applied voltage is a sinusoidal voltage and the frequency of the sinusoidal voltage is close to the value of the resonance frequency, the amount of displacement when each of the plurality of beam portions 110 is bent becomes large.
  • the medium around each of the plurality of beam portions 110 is vibrated by the ultrasonic waves, and a force is applied to each of the plurality of beam portions 110 from the peripheral media to form a plurality of beams.
  • Each of the beam portions 110 bends and vibrates.
  • stress is applied to the piezoelectric layer 10.
  • an electric charge is induced in the piezoelectric layer 10.
  • Due to the electric charge induced in the piezoelectric layer 10 a potential difference is generated between the upper electrode layer 20 and the lower electrode layer 30 facing each other via the piezoelectric layer 10.
  • This potential difference is detected by the first connection electrode layer 140 connected to the upper electrode layer 20 and the second connection electrode layer 150 connected to the lower electrode layer 30.
  • the transducer 100 can detect ultrasonic waves.
  • the ultrasonic wave to be detected contains a large amount of a specific frequency component and this frequency component is close to the value of the resonance frequency, the displacement amount when each of the plurality of beam portions 110 bends and vibrates. Becomes larger. As the amount of displacement increases, the potential difference increases.
  • the transducer 100 according to the present embodiment when used as an ultrasonic transducer, it is important to design the resonance frequencies of the plurality of beam portions 110.
  • the resonance frequency changes depending on the density and elastic modulus.
  • each of the plurality of beam portions 110 has the same resonance frequency as each other. For example, when the thicknesses of the plurality of beam portions 110 are different from each other, the lengths of the plurality of beam portions in the extending direction are adjusted so that each of the plurality of beam portions 110 has the same resonance frequency. To have.
  • the transducer 100 As described above, vibration in the basic vibration mode is likely to occur, and the generation of the coupled vibration mode is suppressed. Therefore, when the transducer 100 is used as an ultrasonic transducer, it is suppressed that the phases of vibrations of the plurality of beam portions 110 are different even when detecting ultrasonic waves having the same frequency component as the resonance frequency. To. As a result, the phases of vibrations of the plurality of beam portions 110 are different, so that the charges generated in the piezoelectric layer 10 of each of the plurality of beam portions 110 cancel each other out in the upper electrode layer 20 or the lower electrode layer 30. It is suppressed. That is, in the transducer 100, the device characteristics as an ultrasonic transducer are improved.
  • FIG. 7 is a cross-sectional view showing a state in which a lower electrode layer is provided on a piezoelectric single crystal substrate in the method for manufacturing a transducer according to the first embodiment of the present invention. 7 and 8 to 12 and 4 shown below are shown in the same cross-sectional view as in FIG.
  • an adhesion layer (not shown) is provided on the lower surface of the piezoelectric single crystal substrate 10a, and then a lower electrode layer 30 is provided on the side of the adhesion layer opposite to the piezoelectric single crystal substrate 10a side.
  • the lower electrode layer 30 is formed so as to have a desired pattern by a vapor deposition lift-off method.
  • the lower electrode layer 30 may be formed by laminating over the entire lower surface of the piezoelectric single crystal substrate 10a by sputtering and then forming a desired pattern by an etching method.
  • the lower electrode layer 30 and the close contact layer may be epitaxially grown.
  • FIG. 8 is a cross-sectional view showing a state in which the first support portion is provided in the method for manufacturing a transducer according to the first embodiment of the present invention.
  • a first support portion 41 is provided on the lower surfaces of the piezoelectric single crystal substrate 10a and the lower electrode layer 30 by a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, or the like.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • FIG. 9 is a cross-sectional view showing a state in which a laminated body is joined to a first support portion in the method for manufacturing a transducer according to the first embodiment of the present invention.
  • the laminate 60 composed of the second support portion 42 and the substrate layer 50 is bonded to the lower surface of the first support portion 41 by surface activation bonding or atomic diffusion bonding.
  • the laminate 60 is an SOI (Silicon on Insulator) substrate.
  • FIG. 10 is a cross-sectional view showing a state in which a piezoelectric single crystal substrate is scraped to form a piezoelectric layer in the method for manufacturing a transducer according to the first embodiment of the present invention.
  • the upper surface of the piezoelectric single crystal substrate 10a is thinned by grinding with a grinder.
  • the top surface of the thinned piezoelectric single crystal substrate 10a is further polished by CMP or the like to form the piezoelectric single crystal substrate 10a into the piezoelectric layer 10.
  • the piezoelectric single crystal substrate 10a is formed into the piezoelectric layer 10 by forming a peeling layer by injecting ions into the upper surface side of the piezoelectric single crystal substrate 10a in advance and peeling the peeling layer. Good. Further, the piezoelectric single crystal substrate 10a may be formed into the piezoelectric layer 10 by further polishing the upper surface of the piezoelectric single crystal substrate 10a after the release layer is peeled off by CMP or the like.
  • FIG. 11 is a cross-sectional view showing a state in which an upper electrode layer is provided on the piezoelectric layer in the method for manufacturing a transducer according to the first embodiment of the present invention.
  • an upper electrode layer 20 is provided on the side of the adhesion layer opposite to the piezoelectric layer 10 side.
  • the upper electrode layer 20 is formed so as to have a desired pattern by a vapor deposition lift-off method.
  • the upper electrode layer 20 may be formed by laminating over the entire upper surface of the piezoelectric layer 10 by sputtering and then forming a desired pattern by an etching method.
  • the piezoelectric layer 10 and the close contact layer may be epitaxially grown.
  • FIG. 12 is a cross-sectional view showing a state in which a slit is formed from a side opposite to the support layer side of the piezoelectric layer to reach the upper surface of the substrate layer in the method for manufacturing a transducer according to the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing a state in which a through hole is formed from a side opposite to the support layer side of the piezoelectric layer to the upper surface of the lower electrode layer in the method for manufacturing a transducer according to the first embodiment of the present invention. .. In FIG. 13, it is shown in the same cross-sectional view as in FIG.
  • slits are formed in the piezoelectric layer 10 and the first support portion 41 by dry etching with RIE (Reactive Ion Etching).
  • the slit may be formed by wet etching with fluorine nitric acid or the like.
  • DRIE Deep Reactive Ion Etching
  • the second support portion 42 exposed to the slit is etched so that the slit reaches the upper surface of the substrate layer 50.
  • the gap 114 and the recess 121 shown in FIG. 1 are formed.
  • the piezoelectric layer 10 is etched by the dry etching or the wet etching so that a part of the lower electrode layer 30 is exposed.
  • an adhesion layer (not shown) is provided on each of the upper electrode layer 20 and the lower electrode layer 30, and then an adhesion layer (not shown) is provided on the upper surface of each adhesion layer by a vapor deposition lift-off method.
  • the first connection electrode layer 140 and the second connection electrode layer 150 are provided.
  • the first connection electrode layer 140 and the second connection electrode layer 150 are laminated over the entire surfaces of the piezoelectric layer 10, the upper electrode layer 20 and the exposed lower electrode layer 30 by sputtering, and then a desired pattern is formed by an etching method. May be formed with.
  • FIG. 14 is a cross-sectional view showing a state in which an opening is formed in the method for manufacturing a transducer according to the first embodiment of the present invention. As shown in FIG. 14, a part of the substrate layer 50 is removed by DRIE. As a result, a plurality of beam portions 110, a base portion 120, and an opening portion 101 are formed.
  • connection portion 130 is provided.
  • the connecting portion 130 applies the connecting portion 130 in a liquid state on the tip surface 113 of each of the plurality of beam portions 110 by a dispensing method, a transfer method, or the like.
  • the connecting portion 130 is applied from above on the side opposite to the opening 101 side of the tip surface 113.
  • the connecting portion 130 is applied so as to project at least toward the upper electrode layer 20 side of the beam portion 110 in order to have a sufficient thickness.
  • the liquid connection portion 130 is cured.
  • the connecting portion 130 may be provided before forming the opening 101. As shown in FIG. 12, the substrate layer 50 is located below the gap 114 before the opening 101 is formed. Therefore, even if the width of the gap 114 in the plane S direction is wide, the connecting portion 130 can be provided on the tip surface 113 of each of the plurality of beam portions 110 without the connecting portion 130 falling off.
  • FIG. 15 is a cross-sectional view of a transducer according to a modified example of the first embodiment of the present invention.
  • FIG. 15 it is shown in the same cross-sectional view as in FIG.
  • the gap 114 of the transducer 100a according to the modified example of the first embodiment of the present invention is wider than the gap 114 of the transducer 100 according to the first embodiment of the present invention.
  • the change in the resonance frequency of the plurality of beam portions 110 when the size of the connecting portion 130, that is, the mass of the connecting portion 130 is changed is evaluated. An example will be described.
  • the transducers according to each embodiment used in this experimental example were designed so that the resonance frequency of each of the plurality of beam portions 110 was 43 kHz in a state where the connecting portion 130 was not provided. That is, in the transducer according to each embodiment, the thickness of the piezoelectric layer is 1 ⁇ m, the thickness of each of the upper electrode layer and the lower electrode layer is 0.1 ⁇ m, the thickness of the first support portion is 0.8 ⁇ m, and the first one. 2 The thickness of the support portion is 1.4 ⁇ m, the length of each of the plurality of beam portions in the extending direction is 400 ⁇ m, and the fixed ends of each of the plurality of beam portions when viewed from the orthogonal direction of the plane in which the plurality of beam portions are located.
  • Examples 1 to 6 the connecting portions are provided so that the outer diameter of the upwardly protruding portion of the connecting portion and the overall thickness of the connecting portion are different from each other as shown in Table 1 below. .. Table 1 below shows the results of calculating the resonance frequency of the beam portion by simulation for each of these examples.
  • the resonance frequency was lower than the resonance frequency of 43 kHz of the beam portion before the connection portion was provided. Further, when Examples 1, 3 and 5 are compared and Examples 2, 4 and 6 are compared, it can be seen that the resonance frequency of the beam portion decreases as the outer diameter of the portion protruding upward of the connecting portion increases. .. Further, when Examples 1 and 2 are compared, Examples 3 and 4 are compared, and Examples 5 and 6 are compared, the thicker the connection portion 130 is, the lower the resonance frequency of the beam portion is. You can see that.
  • the absolute value of the difference between the resonance frequency values of the beam portions of Examples 1 and 2 in which the outer diameter of the upwardly protruding portion of the connecting portion is 100 ⁇ m is 2.35 kHz, which is the average of the above values.
  • the value was 39.32 kHz. That is, the absolute value of the difference was 6% with respect to the above average value.
  • the absolute value of the difference is 13.7% of the average value.
  • Example 1 having the highest resonance frequency and Example 5 having the lowest resonance frequency are used.
  • the absolute value of the difference was 13.6% with respect to the average value of the resonance frequencies of Examples 1 and 5.
  • Examples 2, 4 and 6 in which the overall thickness of the connection portion is 20 ⁇ m, the difference between the resonance frequency values of Example 2 having the highest resonance frequency value and Example 6 having the lowest resonance frequency value.
  • the absolute value was 21.3% of the average value of the resonance frequencies of Examples 2 and 6.
  • the thinner the overall thickness of the connecting portion the more the variation in the amount of change in the resonance frequency of the beam portion due to the provision of the connecting portion, which is caused by the variation in the outer diameter of the portion protruding above the connecting portion. It can be seen that can be suppressed.
  • FIG. 16 is a graph showing the rate of decrease in the resonance frequency of the beam portion due to the provision of the connecting portion with respect to the mass of the connecting portion for each embodiment in the experimental example of the present invention.
  • the mass ratio of the connecting portion to the total mass of the plurality of beam portions calculated based on the density of each component in the transducer is plotted as the horizontal axis. ..
  • the vertical axis represents the ratio of the absolute value of the difference between the resonance frequency of the beam portion and 43 kHz with respect to 43 kHz, which is the value of the resonance frequency before the connection portion is provided. It is plotted as.
  • the mass ratio of the connection portion to the plurality of beam portions may be 5% by mass or less.
  • the mass ratio of the connecting portion to the plurality of beam portions should be 2% by mass or less, and in order to keep the reduction rate of the resonance frequency within 5%.
  • the mass ratio of the connecting portion to the plurality of beam portions should be 1% by mass or less.
  • the extending length of the beam portion 110 is shortened or the thickness of the beam portion 110 is increased in advance so that the plurality of beam portions 110 have a resonance frequency having a frequency higher than the desired resonance frequency. Design to keep it.
  • the extending length of each of the plurality of beam portions 110 is shortened or the thickness is increased, it becomes difficult to mechanically bend the beam portion 110, which deteriorates the device performance of the transducer 100.
  • each of the plurality of beam portions 110 is easily bent, and the device characteristics of the transducer 100 are improved.
  • the transducer 100 includes a plurality of beam portions 110, a base portion 120, and a connecting portion 130.
  • the plurality of beam portions 110 have a fixed end portion 111 and a tip end portion 112.
  • the tip 112 is located on the opposite side of the fixed end 111.
  • Each of the plurality of beam portions 110 extends from the fixed end portion 111 toward the tip end portion 112.
  • Each fixed end 111 of the plurality of beam portions 110 is located in the same plane S.
  • Each of the plurality of beam portions 110 includes a piezoelectric layer 10, an upper electrode layer 20, and a lower electrode layer 30.
  • the upper electrode layer 20 is arranged above the piezoelectric layer 10.
  • the lower electrode layer 30 is arranged so as to face at least a part of the upper electrode layer 20 with the piezoelectric layer 10 interposed therebetween.
  • the base 120 is connected to each fixed end 111 of each of the plurality of beams 110.
  • the connecting portion 130 connects the tip portions 112 of each of the plurality of beam portions 110 to each other.
  • the connecting portion 130 is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer 10.
  • the connecting portion 130 is made of the material having a Young's modulus as described above, so that the stress of the plurality of beam portions 110 in the in-plane direction of the plane S can be relatively relaxed, so that the plurality of beam portions 110 can be formed. It is possible to suppress the difficulty in displacement and, by extension, the decrease in the electromechanical conversion efficiency of the transducer 100.
  • the thickness of the connecting portion 130 is thicker than the thickness of each of the plurality of beam portions 110 in the direction orthogonal to the plane S of the connecting portion 130.
  • the connecting portion 130 Because of the thickness, the connection 130 can more easily absorb the force. As a result, the reliability of the transducer 100 is improved.
  • the mass of the connecting portion 130 is 5% or less of the total mass of the plurality of beam portions 110.
  • the resonance frequencies of each of the plurality of beam portions 110 of the transducer 100 are a plurality of states before the connecting portion 130 is provided.
  • the difference between each resonance frequency of the beam portion 110 is sufficiently small. Therefore, it is possible to prevent the device characteristics of the transducer 100 from deteriorating by changing the design of the plurality of beam portions 110 in order to adjust the resonance frequency.
  • a portion 131 located on the tip surface 113 from each of the plurality of beam portions 110 projects toward the upper electrode layer 20 of each of the plurality of beam portions 110.
  • the Young's modulus of the material constituting the connecting portion 130 is 1 GPa or less.
  • the Young's modulus is 1 GPa or less, the force that the beam portions 110 restrain each other becomes too strong, and it is suppressed that the resonance frequencies of the plurality of beam portions 110 become high.
  • deterioration of the device characteristics of the transducer 100 can be suppressed.
  • even when external stress such as thermal stress is generated in the plurality of beam portions 110 the influence of the external stress on the device characteristics of the transducer 100 can be reduced.
  • the piezoelectric layer 10 is made of an inorganic material.
  • the connecting portion 130 is made of an organic material. Since most of the organic materials have a Young's modulus lower than that of the inorganic materials, it becomes easy to adopt the materials constituting each of the piezoelectric layer 10 and the connecting portion 130, and the design of the transducer 100 becomes easy.
  • the material constituting the connection portion 130 is a silicone resin or a fluoroelastomer. This makes it easy to design the connecting portion 130 to be made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer 10.
  • the piezoelectric layer 10 is composed of lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ). As a result, the piezoelectric characteristics of the piezoelectric layer 10 can be improved, so that the device characteristics of the transducer 100 can be improved.
  • FIG. 17 is a plan view showing a transducer according to the second embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of the transducer of FIG. 17 as viewed from the direction of the arrow along line XVIII-XVIII.
  • the transducer 200 has a first tip surface 213A as a tip surface along the orthogonal direction of the plane and below the first tip surface 213A in the orthogonal direction. It has a second tip surface 213B located on the side.
  • Each of the plurality of beam portions 110 is connected to the connecting portion 130 at least by the second tip surface 213B.
  • the first tip surface 213A is located along the connecting portion 130 toward the connecting portion 130.
  • FIG. 17 when the connecting portion 130 is arranged on the second tip surface 213B, it is possible to prevent the connecting portion 130 from spreading from the first tip surface 213A to the upper surface of the beam portion 110.
  • the vibration of each of the plurality of beam portions 110 in the orthogonal direction is less likely to be disturbed by the connecting portion 130, and deterioration of the device characteristics of the transducer 100 can be suppressed.
  • the first tip surface 213A of each of the plurality of beam portions 110 is located on the virtual ring when viewed from the orthogonal direction.
  • the first tip surface 213A of each of the plurality of beam portions 110 can be formed by hollowing out a part of each of the plurality of beam portions 110 at a time, so that the configuration of the transducer 100 can be simplified.
  • the diameter of the virtual ring is, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the second tip surface 213B of each of the plurality of beam portions 110 is relative to the corresponding first tip surface 213A. It is located on the side opposite to the fixed end 111 side.
  • the first tip surface 213A is the tip surface of the piezoelectric layer 10 and is the second tip.
  • the surface 213B is the tip surface of the support layer 40.
  • the first front end surface 213A may be composed of the respective tip surfaces of the piezoelectric layer 10 and a part of the support layer 40 on the piezoelectric layer 10 side
  • the second front end surface 213B is the support layer 40 and the piezoelectric layer 40. It may be composed of each tip surface of a part of the body layer 10 on the support layer 40 side.
  • the first tip surface 213A may be formed by etching the piezoelectric layer 10.
  • the first front end surface 213A is composed of the respective tip surfaces of the piezoelectric layer 10 and a part of the support layer 40 on the piezoelectric layer 10 side, the piezoelectric layer of the piezoelectric layer 10 and the support layer 40 is formed.
  • the first tip surface 213A may be formed by etching each of the parts on the 10 side.
  • FIG. 19 is a cross-sectional view showing a transducer according to a modified example of the second embodiment of the present invention. In FIG. 19, it is shown in the same cross-sectional view as in FIG. As shown in FIG. 19, in the transducer 200a according to the modified example of the second embodiment of the present invention, the first tip surface 213Aa is separated from the fixed end portion 111 toward the second tip surface 213Ba side in the orthogonal direction. It is inclined to.
  • the connecting portion 130 is provided on the first tip surface 213Aa and the second tip surface 213Ba, the boundary between the upper surface of the beam portion 110 continuous with the second tip surface 213Ba and the first tip surface 213Aa. It is possible to reduce the remaining air bubbles in the portion. As a result, the decrease in the bonding area between the connecting portion 130 and the tip portion 212 is suppressed, and the reliability of the transducer 100 is improved.
  • the tip surface of the piezoelectric layer 10 is inclined as the first tip surface 213Aa so as to be separated from the fixed end portion 111 toward the support layer 40.
  • the resist shape or processing conditions for etching for forming the first tip surface 213A in the transducer 200 according to the second embodiment of the present invention are set.
  • the first tip surface 213Aa in the modified example of the second embodiment of the present invention can be formed.
  • the connecting portion 130 is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer 10, as in the transducer according to the first embodiment of the present invention. Therefore, while suppressing the plurality of beam portions 110 from vibrating in the coupled vibration mode, the decrease in the electromechanical conversion efficiency of the transducers 200 and 200a is suppressed.
  • the transducer according to the third embodiment of the present invention is mainly different from the transducer according to the first embodiment of the present invention in the shape of the gap located between the plurality of beam portions. Therefore, the description of the same configuration as that of the transducer according to the first embodiment of the present invention will not be repeated.
  • FIG. 20 is a plan view showing the transducer according to the third embodiment of the present invention.
  • the upper electrode layer, the first connection electrode layer, and the second connection electrode layer are not shown.
  • a connecting portion 330 is further provided along a part of the gap 314.
  • the vent hole 315 penetrating in the orthogonal direction is formed in the gap 314, and the air or the like located in the opening 101 when the transducer 100 is mounted is formed.
  • the medium can pass through the vent hole 315.
  • each of the plurality of beam portions 110 can be more firmly connected to each other in the orthogonal direction while preventing the vibration of the plurality of beam portions 110 from being hindered by the medium located in the opening 101.
  • the connecting portion 330 when the connecting portion 330 is provided on the tip surface 113, the liquid connecting portion 330 is applied by dropping the liquid connecting portion 330 onto the tip surface 113 from the upper electrode layer side. At this time, the connecting portion 330 coated on the tip surface 113 enters the gap 314 due to the capillary phenomenon. As a result, the connection portion 330 can be provided in the gap 314.
  • the slit width of the gap 314 on the side opposite to the tip 112 side is wider than the slit width on the tip 112 side.
  • the vent hole 315 is formed in a portion of the gap 314 where the slit width is wide.
  • FIG. 21 is a plan view showing a transducer according to a modified example of the third embodiment of the present invention.
  • the slit width of the gap 314a becomes wider as the distance from the tip portion 112 side increases.
  • the vent hole 315 can be secured by suppressing the connection portion 330 from reaching the portion of the gap 314 opposite to the tip portion 112 side, and the connection between each of the plurality of beam portions 110 and the connection portion 330. It is possible to suppress the concentration of stress on a part of the interface. As a result, the destruction of the plurality of beam portions 110 is suppressed, and the reliability of the transducer 100 is improved.
  • the connecting portion 330 is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer, similarly to the transducer according to the first embodiment of the present invention. While suppressing the plurality of beam portions 110 from vibrating in the coupled vibration mode, the decrease in the electromechanical conversion efficiency of the transducers 300 and 300a is suppressed.
  • Piezoelectric layer 10a Piezoelectric single crystal substrate, 20 Upper electrode layer, 30 Lower electrode layer, 40 Support layer, 41 1st support, 42 2nd support, 50 Substrate layer, 51 1st substrate, 52 2nd substrate , 60 laminated body, 100, 100a, 200, 200a, 300, 300a transducer, 101 opening, 110 beam, 111 fixed end, 112, 212 tip, 113 tip surface, 114, 314, 314a gap, 120 base , 121 recess, 130, 330 connection part, 131 part, 140 first connection electrode layer, 150 second connection electrode layer, 213A, 213Aa first tip surface, 213B, 213Ba second tip surface, 315 vent hole.

Abstract

A transducer (100) in which each of a plurality of beam portions (110) extends from a fixed end portion (111) toward a distal end portion (112). The fixed end portions (111) of the plurality of beam portions (110) are positioned in the same plane (S). Each of the plurality of beam portions (110) includes a piezoelectric body layer (10), an upper electrode layer (20), and a lower electrode layer (30). A base portion (120) is connected to the fixed end portion (111) of each of the plurality of beam portions (110). A connecting portion (130) connects the distal end portions (112) of the plurality of beam portions (110). The connecting portion (130) is composed of a material having a Young's modulus lower than that of the material of which the piezoelectric body layer (10) is composed.

Description

トランスデューサTransducer
 本発明は、トランスデューサに関し、特に、音響トランスデューサに関し、音波を発信する発信器、および、音波を受信する音波受信器(マイクロフォン)として利用できる。特に、超音波の発信と受信が可能な超音波送受信器に関する。 The present invention can be used as a transmitter for transmitting sound waves and a sound wave receiver (microphone) for receiving sound waves with respect to a transducer, particularly an acoustic transducer. In particular, the present invention relates to an ultrasonic transmitter / receiver capable of transmitting and receiving ultrasonic waves.
 トランスデューサの構成を開示した文献として、特許第5491080号(特許文献1)がある。特許文献1に記載されたトランスデューサは、マイクロフォンであって、支持フレームと、第1振動板と、第2振動板と、連結体とを備えている。第1振動板および第2振動板の一端は、いずれも、支持フレームによって弾性的に支持されている。第1振動板の他端と、第2振動板の他端とは、対向して配置されている。第1振動板の他端と、第2振動板の他端とは、連結体によって連結されている。連結体は、第1振動板の他端と、第2振動板の他端とに対して、変位可能とされることによって、第1振動板または第2振動板の振動に伴い、平行振動または傾き振動を行う構成となっている。 Patent No. 5491080 (Patent Document 1) is a document that discloses the configuration of the transducer. The transducer described in Patent Document 1 is a microphone, which includes a support frame, a first diaphragm, a second diaphragm, and a coupling body. Both the first diaphragm and one end of the second diaphragm are elastically supported by the support frame. The other end of the first diaphragm and the other end of the second diaphragm are arranged so as to face each other. The other end of the first diaphragm and the other end of the second diaphragm are connected by a connecting body. The connector can be displaced with respect to the other end of the first diaphragm and the other end of the second diaphragm, so that the connector vibrates in parallel or in parallel with the vibration of the first diaphragm or the second diaphragm. It is configured to perform tilt vibration.
特許第5491080号Patent No. 5491080
 特許文献1に記載されたトランスデューサにおいては、複数の梁部である振動板が、各々の先端において、連結体によって互いに接続されている。これにより、複数の梁部の少なくとも1つが他の梁部と異なる位相で振動するモード、いわゆる連成振動モードの発生が抑制される。しかしながら、複数の梁部および連結体の残留応力または熱応力により、複数の梁部が、連結部を介して互いに強く引っ張り合う。そうすると、複数の梁部が変位しにくくなり、トランスデューサの電気機械変換効率が低下する。 In the transducer described in Patent Document 1, a plurality of beam portions, diaphragms, are connected to each other by a connecting body at each tip. As a result, the occurrence of a mode in which at least one of the plurality of beam portions vibrates in a phase different from that of the other beam portions, that is, a so-called coupled vibration mode, is suppressed. However, due to the residual stress or thermal stress of the plurality of beams and the connecting body, the plurality of beam portions strongly pull each other through the connecting portion. Then, the plurality of beam portions are less likely to be displaced, and the electromechanical conversion efficiency of the transducer is lowered.
 本発明は、上記の問題点に鑑みてなされたものであり、複数の梁部が連成振動モードで振動することを抑制しつつ、電気機械変換効率の低下を抑制できる、トランスデューサを提供することを目的とする。 The present invention has been made in view of the above problems, and provides a transducer capable of suppressing a decrease in electromechanical conversion efficiency while suppressing vibration of a plurality of beam portions in a coupled vibration mode. With the goal.
 本発明に基づくトランスデューサは、複数の梁部と、基部と、接続部とを備えている。複数の梁部は、固定端部と先端部とを有している。先端部は、固定端部とは反対側に位置している。複数の梁部の各々は、固定端部から先端部に向かって延在している。複数の梁部の各々の固定端部は、同一の平面内に位置している。複数の梁部の各々は、圧電体層と、上部電極層と、下部電極層とを含んでいる。上部電極層は、圧電体層の上側に配置されている。下部電極層は、圧電体層を挟んで上部電極層の少なくとも一部に対向するように配置されている。基部は、複数の梁部の各々の固定端部と接続されている。接続部は、複数の梁部の各々の先端部同士を互いに接続している。接続部は、圧電体層を構成する材料よりヤング率が低い材料で構成されている。 The transducer based on the present invention includes a plurality of beam portions, a base portion, and a connecting portion. The plurality of beam portions have a fixed end portion and a tip portion. The tip is located on the opposite side of the fixed end. Each of the plurality of beams extends from the fixed end toward the tip. Each fixed end of the plurality of beams is located in the same plane. Each of the plurality of beams includes a piezoelectric layer, an upper electrode layer, and a lower electrode layer. The upper electrode layer is arranged above the piezoelectric layer. The lower electrode layer is arranged so as to face at least a part of the upper electrode layer with the piezoelectric layer interposed therebetween. The base is connected to each fixed end of the plurality of beams. The connecting portion connects the tips of the plurality of beam portions to each other. The connecting portion is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer.
 本発明によれば、トランスデューサについて、複数の梁部が連成振動モードで振動することを抑制しつつ、電気機械変換効率の低下を抑制できる。 According to the present invention, with respect to the transducer, it is possible to suppress a decrease in electromechanical conversion efficiency while suppressing vibration of a plurality of beam portions in a coupled vibration mode.
本発明の実施形態1に係るトランスデューサの平面図である。It is a top view of the transducer which concerns on Embodiment 1 of this invention. 図1のトランスデューサをII-II線矢印方向から見た断面図である。It is sectional drawing which saw the transducer of FIG. 1 from the direction of the arrow of line II-II. 図1のトランスデューサをIII-III線矢印方向から見た断面図である。It is sectional drawing which saw the transducer of FIG. 1 from the direction of the arrow of line III-III. 本発明の実施形態1に係るトランスデューサの梁部の一部を模式的に示した断面図である。It is sectional drawing which shows a part of the beam part of the transducer which concerns on Embodiment 1 of this invention schematically. 本発明の実施形態1に係るトランスデューサの、駆動時における梁部の一部を模式的に示した断面図である。It is sectional drawing which shows typically a part of the beam part at the time of driving of the transducer which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るトランスデューサについて、基本振動モードで振動している状態をシミュレーションによって示した斜視図である。FIG. 5 is a perspective view showing a state in which the transducer according to the first embodiment of the present invention is vibrating in the basic vibration mode by simulation. 本発明の実施形態1に係るトランスデューサの製造方法において、圧電単結晶基板に下部電極層を設けた状態を示す断面図である。It is sectional drawing which shows the state which provided the lower electrode layer on the piezoelectric single crystal substrate in the manufacturing method of the transducer which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るトランスデューサの製造方法において、第1支持部を設けた状態を示す断面図である。It is sectional drawing which shows the state which provided the 1st support part in the manufacturing method of the transducer which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るトランスデューサの製造方法において、第1支持部に、積層体を接合させた状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a laminated body is joined to a first support portion in the method for manufacturing a transducer according to the first embodiment of the present invention. 本発明の実施形態1に係るトランスデューサの製造方法において、圧電単結晶基板を削って圧電体層を形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the piezoelectric layer by scraping the piezoelectric single crystal substrate in the manufacturing method of the transducer which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るトランスデューサの製造方法において、圧電体層に、上部電極層を設けた状態を示す断面図である。It is sectional drawing which shows the state which provided the upper electrode layer in the piezoelectric layer in the manufacturing method of the transducer which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るトランスデューサの製造方法において、圧電体層の支持層側とは反対側から基板層の上面に達するまでスリットを形成した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a slit is formed from a side opposite to the support layer side of the piezoelectric layer until it reaches the upper surface of the substrate layer in the method for manufacturing a transducer according to the first embodiment of the present invention. 本発明の実施形態1に係るトランスデューサの製造方法において、圧電体層の支持層側とは反対側から下部電極層の上面に達するまで貫通孔を形成した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a through hole is formed from a side opposite to the support layer side of the piezoelectric layer to the upper surface of the lower electrode layer in the method for manufacturing a transducer according to the first embodiment of the present invention. 本発明の実施形態1に係るトランスデューサの製造方法において、開口部を形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the opening in the manufacturing method of the transducer which concerns on Embodiment 1 of this invention. 本発明の実施形態1の変形例に係るトランスデューサの断面図である。It is sectional drawing of the transducer which concerns on the modification of Embodiment 1 of this invention. 本発明の実験例における各実施例について、接続部の質量に対して、接続部を設けたことによる梁部の共振周波数の低下率を示したグラフである。It is a graph which showed the reduction rate of the resonance frequency of the beam part by providing the connection part with respect to the mass of the connection part for each Example in the experimental example of this invention. 本発明の実施形態2に係るトランスデューサを示す平面図である。It is a top view which shows the transducer which concerns on Embodiment 2 of this invention. 図17のトランスデューサをXVIII-XVIII線矢印方向から見た断面図である。FIG. 17 is a cross-sectional view of the transducer of FIG. 17 as viewed from the direction of the arrow along the line XVIII-XVIII. 本発明の実施形態2の変形例に係るトランスデューサを示す断面図である。It is sectional drawing which shows the transducer which concerns on the modification of Embodiment 2 of this invention. 本発明の実施形態3に係るトランスデューサを示す平面図である。It is a top view which shows the transducer which concerns on Embodiment 3 of this invention. 本発明の実施形態3の変形例に係るトランスデューサを示す平面図である。It is a top view which shows the transducer which concerns on the modification of Embodiment 3 of this invention.
 以下、本発明の各実施形態に係るトランスデューサについて図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 Hereinafter, the transducer according to each embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiment, the same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 (実施形態1)
 図1は、本発明の実施形態1に係るトランスデューサの平面図である。図2は、図1のトランスデューサをII-II線矢印方向から見た断面図である。図1および図2に示すように、本発明の実施形態1に係るトランスデューサ100は、複数の梁部110と、基部120と、接続部130とを備えている。本実施形態に係るトランスデューサ100は、複数の梁部110の各々が屈曲振動可能であり、超音波トランスデューサとして用いることができる。
(Embodiment 1)
FIG. 1 is a plan view of the transducer according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view of the transducer of FIG. 1 as viewed from the direction of the arrow along line II-II. As shown in FIGS. 1 and 2, the transducer 100 according to the first embodiment of the present invention includes a plurality of beam portions 110, a base portion 120, and a connecting portion 130. In the transducer 100 according to the present embodiment, each of the plurality of beam portions 110 can bend and vibrate, and can be used as an ultrasonic transducer.
 図1に示すように、複数の梁部110は、固定端部111と先端部112とを有している。先端部112は、固定端部111とは反対側に位置している。複数の梁部110の各々の固定端部111は、同一の平面S内に位置している。複数の梁部110の各々は、固定端部111から先端部112に向かって延在している。図2に示すように、複数の梁部110の各々は、トランスデューサ100が駆動していない状態において、上記平面Sに沿うように延在している。 As shown in FIG. 1, the plurality of beam portions 110 have a fixed end portion 111 and a tip portion 112. The tip 112 is located on the opposite side of the fixed end 111. Each fixed end 111 of the plurality of beam portions 110 is located in the same plane S. Each of the plurality of beam portions 110 extends from the fixed end portion 111 toward the tip end portion 112. As shown in FIG. 2, each of the plurality of beam portions 110 extends along the plane S in a state where the transducer 100 is not driven.
 図1および図2に示すように、複数の梁部110の各々は、上記平面Sの直交方向から見たときに、延在方向において先細の外形を有している。具体的には、複数の梁部110の各々は、上記平面Sの直交方向から見て、三角形状の外形を有している。本実施形態において、この三角形状は、固定端部111を底辺とし、先端部112に頂点が位置する、二等辺三角形状である。すなわち、複数の梁部110の各々の延在方向は、各梁部110の外形形状である二等辺三角形状の底辺の中点と頂点とを結ぶ方向である。本実施形態において、複数の梁部110の各々の延在方向の長さは、屈曲振動を容易にするという観点から、複数の梁部110の各々の上記平面Sの直交方向における厚さの寸法の少なくとも5倍以上であることが好ましい。 As shown in FIGS. 1 and 2, each of the plurality of beam portions 110 has a tapered outer shape in the extending direction when viewed from the orthogonal direction of the plane S. Specifically, each of the plurality of beam portions 110 has a triangular outer shape when viewed from the direction orthogonal to the plane S. In the present embodiment, this triangular shape is an isosceles triangle shape with the fixed end portion 111 as the base and the apex located at the tip portion 112. That is, the extending direction of each of the plurality of beam portions 110 is the direction connecting the midpoint and the apex of the base of the isosceles triangle shape which is the outer shape of each beam portion 110. In the present embodiment, the length of each of the plurality of beam portions 110 in the extending direction is the dimension of the thickness of each of the plurality of beam portions 110 in the orthogonal direction of the plane S from the viewpoint of facilitating bending vibration. It is preferable that the amount is at least 5 times or more.
 図1に示すように、本実施形態に係るトランスデューサ100は、4つの梁部110を備えている。また、複数の梁部110の各々は、上記平面Sの直交方向から見て、トランスデューサ100の仮想中心点に関して互いに点対称となるように配置されている。本実施形態においては、4つの梁部110の各々は、上記平面Sの直交方向から見て、上記平面S内で互いに異なる方向に延在しつつ隣り合う梁部110同士の延在方向が互いに90°異なるように、配置されている。 As shown in FIG. 1, the transducer 100 according to the present embodiment includes four beam portions 110. Further, each of the plurality of beam portions 110 is arranged so as to be point-symmetrical with respect to the virtual center point of the transducer 100 when viewed from the direction orthogonal to the plane S. In the present embodiment, each of the four beam portions 110 extends in different directions in the plane S when viewed from the orthogonal direction of the plane S, and the extending directions of the adjacent beam portions 110 are mutually different. They are arranged so that they differ by 90 °.
 図2に示すように、複数の梁部110の各々は、先端部112において上記平面Sの直交方向に沿う先端面113を有している。なお、本明細書中において、ある方向に「沿う」とは、当該方向と平行であってもよいし、当該方向と直交しないように交差していてもよいことを意味する。また、図1に示すように、複数の梁部110の各々の先端面は、トランスデューサ100の上記仮想中心点に向かって面している。 As shown in FIG. 2, each of the plurality of beam portions 110 has a tip surface 113 at the tip portion 112 along the direction orthogonal to the plane S. In addition, in this specification, "along" in a certain direction means that it may be parallel to the direction or may intersect so as not to be orthogonal to the direction. Further, as shown in FIG. 1, each tip surface of the plurality of beam portions 110 faces toward the virtual center point of the transducer 100.
 図1に示すように、複数の梁部110同士の隙間114は、複数の梁部110の各々の先端部112に向かって延在するスリット状に形成されている。複数の梁部110同士の間に位置する隙間114は、上記平面Sの直交方向から見て、トランスデューサ100の仮想中心点から放射状に延在している。隙間114の延在する方向において、隙間114の幅は略一定である。 As shown in FIG. 1, the gap 114 between the plurality of beam portions 110 is formed in a slit shape extending toward the tip end portion 112 of each of the plurality of beam portions 110. The gap 114 located between the plurality of beam portions 110 extends radially from the virtual center point of the transducer 100 when viewed from the direction orthogonal to the plane S. The width of the gap 114 is substantially constant in the extending direction of the gap 114.
 隙間114の幅は、狭くなるほど、トランスデューサ100のデバイス特性が向上する。たとえば、トランスデューサ100を超音波トランスデューサとして用いた場合には、隙間114の幅が狭くなるほど、複数の梁部110が複数の梁部110の周辺に位置する媒質に与える力、または、複数の梁部110が上記媒質から受ける力が、隙間114から逃げることを抑制できる。スリット幅は、たとえば10μm以下であることが好ましく、1μm以下にすることがより好ましい。 The narrower the width of the gap 114, the better the device characteristics of the transducer 100. For example, when the transducer 100 is used as an ultrasonic transducer, the narrower the width of the gap 114, the more the force exerted by the plurality of beam portions 110 on the medium located around the plurality of beam portions 110, or the plurality of beam portions. The force that 110 receives from the medium can be prevented from escaping from the gap 114. The slit width is preferably, for example, 10 μm or less, and more preferably 1 μm or less.
 基部120は、複数の梁部110の各々の固定端部111と接続されている。基部120は、上記平面Sの直交方向から見て、環状の外形を有しており、具体的には、矩形環状の外形を有している。基部120は、矩形環状の内周面の複数の辺において、複数の梁部110と1対1で対応するように、複数の梁部110の各々の固定端部111と接続されている。 The base portion 120 is connected to each fixed end portion 111 of the plurality of beam portions 110. The base 120 has an annular outer shape when viewed from the direction orthogonal to the plane S, and specifically, has a rectangular annular outer shape. The base portion 120 is connected to each fixed end portion 111 of the plurality of beam portions 110 so as to correspond one-to-one with the plurality of beam portions 110 on a plurality of sides of the inner peripheral surface of the rectangular ring.
 基部120は、複数の梁部110同士の隙間114と連通する複数の凹部121を有している。凹部121は、隙間114の先端部112側とは反対側と連続するように形成されている。 The base portion 120 has a plurality of recesses 121 communicating with gaps 114 between the plurality of beam portions 110. The recess 121 is formed so as to be continuous with the side of the gap 114 opposite to the tip 112 side.
 図2に示すように、本実施形態に係るトランスデューサ100においては、複数の梁部110の各々が、平面Sの直交方向において基部120の上側で接続されている。このため、トランスデューサ100においては、複数の梁部110の下方において、下向きに開口する開口部101が形成されている。 As shown in FIG. 2, in the transducer 100 according to the present embodiment, each of the plurality of beam portions 110 is connected on the upper side of the base portion 120 in the orthogonal direction of the plane S. Therefore, in the transducer 100, an opening 101 that opens downward is formed below the plurality of beam portions 110.
 図1および図2に示すように、本実施形態に係るトランスデューサ100は、圧電体層10と、上部電極層20と、下部電極層30と、支持層40とを備えている。図2に示すように、本実施形態においては、複数の梁部110の各々が、圧電体層10と、上部電極層20と、下部電極層30と、支持層40とを含んでいる。 As shown in FIGS. 1 and 2, the transducer 100 according to the present embodiment includes a piezoelectric layer 10, an upper electrode layer 20, a lower electrode layer 30, and a support layer 40. As shown in FIG. 2, in the present embodiment, each of the plurality of beam portions 110 includes a piezoelectric layer 10, an upper electrode layer 20, a lower electrode layer 30, and a support layer 40.
 圧電体層10は、梁部110の一部と、基部120の一部とを構成している。圧電体層10は、単結晶からなる。圧電体層10のカット方位は、所望のデバイス特性を発現するように適宜選択される。本実施形態において、圧電体層10は単結晶基板を薄化したものであり、当該単結晶基板は具体的には回転Yカット基板である。また、当該回転Yカット基板のカット方位は具体的には30°である。また、圧電体層10の厚さは、たとえば0.3μm以上5.0μm以下である。 The piezoelectric layer 10 constitutes a part of the beam portion 110 and a part of the base portion 120. The piezoelectric layer 10 is made of a single crystal. The cut orientation of the piezoelectric layer 10 is appropriately selected so as to exhibit the desired device characteristics. In the present embodiment, the piezoelectric layer 10 is a thinned single crystal substrate, and the single crystal substrate is specifically a rotating Y-cut substrate. Further, the cutting direction of the rotating Y-cut substrate is specifically 30 °. The thickness of the piezoelectric layer 10 is, for example, 0.3 μm or more and 5.0 μm or less.
 圧電体層10を構成する材料は、トランスデューサ100が所望のデバイス特性を発現するように適宜選択される。本実施形態においては、圧電体層10は、無機材料で構成されている。具体的には、圧電体層10は、ニオブ酸アルカリ系の化合物またはタンタル酸アルカリ系の化合物で構成されている。本実施形態においては、上記ニオブ酸アルカリ系の化合物または上記タンタル酸アルカリ系の化合物に含まれるアルカリ金属は、リチウム、ナトリウムおよびカリウムの少なくとも1つからなる。本実施形態において、圧電体層10は、ニオブ酸リチウム(LiNbO3)、または、タンタル酸リチウム(LiTaO3)で構成されている。 The material constituting the piezoelectric layer 10 is appropriately selected so that the transducer 100 exhibits desired device characteristics. In this embodiment, the piezoelectric layer 10 is made of an inorganic material. Specifically, the piezoelectric layer 10 is composed of an alkaline niobate compound or an alkaline tantalate compound. In the present embodiment, the alkali metal contained in the alkali niobate compound or the alkali tantalate compound comprises at least one of lithium, sodium and potassium. In the present embodiment, the piezoelectric layer 10 is composed of lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ).
 図2に示すように、本実施形態において、上部電極層20および下部電極層30の各々は、複数の梁部110の一部および基部120の一部を構成している。上部電極層20は、圧電体層10の上側、すなわち支持層40側とは反対側に配置されている。換言すれば、上部電極層20は、上記直交方向における圧電体層10の一方側に配置されている。下部電極層30は、複数の梁部110の各々において、圧電体層10を挟んで上部電極層20の少なくとも一部に対向するように配置されている。また、本実施形態においては、上部電極層20と圧電体層10との間、および、下部電極層30と圧電体層10との間には、図示しない密着層が配置されている。 As shown in FIG. 2, in the present embodiment, each of the upper electrode layer 20 and the lower electrode layer 30 constitutes a part of a plurality of beam portions 110 and a part of a base portion 120. The upper electrode layer 20 is arranged on the upper side of the piezoelectric layer 10, that is, on the side opposite to the support layer 40 side. In other words, the upper electrode layer 20 is arranged on one side of the piezoelectric layer 10 in the orthogonal direction. The lower electrode layer 30 is arranged in each of the plurality of beam portions 110 so as to face at least a part of the upper electrode layer 20 with the piezoelectric layer 10 interposed therebetween. Further, in the present embodiment, an adhesion layer (not shown) is arranged between the upper electrode layer 20 and the piezoelectric layer 10 and between the lower electrode layer 30 and the piezoelectric layer 10.
 図1に示すように、本実施形態において、上部電極層20は、複数の梁部110の各々の一部を構成する複数の上部電極層20が、基部120を構成する上部電極層20を介して互いに電気的に接続されるように、設けられている。下部電極層30も、上部電極層20と同様にして、複数の梁部110の各々の一部を構成する複数の下部電極層30が、基部120を構成する下部電極層30を介して互いに電気的に接続されるように、設けられている。また、上部電極層20および下部電極層30の各々は、隙間114に面しないように設けられている。 As shown in FIG. 1, in the present embodiment, in the upper electrode layer 20, a plurality of upper electrode layers 20 forming a part of each of the plurality of beam portions 110 are interposed via an upper electrode layer 20 forming a base portion 120. It is provided so as to be electrically connected to each other. In the lower electrode layer 30, similarly to the upper electrode layer 20, the plurality of lower electrode layers 30 forming a part of each of the plurality of beam portions 110 are electrically connected to each other via the lower electrode layer 30 forming the base portion 120. It is provided so that it can be connected as a target. Further, each of the upper electrode layer 20 and the lower electrode layer 30 is provided so as not to face the gap 114.
 本実施形態において、上部電極層20および下部電極層30の各々はPtで構成されている。上部電極層20および下部電極層30の各々は、Alなどの他の材料で構成されていてもよい。密着層は、Tiで構成されている。密着層は、NiCrなど他の材料で構成されていてもよい。上部電極層20、下部電極層30および上記密着層の各々は、エピタキシャル成長膜であってもよい。圧電体層10がニオブ酸リチウム(LiNbO3)で構成されている場合には、密着層を構成する材料が上部電極層20または下部電極層30に拡散することを抑制するという観点から、密着層は、NiCrで構成されることが好ましい。これにより、トランスデューサ100の信頼性が向上する。 In the present embodiment, each of the upper electrode layer 20 and the lower electrode layer 30 is composed of Pt. Each of the upper electrode layer 20 and the lower electrode layer 30 may be made of another material such as Al. The adhesion layer is made of Ti. The adhesion layer may be made of another material such as NiCr. Each of the upper electrode layer 20, the lower electrode layer 30, and the adhesion layer may be an epitaxial growth film. When the piezoelectric layer 10 is composed of lithium niobate (LiNbO 3 ), the adhesion layer is from the viewpoint of suppressing the material constituting the adhesion layer from diffusing into the upper electrode layer 20 or the lower electrode layer 30. Is preferably composed of NiCr. This improves the reliability of the transducer 100.
 本実施形態においては、上部電極層20および下部電極層30の各々の厚さは、たとえば0.05μm以上0.2μm以下である。密着層の厚さは、たとえば0.005μm以上0.05μm以下である。 In the present embodiment, the thickness of each of the upper electrode layer 20 and the lower electrode layer 30 is, for example, 0.05 μm or more and 0.2 μm or less. The thickness of the adhesion layer is, for example, 0.005 μm or more and 0.05 μm or less.
 図2に示すように、支持層40は、複数の梁部110の一部および基部120の一部を構成している。支持層40は、圧電体層10の上部電極層20側とは反対側、および、下部電極層30の圧電体層10側とは反対側に配置されている。支持層40は、第1支持部41と、第1支持部41の圧電体層10側とは反対側に積層された第2支持部42とを有している。本実施形態において、第1支持部41は、SiO2で構成され、第2支持部42は、単結晶Siで構成されている。本実施形態において、支持層40の厚さは、梁部110の屈曲振動の観点から、圧電体層10より厚いことが好ましい。梁部110の屈曲振動のメカニズムについては後述する。 As shown in FIG. 2, the support layer 40 constitutes a part of the plurality of beam portions 110 and a part of the base portion 120. The support layer 40 is arranged on the side opposite to the upper electrode layer 20 side of the piezoelectric layer 10 and on the side opposite to the piezoelectric layer 10 side of the lower electrode layer 30. The support layer 40 has a first support portion 41 and a second support portion 42 laminated on the side of the first support portion 41 opposite to the piezoelectric layer 10 side. In the present embodiment, the first support portion 41 is made of SiO 2 , and the second support portion 42 is made of single crystal Si. In the present embodiment, the thickness of the support layer 40 is preferably thicker than that of the piezoelectric layer 10 from the viewpoint of bending vibration of the beam portion 110. The mechanism of bending vibration of the beam portion 110 will be described later.
 本実施形態に係るトランスデューサ100は、基板層50をさらに含んでいる。基板層50は、基部120の一部を構成している。基板層50は、支持層40の下方に配置されている。基板層50は、第1基板51と、第1基板51の支持層40側とは反対側に積層された第2基板52とを有している。第1基板51は、SiO2で構成されており、第2基板52は、単結晶Siで構成されている。 The transducer 100 according to this embodiment further includes a substrate layer 50. The substrate layer 50 constitutes a part of the base 120. The substrate layer 50 is arranged below the support layer 40. The substrate layer 50 has a first substrate 51 and a second substrate 52 laminated on the side opposite to the support layer 40 side of the first substrate 51. The first substrate 51 is made of SiO 2 , and the second substrate 52 is made of single crystal Si.
 図1および図2に示すように、接続部130は、複数の梁部110の各々が固定端部111を起点として変位可能となるように、複数の梁部110の各々の先端部112同士を互いに接続している。複数の梁部110の各々は、少なくとも先端面113で接続部130と接続している。 As shown in FIGS. 1 and 2, the connecting portion 130 connects the tip portions 112 of each of the plurality of beam portions 110 so that each of the plurality of beam portions 110 can be displaced from the fixed end portion 111 as a starting point. Connected to each other. Each of the plurality of beam portions 110 is connected to the connecting portion 130 at least by the tip surface 113.
 このため、複数の梁部110同士の隙間114のうち、先端面113に面している部分のスリット幅は、できるだけ狭く形成することが好ましい。これにより、接続部130を先端面113上に形成する際に、先端面113上に位置する接続部130の一部が開口部101側などに脱落することを抑制できる。ひいては、接続部130によって複数の梁部110を互いに接続することが容易となる。 Therefore, it is preferable that the slit width of the portion of the gap 114 between the plurality of beam portions 110 facing the tip surface 113 is formed as narrow as possible. As a result, when the connecting portion 130 is formed on the tip surface 113, it is possible to prevent a part of the connecting portion 130 located on the tip surface 113 from falling off to the opening 101 side or the like. As a result, the connecting portion 130 facilitates connecting the plurality of beam portions 110 to each other.
 接続部130の上記平面Sの直交方向において、接続部130の厚さは、複数の梁部110の各々の厚さより厚い。当該厚さは、たとえば5μm以上20μm以下である。 In the direction orthogonal to the plane S of the connecting portion 130, the thickness of the connecting portion 130 is thicker than the thickness of each of the plurality of beam portions 110. The thickness is, for example, 5 μm or more and 20 μm or less.
 図2に示すように、接続部130は、複数の梁部110の各々より先端面113上に位置する部分131が、複数の梁部110の各々の上部電極層20側に突出している。本実施形態において、上記の突出した部分131は、さらに、圧電体層10の上部電極層20側に延出している。すなわち、図1に示すように、上記直交方向から見て、接続部130の上記部分131の直径の寸法は、隙間114のスリット幅の寸法より大きい。接続部130の上記部分131は、上記直交方向から見て、先端面113から上部電極層20との間にまで広がって、略円形状の外形を有している。上記直交方向から見て、接続部130の上記部分131の直径は、たとえば50μm以上200μm以下である。 As shown in FIG. 2, in the connecting portion 130, a portion 131 located on the tip surface 113 from each of the plurality of beam portions 110 projects toward the upper electrode layer 20 of each of the plurality of beam portions 110. In the present embodiment, the protruding portion 131 further extends toward the upper electrode layer 20 side of the piezoelectric layer 10. That is, as shown in FIG. 1, the diameter dimension of the portion 131 of the connection portion 130 is larger than the slit width dimension of the gap 114 when viewed from the orthogonal direction. The portion 131 of the connecting portion 130 extends from the tip surface 113 to the upper electrode layer 20 when viewed from the orthogonal direction, and has a substantially circular outer shape. Seen from the orthogonal direction, the diameter of the portion 131 of the connecting portion 130 is, for example, 50 μm or more and 200 μm or less.
 本実施形態において、接続部130の質量は、複数の梁部110の合計質量の5%以下である。また、接続部130の質量は、複数の梁部110の合計質量の2%以下であることが好ましい。接続部130の質量は、複数の梁部110の合計質量の1%以下であることがより好ましい。接続部130の質量は、接続部130を構成する材料について従来公知の材料データベースに記載された密度の値と、本実施形態における接続部130の体積とから算出できる。複数の梁部110の各々の質量についても、接続部130と同様の方法で算出できる。なお、接続部130の質量は、トランスデューサ100の全体の質量と、トランスデューサ100に設けられた接続部130を局所加熱また溶剤塗布などにより除去した後のトランスデューサの全体の質量との差を測定することによって算出してもよい。 In the present embodiment, the mass of the connecting portion 130 is 5% or less of the total mass of the plurality of beam portions 110. Further, the mass of the connecting portion 130 is preferably 2% or less of the total mass of the plurality of beam portions 110. The mass of the connecting portion 130 is more preferably 1% or less of the total mass of the plurality of beam portions 110. The mass of the connecting portion 130 can be calculated from the density value described in the conventionally known material database for the material constituting the connecting portion 130 and the volume of the connecting portion 130 in the present embodiment. The mass of each of the plurality of beam portions 110 can also be calculated by the same method as that of the connecting portion 130. The mass of the connecting portion 130 is measured by measuring the difference between the total mass of the transducer 100 and the total mass of the transducer after the connecting portion 130 provided on the transducer 100 is removed by local heating or solvent application. It may be calculated by.
 本実施形態において、接続部130は、圧電体層10を構成する材料よりヤング率が低い材料で構成されている。接続部130を構成する材料のヤング率は、1GPa以下である。接続部130を構成する材料のヤング率は、100MPa以下であることが好ましい。接続部130を構成する材料のヤング率は、0.1MPa以上であることが好ましい。圧電体層10を構成する材料および接続部130を構成する材料の各々のヤング率としては、これらの材料の各々について従来公知の材料データベースに記載された物性値を採用できる。また、圧電体層10を構成する材料および接続部130を構成する材料の各々のヤング率は、トランスデューサ100における圧電体層10および接続部130の各々から採取した測定サンプルに対して、ナノインデンテーション法により圧力を加えたときの変形率を測定することでも算出することができる。また、本実施形態において、接続部130は、リフロー耐性を有している耐熱性が比較的高い材料で構成されていることが好ましい。 In the present embodiment, the connecting portion 130 is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer 10. The Young's modulus of the material constituting the connecting portion 130 is 1 GPa or less. The Young's modulus of the material constituting the connecting portion 130 is preferably 100 MPa or less. The Young's modulus of the material constituting the connecting portion 130 is preferably 0.1 MPa or more. As the Young's modulus of each of the material constituting the piezoelectric layer 10 and the material constituting the connecting portion 130, the physical property values described in the conventionally known material database can be adopted for each of these materials. Further, the Young's modulus of each of the material constituting the piezoelectric layer 10 and the material constituting the connecting portion 130 is nano-indented with respect to the measurement sample collected from each of the piezoelectric layer 10 and the connecting portion 130 in the transducer 100. It can also be calculated by measuring the deformation rate when pressure is applied by the method. Further, in the present embodiment, it is preferable that the connecting portion 130 is made of a material having reflow resistance and relatively high heat resistance.
 接続部130は、有機材料で構成されている。本実施形態においては、接続部130を構成する材料としては、上述したヤング率の観点から、たとえばシリコーン樹脂またはフッ素エラストマー等が挙げられる。また、シリコーン樹脂は、フッ素エラストマーと比較して低温時のヤング率が低い。このため、接続部130は、シリコーン樹脂で構成されていることが好ましい。接続部130がシリコーン樹脂で構成されていれば、トランスデューサ100を比較的広い温度範囲で使用できる。なお、たとえばポリイミド樹脂およびパリレン(パラキシリレン系ポリマー)は、ヤング率が1GPa超と比較的高く、硬い樹脂である。このため、圧電体層10を構成する材料のヤング率によっては、ポリイミド樹脂およびパリレンは、接続部130を構成する材料として採用することができない場合がある。 The connection portion 130 is made of an organic material. In the present embodiment, examples of the material constituting the connecting portion 130 include, for example, a silicone resin or a fluoroelastomer from the viewpoint of the Young's modulus described above. In addition, the silicone resin has a lower Young's modulus at low temperatures than the fluoroelastomer. Therefore, the connecting portion 130 is preferably made of a silicone resin. If the connecting portion 130 is made of silicone resin, the transducer 100 can be used in a relatively wide temperature range. For example, polyimide resin and parylene (paraxylylene-based polymer) are hard resins having a relatively high Young's modulus of more than 1 GPa. Therefore, depending on the Young's modulus of the material constituting the piezoelectric layer 10, the polyimide resin and parylene may not be adopted as the material constituting the connecting portion 130.
 図3は、図1のトランスデューサをIII-III線矢印方向から見た断面図である。図1および図3に示すように、本実施形態に係るトランスデューサ100は、第1接続電極層140と、第2接続電極層150とをさらに備えている。 FIG. 3 is a cross-sectional view of the transducer of FIG. 1 as viewed from the direction of the arrow along line III-III. As shown in FIGS. 1 and 3, the transducer 100 according to the present embodiment further includes a first connection electrode layer 140 and a second connection electrode layer 150.
 図1および図3に示すように、第1接続電極層140は、基部120において、上部電極層20の圧電体層10側とは反対側に配置されている。第1接続電極層140は、図示しない密着層を介して、上部電極層20と電気的に接続されている。第2接続電極層150は、基部120において、下部電極層30の支持層40側とは反対側に配置されている。第2接続電極層150は、図示しない密着層を介して、下部電極層30と電気的に接続されている。 As shown in FIGS. 1 and 3, the first connection electrode layer 140 is arranged on the base portion 120 on the side opposite to the piezoelectric layer 10 side of the upper electrode layer 20. The first connection electrode layer 140 is electrically connected to the upper electrode layer 20 via an adhesion layer (not shown). The second connection electrode layer 150 is arranged in the base portion 120 on the side opposite to the support layer 40 side of the lower electrode layer 30. The second connection electrode layer 150 is electrically connected to the lower electrode layer 30 via an adhesion layer (not shown).
 第1接続電極層140および第2接続電極層150の各々の厚さは、たとえば0.1μm以上1.0μm以下である。第1接続電極層140と接続している密着層および第2接続電極層150と接続している密着層の各々の厚さはたとえば0.005μm以上0.1μm以下である。 The thickness of each of the first connection electrode layer 140 and the second connection electrode layer 150 is, for example, 0.1 μm or more and 1.0 μm or less. The thickness of each of the adhesion layer connected to the first connection electrode layer 140 and the adhesion layer connected to the second connection electrode layer 150 is, for example, 0.005 μm or more and 0.1 μm or less.
 本実施形態において、第1接続電極層140および第2接続電極層150は、Auで構成されている。第1接続電極層140および第2接続電極層150は、Alなどの他の導電材料で構成されていてもよい。第1接続電極層140と接続している密着層および第2接続電極層150と接続している密着層は、たとえばTiで構成されている。当該密着層はNiCrで構成されていてもよい。 In the present embodiment, the first connection electrode layer 140 and the second connection electrode layer 150 are composed of Au. The first connection electrode layer 140 and the second connection electrode layer 150 may be made of another conductive material such as Al. The adhesion layer connected to the first connection electrode layer 140 and the adhesion layer connected to the second connection electrode layer 150 are made of, for example, Ti. The adhesion layer may be made of NiCr.
 本実施形態に係るトランスデューサ100は、複数の梁部110の各々が屈曲振動することができる。ここで、複数の梁部110の屈曲振動のメカニズムについて説明する。 In the transducer 100 according to the present embodiment, each of the plurality of beam portions 110 can flex and vibrate. Here, the mechanism of bending vibration of the plurality of beam portions 110 will be described.
 図4は、本発明の実施形態1に係るトランスデューサの梁部の一部を模式的に示した断面図である。図5は、本発明の実施形態1に係るトランスデューサの、駆動時における梁部の一部を模式的に示した断面図である。なお、図4および図5において上部電極層および下部電極層は示していない。 FIG. 4 is a cross-sectional view schematically showing a part of a beam portion of the transducer according to the first embodiment of the present invention. FIG. 5 is a cross-sectional view schematically showing a part of a beam portion at the time of driving of the transducer according to the first embodiment of the present invention. The upper electrode layer and the lower electrode layer are not shown in FIGS. 4 and 5.
 図4および図5に示すように、本実施形態においては、複数の梁部110において、圧電体層10が平面Sの面内方向に伸縮可能な伸縮層として機能し、圧電体層10以外の層が、拘束層として機能する。本実施形態においては、主に支持層40が拘束層として機能する。このように、拘束層が、伸縮層に対して、伸縮層の伸縮方向の直交方向に積層されている。なお、複数の梁部110は、伸縮層が面内方向に伸びたときに面内方向に縮み、伸縮層が面内方向に縮んだときに面内方向に伸びることができる逆方向伸縮層を、拘束層の代わりに含んでいてもよい。 As shown in FIGS. 4 and 5, in the present embodiment, in the plurality of beam portions 110, the piezoelectric layer 10 functions as an elastic layer that can be expanded and contracted in the in-plane direction of the plane S, other than the piezoelectric layer 10. The layer functions as a constraint layer. In the present embodiment, the support layer 40 mainly functions as a restraint layer. In this way, the restraint layer is laminated in the direction orthogonal to the expansion / contraction direction of the expansion / contraction layer with respect to the expansion / contraction layer. The plurality of beam portions 110 are reverse stretchable layers that can be contracted in the in-plane direction when the stretchable layer is stretched in the in-plane direction and can be stretched in the in-plane direction when the stretchable layer is contracted in the in-plane direction. , May be included in place of the restraint layer.
 そして、伸縮層である圧電体層10が平面Sの面内方向に伸縮しようとすると、拘束層の主要部分である支持層40は、圧電体層10との接合面において圧電体層10の伸縮を拘束する。また、本実施形態では、梁部110において、伸縮層である圧電体層10が、梁部110の応力中立面Nの一方側にのみ位置している。拘束層を主に構成する支持層40の重心の位置は、応力中立面Nの他方側に位置している。これにより、図4および図5に示すように、伸縮層である圧電体層10が平面Sの面内方向に伸縮したときには、梁部110が平面Sに対して直交方向に屈曲する。なお、梁部110が屈曲したときの梁部110の変位量は、応力中立面Nと圧電体層10との離間距離が長くなるほど大きくなる。また、上記変位量は、圧電体層10が伸縮しようとする応力が大きくなるほど、大きくなる。このようにして、複数の梁部110の各々は、平面Sの直交方向において、固定端部111を起点として屈曲振動する。 Then, when the piezoelectric layer 10 which is an elastic layer tries to expand and contract in the in-plane direction of the plane S, the support layer 40 which is a main part of the restraint layer expands and contracts the piezoelectric layer 10 at the joint surface with the piezoelectric layer 10. Restrain. Further, in the present embodiment, in the beam portion 110, the piezoelectric layer 10 which is an expansion / contraction layer is located only on one side of the stress neutral plane N of the beam portion 110. The position of the center of gravity of the support layer 40, which mainly constitutes the restraint layer, is located on the other side of the stress neutral plane N. As a result, as shown in FIGS. 4 and 5, when the piezoelectric layer 10 which is an elastic layer expands and contracts in the in-plane direction of the plane S, the beam portion 110 bends in the direction orthogonal to the plane S. The amount of displacement of the beam portion 110 when the beam portion 110 is bent increases as the distance between the stress neutral plane N and the piezoelectric layer 10 increases. Further, the amount of displacement increases as the stress at which the piezoelectric layer 10 tries to expand and contract increases. In this way, each of the plurality of beam portions 110 bends and vibrates starting from the fixed end portion 111 in the direction orthogonal to the plane S.
 さらに、本実施形態に係るトランスデューサ100においては、接続部130が設けられていることにより、基本振動モードでの振動が生じやすく、連成振動モードでの振動の発生が抑制される。図6は、本発明の実施形態1に係るトランスデューサについて、基本振動モードで振動している状態をシミュレーションによって示した斜視図である。具体的には、図6においては、複数の梁部110の各々が上部電極層20側に変位している状態のトランスデューサ100を示している。図6においては、複数の梁部110の各々が上部電極層20側に変位する変位量が大きくなるほど色が薄くなっている。図6に示すように、基本振動モードとは、複数の梁部110の各々が屈曲振動するときの位相が揃っており、複数の梁部110全体が上下のいずれか一方に変位しているモードである。 Further, in the transducer 100 according to the present embodiment, since the connecting portion 130 is provided, vibration in the basic vibration mode is likely to occur, and the generation of vibration in the coupled vibration mode is suppressed. FIG. 6 is a perspective view showing a state in which the transducer according to the first embodiment of the present invention is vibrating in the basic vibration mode by simulation. Specifically, FIG. 6 shows the transducer 100 in a state in which each of the plurality of beam portions 110 is displaced toward the upper electrode layer 20 side. In FIG. 6, the color becomes lighter as the amount of displacement in which each of the plurality of beam portions 110 is displaced toward the upper electrode layer 20 increases. As shown in FIG. 6, the basic vibration mode is a mode in which the phases when each of the plurality of beam portions 110 bends and vibrates are aligned, and the entire plurality of beam portions 110 are displaced to either the upper or lower side. Is.
 一方、連成振動モードとは、複数の梁部110の各々が屈曲振動するときに、複数の梁部110の少なくとも1つの位相が他の梁部110の位相と揃っていないモードである。本実施形態においては、図6に示すように、接続部130により、複数の梁部110の各々が先端部112にて互いに接続されているため、連成振動モードの発生が抑制されている。 On the other hand, the coupled vibration mode is a mode in which at least one phase of the plurality of beam portions 110 is not aligned with the phase of the other beam portions 110 when each of the plurality of beam portions 110 bends and vibrates. In the present embodiment, as shown in FIG. 6, since each of the plurality of beam portions 110 is connected to each other by the tip portion 112 by the connecting portion 130, the occurrence of the coupled vibration mode is suppressed.
 本実施形態に係るトランスデューサ100は、基本振動モードでの振動が生じやすく、連成振動モードの発生が抑制されているため、特に超音波トランスデューサとして用いたときのデバイス特性が向上している。以下、本実施形態に係るトランスデューサ100を超音波トランスデューサとして用いたときのトランスデューサ100の機能作用について説明する。 Since the transducer 100 according to the present embodiment tends to vibrate in the basic vibration mode and the generation of the coupled vibration mode is suppressed, the device characteristics are particularly improved when used as an ultrasonic transducer. Hereinafter, the functional operation of the transducer 100 when the transducer 100 according to the present embodiment is used as an ultrasonic transducer will be described.
 まず、図1に示すように、トランスデューサ100によって超音波を発生させる場合には、第1接続電極層140と第2接続電極層150との間に電圧を印加する。そして、図3に示すように、第1接続電極層140に接続された上部電極層20と、第2接続電極層150に接続された下部電極層30との間に電圧が印加される。さらに、図2に示すように、梁部110においても、圧電体層10を介して互いに対向する上部電極層20と下部電極層30との間に電圧が印加される。そうすると、圧電体層10は平面Sの面内方向に伸縮するため、上述のメカニズムにより、複数の梁部110の各々が平面Sの直交方向に屈曲振動する。これにより、トランスデューサ100の周辺の媒質に力が加えられ、さらに媒質が振動することにより、超音波が発生する。 First, as shown in FIG. 1, when ultrasonic waves are generated by the transducer 100, a voltage is applied between the first connection electrode layer 140 and the second connection electrode layer 150. Then, as shown in FIG. 3, a voltage is applied between the upper electrode layer 20 connected to the first connection electrode layer 140 and the lower electrode layer 30 connected to the second connection electrode layer 150. Further, as shown in FIG. 2, a voltage is also applied to the beam portion 110 between the upper electrode layer 20 and the lower electrode layer 30 facing each other via the piezoelectric layer 10. Then, since the piezoelectric layer 10 expands and contracts in the in-plane direction of the plane S, each of the plurality of beam portions 110 bends and vibrates in the direction orthogonal to the plane S by the above-mentioned mechanism. As a result, a force is applied to the medium around the transducer 100, and the medium vibrates to generate ultrasonic waves.
 また、本実施形態に係るトランスデューサ100において、複数の梁部110の各々は固有の機械的な共振周波数を有している。そのため、印加した電圧が正弦波電圧であり、かつ、正弦波電圧の周波数が上記共振周波数の値に近い場合には、複数の梁部110の各々が屈曲したときの変位量が大きくなる。 Further, in the transducer 100 according to the present embodiment, each of the plurality of beam portions 110 has a unique mechanical resonance frequency. Therefore, when the applied voltage is a sinusoidal voltage and the frequency of the sinusoidal voltage is close to the value of the resonance frequency, the amount of displacement when each of the plurality of beam portions 110 is bent becomes large.
 トランスデューサ100によって超音波を検知する場合には、超音波によって複数の梁部110の各々の周辺の媒質が振動し、当該周辺の媒質から複数の梁部110の各々に力が加えられ、複数の梁部110の各々が屈曲振動する。複数の梁部110の各々が屈曲振動すると、圧電体層10に応力が加わる。圧電体層10に応力が加わることで、圧電体層10中に電荷が誘起される。圧電体層10に誘起された電荷によって、圧電体層10を介して対向する上部電極層20と下部電極層30との間に電位差が発生する。この電位差を、上部電極層20に接続された第1接続電極層140と、下部電極層30に接続された第2接続電極層150とで検知する。これにより、トランスデューサ100において超音波を検知することができる。 When ultrasonic waves are detected by the transducer 100, the medium around each of the plurality of beam portions 110 is vibrated by the ultrasonic waves, and a force is applied to each of the plurality of beam portions 110 from the peripheral media to form a plurality of beams. Each of the beam portions 110 bends and vibrates. When each of the plurality of beam portions 110 bends and vibrates, stress is applied to the piezoelectric layer 10. When stress is applied to the piezoelectric layer 10, an electric charge is induced in the piezoelectric layer 10. Due to the electric charge induced in the piezoelectric layer 10, a potential difference is generated between the upper electrode layer 20 and the lower electrode layer 30 facing each other via the piezoelectric layer 10. This potential difference is detected by the first connection electrode layer 140 connected to the upper electrode layer 20 and the second connection electrode layer 150 connected to the lower electrode layer 30. As a result, the transducer 100 can detect ultrasonic waves.
 また、検知の対象となる超音波が特定の周波数成分を多く含み、かつ、この周波数成分が上記共振周波数の値に近い場合には、複数の梁部110の各々が屈曲振動するときの変位量が大きくなる。当該変位量が大きくなることで、上記電位差が大きくなる。 Further, when the ultrasonic wave to be detected contains a large amount of a specific frequency component and this frequency component is close to the value of the resonance frequency, the displacement amount when each of the plurality of beam portions 110 bends and vibrates. Becomes larger. As the amount of displacement increases, the potential difference increases.
 このように、本実施形態に係るトランスデューサ100を超音波トランスデューサとして用いる場合には、複数の梁部110の共振周波数の設計が重要となる。複数の梁部110の延在方向の長さ、平面Sの直交方向における厚さおよび上記直交方向から見たときの固定端部111の長さ、および、複数の梁部110を構成する材料の密度および弾性率によって、上記共振周波数は変化する。また、複数の梁部110の各々が互いに同一の共振周波数を有していることが好ましい。たとえば、複数の梁部110の各々の上記厚さが互いに異なる場合には、複数の梁部の延在方向の長さを調整することで、複数の梁部110の各々が互いに同一の共振周波数を有すようにする。 As described above, when the transducer 100 according to the present embodiment is used as an ultrasonic transducer, it is important to design the resonance frequencies of the plurality of beam portions 110. The length of the plurality of beam portions 110 in the extending direction, the thickness of the plane S in the orthogonal direction, the length of the fixed end portion 111 when viewed from the orthogonal direction, and the materials constituting the plurality of beam portions 110. The resonance frequency changes depending on the density and elastic modulus. Further, it is preferable that each of the plurality of beam portions 110 has the same resonance frequency as each other. For example, when the thicknesses of the plurality of beam portions 110 are different from each other, the lengths of the plurality of beam portions in the extending direction are adjusted so that each of the plurality of beam portions 110 has the same resonance frequency. To have.
 なお、本実施形態に係るトランスデューサ100においては、上述したように基本振動モードでの振動が発生しやすく、連成振動モードの発生が抑制されている。このため、トランスデューサ100を超音波トランスデューサとして用いる場合においては、共振周波数と同一の周波数成分を有する超音波を検知する際にも、複数の梁部110の各々の振動の位相が異なることが抑制される。ひいては、複数の梁部110の各々の振動の位相が異なることで、複数の梁部110の各々の圧電体層10で発生した電荷が、上部電極層20または下部電極層30で打ち消し合うことが抑制される。すなわち、トランスデューサ100においては、超音波トランスデューサとしてのデバイス特性が向上している。 In the transducer 100 according to the present embodiment, as described above, vibration in the basic vibration mode is likely to occur, and the generation of the coupled vibration mode is suppressed. Therefore, when the transducer 100 is used as an ultrasonic transducer, it is suppressed that the phases of vibrations of the plurality of beam portions 110 are different even when detecting ultrasonic waves having the same frequency component as the resonance frequency. To. As a result, the phases of vibrations of the plurality of beam portions 110 are different, so that the charges generated in the piezoelectric layer 10 of each of the plurality of beam portions 110 cancel each other out in the upper electrode layer 20 or the lower electrode layer 30. It is suppressed. That is, in the transducer 100, the device characteristics as an ultrasonic transducer are improved.
 以下、本発明の実施形態1に係るトランスデューサ100の製造方法について説明する。図7は、本発明の実施形態1に係るトランスデューサの製造方法において、圧電単結晶基板に下部電極層を設けた状態を示す断面図である。図7および以下に示す図8から図12および図4においては、図2と同様の断面視にて図示している。 Hereinafter, a method for manufacturing the transducer 100 according to the first embodiment of the present invention will be described. FIG. 7 is a cross-sectional view showing a state in which a lower electrode layer is provided on a piezoelectric single crystal substrate in the method for manufacturing a transducer according to the first embodiment of the present invention. 7 and 8 to 12 and 4 shown below are shown in the same cross-sectional view as in FIG.
 図7に示すように、まず、圧電単結晶基板10aの下面に図示しない密着層を設けた後、密着層の圧電単結晶基板10a側とは反対側に下部電極層30を設ける。下部電極層30は、蒸着リフトオフ法により、所望のパターンを有するように形成する。下部電極層30は、スパッタリングにより圧電単結晶基板10aの下面の全面にわたって積層した後に、エッチング法により所望のパターンを形成することで形成してもよい。下部電極層30および密着層は、エピタキシャル成長させてもよい。 As shown in FIG. 7, first, an adhesion layer (not shown) is provided on the lower surface of the piezoelectric single crystal substrate 10a, and then a lower electrode layer 30 is provided on the side of the adhesion layer opposite to the piezoelectric single crystal substrate 10a side. The lower electrode layer 30 is formed so as to have a desired pattern by a vapor deposition lift-off method. The lower electrode layer 30 may be formed by laminating over the entire lower surface of the piezoelectric single crystal substrate 10a by sputtering and then forming a desired pattern by an etching method. The lower electrode layer 30 and the close contact layer may be epitaxially grown.
 図8は、本発明の実施形態1に係るトランスデューサの製造方法において、第1支持部を設けた状態を示す断面図である。図8に示すように、CVD(Chemical Vapor Deposition)法またはPVD(Physical Vapor Deposition)法などにより、圧電単結晶基板10aおよび下部電極層30の各々の下面に、第1支持部41を設ける。第1支持部41を設けた直後においては、第1支持部41の下面のうち第1支持部41の下部電極層30側とは反対側に位置する部分が盛り上がっている。このため、化学機械研磨(CMP:Chemical Mechanical Polishing)などにより第1支持部41の下面を削って、平坦化する。 FIG. 8 is a cross-sectional view showing a state in which the first support portion is provided in the method for manufacturing a transducer according to the first embodiment of the present invention. As shown in FIG. 8, a first support portion 41 is provided on the lower surfaces of the piezoelectric single crystal substrate 10a and the lower electrode layer 30 by a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, or the like. Immediately after the first support portion 41 is provided, a portion of the lower surface of the first support portion 41 located on the side opposite to the lower electrode layer 30 side of the first support portion 41 is raised. Therefore, the lower surface of the first support portion 41 is scraped and flattened by chemical mechanical polishing (CMP) or the like.
 図9は、本発明の実施形態1に係るトランスデューサの製造方法において、第1支持部に、積層体を接合させた状態を示す断面図である。図9に示すように、表面活性化接合または原子拡散接合により、第2支持部42と基板層50とからなる積層体60を、第1支持部41の下面に接合する。本実施形態において、積層体60は、SOI(Silicon on Insulator)基板である。なお、第2支持部42の上面を予めCMPにより平坦化しておくことにより、トランスデューサ100の歩留まりが向上する。 FIG. 9 is a cross-sectional view showing a state in which a laminated body is joined to a first support portion in the method for manufacturing a transducer according to the first embodiment of the present invention. As shown in FIG. 9, the laminate 60 composed of the second support portion 42 and the substrate layer 50 is bonded to the lower surface of the first support portion 41 by surface activation bonding or atomic diffusion bonding. In the present embodiment, the laminate 60 is an SOI (Silicon on Insulator) substrate. By flattening the upper surface of the second support portion 42 by CMP in advance, the yield of the transducer 100 is improved.
 図10は、本発明の実施形態1に係るトランスデューサの製造方法において、圧電単結晶基板を削って圧電体層を形成した状態を示す断面図である。図9および図10に示すように、圧電単結晶基板10aの上面をグラインダで研削することにより、薄くする。薄くした圧電単結晶基板10aの上面をCMPなどによりさらに研磨することにより、圧電単結晶基板10aを圧電体層10に成形する。 FIG. 10 is a cross-sectional view showing a state in which a piezoelectric single crystal substrate is scraped to form a piezoelectric layer in the method for manufacturing a transducer according to the first embodiment of the present invention. As shown in FIGS. 9 and 10, the upper surface of the piezoelectric single crystal substrate 10a is thinned by grinding with a grinder. The top surface of the thinned piezoelectric single crystal substrate 10a is further polished by CMP or the like to form the piezoelectric single crystal substrate 10a into the piezoelectric layer 10.
 なお、圧電単結晶基板10aの上面側に、予めイオンを注入することにより、剥離層を形成し、上記剥離層を剥離することで、圧電単結晶基板10aを圧電体層10に成形してもよい。また、上記剥離層を剥離した後の圧電単結晶基板10aの上面を、CMPなどによりさらに研磨することで、圧電単結晶基板10aを圧電体層10に成形してもよい。 Even if the piezoelectric single crystal substrate 10a is formed into the piezoelectric layer 10 by forming a peeling layer by injecting ions into the upper surface side of the piezoelectric single crystal substrate 10a in advance and peeling the peeling layer. Good. Further, the piezoelectric single crystal substrate 10a may be formed into the piezoelectric layer 10 by further polishing the upper surface of the piezoelectric single crystal substrate 10a after the release layer is peeled off by CMP or the like.
 図11は、本発明の実施形態1に係るトランスデューサの製造方法において、圧電体層に、上部電極層を設けた状態を示す断面図である。図11に示すように、圧電体層10の上面に図示しない密着層を設けた後、密着層の圧電体層10側とは反対側に上部電極層20を設ける。上部電極層20は、蒸着リフトオフ法により、所望のパターンを有するように形成する。上部電極層20は、スパッタリングにより圧電体層10の上面の全面にわたって積層した後に、エッチング法により所望のパターンを形成することで形成してもよい。圧電体層10および密着層は、エピタキシャル成長させてもよい。 FIG. 11 is a cross-sectional view showing a state in which an upper electrode layer is provided on the piezoelectric layer in the method for manufacturing a transducer according to the first embodiment of the present invention. As shown in FIG. 11, after providing an adhesion layer (not shown) on the upper surface of the piezoelectric layer 10, an upper electrode layer 20 is provided on the side of the adhesion layer opposite to the piezoelectric layer 10 side. The upper electrode layer 20 is formed so as to have a desired pattern by a vapor deposition lift-off method. The upper electrode layer 20 may be formed by laminating over the entire upper surface of the piezoelectric layer 10 by sputtering and then forming a desired pattern by an etching method. The piezoelectric layer 10 and the close contact layer may be epitaxially grown.
 図12は、本発明の実施形態1に係るトランスデューサの製造方法において、圧電体層の支持層側とは反対側から基板層の上面に達するまでスリットを形成した状態を示す断面図である。図13は、本発明の実施形態1に係るトランスデューサの製造方法において、圧電体層の支持層側とは反対側から下部電極層の上面に達するまで貫通孔を形成した状態を示す断面図である。図13においては、図3と同一の断面視にて図示している。 FIG. 12 is a cross-sectional view showing a state in which a slit is formed from a side opposite to the support layer side of the piezoelectric layer to reach the upper surface of the substrate layer in the method for manufacturing a transducer according to the first embodiment of the present invention. FIG. 13 is a cross-sectional view showing a state in which a through hole is formed from a side opposite to the support layer side of the piezoelectric layer to the upper surface of the lower electrode layer in the method for manufacturing a transducer according to the first embodiment of the present invention. .. In FIG. 13, it is shown in the same cross-sectional view as in FIG.
 図12に示すように、RIE(Reactive Ion Etching)でドライエッチングすることにより、圧電体層10および第1支持部41にスリットを形成する。上記スリットは、フッ硝酸などを用いてウェットエッチングすることにより形成してもよい。さらに、DRIE(Deep Reactive Ion Etching)によって、上記スリットが基板層50の上面まで達するように、上記スリットに露出した第2支持部42を、エッチングする。これにより、隙間114および図1に示す凹部121が形成される。また、図13に示すように、基部120に相当する部分においては、上記ドライエッチングまたは上記ウェットエッチングにより、下部電極層30の一部が露出するように、圧電体層10をエッチングする。 As shown in FIG. 12, slits are formed in the piezoelectric layer 10 and the first support portion 41 by dry etching with RIE (Reactive Ion Etching). The slit may be formed by wet etching with fluorine nitric acid or the like. Further, by DRIE (Deep Reactive Ion Etching), the second support portion 42 exposed to the slit is etched so that the slit reaches the upper surface of the substrate layer 50. As a result, the gap 114 and the recess 121 shown in FIG. 1 are formed. Further, as shown in FIG. 13, in the portion corresponding to the base portion 120, the piezoelectric layer 10 is etched by the dry etching or the wet etching so that a part of the lower electrode layer 30 is exposed.
 そして、図3に示すように、基部120に相当する部分においては、上部電極層20および下部電極層30の各々に図示しない密着層を設けた後、蒸着リフトオフ法により、各密着層の上面に第1接続電極層140および第2接続電極層150を設ける。第1接続電極層140および第2接続電極層150は、スパッタリングにより圧電体層10、上部電極層20および露出した下部電極層30の全面にわたって積層した後に、エッチング法により所望のパターンを形成することで形成してもよい。 Then, as shown in FIG. 3, in the portion corresponding to the base portion 120, an adhesion layer (not shown) is provided on each of the upper electrode layer 20 and the lower electrode layer 30, and then an adhesion layer (not shown) is provided on the upper surface of each adhesion layer by a vapor deposition lift-off method. The first connection electrode layer 140 and the second connection electrode layer 150 are provided. The first connection electrode layer 140 and the second connection electrode layer 150 are laminated over the entire surfaces of the piezoelectric layer 10, the upper electrode layer 20 and the exposed lower electrode layer 30 by sputtering, and then a desired pattern is formed by an etching method. May be formed with.
 図14は、本発明の実施形態1に係るトランスデューサの製造方法において、開口部を形成した状態を示す断面図である。図14に示すように、DRIEにより、基板層50の一部を除去する。これにより、複数の梁部110、基部120および開口部101が形成される。 FIG. 14 is a cross-sectional view showing a state in which an opening is formed in the method for manufacturing a transducer according to the first embodiment of the present invention. As shown in FIG. 14, a part of the substrate layer 50 is removed by DRIE. As a result, a plurality of beam portions 110, a base portion 120, and an opening portion 101 are formed.
 最後に、図1に示すように、接続部130を設ける。接続部130は、液状の状態の接続部130を、ディスペンス法または転写法などにより、複数の梁部110の各々の先端面113上に塗布する。接続部130は、上記先端面113の開口部101側とは反対側の上方から、塗布する。このとき、接続部130は、十分な厚みを持たせるため、少なくとも梁部110の上部電極層20側に突出するように塗布する。液状の接続部130を塗布した後、液状の接続部130を硬化させる。上記の工程により、図1から図3に示すような本発明の実施形態1に係るトランスデューサ100が製造される。 Finally, as shown in FIG. 1, a connection portion 130 is provided. The connecting portion 130 applies the connecting portion 130 in a liquid state on the tip surface 113 of each of the plurality of beam portions 110 by a dispensing method, a transfer method, or the like. The connecting portion 130 is applied from above on the side opposite to the opening 101 side of the tip surface 113. At this time, the connecting portion 130 is applied so as to project at least toward the upper electrode layer 20 side of the beam portion 110 in order to have a sufficient thickness. After applying the liquid connection portion 130, the liquid connection portion 130 is cured. By the above steps, the transducer 100 according to the first embodiment of the present invention as shown in FIGS. 1 to 3 is manufactured.
 なお、接続部130は、開口部101を形成する前に設けてもよい。図12に示すように、開口部101を形成する前においては、隙間114の下方に基板層50が位置している。このため、隙間114の平面S方向における幅が広くても、接続部130が脱落することなく複数の梁部110の各々の先端面113上に接続部130を設けることができる。 The connecting portion 130 may be provided before forming the opening 101. As shown in FIG. 12, the substrate layer 50 is located below the gap 114 before the opening 101 is formed. Therefore, even if the width of the gap 114 in the plane S direction is wide, the connecting portion 130 can be provided on the tip surface 113 of each of the plurality of beam portions 110 without the connecting portion 130 falling off.
 図15は、本発明の実施形態1の変形例に係るトランスデューサの断面図である。図15においては、図2と同様の断面視にて図示している。図15に示すように、本発明の実施形態1の変形例に係るトランスデューサ100aの隙間114は、本発明の実施形態1に係るトランスデューサ100の隙間114と比較して幅が広くなっている。このようにトランスデューサ100aを製造する場合は、上述のように、開口部101を形成する前に接続部130を設けることで、接続部130の脱落を抑制できる。 FIG. 15 is a cross-sectional view of a transducer according to a modified example of the first embodiment of the present invention. In FIG. 15, it is shown in the same cross-sectional view as in FIG. As shown in FIG. 15, the gap 114 of the transducer 100a according to the modified example of the first embodiment of the present invention is wider than the gap 114 of the transducer 100 according to the first embodiment of the present invention. When the transducer 100a is manufactured in this way, as described above, by providing the connecting portion 130 before forming the opening 101, it is possible to prevent the connecting portion 130 from falling off.
 以下、さらに、本発明の実施形態1に係るトランスデューサ100について、接続部130の大きさ、すなわち接続部130の質量を変更したときの、複数の梁部110の共振周波数の変化について評価した、実験例について説明する。 Hereinafter, with respect to the transducer 100 according to the first embodiment of the present invention, the change in the resonance frequency of the plurality of beam portions 110 when the size of the connecting portion 130, that is, the mass of the connecting portion 130 is changed is evaluated. An example will be described.
 本実験例で用いた各実施例に係るトランスデューサは、接続部130が設けられていない状態において、複数の梁部110の各々の共振周波数が43kHzとなるように設計した。すなわち、各実施例に係るトランスデューサにおいては、圧電体層の厚さを1μm、上部電極層および下部電極層の各々の厚さを0.1μm、第1支持部の厚さを0.8μm、第2支持部の厚さを1.4μm、複数の梁部の各々の延在方向長さを400μm、複数の梁部が位置する平面の直交方向からみたときの複数の梁部の各々の固定端部の長さを800μm、圧電体層を構成する材料をニオブ酸リチウム(LiNbO3)、接続部を構成する材料をシリコーン樹脂(ヤング率:2.57MPa、ポアソン比:0.499、密度:1.5g/cm3)とした。 The transducers according to each embodiment used in this experimental example were designed so that the resonance frequency of each of the plurality of beam portions 110 was 43 kHz in a state where the connecting portion 130 was not provided. That is, in the transducer according to each embodiment, the thickness of the piezoelectric layer is 1 μm, the thickness of each of the upper electrode layer and the lower electrode layer is 0.1 μm, the thickness of the first support portion is 0.8 μm, and the first one. 2 The thickness of the support portion is 1.4 μm, the length of each of the plurality of beam portions in the extending direction is 400 μm, and the fixed ends of each of the plurality of beam portions when viewed from the orthogonal direction of the plane in which the plurality of beam portions are located. The length of the part is 800 μm, the material constituting the piezoelectric layer is lithium niobate (LiNbO 3 ), and the material constituting the connecting part is silicone resin (Young's modulus: 2.57 MPa, Poisson's ratio: 0.499, density: 1). It was set to .5 g / cm 3 ).
 そして、実施例1から実施例6においては、接続部の、上方に突出した部分の外径と、接続部の全体の厚さが、下記表1の通り互いに異なるように、接続部を設けた。これらの各実施例について、梁部の共振周波数をシミュレーションにより算出した結果を下記表1に示す。 Then, in Examples 1 to 6, the connecting portions are provided so that the outer diameter of the upwardly protruding portion of the connecting portion and the overall thickness of the connecting portion are different from each other as shown in Table 1 below. .. Table 1 below shows the results of calculating the resonance frequency of the beam portion by simulation for each of these examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、いずれの実施例についても、接続部を設ける前の梁部の共振周波数43kHzに対して、共振周波数が低くなった。また、実施例1、3および5を比較し、実施例2、4および6を比較すると、接続部の上方に突出した部分の外径が大きくなるほど、梁部の共振周波数が低下することがわかる。また、実施例1と2とを比較し、実施例3と4とを比較し、実施例5と6とを比較すると、接続部130の厚さが厚いほど、梁部の共振周波数が低くなることがわかる。 As shown in Table 1, in each of the examples, the resonance frequency was lower than the resonance frequency of 43 kHz of the beam portion before the connection portion was provided. Further, when Examples 1, 3 and 5 are compared and Examples 2, 4 and 6 are compared, it can be seen that the resonance frequency of the beam portion decreases as the outer diameter of the portion protruding upward of the connecting portion increases. .. Further, when Examples 1 and 2 are compared, Examples 3 and 4 are compared, and Examples 5 and 6 are compared, the thicker the connection portion 130 is, the lower the resonance frequency of the beam portion is. You can see that.
 また、接続部の、上方に突出した部分の外径が100μmである実施例1および2の各々の梁部の共振周波数の値の差の絶対値は、2.35kHzであり、上記値の平均値は39.32kHzであった。すなわち、当該差の絶対値は、上記平均値に対して6%となった。接続部の、上方に突出した部分の外径が200μmである実施例3および4の各々の梁部の共振周波数の値については、差の絶対値が、平均値に対して13.7%となり、接続部の上方に突出した部分の外径が300μmである実施例5および6の各々の梁部の共振周波数の値については、差の絶対値が、平均値に対して17.6%となった。このように、接続部の上方に突出した部分の外径が小さいほど、接続部の全体の厚さのばらつきによって生じる、接続部を設けたことによる梁部の共振周波数の変化量のばらつきを抑制することができることがわかる。 Further, the absolute value of the difference between the resonance frequency values of the beam portions of Examples 1 and 2 in which the outer diameter of the upwardly protruding portion of the connecting portion is 100 μm is 2.35 kHz, which is the average of the above values. The value was 39.32 kHz. That is, the absolute value of the difference was 6% with respect to the above average value. Regarding the value of the resonance frequency of each of the beams of Examples 3 and 4 in which the outer diameter of the upwardly protruding portion of the connecting portion is 200 μm, the absolute value of the difference is 13.7% of the average value. Regarding the value of the resonance frequency of each of the beams of Examples 5 and 6 in which the outer diameter of the portion protruding upward of the connection portion is 300 μm, the absolute value of the difference is 17.6% with respect to the average value. became. In this way, the smaller the outer diameter of the portion protruding upward from the connecting portion, the more the variation in the amount of change in the resonance frequency of the beam portion due to the provision of the connecting portion, which is caused by the variation in the overall thickness of the connecting portion, is suppressed. You can see that you can.
 また、接続部の全体の厚さが10μmである実施例1、3および5については、最も共振周波数の値が高い実施例1と最も共振周波数の低い実施例5の各々の共振周波数の値の差の絶対値が、実施例1と実施例5の共振周波数の平均値に対して13.6%となった。接続部の全体の厚さが20μmである実施例2、4および6については、最も共振周波数の値が高い実施例2と最も共振周波数の低い実施例6の各々の共振周波数の値の差の絶対値が、実施例2と実施例6の共振周波数の平均値に対して21.3%となった。このように、接続部の全体の厚さが薄いほど、接続部の上方に突出した部分の外径の寸法のばらつきによって生じる、接続部を設けたことによる梁部の共振周波数の変化量のばらつきを抑制できることがわかる。 Further, for Examples 1, 3 and 5 in which the total thickness of the connection portion is 10 μm, the resonance frequency values of Example 1 having the highest resonance frequency and Example 5 having the lowest resonance frequency are used. The absolute value of the difference was 13.6% with respect to the average value of the resonance frequencies of Examples 1 and 5. For Examples 2, 4 and 6 in which the overall thickness of the connection portion is 20 μm, the difference between the resonance frequency values of Example 2 having the highest resonance frequency value and Example 6 having the lowest resonance frequency value. The absolute value was 21.3% of the average value of the resonance frequencies of Examples 2 and 6. In this way, the thinner the overall thickness of the connecting portion, the more the variation in the amount of change in the resonance frequency of the beam portion due to the provision of the connecting portion, which is caused by the variation in the outer diameter of the portion protruding above the connecting portion. It can be seen that can be suppressed.
 図16は、本発明の実験例における各実施例について、接続部の質量に対して、接続部を設けたことによる梁部の共振周波数の低下率を示したグラフである。図16においては、表1に示した各実施例について、トランスデューサにおける各構成部材の密度に基づいて算出した複数の梁部の全質量に対する、接続部の質量比を、横軸としてプロットしている。また、図16においては、表1に示した各実施例について、接続部を設ける前の共振周波数の値である43kHzに対する、梁部の共振周波数と43kHzとの差の絶対値の比を縦軸としてプロットしている。 FIG. 16 is a graph showing the rate of decrease in the resonance frequency of the beam portion due to the provision of the connecting portion with respect to the mass of the connecting portion for each embodiment in the experimental example of the present invention. In FIG. 16, for each embodiment shown in Table 1, the mass ratio of the connecting portion to the total mass of the plurality of beam portions calculated based on the density of each component in the transducer is plotted as the horizontal axis. .. Further, in FIG. 16, for each embodiment shown in Table 1, the vertical axis represents the ratio of the absolute value of the difference between the resonance frequency of the beam portion and 43 kHz with respect to 43 kHz, which is the value of the resonance frequency before the connection portion is provided. It is plotted as.
 図16に示すように、接続を設けることによる共振周波数の値の低下率をおよそ20%以内にするためには、複数の梁部に対する接続部の質量比を5質量%以下にすればよく、共振周波数の低下率をおよそ10%以内にするためには、複数の梁部に対する接続部の質量比を2質量%以下にすればよく、共振周波数の低下率を5%以内にするためには、複数の梁部に対する接続部の質量比を1質量%以下にすればよいことがわかる。このように、共振周波数の低下率は、接続部の質量が相対的に大きくなるほど大きくなる。上記の実験例の結果から、共振周波数の低下は、複数の梁部の各々が屈曲振動したときに、接続部によって複数の梁部の各々に強い慣性力が働くために、発生するものと考えられる。 As shown in FIG. 16, in order to reduce the reduction rate of the resonance frequency value by providing the connection within about 20%, the mass ratio of the connection portion to the plurality of beam portions may be 5% by mass or less. In order to keep the reduction rate of the resonance frequency within about 10%, the mass ratio of the connecting portion to the plurality of beam portions should be 2% by mass or less, and in order to keep the reduction rate of the resonance frequency within 5%. , It can be seen that the mass ratio of the connecting portion to the plurality of beam portions should be 1% by mass or less. As described above, the rate of decrease in the resonance frequency increases as the mass of the connecting portion becomes relatively large. From the results of the above experimental example, it is considered that the decrease in resonance frequency occurs because a strong inertial force acts on each of the plurality of beam portions due to the connecting portion when each of the plurality of beam portions bends and vibrates. Be done.
 このように、本実施形態においては、所望の共振周波数をトランスデューサ100を得るために、接続部130を設けたときの共振周波数の値の低下率を見込んで複数の梁部110を設計する必要がある。具体的には、複数の梁部110は、所望の共振周波数よりも高い周波数の共振周波数を有するように、予め梁部110の延在長さを短くしたり、梁部110の厚さを厚くしておくように、設計する。しかしながら、複数の梁部110の各々は、延在長さを短くしたり厚さを厚くすると、機械的に屈曲しにくくなるため、トランスデューサ100のデバイス性能を低下させることになる。よって、接続部130の質量が比較的小さいほど、共振周波数の低下率が低くなるため、複数の梁部110の各々について予め延在長さを短くしたり、厚さを厚くすることを抑えることができるため、複数の梁部110の各々が屈曲しやすくなり、トランスデューサ100のデバイス特性が向上する。 As described above, in the present embodiment, in order to obtain the transducer 100 at a desired resonance frequency, it is necessary to design the plurality of beam portions 110 in anticipation of the rate of decrease in the value of the resonance frequency when the connection portion 130 is provided. is there. Specifically, the extending length of the beam portion 110 is shortened or the thickness of the beam portion 110 is increased in advance so that the plurality of beam portions 110 have a resonance frequency having a frequency higher than the desired resonance frequency. Design to keep it. However, if the extending length of each of the plurality of beam portions 110 is shortened or the thickness is increased, it becomes difficult to mechanically bend the beam portion 110, which deteriorates the device performance of the transducer 100. Therefore, as the mass of the connecting portion 130 is relatively small, the rate of decrease in the resonance frequency is lowered. Therefore, it is necessary to suppress shortening the extending length or increasing the thickness of each of the plurality of beam portions 110 in advance. Therefore, each of the plurality of beam portions 110 is easily bent, and the device characteristics of the transducer 100 are improved.
 上記のように、本発明の実施形態1に係るトランスデューサ100は、複数の梁部110と、基部120と、接続部130とを備えている。複数の梁部110は、固定端部111と先端部112とを有している。先端部112は、固定端部111とは反対側に位置している。複数の梁部110の各々は、固定端部111から先端部112に向かって延在している。複数の梁部110の各々の固定端部111は、同一の平面S内に位置している。複数の梁部110の各々は、圧電体層10と、上部電極層20と、下部電極層30とを含んでいる。上部電極層20は、圧電体層10の上側に配置されている。下部電極層30は、圧電体層10を挟んで上部電極層20の少なくとも一部に対向するように配置されている。基部120は、複数の梁部110の各々の固定端部111と接続されている。接続部130は、複数の梁部110の各々の先端部112同士を、互いに接続している。接続部130は、圧電体層10を構成する材料よりヤング率が低い材料で構成されている。 As described above, the transducer 100 according to the first embodiment of the present invention includes a plurality of beam portions 110, a base portion 120, and a connecting portion 130. The plurality of beam portions 110 have a fixed end portion 111 and a tip end portion 112. The tip 112 is located on the opposite side of the fixed end 111. Each of the plurality of beam portions 110 extends from the fixed end portion 111 toward the tip end portion 112. Each fixed end 111 of the plurality of beam portions 110 is located in the same plane S. Each of the plurality of beam portions 110 includes a piezoelectric layer 10, an upper electrode layer 20, and a lower electrode layer 30. The upper electrode layer 20 is arranged above the piezoelectric layer 10. The lower electrode layer 30 is arranged so as to face at least a part of the upper electrode layer 20 with the piezoelectric layer 10 interposed therebetween. The base 120 is connected to each fixed end 111 of each of the plurality of beams 110. The connecting portion 130 connects the tip portions 112 of each of the plurality of beam portions 110 to each other. The connecting portion 130 is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer 10.
 これにより、接続部130によって複数の梁部110が連成振動モードで振動することを抑制できる。さらには、上記のようなヤング率の材料で接続部130が構成されることにより、上記平面Sの面内方向における複数の梁部110の応力を比較的緩和できるため、複数の梁部110が変位しにくくなることを抑制し、ひいては、トランスデューサ100の電気機械変換効率の低下を抑制できる。 As a result, it is possible to prevent the plurality of beam portions 110 from vibrating in the coupled vibration mode by the connecting portion 130. Further, since the connecting portion 130 is made of the material having a Young's modulus as described above, the stress of the plurality of beam portions 110 in the in-plane direction of the plane S can be relatively relaxed, so that the plurality of beam portions 110 can be formed. It is possible to suppress the difficulty in displacement and, by extension, the decrease in the electromechanical conversion efficiency of the transducer 100.
 本実施形態においては、接続部130の上記平面Sの直交方向において、接続部130の厚さが、複数の梁部110の各々の厚さより厚い。 In the present embodiment, the thickness of the connecting portion 130 is thicker than the thickness of each of the plurality of beam portions 110 in the direction orthogonal to the plane S of the connecting portion 130.
 これにより、トランスデューサ100の駆動時に、熱負荷等によって、上記平面Sの直交方向において複数の梁部110の各々に対して互いに異なる変位量で変位させようとする力が働いても、接続部130が厚いため、接続部130がその力をより容易に吸収できる。ひいては、トランスデューサ100の信頼性が向上する。 As a result, even if a force that tries to displace each of the plurality of beam portions 110 in the orthogonal direction of the plane S by different displacement amounts acts due to a heat load or the like when the transducer 100 is driven, the connecting portion 130 Because of the thickness, the connection 130 can more easily absorb the force. As a result, the reliability of the transducer 100 is improved.
 本実施形態においては、接続部130の質量が、複数の梁部110の合計質量の5%以下である。 In the present embodiment, the mass of the connecting portion 130 is 5% or less of the total mass of the plurality of beam portions 110.
 接続部130の質量が、複数の梁部110の合計質量の5%以下であるれば、トランスデューサ100複数の梁部110の各々の有する共振周波数は、接続部130を設ける前の状態の複数の梁部110の各々の共振周波数との差が十分に小さくなる。このため、共振周波数の調整のために複数の梁部110の設計変更をして、トランスデューサ100のデバイス特性が低下することを抑制できる。 If the mass of the connecting portion 130 is 5% or less of the total mass of the plurality of beam portions 110, the resonance frequencies of each of the plurality of beam portions 110 of the transducer 100 are a plurality of states before the connecting portion 130 is provided. The difference between each resonance frequency of the beam portion 110 is sufficiently small. Therefore, it is possible to prevent the device characteristics of the transducer 100 from deteriorating by changing the design of the plurality of beam portions 110 in order to adjust the resonance frequency.
 本実施形態において、接続部130は、複数の梁部110の各々より先端面113上に位置する部分131が、複数の梁部110の各々の上部電極層20側に突出している。 In the present embodiment, in the connecting portion 130, a portion 131 located on the tip surface 113 from each of the plurality of beam portions 110 projects toward the upper electrode layer 20 of each of the plurality of beam portions 110.
 これにより、トランスデューサ100の駆動時に、上記平面Sの直交方向において複数の梁部110の各々に対して互いに異なる変位量で変位させようとする力をより抑制できる。 As a result, when the transducer 100 is driven, it is possible to further suppress a force that tends to displace each of the plurality of beam portions 110 with different displacement amounts in the orthogonal direction of the plane S.
 本実施形態において、接続部130を構成する材料のヤング率は、1GPa以下である。当該ヤング率が1GPa以下であれば、梁部110が互いに拘束する力が強くなりすぎて複数の梁部110の各々の共振周波数が高くなることが抑制される。ひいては、トランスデューサ100のデバイス特性の低下を抑制できる。また、複数の梁部110に熱応力などの外部応力が生じた場合においても、外部応力がトランスデューサ100のデバイス特性に与える影響を低減できる。 In the present embodiment, the Young's modulus of the material constituting the connecting portion 130 is 1 GPa or less. When the Young's modulus is 1 GPa or less, the force that the beam portions 110 restrain each other becomes too strong, and it is suppressed that the resonance frequencies of the plurality of beam portions 110 become high. As a result, deterioration of the device characteristics of the transducer 100 can be suppressed. Further, even when external stress such as thermal stress is generated in the plurality of beam portions 110, the influence of the external stress on the device characteristics of the transducer 100 can be reduced.
 本実施形態において、圧電体層10は、無機材料で構成されている。接続部130は、有機材料で構成されている。有機材料の多くは無機材料よりヤング率が低いため、圧電体層10および接続部130の各々を構成する材料の採用が容易となり、トランスデューサ100の設計が容易となる。 In the present embodiment, the piezoelectric layer 10 is made of an inorganic material. The connecting portion 130 is made of an organic material. Since most of the organic materials have a Young's modulus lower than that of the inorganic materials, it becomes easy to adopt the materials constituting each of the piezoelectric layer 10 and the connecting portion 130, and the design of the transducer 100 becomes easy.
 本実施形態において、接続部130を構成する材料は、シリコーン樹脂またはフッ素エラストマーである。これにより、接続部130を、圧電体層10を構成する材料よりヤング率が低い材料で構成されるように設計することが容易となる。 In the present embodiment, the material constituting the connection portion 130 is a silicone resin or a fluoroelastomer. This makes it easy to design the connecting portion 130 to be made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer 10.
 本実施形態において、圧電体層10は、ニオブ酸リチウム(LiNbO3)、または、タンタル酸リチウム(LiTaO3)で構成されている。これにより、圧電体層10の圧電特性を向上できるため、トランスデューサ100のデバイス特性を向上できる。 In the present embodiment, the piezoelectric layer 10 is composed of lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ). As a result, the piezoelectric characteristics of the piezoelectric layer 10 can be improved, so that the device characteristics of the transducer 100 can be improved.
 (実施形態2)
 以下、本発明の実施形態2に係るトランスデューサについて説明する。本発明の実施形態2に係るトランスデューサにおいては、複数の梁部の各々の先端面の構成が主に、本発明の実施形態1に係るトランスデューサと異なる。このため、本発明の実施形態1に係るトランスデューサと同様の構成については、説明を繰り返さない。
(Embodiment 2)
Hereinafter, the transducer according to the second embodiment of the present invention will be described. In the transducer according to the second embodiment of the present invention, the configuration of the tip surface of each of the plurality of beam portions is mainly different from that of the transducer according to the first embodiment of the present invention. Therefore, the description of the same configuration as that of the transducer according to the first embodiment of the present invention will not be repeated.
 図17は、本発明の実施形態2に係るトランスデューサを示す平面図である。図18は、図17のトランスデューサをXVIII-XVIII線矢印方向から見た断面図である。 FIG. 17 is a plan view showing a transducer according to the second embodiment of the present invention. FIG. 18 is a cross-sectional view of the transducer of FIG. 17 as viewed from the direction of the arrow along line XVIII-XVIII.
 図17および図18に示すように、本発明の実施形態2に係るトランスデューサ200は、上記平面の直交方向に沿う先端面として第1先端面213Aと、上記直交方向において第1先端面213Aの下側に位置する第2先端面213Bとを有している。複数の梁部110の各々は、少なくとも第2先端面213Bで接続部130と接続している。第1先端面213Aは、接続部130に向かって、接続部130に沿うように位置している。これにより、図17に示すように、接続部130を第2先端面213B上に配置したときに、接続部130が第1先端面213Aから梁部110の上面に濡れ拡がることを抑制できる。ひいては、複数の梁部110の各々の上記直交方向の振動が接続部130によって阻害されにくくなり、トランスデューサ100のデバイス特性の低下を抑制できる。 As shown in FIGS. 17 and 18, the transducer 200 according to the second embodiment of the present invention has a first tip surface 213A as a tip surface along the orthogonal direction of the plane and below the first tip surface 213A in the orthogonal direction. It has a second tip surface 213B located on the side. Each of the plurality of beam portions 110 is connected to the connecting portion 130 at least by the second tip surface 213B. The first tip surface 213A is located along the connecting portion 130 toward the connecting portion 130. As a result, as shown in FIG. 17, when the connecting portion 130 is arranged on the second tip surface 213B, it is possible to prevent the connecting portion 130 from spreading from the first tip surface 213A to the upper surface of the beam portion 110. As a result, the vibration of each of the plurality of beam portions 110 in the orthogonal direction is less likely to be disturbed by the connecting portion 130, and deterioration of the device characteristics of the transducer 100 can be suppressed.
 図17に示すように、本実施形態においては、複数の梁部110の各々の第1先端面213Aは、上記直交方向から見て仮想環上に位置している。これにより、複数の梁部110の各々の一部を一度にくり抜くことで複数の梁部110の各々の第1先端面213Aを形成できるため、トランスデューサ100の構成を簡略化できる。本実施形態において、上記仮想環の直径は、たとえば50μm以上200μm以下である。 As shown in FIG. 17, in the present embodiment, the first tip surface 213A of each of the plurality of beam portions 110 is located on the virtual ring when viewed from the orthogonal direction. As a result, the first tip surface 213A of each of the plurality of beam portions 110 can be formed by hollowing out a part of each of the plurality of beam portions 110 at a time, so that the configuration of the transducer 100 can be simplified. In the present embodiment, the diameter of the virtual ring is, for example, 50 μm or more and 200 μm or less.
 また、本実施形態においては、複数の梁部110を上部電極層20側から見たときに、複数の梁部110の各々の第2先端面213Bは、対応する第1先端面213Aに対して固定端部111側とは反対側に位置している。 Further, in the present embodiment, when the plurality of beam portions 110 are viewed from the upper electrode layer 20 side, the second tip surface 213B of each of the plurality of beam portions 110 is relative to the corresponding first tip surface 213A. It is located on the side opposite to the fixed end 111 side.
 本実施形態においては、図17および図18に示すように、具体的には、複数の梁部110の各々において、第1先端面213Aは、圧電体層10の先端面であり、第2先端面213Bは、支持層40の先端面である。第1先端面213Aは、圧電体層10および支持層40の圧電体層10側の一部の各々の先端面で構成されていてもよいし、第2先端面213Bは、支持層40および圧電体層10の支持層40側の一部の各々の先端面で構成されていてもよい。 In the present embodiment, as shown in FIGS. 17 and 18, specifically, in each of the plurality of beam portions 110, the first tip surface 213A is the tip surface of the piezoelectric layer 10 and is the second tip. The surface 213B is the tip surface of the support layer 40. The first front end surface 213A may be composed of the respective tip surfaces of the piezoelectric layer 10 and a part of the support layer 40 on the piezoelectric layer 10 side, and the second front end surface 213B is the support layer 40 and the piezoelectric layer 40. It may be composed of each tip surface of a part of the body layer 10 on the support layer 40 side.
 また、本実施形態において、第1先端面213Aは、圧電体層10をエッチングすることにより形成してもよい。第1先端面213Aが、圧電体層10および支持層40の圧電体層10側の一部の各々の先端面で構成されている場合には、圧電体層10および支持層40の圧電体層10側の一部の各々をエッチングすることにより、第1先端面213Aを形成してもよい。 Further, in the present embodiment, the first tip surface 213A may be formed by etching the piezoelectric layer 10. When the first front end surface 213A is composed of the respective tip surfaces of the piezoelectric layer 10 and a part of the support layer 40 on the piezoelectric layer 10 side, the piezoelectric layer of the piezoelectric layer 10 and the support layer 40 is formed. The first tip surface 213A may be formed by etching each of the parts on the 10 side.
 なお、本実施形態においては、第1先端面213Aは、平面Sの直交方向に平行に形成されているが、当該直交方向に平行に形成されていなくてもよい。図19は、本発明の実施形態2の変形例に係るトランスデューサを示す断面図である。図19においては、図18と同様の断面視にて図示している。図19に示すように、本発明の実施形態2の変形例に係るトランスデューサ200aにおいては、第1先端面213Aaは、上記直交方向において第2先端面213Ba側に向かうにつれ固定端部111から離れるように傾斜している。これにより、接続部130を第1先端面213Aa上および第2先端面213Ba上に設けた際に、梁部110のうち第2先端面213Baと連続する上面と、第1先端面213Aaとの境界部分に気泡が残存することを低減できる。その結果、接続部130と先端部212との接合面積の低下が抑制され、トランスデューサ100の信頼性が向上する。なお、本変形例においては、具体的には、第1先端面213Aaとして圧電体層10の先端面が、支持層40に向かうにつれ固定端部111から離れるように傾斜している。 In the present embodiment, the first tip surface 213A is formed parallel to the plane S in the orthogonal direction, but may not be formed parallel to the orthogonal direction. FIG. 19 is a cross-sectional view showing a transducer according to a modified example of the second embodiment of the present invention. In FIG. 19, it is shown in the same cross-sectional view as in FIG. As shown in FIG. 19, in the transducer 200a according to the modified example of the second embodiment of the present invention, the first tip surface 213Aa is separated from the fixed end portion 111 toward the second tip surface 213Ba side in the orthogonal direction. It is inclined to. As a result, when the connecting portion 130 is provided on the first tip surface 213Aa and the second tip surface 213Ba, the boundary between the upper surface of the beam portion 110 continuous with the second tip surface 213Ba and the first tip surface 213Aa. It is possible to reduce the remaining air bubbles in the portion. As a result, the decrease in the bonding area between the connecting portion 130 and the tip portion 212 is suppressed, and the reliability of the transducer 100 is improved. In this modification, specifically, the tip surface of the piezoelectric layer 10 is inclined as the first tip surface 213Aa so as to be separated from the fixed end portion 111 toward the support layer 40.
 上記のような第1先端面213Aaをエッチングにより形成する場合においては、本発明の実施形態2に係るトランスデューサ200において第1先端面213Aを形成するためのエッチングを行なう際のレジスト形状または加工条件を変更することにより、本発明の実施形態2の変形例における第1先端面213Aaを形成できる。 When the first tip surface 213Aa is formed by etching as described above, the resist shape or processing conditions for etching for forming the first tip surface 213A in the transducer 200 according to the second embodiment of the present invention are set. By modifying it, the first tip surface 213Aa in the modified example of the second embodiment of the present invention can be formed.
 本発明の実施形態2およびその変形例においても、本発明の実施形態1に係るトランスデューサと同様に、接続部130は、圧電体層10を構成する材料よりヤング率の低い材料で構成されているため、複数の梁部110が連成振動モードで振動することを抑制しつつ、トランスデューサ200,200aの電気機械変換効率の低下が抑制されている。 In the second embodiment of the present invention and its modifications, the connecting portion 130 is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer 10, as in the transducer according to the first embodiment of the present invention. Therefore, while suppressing the plurality of beam portions 110 from vibrating in the coupled vibration mode, the decrease in the electromechanical conversion efficiency of the transducers 200 and 200a is suppressed.
 (実施形態3)
 以下、本発明の実施形態3に係るトランスデューサについて説明する。本発明の実施形態3に係るトランスデューサにおいては、複数の梁部同士の間に位置する隙間の形状が主に、本発明の実施形態1に係るトランスデューサと異なる。このため、本発明の実施形態1に係るトランスデューサと同様の構成については、説明を繰り返さない。
(Embodiment 3)
Hereinafter, the transducer according to the third embodiment of the present invention will be described. The transducer according to the third embodiment of the present invention is mainly different from the transducer according to the first embodiment of the present invention in the shape of the gap located between the plurality of beam portions. Therefore, the description of the same configuration as that of the transducer according to the first embodiment of the present invention will not be repeated.
 図20は、本発明の実施形態3に係るトランスデューサを示す平面図である。図20においては、上部電極層および第1接続電極層および第2接続電極層は図示していない。 FIG. 20 is a plan view showing the transducer according to the third embodiment of the present invention. In FIG. 20, the upper electrode layer, the first connection electrode layer, and the second connection electrode layer are not shown.
 図20に示すように、本発明の実施形態3に係るトランスデューサ300においては、接続部330が、隙間314の一部に沿ってさらに設けられている。これにより、接続部330が隙間314に設けられる場合においては、隙間314において上記直交方向に貫通するベントホール315を形成して、トランスデューサ100を実装した際に開口部101内に位置する空気等の媒質がベントホール315を通過可能となる。ひいては、複数の梁部110の振動が開口部101内に位置する媒質に阻害されないようにしつつ、上記直交方向において複数の梁部110の各々を互いにより強固接続できる。 As shown in FIG. 20, in the transducer 300 according to the third embodiment of the present invention, a connecting portion 330 is further provided along a part of the gap 314. As a result, when the connecting portion 330 is provided in the gap 314, the vent hole 315 penetrating in the orthogonal direction is formed in the gap 314, and the air or the like located in the opening 101 when the transducer 100 is mounted is formed. The medium can pass through the vent hole 315. As a result, each of the plurality of beam portions 110 can be more firmly connected to each other in the orthogonal direction while preventing the vibration of the plurality of beam portions 110 from being hindered by the medium located in the opening 101.
 本実施形態において、先端面113上に接続部330を設ける際は、液状の接続部330を上部電極層側から先端面113上に滴下することにより塗布する。このときに、先端面113上に塗布された接続部330が、毛細管現象によって、隙間314に入り込む。これにより、隙間314に接続部330を設けることができる。 In the present embodiment, when the connecting portion 330 is provided on the tip surface 113, the liquid connecting portion 330 is applied by dropping the liquid connecting portion 330 onto the tip surface 113 from the upper electrode layer side. At this time, the connecting portion 330 coated on the tip surface 113 enters the gap 314 due to the capillary phenomenon. As a result, the connection portion 330 can be provided in the gap 314.
 本実施形態においては、隙間314の、先端部112側とは反対側におけるスリット幅は、先端部112側のスリット幅より広い。これにより、液状の接続部330が毛細管現象により隙間314に入り込んだときに、接続部330が、隙間314の先端部112側とは反対側の部分まで達することを抑制できる。この結果、隙間314においては隙間314のみに接続部330を設けることが容易となり、ベントホール315を確保しやすくなる。 In the present embodiment, the slit width of the gap 314 on the side opposite to the tip 112 side is wider than the slit width on the tip 112 side. As a result, when the liquid connecting portion 330 enters the gap 314 due to the capillary phenomenon, it is possible to prevent the connecting portion 330 from reaching the portion of the gap 314 opposite to the tip portion 112 side. As a result, in the gap 314, it becomes easy to provide the connecting portion 330 only in the gap 314, and it becomes easy to secure the vent hole 315.
 なお、図20に示すように、本実施形態においては、ベントホール315は、隙間314のうちスリット幅が広くなっている部分に形成されている。 As shown in FIG. 20, in the present embodiment, the vent hole 315 is formed in a portion of the gap 314 where the slit width is wide.
 また、ベントホール315を確保するための隙間の形状は、本発明の実施形態3における隙間314のような形状に限定されない。図21は、本発明の実施形態3の変形例に係るトランスデューサを示す平面図である。 Further, the shape of the gap for securing the vent hole 315 is not limited to the shape like the gap 314 in the third embodiment of the present invention. FIG. 21 is a plan view showing a transducer according to a modified example of the third embodiment of the present invention.
 図21に示すように、本発明の実施形態3の変形例に係るトランスデューサ300aにおいては、隙間314aのスリット幅は、先端部112側から離れるにつれて広くなっている。これにより、接続部330が、隙間314の先端部112側とは反対側の部分まで達することを抑制してベントホール315を確保できるとともに、複数の梁部110の各々と接続部330との接続界面の一部に応力が集中することを抑制できる。ひいては、複数の梁部110の破壊が抑制され、トランスデューサ100の信頼性が向上する。 As shown in FIG. 21, in the transducer 300a according to the modified example of the third embodiment of the present invention, the slit width of the gap 314a becomes wider as the distance from the tip portion 112 side increases. As a result, the vent hole 315 can be secured by suppressing the connection portion 330 from reaching the portion of the gap 314 opposite to the tip portion 112 side, and the connection between each of the plurality of beam portions 110 and the connection portion 330. It is possible to suppress the concentration of stress on a part of the interface. As a result, the destruction of the plurality of beam portions 110 is suppressed, and the reliability of the transducer 100 is improved.
 本発明の実施形態3およびその変形例においても、本発明の実施形態1に係るトランスデューサと同様に、接続部330は、圧電体層を構成する材料よりヤング率が低い材料で構成されているため、複数の梁部110が連成振動モードで振動することを抑制しつつ、トランスデューサ300,300aの電気機械変換効率の低下が抑制されている。 In the third embodiment of the present invention and its modifications, the connecting portion 330 is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer, similarly to the transducer according to the first embodiment of the present invention. While suppressing the plurality of beam portions 110 from vibrating in the coupled vibration mode, the decrease in the electromechanical conversion efficiency of the transducers 300 and 300a is suppressed.
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。 In the above description of the embodiment, the configurations that can be combined may be combined with each other.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
 10 圧電体層、10a 圧電単結晶基板、20 上部電極層、30 下部電極層、40 支持層、41 第1支持部、42 第2支持部、50 基板層、51 第1基板、52 第2基板、60 積層体、100,100a,200,200a,300,300a トランスデューサ、101 開口部、110 梁部、111 固定端部、112,212 先端部、113 先端面、114,314,314a 隙間、120 基部、121 凹部、130,330 接続部、131 部分、140 第1接続電極層、150 第2接続電極層、213A,213Aa 第1先端面、213B,213Ba 第2先端面、315 ベントホール。 10 Piezoelectric layer, 10a Piezoelectric single crystal substrate, 20 Upper electrode layer, 30 Lower electrode layer, 40 Support layer, 41 1st support, 42 2nd support, 50 Substrate layer, 51 1st substrate, 52 2nd substrate , 60 laminated body, 100, 100a, 200, 200a, 300, 300a transducer, 101 opening, 110 beam, 111 fixed end, 112, 212 tip, 113 tip surface, 114, 314, 314a gap, 120 base , 121 recess, 130, 330 connection part, 131 part, 140 first connection electrode layer, 150 second connection electrode layer, 213A, 213Aa first tip surface, 213B, 213Ba second tip surface, 315 vent hole.

Claims (16)

  1.  固定端部と、該固定端部とは反対側に位置する先端部とを有し、該固定端部から前記先端部に向かって延在する複数の梁部と、
     前記複数の梁部の各々の前記固定端部と接続された基部と、
     前記複数の梁部の各々の前記先端部同士を互いに接続する接続部とを備え、
     前記複数の梁部の各々の前記固定端部は、同一の平面内に位置しており、
     前記複数の梁部の各々は、圧電体層と、該圧電体層の上側に配置された上部電極層と、前記圧電体層を挟んで前記上部電極層の少なくとも一部に対向するように配置された下部電極層とを含み、
     前記接続部は、前記圧電体層を構成する材料よりヤング率が低い材料で構成されている、トランスデューサ。
    A plurality of beam portions having a fixed end portion and a tip portion located on the opposite side of the fixed end portion and extending from the fixed end portion toward the tip portion.
    A base connected to the fixed end of each of the plurality of beams, and
    A connecting portion for connecting the tip portions of each of the plurality of beam portions to each other is provided.
    The fixed end of each of the plurality of beams is located in the same plane.
    Each of the plurality of beam portions is arranged so as to face at least a part of the piezoelectric layer, the upper electrode layer arranged above the piezoelectric layer, and the piezoelectric layer with the piezoelectric layer interposed therebetween. Including the lower electrode layer
    The transducer is made of a material having a Young's modulus lower than that of the material constituting the piezoelectric layer.
  2.  前記接続部の前記平面の直交方向において、前記接続部の厚さが、前記複数の梁部の各々の厚さより厚い、請求項1に記載のトランスデューサ。 The transducer according to claim 1, wherein the thickness of the connecting portion is thicker than the thickness of each of the plurality of beam portions in the direction orthogonal to the plane of the connecting portion.
  3.  前記接続部の質量は、前記複数の梁部の合計質量の5%以下である、請求項1または請求項2に記載のトランスデューサ。 The transducer according to claim 1 or 2, wherein the mass of the connecting portion is 5% or less of the total mass of the plurality of beam portions.
  4.  前記接続部の質量は、前記複数の梁部の合計質量の2%以下である、請求項3に記載のトランスデューサ。 The transducer according to claim 3, wherein the mass of the connecting portion is 2% or less of the total mass of the plurality of beam portions.
  5.  前記接続部の質量は、前記複数の梁部の合計質量の1%以下である、請求項4に記載のトランスデューサ。 The transducer according to claim 4, wherein the mass of the connecting portion is 1% or less of the total mass of the plurality of beam portions.
  6.  前記複数の梁部の各々は、前記先端部において前記平面の直交方向に沿う先端面として、第1先端面と、前記直交方向において前記第1先端面の下側に位置する第2先端面とを有し、かつ、少なくとも前記第2先端面で前記接続部と接続しており、
     前記第1先端面は、前記接続部に向かって前記接続部に沿うように位置している、請求項1から請求項5のいずれか1項に記載のトランスデューサ。
    Each of the plurality of beam portions has a first tip surface as a tip surface along the orthogonal direction of the plane at the tip portion, and a second tip surface located below the first tip surface in the orthogonal direction. And is connected to the connection portion at least on the second tip surface.
    The transducer according to any one of claims 1 to 5, wherein the first tip surface is located along the connecting portion toward the connecting portion.
  7.  前記複数の梁部の各々の前記第1先端面は、前記直交方向から見て仮想環上に位置している、請求項6に記載のトランスデューサ。 The transducer according to claim 6, wherein the first tip surface of each of the plurality of beam portions is located on a virtual ring when viewed from the orthogonal direction.
  8.  前記複数の梁部の各々の前記第2先端面は、前記複数の梁部を前記上部電極層側から見たときに、対応する前記第1先端面に対して固定端部側とは反対側に位置しており、
     前記第1先端面は、前記直交方向において第2先端面側に向かうにつれ前記固定端部から離れるように傾斜している、請求項7に記載のトランスデューサ。
    The second tip surface of each of the plurality of beam portions is opposite to the fixed end side with respect to the corresponding first tip surface when the plurality of beam portions are viewed from the upper electrode layer side. Located in
    The transducer according to claim 7, wherein the first tip surface is inclined so as to be separated from the fixed end portion toward the second tip surface side in the orthogonal direction.
  9.  前記接続部は、前記複数の梁部の各々より前記先端面上に位置する部分が、前記複数の梁部の各々の前記上部電極層側に突出している、請求項6から請求項8のいずれか1項に記載のトランスデューサ。 Any of claims 6 to 8 in which the portion of the connecting portion located on the tip surface of each of the plurality of beam portions projects toward the upper electrode layer side of each of the plurality of beam portions. The transducer according to item 1.
  10.  前記複数の梁部同士の隙間は、前記複数の梁部の各々の前記先端部に向かって延在するスリット状に形成されており、
     前記接続部は、前記隙間の一部に沿ってさらに設けられている、請求項1から請求項9のいずれか1項に記載のトランスデューサ。
    The gap between the plurality of beam portions is formed in a slit shape extending toward the tip portion of each of the plurality of beam portions.
    The transducer according to any one of claims 1 to 9, wherein the connecting portion is further provided along a part of the gap.
  11.  前記隙間の、前記先端部側とは反対側におけるスリット幅は、前記先端部側のスリット幅より広い、請求項10に記載のトランスデューサ。 The transducer according to claim 10, wherein the slit width of the gap on the side opposite to the tip end side is wider than the slit width on the tip end side.
  12.  前記隙間のスリット幅は、前記先端部側から離れるにつれて広くなっている、請求項11に記載のトランスデューサ。 The transducer according to claim 11, wherein the slit width of the gap becomes wider as the distance from the tip end side increases.
  13.  前記接続部を構成する材料のヤング率が、1GPa以下である、請求項1から請求項12のいずれか1項に記載のトランスデューサ。 The transducer according to any one of claims 1 to 12, wherein the Young's modulus of the material constituting the connecting portion is 1 GPa or less.
  14.  前記圧電体層は、無機材料で構成され、
     前記接続部は、有機材料で構成されている、請求項1から請求項12のいずれか1項に記載のトランスデューサ。
    The piezoelectric layer is made of an inorganic material and is made of an inorganic material.
    The transducer according to any one of claims 1 to 12, wherein the connecting portion is made of an organic material.
  15.  前記接続部を構成する材料は、シリコーン樹脂またはフッ素エラストマーである、請求項1から請求項14のいずれか1項に記載のトランスデューサ。 The transducer according to any one of claims 1 to 14, wherein the material constituting the connecting portion is a silicone resin or a fluoroelastomer.
  16.  前記圧電体層は、ニオブ酸リチウム(LiNbO3)、または、タンタル酸リチウム(LiTaO3)で構成されている、請求項1から請求項14のいずれか1項に記載のトランスデューサ。 The transducer according to any one of claims 1 to 14, wherein the piezoelectric layer is composed of lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3).
PCT/JP2020/031098 2019-11-13 2020-08-18 Transducer WO2021095311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019205354 2019-11-13
JP2019-205354 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021095311A1 true WO2021095311A1 (en) 2021-05-20

Family

ID=75912947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031098 WO2021095311A1 (en) 2019-11-13 2020-08-18 Transducer

Country Status (1)

Country Link
WO (1) WO2021095311A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230524A1 (en) * 2011-03-07 2012-09-13 Ho Hsin Progressive Technology Co., Ltd. Piezoelectric panel speaker
WO2014083998A1 (en) * 2012-11-30 2014-06-05 京セラ株式会社 Piezoelectric actuator, piezoelectric vibration device, and portable terminal
JP2015088875A (en) * 2013-10-30 2015-05-07 理想科学工業株式会社 Ultrasonic radiation element
US20180304309A1 (en) * 2015-10-21 2018-10-25 Agency For Science, Technology And Research Ultrasound transducer and method of forming the same
CN208987175U (en) * 2018-10-11 2019-06-14 东莞希越电子有限公司 Piezoelectric membrane microphone structure-improved

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230524A1 (en) * 2011-03-07 2012-09-13 Ho Hsin Progressive Technology Co., Ltd. Piezoelectric panel speaker
WO2014083998A1 (en) * 2012-11-30 2014-06-05 京セラ株式会社 Piezoelectric actuator, piezoelectric vibration device, and portable terminal
JP2015088875A (en) * 2013-10-30 2015-05-07 理想科学工業株式会社 Ultrasonic radiation element
US20180304309A1 (en) * 2015-10-21 2018-10-25 Agency For Science, Technology And Research Ultrasound transducer and method of forming the same
CN208987175U (en) * 2018-10-11 2019-06-14 东莞希越电子有限公司 Piezoelectric membrane microphone structure-improved

Similar Documents

Publication Publication Date Title
JP5848131B2 (en) Equipment provided with mechanical resonance structure
JP5416105B2 (en) Electrical component with low temperature sensitivity and method for manufacturing the same
JP4930381B2 (en) Piezoelectric vibration device
JP4974212B2 (en) Mechanical quantity sensor and manufacturing method thereof
EP3472829B1 (en) Piezoelectric micromachined ultrasonic transducers having stress relief features
US20050200242A1 (en) Harmonic cMUT devices and fabrication methods
WO2021106265A1 (en) Piezoelectric device
JP4755500B2 (en) Ultrasonic probe
JPH11211748A (en) Machine-electricity conversion element and its manufacture and acceleration sensor
US11856365B2 (en) Transducer including coupler fitted in slits between beams
WO2021095311A1 (en) Transducer
US20220246830A1 (en) Piezoelectric device
US20230199405A1 (en) Transducer
CN113228708B (en) Piezoelectric transducer
CN116723754A (en) Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof
WO2021100248A1 (en) Piezoelectric device
US20220329951A1 (en) Piezoelectric device
US20230038607A1 (en) Piezoelectric device
WO2019102951A1 (en) Piezoelectric device and piezoelectric device manufacturing method
US20230209277A1 (en) Acoustic transducer, acoustic apparatus, and ultrasonic oscillator
WO2020136983A1 (en) Piezoelectric transducer
Yaacob et al. Vibration analysis of pMUT with polymer adhesion layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP