WO2020136983A1 - Piezoelectric transducer - Google Patents

Piezoelectric transducer Download PDF

Info

Publication number
WO2020136983A1
WO2020136983A1 PCT/JP2019/032102 JP2019032102W WO2020136983A1 WO 2020136983 A1 WO2020136983 A1 WO 2020136983A1 JP 2019032102 W JP2019032102 W JP 2019032102W WO 2020136983 A1 WO2020136983 A1 WO 2020136983A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric transducer
beam portions
plate
shaped portion
layer
Prior art date
Application number
PCT/JP2019/032102
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 池内
洋一 持田
文弥 黒川
青司 梅澤
永純 安達
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020136983A1 publication Critical patent/WO2020136983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • the present invention relates to a piezoelectric transducer.
  • Patent Document 1 Japanese Patent Publication No. 2018-520612
  • Patent Document 2 Japanese Patent Laid-Open No. 2017-22576
  • the piezoelectric transducer described in Patent Document 1 includes at least one central movable element, a plurality of peripheral bending benders, and at least one mechanical stopper.
  • Each of the plurality of peripheral bending benders is connected to the central movable element.
  • Each of the plurality of peripheral bending benders has at least a pair of electrodes and at least a piezoelectric material layer.
  • the mechanical stop is configured to limit the movement of the central movable element.
  • the piezoelectric transducer is configured to move the central movable element in response to an electrical stimulus applied to the electrodes along an axis orthogonal to the surface of the central movable element to produce sound.
  • the piezoelectric transducer described in Patent Document 2 includes a base material, a piezoelectric thin film, an upper electrode, and a lower electrode.
  • the base material has a cavity.
  • the piezoelectric thin film is supported by the base material and has a movable film portion facing the cavity. A slit is formed in the movable film portion.
  • the upper electrode is arranged on one surface of the piezoelectric thin film.
  • the lower electrode is arranged on the other surface of the piezoelectric thin film.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a piezoelectric transducer that has improved input/output characteristics in the piezoelectric transducer that inputs and outputs via air vibration.
  • the piezoelectric transducer includes a base portion, a plate-shaped portion, and a plurality of beam portions.
  • the base portion has an annular outer shape when viewed from above and below.
  • the plate-shaped portion is located inside the base portion while being separated from the base portion.
  • Each of the plurality of beam portions connects the base portion and the plate-shaped portion to each other and is arranged at intervals in the circumferential direction of the base portion.
  • Each of the plurality of beam portions has a piezoelectric layer, an upper electrode layer, and a lower electrode layer.
  • the upper electrode layer is arranged above the piezoelectric layer.
  • the lower electrode layer is arranged so as to face at least a part of the upper electrode layer with the piezoelectric layer interposed therebetween.
  • the flexural rigidity of each of the plurality of beam portions is higher than the flexural rigidity of the plate-shaped portion.
  • FIG. 2 is a cross-sectional view of the piezoelectric transducer shown in FIG. 1 as seen from the direction of arrows II-II.
  • FIG. 6 is a cross-sectional view showing a state in which a laminate having a handle layer, a box layer, and an active layer is prepared in the method for manufacturing a piezoelectric transducer according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a state in which a lower electrode layer is provided on the upper surface of the active layer in the method for manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a state in which a piezoelectric layer is provided on the upper surface of each of the active layer and the lower electrode layer in the method for manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a state in which an upper electrode layer is provided on the upper surface of the piezoelectric layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which laminated piezoelectric layers are patterned in the method for manufacturing a piezoelectric transducer according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a state in which a plurality of slits are formed in the active layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a state in which a recess is formed in the handle layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention. It is a perspective view from the front upper part showing the composition of the piezoelectric transducer concerning a comparative example.
  • FIG. 7 is a perspective view from the front upper side showing a state in which each of the plurality of beam portions is displaced to the uppermost side during driving of the piezoelectric transducer according to the comparative example.
  • FIG. 3 is a perspective view from the front upper side showing the piezoelectric transducer according to the first embodiment of the present invention in a state where each of the plurality of beam portions is displaced to the uppermost side during driving.
  • FIG. 13 is a cross-sectional view of the piezoelectric transducer shown in FIG. 12 as viewed in the direction of arrows XIII-XIII. It is sectional drawing which shows the structure of the piezoelectric transducer which concerns on Embodiment 2 of this invention. It is sectional drawing which shows the structure of the piezoelectric transducer which concerns on Embodiment 3 of this invention. It is a perspective view from the front upper part showing the composition of the piezoelectric transducer concerning Embodiment 4 of the present invention.
  • FIG. 1 is a perspective view from the front upper side showing the configuration of the piezoelectric transducer according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the piezoelectric transducer shown in FIG. 1 as seen in the direction of arrows II-II. It should be noted that in FIG. 1, the boundaries between the layers forming the piezoelectric transducer are not shown.
  • the piezoelectric transducer 100 includes a base portion 110, a plate-shaped portion 120, and a plurality of beam portions 130.
  • the base portion 110 is located outside each of the plurality of beam portions 130 when viewed in the horizontal direction.
  • the base 110 has an annular outer shape when viewed from above and below.
  • the recess 103 is provided on the inner peripheral side of the base 110.
  • the base 110 has a circular inner peripheral side surface when viewed from above and below.
  • the base 110 includes a handle layer 111, a box layer 112, and an active layer 114.
  • the box layer 112 is laminated on the handle layer 111.
  • the active layer 114 is stacked on the box layer 112.
  • the handle layer 111 is made of Si.
  • the box layer 112 is made of SiO 2 .
  • the active layer 114 is made of Si.
  • the base portion 110 may be one that fixes an outer end portion, which will be described later, in each of the plurality of beam portions 130.
  • Each of the laminated structure and constituent materials of the base 110 is not particularly limited.
  • the plate-shaped portion 120 is located inside the base 110 while being separated from the base 110. As shown in FIG. 2, the plate-shaped portion 120 is arranged such that the distance between the plate-shaped portion 120 and the base portions 110 located on both sides in the horizontal direction is substantially constant.
  • the plate-shaped portion 120 has a circular outer shape when viewed from above and below. Further, as shown in FIG. 2, the plate-shaped portion 120 has a substantially constant thickness. Further, in the present embodiment, the plate-shaped portion 120 is composed of a single layer member, but may be composed of a laminated body. In this embodiment, the plate-shaped portion 120 is composed of the active layer 114.
  • each of the four beam portions 130 connects the base portion 110 and the plate-shaped portion 120 to each other, and is arranged at intervals in the circumferential direction of the base portion 110.
  • the four beam portions 130 are located on the outer peripheral side of the plate-shaped portion 120 and are arranged at intervals on the circumference of a concentric circle with the plate-shaped portion 120.
  • each of the plurality of beam portions 130 is arranged so that the intervals are equal to each other.
  • the piezoelectric transducer according to the present embodiment includes four beam portions 130, but the number of beam portions 130 is not limited to four and may be any number.
  • each of the plurality of beam portions 130 has an extending portion 130A, an outer end portion 130B, and an inner end portion 130C when viewed from above and below.
  • the extending portion 130A extends along the circumferential direction of the base 110 while leaving a gap 101 with the base 110.
  • the extending portion 130 ⁇ /b>A extends along the outer peripheral edge of the plate-shaped portion 120 while leaving a gap 102 with the plate-shaped portion 120.
  • the width of each of the gap 101 and the gap 102 is substantially constant.
  • the outer end portion 130B connects one end of the extending portion 130A in the extending direction and the base portion 110 to each other.
  • the outer end portion 130B is located outside the extending portion 130A when viewed from above and below.
  • the inner end portion 130C connects the other end of the extending portion 130A in the extending direction and the plate-like portion 120 to each other.
  • the inner end portion 130C is located inside the extending portion 130A when viewed from above and below.
  • each of the plurality of beam portions 130 has a piezoelectric layer 131, an upper electrode layer 132, a lower electrode layer 133, and an active layer 114.
  • the piezoelectric layer 131 is arranged over the entire extension 130A, the outer end 130B, and the inner end 130C when viewed from above and below.
  • the piezoelectric layer 131 may be made of a polycrystalline material or a single crystal material.
  • the piezoelectric layer 131 is made of lead zirconate titanate (PZT)-based ceramics, aluminum nitride (AlN), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like.
  • the upper electrode layer 132 is arranged above the piezoelectric layer 131.
  • the upper electrode layer 132 is arranged over the entire extension 130A, the outer end 130B, and the inner end 130C when viewed from above and below.
  • the upper electrode layer 132 is made of a conductive material such as Pt.
  • An adhesion layer made of Ti or the like may be arranged between the upper electrode layer 132 and the piezoelectric layer 131.
  • the lower electrode layer 133 is arranged so as to face at least a part of the upper electrode layer 132 with the piezoelectric layer 131 interposed therebetween.
  • the lower electrode layer 133 is arranged over the entire extension 130A, the outer end 130B, and the inner end 130C when viewed from above and below.
  • the lower electrode layer 133 is made of a conductive material such as Pt.
  • An adhesion layer made of Ti or the like may be disposed between the lower electrode layer 133 and the piezoelectric layer 131.
  • the active layer 114 is arranged below the lower electrode layer 133. In the present embodiment, the active layer 114 is arranged on the lowermost side of each of the plurality of beam portions 130. In the present embodiment, the active layer 114 is arranged over the entire extension 130A, the outer end 130B, and the inner end 130C.
  • the active layer 114 forming each of the plurality of beam portions 130 is continuous with the active layer 114 forming the base 110 in the horizontal direction. Further, the active layers 114 forming each of the plurality of beam portions 130 are continuous with the active layer 114 forming the plate-shaped portion 120 in the horizontal direction.
  • the thickness of the active layer 114 is substantially constant as a whole.
  • the active layer 114 is composed of single crystal silicon.
  • the maximum vertical thickness of each of the plurality of beam portions 130 is the vertical direction of the plate-shaped portion 120. It is thicker than the maximum thickness.
  • the composite elastic modulus of the material forming each of the plurality of beam portions 130 is preferably higher than the composite elastic modulus of the material forming the plate-shaped portion 120.
  • the resonance frequency of the lowest-order bending vibration mode in each of the plurality of beam portions 130 is higher than the resonance frequency of the lowest-order bending vibration mode in the single body of the plate-shaped portion 120.
  • the bending rigidity of each of the plurality of beam portions 130 is higher than the bending rigidity of the plate-shaped portion 120.
  • the bending rigidity of each of the plurality of beam portions 130 may be higher than the bending rigidity of the plate-shaped portion 120 due to at least one factor of the maximum thickness, the composite elastic modulus, and the resonance frequency described above.
  • the neutral surface 120N of the plate-shaped portion 120 is located inside the plate-shaped portion 120.
  • the neutral surface 120N of the plate-shaped portion 120 is located substantially at the center of the plate-shaped portion 120 in the vertical direction. That is, the neutral surface 120N of the plate-shaped portion 120 is located in the active layer 114. Specifically, the neutral surface 120N of the plate-shaped portion 120 exists inside the single crystal silicon.
  • the neutral surface 130N of each of the plurality of beam portions 130 is located in the active layer 114. Specifically, the neutral surface 130N of each of the plurality of beam portions 130 exists inside the single crystal silicon.
  • FIG. 3 is a cross-sectional view showing a state in which a laminate having a handle layer, a box layer and an active layer is prepared in the method for manufacturing a piezoelectric transducer according to the first embodiment of the present invention.
  • a so-called SOI (Silicon on Insulator) substrate having a handle layer 111, a box layer 112 and an active layer 114 is prepared.
  • FIG. 4 is a cross-sectional view showing a state in which a lower electrode layer is provided on the upper surface of the active layer in the method for manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • the lower electrode layer 133 is provided on the upper surface of the active layer 114 by a lift-off method, a plating method, an etching method, or the like.
  • FIG. 5 is a cross-sectional view showing a state in which a piezoelectric layer is provided on the upper surface of each of the active layer and the lower electrode layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • the piezoelectric layer 131 is provided on the upper surfaces of the active layer 114 and the lower electrode layer 133 by a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, or the like.
  • FIG. 6 is a cross-sectional view showing a state in which an upper electrode layer is provided on the upper surface of the piezoelectric layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • the upper electrode layer 132 is provided on the upper surface of the piezoelectric layer 131 by a lift-off method, a plating method, an etching method, or the like.
  • FIG. 7 is a cross-sectional view showing a state in which laminated piezoelectric layers are patterned in the method for manufacturing a piezoelectric transducer according to the first embodiment of the present invention.
  • the piezoelectric layer 131 is patterned by a lift-off method or an etching method. As a result, the outer shape of the piezoelectric layer 131 is defined.
  • FIG. 8 is a cross-sectional view showing a state in which a plurality of slits are formed in the active layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • the active layer 114 by forming a plurality of slits in the active layer 114 by a lift-off method or etching, the active layer 114 forming the plate-like portion 120 and the active layer 114 forming the plate-shaped portion 120 and a plurality of slits are formed in the active layer 114.
  • the active layers 114 forming each of the beam portions 130 are separated.
  • the plurality of slits configure the gap 101 between the base portion 110 and each extending portion 130A of each of the plurality of beam portions 130, and the plate-shaped portion 120 and each extending portion 130A of each of the plurality of beam portions 130 are formed.
  • the gap 102 is formed.
  • FIG. 9 is a diagram showing a state in which a recess is formed in the handle layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention.
  • the recess 103 is formed in the handle layer 111 by performing deep reactive ion etching (Deep RIE) from the lower surface of the handle layer 111 to the handle layer 111. ..
  • Deep RIE deep reactive ion etching
  • the recess 103 is formed in the box layer 112 by performing reactive ion etching on the box layer 112 from the lower side surface of the box layer 112. Through these steps, the outer shapes of the plate-shaped portion 120 and the plurality of beam portions 130 are defined, and the piezoelectric transducer 100 according to the first embodiment of the present invention as shown in FIG. 2 is manufactured.
  • the operation of the piezoelectric transducer 100 according to the present embodiment during driving will be described.
  • a voltage is applied between the upper electrode layer 132 and the lower electrode layer 133 in each of the plurality of beam portions 130.
  • This causes strain in the piezoelectric layer 131 constrained by the upper electrode layer 132, the lower electrode layer 133, and the active layer 114, so that each of the plurality of beam portions 130 has a connection position between the outer end portion 130B and the base portion 110. Bends and vibrates vertically with the fixed end as.
  • the plate-shaped portion 120 since each of the plurality of beam portions 130 is configured as described above, the plate-shaped portion 120 also vibrates in the up-down direction in accordance with the bending vibration of the plurality of beam portions 130.
  • the vibration mechanism of the plate-shaped portion 120 will be described in comparison with the piezoelectric transducer according to the comparative example below.
  • FIG. 10 is a perspective view from the front upper side showing the configuration of the piezoelectric transducer according to the comparative example.
  • the bending rigidity of the plurality of beam portions 930 is set to be equal to or less than the bending rigidity of the plate-shaped portion 920.
  • FIG. 11 is a perspective view from the front upper side showing a state in which each of the plurality of beam portions is displaced to the uppermost side when the piezoelectric transducer according to the comparative example is driven.
  • the portion having a larger displacement amount and located higher is shown in a lighter color.
  • each of the plurality of beam portions 930 warps during driving and is largely displaced upward. There is.
  • the rigidity of each of the plurality of beam portions 930 is low, almost no bending stress acts on the connection position of the plate portion 920 with the inner end of the beam portion 930, and the plate portion 920 maintains its shape during driving. However, it is displaced uniformly upward as a whole. As a result, the gap 902 between each of the plate-shaped portion 920 and the plurality of beam portions 930 is large.
  • FIG. 12 is a perspective view from the front upper side showing the piezoelectric transducer according to the first embodiment of the present invention in a state in which each of the plurality of beam portions is displaced to the uppermost side during driving.
  • FIG. 13 is a cross-sectional view of the piezoelectric transducer shown in FIG. 12 as seen in the direction of arrows XIII-XIII. In FIG. 12, the portion having a larger displacement amount and located higher is shown in a lighter color.
  • the piezoelectric transducer 100 since the bending rigidity of each of the plurality of beam portions 130 is high, the displacement amount of each of the plurality of beam portions 130 during driving is small. .. Further, since each of the plurality of beam portions 130 has high rigidity, bending stress concentrates and acts on the connection position of the plate-shaped portion 120 with the inner end portion 130C. As a result, the plate-shaped portion 120 deforms like a cone with the connection position as a virtual fixed end. Therefore, as shown in FIGS. 12 and 13, in the piezoelectric transducer 100, the conical vibration mode of the plate-shaped portion 120 can be excited.
  • the piezoelectric transducer 100 is configured such that, when the piezoelectric transducer 100 is driven, each of the plurality of beam portions 130 bends in the vertical direction so that the plate-shaped portion 120 deforms into a cone shape. ..
  • the central portion of the plate-shaped portion 120 deformed on the cone is the center of each of the plurality of beam portions 130. It is located above the upper surface.
  • the piezoelectric transducer 100 is configured such that the maximum vertical displacement of the plate-shaped portion 120 is larger than the maximum vertical displacement of each of the plurality of beam portions 130 when the piezoelectric transducer 100 is driven. Has been done.
  • the bending rigidity of each of the plurality of beam portions 130 is higher than the bending rigidity of the plate-shaped portion 120.
  • the plate-shaped portion 120 can be deformed into a cone shape and excited by using the connection position of the plate-shaped portion 120 with the inner end 130C as a virtual fixed end. As a result, the gap 102 between the plate-shaped portion 120 and each of the plurality of beam portions 130, and the gap 101 between each of the base portion 110 and each of the plurality of beam portions 130 are suppressed from becoming large and excited. You can
  • the piezoelectric transducer 100 inputs and outputs via air vibration, it is possible to suppress the leakage of air from each of the gap 101 and the gap 102 and improve the input/output characteristics of the piezoelectric transducer 100.
  • the maximum vertical thickness of each of the plurality of beam portions 130 is thicker than the maximum vertical thickness of the plate-shaped portion 120.
  • each of the plurality of beam portions 130 can be made higher than the bending rigidity of the plate-shaped portion 120 with a simple configuration.
  • the input/output characteristics of the piezoelectric transducer 100 can be easily improved.
  • the composite elastic modulus of the material forming each of the plurality of beam portions 130 is preferably higher than the composite elastic modulus of the material forming the plate-shaped portion 120.
  • the resonance frequency of the lowest bending vibration mode of each single beam portion 130 is higher than the resonance frequency of the lowest bending vibration mode of the single plate-shaped portion 120. ..
  • the plate-shaped portion 120 is made of single crystal silicon.
  • the neutral surface of the plate-shaped portion 120 is located inside the plate-shaped portion 120.
  • the residual stress in the plate-shaped portion 120 can be reduced. Consequently, in the piezoelectric transducer 100, it is possible to reduce the influence of residual stress and stabilize the input/output characteristics.
  • each of the plurality of beam portions 130 further includes the active layer 114 arranged below the lower electrode layer 133.
  • the active layer 114 is composed of single crystal silicon.
  • the neutral surface 130N of each of the plurality of beam portions 130 is located in the active layer 114.
  • the influence of the residual stress in the piezoelectric layer 131 can be reduced and the input/output characteristics can be stabilized.
  • the deformation of the piezoelectric layer 131 can be restricted by the single crystal silicon to reduce the displacement amount of each of the plurality of beam portions 130 during driving.
  • the input/output characteristics can be improved.
  • the piezoelectric transducer 100 is configured such that when the piezoelectric transducer 100 is driven, each of the plurality of beam portions 130 bends in the vertical direction so that the plate-shaped portion 120 deforms into a cone shape. ..
  • the piezoelectric transducer 100 is configured such that the maximum vertical displacement of the plate-shaped portion 120 is larger than the maximum vertical displacement of each of the plurality of beam portions 130 when the piezoelectric transducer 100 is driven. Has been done.
  • the piezoelectric transducer according to the second embodiment of the present invention will be described below.
  • the piezoelectric transducer according to the second embodiment of the present invention is different from the piezoelectric transducer 100 according to the first embodiment in the structure of the laminated body in each of the plurality of beam portions. Therefore, the description of the same configuration as the piezoelectric transducer 100 according to the first embodiment of the present invention will not be repeated.
  • FIG. 14 is a cross-sectional view showing the configuration of the piezoelectric transducer according to the second embodiment of the present invention.
  • the sectional view of the piezoelectric transducer 200 shown in FIG. 14 is shown in the same sectional view as the sectional view of the piezoelectric transducer 100 shown in FIG.
  • each of the plurality of beam portions 230 further includes an insulating layer 235 disposed between the lower electrode layer 133 and the active layer 114.
  • the insulating layer 235 is made of a material having an electrically insulating property such as SiO 2 .
  • a piezoelectric single crystal substrate prepared separately from the SOI substrate is formed on the piezoelectric single crystal substrate by a lift-off method, a plating method, an etching method, or the like.
  • the electrode layer 133 is laminated.
  • An insulating layer 235 is laminated on the lower surfaces of the piezoelectric single crystal substrate and the lower electrode layer 133 by the CVD method or the PVD method.
  • the lower surface of the insulating layer 235 is flattened by chemical mechanical polishing (CMP) or the like, and then bonded to the upper surface of the active layer 114.
  • CMP chemical mechanical polishing
  • the upper surface of the piezoelectric single crystal substrate is ground by CMP or the like, and the piezoelectric single crystal substrate is adjusted to a desired thickness, whereby the piezoelectric layer 131 is formed.
  • the insulating layer 235 is patterned after the piezoelectric layer 131 is patterned as in the method of manufacturing the piezoelectric transducer 100 according to the first embodiment of the present invention. This defines the outer shape of the insulating layer 235.
  • each of the plurality of beam portions 230 further includes the insulating layer 235 disposed between the lower electrode layer 133 and the active layer 114. ing.
  • the rigidity of each of the plurality of beam portions 230 can be further increased, and thus the amount of displacement when each of the plurality of beam portions 230 is bent can be reduced when the piezoelectric transducer 200 is driven.
  • the piezoelectric characteristics of the piezoelectric layer 131 can be improved, and the input/output characteristics of the piezoelectric transducer 200 can be improved.
  • the piezoelectric transducer according to the third embodiment of the present invention is different from the piezoelectric transducer 100 according to the first embodiment in the configuration of the laminated body in each of the plurality of beam portions. Therefore, the description of the same configuration as the piezoelectric transducer 100 according to the first embodiment of the present invention will not be repeated.
  • FIG. 15 is a cross-sectional view showing the configuration of the piezoelectric transducer according to the third embodiment of the present invention.
  • the sectional view of the piezoelectric transducer 300 shown in FIG. 15 is illustrated in the same sectional view as the sectional view of the piezoelectric transducer 100 shown in FIG.
  • each of the plurality of beam portions 330 further includes a protective layer 336 arranged above the upper electrode layer 132.
  • the protective layer 336 is made of a material having moisture resistance such as SiO 2 .
  • the protective layer 336 is provided on the upper surface of the upper electrode layer 132 by a CVD method, a PVD method, or the like.
  • each of the plurality of beam portions 330 can be further increased, it is possible to reduce the displacement amount when each of the plurality of beam portions 330 is bent when the piezoelectric transducer 300 is driven. Further, since the upper side of the piezoelectric layer 131 can be covered with the protective layer 336 having moisture resistance, the reliability of the piezoelectric transducer 300 can be improved.
  • the piezoelectric transducer according to the fourth embodiment of the present invention will be described below.
  • the piezoelectric transducer according to the fourth exemplary embodiment of the present invention is different from the piezoelectric transducer 100 according to the first exemplary embodiment of the present invention in the shape of the plurality of beam portions when viewed in the vertical direction. Therefore, the description of the same configuration as the piezoelectric transducer 100 according to the first embodiment of the present invention will not be repeated.
  • FIG. 16 is a perspective view from the front upper side showing the configuration of the piezoelectric transducer according to the fourth embodiment of the present invention.
  • each of the plurality of beam portions 430 is connected to the base portion 110 when viewed from above and below.
  • the other end of each of the plurality of beam portions 430 is connected to the plate-shaped portion 120.
  • the maximum vertical thickness of each of the plurality of beam portions 430 is thicker than the maximum vertical thickness of the plate-shaped portion 120.
  • the composite elastic modulus of the material forming each of the plurality of beam portions 430 is preferably higher than the composite elastic modulus of the material forming the plate-shaped portion 120.
  • the resonance frequency of the lowest bending vibration mode of each of the plurality of beam portions 430 is higher than the resonance frequency of the lowest bending vibration mode of the plate portion 120 alone.
  • the bending rigidity of each of the plurality of beam portions 430 is higher than the bending rigidity of the plate-shaped portion 120.
  • the bending rigidity of each of the plurality of beam portions 430 may be higher than the bending rigidity of the plate-shaped portion 120 due to at least one factor of the maximum thickness, the composite elastic modulus, and the resonance frequency described above.
  • each of the plurality of beam portions 430 is point-symmetrical with respect to the center O of the plate-shaped portion 120 when viewed from above and below. It has the same outer shape and at least a part of the outer shape is curved.
  • a gap 404 that extends while maintaining a constant interval is provided between the beam portions 430 that are adjacent to each other in the circumferential direction of the plurality of beam portions 430.
  • the piezoelectric transducer 400 when the piezoelectric transducer 400 is driven, the displacement amounts of the beam portions 430 adjacent to each other in the circumferential direction among the plurality of beam portions 430 become equal to each other. That is, when viewed from the circumferential direction of the outer peripheral side surface of the plate-shaped portion 120, the gap between the adjacent beam portions 430 does not widen. Therefore, when the piezoelectric transducer 400 is driven, it is possible to prevent air from leaking from between the beam portions 430 adjacent to each other, and it is possible to improve the input/output characteristics of the piezoelectric transducer 400.
  • the gap 404 extends from the outer peripheral side surface of the plate-shaped portion 120 to the inner peripheral side surface of the base portion 110.
  • the gap 404 is curved with a constant curvature over the entire length from the outer peripheral side surface of the plate-shaped portion 120 to the inner peripheral side surface of the base portion 110.
  • the gap 404 between the beam portions 430 adjacent to each other extends while maintaining a constant gap.
  • the piezoelectric transducer 400 that inputs and outputs via air vibration, the input/output characteristic of the piezoelectric transducer 400 can be improved.
  • each of the plurality of beam portions 430 when viewed from above and below, has a plate-like shape on the plate-shaped portion 120 side than on the base 110-side portion.
  • the outer peripheral side surface of the portion 120 faces in the radial direction.
  • Piezoelectric transducer 101, 102, 404, 902 Gap, 103 recess, 110 base, 111 handle layer, 112 box layer, 114 active layer, 120,920 plate, 120N, 130N Elevation, 130, 230, 330, 430, 930 beam, 130A extension, 130B outer end, 130C inner end, 131 piezoelectric layer, 132 upper electrode layer, 133 lower electrode layer, 235 insulating layer, 336 Protective layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

A piezoelectric transducer (100) is provided with a base part (110), a plate-shaped part (120), and a plurality of beam parts (130). The base part (110) has an annular outline as seen from the up/down direction. The plate-shaped part (120) is located on the inside of the base part (110), while being spaced apart from the base part (110). The plurality of beam parts (130) each connect the base part (110) and the plate-shaped part (120) to one another, and are arranged at an interval from one another in the circumferential direction of the base part (110). Each of the plurality of beam parts (130) has a piezoelectric layer (131), an upper electrode layer (132), and a lower electrode layer (133). The upper electrode layer (132) is arranged on the upper side of the piezoelectric layer (131). The lower electrode layer (133) is arranged so as to face at least a part of the upper electrode layer (132) with the piezoelectric layer (131) therebetween. The bending rigidity of the plurality of beam parts (130) is greater than that of the plate-shaped part (120).

Description

圧電トランスデューサPiezoelectric transducer
 本発明は、圧電トランスデューサに関する。 The present invention relates to a piezoelectric transducer.
 圧電トランスデューサの構成を開示した先行文献として、特表2018-520612号公報(特許文献1)および特開2017-22576号公報(特許文献2)がある。 As prior documents disclosing the configuration of the piezoelectric transducer, there are Japanese Patent Publication No. 2018-520612 (Patent Document 1) and Japanese Patent Laid-Open No. 2017-22576 (Patent Document 2).
 特許文献1に記載された圧電トランスデューサは、少なくとも一の中央可動素子と、複数の周辺湾曲ベンダと、少なくとも一の機械的ストッパとを備えている。複数の周辺湾曲ベンダの各々は、中央可動素子に接続されている。複数の周辺湾曲ベンダの各々は、少なくとも一対の電極と、少なくとも圧電材料層とを有している。機械的ストッパは、中央可動素子の動きを制限するように構成されている。圧電トランスデューサは、中央可動素子の表面に直交する軸に沿って電極に与えられた電気的刺激に応じて中央可動素子を動かして音を生成するように構成されている。 The piezoelectric transducer described in Patent Document 1 includes at least one central movable element, a plurality of peripheral bending benders, and at least one mechanical stopper. Each of the plurality of peripheral bending benders is connected to the central movable element. Each of the plurality of peripheral bending benders has at least a pair of electrodes and at least a piezoelectric material layer. The mechanical stop is configured to limit the movement of the central movable element. The piezoelectric transducer is configured to move the central movable element in response to an electrical stimulus applied to the electrodes along an axis orthogonal to the surface of the central movable element to produce sound.
 特許文献2に記載された圧電トランスデューサは、基材と、圧電薄膜と、上部電極と、下部電極とを備えている。基材は、空洞を有している。圧電薄膜は、基材に支持され、空洞に対向する可動膜部を有している。可動膜部には、スリットが形成されている。上部電極は、圧電薄膜の一方表面に配置されている。下部電極は、圧電薄膜の他方表面に配置されている。 The piezoelectric transducer described in Patent Document 2 includes a base material, a piezoelectric thin film, an upper electrode, and a lower electrode. The base material has a cavity. The piezoelectric thin film is supported by the base material and has a movable film portion facing the cavity. A slit is formed in the movable film portion. The upper electrode is arranged on one surface of the piezoelectric thin film. The lower electrode is arranged on the other surface of the piezoelectric thin film.
特表2018-520612号公報Japanese Patent Publication No. 2018-520612 特開2017-22576号公報JP, 2017-22576, A
 特許文献1および特許文献2の各々に記載された圧電トランスデューサにおいては、駆動時に可動部と基部との間の隙間が大きくなる。圧電トランスデューサが空気振動を介して入出力する場合、可動部と基部との間の隙間を通じて空気が漏れるため、当該隙間が大きくなることにより、圧電トランスデューサの入出力特性が低下する。 In the piezoelectric transducers described in each of Patent Document 1 and Patent Document 2, the gap between the movable portion and the base portion becomes large during driving. When the piezoelectric transducer inputs and outputs via air vibration, air leaks through the gap between the movable portion and the base portion, so that the gap becomes large and the input/output characteristics of the piezoelectric transducer deteriorate.
 本発明は上記の問題点に鑑みてなされたものであり、空気振動を介して入出力する圧電トランスデューサにおいて、入出力特性が向上された圧電トランスデューサを提供することを目的とする。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a piezoelectric transducer that has improved input/output characteristics in the piezoelectric transducer that inputs and outputs via air vibration.
 本発明に基づく圧電トランスデューサは、基部と、板状部と、複数の梁部とを備えている。基部は、上下方向から見て環状の外形を有している。板状部は、基部と離間しつつ基部の内側に位置している。複数の梁部の各々は、基部と板状部とを互いに接続し、基部の周方向に互いに間隔をあけて配置されている。複数の梁部の各々は、圧電体層と、上部電極層と、下部電極層とを有している。上部電極層は、圧電体層の上側に配置されている。下部電極層は、圧電体層を挟んで上部電極層の少なくとも一部に対向するように配置されている。複数の梁部の各々の曲げ剛性が、板状部の曲げ剛性より高い。 The piezoelectric transducer according to the present invention includes a base portion, a plate-shaped portion, and a plurality of beam portions. The base portion has an annular outer shape when viewed from above and below. The plate-shaped portion is located inside the base portion while being separated from the base portion. Each of the plurality of beam portions connects the base portion and the plate-shaped portion to each other and is arranged at intervals in the circumferential direction of the base portion. Each of the plurality of beam portions has a piezoelectric layer, an upper electrode layer, and a lower electrode layer. The upper electrode layer is arranged above the piezoelectric layer. The lower electrode layer is arranged so as to face at least a part of the upper electrode layer with the piezoelectric layer interposed therebetween. The flexural rigidity of each of the plurality of beam portions is higher than the flexural rigidity of the plate-shaped portion.
 空気振動を介して入出力する圧電トランスデューサにおいて、入出力特性を向上させることができる。 -It is possible to improve the input/output characteristics of a piezoelectric transducer that inputs and outputs via air vibration.
本発明の実施形態1に係る圧電トランスデューサの構成を示す、前方上方からの斜視図である。It is a perspective view from the front upper part showing the composition of the piezoelectric transducer concerning Embodiment 1 of the present invention. 図1に示した圧電トランスデューサについてII-II線矢印方向から見た断面図である。FIG. 2 is a cross-sectional view of the piezoelectric transducer shown in FIG. 1 as seen from the direction of arrows II-II. 本発明の実施形態1に係る圧電トランスデューサの製造方法において、ハンドル層、ボックス層および活性層を有する積層体を準備した状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which a laminate having a handle layer, a box layer, and an active layer is prepared in the method for manufacturing a piezoelectric transducer according to the first embodiment of the present invention. 本発明の実施形態1に係る圧電トランスデューサの製造方法において、活性層の上面に下部電極層を設けた状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a lower electrode layer is provided on the upper surface of the active layer in the method for manufacturing the piezoelectric transducer according to the first embodiment of the present invention. 本発明の実施形態1に係る圧電トランスデューサの製造方法において、活性層および下部電極層の各々の上面に圧電体層を設けた状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which a piezoelectric layer is provided on the upper surface of each of the active layer and the lower electrode layer in the method for manufacturing the piezoelectric transducer according to the first embodiment of the present invention. 本発明の実施形態1に係る圧電トランスデューサの製造方法において、圧電体層の上面に上部電極層を設けた状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which an upper electrode layer is provided on the upper surface of the piezoelectric layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention. 本発明の実施形態1に係る圧電トランスデューサの製造方法において、積層された圧電体層をパターニングした状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which laminated piezoelectric layers are patterned in the method for manufacturing a piezoelectric transducer according to the first embodiment of the present invention. 本発明の実施形態1に係る圧電トランスデューサの製造方法において、活性層に複数のスリットを形成した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a plurality of slits are formed in the active layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention. 本発明の実施形態1に係る圧電トランスデューサの製造方法において、ハンドル層に凹部が形成された状態を示す図である。FIG. 6 is a diagram showing a state in which a recess is formed in the handle layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention. 比較例に係る圧電トランスデューサの構成を示す、前方上方からの斜視図である。It is a perspective view from the front upper part showing the composition of the piezoelectric transducer concerning a comparative example. 比較例に係る圧電トランスデューサが、駆動時において複数の梁部の各々が上側に最も変位したときの状態を示す、前方上方からの斜視図である。FIG. 7 is a perspective view from the front upper side showing a state in which each of the plurality of beam portions is displaced to the uppermost side during driving of the piezoelectric transducer according to the comparative example. 本発明の実施形態1に係る圧電トランスデューサが、駆動時において複数の梁部の各々が上側に最も変位した状態を示す、前方上方からの斜視図である。FIG. 3 is a perspective view from the front upper side showing the piezoelectric transducer according to the first embodiment of the present invention in a state where each of the plurality of beam portions is displaced to the uppermost side during driving. 図12に示した圧電トランスデューサをXIII-XIII線矢印方向から見た断面図である。FIG. 13 is a cross-sectional view of the piezoelectric transducer shown in FIG. 12 as viewed in the direction of arrows XIII-XIII. 本発明の実施形態2に係る圧電トランスデューサの構成を示す断面図である。It is sectional drawing which shows the structure of the piezoelectric transducer which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る圧電トランスデューサの構成を示す断面図である。It is sectional drawing which shows the structure of the piezoelectric transducer which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る圧電トランスデューサの構成を示す、前方上方からの斜視図である。It is a perspective view from the front upper part showing the composition of the piezoelectric transducer concerning Embodiment 4 of the present invention.
 以下、本発明の各実施形態に係る圧電トランスデューサについて図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 A piezoelectric transducer according to each embodiment of the present invention will be described below with reference to the drawings. In the following description of the embodiments, the same or corresponding parts in the drawings will be denoted by the same reference numerals and the description thereof will not be repeated.
 (実施形態1)
 図1は、本発明の実施形態1に係る圧電トランスデューサの構成を示す、前方上方からの斜視図である。図2は、図1に示した圧電トランスデューサについてII-II線矢印方向から見た断面図である。なお、図1においては、圧電トランスデューサを構成する各層の境界は図示していない。
(Embodiment 1)
FIG. 1 is a perspective view from the front upper side showing the configuration of the piezoelectric transducer according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view of the piezoelectric transducer shown in FIG. 1 as seen in the direction of arrows II-II. It should be noted that in FIG. 1, the boundaries between the layers forming the piezoelectric transducer are not shown.
 図1および図2に示すように、本発明の実施形態1に係る圧電トランスデューサ100は、基部110と、板状部120と、複数の梁部130とを備えている。 As shown in FIGS. 1 and 2, the piezoelectric transducer 100 according to the first embodiment of the present invention includes a base portion 110, a plate-shaped portion 120, and a plurality of beam portions 130.
 図2に示すように、基部110は、水平方向から見て複数の梁部130の各々より外側に位置している。基部110は、上下方向から見て環状の外形を有している。本実施形態において、基部110の内周側に、凹部103が設けられている。これにより、基部110は、上下方向から見て円形状の内周側面を有している。 As shown in FIG. 2, the base portion 110 is located outside each of the plurality of beam portions 130 when viewed in the horizontal direction. The base 110 has an annular outer shape when viewed from above and below. In the present embodiment, the recess 103 is provided on the inner peripheral side of the base 110. As a result, the base 110 has a circular inner peripheral side surface when viewed from above and below.
 図2に示すように、本実施形態において、基部110は、ハンドル層111と、ボックス層112と、活性層114とを含んでいる。ボックス層112は、ハンドル層111上に積層されている。活性層114は、ボックス層112上に積層されている。 As shown in FIG. 2, in the present embodiment, the base 110 includes a handle layer 111, a box layer 112, and an active layer 114. The box layer 112 is laminated on the handle layer 111. The active layer 114 is stacked on the box layer 112.
 ハンドル層111は、Siで構成されている。ボックス層112は、SiO2で構成されている。活性層114は、Siで構成されている。 The handle layer 111 is made of Si. The box layer 112 is made of SiO 2 . The active layer 114 is made of Si.
 なお、基部110は、複数の梁部130の各々において、後述する外側端部を固定するものであればよい。基部110の積層構造および構成材料の各々については、特に限定されない。 It should be noted that the base portion 110 may be one that fixes an outer end portion, which will be described later, in each of the plurality of beam portions 130. Each of the laminated structure and constituent materials of the base 110 is not particularly limited.
 図1および図2に示すように、板状部120は、基部110と離間しつつ基部110の内側に位置している。図2に示すように、板状部120は、水平方向において、両側に位置する基部110との距離が略一定となるように配置されている。 As shown in FIGS. 1 and 2, the plate-shaped portion 120 is located inside the base 110 while being separated from the base 110. As shown in FIG. 2, the plate-shaped portion 120 is arranged such that the distance between the plate-shaped portion 120 and the base portions 110 located on both sides in the horizontal direction is substantially constant.
 図1に示すように、本実施形態において、板状部120は、上下方向から見たときに円形状の外形を有している。また、図2に示すように、板状部120は略一定の厚みを有している。また、本実施形態において、板状部120は一層の部材から構成されているが、積層体で構成されていてもよい。本実施形態において、板状部120は、活性層114からなる。 As shown in FIG. 1, in the present embodiment, the plate-shaped portion 120 has a circular outer shape when viewed from above and below. Further, as shown in FIG. 2, the plate-shaped portion 120 has a substantially constant thickness. Further, in the present embodiment, the plate-shaped portion 120 is composed of a single layer member, but may be composed of a laminated body. In this embodiment, the plate-shaped portion 120 is composed of the active layer 114.
 本実施形態において、4つの梁部130の各々は、基部110と板状部120とを互いに接続し、基部110の周方向に互いに間隔をあけて配置されている。具体的には、4つの梁部130は、板状部120の外周側に位置し、板状部120と同心円の円周上において互いに間隔をあけて配置されている。 In the present embodiment, each of the four beam portions 130 connects the base portion 110 and the plate-shaped portion 120 to each other, and is arranged at intervals in the circumferential direction of the base portion 110. Specifically, the four beam portions 130 are located on the outer peripheral side of the plate-shaped portion 120 and are arranged at intervals on the circumference of a concentric circle with the plate-shaped portion 120.
 図1に示すように、本実施形態においては、上記間隔が互いに等しくなるように複数の梁部130の各々が配置されている。また、本実施形態に係る圧電トランスデューサは、4つの梁部130を備えているが、梁部130の数は4つに限定されず、複数であればよい。 As shown in FIG. 1, in the present embodiment, each of the plurality of beam portions 130 is arranged so that the intervals are equal to each other. Further, the piezoelectric transducer according to the present embodiment includes four beam portions 130, but the number of beam portions 130 is not limited to four and may be any number.
 図1に示すように、複数の梁部130の各々は、上下方向から見たときに、延在部130Aと、外側端部130Bと、内側端部130Cとを有している。 As shown in FIG. 1, each of the plurality of beam portions 130 has an extending portion 130A, an outer end portion 130B, and an inner end portion 130C when viewed from above and below.
 図1および図2に示すように、延在部130Aは、基部110と隙間101を空けつつ基部110の周方向に沿って延在している。延在部130Aは、板状部120と隙間102を空けつつ板状部120の外周縁に沿って延在している。本実施形態において、隙間101および隙間102の各々の幅は、略一定である。 As shown in FIGS. 1 and 2, the extending portion 130A extends along the circumferential direction of the base 110 while leaving a gap 101 with the base 110. The extending portion 130</b>A extends along the outer peripheral edge of the plate-shaped portion 120 while leaving a gap 102 with the plate-shaped portion 120. In this embodiment, the width of each of the gap 101 and the gap 102 is substantially constant.
 図1に示すように、外側端部130Bは、延在部130Aの延在方向における一方端と、基部110とを互いに接続する。外側端部130Bは、上下方向から見たときに、延在部130Aより外側に位置している。 As shown in FIG. 1, the outer end portion 130B connects one end of the extending portion 130A in the extending direction and the base portion 110 to each other. The outer end portion 130B is located outside the extending portion 130A when viewed from above and below.
 内側端部130Cは、延在部130Aの延在方向における他方端と、板状部120とを互いに接続する。内側端部130Cは、上下方向から見たときに、延在部130Aより内側に位置している。 The inner end portion 130C connects the other end of the extending portion 130A in the extending direction and the plate-like portion 120 to each other. The inner end portion 130C is located inside the extending portion 130A when viewed from above and below.
 図2に示すように、複数の梁部130の各々は、圧電体層131と、上部電極層132と、下部電極層133と、活性層114とを有している。 As shown in FIG. 2, each of the plurality of beam portions 130 has a piezoelectric layer 131, an upper electrode layer 132, a lower electrode layer 133, and an active layer 114.
 本実施形態において、圧電体層131は、上下方向から見たときに、延在部130A、外側端部130Bおよび内側端部130Cの各々の全体に亘って配置されている。 In the present embodiment, the piezoelectric layer 131 is arranged over the entire extension 130A, the outer end 130B, and the inner end 130C when viewed from above and below.
 圧電体層131は、多結晶材料で構成されていてもよいし、単結晶材料で構成されていてもよい。圧電体層131は、チタン酸ジルコン酸鉛(PZT)系のセラミックス、窒化アルミニウム(AlN)、ニオブ酸リチウム(LiNbO3)またはタンタル酸リチウム(LiTaO3)などで構成されている。 The piezoelectric layer 131 may be made of a polycrystalline material or a single crystal material. The piezoelectric layer 131 is made of lead zirconate titanate (PZT)-based ceramics, aluminum nitride (AlN), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like.
 上部電極層132は、圧電体層131の上側に配置されている。本実施形態において、上部電極層132は、上下方向から見たときに、延在部130A、外側端部130Bおよび内側端部130Cの各々の全体に亘って配置されている。 The upper electrode layer 132 is arranged above the piezoelectric layer 131. In the present embodiment, the upper electrode layer 132 is arranged over the entire extension 130A, the outer end 130B, and the inner end 130C when viewed from above and below.
 上部電極層132は、Ptなどの導電性を有する材料で構成されている。上部電極層132と圧電体層131との間に、Tiなどで構成された密着層が配置されていてもよい。 The upper electrode layer 132 is made of a conductive material such as Pt. An adhesion layer made of Ti or the like may be arranged between the upper electrode layer 132 and the piezoelectric layer 131.
 下部電極層133は、圧電体層131を挟んで上部電極層132の少なくとも一部に対向するように配置されている。本実施形態において、下部電極層133は、上下方向から見たときに、延在部130A、外側端部130Bおよび内側端部130Cの各々の全体に亘って配置されている。 The lower electrode layer 133 is arranged so as to face at least a part of the upper electrode layer 132 with the piezoelectric layer 131 interposed therebetween. In the present embodiment, the lower electrode layer 133 is arranged over the entire extension 130A, the outer end 130B, and the inner end 130C when viewed from above and below.
 下部電極層133は、Ptなどの導電性を有する材料で構成されている。下部電極層133と圧電体層131との間に、Tiなどで構成された密着層が配置されていてもよい。 The lower electrode layer 133 is made of a conductive material such as Pt. An adhesion layer made of Ti or the like may be disposed between the lower electrode layer 133 and the piezoelectric layer 131.
 活性層114は、下部電極層133より下側に配置されている。本実施形態において、活性層114が複数の梁部130の各々の最も下側に配置されている。本実施形態において、活性層114は、延在部130A、外側端部130Bおよび内側端部130Cの各々の全体に亘って配置されている。 The active layer 114 is arranged below the lower electrode layer 133. In the present embodiment, the active layer 114 is arranged on the lowermost side of each of the plurality of beam portions 130. In the present embodiment, the active layer 114 is arranged over the entire extension 130A, the outer end 130B, and the inner end 130C.
 本実施形態において、複数の梁部130の各々を構成する活性層114は、水平方向において、基部110を構成する活性層114と互いに連続している。また、複数の梁部130の各々を構成する活性層114は、水平方向において、板状部120を構成する活性層114と互いに連続している。 In the present embodiment, the active layer 114 forming each of the plurality of beam portions 130 is continuous with the active layer 114 forming the base 110 in the horizontal direction. Further, the active layers 114 forming each of the plurality of beam portions 130 are continuous with the active layer 114 forming the plate-shaped portion 120 in the horizontal direction.
 図2に示すように、活性層114の厚さは、全体的に略一定である。活性層114は、単結晶シリコンから構成されている。 As shown in FIG. 2, the thickness of the active layer 114 is substantially constant as a whole. The active layer 114 is composed of single crystal silicon.
 図2に示すように、複数の梁部130の各々は、上述のように構成されていることにより、複数の梁部130の各々の上下方向の最大厚さは、板状部120の上下方向の最大厚さより厚くなっている。なお、複数の梁部130の各々を構成する材料の複合弾性率は、板状部120を構成する材料の複合弾性率より高くなっていることが好ましい。さらに、複数の梁部130の各々の単体における最低次の屈曲振動モードの共振周波数は、板状部120の単体における最低次の屈曲振動モードの共振周波数より高くなっている。その結果、複数の梁部130の各々の曲げ剛性が、板状部120の曲げ剛性より高くなっている。なお、上記の最大厚さ、複合弾性率および共振周波数のうちの少なくとも1つの要因によって、複数の梁部130の各々の曲げ剛性が、板状部120の曲げ剛性より高くなっていればよい。 As shown in FIG. 2, since each of the plurality of beam portions 130 is configured as described above, the maximum vertical thickness of each of the plurality of beam portions 130 is the vertical direction of the plate-shaped portion 120. It is thicker than the maximum thickness. The composite elastic modulus of the material forming each of the plurality of beam portions 130 is preferably higher than the composite elastic modulus of the material forming the plate-shaped portion 120. Further, the resonance frequency of the lowest-order bending vibration mode in each of the plurality of beam portions 130 is higher than the resonance frequency of the lowest-order bending vibration mode in the single body of the plate-shaped portion 120. As a result, the bending rigidity of each of the plurality of beam portions 130 is higher than the bending rigidity of the plate-shaped portion 120. Note that the bending rigidity of each of the plurality of beam portions 130 may be higher than the bending rigidity of the plate-shaped portion 120 due to at least one factor of the maximum thickness, the composite elastic modulus, and the resonance frequency described above.
 板状部120の中立面120Nは、板状部120内に位置している。本実施形態において、板状部120の中立面120Nは、板状部120の上下方向における略中央に位置している。すなわち、板状部120の中立面120Nは、活性層114内に位置している。具体的には、板状部120の中立面120Nは、単結晶シリコンの内部に存在している。 The neutral surface 120N of the plate-shaped portion 120 is located inside the plate-shaped portion 120. In the present embodiment, the neutral surface 120N of the plate-shaped portion 120 is located substantially at the center of the plate-shaped portion 120 in the vertical direction. That is, the neutral surface 120N of the plate-shaped portion 120 is located in the active layer 114. Specifically, the neutral surface 120N of the plate-shaped portion 120 exists inside the single crystal silicon.
 複数の梁部130の各々の中立面130Nは、活性層114内に位置している。具体的には、複数の梁部130の各々の中立面130Nは、単結晶シリコンの内部に存在している。 The neutral surface 130N of each of the plurality of beam portions 130 is located in the active layer 114. Specifically, the neutral surface 130N of each of the plurality of beam portions 130 exists inside the single crystal silicon.
 以下、本発明の実施形態1に係る圧電トランスデューサ100の製造方法について説明する。 Hereinafter, a method for manufacturing the piezoelectric transducer 100 according to the first embodiment of the present invention will be described.
 図3は、本発明の実施形態1に係る圧電トランスデューサの製造方法において、ハンドル層、ボックス層および活性層を有する積層体を準備した状態を示す断面図である。図3に示すように、ハンドル層111、ボックス層112および活性層114を有する積層体、いわゆるSOI(Silicon on Insulator)基板を準備する。 FIG. 3 is a cross-sectional view showing a state in which a laminate having a handle layer, a box layer and an active layer is prepared in the method for manufacturing a piezoelectric transducer according to the first embodiment of the present invention. As shown in FIG. 3, a so-called SOI (Silicon on Insulator) substrate having a handle layer 111, a box layer 112 and an active layer 114 is prepared.
 図4は、本発明の実施形態1に係る圧電トランスデューサの製造方法において、活性層の上面に下部電極層を設けた状態を示す断面図である。図4に示すように、リフトオフ法、めっき法、または、エッチング法などにより、活性層114の上面に下部電極層133を設ける。 FIG. 4 is a cross-sectional view showing a state in which a lower electrode layer is provided on the upper surface of the active layer in the method for manufacturing the piezoelectric transducer according to the first embodiment of the present invention. As shown in FIG. 4, the lower electrode layer 133 is provided on the upper surface of the active layer 114 by a lift-off method, a plating method, an etching method, or the like.
 図5は、本発明の実施形態1に係る圧電トランスデューサの製造方法において、活性層および下部電極層の各々の上面に圧電体層を設けた状態を示す断面図である。図5に示すように、CVD(Chemical Vapor Deposition)法またはPVD(Physical Vapor Deposition)法などにより、活性層114および下部電極層133の上面に、圧電体層131を設ける。 FIG. 5 is a cross-sectional view showing a state in which a piezoelectric layer is provided on the upper surface of each of the active layer and the lower electrode layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention. As shown in FIG. 5, the piezoelectric layer 131 is provided on the upper surfaces of the active layer 114 and the lower electrode layer 133 by a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, or the like.
 図6は、本発明の実施形態1に係る圧電トランスデューサの製造方法において、圧電体層の上面に上部電極層を設けた状態を示す断面図である。図6に示すように、リフトオフ法、めっき法、または、エッチング法などにより、圧電体層131の上面に、上部電極層132を設ける。 FIG. 6 is a cross-sectional view showing a state in which an upper electrode layer is provided on the upper surface of the piezoelectric layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention. As shown in FIG. 6, the upper electrode layer 132 is provided on the upper surface of the piezoelectric layer 131 by a lift-off method, a plating method, an etching method, or the like.
 図7は、本発明の実施形態1に係る圧電トランスデューサの製造方法において、積層された圧電体層をパターニングした状態を示す断面図である。図7に示すように、リフトオフ法またはエッチング法などにより、圧電体層131をパターニングする。これにより、圧電体層131の外形が画定される。 FIG. 7 is a cross-sectional view showing a state in which laminated piezoelectric layers are patterned in the method for manufacturing a piezoelectric transducer according to the first embodiment of the present invention. As shown in FIG. 7, the piezoelectric layer 131 is patterned by a lift-off method or an etching method. As a result, the outer shape of the piezoelectric layer 131 is defined.
 図8は、本発明の実施形態1に係る圧電トランスデューサの製造方法において、活性層に複数のスリットを形成した状態を示す断面図である。図8に示すように、リフトオフ法またはエッチングなどによって活性層114に複数のスリットを形成することにより、基部110を構成する活性層114から、板状部120を構成する活性層114、および、複数の梁部130の各々を構成する活性層114を分離させる。すなわち、これらの複数のスリットが、基部110と複数の梁部130の各々の延在部130Aとの隙間101を構成し、板状部120と複数の梁部130の各々の延在部130Aとの隙間102を構成する。 FIG. 8 is a cross-sectional view showing a state in which a plurality of slits are formed in the active layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention. As shown in FIG. 8, by forming a plurality of slits in the active layer 114 by a lift-off method or etching, the active layer 114 forming the plate-like portion 120 and the active layer 114 forming the plate-shaped portion 120 and a plurality of slits are formed in the active layer 114. The active layers 114 forming each of the beam portions 130 are separated. That is, the plurality of slits configure the gap 101 between the base portion 110 and each extending portion 130A of each of the plurality of beam portions 130, and the plate-shaped portion 120 and each extending portion 130A of each of the plurality of beam portions 130 are formed. The gap 102 is formed.
 図9は、本発明の実施形態1に係る圧電トランスデューサの製造方法において、ハンドル層に凹部が形成された状態を示す図である。図9に示すように、ハンドル層111の下側面からハンドル層111に対して深掘反応性イオンエッチング(Deep RIE:Deep Reactive Ion Etching)をすることにより、ハンドル層111において凹部103が形成される。 FIG. 9 is a diagram showing a state in which a recess is formed in the handle layer in the method of manufacturing the piezoelectric transducer according to the first embodiment of the present invention. As shown in FIG. 9, the recess 103 is formed in the handle layer 111 by performing deep reactive ion etching (Deep RIE) from the lower surface of the handle layer 111 to the handle layer 111. ..
 さらに、ボックス層112の下側面からボックス層112に対して反応性イオンエッチングをすることにより、ボックス層112において凹部103が形成される。これらの工程により、板状部120および複数の梁部130の各々の外形が画定され、図2に示すような本発明の実施形態1に係る圧電トランスデューサ100が製造される。 Further, the recess 103 is formed in the box layer 112 by performing reactive ion etching on the box layer 112 from the lower side surface of the box layer 112. Through these steps, the outer shapes of the plate-shaped portion 120 and the plurality of beam portions 130 are defined, and the piezoelectric transducer 100 according to the first embodiment of the present invention as shown in FIG. 2 is manufactured.
 ここで、本実施形態に係る圧電トランスデューサ100の駆動時の動作について説明する。本実施形態に係る圧電トランスデューサ100が音波または超音波を発生する際は、複数の梁部130の各々において、上部電極層132と下部電極層133との間に電圧が印加される。これにより、上部電極層132、下部電極層133および活性層114に拘束された圧電体層131に歪みが生ずるため、複数の梁部130の各々が、外側端部130Bと基部110との接続位置を固定端として上下方向に屈曲振動する。 Here, the operation of the piezoelectric transducer 100 according to the present embodiment during driving will be described. When the piezoelectric transducer 100 according to this embodiment generates a sound wave or an ultrasonic wave, a voltage is applied between the upper electrode layer 132 and the lower electrode layer 133 in each of the plurality of beam portions 130. This causes strain in the piezoelectric layer 131 constrained by the upper electrode layer 132, the lower electrode layer 133, and the active layer 114, so that each of the plurality of beam portions 130 has a connection position between the outer end portion 130B and the base portion 110. Bends and vibrates vertically with the fixed end as.
 本実施形態においては、複数の梁部130の各々が上述のように構成されているため、複数の梁部130の屈曲振動に伴い、板状部120も上下方向に振動する。板状部120の振動メカニズムについて、以下の比較例に係る圧電トランスデューサと対比しつつ説明する。 In the present embodiment, since each of the plurality of beam portions 130 is configured as described above, the plate-shaped portion 120 also vibrates in the up-down direction in accordance with the bending vibration of the plurality of beam portions 130. The vibration mechanism of the plate-shaped portion 120 will be described in comparison with the piezoelectric transducer according to the comparative example below.
 図10は、比較例に係る圧電トランスデューサの構成を示す、前方上方からの斜視図である。比較例に係る圧電トランスデューサ900において、複数の梁部930の曲げ剛性は、板状部920の曲げ剛性以下となるように構成されている。 FIG. 10 is a perspective view from the front upper side showing the configuration of the piezoelectric transducer according to the comparative example. In the piezoelectric transducer 900 according to the comparative example, the bending rigidity of the plurality of beam portions 930 is set to be equal to or less than the bending rigidity of the plate-shaped portion 920.
 図11は、比較例に係る圧電トランスデューサが、駆動時において複数の梁部の各々が上側に最も変位したときの状態を示す、前方上方からの斜視図である。図11においては、変位量が大きく上方に位置している部分ほど、薄い色で図示している。 FIG. 11 is a perspective view from the front upper side showing a state in which each of the plurality of beam portions is displaced to the uppermost side when the piezoelectric transducer according to the comparative example is driven. In FIG. 11, the portion having a larger displacement amount and located higher is shown in a lighter color.
 図11に示すように、比較例に係る圧電トランスデューサ900においては、複数の梁部930の各々の剛性が低いため、駆動時に複数の梁部930の各々が反り上がって、上方に大きく変位している。また、複数の梁部930の各々の剛性が低いため、板状部920における梁部930の内側端部との接続位置に曲げ応力がほとんど作用せず、駆動時に板状部920は形状を維持しつつ全体的に一様に上方に変位している。その結果、板状部920と複数の梁部930の各々の隙間902が大きくなっている。圧電トランスデューサ900が空気振動を介して入出力する場合、当該隙間902を通じて空気が漏れるため、圧電トランスデューサ900の入出力特性が低下する。 As shown in FIG. 11, in the piezoelectric transducer 900 according to the comparative example, since the rigidity of each of the plurality of beam portions 930 is low, each of the plurality of beam portions 930 warps during driving and is largely displaced upward. There is. In addition, since the rigidity of each of the plurality of beam portions 930 is low, almost no bending stress acts on the connection position of the plate portion 920 with the inner end of the beam portion 930, and the plate portion 920 maintains its shape during driving. However, it is displaced uniformly upward as a whole. As a result, the gap 902 between each of the plate-shaped portion 920 and the plurality of beam portions 930 is large. When the piezoelectric transducer 900 inputs/outputs through air vibration, air leaks through the gap 902, so that the input/output characteristics of the piezoelectric transducer 900 deteriorate.
 図12は、本発明の実施形態1に係る圧電トランスデューサが、駆動時において複数の梁部の各々が上側に最も変位した状態を示す、前方上方からの斜視図である。図13は、図12に示した圧電トランスデューサをXIII-XIII線矢印方向から見た断面図である。図12においては、変位量が大きく上方に位置している部分ほど、薄い色で図示している。 FIG. 12 is a perspective view from the front upper side showing the piezoelectric transducer according to the first embodiment of the present invention in a state in which each of the plurality of beam portions is displaced to the uppermost side during driving. FIG. 13 is a cross-sectional view of the piezoelectric transducer shown in FIG. 12 as seen in the direction of arrows XIII-XIII. In FIG. 12, the portion having a larger displacement amount and located higher is shown in a lighter color.
 図12および図13に示すように、本実施形態に係る圧電トランスデューサ100においては、複数の梁部130の各々の曲げ剛性が高いため、駆動時の複数の梁部130の各々の変位量が小さい。また、複数の梁部130の各々の剛性が高いため、板状部120における内側端部130Cとの接続位置に曲げ応力が集中して作用する。その結果、板状部120は、当該接続位置を仮想的な固定端として錐体状に変形する。よって、図12および図13に示すように、圧電トランスデューサ100においては、板状部120による錐体状の振動モードを励振することができる。 As shown in FIGS. 12 and 13, in the piezoelectric transducer 100 according to the present embodiment, since the bending rigidity of each of the plurality of beam portions 130 is high, the displacement amount of each of the plurality of beam portions 130 during driving is small. .. Further, since each of the plurality of beam portions 130 has high rigidity, bending stress concentrates and acts on the connection position of the plate-shaped portion 120 with the inner end portion 130C. As a result, the plate-shaped portion 120 deforms like a cone with the connection position as a virtual fixed end. Therefore, as shown in FIGS. 12 and 13, in the piezoelectric transducer 100, the conical vibration mode of the plate-shaped portion 120 can be excited.
 このように、圧電トランスデューサ100は、圧電トランスデューサ100の駆動時において、複数の梁部130の各々が上下方向に屈曲することによって板状部120が錐体状に変形するように、構成されている。 As described above, the piezoelectric transducer 100 is configured such that, when the piezoelectric transducer 100 is driven, each of the plurality of beam portions 130 bends in the vertical direction so that the plate-shaped portion 120 deforms into a cone shape. ..
 また、図12および図13に示すように、複数の梁部130の各々が上方に最も変位したとき、錐体上に変形した板状部120の中心部は、複数の梁部130の各々の上面より上方に位置している。このように、圧電トランスデューサ100は、圧電トランスデューサ100の駆動時において、板状部120の上下方向の最大変位量が複数の梁部130の各々の上下方向の最大変位量より大きくなるように、構成されている。 Further, as shown in FIGS. 12 and 13, when each of the plurality of beam portions 130 is most displaced upward, the central portion of the plate-shaped portion 120 deformed on the cone is the center of each of the plurality of beam portions 130. It is located above the upper surface. As described above, the piezoelectric transducer 100 is configured such that the maximum vertical displacement of the plate-shaped portion 120 is larger than the maximum vertical displacement of each of the plurality of beam portions 130 when the piezoelectric transducer 100 is driven. Has been done.
 上記のように、本発明の実施形態1に係る圧電トランスデューサ100においては、複数の梁部130の各々の曲げ剛性が、板状部120の曲げ剛性より高い。 As described above, in the piezoelectric transducer 100 according to the first embodiment of the present invention, the bending rigidity of each of the plurality of beam portions 130 is higher than the bending rigidity of the plate-shaped portion 120.
 これにより、圧電トランスデューサ100の駆動時において、複数の梁部130の各々が屈曲した際の変位量を小さくすることができる。また、板状部120の内側端部130Cとの接続位置を仮想的な固定端として板状部120を錐体状に変形させて励振させることができる。その結果、板状部120と複数の梁部130の各々との隙間102、および、基部110と複数の梁部130の各々との隙間101、の各々が大きくなることを抑制しつつ励振することができる。 This makes it possible to reduce the amount of displacement when each of the plurality of beam portions 130 is bent when the piezoelectric transducer 100 is driven. Further, the plate-shaped portion 120 can be deformed into a cone shape and excited by using the connection position of the plate-shaped portion 120 with the inner end 130C as a virtual fixed end. As a result, the gap 102 between the plate-shaped portion 120 and each of the plurality of beam portions 130, and the gap 101 between each of the base portion 110 and each of the plurality of beam portions 130 are suppressed from becoming large and excited. You can
 よって、圧電トランスデューサ100が空気振動を介して入出力する場合には、隙間101および隙間102の各々から空気が漏れることを抑制して、圧電トランスデューサ100の入出力特性を向上させることができる。 Therefore, when the piezoelectric transducer 100 inputs and outputs via air vibration, it is possible to suppress the leakage of air from each of the gap 101 and the gap 102 and improve the input/output characteristics of the piezoelectric transducer 100.
 本実施形態に係る圧電トランスデューサ100においては、複数の梁部130の各々の上下方向の最大厚さは、板状部120の上下方向の最大厚さより厚い。 In the piezoelectric transducer 100 according to the present embodiment, the maximum vertical thickness of each of the plurality of beam portions 130 is thicker than the maximum vertical thickness of the plate-shaped portion 120.
 これにより、簡易な構成で、複数の梁部130の各々の曲げ剛性を、板状部120の曲げ剛性より高くすることができる。ひいては、圧電トランスデューサ100において、入出力特性を容易に向上させることができる。 With this, the bending rigidity of each of the plurality of beam portions 130 can be made higher than the bending rigidity of the plate-shaped portion 120 with a simple configuration. As a result, the input/output characteristics of the piezoelectric transducer 100 can be easily improved.
 本実施形態に係る圧電トランスデューサ100においては、複数の梁部130の各々を構成する材料の複合弾性率は、板状部120を構成する材料の複合弾性率より高くなっていることが好ましい。 In the piezoelectric transducer 100 according to this embodiment, the composite elastic modulus of the material forming each of the plurality of beam portions 130 is preferably higher than the composite elastic modulus of the material forming the plate-shaped portion 120.
 これにより、複数の梁部130の各々における圧電体層131、上部電極層132および下部電極層133の形成後の残留応力による影響を低減することができる。ひいては、圧電トランスデューサ100において、残留応力による影響を低減して入出力特性を安定させることができる。 With this, it is possible to reduce the influence of the residual stress after forming the piezoelectric layer 131, the upper electrode layer 132, and the lower electrode layer 133 in each of the plurality of beam portions 130. Consequently, in the piezoelectric transducer 100, it is possible to reduce the influence of residual stress and stabilize the input/output characteristics.
 本実施形態に係る圧電トランスデューサ100においては、複数の梁部130の各々の単体における最低次の屈曲振動モードの共振周波数は、板状部120の単体における最低次の屈曲振動モードの共振周波数より高い。 In the piezoelectric transducer 100 according to the present embodiment, the resonance frequency of the lowest bending vibration mode of each single beam portion 130 is higher than the resonance frequency of the lowest bending vibration mode of the single plate-shaped portion 120. ..
 これにより、複数の梁部130の各々の屈曲振動の基本モードと、板状部120の円形基本モードとを、互いに近い周波数にして、圧電トランスデューサ100の入出力特性を向上させることができる。 With this, it is possible to improve the input/output characteristics of the piezoelectric transducer 100 by making the fundamental mode of bending vibration of each of the plurality of beam portions 130 and the circular fundamental mode of the plate-shaped portion 120 close to each other.
 本実施形態に係る圧電トランスデューサ100においては、板状部120は、単結晶シリコンから構成されている。板状部120の中立面は、板状部120内に位置している。 In the piezoelectric transducer 100 according to this embodiment, the plate-shaped portion 120 is made of single crystal silicon. The neutral surface of the plate-shaped portion 120 is located inside the plate-shaped portion 120.
 これにより、板状部120内の残留応力を低減することができる。ひいては、圧電トランスデューサ100において、残留応力による影響を低減して入出力特性を安定させることができる。 Due to this, the residual stress in the plate-shaped portion 120 can be reduced. Consequently, in the piezoelectric transducer 100, it is possible to reduce the influence of residual stress and stabilize the input/output characteristics.
 本実施形態に係る圧電トランスデューサ100においては、複数の梁部130の各々は、下部電極層133より下側に配置された活性層114をさらに有している。活性層114は、単結晶シリコンから構成されている。複数の梁部130の各々の中立面130Nが、活性層114内に位置している。 In the piezoelectric transducer 100 according to this embodiment, each of the plurality of beam portions 130 further includes the active layer 114 arranged below the lower electrode layer 133. The active layer 114 is composed of single crystal silicon. The neutral surface 130N of each of the plurality of beam portions 130 is located in the active layer 114.
 これにより、圧電トランスデューサ100において、圧電体層131内の残留応力による影響を低減して、入出力特性を安定させることができる。また、圧電体層131の変形を単結晶シリコンによって拘束して複数の梁部130の各々の駆動時の変位量を小さくすることができる。ひいては、板状部120と複数の梁部130の各々との隙間102、および、基部110と複数の梁部130の各々との隙間101、の各々が大きくなることを抑制し、圧電トランスデューサ100において、入出力特性を向上させることができる。 With this, in the piezoelectric transducer 100, the influence of the residual stress in the piezoelectric layer 131 can be reduced and the input/output characteristics can be stabilized. Further, the deformation of the piezoelectric layer 131 can be restricted by the single crystal silicon to reduce the displacement amount of each of the plurality of beam portions 130 during driving. As a result, it is possible to prevent the gap 102 between the plate-shaped portion 120 and each of the plurality of beam portions 130 and the gap 101 between the base portion 110 and each of the plurality of beam portions 130 from increasing, and thus in the piezoelectric transducer 100. The input/output characteristics can be improved.
 本実施形態に係る圧電トランスデューサ100は、圧電トランスデューサ100の駆動時において複数の梁部130の各々が上下方向に屈曲することによって板状部120が錐体状に変形するように、構成されている。 The piezoelectric transducer 100 according to the present embodiment is configured such that when the piezoelectric transducer 100 is driven, each of the plurality of beam portions 130 bends in the vertical direction so that the plate-shaped portion 120 deforms into a cone shape. ..
 これにより、複数の梁部130の各々の変位量を小さくしつつ板状部120を振動させることができる。その結果、複数の梁部130の各々の両側に位置する隙間101,102が拡がって空気が漏れることを抑制することができる。ひいては、圧電トランスデューサ100において、入出力特性を向上させることができる。 With this, it is possible to vibrate the plate-shaped portion 120 while reducing the displacement amount of each of the plurality of beam portions 130. As a result, it is possible to prevent the gaps 101 and 102 located on both sides of each of the plurality of beam portions 130 from expanding and air leakage. As a result, the input/output characteristics of the piezoelectric transducer 100 can be improved.
 本実施形態に係る圧電トランスデューサ100は、圧電トランスデューサ100の駆動時において板状部120の上下方向の最大変位量が複数の梁部130の各々の上下方向の最大変位量より大きくなるように、構成されている。 The piezoelectric transducer 100 according to this embodiment is configured such that the maximum vertical displacement of the plate-shaped portion 120 is larger than the maximum vertical displacement of each of the plurality of beam portions 130 when the piezoelectric transducer 100 is driven. Has been done.
 これにより、圧電トランスデューサ100の駆動時において、複数の梁部130の各々が上下方向において板状部120とは逆方向に変位する場合でも、板状部120の変位量によって圧電トランスデューサ100の入出力特性が決まるため、圧電トランスデューサ100の入出力特性を安定させることができる。 Accordingly, even when each of the plurality of beam portions 130 is displaced in the direction opposite to the plate-shaped portion 120 in the up-down direction when the piezoelectric transducer 100 is driven, the input/output of the piezoelectric transducer 100 depending on the displacement amount of the plate-shaped portion 120. Since the characteristics are determined, the input/output characteristics of the piezoelectric transducer 100 can be stabilized.
 (実施形態2)
 以下、本発明の実施形態2に係る圧電トランスデューサについて説明する。本発明の実施形態2に係る圧電トランスデューサは、複数の梁部の各々における積層体の構成が、実施形態1に係る圧電トランスデューサ100と異なる。よって、本発明の実施形態1に係る圧電トランスデューサ100と同様である構成については説明を繰り返さない。
(Embodiment 2)
The piezoelectric transducer according to the second embodiment of the present invention will be described below. The piezoelectric transducer according to the second embodiment of the present invention is different from the piezoelectric transducer 100 according to the first embodiment in the structure of the laminated body in each of the plurality of beam portions. Therefore, the description of the same configuration as the piezoelectric transducer 100 according to the first embodiment of the present invention will not be repeated.
 図14は、本発明の実施形態2に係る圧電トランスデューサの構成を示す断面図である。図14に示す圧電トランスデューサ200の断面図は、図2に示す圧電トランスデューサ100の断面図と同一の断面視にて図示している。 FIG. 14 is a cross-sectional view showing the configuration of the piezoelectric transducer according to the second embodiment of the present invention. The sectional view of the piezoelectric transducer 200 shown in FIG. 14 is shown in the same sectional view as the sectional view of the piezoelectric transducer 100 shown in FIG.
 図14に示すように、本発明の実施形態2に係る圧電トランスデューサ200においては、複数の梁部230の各々は、下部電極層133と活性層114との間に配置された絶縁層235をさらに有している。絶縁層235は、たとえばSiO2などの電気絶縁性を有する材料で構成されている。 As shown in FIG. 14, in the piezoelectric transducer 200 according to the second exemplary embodiment of the present invention, each of the plurality of beam portions 230 further includes an insulating layer 235 disposed between the lower electrode layer 133 and the active layer 114. Have The insulating layer 235 is made of a material having an electrically insulating property such as SiO 2 .
 本発明の実施形態2に係る圧電トランスデューサ200の製造方法においては、SOI基板とは別途準備された圧電単結晶基板に、リフトオフ法、めっき法、または、エッチング法などにより、圧電単結晶基板に下部電極層133が積層される。圧電単結晶基板および下部電極層133の下面には、CVD法またはPVD法などにより、絶縁層235が積層される。絶縁層235は、下面が化学機械研磨(CMP:Chemical Mechanical Polishing)などによって平坦にされた後、活性層114の上面と接合される。そして、圧電単結晶基板の上面をCMPなどにより削り、圧電単結晶基板を所望の厚さに調整することにより、圧電体層131が形成される。 In the method of manufacturing the piezoelectric transducer 200 according to the second embodiment of the present invention, a piezoelectric single crystal substrate prepared separately from the SOI substrate is formed on the piezoelectric single crystal substrate by a lift-off method, a plating method, an etching method, or the like. The electrode layer 133 is laminated. An insulating layer 235 is laminated on the lower surfaces of the piezoelectric single crystal substrate and the lower electrode layer 133 by the CVD method or the PVD method. The lower surface of the insulating layer 235 is flattened by chemical mechanical polishing (CMP) or the like, and then bonded to the upper surface of the active layer 114. Then, the upper surface of the piezoelectric single crystal substrate is ground by CMP or the like, and the piezoelectric single crystal substrate is adjusted to a desired thickness, whereby the piezoelectric layer 131 is formed.
 本実施形態に係る圧電トランスデューサ200の製造方法においては、本発明の実施形態1に係る圧電トランスデューサ100の製造方法と同様に圧電体層131をパターニングした後、絶縁層235をパターニングする。これにより、絶縁層235の外形が画定される。 In the method of manufacturing the piezoelectric transducer 200 according to this embodiment, the insulating layer 235 is patterned after the piezoelectric layer 131 is patterned as in the method of manufacturing the piezoelectric transducer 100 according to the first embodiment of the present invention. This defines the outer shape of the insulating layer 235.
 上記のように、本発明の実施形態2に係る圧電トランスデューサ200においては、複数の梁部230の各々は、下部電極層133と活性層114との間に配置された絶縁層235をさらに有している。これにより、複数の梁部230の各々の剛性をより高くできるため、圧電トランスデューサ200の駆動時において、複数の梁部230の各々が屈曲した際の変位量を小さくすることができる。また、下部電極層133と活性層114との間の電気絶縁性能を高くできるため、圧電体層131の圧電特性を向上でき、ひいては、圧電トランスデューサ200の入出力特性を向上させることができる。 As described above, in the piezoelectric transducer 200 according to the second embodiment of the present invention, each of the plurality of beam portions 230 further includes the insulating layer 235 disposed between the lower electrode layer 133 and the active layer 114. ing. Thereby, the rigidity of each of the plurality of beam portions 230 can be further increased, and thus the amount of displacement when each of the plurality of beam portions 230 is bent can be reduced when the piezoelectric transducer 200 is driven. Moreover, since the electrical insulation performance between the lower electrode layer 133 and the active layer 114 can be improved, the piezoelectric characteristics of the piezoelectric layer 131 can be improved, and the input/output characteristics of the piezoelectric transducer 200 can be improved.
 (実施形態3)
 以下、本発明の実施形態3に係る圧電トランスデューサについて説明する。本発明の実施形態3に係る圧電トランスデューサは、複数の梁部の各々における積層体の構成が、実施形態1に係る圧電トランスデューサ100と異なる。よって、本発明の実施形態1に係る圧電トランスデューサ100と同様である構成については説明を繰り返さない。
(Embodiment 3)
Hereinafter, a piezoelectric transducer according to the third embodiment of the present invention will be described. The piezoelectric transducer according to the third embodiment of the present invention is different from the piezoelectric transducer 100 according to the first embodiment in the configuration of the laminated body in each of the plurality of beam portions. Therefore, the description of the same configuration as the piezoelectric transducer 100 according to the first embodiment of the present invention will not be repeated.
 図15は、本発明の実施形態3に係る圧電トランスデューサの構成を示す断面図である。図15に示す圧電トランスデューサ300の断面図は、図2に示す圧電トランスデューサ100の断面図と同一の断面視にて図示している。 FIG. 15 is a cross-sectional view showing the configuration of the piezoelectric transducer according to the third embodiment of the present invention. The sectional view of the piezoelectric transducer 300 shown in FIG. 15 is illustrated in the same sectional view as the sectional view of the piezoelectric transducer 100 shown in FIG.
 図15に示すように、本発明の実施形態3に係る圧電トランスデューサ300においては、複数の梁部330の各々は、上部電極層132の上側に配置された保護層336をさらに有している。保護層336は、たとえばSiO2などの耐湿性を有する材料で構成されている。保護層336は、CVD法またはPVD法などにより、上部電極層132の上面に設けられる。 As shown in FIG. 15, in the piezoelectric transducer 300 according to the third embodiment of the present invention, each of the plurality of beam portions 330 further includes a protective layer 336 arranged above the upper electrode layer 132. The protective layer 336 is made of a material having moisture resistance such as SiO 2 . The protective layer 336 is provided on the upper surface of the upper electrode layer 132 by a CVD method, a PVD method, or the like.
 これにより、複数の梁部330の各々の剛性をより高くできるため、圧電トランスデューサ300の駆動時において、複数の梁部330の各々が屈曲した際の変位量を小さくすることができる。また、圧電体層131の上方を耐湿性を有する保護層336で覆うことができるため、圧電トランスデューサ300の信頼性を向上させることができる。 With this, since the rigidity of each of the plurality of beam portions 330 can be further increased, it is possible to reduce the displacement amount when each of the plurality of beam portions 330 is bent when the piezoelectric transducer 300 is driven. Further, since the upper side of the piezoelectric layer 131 can be covered with the protective layer 336 having moisture resistance, the reliability of the piezoelectric transducer 300 can be improved.
 (実施形態4)
 以下、本発明の実施形態4に係る圧電トランスデューサについて説明する。本発明の実施形態4に係る圧電トランスデューサは、上下方向から見たときの複数の梁部の形状が、本発明の実施形態1に係る圧電トランスデューサ100とは異なる。よって、本発明の実施形態1に係る圧電トランスデューサ100と同様である構成については説明を繰り返さない。
(Embodiment 4)
The piezoelectric transducer according to the fourth embodiment of the present invention will be described below. The piezoelectric transducer according to the fourth exemplary embodiment of the present invention is different from the piezoelectric transducer 100 according to the first exemplary embodiment of the present invention in the shape of the plurality of beam portions when viewed in the vertical direction. Therefore, the description of the same configuration as the piezoelectric transducer 100 according to the first embodiment of the present invention will not be repeated.
 図16は、本発明の実施形態4に係る圧電トランスデューサの構成を示す、前方上方からの斜視図である。 FIG. 16 is a perspective view from the front upper side showing the configuration of the piezoelectric transducer according to the fourth embodiment of the present invention.
 図16に示すように、本発明の実施形態4に係る圧電トランスデューサ400においては、上下方向から見たときに、複数の梁部430の各々の一方端は、基部110に接続されている。複数の梁部430の各々の他方端は、板状部120に接続されている。 As shown in FIG. 16, in the piezoelectric transducer 400 according to the fourth embodiment of the present invention, one end of each of the plurality of beam portions 430 is connected to the base portion 110 when viewed from above and below. The other end of each of the plurality of beam portions 430 is connected to the plate-shaped portion 120.
 複数の梁部430の各々の上下方向の最大厚さは、板状部120の上下方向の最大厚さより厚くなっている。なお、複数の梁部430の各々を構成する材料の複合弾性率は、板状部120を構成する材料の複合弾性率より高くなっていることが好ましい。さらに、複数の梁部430の各々の単体における最低次の屈曲振動モードの共振周波数は、板状部120の単体における最低次の屈曲振動モードの共振周波数より高くなっている。その結果、複数の梁部430の各々の曲げ剛性が、板状部120の曲げ剛性より高くなっている。なお、上記の最大厚さ、複合弾性率および共振周波数のうちの少なくとも1つの要因によって、複数の梁部430の各々の曲げ剛性が、板状部120の曲げ剛性より高くなっていればよい。 The maximum vertical thickness of each of the plurality of beam portions 430 is thicker than the maximum vertical thickness of the plate-shaped portion 120. The composite elastic modulus of the material forming each of the plurality of beam portions 430 is preferably higher than the composite elastic modulus of the material forming the plate-shaped portion 120. Further, the resonance frequency of the lowest bending vibration mode of each of the plurality of beam portions 430 is higher than the resonance frequency of the lowest bending vibration mode of the plate portion 120 alone. As a result, the bending rigidity of each of the plurality of beam portions 430 is higher than the bending rigidity of the plate-shaped portion 120. Note that the bending rigidity of each of the plurality of beam portions 430 may be higher than the bending rigidity of the plate-shaped portion 120 due to at least one factor of the maximum thickness, the composite elastic modulus, and the resonance frequency described above.
 図16に示すように、本実施形態に係る圧電トランスデューサ400においては、上下方向から見たときに、複数の梁部430の各々は、板状部120の中心Oに関して点対称となるように互いに同一の外形を有し、かつ、外形の少なくとも一部が湾曲している。複数の梁部430のうちの周方向において互いに隣接する梁部430同士の間には、一定の間隔を維持しつつ延在する隙間404が設けられている。 As shown in FIG. 16, in the piezoelectric transducer 400 according to the present embodiment, each of the plurality of beam portions 430 is point-symmetrical with respect to the center O of the plate-shaped portion 120 when viewed from above and below. It has the same outer shape and at least a part of the outer shape is curved. A gap 404 that extends while maintaining a constant interval is provided between the beam portions 430 that are adjacent to each other in the circumferential direction of the plurality of beam portions 430.
 これにより、圧電トランスデューサ400を駆動させた際、複数の梁部430の各々のうち周方向において互いに隣接する梁部430同士の変位量が互いに等しくなる。すなわち、板状部120の外周側面の周方向から見たときに、互いに隣接する梁部430同士の間の隙間が広がらない。このため、圧電トランスデューサ400の駆動時に、互いに隣接する梁部430同士の間から空気が漏れることが抑制され、圧電トランスデューサ400の入出力特性を向上させることができる。 As a result, when the piezoelectric transducer 400 is driven, the displacement amounts of the beam portions 430 adjacent to each other in the circumferential direction among the plurality of beam portions 430 become equal to each other. That is, when viewed from the circumferential direction of the outer peripheral side surface of the plate-shaped portion 120, the gap between the adjacent beam portions 430 does not widen. Therefore, when the piezoelectric transducer 400 is driven, it is possible to prevent air from leaking from between the beam portions 430 adjacent to each other, and it is possible to improve the input/output characteristics of the piezoelectric transducer 400.
 なお、隙間404は、板状部120の外周側面から基部110の内周側面にかけて延在している。隙間404は、板状部120の外周側面から基部110の内周側面までの全長にわたって、一定の曲率で湾曲している。 Note that the gap 404 extends from the outer peripheral side surface of the plate-shaped portion 120 to the inner peripheral side surface of the base portion 110. The gap 404 is curved with a constant curvature over the entire length from the outer peripheral side surface of the plate-shaped portion 120 to the inner peripheral side surface of the base portion 110.
 また、図16に示すように、本実施形態に係る圧電トランスデューサ400においては、互いに隣接する梁部430同士の間の隙間404が一定の間隔を維持しつつ延在している。 Further, as shown in FIG. 16, in the piezoelectric transducer 400 according to the present embodiment, the gap 404 between the beam portions 430 adjacent to each other extends while maintaining a constant gap.
 これにより、互いに隣接する梁部430同士の間の隙間が大きな部分が生じることを抑制できるため、互いに隣接する梁部430同士の間の隙間から空気が漏れることを抑制できる。このため、空気振動を介して入出力する圧電トランスデューサ400において、圧電トランスデューサ400の入出力特性を向上させることができる。 With this, it is possible to suppress the occurrence of a large gap between the adjacent beam portions 430, so that it is possible to prevent air from leaking from the gap between the adjacent beam portions 430. Therefore, in the piezoelectric transducer 400 that inputs and outputs via air vibration, the input/output characteristic of the piezoelectric transducer 400 can be improved.
 また、本実施形態に係る圧電トランスデューサ400においては、上下方向から見たときに、複数の梁部430の各々は、基部110側の部分より、板状部120側の部分の方が、板状部120の外周側面の径方向を向いている。 Further, in the piezoelectric transducer 400 according to the present embodiment, when viewed from above and below, each of the plurality of beam portions 430 has a plate-like shape on the plate-shaped portion 120 side than on the base 110-side portion. The outer peripheral side surface of the portion 120 faces in the radial direction.
 これにより、上記外周側面の周方向に互いに隣接する梁部430同士の、基部110からの距離が長く変位量の大きい板状部120側の部分における互いの間の隙間が大きくなることを抑制することができる。ひいては、駆動時において、上記外周側面の周方向において互いに隣接する梁部430同士の間の隙間の広がりを基部110から板状部120までの区間全体においてより抑制して、圧電トランスデューサ400の入出力特性を向上させることができる。 Thereby, it is possible to prevent the gap between the beam portions 430 adjacent to each other in the circumferential direction of the outer peripheral side surface from increasing in the plate-shaped portion 120 side where the distance from the base portion 110 is long and the displacement amount is large. be able to. Consequently, during driving, the expansion of the gap between the beam portions 430 adjacent to each other in the circumferential direction of the outer peripheral side surface is further suppressed in the entire section from the base portion 110 to the plate-shaped portion 120, and the input/output of the piezoelectric transducer 400 is suppressed. The characteristics can be improved.
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。 In the above description of the embodiments, the configurations that can be combined may be combined with each other.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 100,200,300,400,900 圧電トランスデューサ、101,102,404,902 隙間、103 凹部、110 基部、111 ハンドル層、112 ボックス層、114 活性層、120,920 板状部、120N,130N 中立面、130,230,330,430,930 梁部、130A 延在部、130B 外側端部、130C 内側端部、131 圧電体層、132 上部電極層、133 下部電極層、235 絶縁層、336 保護層。 100, 200, 300, 400, 900 Piezoelectric transducer, 101, 102, 404, 902 Gap, 103 recess, 110 base, 111 handle layer, 112 box layer, 114 active layer, 120,920 plate, 120N, 130N Elevation, 130, 230, 330, 430, 930 beam, 130A extension, 130B outer end, 130C inner end, 131 piezoelectric layer, 132 upper electrode layer, 133 lower electrode layer, 235 insulating layer, 336 Protective layer.

Claims (10)

  1.  上下方向から見て環状の外形を有する基部と、
     前記基部と離間しつつ前記基部の内側に位置する板状部と、
     前記基部と前記板状部とを互いに接続し、前記基部の周方向に互いに間隔をあけて配置された複数の梁部とを備え、
     前記複数の梁部の各々は、圧電体層と、該圧電体層の上側に配置された上部電極層と、前記圧電体層を挟んで前記上部電極層の少なくとも一部に対向するように配置された下部電極層とを有し、
     前記複数の梁部の各々の曲げ剛性は、前記板状部の曲げ剛性より高い、圧電トランスデューサ。
    A base portion having an annular outer shape when viewed from above and below,
    A plate-shaped portion located inside the base portion while being separated from the base portion,
    The base portion and the plate-shaped portion are connected to each other, and a plurality of beam portions arranged at intervals in the circumferential direction of the base portion,
    Each of the plurality of beam portions is arranged so as to face a piezoelectric layer, an upper electrode layer disposed above the piezoelectric layer, and at least a portion of the upper electrode layer with the piezoelectric layer sandwiched therebetween. And a lower electrode layer
    A piezoelectric transducer in which the bending rigidity of each of the plurality of beam portions is higher than the bending rigidity of the plate-shaped portion.
  2.  前記複数の梁部の各々の上下方向の最大厚さは、前記板状部の上下方向の最大厚さより厚い、請求項1に記載の圧電トランスデューサ。 The piezoelectric transducer according to claim 1, wherein a maximum vertical thickness of each of the plurality of beam portions is greater than a maximum vertical thickness of the plate-shaped portion.
  3.  前記複数の梁部の各々を構成する材料の複合弾性率は、前記板状部を構成する材料の複合弾性率より高い、請求項1または請求項2に記載の圧電トランスデューサ。 The piezoelectric transducer according to claim 1 or 2, wherein a composite elastic modulus of a material forming each of the plurality of beam portions is higher than a composite elastic modulus of a material forming the plate-shaped portion.
  4.  前記複数の梁部の各々の単体における最低次の屈曲振動モードの共振周波数は、前記板状部の単体における最低次の屈曲振動モードの共振周波数より高い、請求項1から請求項3のいずれか1項に記載の圧電トランスデューサ。 The resonance frequency of the lowest-order bending vibration mode in each single body of the plurality of beam portions is higher than the resonance frequency of the lowest-order bending vibration mode in the single body of the plate-like portion. The piezoelectric transducer according to item 1.
  5.  前記板状部は、単結晶シリコンから構成されており、
     前記板状部の中立面が、前記板状部内に位置している、請求項1から請求項4のいずれか1項に記載の圧電トランスデューサ。
    The plate-shaped portion is composed of single crystal silicon,
    The piezoelectric transducer according to any one of claims 1 to 4, wherein the neutral surface of the plate-shaped portion is located inside the plate-shaped portion.
  6.  前記複数の梁部の各々は、前記下部電極層より下側に配置された活性層をさらに有し、
     前記活性層は、単結晶シリコンから構成されており、
     前記複数の梁部の各々の中立面が、前記活性層内に位置している、請求項1から請求項5のいずれか1項に記載の圧電トランスデューサ。
    Each of the plurality of beam portions further has an active layer disposed below the lower electrode layer,
    The active layer is composed of single crystal silicon,
    The piezoelectric transducer according to claim 1, wherein a neutral plane of each of the plurality of beam portions is located in the active layer.
  7.  前記複数の梁部の各々は、前記下部電極層と前記活性層との間に配置された絶縁層をさらに有する、請求項6に記載の圧電トランスデューサ。 The piezoelectric transducer according to claim 6, wherein each of the plurality of beam portions further includes an insulating layer disposed between the lower electrode layer and the active layer.
  8.  前記複数の梁部の各々は、前記上部電極層の上側に配置された保護層をさらに有する、請求項1から請求項7のいずれか1項に記載の圧電トランスデューサ。 The piezoelectric transducer according to any one of claims 1 to 7, wherein each of the plurality of beam portions further includes a protective layer disposed above the upper electrode layer.
  9.  前記圧電トランスデューサの駆動時において前記複数の梁部の各々が上下方向に屈曲することによって前記板状部が錐体状に変形するように、構成されている、請求項1から請求項8のいずれか1項に記載の圧電トランスデューサ。 9. Any one of claims 1 to 8 configured such that when the piezoelectric transducer is driven, each of the plurality of beam portions is bent in the vertical direction so that the plate-like portion is deformed into a cone shape. 2. The piezoelectric transducer according to item 1.
  10.  前記圧電トランスデューサの駆動時において前記板状部の上下方向の最大変位量が前記複数の梁部の各々の上下方向の最大変位量より大きくなるように、構成されている、請求項9に記載の圧電トランスデューサ。 10. The configuration according to claim 9, wherein the maximum displacement amount of the plate-shaped portion in the vertical direction when driving the piezoelectric transducer is larger than the maximum displacement amount of each of the plurality of beam portions in the vertical direction. Piezoelectric transducer.
PCT/JP2019/032102 2018-12-27 2019-08-16 Piezoelectric transducer WO2020136983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-245451 2018-12-27
JP2018245451 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020136983A1 true WO2020136983A1 (en) 2020-07-02

Family

ID=71127038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032102 WO2020136983A1 (en) 2018-12-27 2019-08-16 Piezoelectric transducer

Country Status (1)

Country Link
WO (1) WO2020136983A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022576A (en) * 2015-07-10 2017-01-26 ローム株式会社 Structure for piezoelectric thin film microphone, and manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022576A (en) * 2015-07-10 2017-01-26 ローム株式会社 Structure for piezoelectric thin film microphone, and manufacturing method

Similar Documents

Publication Publication Date Title
WO2016175013A1 (en) Piezoelectric device, piezoelectric transformer, and piezoelectric device manufacturing method
US7586241B2 (en) Electroacoustic transducer
JP4930381B2 (en) Piezoelectric vibration device
US20130278111A1 (en) Piezoelectric micromachined ultrasound transducer with patterned electrodes
EP3140869A1 (en) Micromachined ultrasound transducer using multiple piezoelectric materials
TWI455472B (en) Power generation device with vibration unit
JP6489234B2 (en) Piezoelectric element, piezoelectric microphone, piezoelectric resonator, and method of manufacturing piezoelectric element
WO2015190429A1 (en) Piezoelectric device and method for manufacturing piezoelectric device
WO2019155663A1 (en) Mems device
US20220246831A1 (en) Piezoelectric device
US20210193901A1 (en) Piezoelectric transducer
JP2009111623A (en) Piezoelectric vibrating device
US20210343929A1 (en) Piezoelectric device
WO2020136994A1 (en) Piezoelectric transducer
JP5233466B2 (en) Vibrator, oscillator, and method for producing the vibrator
WO2020136983A1 (en) Piezoelectric transducer
WO2021106266A1 (en) Piezoelectric device
WO2019102951A1 (en) Piezoelectric device and piezoelectric device manufacturing method
WO2020129296A1 (en) Piezoelectric transducer
US11784629B2 (en) Piezoelectric device
JP7253094B1 (en) piezoelectric speaker
US11979713B2 (en) Piezoelectric device
US20230038607A1 (en) Piezoelectric device
WO2021100248A1 (en) Piezoelectric device
US20220045261A1 (en) Piezoelectric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP