WO2021095217A1 - Solar cell panel, solar cell module, method for manufacturing solar cell panel, and method for manufacturing solar cell module - Google Patents

Solar cell panel, solar cell module, method for manufacturing solar cell panel, and method for manufacturing solar cell module Download PDF

Info

Publication number
WO2021095217A1
WO2021095217A1 PCT/JP2019/044783 JP2019044783W WO2021095217A1 WO 2021095217 A1 WO2021095217 A1 WO 2021095217A1 JP 2019044783 W JP2019044783 W JP 2019044783W WO 2021095217 A1 WO2021095217 A1 WO 2021095217A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface side
solar cell
sealing layer
receiving surface
light receiving
Prior art date
Application number
PCT/JP2019/044783
Other languages
French (fr)
Japanese (ja)
Inventor
高好 松田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/044783 priority Critical patent/WO2021095217A1/en
Publication of WO2021095217A1 publication Critical patent/WO2021095217A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell panel, a solar cell module, a method for manufacturing a solar cell panel, and a method for manufacturing a solar cell module in which a solar cell is sealed with a sealing material made of a resin material.
  • one of the manufacturing techniques for solar cell panels is to seal the light-receiving surface side made of ethylene-vinyl acetate copolymer (EVA) resin on a light-transmitting substrate made of tempered glass or the like.
  • EVA ethylene-vinyl acetate copolymer
  • Patent Document 1 discloses that a polyolefin resin is used as a sealing material.
  • the amount of acid generated in the polyolefin resin over time is smaller than that in EVA. Therefore, by using the polyolefin-based resin as the encapsulant, it is possible to delay the deterioration of the conductive portion sealed in the encapsulant due to the acid generated in the encapsulant. As a result, deterioration of the output of the solar cell panel over time can be suppressed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a solar cell panel in which output deterioration and deterioration of the insulating property of the sealing layer due to aged use are suppressed.
  • the solar cell panel according to the present invention has the effect of being able to suppress output deterioration and deterioration of the insulating property of the sealing layer due to long-term use.
  • Schematic cross-sectional view showing the solar cell module according to the first embodiment of the present invention Schematic plan view showing the solar cell panel of the solar cell module according to the first embodiment of the present invention. Schematic sectional view showing a solar cell panel of the solar cell module according to the first embodiment of the present invention. Schematic cross-sectional view showing a holding frame of the solar cell module according to the first embodiment of the present invention. A flowchart showing a procedure of a method for manufacturing a solar cell module according to a first embodiment of the present invention. An exploded perspective view showing the configuration of the solar cell panel according to the first embodiment of the present invention before laminating.
  • Sectional drawing which shows the structure of the laminated body before laminating in the manufacturing process of the solar cell panel which concerns on Embodiment 1 of this invention.
  • the solar cell panel, the solar cell module, the method for manufacturing the solar cell panel, and the method for manufacturing the solar cell module according to the embodiment of the present invention will be described in detail with reference to the drawings.
  • the present invention is not limited to this embodiment, and can be appropriately modified without departing from the gist of the present invention. Further, in the drawings shown below, the scale of each member may differ from the actual scale for easy understanding.
  • FIG. 1 is a schematic cross-sectional view showing a solar cell module 50 according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the solar cell panel 10 of the solar cell module 50 according to the first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the solar cell panel 10 of the solar cell module 50 according to the first embodiment of the present invention.
  • FIG. 3 shows a cross section along lines III-III in FIG.
  • FIG. 4 is a schematic cross-sectional view showing a holding frame 20 of the solar cell module 50 according to the first embodiment of the present invention.
  • the solar cell panel 10 has a light receiving surface side sealing layer made of a light transmitting insulating resin on a light transmitting substrate 1 which is a light receiving surface side protective member arranged on the light receiving surface side. 2, a solar cell string 3a to which a plurality of solar cells 3 which are photovoltaic elements are electrically connected, a back surface side sealing layer 4, and a back surface arranged on the back surface side facing the light receiving surface. It has a structure in which the side covering member 5 and the side covering member 5 are sequentially laminated.
  • the solar cell strings 3a are arranged on the light-receiving surface side protective member arranged on the light-receiving surface side of the solar cell strings 3a and on the back surface side facing the light-receiving surface of the solar cell strings 3a. It is sealed in a sealing layer 6 sandwiched between the back surface side covering member 5.
  • the sunlight L is incident from the surface side of the light transmissive substrate 1.
  • the solar cell panel 10 has a quadrangular outer shape in the in-plane direction of the solar cell panel 10.
  • the solar cell panel 10 has a rectangular outer shape in the in-plane direction of the solar cell panel 10.
  • the direction parallel to the pair of opposite sides in the rectangular shape of the outer shape of the solar cell panel 10 is defined as the first direction.
  • the first direction corresponds to the X direction.
  • the direction parallel to the other pair of opposing sides in the rectangular shape of the outer shape of the solar cell panel 10 is defined as the second direction.
  • the second direction corresponds to the Y direction.
  • the light transmissive substrate 1 is fixed to the outer surface of the light receiving surface side sealing layer 2 having a two-layer structure located on the light receiving surface side in the solar cell panel 10 by the adhesive force of the light receiving surface side sealing layer 2. Has been done. Sunlight L is incident on the surface of the light transmissive substrate 1.
  • a glass substrate having light-transmitting property and weather resistance is used as the light-transmitting substrate 1.
  • another member such as a resin plate may be used as long as it is a material having light-transmitting property and weather resistance.
  • it is preferable to use a glass substrate when there is a concern that the insulating property may be deteriorated due to hydrolysis of the resin due to long-term use.
  • the light transmissive substrate 1 has a quadrangular outer shape in the in-plane direction of the light transmissive substrate 1 as well as the outer shape in the in-plane direction of the solar cell panel 10.
  • the in-plane direction of the light transmissive substrate 1 is parallel to the in-plane direction of the solar cell panel 10.
  • the light transmissive substrate 1 has a rectangular outer shape in the in-plane direction of the light transmissive substrate 1, similarly to the solar cell panel 10.
  • the dimension in the first direction that is, the dimension in the X direction
  • the dimension in the second direction that is, the dimension in the Y direction
  • the external dimensions of the light transmissive substrate 1 in this case are represented by (X1, Y1).
  • the light receiving surface side sealing layer 2 is mainly on the light transmitting substrate 1 side of the light receiving surface of the solar cell 3 of the solar cell strings 3a among the sealing layers 6 for sealing the solar cell strings 3a inside. The area where it was placed.
  • the back surface side sealing layer 4 is mainly on the back surface side covering member 5 side of the back surface side of the solar cell 3a of the solar cell strings 3a among the sealing layers 6 for sealing the solar cell strings 3a inside. The area where it was placed.
  • the back surface of the solar cell 3 is a surface facing the light receiving surface of the solar cell 3 in the solar cell 3.
  • the light-receiving surface side sealing layer 2 is a region of the solar cell panel 10 on the light-transmitting substrate 1 side of the light-receiving surface of the solar cell 3, and a light-transmitting substrate 1 side on the outside of the outer periphery of the solar cell strings 3a. Is arranged in the region of the above, and in the region on the light transmissive substrate 1 side of the gap region between the solar cells 3 in the solar cell strings 3a.
  • the light receiving surface side sealing layer 2 covers the solar cell cell strings 3a from the light receiving surface side and the outer peripheral side of the solar cell cell strings 3a, and seals the solar cell cell strings 3a together with the back surface side sealing layer 4. There is.
  • the light receiving surface side sealing layer 2 covers the entire surface of the solar cell strings 3a on the light receiving surface side.
  • a single layer or a laminated body of a thermoplastic resin in which a cross-linking agent is added to a light-transmitting polyolefin resin such as polyethylene and polypropylene is used.
  • Polyolefin-based resins generate relatively less acid than EVA.
  • the light receiving surface side sealing layer 2 improves weather resistance, mechanical strength, adhesiveness to the light transmissive substrate 1, adhesiveness to the solar cell strings 3a, and adhesiveness to the back surface side sealing layer 4. It is preferable that they are cross-linked to allow them to be cross-linked.
  • a method for cross-linking a conventionally known method can be used, but a method that generates radicals by heat is effective.
  • the light receiving surface side sealing layer 2 preferably contains an ultraviolet absorber in order to improve the light resistance.
  • the ultraviolet absorber since the ultraviolet absorber is contained in the light receiving surface side sealing layer 2, the amount of sunlight L incident on the solar cell 3 is reduced, and the output of the solar cell 3 is reduced. Therefore, it is preferable that the content of the ultraviolet absorber in the light receiving surface side sealing layer 2 is adjusted according to the design life of the solar cell 3.
  • the thickness of the light receiving surface side sealing layer 2 is preferably 0.05 mm or more and 1.0 mm or less.
  • the melt flow rate (Melt Flow Rate: MFR) of the polyolefin resin used for the light receiving surface side sealing layer 2 is 0.1 g / 10 min or more and 35 g / 10 min or less.
  • the melt flow rate of the polyolefin resin used for the light receiving surface side sealing layer 2 within the above range, the flow of the polyolefin resin during the manufacture of the solar cell panel 10 is controlled and the light receiving surface side sealing layer is controlled. 2 can be thinned. By thinning the light-receiving surface side sealing layer 2, it is possible to increase the amount of sunlight L transmitted through the light-receiving surface side sealing layer 2 and improve the output of the solar cell 3.
  • the dimension in the first direction that is, the dimension in the X direction
  • the dimension in the second direction that is, the dimension in the Y direction
  • the external dimensions of the light receiving surface side sealing layer 2 in this case are represented by (X2, Y2).
  • X2 is shorter than X1
  • Y2 is shorter than Y1. That is, the external dimensions (X2, Y2) of the light receiving surface side sealing layer 2 are smaller than the external dimensions (X1, Y1) of the light transmissive substrate 1. Therefore, the outer shape of the light receiving surface side sealing layer 2 is smaller than the outer shape of the light transmissive substrate 1.
  • the solar cell strings 3a are sealed between the light transmissive substrate 1 and the back surface side covering member 5 in the light receiving surface side sealing layer 2 and the back surface side sealing layer 4.
  • a plurality of solar cell cells 3 are arranged in a matrix having a gap region on the same plane.
  • the plurality of solar cells 3 are electrically connected in series by connecting electrodes provided on the front and back surfaces of adjacent solar cells 3.
  • the dimension in the first direction that is, the dimension in the X direction
  • the dimension in the second direction that is, the dimension in the Y direction
  • the external dimensions of the solar cell strings 3a in this case are represented by (X3, Y3).
  • X3 is shorter than X2
  • Y3 is shorter than Y2. That is, the external dimensions (X3, Y3) of the solar cell strings 3a are smaller than the external dimensions (X2, Y2) of the light receiving surface side sealing layer 2. Therefore, the outer shape of the solar cell strings 3a is smaller than the outer shape of the light receiving surface side sealing layer 2.
  • the back surface side sealing layer 4 is a region on the back surface side covering member 5 side of the back surface of the solar cell 3 and a region on the back surface side covering member 5 side outside the outer periphery of the solar cell strings 3a in the solar cell panel 10.
  • the solar cell strings 3a are arranged in the region on the back surface side covering member 5 side of the gap region between the solar cells 3 and the region outside the outer periphery of the light receiving surface side sealing layer 2.
  • the back surface side sealing layer 4 covers the solar cell cell strings 3a from the back surface side and the outer peripheral side of the solar cell cell strings 3a, and seals the solar cell cell strings 3a together with the light receiving surface side sealing layer 2. ..
  • the back surface side sealing layer 4 covers a region on the back surface of the light receiving surface side sealing layer 2 outside the outer circumference of the solar cell strings 3a from the back surface side. Further, the back surface side sealing layer 4 covers the outer periphery of the light receiving surface side sealing layer 2. That is, the back surface side sealing layer 4 is fixed to the outer peripheral edge portion on the back surface of the light receiving surface side sealing layer 2 and the outer periphery of the light receiving surface side sealing layer 2.
  • the backside sealing layer 4 has a relatively small decrease in insulating property in an outdoor environment due to accelerated decomposition due to receiving moisture, heat, and light energy, as compared with a polyolefin resin, such as EVA.
  • a polyolefin resin such as EVA.
  • a polymer resin having insulating properties is used.
  • the dimension in the first direction that is, the dimension in the X direction
  • the dimension in the second direction that is, the dimension in the Y direction
  • the external dimensions of the back surface side sealing layer 4 in this case are represented by (X4, Y4).
  • X4 has the same dimensions as X1.
  • Y4 has the same dimensions as Y1.
  • the back surface side covering member 5 is fixed to the outer surface of the back surface side sealing layer 4 located on the back surface side of the solar cell panel 10 by the adhesive force of the back surface side sealing layer 4.
  • the back surface side of the solar cell panel 10 is the installation surface side of the solar cell module 50.
  • the back surface side covering member 5 protects the solar cell strings 3a sealed in the back surface side sealing layer 4.
  • the back surface side covering member 5 is made of a resin having insulating properties and weather resistance.
  • a resin used for the back surface side covering member 5 for example, a fluorine-based resin such as polyethylene terephthalate (PET) and polyvinyl fluoride (PVF), and a polymer resin such as olefin and urethane are preferable.
  • the back surface side coating member 5 may be a single layer of any resin of PET, fluororesin, olefin and urethane, and is selected from the group consisting of PET, fluororesin, olefin and urethane. It may be a laminated body in which a plurality of layers made of at least one kind of resin are laminated.
  • the back surface side covering member 5 is preferably a laminate of PET sheets made of PET having a relatively high insulating property and weather resistance among the above resins.
  • the laminate of PET sheets is composed of a reflective PET sheet, a thick-film PET sheet, and a weather-resistant PET sheet.
  • the reflective PET sheet is a PET sheet for reflecting sunlight L that cannot be directly incident on the solar cell 3 because it is incident between the solar cells 3 in the solar cell strings 3a and causing it to be incident on the solar cell 3.
  • the thick-film PET sheet is a PET sheet having a thickness for ensuring the thickness of the back surface side covering member 5 in order to maintain the insulation distance between the solar cell 3 and the outside of the solar cell panel 10.
  • the weather-resistant PET sheet is a PET sheet having light resistance that does not easily deteriorate with respect to moisture, light and heat received from the atmosphere.
  • the dimension in the first direction that is, the dimension in the X direction
  • the dimension in the second direction that is, the dimension in the Y direction
  • the external dimensions of the back surface side covering member 5 in this case are represented by (X5, Y5).
  • X5 has the same dimensions as X1.
  • Y5 has the same dimensions as Y1.
  • the holding frame 20 surrounds the outer edge of the solar cell panel 10 over the entire circumference of the outer circumference of the solar cell panel 10 and supports the solar cell panel 10 via the outer edge of the solar cell panel 10.
  • the holding frame 20 is a metal frame made of a metal such as aluminum, and an extruded product is used. As shown in FIG. 4, the holding frame 20 includes a holding groove portion 20a in which the outer edge portion of the solar cell panel 10 is housed.
  • the outer shape of the light receiving surface side sealing layer 2 needs to be smaller than the outer shape of the light transmissive substrate 1. Further, the outer shape of the light receiving surface side sealing layer 2 needs to be larger than the outer shape of the solar cell 3 and the conductive portion connected to the solar cell 3, that is, larger than the outer shape of the solar cell strings 3a.
  • the polyolefin-based resin such as polyethylene used for the light-receiving surface side sealing layer 2 generates a relatively small amount of acid as the solar cell panel 10 is used over time as compared with EVA, and the solar cell 3 and the sun Deterioration of the conductive portion connected to the battery cell 3 is delayed. That is, the polyolefin-based resin such as polyethylene used for the light-receiving surface side sealing layer 2 does not have a functional group such as a carboxyl group that can be an acid, and does not generate an acid such as acetic acid even when hydrolyzed.
  • the metal material such as silver (Ag) is less likely to be oxidized, the moisture resistance deterioration of the solar cell 3 due to the light receiving surface side sealing layer 2 is less likely to occur.
  • a nitride film such as silicon nitride (SiN) is provided on the light receiving surface side of the solar cell 3 as an antireflection film or the like
  • a polyolefin resin is provided on the light receiving surface side sealing layer 2 in contact with the solar cell 3.
  • EVA resin since EVA resin has a functional group such as a carboxyl group that can be an acid, it generates an acid such as acetic acid when it is hydrolyzed by long-term use. Therefore, when EVA is used for the light receiving surface side sealing layer 2 in contact with the solar cell 3, the light receiving surface side sealing layer 2 becomes the light receiving surface side sealing layer 2 due to the generation of acid due to the aged use of the light receiving surface side sealing layer 2. Oxidation of a metal material such as Ag used for the electrodes of the solar cell 3 in contact occurs, and the moisture resistance deterioration of the solar cell 3 caused by the light receiving surface side sealing layer 2 occurs.
  • a nitride film is provided as an antireflection film or the like on the light receiving surface side of the solar cell 3, and EVA is used for the light receiving surface side sealing layer 2 in contact with the solar cell 3, the light receiving surface side sealing layer is used. Due to the generation of acid due to the aged use of 2, the nitride film in contact with the light receiving surface side sealing layer 2 is deteriorated, and the moisture resistance of the solar cell 3 is deteriorated due to the light receiving surface side sealing layer 2.
  • the solar cell panel 10 by using a polyolefin resin for the light receiving surface side sealing layer 2, the solar cell 3 and the solar cell 3 are compared with the case where EVA is used for the light receiving surface side sealing layer 2. Deterioration of the connected conductive portion can be slowed down. As a result, the solar cell panel 10 can suppress the deterioration of the output of the solar cell 3 and the solar cell strings 3a over time, and the effect of holding the output of the solar cell panel 10 can be obtained.
  • polyolefin-based resins such as polyethylene may lose their insulating properties in the outdoor environment due to the accelerated decomposition due to the energy of moisture, heat and light. Therefore, in the solar panel 10, the deterioration of the insulating property in the outdoor environment due to the acceleration of decomposition by receiving the energy of moisture, heat and light is relatively small as compared with the polyolefin resin, EVA and the like.
  • the polymer resin having the insulating property of is used for the back surface side sealing layer 4. Then, in the solar cell panel 10, the back surface side sealing layer 4 covers the light receiving surface side sealing layer 2 from the back surface side and the outer peripheral side of the light receiving surface side sealing layer 2.
  • the solar cell panel 10 is made of an olefin resin, and the influence of the insulation deterioration due to the outdoor environment is relatively larger than that of EVA.
  • the influence of the outdoor environment on the light receiving surface side sealing layer 2 is suppressed, and the light is received by the outdoor environment. It is possible to suppress a decrease in the insulating property of the surface-side sealing layer 2, and it is possible to suppress a decrease in the insulating property of the sealing layer 6.
  • the solar cell panel 10 a glass substrate is used, in which the deterioration of the insulating property in the outdoor environment due to the acceleration of decomposition by receiving the energy of moisture, heat and light is relatively small as compared with the polyolefin resin.
  • the light transmissive substrate 1 covers the light receiving surface side sealing layer 2 from the light receiving surface side of the light receiving surface side sealing layer 2.
  • the solar cell panel 10 is made of an olefin resin, and the influence of the insulation deterioration due to the outdoor environment is relatively larger than that of EVA.
  • the influence of the outdoor environment on the light receiving surface side sealing layer 2 is suppressed, and the light is received by the outdoor environment. It is possible to suppress a decrease in the insulating property of the surface-side sealing layer 2, and it is possible to suppress a decrease in the insulating property of the sealing layer 6.
  • the back surface side sealing layer 4 covers the light receiving surface side sealing layer 2 from the back surface side covering member 5 side and the surface of the light transmissive substrate 1. In the inward direction, it is in contact with the outer peripheral edge portion 1a of the back surface of the light transmissive substrate 1 with a width of 1 mm or more over the entire circumference of the outer periphery of the light transmissive substrate 1.
  • the light receiving surface side sealing layer 2 is covered from the outer peripheral side to shield the light receiving surface side sealing layer 2 from the outside air.
  • the light receiving surface side sealing layer 2 made of the polyolefin resin is prevented from being hydrolyzed by absorbing the moisture of the outside air, and the light receiving surface side sealing caused by the hydrolysis is prevented. It is possible to prevent a decrease in the insulating property and a decrease in the adhesiveness of the layer 2.
  • a polyolefin resin such as polyethylene, which generates a relatively small amount of acid with aging, is used for the light receiving surface side sealing layer 2.
  • a resin such as EVA, which has relatively high deterioration resistance and insulating property against hydrolysis as compared with the polyolefin-based resin, is used for the back surface side sealing layer 4, and the back surface side sealing layer 4 is used.
  • the light receiving surface side sealing layer 2 is shielded from the outside air.
  • the solar cell panel 10 is realized in which the output deterioration over time and the deterioration of the insulating property of the sealing layer 6 are suppressed, and the long-term reliability and safety are improved.
  • FIG. 5 is a flowchart showing a procedure of a method for manufacturing the solar cell module 50 according to the first embodiment of the present invention.
  • FIG. 6 is an exploded perspective view showing the configuration of the solar cell panel 10 according to the first embodiment of the present invention before laminating.
  • FIG. 7 is a cross-sectional view showing the configuration of the laminated body 10a before laminating in the manufacturing process of the solar cell panel 10 according to the first embodiment of the present invention.
  • FIG. 6 shows a case where the solar cell strings 3a in which 24 solar cells 3 are electrically connected in series are used.
  • step S10 the first step, the laminating step, is performed.
  • the light receiving surface side sealing layer sheet 2a, the solar cell strings 3a, the back surface side sealing layer sheet 4a, and the back surface side are placed on the light transmissive substrate 1 in the positional relationship as shown in FIG.
  • the covering member sheet 5a and the covering member sheet 5a are laminated in this order to form a laminated body 10a as shown in FIG. 7.
  • the light receiving surface side sealing layer sheet 2a is a resin sheet made of a polyolefin resin and becomes the light receiving surface side sealing layer 2 after the laminating step.
  • the backside sealing layer sheet 4a has a relatively small decrease in insulating property in an outdoor environment due to accelerated decomposition due to receiving moisture, heat, and light energy, as compared with a polyolefin resin, such as EVA. It is a resin sheet made of an insulating resin and which becomes the back surface side sealing layer 4 after the laminating step.
  • the back surface side covering member sheet 5a is a resin sheet that becomes the back surface side covering member 5 after the laminating step.
  • the solar cell strings 3a are formed by connecting a plurality of solar cells 3 manufactured by a known method to each other using lead wires.
  • the external dimensions of the light transmissive substrate 1 are represented by (X1, Y1) as described above.
  • the dimension in the first direction that is, the dimension in the X direction
  • the dimension in the second direction that is, the dimension in the Y direction
  • the external dimensions of the light receiving surface side sealing layer sheet 2a in this case are represented by (X2s, Y2s).
  • X2s is shorter than X1
  • Y2s is shorter than Y1. That is, the external dimensions (X2s, Y2s) of the light receiving surface side sealing layer sheet 2a are smaller than the external dimensions (X1, Y1) of the light transmissive substrate 1.
  • the external dimensions of the solar cell strings 3a are represented as (X3, Y3) as described above.
  • X3 is shorter than X2s and Y3 is shorter than Y2s. That is, the external dimensions (X3, Y3) of the solar cell strings 3a are smaller than the external dimensions (X2s, Y2s) of the light receiving surface side sealing layer sheet 2a.
  • the dimension in the first direction that is, the dimension in the X direction
  • the dimension in the second direction that is, the dimension in the Y direction
  • the external dimensions of the back surface side sealing layer sheet 4a in this case are represented as (X4s, Y4s).
  • X4s is longer than X1.
  • Y4s is longer than Y1. That is, the external dimensions (X4s, Y4s) of the back surface side sealing layer sheet 4a are larger than the external dimensions (X1, Y1) of the light transmissive substrate 1.
  • the size of the external dimensions of each component constituting the laminated body 10a is "X5s> X4s> X1> X2s> X3" for the dimensions in the first direction, and the second direction.
  • the dimensions of are "Y5s> Y4s> Y1> Y2s> Y3". Therefore, the size of the outer shape of each component constituting the laminated body 10a is determined by "back surface side covering member sheet 5a> back surface side sealing layer sheet 4a> light transmissive substrate 1> light receiving surface side sealing layer sheet 2a. > Solar cell strings 3a ”.
  • the solar cell panel manufacturing apparatus 100 includes a main body 101 and a cooling conveyor 103.
  • the main body 101 conveys the first member 101a arranged below, the second member 101b having a function of pressing after melting the sealing material and arranged above the first member 101a, and the laminated body 10a.
  • An annular transport sheet 101c for the purpose is provided.
  • the first member 101a includes a heater 101H for heating the laminated body 10a.
  • the solar cell panel manufacturing apparatus 100 may be configured to laminate the laminated body 10a in a vacuum.
  • the cooling conveyor 103 is arranged on the downstream side of the main body 101.
  • the cooling conveyor 103 has a function of cooling the laminated body 10a discharged from the main body 101 after being melted and pressurized by air cooling, and a function of transporting the laminated body 10a.
  • the cooling conveyor 103 is configured by arranging a plurality of rollers in parallel, but may be configured by a known transfer sheet and transfer chain.
  • the laminated body 10a is pressurized at a pressure of about 0.05 MPa or more and 2.00 MPa or less for a heating time of 1 min or more and 120 min or less.
  • the solar cell strings 3a are sealed inside the sealing layer 6 formed by integrating the light receiving surface side sealing layer sheet 2a and the back surface side sealing layer sheet 4a.
  • the light receiving surface side sealing layer is formed.
  • FIG. 10 is a diagram showing preparation conditions for samples of Example 1, Comparative Example 1 and Comparative Example 2.
  • solar cell strings are referred to as cell strings, and solar cells are referred to as cells.
  • Example 1 Following the manufacturing method of the solar cell module 50 described above, the light transmitting substrate 1, the light receiving surface side sealing layer sheet 2a serving as the light receiving surface side sealing layer 2, the solar cell strings 3a, and the back surface side sealing layer 4
  • the back surface side sealing layer sheet 4a and the back surface side covering member sheet 5a serving as the back surface side covering member 5 were sequentially laminated to form a laminated body.
  • a white plate glass having a size of first direction: 600 mm ⁇ second direction: 450 mm ⁇ thickness: 3.2 mm was used.
  • a polyethylene resin sheet having a size of 1st direction: 590 mm ⁇ 2nd direction: 440 mm ⁇ thickness: 0.6 mm was used.
  • an EVA resin sheet having a size of 1st direction: 610 mm ⁇ 2nd direction: 460 mm ⁇ thickness: 0.4 mm was used.
  • a PET sheet having a size of 620 mm ⁇ second direction: 470 mm ⁇ thickness: 0.1 mm in which a PET film was laminated was used.
  • the back surface side sealing layer sheet 4a and the back surface side covering member sheet 5a are provided with notches so that the output terminals can be taken out from the back surface side of the solar cell panel.
  • wiring was attached to the solar cell 3 of the solar cell strings 3a so that an image of EL emission (Electro-Luminescence) when the solar cell 3 was energized could be confirmed.
  • the solar cell panel manufacturing apparatus 100 shown in FIG. 8 was configured so that it could be laminated in a vacuum, and the laminated body was laminated.
  • the laminating process was carried out under the conditions that the laminated body was heated to 160 ° C., evacuated for 5 minutes, the pressing pressure was 50 KPa, and the pressing time was 30 minutes.
  • the resin protruding from the end face of the light transmissive substrate 1 is cut off with a cutter knife, and the external dimensions are adjusted to the same external dimensions as the external dimensions of the light transmissive substrate 1 before the laminating process.
  • a solar cell panel having an appearance and a cross-sectional shape similar to that in FIG. 3 was produced. The sample of the solar cell panel produced as described above was used as the sample of Example 1.
  • the reason why the outer dimensions of the back surface side covering member sheet 5a are larger than the outer dimensions of the back surface side sealing layer sheet 4a is that the back surface side sealing layer sheet 4a serves as the top plate of the solar cell panel manufacturing apparatus 100 during the laminating process. This is because there is a possibility of adhering to the second member 101b and contaminating the solar cell panel manufacturing apparatus 100.
  • Comparative example 1 The size of the light receiving surface side sealing layer sheet 2a is the first in place of the polyethylene resin sheet having the size of the first direction: 590 mm ⁇ the second direction: 440 mm ⁇ the thickness: 0.6 mm used in the first embodiment.
  • a solar cell panel was produced in the same manner as in Example 1 except that a polyethylene resin sheet having a direction of 610 mm ⁇ second direction: 460 mm ⁇ thickness: 0.6 mm was used. The sample of the solar cell panel produced as described above was used as the sample of Comparative Example 1.
  • the surface of the solar cell 3 is covered with a light receiving surface side sealing layer 2 made of polyethylene and a back surface side sealing layer 4 made of EVA. That is, the sample of Comparative Example 1 includes a region on the surface and outer periphery of the solar cell 3 on the light receiving surface side on the light transmitting substrate 1 side and a region on the light transmitting substrate 1 side in the gap region between the solar cells 3. Is covered with a light receiving surface side sealing layer 2 made of polyethylene. Further, in the sample of Comparative Example 1, the region on the back surface side of the solar cell 3 and the region on the back surface side covering member 5 on the outer circumference and the region on the back surface side covering member 5 side in the gap region between the solar cells 3 are formed.
  • Comparative example 2 The size of the light-receiving surface-side sealing layer sheet 2a is first, instead of the polyethylene resin sheet having a size of 590 mm ⁇ second direction: 440 mm ⁇ thickness: 0.6 mm used in Example 1.
  • a solar cell panel was produced in the same manner as in Example 1 except that an EVA resin sheet having a direction of 610 mm ⁇ second direction: 460 mm ⁇ thickness: 0.6 mm was used.
  • the sample of the solar cell panel produced as described above was used as the sample of Comparative Example 2.
  • the front surface of the solar cell 3 is covered with a light receiving surface side sealing layer 2 made of EVA and a back surface side sealing layer 4 made of EVA.
  • the light receiving surface side sealing layer 2 is arranged on the entire back surface of the light transmissive substrate 1.
  • the IV characteristics, EL images, and insulating properties of the samples of Example 1, Comparative Example 1 and Comparative Example 2 prepared as described above were measured.
  • the IV characteristic is the electrical characteristic of the solar cell panel, and is a value such as the output of the solar cell panel when the solar cell panel is irradiated with the light of the irradiance specified in JIS C 8990, and is the current I and the voltage V. It is obtained from the measurement result of.
  • the IV characteristics include maximum output Pm, short-circuit current Isc, and curve factor F. F, series resistance Rs was obtained.
  • the EL image is an image visualized by capturing an infrared ray (Infrared: IR) generated by forcibly energizing a solar cell with an electric current with an infrared camera. Since the portion of the solar cell having a defect such as cracking is not energized, infrared rays are not generated and the portion remains dark, and a dark portion is generated in the EL image. Therefore, by checking the EL image, it is possible to confirm the malfunction of the solar cell panel due to the malfunction of the solar cell.
  • IR infrared ray
  • Example 1 Comparative Example 1 and Comparative Example 2 were stored for 4000 hours in a high temperature and high humidity (Damp-Heat: DH, temperature: 85 ° C., humidity: 85%) environment. Then, the IV characteristics, EL images, and insulating properties of the samples of Example 1, Comparative Example 1, and Comparative Example 2 were measured again. The result is shown in FIG. FIG. 11 is a diagram showing the measurement results of the samples of Example 1, Comparative Example 1 and Comparative Example 2. In FIG. 11, the Pm retention rate and the Rs retention rate are expressed as percentages based on the measured values before storage in a high temperature and high humidity environment for 4000 hours.
  • the sample of Comparative Example 2 uses EVA for the light receiving surface side sealing layer 2, the moisture resistance deterioration of the maximum output Pm is large. That is, the EVA used for the light receiving surface side sealing layer 2 has a functional group such as a carboxyl group that can be an acid, and an acid such as acetic acid is generated by hydrolysis with aging. Therefore, it is considered that the sample of Comparative Example 2 has a larger moisture resistance deterioration of the maximum output Pm than that of Example 1 and Comparative Example 1. However, in the sample of Comparative Example 1, since the solar cell panel 10 is entirely covered with EVA, the insulating property of the sealing layer 6 is high.
  • the light receiving surface side sealing layer 2 is EVA, Ag or the like formed on the light receiving surface of the solar cell 3 due to the acid generated by the hydrolysis of the light receiving surface side sealing layer 2 with aging.
  • a phenomenon occurs in which the electrodes of the above are oxidized and cannot collect electricity.
  • the electrodes formed on the light receiving surface of the solar cell 3 are oxidized and electricity cannot be collected, EL light emission is not confirmed, and the dark part is dark.
  • the dark part generation phenomenon occurs, and as shown in FIG. 11, the result is that the dark part is generated.
  • the electrode formed on the light-receiving surface of the solar cell 3 has a light-receiving surface as described above over time. It does not deteriorate due to the acid generated from the side sealing layer 2. Therefore, in the samples of Example 1 and Comparative Example 1, since the electrode formed on the light receiving surface of the solar cell 3 is less likely to be oxidized, the dark part generation phenomenon is less likely to occur, and as shown in FIG. 11, it is said that no dark part is generated. The result is.
  • the light receiving surface side sealing layer 2 is EVA, Ag or the like formed on the light receiving surface of the solar cell 3 due to the acid generated by the hydrolysis of the light receiving surface side sealing layer 2 with aging.
  • the phenomenon that the electrode of the above is oxidized and the resistance value of the electrode rises occurs.
  • the light receiving surface side sealing layer 2 is EVA, a phenomenon occurs in which the electrode formed on the light receiving surface of the solar cell 3 is oxidized by the acid and the resistance value of the electrode increases.
  • the result is that the Rs retention rate increases. Therefore, in the sample of Comparative Example 2, the maximum output Pm is lowered, resulting in a decrease in the power generation capacity.
  • the light receiving surface side sealing layer 2 is more than that of Comparative Example 2 in which EVA resin is used for the light receiving surface side sealing layer 2.
  • the generation of acid inside is suppressed, and there is almost no deterioration in moisture resistance at the maximum output Pm.
  • the light receiving surface side sealing layer 2 is made of polyethylene, the electrode formed on the light receiving surface of the solar cell 3 is oxidized by the acid, and the resistance value of the electrode increases. Is not generated, and as shown in FIG. 11, the Rs retention rate is well maintained. Therefore, in the sample of Example 1, the maximum output Pm is well maintained and the power generation capacity is well maintained even after being stored at high temperature and high voltage for 4000 hours.
  • the back surface side sealing layer 4 made of EVA is an outer peripheral edge portion 1a which is an outer peripheral side region which is not covered by the light receiving surface side sealing layer 2 on the back surface of the light transmissive substrate 1. It was confirmed that there was no deterioration in the insulating property because it was in contact with the entire circumference of the. That is, in the sample of Example 1, it was confirmed that the insulating property was not deteriorated because the light receiving surface side sealing layer 2 made of polyethylene was not exposed on the end surface of the solar cell panel 10.
  • the method for manufacturing a solar cell panel according to the first embodiment suppresses aged deterioration of output and deterioration of the insulating property of the sealing layer 6, and improves long-term reliability and safety. It was confirmed that the panel 10 can be produced stably.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

In a solar cell panel (10), a solar cell string (3a), in which a plurality of solar cells (3) are electrically connected, is sealed within a seal layer (6) sandwiched between a light-receiving-side protective member and a back-side covering member (5). The seal layer (6) is provided with: a light-receiving-side seal layer (2) that is formed from a polyolefin-based resin and that covers the entire light-receiving side of the solar cell string (3a); and a back-surface-side seal layer (4) that is formed from an ethylene vinyl acetate copolymer resin, that covers the solar cell string (3a) from the back side of the solar cell string (3a), and that covers the light-receiving-side seal layer (2) from the back side of the light-receiving-side seal layer (2) and from the outer peripheral side of the light-receiving-side seal layer (2).

Description

太陽電池パネル、太陽電池モジュール、太陽電池パネルの製造方法および太陽電池モジュールの製造方法Solar cell panel, solar cell module, solar cell panel manufacturing method and solar cell module manufacturing method
 本発明は、太陽電池セルが樹脂材料からなる封止材により封止された太陽電池パネル、太陽電池モジュール、太陽電池パネルの製造方法および太陽電池モジュールの製造方法に関する。 The present invention relates to a solar cell panel, a solar cell module, a method for manufacturing a solar cell panel, and a method for manufacturing a solar cell module in which a solar cell is sealed with a sealing material made of a resin material.
 従来、太陽電池パネルの製造技術の1つに、強化ガラス等で構成された光透過性基板上に、エチレン酢酸ビニル共重合(Ethylene-Vinylacetate copolymer:EVA)樹脂によって構成された受光面側封止層、太陽電池セル、EVAによって構成された裏面側封止層および裏面側被覆部材を載せてラミネートする技術がある。 Conventionally, one of the manufacturing techniques for solar cell panels is to seal the light-receiving surface side made of ethylene-vinyl acetate copolymer (EVA) resin on a light-transmitting substrate made of tempered glass or the like. There is a technique of mounting and laminating a back surface side sealing layer and a back surface side covering member composed of a layer, a solar cell, and EVA.
 太陽電池パネルの製造時には、光透過性を有する光透過性基板、光透過性を有する絶縁性樹脂からなる受光面側封止層、太陽電池セル、裏面側封止層および裏面側被覆部材が順次積層された積層体が形成される。そして、ラミネート装置において積層体のラミネート処理を実施することにより、太陽電池セルが封止層の中に封止される。ラミネート装置では、積層体を加熱および加圧することによってEVAを溶融および硬化させて、太陽電池セルの封止が行われる。受光面側封止層および裏面側封止層は、封止性能に加えて絶縁性能を担保するために必要な部材である。 At the time of manufacturing a solar cell panel, a light transmitting substrate having light transmission, a light receiving surface side sealing layer made of a light transmitting insulating resin, a solar cell, a back surface side sealing layer and a back surface side covering member are sequentially formed. A laminated body is formed. Then, the solar cell is sealed in the sealing layer by performing the laminating process of the laminated body in the laminating device. In the laminating apparatus, the EVA is melted and cured by heating and pressurizing the laminated body, and the solar cell is sealed. The light receiving surface side sealing layer and the back surface side sealing layer are members necessary for ensuring the insulating performance in addition to the sealing performance.
 また、近年では、太陽電池パネルに使用する封止材としてオレフィン系樹脂を使用することが増えてきている。特許文献1には、封止材にポリオレフィン系樹脂を使用することが開示されている。ポリオレフィン系樹脂は、経時的に発生する酸の発生量がEVAよりも少ない。このため、ポリオレフィン系樹脂を封止材に用いることによって、封止材中に発生する酸に起因した、封止材の中に封止された導電部の劣化を遅くすることができる。これにより、太陽電池パネルの経年的な出力劣化を抑制できる。 In recent years, olefin resins have been increasingly used as sealing materials for solar cell panels. Patent Document 1 discloses that a polyolefin resin is used as a sealing material. The amount of acid generated in the polyolefin resin over time is smaller than that in EVA. Therefore, by using the polyolefin-based resin as the encapsulant, it is possible to delay the deterioration of the conductive portion sealed in the encapsulant due to the acid generated in the encapsulant. As a result, deterioration of the output of the solar cell panel over time can be suppressed.
特許第5838321号公報Japanese Patent No. 5838321
 しかしながら、上記特許文献1に記載された太陽電池モジュールのようにポリオレフィン系樹脂を封止材に使用した場合には、経年使用によるポリオレフィン系樹脂の加水分解によって封止層の絶縁性の低下が懸念される。 However, when a polyolefin resin is used as a sealing material as in the solar cell module described in Patent Document 1, there is a concern that the insulating property of the sealing layer may be lowered due to hydrolysis of the polyolefin resin due to long-term use. Will be done.
 本発明は、上記に鑑みてなされたものであって、経年使用による出力劣化および封止層の絶縁性の低下が抑制された太陽電池パネルを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a solar cell panel in which output deterioration and deterioration of the insulating property of the sealing layer due to aged use are suppressed.
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池パネルは、複数の太陽電池セルが電気的に接続された太陽電池セルストリングスが、太陽電池セルストリングスの受光面側に配置された受光面側保護部材と太陽電池セルストリングスの受光面と背向する裏面側に配置された裏面側被覆部材との間に狭持された封止層の中に封止された、太陽電池パネルである。封止層は、ポリオレフィン系樹脂によって構成され、太陽電池セルストリングスにおける受光面側の全面を被覆する受光面側封止層と、エチレン酢酸ビニル共重合樹脂によって構成され、太陽電池セルストリングスを太陽電池セルストリングスの裏面側から被覆するとともに、受光面側封止層を受光面側封止層の裏面側および受光面側封止層の外周側から被覆する裏面側封止層と、を備える。 In order to solve the above-mentioned problems and achieve the object, in the solar cell panel according to the present invention, the solar cell strings in which a plurality of solar cells are electrically connected are placed on the light receiving surface side of the solar cell strings. The sun sealed in a sealing layer sandwiched between the light-receiving surface side protective member arranged and the light-receiving surface of the solar cell strings and the back surface side covering member arranged on the back surface side facing back. It is a battery panel. The sealing layer is composed of a polyolefin-based resin and a light-receiving surface side sealing layer that covers the entire surface of the solar cell cell strings on the light-receiving surface side, and an ethylene-vinyl acetate copolymer resin. In addition to covering from the back surface side of the cell strings, the back surface side sealing layer that covers the light receiving surface side sealing layer from the back surface side of the light receiving surface side sealing layer and the outer peripheral side of the light receiving surface side sealing layer is provided.
 本発明にかかる太陽電池パネルは、経年使用による出力劣化および封止層の絶縁性の低下を抑制できる、という効果を奏する。 The solar cell panel according to the present invention has the effect of being able to suppress output deterioration and deterioration of the insulating property of the sealing layer due to long-term use.
本発明の実施の形態1にかかる太陽電池モジュールを示す模式断面図Schematic cross-sectional view showing the solar cell module according to the first embodiment of the present invention. 本発明の実施の形態1にかかる太陽電池モジュールの太陽電池パネルを示す模式平面図Schematic plan view showing the solar cell panel of the solar cell module according to the first embodiment of the present invention. 本発明の実施の形態1にかかる太陽電池モジュールの太陽電池パネルを示す模式断面図Schematic sectional view showing a solar cell panel of the solar cell module according to the first embodiment of the present invention. 本発明の実施の形態1にかかる太陽電池モジュールの保持フレームを示す模式断面図Schematic cross-sectional view showing a holding frame of the solar cell module according to the first embodiment of the present invention. 本発明の実施の形態1にかかる太陽電池モジュールの製造方法の手順を示すフローチャートA flowchart showing a procedure of a method for manufacturing a solar cell module according to a first embodiment of the present invention. 本発明の実施の形態1にかかる太陽電池パネルのラミネート前の構成を示す分解斜視図An exploded perspective view showing the configuration of the solar cell panel according to the first embodiment of the present invention before laminating. 本発明の実施の形態1にかかる太陽電池パネルの製造工程におけるラミネート前の積層体の構成を示す断面図Sectional drawing which shows the structure of the laminated body before laminating in the manufacturing process of the solar cell panel which concerns on Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池パネルの製造に用いられる太陽電池パネル製造装置を示す模式断面図Schematic cross-sectional view showing a solar cell panel manufacturing apparatus used for manufacturing the solar cell panel according to the first embodiment of the present invention. 本発明の実施の形態1にかかる太陽電池パネルの製造方法によって作製された太陽電池パネルを示す模式断面図Schematic cross-sectional view showing a solar cell panel manufactured by the method for manufacturing a solar cell panel according to the first embodiment of the present invention. 実施例1、比較例1および比較例2のサンプルの作製条件を示す図The figure which shows the preparation condition of the sample of Example 1, Comparative Example 1 and Comparative Example 2. 実施例1、比較例1および比較例2のサンプルの測定結果を示す図The figure which shows the measurement result of the sample of Example 1, Comparative Example 1 and Comparative Example 2.
 以下に、本発明の実施の形態にかかる太陽電池パネル、太陽電池モジュール、太陽電池パネルの製造方法および太陽電池モジュールの製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。 Hereinafter, the solar cell panel, the solar cell module, the method for manufacturing the solar cell panel, and the method for manufacturing the solar cell module according to the embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment, and can be appropriately modified without departing from the gist of the present invention. Further, in the drawings shown below, the scale of each member may differ from the actual scale for easy understanding.
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池モジュール50を示す模式断面図である。図2は、本発明の実施の形態1にかかる太陽電池モジュール50の太陽電池パネル10を示す模式平面図である。図3は、本発明の実施の形態1にかかる太陽電池モジュール50の太陽電池パネル10を示す模式断面図である。図3は、図2におけるIII-III線に沿った断面を示している。図4は、本発明の実施の形態1にかかる太陽電池モジュール50の保持フレーム20を示す模式断面図である。
Embodiment 1.
FIG. 1 is a schematic cross-sectional view showing a solar cell module 50 according to a first embodiment of the present invention. FIG. 2 is a schematic plan view showing the solar cell panel 10 of the solar cell module 50 according to the first embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing the solar cell panel 10 of the solar cell module 50 according to the first embodiment of the present invention. FIG. 3 shows a cross section along lines III-III in FIG. FIG. 4 is a schematic cross-sectional view showing a holding frame 20 of the solar cell module 50 according to the first embodiment of the present invention.
 本実施の形態にかかる太陽電池パネル10は、受光面側に配置された受光面側保護部材である光透過性基板1上に、光透過性を有する絶縁性樹脂からなる受光面側封止層2と、光起電力素子である複数の太陽電池セル3が電気的に接続された太陽電池セルストリングス3aと、裏面側封止層4と、受光面と背向する裏面側に配置された裏面側被覆部材5と、が順次積層された構造を有する。太陽電池パネル10は、太陽電池セルストリングス3aが、太陽電池セルストリングス3aの受光面側に配置された受光面側保護部材と太陽電池セルストリングス3aの受光面と背向する裏面側に配置された裏面側被覆部材5との間に狭持された封止層6の中に封止されている。太陽電池パネル10においては、太陽光Lは、光透過性基板1の表面側から入射する。 The solar cell panel 10 according to the present embodiment has a light receiving surface side sealing layer made of a light transmitting insulating resin on a light transmitting substrate 1 which is a light receiving surface side protective member arranged on the light receiving surface side. 2, a solar cell string 3a to which a plurality of solar cells 3 which are photovoltaic elements are electrically connected, a back surface side sealing layer 4, and a back surface arranged on the back surface side facing the light receiving surface. It has a structure in which the side covering member 5 and the side covering member 5 are sequentially laminated. In the solar cell panel 10, the solar cell strings 3a are arranged on the light-receiving surface side protective member arranged on the light-receiving surface side of the solar cell strings 3a and on the back surface side facing the light-receiving surface of the solar cell strings 3a. It is sealed in a sealing layer 6 sandwiched between the back surface side covering member 5. In the solar cell panel 10, the sunlight L is incident from the surface side of the light transmissive substrate 1.
 太陽電池パネル10は、太陽電池パネル10の面内方向において四角形状の外形形状を有する。本実施の形態1では、太陽電池パネル10は、太陽電池パネル10の面内方向において長方形形状の外形形状を有する。太陽電池パネル10の外形形状の長方形における対向する一対の辺に平行な方向を第1の方向とする。図1では、第1の方向は、X方向に対応する。太陽電池パネル10の外形形状の長方形における対向する他の一対の辺に平行な方向を第2の方向とする。図1では、第2の方向は、Y方向に対応する。 The solar cell panel 10 has a quadrangular outer shape in the in-plane direction of the solar cell panel 10. In the first embodiment, the solar cell panel 10 has a rectangular outer shape in the in-plane direction of the solar cell panel 10. The direction parallel to the pair of opposite sides in the rectangular shape of the outer shape of the solar cell panel 10 is defined as the first direction. In FIG. 1, the first direction corresponds to the X direction. The direction parallel to the other pair of opposing sides in the rectangular shape of the outer shape of the solar cell panel 10 is defined as the second direction. In FIG. 1, the second direction corresponds to the Y direction.
 光透過性基板1は、太陽電池パネル10において受光面側に位置する2層構造の受光面側封止層2の受光面側の外表面に、受光面側封止層2の粘着力により固着されている。光透過性基板1の表面には、太陽光Lが入射する。光透過性基板1には、光透過性および耐候性を有するガラス基板が用いられる。なお、ここでは光透過性基板1としてガラス基板を用いているが、光透過性および耐候性を有する材料であれば、樹脂板などの他の部材を使用してもよい。ただし、経年使用による樹脂の加水分解による絶縁性の低下が懸念される場合には、ガラス基板を用いることが好ましい。 The light transmissive substrate 1 is fixed to the outer surface of the light receiving surface side sealing layer 2 having a two-layer structure located on the light receiving surface side in the solar cell panel 10 by the adhesive force of the light receiving surface side sealing layer 2. Has been done. Sunlight L is incident on the surface of the light transmissive substrate 1. As the light-transmitting substrate 1, a glass substrate having light-transmitting property and weather resistance is used. Although a glass substrate is used as the light-transmitting substrate 1 here, another member such as a resin plate may be used as long as it is a material having light-transmitting property and weather resistance. However, it is preferable to use a glass substrate when there is a concern that the insulating property may be deteriorated due to hydrolysis of the resin due to long-term use.
 光透過性基板1は、光透過性基板1の面内方向において、太陽電池パネル10の面内方向における外形形状と同様に、四角形状の外形形状を有する。光透過性基板1の面内方向は、太陽電池パネル10の面内方向と平行である。本実施の形態1では、光透過性基板1は、太陽電池パネル10と同様に、光透過性基板1の面内方向において長方形形状の外形形状を有する。 The light transmissive substrate 1 has a quadrangular outer shape in the in-plane direction of the light transmissive substrate 1 as well as the outer shape in the in-plane direction of the solar cell panel 10. The in-plane direction of the light transmissive substrate 1 is parallel to the in-plane direction of the solar cell panel 10. In the first embodiment, the light transmissive substrate 1 has a rectangular outer shape in the in-plane direction of the light transmissive substrate 1, similarly to the solar cell panel 10.
 ここで、光透過性基板1の外形寸法において、第1の方向の寸法、すなわちX方向の寸法をX1とし、第2の方向の寸法、すなわちY方向の寸法をY1とする。この場合の光透過性基板1の外形寸法は、(X1、Y1)と表される。 Here, in the external dimensions of the light transmissive substrate 1, the dimension in the first direction, that is, the dimension in the X direction is X1, and the dimension in the second direction, that is, the dimension in the Y direction is Y1. The external dimensions of the light transmissive substrate 1 in this case are represented by (X1, Y1).
 受光面側封止層2は、太陽電池セルストリングス3aを内部に封止する封止層6のうち、主として太陽電池セルストリングス3aの太陽電池セル3の受光面よりも光透過性基板1側に配置された領域である。また、裏面側封止層4は、太陽電池セルストリングス3aを内部に封止する封止層6のうち、主として太陽電池セルストリングス3aの太陽電池セル3の裏面よりも裏面側被覆部材5側に配置された領域である。太陽電池セル3の裏面は、太陽電池セル3において太陽電池セル3の受光面と背向する面である。 The light receiving surface side sealing layer 2 is mainly on the light transmitting substrate 1 side of the light receiving surface of the solar cell 3 of the solar cell strings 3a among the sealing layers 6 for sealing the solar cell strings 3a inside. The area where it was placed. Further, the back surface side sealing layer 4 is mainly on the back surface side covering member 5 side of the back surface side of the solar cell 3a of the solar cell strings 3a among the sealing layers 6 for sealing the solar cell strings 3a inside. The area where it was placed. The back surface of the solar cell 3 is a surface facing the light receiving surface of the solar cell 3 in the solar cell 3.
 受光面側封止層2は、太陽電池パネル10において、太陽電池セル3の受光面よりも光透過性基板1側の領域、太陽電池セルストリングス3aの外周よりも外側における光透過性基板1側の領域、および太陽電池セルストリングス3aにおける太陽電池セル3間の隙間領域の光透過性基板1側の領域に配置されている。受光面側封止層2は、太陽電池セルストリングス3aを受光面側および太陽電池セルストリングス3aの外周側から被覆しており、裏面側封止層4とともに太陽電池セルストリングス3aを封止している。すなわち受光面側封止層2は、太陽電池セルストリングス3aの受光面側の全面を被覆している。受光面側封止層2は、ポリエチレンおよびポリプロピレン等の透光性を有するポリオレフィン系樹脂に架橋剤が添加された熱可塑性樹脂の単層体または積層体が用いられる。ポリオレフィン系樹脂は、EVAと比べて酸の発生が相対的に少ない。また、受光面側封止層2は、耐候性、機械的強度、光透過性基板1との接着性、太陽電池セルストリングス3aとの接着性および裏面側封止層4との接着性を向上させるために架橋していることが好ましい。架橋の方法は、従来公知の方法を使用できるが、熱によりラジカルを生成するものが有効である。 The light-receiving surface side sealing layer 2 is a region of the solar cell panel 10 on the light-transmitting substrate 1 side of the light-receiving surface of the solar cell 3, and a light-transmitting substrate 1 side on the outside of the outer periphery of the solar cell strings 3a. Is arranged in the region of the above, and in the region on the light transmissive substrate 1 side of the gap region between the solar cells 3 in the solar cell strings 3a. The light receiving surface side sealing layer 2 covers the solar cell cell strings 3a from the light receiving surface side and the outer peripheral side of the solar cell cell strings 3a, and seals the solar cell cell strings 3a together with the back surface side sealing layer 4. There is. That is, the light receiving surface side sealing layer 2 covers the entire surface of the solar cell strings 3a on the light receiving surface side. As the light receiving surface side sealing layer 2, a single layer or a laminated body of a thermoplastic resin in which a cross-linking agent is added to a light-transmitting polyolefin resin such as polyethylene and polypropylene is used. Polyolefin-based resins generate relatively less acid than EVA. Further, the light receiving surface side sealing layer 2 improves weather resistance, mechanical strength, adhesiveness to the light transmissive substrate 1, adhesiveness to the solar cell strings 3a, and adhesiveness to the back surface side sealing layer 4. It is preferable that they are cross-linked to allow them to be cross-linked. As a method for cross-linking, a conventionally known method can be used, but a method that generates radicals by heat is effective.
 さらに、受光面側封止層2は、耐光性を向上させるために紫外線吸収剤を含有することが好ましい。ただし、受光面側封止層2に紫外線吸収剤が含有されることによって太陽電池セル3に入射する太陽光Lの光量が低減して、太陽電池セル3の出力が低下する。このため、受光面側封止層2における紫外線吸収剤の含有量は、太陽電池セル3の設計寿命に対応して調整されることが好ましい。 Further, the light receiving surface side sealing layer 2 preferably contains an ultraviolet absorber in order to improve the light resistance. However, since the ultraviolet absorber is contained in the light receiving surface side sealing layer 2, the amount of sunlight L incident on the solar cell 3 is reduced, and the output of the solar cell 3 is reduced. Therefore, it is preferable that the content of the ultraviolet absorber in the light receiving surface side sealing layer 2 is adjusted according to the design life of the solar cell 3.
 また、本実施の形態1においては、受光面側封止層2の厚みは、0.05mm以上1.0mm以下が好ましい。本実施の形態1では、受光面側封止層2は、厚さT=0.05mm以上1.0mm以下であるポリオレフィン系樹脂を用いる。受光面側封止層2に用いるポリオレフィン系樹脂のメルトフローレート(Melt Flow Rate:MFR)は、0.1g/10min以上35g/10min以下とする。受光面側封止層2に用いるポリオレフィン系樹脂のメルトフローレートを上記の範囲とすることにより、太陽電池パネル10の製造時に太陽電池セル3に掛かる外力により太陽電池セル3が破損することを防ぐことができる。MFRは、JIS K 7210-1:2014に記載のメルトフローレートを意味する。 Further, in the first embodiment, the thickness of the light receiving surface side sealing layer 2 is preferably 0.05 mm or more and 1.0 mm or less. In the first embodiment, the light receiving surface side sealing layer 2 uses a polyolefin resin having a thickness T = 0.05 mm or more and 1.0 mm or less. The melt flow rate (Melt Flow Rate: MFR) of the polyolefin resin used for the light receiving surface side sealing layer 2 is 0.1 g / 10 min or more and 35 g / 10 min or less. By setting the melt flow rate of the polyolefin resin used for the light receiving surface side sealing layer 2 within the above range, it is possible to prevent the solar cell 3 from being damaged by an external force applied to the solar cell 3 during the manufacture of the solar cell panel 10. be able to. MFR means the melt flow rate described in JIS K 7210-1: 2014.
 また、受光面側封止層2に用いるポリオレフィン系樹脂のメルトフローレートを上記の範囲とすることにより、太陽電池パネル10の製造時におけるポリオレフィン系樹脂の流動を制御して受光面側封止層2を薄肉化することができる。受光面側封止層2を薄肉化することにより、受光面側封止層2における太陽光Lの透過量を増加させて太陽電池セル3の出力の向上が可能となる。 Further, by setting the melt flow rate of the polyolefin resin used for the light receiving surface side sealing layer 2 within the above range, the flow of the polyolefin resin during the manufacture of the solar cell panel 10 is controlled and the light receiving surface side sealing layer is controlled. 2 can be thinned. By thinning the light-receiving surface side sealing layer 2, it is possible to increase the amount of sunlight L transmitted through the light-receiving surface side sealing layer 2 and improve the output of the solar cell 3.
 ここで、受光面側封止層2の外形寸法において、第1の方向の寸法、すなわちX方向の寸法をX2とし、第2の方向の寸法、すなわちY方向の寸法をY2とする。この場合の受光面側封止層2の外形寸法は、(X2、Y2)と表される。ここで、X2はX1よりも短く、Y2はY1よりも短い。すなわち、受光面側封止層2の外形寸法(X2、Y2)は、光透過性基板1の外形寸法(X1、Y1)よりも小さい寸法である。したがって、受光面側封止層2の外形は、光透過性基板1の外形よりも小さい。 Here, in the external dimensions of the light receiving surface side sealing layer 2, the dimension in the first direction, that is, the dimension in the X direction is X2, and the dimension in the second direction, that is, the dimension in the Y direction is Y2. The external dimensions of the light receiving surface side sealing layer 2 in this case are represented by (X2, Y2). Here, X2 is shorter than X1 and Y2 is shorter than Y1. That is, the external dimensions (X2, Y2) of the light receiving surface side sealing layer 2 are smaller than the external dimensions (X1, Y1) of the light transmissive substrate 1. Therefore, the outer shape of the light receiving surface side sealing layer 2 is smaller than the outer shape of the light transmissive substrate 1.
 太陽電池セルストリングス3aは、光透過性基板1と裏面側被覆部材5との間において、受光面側封止層2と裏面側封止層4との中に封止されている。太陽電池セルストリングス3aは、同一平面上において複数の太陽電池セル3が隙間領域を有してマトリックス状に配列されている。複数の太陽電池セル3は、隣り合う太陽電池セル3の表裏面に設けられた電極を接続することにより電気的に直列に接続されている。 The solar cell strings 3a are sealed between the light transmissive substrate 1 and the back surface side covering member 5 in the light receiving surface side sealing layer 2 and the back surface side sealing layer 4. In the solar cell strings 3a, a plurality of solar cell cells 3 are arranged in a matrix having a gap region on the same plane. The plurality of solar cells 3 are electrically connected in series by connecting electrodes provided on the front and back surfaces of adjacent solar cells 3.
 ここで、太陽電池セルストリングス3aの外形寸法において、第1の方向の寸法、すなわちX方向の寸法をX3とし、第2の方向の寸法、すなわちY方向の寸法をY3とする。この場合の太陽電池セルストリングス3aの外形寸法は、(X3、Y3)と表される。ここで、X3はX2よりも短く、Y3はY2よりも短い。すなわち、太陽電池セルストリングス3aの外形寸法(X3、Y3)は、受光面側封止層2の外形寸法(X2、Y2)よりも小さい寸法である。したがって、太陽電池セルストリングス3aの外形は、受光面側封止層2の外形よりも小さい。 Here, in the external dimensions of the solar cell strings 3a, the dimension in the first direction, that is, the dimension in the X direction is X3, and the dimension in the second direction, that is, the dimension in the Y direction is Y3. The external dimensions of the solar cell strings 3a in this case are represented by (X3, Y3). Here, X3 is shorter than X2 and Y3 is shorter than Y2. That is, the external dimensions (X3, Y3) of the solar cell strings 3a are smaller than the external dimensions (X2, Y2) of the light receiving surface side sealing layer 2. Therefore, the outer shape of the solar cell strings 3a is smaller than the outer shape of the light receiving surface side sealing layer 2.
 太陽電池セル3は、例えば結晶系太陽電池等の公知の太陽電池セルを用いることができる。結晶系太陽電池セルとしては、例えば単結晶シリコン太陽電池セル、多結晶シリコン太陽電池セルなどが挙げられるが、これに限定されるものではない。 As the solar cell 3, for example, a known solar cell such as a crystalline solar cell can be used. Examples of the crystalline solar cell include, but are not limited to, a single crystal silicon solar cell and a polycrystalline silicon solar cell.
 裏面側封止層4は、太陽電池パネル10において、太陽電池セル3の裏面よりも裏面側被覆部材5側の領域、太陽電池セルストリングス3aの外周よりも外側における裏面側被覆部材5側の領域、太陽電池セルストリングス3aにおける太陽電池セル3間の隙間領域の裏面側被覆部材5側の領域、および受光面側封止層2の外周よりも外側の領域に配置されている。裏面側封止層4は、太陽電池セルストリングス3aを裏面側および太陽電池セルストリングス3aの外周側から被覆しており、受光面側封止層2とともに太陽電池セルストリングス3aを封止している。 The back surface side sealing layer 4 is a region on the back surface side covering member 5 side of the back surface of the solar cell 3 and a region on the back surface side covering member 5 side outside the outer periphery of the solar cell strings 3a in the solar cell panel 10. , The solar cell strings 3a are arranged in the region on the back surface side covering member 5 side of the gap region between the solar cells 3 and the region outside the outer periphery of the light receiving surface side sealing layer 2. The back surface side sealing layer 4 covers the solar cell cell strings 3a from the back surface side and the outer peripheral side of the solar cell cell strings 3a, and seals the solar cell cell strings 3a together with the light receiving surface side sealing layer 2. ..
 裏面側封止層4は、受光面側封止層2の裏面における太陽電池セルストリングス3aの外周よりも外側の領域を、裏面側から被覆している。また、裏面側封止層4は、受光面側封止層2の外周を被覆している。すなわち、裏面側封止層4は、受光面側封止層2の裏面における外周縁部および受光面側封止層2の外周に固着している。 The back surface side sealing layer 4 covers a region on the back surface of the light receiving surface side sealing layer 2 outside the outer circumference of the solar cell strings 3a from the back surface side. Further, the back surface side sealing layer 4 covers the outer periphery of the light receiving surface side sealing layer 2. That is, the back surface side sealing layer 4 is fixed to the outer peripheral edge portion on the back surface of the light receiving surface side sealing layer 2 and the outer periphery of the light receiving surface side sealing layer 2.
 また、裏面側封止層4は、光透過性基板1の裏面における受光面側封止層2よりも外側の領域の全周、すなわち光透過性基板1の裏面において受光面側封止層2により被覆されてない外周側の領域である外周縁部1aの全周に接触している。光透過性基板1の面内方向において、裏面側封止層4は、1mm以上の幅で、光透過性基板1の裏面の外周縁部1aの全周に接触していることが好ましい。 Further, the back surface side sealing layer 4 is the entire circumference of the region outside the light receiving surface side sealing layer 2 on the back surface of the light transmitting substrate 1, that is, the light receiving surface side sealing layer 2 on the back surface of the light transmitting substrate 1. It is in contact with the entire circumference of the outer peripheral edge portion 1a, which is a region on the outer peripheral side that is not covered by. In the in-plane direction of the light transmissive substrate 1, the back surface side sealing layer 4 preferably has a width of 1 mm or more and is in contact with the entire circumference of the outer peripheral edge portion 1a of the back surface of the light transmissive substrate 1.
 裏面側封止層4は、裏面側封止層4の粘着力により太陽電池セルストリングス3aおよび光透過性基板1の裏面に固着されており、受光面側封止層2および裏面側封止層4の粘着力により受光面側封止層2に固着されている。 The back surface side sealing layer 4 is fixed to the back surface of the solar cell strings 3a and the light transmissive substrate 1 by the adhesive force of the back surface side sealing layer 4, and the light receiving surface side sealing layer 2 and the back surface side sealing layer 4 are fixed to each other. It is fixed to the light receiving surface side sealing layer 2 by the adhesive force of 4.
 裏面側封止層4には、水分、熱および光のエネルギーを受けることで分解が加速することに起因した屋外環境における絶縁性の低下がポリオレフィン系樹脂と比べて相対的に少ない、EVA等の絶縁性を有する高分子樹脂が用いられる。 The backside sealing layer 4 has a relatively small decrease in insulating property in an outdoor environment due to accelerated decomposition due to receiving moisture, heat, and light energy, as compared with a polyolefin resin, such as EVA. A polymer resin having insulating properties is used.
 ここで、裏面側封止層4の外形寸法において、第1の方向の寸法、すなわちX方向の寸法をX4とし、第2の方向の寸法、すなわちY方向の寸法をY4とする。この場合の裏面側封止層4の外形寸法は、(X4、Y4)と表される。ここで、X4は、X1と同じ寸法である。また、Y4は、Y1と同じ寸法である。 Here, in the external dimensions of the back surface side sealing layer 4, the dimension in the first direction, that is, the dimension in the X direction is X4, and the dimension in the second direction, that is, the dimension in the Y direction is Y4. The external dimensions of the back surface side sealing layer 4 in this case are represented by (X4, Y4). Here, X4 has the same dimensions as X1. Further, Y4 has the same dimensions as Y1.
 裏面側被覆部材5は、太陽電池パネル10において裏面側に位置する裏面側封止層4の裏面側の外表面に、裏面側封止層4の粘着力により固着されている。太陽電池パネル10において裏面側は、太陽電池モジュール50の設置面側である。裏面側被覆部材5は、裏面側封止層4に封止された太陽電池セルストリングス3aを保護する。 The back surface side covering member 5 is fixed to the outer surface of the back surface side sealing layer 4 located on the back surface side of the solar cell panel 10 by the adhesive force of the back surface side sealing layer 4. The back surface side of the solar cell panel 10 is the installation surface side of the solar cell module 50. The back surface side covering member 5 protects the solar cell strings 3a sealed in the back surface side sealing layer 4.
 裏面側被覆部材5は、絶縁性および耐候性を有する樹脂により構成される。裏面側被覆部材5に用いられる樹脂は、例えばポリエチレンテレフタレート(Polyethylene Terephthalate:PET)、ポリフッ化ビニル(Polyvinyl Fluoride:PVF)などのフッ素系樹脂、オレフィンおよびウレタン等の高分子樹脂が好ましい。また、裏面側被覆部材5は、PET、フッ素系樹脂、オレフィンおよびウレタンのうちのいずれかの樹脂の単層であってもよく、PET、フッ素系樹脂、オレフィンおよびウレタンからなる群より選択された少なくとも一種の樹脂からなる複数の層が積層された積層体とされてもよい。 The back surface side covering member 5 is made of a resin having insulating properties and weather resistance. As the resin used for the back surface side covering member 5, for example, a fluorine-based resin such as polyethylene terephthalate (PET) and polyvinyl fluoride (PVF), and a polymer resin such as olefin and urethane are preferable. Further, the back surface side coating member 5 may be a single layer of any resin of PET, fluororesin, olefin and urethane, and is selected from the group consisting of PET, fluororesin, olefin and urethane. It may be a laminated body in which a plurality of layers made of at least one kind of resin are laminated.
 裏面側被覆部材5は、例えば絶縁性および耐候性が上記の樹脂のうち相対的に高いPETからなるPETシートの積層物であることが好ましい。PETシートの積層物は、反射用PETシートと、厚膜PETシートと、耐候性PETシートと、が積層されて構成される。反射用PETシートは、太陽電池セルストリングス3aにおける太陽電池セル3間に入射したために太陽電池セル3に直接入射できない太陽光Lを反射して太陽電池セル3に入射させるためのPETシートである。厚膜PETシートは、太陽電池セル3と、太陽電池パネル10の外部と、の絶縁距離を保持するために裏面側被覆部材5の厚みを確保するための厚みを有するPETシートである。耐候性PETシートは、大気中から受ける水分、光および熱に対して劣化しにくい耐光性を有するPETシートである。 The back surface side covering member 5 is preferably a laminate of PET sheets made of PET having a relatively high insulating property and weather resistance among the above resins. The laminate of PET sheets is composed of a reflective PET sheet, a thick-film PET sheet, and a weather-resistant PET sheet. The reflective PET sheet is a PET sheet for reflecting sunlight L that cannot be directly incident on the solar cell 3 because it is incident between the solar cells 3 in the solar cell strings 3a and causing it to be incident on the solar cell 3. The thick-film PET sheet is a PET sheet having a thickness for ensuring the thickness of the back surface side covering member 5 in order to maintain the insulation distance between the solar cell 3 and the outside of the solar cell panel 10. The weather-resistant PET sheet is a PET sheet having light resistance that does not easily deteriorate with respect to moisture, light and heat received from the atmosphere.
 ここで、裏面側被覆部材5の外形寸法において、第1の方向の寸法、すなわちX方向の寸法をX5とし、第2の方向の寸法、すなわちY方向の寸法をY5とする。この場合の裏面側被覆部材5の外形寸法は、(X5、Y5)と表される。ここで、X5は、X1と同じ寸法である。また、Y5は、Y1と同じ寸法である。 Here, in the external dimensions of the back surface side covering member 5, the dimension in the first direction, that is, the dimension in the X direction is X5, and the dimension in the second direction, that is, the dimension in the Y direction is Y5. The external dimensions of the back surface side covering member 5 in this case are represented by (X5, Y5). Here, X5 has the same dimensions as X1. Further, Y5 has the same dimensions as Y1.
 上述したように、太陽電池パネル10を構成する各構成部における外形寸法の大きさの大小は、第1の方向の寸法については、「X1=X4=X5>X2>X3」となり、第2の方向の寸法については、「Y1=Y4=Y5>Y2>Y3」となる。したがって、太陽電池パネル10を構成する各構成部における外形の大きさの大小は、「光透過性基板1=裏面側封止層4=裏面側被覆部材5>受光面側封止層2>太陽電池セルストリングス3a」となる。 As described above, the size of the external dimensions of each component constituting the solar cell panel 10 is "X1 = X4 = X5> X2> X3" for the dimensions in the first direction, and the second The dimension in the direction is "Y1 = Y4 = Y5> Y2> Y3". Therefore, the size of the outer shape of each component constituting the solar cell panel 10 is determined by "light transmissive substrate 1 = back surface side sealing layer 4 = back surface side covering member 5> light receiving surface side sealing layer 2> sun. Battery cell strings 3a ".
 保持フレーム20は、太陽電池パネル10の外縁部を太陽電池パネル10の外周の全周にわたって囲んで、太陽電池パネル10の外縁部を介して太陽電池パネル10を支持する。保持フレーム20は、たとえばアルミニウムなどの金属からなる金属フレームであり、押出成品が用いられる。保持フレーム20は、図4に示すように、太陽電池パネル10の外縁部が収納される保持溝部20aが構成されている。 The holding frame 20 surrounds the outer edge of the solar cell panel 10 over the entire circumference of the outer circumference of the solar cell panel 10 and supports the solar cell panel 10 via the outer edge of the solar cell panel 10. The holding frame 20 is a metal frame made of a metal such as aluminum, and an extruded product is used. As shown in FIG. 4, the holding frame 20 includes a holding groove portion 20a in which the outer edge portion of the solar cell panel 10 is housed.
 上記のように構成された太陽電池パネル10では、裏面側封止層4は、太陽電池セルストリングス3aを太陽電池セルストリングス3aの裏面側および太陽電池セルストリングス3aの外周側から被覆するとともに、受光面側封止層2を受光面側封止層2の裏面側および受光面側封止層2の外周側から被覆している。裏面側被覆部材5は、裏面側封止層4を介して、受光面側封止層2の裏面側から受光面側封止層2を被覆している。裏面側被覆部材5は、受光面側封止層2と比べて屋外環境による絶縁性の低下が相対的に少ない。また、光透過性基板1は、受光面側封止層2を、受光面側から被覆している。光透過性基板1は、受光面側封止層2と比べて屋外環境による絶縁性の低下が相対的に少ない。 In the solar cell panel 10 configured as described above, the back surface sealing layer 4 covers the solar cell strings 3a from the back surface side of the solar cell strings 3a and the outer peripheral side of the solar cell strings 3a, and receives light. The surface side sealing layer 2 is covered from the back surface side of the light receiving surface side sealing layer 2 and the outer peripheral side of the light receiving surface side sealing layer 2. The back surface side covering member 5 covers the light receiving surface side sealing layer 2 from the back surface side of the light receiving surface side sealing layer 2 via the back surface side sealing layer 4. The back surface side covering member 5 has a relatively small decrease in insulating property due to the outdoor environment as compared with the light receiving surface side sealing layer 2. Further, the light transmissive substrate 1 covers the light receiving surface side sealing layer 2 from the light receiving surface side. The light transmissive substrate 1 has a relatively small decrease in insulating property due to the outdoor environment as compared with the light receiving surface side sealing layer 2.
 すなわち、太陽電池パネル10では、受光面側封止層2は、屋外環境による絶縁劣化の低下が受光面側封止層2と比べて相対的に少ない、光透過性基板1、裏面側封止層4および裏面側被覆部材5によって囲まれている。これにより、太陽電池パネル10では、オレフィン系樹脂からなり屋外環境による絶縁劣化の影響が光透過性基板1、裏面側封止層4および裏面側被覆部材5と比べて相対的に大きい受光面側封止層2への屋外環境の影響を抑制し、屋外環境による絶縁劣化の低下を抑制することができる。 That is, in the solar cell panel 10, the light receiving surface side sealing layer 2 has a light transmissive substrate 1 and a back surface side sealing in which the reduction in insulation deterioration due to the outdoor environment is relatively small as compared with the light receiving surface side sealing layer 2. It is surrounded by the layer 4 and the back surface side covering member 5. As a result, the solar cell panel 10 is made of an olefin resin, and the influence of insulation deterioration due to the outdoor environment is relatively large on the light receiving surface side as compared with the light transmitting substrate 1, the back surface side sealing layer 4, and the back surface side covering member 5. The influence of the outdoor environment on the sealing layer 2 can be suppressed, and the decrease in insulation deterioration due to the outdoor environment can be suppressed.
 上述した作用効果を得るために、太陽電池パネル10においては、受光面側封止層2の外形は、光透過性基板1の外形よりも小さいことが必要である。また、受光面側封止層2の外形は、太陽電池セル3および太陽電池セル3に接続されている導電部よりも大きいこと、すなわち太陽電池セルストリングス3aの外形より大きいことが必要である。 In order to obtain the above-mentioned effects, in the solar cell panel 10, the outer shape of the light receiving surface side sealing layer 2 needs to be smaller than the outer shape of the light transmissive substrate 1. Further, the outer shape of the light receiving surface side sealing layer 2 needs to be larger than the outer shape of the solar cell 3 and the conductive portion connected to the solar cell 3, that is, larger than the outer shape of the solar cell strings 3a.
 受光面側封止層2に用いられるポリエチレン等のポリオレフィン系樹脂は、太陽電池パネル10の経年使用に伴って発生する酸の発生量がEVAと比べて相対的に少なく、太陽電池セル3および太陽電池セル3に接続されている導電部の劣化が遅くなる。すなわち、受光面側封止層2に用いられるポリエチレン等のポリオレフィン系樹脂は、酸に成りえるカルボキシル基等の官能基を有しておらず、加水分解されても酢酸等の酸を発生しない。このため、太陽電池セル3に接触する受光面側封止層2にポリオレフィン系樹脂を用いることにより、受光面側封止層2の経年使用に起因した、太陽電池セル3の電極に使用されている銀(Ag)などの金属材料の酸化が生じにくいため、受光面側封止層2に起因した太陽電池セル3の耐湿劣化が生じにくい。 The polyolefin-based resin such as polyethylene used for the light-receiving surface side sealing layer 2 generates a relatively small amount of acid as the solar cell panel 10 is used over time as compared with EVA, and the solar cell 3 and the sun Deterioration of the conductive portion connected to the battery cell 3 is delayed. That is, the polyolefin-based resin such as polyethylene used for the light-receiving surface side sealing layer 2 does not have a functional group such as a carboxyl group that can be an acid, and does not generate an acid such as acetic acid even when hydrolyzed. Therefore, by using a polyolefin resin for the light receiving surface side sealing layer 2 in contact with the solar cell 3, it is used for the electrode of the solar cell 3 due to the aged use of the light receiving surface side sealing layer 2. Since the metal material such as silver (Ag) is less likely to be oxidized, the moisture resistance deterioration of the solar cell 3 due to the light receiving surface side sealing layer 2 is less likely to occur.
 また、太陽電池セル3の受光面側に反射防止膜等として窒化シリコン(SiN)等の窒化膜が設けられる場合には、太陽電池セル3に接触する受光面側封止層2にポリオレフィン系樹脂を用いることにより、受光面側封止層2の経年使用に起因した窒化膜の劣化が生じにくいため、受光面側封止層2に起因した太陽電池セル3の耐湿劣化が生じにくい。 When a nitride film such as silicon nitride (SiN) is provided on the light receiving surface side of the solar cell 3 as an antireflection film or the like, a polyolefin resin is provided on the light receiving surface side sealing layer 2 in contact with the solar cell 3. By using the above, the deterioration of the nitride film due to the aged use of the light receiving surface side sealing layer 2 is unlikely to occur, so that the moisture resistance deterioration of the solar cell 3 due to the light receiving surface side sealing layer 2 is unlikely to occur.
 一方、EVA樹脂は、酸に成りえるカルボキシル基等の官能基を有しているため、経年使用により加水分解されると酢酸等の酸を発生する。このため、太陽電池セル3に接触する受光面側封止層2にEVAを用いる場合には、受光面側封止層2の経年使用に伴う酸の発生により、受光面側封止層2に接触する太陽電池セル3の電極に使用されているAgなどの金属材料の酸化が生じ、受光面側封止層2に起因した太陽電池セル3の耐湿劣化が生じる。 On the other hand, since EVA resin has a functional group such as a carboxyl group that can be an acid, it generates an acid such as acetic acid when it is hydrolyzed by long-term use. Therefore, when EVA is used for the light receiving surface side sealing layer 2 in contact with the solar cell 3, the light receiving surface side sealing layer 2 becomes the light receiving surface side sealing layer 2 due to the generation of acid due to the aged use of the light receiving surface side sealing layer 2. Oxidation of a metal material such as Ag used for the electrodes of the solar cell 3 in contact occurs, and the moisture resistance deterioration of the solar cell 3 caused by the light receiving surface side sealing layer 2 occurs.
 また、太陽電池セル3の受光面側に反射防止膜等として窒化膜が設けられ、太陽電池セル3に接触する受光面側封止層2にEVAを用いる場合には、受光面側封止層2の経年使用に起因した酸の発生により、受光面側封止層2に接触する窒化膜の劣化が生じ、受光面側封止層2に起因した太陽電池セル3の耐湿劣化が生じる。 Further, when a nitride film is provided as an antireflection film or the like on the light receiving surface side of the solar cell 3, and EVA is used for the light receiving surface side sealing layer 2 in contact with the solar cell 3, the light receiving surface side sealing layer is used. Due to the generation of acid due to the aged use of 2, the nitride film in contact with the light receiving surface side sealing layer 2 is deteriorated, and the moisture resistance of the solar cell 3 is deteriorated due to the light receiving surface side sealing layer 2.
 したがって、太陽電池パネル10では、受光面側封止層2にポリオレフィン系樹脂を用いることによって、受光面側封止層2にEVAを用いる場合に比べて、太陽電池セル3および太陽電池セル3に接続されている導電部の劣化を遅くすることができる。これにより、太陽電池パネル10は、太陽電池セル3および太陽電池セルストリングス3aの経年的な出力劣化を抑制でき、太陽電池パネル10の出力保持効果が得られる、という効果が得られる。 Therefore, in the solar cell panel 10, by using a polyolefin resin for the light receiving surface side sealing layer 2, the solar cell 3 and the solar cell 3 are compared with the case where EVA is used for the light receiving surface side sealing layer 2. Deterioration of the connected conductive portion can be slowed down. As a result, the solar cell panel 10 can suppress the deterioration of the output of the solar cell 3 and the solar cell strings 3a over time, and the effect of holding the output of the solar cell panel 10 can be obtained.
 ただし、ポリエチレン等のポリオレフィン系樹脂は、水分、熱および光のエネルギーを受けることで分解が加速することに起因した、屋外環境における絶縁性の低下の懸念がある。このため、太陽電池パネル10においては、水分、熱および光のエネルギーを受けることで分解が加速することに起因した屋外環境における絶縁性の低下がポリオレフィン系樹脂と比べて相対的に少ない、EVA等の絶縁性を有する高分子樹脂を裏面側封止層4に用いる。そして、太陽電池パネル10においては、裏面側封止層4は、受光面側封止層2を、受光面側封止層2の裏面側および外周側から被覆している。これにより、太陽電池パネル10では、オレフィン系樹脂からなり屋外環境による絶縁劣化の影響がEVAよりも相対的に大きい受光面側封止層2への屋外環境の影響を抑制し、屋外環境による受光面側封止層2の絶縁性の低下を抑制することができ、封止層6の絶縁性の低下を抑制することができる。 However, there is a concern that polyolefin-based resins such as polyethylene may lose their insulating properties in the outdoor environment due to the accelerated decomposition due to the energy of moisture, heat and light. Therefore, in the solar panel 10, the deterioration of the insulating property in the outdoor environment due to the acceleration of decomposition by receiving the energy of moisture, heat and light is relatively small as compared with the polyolefin resin, EVA and the like. The polymer resin having the insulating property of is used for the back surface side sealing layer 4. Then, in the solar cell panel 10, the back surface side sealing layer 4 covers the light receiving surface side sealing layer 2 from the back surface side and the outer peripheral side of the light receiving surface side sealing layer 2. As a result, the solar cell panel 10 is made of an olefin resin, and the influence of the insulation deterioration due to the outdoor environment is relatively larger than that of EVA. The influence of the outdoor environment on the light receiving surface side sealing layer 2 is suppressed, and the light is received by the outdoor environment. It is possible to suppress a decrease in the insulating property of the surface-side sealing layer 2, and it is possible to suppress a decrease in the insulating property of the sealing layer 6.
 また、太陽電池パネル10においては、水分、熱および光のエネルギーを受けることで分解が加速することに起因した屋外環境における絶縁性の低下がポリオレフィン系樹脂と比べて相対的に少ない、ガラス基板を光透過性基板1に用いる。そして、光透過性基板1は、受光面側封止層2を受光面側封止層2の受光面側から被覆している。これにより、太陽電池パネル10では、オレフィン系樹脂からなり屋外環境による絶縁劣化の影響がEVAよりも相対的に大きい受光面側封止層2への屋外環境の影響を抑制し、屋外環境による受光面側封止層2の絶縁性の低下を抑制することができ、封止層6の絶縁性の低下を抑制することができる。 Further, in the solar cell panel 10, a glass substrate is used, in which the deterioration of the insulating property in the outdoor environment due to the acceleration of decomposition by receiving the energy of moisture, heat and light is relatively small as compared with the polyolefin resin. Used for the light transmissive substrate 1. The light transmissive substrate 1 covers the light receiving surface side sealing layer 2 from the light receiving surface side of the light receiving surface side sealing layer 2. As a result, the solar cell panel 10 is made of an olefin resin, and the influence of the insulation deterioration due to the outdoor environment is relatively larger than that of EVA. The influence of the outdoor environment on the light receiving surface side sealing layer 2 is suppressed, and the light is received by the outdoor environment. It is possible to suppress a decrease in the insulating property of the surface-side sealing layer 2, and it is possible to suppress a decrease in the insulating property of the sealing layer 6.
 したがって、太陽電池パネル10では、受光面側封止層2にポリオレフィン系樹脂を用いることによって太陽電池セル3および太陽電池セルストリングス3aの経年的な出力劣化を抑制しつつ、屋外環境における受光面側封止層2の絶縁性の低下を抑制することができ、安全性および長期信頼性が向上する。このような効果を確実に得るために、太陽電池パネル10では、裏面側封止層4は、裏面側被覆部材5側から受光面側封止層2を覆うとともに、光透過性基板1の面内方向において、光透過性基板1の外周の全周にわたって、1mm以上の幅で光透過性基板1の裏面の外周縁部1aに接触している。 Therefore, in the solar cell panel 10, by using a polyolefin resin for the light receiving surface side sealing layer 2, the light receiving surface side in the outdoor environment is suppressed while suppressing the aged output deterioration of the solar cell 3 and the solar cell strings 3a. It is possible to suppress a decrease in the insulating property of the sealing layer 2, and the safety and long-term reliability are improved. In order to surely obtain such an effect, in the solar cell panel 10, the back surface side sealing layer 4 covers the light receiving surface side sealing layer 2 from the back surface side covering member 5 side and the surface of the light transmissive substrate 1. In the inward direction, it is in contact with the outer peripheral edge portion 1a of the back surface of the light transmissive substrate 1 with a width of 1 mm or more over the entire circumference of the outer periphery of the light transmissive substrate 1.
 また、ポリオレフィン系樹脂は、加水分解によって樹脂の内部に微細な空孔が発生する。受光面側封止層2にポリオレフィン系樹脂を用いる場合、加水分解によってポリオレフィン系樹脂の内部に微細な空孔が発生すると、受光面側封止層2が受光面側封止層2の外部の水分を吸収する量が多くなり、受光面側封止層2の絶縁性が低下しやすくなる。また、受光面側封止層2と光透過性基板1との接着性が低下する。また、仮に受光面側封止層2が裏面側被覆部材5に接触する場合には、受光面側封止層2と裏面側被覆部材5との接着性が低下する。 In addition, the polyolefin-based resin has fine pores inside the resin due to hydrolysis. When a polyolefin resin is used for the light receiving surface side sealing layer 2, when fine pores are generated inside the polyolefin resin due to hydrolysis, the light receiving surface side sealing layer 2 is outside the light receiving surface side sealing layer 2. The amount of water absorbed increases, and the insulating property of the light receiving surface side sealing layer 2 tends to decrease. Further, the adhesiveness between the light receiving surface side sealing layer 2 and the light transmissive substrate 1 is lowered. Further, if the light receiving surface side sealing layer 2 comes into contact with the back surface side covering member 5, the adhesiveness between the light receiving surface side sealing layer 2 and the back surface side covering member 5 is lowered.
 太陽電池パネル10においては、加水分解に対する耐劣化性がポリオレフィン系樹脂と比べて相対的に高いEVAおよびPET等の樹脂からなる裏面側封止層4が、受光面側封止層2の裏面側および外周側から受光面側封止層2を被覆して、受光面側封止層2を外気から遮断する。これにより、太陽電池パネル10においては、ポリオレフィン系樹脂からなる受光面側封止層2が外気の水分を吸収して加水分解されることを防止して、加水分解に起因した受光面側封止層2の絶縁性の低下および接着性の低下を防止することができる。 In the solar cell panel 10, the back surface side sealing layer 4 made of a resin such as EVA and PET, which has a relatively high deterioration resistance to hydrolysis as compared with the polyolefin resin, is the back surface side of the light receiving surface side sealing layer 2. And the light receiving surface side sealing layer 2 is covered from the outer peripheral side to shield the light receiving surface side sealing layer 2 from the outside air. As a result, in the solar cell panel 10, the light receiving surface side sealing layer 2 made of the polyolefin resin is prevented from being hydrolyzed by absorbing the moisture of the outside air, and the light receiving surface side sealing caused by the hydrolysis is prevented. It is possible to prevent a decrease in the insulating property and a decrease in the adhesiveness of the layer 2.
 したがって、上記の構成を有する太陽電池パネル10は、経年使用に伴って発生する酸の発生量がEVAと比べて相対的に少ないポリエチレン等のポリオレフィン系樹脂を受光面側封止層2に使用している。また、太陽電池パネル10は、加水分解に対する耐劣化性および絶縁性がポリオレフィン系樹脂と比べて相対的に高いEVA等の樹脂を裏面側封止層4に使用し、裏面側封止層4が受光面側封止層2を外気から遮断している。これにより、太陽電池パネル10は、経年的な出力劣化および封止層6の絶縁性の低下が抑制され、長期信頼性および安全性が向上した太陽電池パネル10が実現されている。 Therefore, in the solar cell panel 10 having the above configuration, a polyolefin resin such as polyethylene, which generates a relatively small amount of acid with aging, is used for the light receiving surface side sealing layer 2. ing. Further, in the solar cell panel 10, a resin such as EVA, which has relatively high deterioration resistance and insulating property against hydrolysis as compared with the polyolefin-based resin, is used for the back surface side sealing layer 4, and the back surface side sealing layer 4 is used. The light receiving surface side sealing layer 2 is shielded from the outside air. As a result, the solar cell panel 10 is realized in which the output deterioration over time and the deterioration of the insulating property of the sealing layer 6 are suppressed, and the long-term reliability and safety are improved.
 つぎに、上記のように構成された太陽電池モジュール50の製造方法の一例について説明する。図5は、本発明の実施の形態1にかかる太陽電池モジュール50の製造方法の手順を示すフローチャートである。図6は、本発明の実施の形態1にかかる太陽電池パネル10のラミネート前の構成を示す分解斜視図である。図7は、本発明の実施の形態1にかかる太陽電池パネル10の製造工程におけるラミネート前の積層体10aの構成を示す断面図である。図6においては、24枚の太陽電池セル3が電気的に直列接続された太陽電池セルストリングス3aを用いる場合について示している。 Next, an example of a manufacturing method of the solar cell module 50 configured as described above will be described. FIG. 5 is a flowchart showing a procedure of a method for manufacturing the solar cell module 50 according to the first embodiment of the present invention. FIG. 6 is an exploded perspective view showing the configuration of the solar cell panel 10 according to the first embodiment of the present invention before laminating. FIG. 7 is a cross-sectional view showing the configuration of the laminated body 10a before laminating in the manufacturing process of the solar cell panel 10 according to the first embodiment of the present invention. FIG. 6 shows a case where the solar cell strings 3a in which 24 solar cells 3 are electrically connected in series are used.
 まず、ステップS10において、第1工程である積層工程が行われる。積層工程では、図6に示すような位置関係で、光透過性基板1上に、受光面側封止層シート2aと、太陽電池セルストリングス3aと、裏面側封止層シート4aと、裏面側被覆部材シート5aと、がこの順番で積層されて、図7に示すような積層体10aが形成される。 First, in step S10, the first step, the laminating step, is performed. In the laminating step, the light receiving surface side sealing layer sheet 2a, the solar cell strings 3a, the back surface side sealing layer sheet 4a, and the back surface side are placed on the light transmissive substrate 1 in the positional relationship as shown in FIG. The covering member sheet 5a and the covering member sheet 5a are laminated in this order to form a laminated body 10a as shown in FIG. 7.
 受光面側封止層シート2aは、ポリオレフィン系樹脂からなり、ラミネート工程後に受光面側封止層2となる樹脂シートである。裏面側封止層シート4aは、水分、熱および光のエネルギーを受けることで分解が加速することに起因した屋外環境における絶縁性の低下がポリオレフィン系樹脂と比べて相対的に少ない、EVA等の絶縁性を有する樹脂からなり、ラミネート工程後に裏面側封止層4となる樹脂シートである。裏面側被覆部材シート5aは、ラミネート工程後に裏面側被覆部材5となる樹脂シートである。太陽電池セルストリングス3aは、公知の方法により作製された複数の太陽電池セル3同士がリード線を用いて接続されることにより形成される。 The light receiving surface side sealing layer sheet 2a is a resin sheet made of a polyolefin resin and becomes the light receiving surface side sealing layer 2 after the laminating step. The backside sealing layer sheet 4a has a relatively small decrease in insulating property in an outdoor environment due to accelerated decomposition due to receiving moisture, heat, and light energy, as compared with a polyolefin resin, such as EVA. It is a resin sheet made of an insulating resin and which becomes the back surface side sealing layer 4 after the laminating step. The back surface side covering member sheet 5a is a resin sheet that becomes the back surface side covering member 5 after the laminating step. The solar cell strings 3a are formed by connecting a plurality of solar cells 3 manufactured by a known method to each other using lead wires.
 ここで、積層体10aを構成する各構成部の外形寸法について説明する。 Here, the external dimensions of each component constituting the laminated body 10a will be described.
 光透過性基板1の外形寸法は、上述したように(X1、Y1)で表される。 The external dimensions of the light transmissive substrate 1 are represented by (X1, Y1) as described above.
 受光面側封止層シート2aの外形寸法において、第1の方向の寸法、すなわちX方向の寸法をX2sとし、第2の方向の寸法、すなわちY方向の寸法をY2sとする。この場合の受光面側封止層シート2aの外形寸法は、(X2s、Y2s)と表される。ここで、X2sはX1よりも短く、Y2sはY1よりも短い。すなわち、受光面側封止層シート2aの外形寸法(X2s、Y2s)は、光透過性基板1の外形寸法(X1、Y1)よりも小さい寸法である。 In the external dimensions of the light receiving surface side sealing layer sheet 2a, the dimension in the first direction, that is, the dimension in the X direction is X2s, and the dimension in the second direction, that is, the dimension in the Y direction is Y2s. The external dimensions of the light receiving surface side sealing layer sheet 2a in this case are represented by (X2s, Y2s). Here, X2s is shorter than X1 and Y2s is shorter than Y1. That is, the external dimensions (X2s, Y2s) of the light receiving surface side sealing layer sheet 2a are smaller than the external dimensions (X1, Y1) of the light transmissive substrate 1.
 太陽電池セルストリングス3aの外形寸法は、上述したように(X3、Y3)と表される。ここで、X3はX2sよりも短く、Y3はY2sよりも短い。すなわち、太陽電池セルストリングス3aの外形寸法(X3、Y3)は、受光面側封止層シート2aの外形寸法(X2s、Y2s)よりも小さい寸法である。 The external dimensions of the solar cell strings 3a are represented as (X3, Y3) as described above. Here, X3 is shorter than X2s and Y3 is shorter than Y2s. That is, the external dimensions (X3, Y3) of the solar cell strings 3a are smaller than the external dimensions (X2s, Y2s) of the light receiving surface side sealing layer sheet 2a.
 裏面側封止層シート4aの外形寸法において、第1の方向の寸法、すなわちX方向の寸法をX4sとし、第2の方向の寸法、すなわちY方向の寸法をY4sとする。この場合の裏面側封止層シート4aの外形寸法は、(X4s、Y4s)と表される。ここで、X4sは、X1よりも長い。また、Y4sは、Y1よりも長い。すなわち、裏面側封止層シート4aの外形寸法(X4s、Y4s)は、光透過性基板1の外形寸法(X1、Y1)よりも大きい寸法である。 In the external dimensions of the back surface side sealing layer sheet 4a, the dimension in the first direction, that is, the dimension in the X direction is X4s, and the dimension in the second direction, that is, the dimension in the Y direction is Y4s. The external dimensions of the back surface side sealing layer sheet 4a in this case are represented as (X4s, Y4s). Here, X4s is longer than X1. Also, Y4s is longer than Y1. That is, the external dimensions (X4s, Y4s) of the back surface side sealing layer sheet 4a are larger than the external dimensions (X1, Y1) of the light transmissive substrate 1.
 裏面側被覆部材シート5aの外形寸法において、第1の方向の寸法、すなわちX方向の寸法をX5sとし、第2の方向の寸法、すなわちY方向の寸法をY5sとする。この場合の裏面側被覆部材シート5aの外形寸法は、(X5s、Y5s)と表される。ここで、X5sは、X4よりも長い。また、Y5sは、Y4よりも長い。すなわち、裏面側被覆部材シート5aの外形寸法(X5s、Y5s)は、裏面側封止層シート4aの外形寸法(X4s、Y4s)よりも大きい寸法である。 In the external dimensions of the back surface side covering member sheet 5a, the dimension in the first direction, that is, the dimension in the X direction is X5s, and the dimension in the second direction, that is, the dimension in the Y direction is Y5s. The external dimensions of the back surface side covering member sheet 5a in this case are represented as (X5s, Y5s). Here, X5s is longer than X4. Also, Y5s is longer than Y4. That is, the external dimensions (X5s, Y5s) of the back surface side covering member sheet 5a are larger than the external dimensions (X4s, Y4s) of the back surface side sealing layer sheet 4a.
 上述したように、積層体10aを構成する各構成部における外形寸法の大きさの大小は、第1の方向の寸法については、「X5s>X4s>X1>X2s>X3」となり、第2の方向の寸法については、「Y5s>Y4s>Y1>Y2s>Y3」となる。したがって、積層体10aを構成する各構成部における外形の大きさの大小は、「裏面側被覆部材シート5a>裏面側封止層シート4a>光透過性基板1>受光面側封止層シート2a>太陽電池セルストリングス3a」となる。 As described above, the size of the external dimensions of each component constituting the laminated body 10a is "X5s> X4s> X1> X2s> X3" for the dimensions in the first direction, and the second direction. The dimensions of are "Y5s> Y4s> Y1> Y2s> Y3". Therefore, the size of the outer shape of each component constituting the laminated body 10a is determined by "back surface side covering member sheet 5a> back surface side sealing layer sheet 4a> light transmissive substrate 1> light receiving surface side sealing layer sheet 2a. > Solar cell strings 3a ”.
 つぎに、ステップS20において、第2工程であるラミネート工程が行われる。図8は、本発明の実施の形態1にかかる太陽電池パネル10の製造に用いられる太陽電池パネル製造装置100を示す模式断面図である。太陽電池パネル製造装置100は、一般に太陽電池パネルの製造に用いられる公知の樹脂封止装置、すなわち真空加熱ラミネート装置である。 Next, in step S20, the laminating step, which is the second step, is performed. FIG. 8 is a schematic cross-sectional view showing a solar cell panel manufacturing apparatus 100 used for manufacturing the solar cell panel 10 according to the first embodiment of the present invention. The solar cell panel manufacturing device 100 is a known resin sealing device generally used for manufacturing a solar cell panel, that is, a vacuum heating laminating device.
 太陽電池パネル製造装置100は、本体部101と、冷却コンベア103と、を備える。本体部101は、下方に配置される第1部材101aと、封止材の溶融後にプレスする機能を備えて第1部材101aの上方に配置される第2部材101bと、積層体10aを搬送するための環状の搬送シート101cと、を備える。また、第1部材101aは、積層体10aを加熱するためのヒータ101Hを備える。なお、大気中においてラミネート工程を実施する場合について示したが、太陽電池パネル製造装置100は、真空中で積層体10aのラミネートを行う構成とされてもよい。 The solar cell panel manufacturing apparatus 100 includes a main body 101 and a cooling conveyor 103. The main body 101 conveys the first member 101a arranged below, the second member 101b having a function of pressing after melting the sealing material and arranged above the first member 101a, and the laminated body 10a. An annular transport sheet 101c for the purpose is provided. Further, the first member 101a includes a heater 101H for heating the laminated body 10a. Although the case where the laminating step is performed in the atmosphere has been shown, the solar cell panel manufacturing apparatus 100 may be configured to laminate the laminated body 10a in a vacuum.
 冷却コンベア103は、本体部101の下流側に配置されている。冷却コンベア103は、溶融および加圧処理が施されて本体部101から排出された積層体10aを空冷により冷却する機能と、積層体10aを搬送する機能と、を備える。冷却コンベア103は、複数個のローラが並列配置されることにより構成されているが、公知の搬送シートおよび搬送チェーンにより構成されていてもよい。 The cooling conveyor 103 is arranged on the downstream side of the main body 101. The cooling conveyor 103 has a function of cooling the laminated body 10a discharged from the main body 101 after being melted and pressurized by air cooling, and a function of transporting the laminated body 10a. The cooling conveyor 103 is configured by arranging a plurality of rollers in parallel, but may be configured by a known transfer sheet and transfer chain.
 ラミネート工程では、太陽電池パネル製造装置100において、積層体10aが、搬送シート101cに載置された状態で第1部材101a上に配置される。そして、積層体10aの周囲が真空引きされ、ヒータ101Hを用いて積層体10aに対して加熱処理が行われ、受光面側封止層シート2aと裏面側封止層シート4aとが溶融した状態で第2部材101bにより積層体10aを加圧するラミネート封止プロセスである溶融加圧処理が実施される。積層体10aは、70℃以上180℃以下程度の温度に加熱される。また、積層体10aは、0.05MPa以上2.00MPa以下程度の圧力で、1min以上120min以下の加熱時間にわたって、加圧される。これにより、太陽電池セルストリングス3aが、受光面側封止層シート2aと裏面側封止層シート4aとが一体化して構成される封止層6の内部に封止される。 In the laminating step, in the solar cell panel manufacturing apparatus 100, the laminated body 10a is placed on the first member 101a in a state of being placed on the transport sheet 101c. Then, the periphery of the laminated body 10a is evacuated, heat treatment is performed on the laminated body 10a using the heater 101H, and the light receiving surface side sealing layer sheet 2a and the back surface side sealing layer sheet 4a are melted. The melt pressurization process, which is a laminate sealing process of pressurizing the laminate 10a by the second member 101b, is performed. The laminate 10a is heated to a temperature of about 70 ° C. or higher and 180 ° C. or lower. Further, the laminated body 10a is pressurized at a pressure of about 0.05 MPa or more and 2.00 MPa or less for a heating time of 1 min or more and 120 min or less. As a result, the solar cell strings 3a are sealed inside the sealing layer 6 formed by integrating the light receiving surface side sealing layer sheet 2a and the back surface side sealing layer sheet 4a.
 溶融加圧処理の後、一体化されて本体部101から排出された積層体10aが、冷却コンベア103に移送され、冷却される。これにより、溶融した受光面側封止層シート2aと裏面側封止層シート4aとが硬化する。ラミネート工程後、光透過性基板1の端面からはみ出している樹脂が切り取られ、外形寸法がラミネート加工前の光透過性基板1の外形寸法と同じサイズに調整される。以上の工程を経ることで、図9に示すような断面を有する太陽電池パネル10が得られる。図9は、本発明の実施の形態1にかかる太陽電池パネルの製造方法によって作製された太陽電池パネル10を示す模式断面図である。 After the melt pressurization treatment, the laminated body 10a integrated and discharged from the main body 101 is transferred to the cooling conveyor 103 and cooled. As a result, the melted light-receiving surface side sealing layer sheet 2a and the back surface side sealing layer sheet 4a are cured. After the laminating step, the resin protruding from the end face of the light transmissive substrate 1 is cut off, and the external dimensions are adjusted to the same size as the external dimensions of the light transmissive substrate 1 before laminating. Through the above steps, a solar cell panel 10 having a cross section as shown in FIG. 9 can be obtained. FIG. 9 is a schematic cross-sectional view showing a solar cell panel 10 manufactured by the method for manufacturing a solar cell panel according to the first embodiment of the present invention.
 なお、積層体10aを加圧するときの積層体10aの温度を、受光面側封止層シート2aの融点および裏面側封止層シート4aの融点よりも高くすることで、受光面側封止層シート2aの内部および裏面側封止層シート4aの内部に気泡が無く、受光面側封止層シート2aおよび裏面側封止層シート4aの剥離の無い、均一な太陽電池パネル10を作製することが可能である。 By setting the temperature of the laminated body 10a when the laminated body 10a is pressed higher than the melting point of the light receiving surface side sealing layer sheet 2a and the melting point of the back surface side sealing layer sheet 4a, the light receiving surface side sealing layer is formed. To produce a uniform solar cell panel 10 in which there are no air bubbles inside the sheet 2a and the back surface side sealing layer sheet 4a, and there is no peeling of the light receiving surface side sealing layer sheet 2a and the back surface side sealing layer sheet 4a. Is possible.
 つぎに、ステップS30において、第3工程である保持フレーム取り付け工程が行われる。保持フレーム取り付け工程では、太陽電池パネル10の外周の全周にわたって、太陽電池パネル10の外縁部に保持フレーム20が取り付けられ、固定される。以上の工程を経ることで、太陽電池モジュール50が得られる。 Next, in step S30, the holding frame attaching step, which is the third step, is performed. In the holding frame attaching step, the holding frame 20 is attached and fixed to the outer edge of the solar cell panel 10 over the entire circumference of the outer circumference of the solar cell panel 10. By going through the above steps, the solar cell module 50 can be obtained.
 上述したように、本実施の形態1にかかる太陽電池パネル10は、経年使用に伴って発生する酸の発生量がEVAと比べて相対的に少ないポリオレフィン系樹脂を受光面側封止層2に使用している。また、太陽電池パネル10は、加水分解に対する耐劣化性および絶縁性がポリオレフィン系樹脂と比べて相対的に高いEVA等の樹脂を裏面側封止層4に使用し、裏面側封止層4が受光面側封止層2を外気から遮断している。これにより、太陽電池パネル10は、経年的な出力劣化および封止層6の絶縁性の低下を抑制でき、長期信頼性および安全性が向上した太陽電池パネル10を実現できる。 As described above, in the solar cell panel 10 according to the first embodiment, a polyolefin-based resin in which the amount of acid generated with aging is relatively smaller than that of EVA is applied to the light receiving surface side sealing layer 2. I'm using it. Further, in the solar cell panel 10, a resin such as EVA, which has relatively high deterioration resistance and insulating property against hydrolysis as compared with the polyolefin-based resin, is used for the back surface side sealing layer 4, and the back surface side sealing layer 4 is used. The light receiving surface side sealing layer 2 is shielded from the outside air. As a result, the solar cell panel 10 can suppress deterioration of output over time and deterioration of the insulating property of the sealing layer 6, and can realize the solar cell panel 10 with improved long-term reliability and safety.
 以下、本実施の形態1にかかる太陽電池パネル10を具体的な実施例に基づいて説明する。実施例1、比較例1および比較例2の太陽電池パネルのサンプルを作製し、評価を行った。図10は、実施例1、比較例1および比較例2のサンプルの作製条件を示す図である。図10においては、太陽電池セルストリングスをセルストリングスと記載し、太陽電池セルをセルと記載している。 Hereinafter, the solar cell panel 10 according to the first embodiment will be described based on a specific embodiment. Samples of the solar cell panels of Example 1, Comparative Example 1 and Comparative Example 2 were prepared and evaluated. FIG. 10 is a diagram showing preparation conditions for samples of Example 1, Comparative Example 1 and Comparative Example 2. In FIG. 10, solar cell strings are referred to as cell strings, and solar cells are referred to as cells.
実施例1.
 上述した太陽電池モジュール50の製造方法に倣って、光透過性基板1、受光面側封止層2となる受光面側封止層シート2a、太陽電池セルストリングス3a、裏面側封止層4となる裏面側封止層シート4a、裏面側被覆部材5となる裏面側被覆部材シート5aを順次積層して積層体を形成した。
Example 1.
Following the manufacturing method of the solar cell module 50 described above, the light transmitting substrate 1, the light receiving surface side sealing layer sheet 2a serving as the light receiving surface side sealing layer 2, the solar cell strings 3a, and the back surface side sealing layer 4 The back surface side sealing layer sheet 4a and the back surface side covering member sheet 5a serving as the back surface side covering member 5 were sequentially laminated to form a laminated body.
 光透過性基板1には、サイズが第1の方向:600mm×第2の方向:450mm×厚さ:3.2mmの白板ガラスを用いた。受光面側封止層シート2aには、サイズが第1の方向:590mm×第2の方向:440mm×厚さ:0.6mmのポリエチレン樹脂シートを用いた。 For the light transmissive substrate 1, a white plate glass having a size of first direction: 600 mm × second direction: 450 mm × thickness: 3.2 mm was used. As the light receiving surface side sealing layer sheet 2a, a polyethylene resin sheet having a size of 1st direction: 590 mm × 2nd direction: 440 mm × thickness: 0.6 mm was used.
 太陽電池セルストリングス3aには、サイズが第1の方向:580mm以下×第2の方向:430mm以下の太陽電池セルストリングス3aを用いた。太陽電池セルストリングス3aは、3枚の太陽電池セル3が配線によって直列接続された2つのセル組が2つ平行に並べられ、太陽電池セル3が2行3列に配列されて6枚の太陽電池セル3が直列に接続されている。 As the solar cell strings 3a, the solar cell strings 3a having a size of the first direction: 580 mm or less × the second direction: 430 mm or less were used. In the solar cell strings 3a, two cell sets in which three solar cells 3 are connected in series by wiring are arranged in parallel, and the solar cells 3 are arranged in two rows and three columns to form six suns. The battery cells 3 are connected in series.
 裏面側封止層シート4aには、サイズが第1の方向:610mm×第2の方向:460mm×厚さ:0.4mmのEVA樹脂シートを用いた。裏面側被覆部材シート5aには、PETフィルムが積層された、サイズが第1の方向:620mm×第2の方向:470mm×厚さ:0.1mmのPETシートを用いた。 For the back surface side sealing layer sheet 4a, an EVA resin sheet having a size of 1st direction: 610 mm × 2nd direction: 460 mm × thickness: 0.4 mm was used. For the back surface side covering member sheet 5a, a PET sheet having a size of 620 mm × second direction: 470 mm × thickness: 0.1 mm in which a PET film was laminated was used.
 なお、裏面側封止層シート4aと裏面側被覆部材シート5aとには、太陽電池パネルの裏面側から出力端子を取り出せるように切り欠きを設けた。また、太陽電池セルストリングス3aの太陽電池セル3に配線を取り付けて、太陽電池セル3に通電した際のEL発光(Electro-Luminescence)の画像を確認できるようにした。 The back surface side sealing layer sheet 4a and the back surface side covering member sheet 5a are provided with notches so that the output terminals can be taken out from the back surface side of the solar cell panel. In addition, wiring was attached to the solar cell 3 of the solar cell strings 3a so that an image of EL emission (Electro-Luminescence) when the solar cell 3 was energized could be confirmed.
 つぎに、図8に示した太陽電池パネル製造装置100を真空中でラミネート加工を行えるように構成し、積層体のラミネート加工を行った。ラミネート加工は、積層体を160℃に加熱し、真空引きを5分間行い、プレス時圧力:50KPa、プレス時間:30分の条件で行った。 Next, the solar cell panel manufacturing apparatus 100 shown in FIG. 8 was configured so that it could be laminated in a vacuum, and the laminated body was laminated. The laminating process was carried out under the conditions that the laminated body was heated to 160 ° C., evacuated for 5 minutes, the pressing pressure was 50 KPa, and the pressing time was 30 minutes.
 ラミネート加工後、光透過性基板1の端面からはみ出している樹脂をカッターナイフで切り取り、外形寸法をラミネート加工前の光透過性基板1の外形寸法と同じ寸法に調整して、図2と同様の外観および図3と同様の断面形状となる太陽電池パネルを作製した。以上のようにして作製された太陽電池パネルのサンプルを、実施例1のサンプルとした。 After the laminating process, the resin protruding from the end face of the light transmissive substrate 1 is cut off with a cutter knife, and the external dimensions are adjusted to the same external dimensions as the external dimensions of the light transmissive substrate 1 before the laminating process. A solar cell panel having an appearance and a cross-sectional shape similar to that in FIG. 3 was produced. The sample of the solar cell panel produced as described above was used as the sample of Example 1.
 なお、裏面側被覆部材シート5aの外形寸法が裏面側封止層シート4aの外形寸法よりも大きい理由は、ラミネート加工時に裏面側封止層シート4aが太陽電池パネル製造装置100の天板となる第2部材101bに付着して太陽電池パネル製造装置100を汚染する可能性があるためである。 The reason why the outer dimensions of the back surface side covering member sheet 5a are larger than the outer dimensions of the back surface side sealing layer sheet 4a is that the back surface side sealing layer sheet 4a serves as the top plate of the solar cell panel manufacturing apparatus 100 during the laminating process. This is because there is a possibility of adhering to the second member 101b and contaminating the solar cell panel manufacturing apparatus 100.
比較例1.
 受光面側封止層シート2aに、実施例1で用いたサイズが第1の方向:590mm×第2の方向:440mm×厚さ:0.6mmのポリエチレン樹脂シートの代わりに、サイズが第1の方向:610mm×第2の方向:460mm×厚さ:0.6mmのポリエチレン樹脂シートを用いたこと以外は、実施例1の場合と同様にして太陽電池パネルを作製した。以上のようにして作製された太陽電池パネルのサンプルを、比較例1のサンプルとした。
Comparative example 1.
The size of the light receiving surface side sealing layer sheet 2a is the first in place of the polyethylene resin sheet having the size of the first direction: 590 mm × the second direction: 440 mm × the thickness: 0.6 mm used in the first embodiment. A solar cell panel was produced in the same manner as in Example 1 except that a polyethylene resin sheet having a direction of 610 mm × second direction: 460 mm × thickness: 0.6 mm was used. The sample of the solar cell panel produced as described above was used as the sample of Comparative Example 1.
 比較例1のサンプルは、太陽電池セル3の表面がポリエチレンからなる受光面側封止層2と、EVAからなる裏面側封止層4により被覆されている。すなわち、比較例1のサンプルは、太陽電池セル3における受光面側の表面および外周における光透過性基板1側の領域と、太陽電池セル3間の隙間領域における光透過性基板1側の領域とが、ポリエチレンからなる受光面側封止層2により被覆されている。また、比較例1のサンプルは、太陽電池セル3における裏面側の表面および外周における裏面側被覆部材5側の領域と、太陽電池セル3間の隙間領域における裏面側被覆部材5側の領域とが、EVAからなる裏面側封止層4により被覆されている。受光面側封止層2は、光透過性基板1の裏面の全面に配置されている。また、裏面側封止層4は、受光面側封止層2の裏面側から受光面側封止層2を被覆しているが、受光面側封止層2の外周側は被覆していない。したがって、比較例1のサンプルは、太陽電池パネル10の端面にポリエチレンからなる受光面側封止層2が露出している。 In the sample of Comparative Example 1, the surface of the solar cell 3 is covered with a light receiving surface side sealing layer 2 made of polyethylene and a back surface side sealing layer 4 made of EVA. That is, the sample of Comparative Example 1 includes a region on the surface and outer periphery of the solar cell 3 on the light receiving surface side on the light transmitting substrate 1 side and a region on the light transmitting substrate 1 side in the gap region between the solar cells 3. Is covered with a light receiving surface side sealing layer 2 made of polyethylene. Further, in the sample of Comparative Example 1, the region on the back surface side of the solar cell 3 and the region on the back surface side covering member 5 on the outer circumference and the region on the back surface side covering member 5 side in the gap region between the solar cells 3 are formed. , EVA is covered with a backside sealing layer 4. The light receiving surface side sealing layer 2 is arranged on the entire back surface of the light transmissive substrate 1. Further, the back surface side sealing layer 4 covers the light receiving surface side sealing layer 2 from the back surface side of the light receiving surface side sealing layer 2, but does not cover the outer peripheral side of the light receiving surface side sealing layer 2. .. Therefore, in the sample of Comparative Example 1, the light receiving surface side sealing layer 2 made of polyethylene is exposed on the end surface of the solar cell panel 10.
比較例2.
 受光面側封止層シート2aに、実施例1で用いたサイズが第1の方向:590mm×第2の方向:440mm×厚さ:0.6mmのポリエチレン樹脂シートの代わりに、サイズが第1の方向:610mm×第2の方向:460mm×厚さ:0.6mmのEVA樹脂シートを用いたこと以外は、実施例1の場合と同様にして太陽電池パネルを作製した。以上のようにして作製された太陽電池パネルのサンプルを、比較例2のサンプルとした。
Comparative example 2.
The size of the light-receiving surface-side sealing layer sheet 2a is first, instead of the polyethylene resin sheet having a size of 590 mm × second direction: 440 mm × thickness: 0.6 mm used in Example 1. A solar cell panel was produced in the same manner as in Example 1 except that an EVA resin sheet having a direction of 610 mm × second direction: 460 mm × thickness: 0.6 mm was used. The sample of the solar cell panel produced as described above was used as the sample of Comparative Example 2.
 比較例2のサンプルは、太陽電池セル3の表面がEVAからなる受光面側封止層2と、EVAからなる裏面側封止層4により被覆されている。受光面側封止層2は、光透過性基板1の裏面の全面に配置されている。 In the sample of Comparative Example 2, the front surface of the solar cell 3 is covered with a light receiving surface side sealing layer 2 made of EVA and a back surface side sealing layer 4 made of EVA. The light receiving surface side sealing layer 2 is arranged on the entire back surface of the light transmissive substrate 1.
 上記のようにして作製された実施例1、比較例1および比較例2のサンプルについて、IV特性、EL画像および絶縁性の測定を実施した。IV特性は、太陽電池パネルの電気特性であり、JIS C 8990に記載の規定の放射照度の光を太陽電池パネルに照射した場合の太陽電池パネルの出力等の値であり、電流Iと電圧Vの測定結果から得られる。IV特性としては、最大出力Pm、短絡電流Isc、曲線因子F.F、直列抵抗Rsを得た。 The IV characteristics, EL images, and insulating properties of the samples of Example 1, Comparative Example 1 and Comparative Example 2 prepared as described above were measured. The IV characteristic is the electrical characteristic of the solar cell panel, and is a value such as the output of the solar cell panel when the solar cell panel is irradiated with the light of the irradiance specified in JIS C 8990, and is the current I and the voltage V. It is obtained from the measurement result of. The IV characteristics include maximum output Pm, short-circuit current Isc, and curve factor F. F, series resistance Rs was obtained.
 EL画像は、太陽電池セルに電流を強制的に通電させることで発生する赤外線(Infrared:IR)を赤外線カメラで撮像して可視化した画像である。太陽電池セルにおいて割れ等の不具合がある部分は、通電されないため、赤外線が発生せずに暗いままとなり、EL画像に暗部が発生する。したがって、EL画像を確認することにより、太陽電池セルの不具合に起因した太陽電池パネルの不具合を確認することが可能である。 The EL image is an image visualized by capturing an infrared ray (Infrared: IR) generated by forcibly energizing a solar cell with an electric current with an infrared camera. Since the portion of the solar cell having a defect such as cracking is not energized, infrared rays are not generated and the portion remains dark, and a dark portion is generated in the EL image. Therefore, by checking the EL image, it is possible to confirm the malfunction of the solar cell panel due to the malfunction of the solar cell.
 つぎに、実施例1、比較例1および比較例2のサンプルを、高温高湿(Damp-Heat:DH、温度:85℃、湿度:85%)環境において4000時間保管した。その後、実施例1、比較例1および比較例2のサンプルについて、IV特性、EL画像、絶縁性の測定を再度実施した。その結果を図11に示す。図11は、実施例1、比較例1および比較例2のサンプルの測定結果を示す図である。図11において、Pm保持率およびRs保持率は、高温高湿環境で4000時間保管する前の測定値を基準にして百分率表示している。 Next, the samples of Example 1, Comparative Example 1 and Comparative Example 2 were stored for 4000 hours in a high temperature and high humidity (Damp-Heat: DH, temperature: 85 ° C., humidity: 85%) environment. Then, the IV characteristics, EL images, and insulating properties of the samples of Example 1, Comparative Example 1, and Comparative Example 2 were measured again. The result is shown in FIG. FIG. 11 is a diagram showing the measurement results of the samples of Example 1, Comparative Example 1 and Comparative Example 2. In FIG. 11, the Pm retention rate and the Rs retention rate are expressed as percentages based on the measured values before storage in a high temperature and high humidity environment for 4000 hours.
 図11から明らかなように、比較例1は太陽電池セル3の受光面側の表面がポリエチレンで被覆されているため最大出力Pmの耐湿劣化がほぼ無い。比較例1では、受光面側封止層2にポリオレフィン系樹脂を用いることにより、経年使用に伴う受光面側封止層2における酸の発生が生じない。このため、比較例1では、太陽電池セル3の電極に使用されている銀(Ag)などの金属材料の受光面側封止層2に起因した酸化が生じにくく、受光面側封止層2に起因した太陽電池セル3の耐湿劣化が生じにくいことが、最大出力Pmの耐湿劣化の抑制に寄与していると考えられる。ただし、比較例1のサンプルは、受光面側封止層2の外周側がEVAからなる裏面側封止層4で被覆されていないため、太陽電池パネル10の端面にポリエチレンからなる受光面側封止層2が露出しているため、封止層6の絶縁性が低下し、絶縁抵抗値が低下している。 As is clear from FIG. 11, in Comparative Example 1, since the surface of the solar cell 3 on the light receiving surface side is coated with polyethylene, there is almost no deterioration in moisture resistance at the maximum output Pm. In Comparative Example 1, by using the polyolefin resin for the light receiving surface side sealing layer 2, acid is not generated in the light receiving surface side sealing layer 2 due to aged use. Therefore, in Comparative Example 1, oxidation due to the light receiving surface side sealing layer 2 of the metal material such as silver (Ag) used for the electrode of the solar cell 3 is unlikely to occur, and the light receiving surface side sealing layer 2 is unlikely to occur. It is considered that the fact that the moisture resistance deterioration of the solar cell 3 due to the above is less likely to occur contributes to the suppression of the moisture resistance deterioration of the maximum output Pm. However, in the sample of Comparative Example 1, since the outer peripheral side of the light receiving surface side sealing layer 2 is not covered with the back surface side sealing layer 4 made of EVA, the end face of the solar cell panel 10 is sealed on the light receiving surface side made of polyethylene. Since the layer 2 is exposed, the insulating property of the sealing layer 6 is lowered, and the insulation resistance value is lowered.
 また、比較例2のサンプルは、受光面側封止層2にEVAを使用しているため最大出力Pmの耐湿劣化が大きい。すなわち、受光面側封止層2に用いられるEVAは、酸に成りえるカルボキシル基等の官能基を有しており、経年使用に伴う加水分解により酢酸等の酸が発生する。このため、比較例2のサンプルは、実施例1および比較例1と比べて、最大出力Pmの耐湿劣化が大きくなっていると考えられる。ただし、比較例1のサンプルは、太陽電池パネル10が全てEVAで覆われているため、封止層6の絶縁性が高い。 Further, since the sample of Comparative Example 2 uses EVA for the light receiving surface side sealing layer 2, the moisture resistance deterioration of the maximum output Pm is large. That is, the EVA used for the light receiving surface side sealing layer 2 has a functional group such as a carboxyl group that can be an acid, and an acid such as acetic acid is generated by hydrolysis with aging. Therefore, it is considered that the sample of Comparative Example 2 has a larger moisture resistance deterioration of the maximum output Pm than that of Example 1 and Comparative Example 1. However, in the sample of Comparative Example 1, since the solar cell panel 10 is entirely covered with EVA, the insulating property of the sealing layer 6 is high.
 また、受光面側封止層2がEVAである場合には、経年使用に伴う受光面側封止層2の加水分解により発生した酸により、太陽電池セル3の受光面に形成されたAg等の電極が酸化して電気を集電できなくなる現象が発生する。比較例2のサンプルでは、受光面側封止層2がEVAであるため、太陽電池セル3の受光面に形成された電極が酸化して電気を集電できなくなり、EL発光が確認されなくなり暗部が発生するという暗部発生現象が発生し、図11に示すように暗部発生有という結果となっている。 When the light receiving surface side sealing layer 2 is EVA, Ag or the like formed on the light receiving surface of the solar cell 3 due to the acid generated by the hydrolysis of the light receiving surface side sealing layer 2 with aging. A phenomenon occurs in which the electrodes of the above are oxidized and cannot collect electricity. In the sample of Comparative Example 2, since the light receiving surface side sealing layer 2 is EVA, the electrodes formed on the light receiving surface of the solar cell 3 are oxidized and electricity cannot be collected, EL light emission is not confirmed, and the dark part is dark. The dark part generation phenomenon occurs, and as shown in FIG. 11, the result is that the dark part is generated.
 一方、実施例1および比較例1のサンプルでは、受光面側封止層2がポリエチレンであるため、太陽電池セル3の受光面に形成された電極が、上記のような経年使用に伴い受光面側封止層2から発生した酸によって劣化することが無い。このため、実施例1および比較例1のサンプルでは、太陽電池セル3の受光面に形成された電極が酸化されにくいため、暗部発生現象が発生しにくく、図11に示すように暗部発生無という結果となっている。 On the other hand, in the samples of Example 1 and Comparative Example 1, since the light-receiving surface side sealing layer 2 is made of polyethylene, the electrode formed on the light-receiving surface of the solar cell 3 has a light-receiving surface as described above over time. It does not deteriorate due to the acid generated from the side sealing layer 2. Therefore, in the samples of Example 1 and Comparative Example 1, since the electrode formed on the light receiving surface of the solar cell 3 is less likely to be oxidized, the dark part generation phenomenon is less likely to occur, and as shown in FIG. 11, it is said that no dark part is generated. The result is.
 また、受光面側封止層2がEVAである場合には、経年使用に伴う受光面側封止層2の加水分解により発生した酸により、太陽電池セル3の受光面に形成されたAg等の電極が酸化して電極の抵抗値が上昇するという現象が発生する。比較例2のサンプルでは、受光面側封止層2がEVAであるため、太陽電池セル3の受光面に形成された電極が酸により酸化されて、電極の抵抗値が上昇するという現象が発生し、図11に示すようにRs保持率が上昇するという結果となっている。したがって、比較例2のサンプルでは、最大出力Pmが低下し、発電能力が低下する結果となっている。 When the light receiving surface side sealing layer 2 is EVA, Ag or the like formed on the light receiving surface of the solar cell 3 due to the acid generated by the hydrolysis of the light receiving surface side sealing layer 2 with aging. The phenomenon that the electrode of the above is oxidized and the resistance value of the electrode rises occurs. In the sample of Comparative Example 2, since the light receiving surface side sealing layer 2 is EVA, a phenomenon occurs in which the electrode formed on the light receiving surface of the solar cell 3 is oxidized by the acid and the resistance value of the electrode increases. However, as shown in FIG. 11, the result is that the Rs retention rate increases. Therefore, in the sample of Comparative Example 2, the maximum output Pm is lowered, resulting in a decrease in the power generation capacity.
 一方、実施例1のサンプルは、受光面側封止層2にポリエチレンを使用しているため、受光面側封止層2にEVA樹脂を使用した比較例2よりも受光面側封止層2中の酸の発生が抑制され、最大出力Pmの耐湿劣化がほぼ無い。また、実施例1のサンプルでは、受光面側封止層2がポリエチレンであるため、太陽電池セル3の受光面に形成された電極が酸により酸化されて、電極の抵抗値が上昇するという現象が発生せず、図11に示すようにRs保持率が良好に保持された結果となっている。したがって、実施例1のサンプルでは、高温高圧で4000時間保管された後も、最大出力Pmが良好に保持され、発電能力が良好に保持された結果となっている。 On the other hand, in the sample of Example 1, since polyethylene is used for the light receiving surface side sealing layer 2, the light receiving surface side sealing layer 2 is more than that of Comparative Example 2 in which EVA resin is used for the light receiving surface side sealing layer 2. The generation of acid inside is suppressed, and there is almost no deterioration in moisture resistance at the maximum output Pm. Further, in the sample of Example 1, since the light receiving surface side sealing layer 2 is made of polyethylene, the electrode formed on the light receiving surface of the solar cell 3 is oxidized by the acid, and the resistance value of the electrode increases. Is not generated, and as shown in FIG. 11, the Rs retention rate is well maintained. Therefore, in the sample of Example 1, the maximum output Pm is well maintained and the power generation capacity is well maintained even after being stored at high temperature and high voltage for 4000 hours.
 また、実施例1のサンプルでは、EVAからなる裏面側封止層4が、光透過性基板1の裏面において受光面側封止層2により被覆されてない外周側の領域である外周縁部1aの全周に接触しているため、絶縁性の低下も無い事が確認された。すなわち、実施例1のサンプルでは、太陽電池パネル10の端面にポリエチレンからなる受光面側封止層2が露出していないため絶縁性の低下も無い事が確認された。 Further, in the sample of Example 1, the back surface side sealing layer 4 made of EVA is an outer peripheral edge portion 1a which is an outer peripheral side region which is not covered by the light receiving surface side sealing layer 2 on the back surface of the light transmissive substrate 1. It was confirmed that there was no deterioration in the insulating property because it was in contact with the entire circumference of the. That is, in the sample of Example 1, it was confirmed that the insulating property was not deteriorated because the light receiving surface side sealing layer 2 made of polyethylene was not exposed on the end surface of the solar cell panel 10.
 上記の結果により、本実施の形態1にかかる太陽電池パネルの製造方法により、経年的な出力劣化および封止層6の絶縁性の低下が抑制され、長期信頼性および安全性が向上した太陽電池パネル10を安定的に生産することができることが確認された。 Based on the above results, the method for manufacturing a solar cell panel according to the first embodiment suppresses aged deterioration of output and deterioration of the insulating property of the sealing layer 6, and improves long-term reliability and safety. It was confirmed that the panel 10 can be produced stably.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 光透過性基板、1a 外周縁部、2 受光面側封止層、2a 受光面側封止層シート、3 太陽電池セル、3a 太陽電池セルストリングス、4 裏面側封止層、4a 裏面側封止層シート、5 裏面側被覆部材、5a 裏面側被覆部材シート、6 封止層、10 太陽電池パネル、10a 積層体、20 保持フレーム、20a 保持溝部、50 太陽電池モジュール、100 太陽電池パネル製造装置、101 本体部、101H ヒータ、101a 第1部材、101b 第2部材、101c 搬送シート、103 冷却コンベア、L 太陽光。 1 Light transmissive substrate, 1a Outer peripheral edge, 2 Light receiving surface side sealing layer, 2a Light receiving surface side sealing layer sheet, 3 Solar cell, 3a Solar cell strings, 4 Back side sealing layer, 4a Back side sealing Stop layer sheet, 5 Back side covering member, 5a Back side covering member sheet, 6 Sealing layer, 10 Solar cell panel, 10a Laminated body, 20 Holding frame, 20a Holding groove, 50 Solar cell module, 100 Solar cell panel manufacturing equipment , 101 main body, 101H heater, 101a first member, 101b second member, 101c transfer sheet, 103 cooling conveyor, L sunlight.

Claims (9)

  1.  複数の太陽電池セルが電気的に接続された太陽電池セルストリングスが、前記太陽電池セルストリングスの受光面側に配置された受光面側保護部材と前記太陽電池セルストリングスの受光面と背向する裏面側に配置された裏面側被覆部材との間に狭持された封止層の中に封止された、太陽電池パネルであって、
     前記封止層は、
     ポリオレフィン系樹脂によって構成され、前記太陽電池セルストリングスにおける受光面側の全面を被覆する受光面側封止層と、
     エチレン酢酸ビニル共重合樹脂によって構成され、前記太陽電池セルストリングスを前記太陽電池セルストリングスの裏面側から被覆するとともに、前記受光面側封止層を前記受光面側封止層の裏面側および前記受光面側封止層の外周側から被覆する裏面側封止層と、
     を備えることを特徴とする太陽電池パネル。
    A solar cell string in which a plurality of solar cells are electrically connected is a back surface facing a light receiving surface side protective member arranged on the light receiving surface side of the solar cell strings and a light receiving surface of the solar cell strings. A solar cell panel sealed in a sealing layer sandwiched between a back surface side covering member arranged on the side.
    The sealing layer is
    A light-receiving surface-side sealing layer composed of a polyolefin resin and covering the entire surface of the light-receiving surface side of the solar cell strings,
    It is composed of an ethylene-vinyl acetate copolymer resin, and the solar cell strings are coated from the back surface side of the solar cell strings, and the light receiving surface side sealing layer is coated on the back surface side of the light receiving surface side sealing layer and the light receiving light. The backside sealing layer that covers from the outer peripheral side of the front side sealing layer,
    A solar cell panel characterized by being equipped with.
  2.  前記受光面側保護部材の面内方向における前記太陽電池パネルの外形形状が長方形形状であり、
     前記長方形形状において対向する一対の辺に平行な方向を第1の方向とし、前記長方形形状において対向する他の一対の辺に平行な方向を第2の方向としたとき、
     前記受光面側封止層は、前記第1の方向の寸法と前記第2の方向の寸法との双方が前記受光面側保護部材よりも小さく、且つ前記第1の方向の寸法と前記第2の方向の寸法との双方が前記太陽電池セルストリングスよりも大きく、
     前記裏面側封止層は、前記第1の方向の寸法と前記第2の方向の寸法との双方が前記受光面側封止層よりも大きいこと、
     を特徴とする請求項1に記載の太陽電池パネル。
    The outer shape of the solar cell panel in the in-plane direction of the light receiving surface side protective member is rectangular.
    When the direction parallel to the pair of opposing sides in the rectangular shape is the first direction and the direction parallel to the other pair of opposite sides in the rectangular shape is the second direction,
    The light receiving surface side sealing layer has both the dimensions in the first direction and the dimensions in the second direction smaller than the light receiving surface side protective member, and the dimensions in the first direction and the second direction. Both dimensions in the direction of are larger than the solar cell strings,
    The back surface side sealing layer has a larger dimension in both the first direction and the second direction than the light receiving surface side sealing layer.
    The solar cell panel according to claim 1.
  3.  前記裏面側封止層が、前記受光面側保護部材の裏面における、前記太陽電池セルストリングスの外周よりも外側の外周縁部の全周に接触していること、
     を特徴とする請求項1または2に記載の太陽電池パネル。
    The back surface side sealing layer is in contact with the entire circumference of the outer peripheral edge portion outside the outer circumference of the solar cell strings on the back surface of the light receiving surface side protective member.
    The solar cell panel according to claim 1 or 2.
  4.  前記裏面側封止層は、ポリエチレンテレフタレート、フッ素系樹脂、オレフィンおよびウレタンのうちのいずれかの樹脂の単層、またはポリエチレンテレフタレート、フッ素系樹脂、オレフィンおよびウレタンからなる群より選択された少なくとも一種の樹脂からなる複数の層が積層された積層体であること、
     を特徴とする請求項1から3のいずれか1つに記載の太陽電池パネル。
    The back surface sealing layer is at least one selected from the group consisting of a single layer of polyethylene terephthalate, a fluororesin, an olefin and a urethane resin, or a group consisting of polyethylene terephthalate, a fluororesin, an olefin and urethane. Being a laminated body in which a plurality of layers made of resin are laminated,
    The solar cell panel according to any one of claims 1 to 3.
  5.  請求項1から4のいずれか1つに記載の太陽電池パネルと、
     前記太陽電池パネルの外周の全周にわたって取り付けられ、前記太陽電池パネルを保持する保持フレームと、
     を備えることを特徴とする太陽電池モジュール。
    The solar cell panel according to any one of claims 1 to 4.
    A holding frame that is attached to the entire circumference of the outer circumference of the solar cell panel and holds the solar cell panel,
    A solar cell module characterized by being equipped with.
  6.  受光面側保護部材上に、ポリオレフィン系樹脂によって構成されて受光面側封止層となる受光面側封止層シートと、複数の太陽電池セルが電気的に接続された太陽電池セルストリングスと、裏面側封止層となる裏面側封止層シートと、裏面側被覆部材と、を順次積層して積層体を形成する第1工程と、
     前記積層体を加熱および加圧することにより前記積層体を一体化して太陽電池パネルを形成する第2工程と、
     を含み、
     前記第2工程では、
     前記受光面側封止層シートが、前記太陽電池セルストリングスにおける受光面側の全面を被覆し、
     前記裏面側封止層シートが、前記太陽電池セルストリングスを前記受光面と背向する前記太陽電池セルストリングスの裏面側から被覆するとともに、前記受光面側封止層を前記受光面側封止層の裏面側および前記受光面側封止層の外周側から被覆し、
     前記太陽電池セルストリングスが、前記受光面側封止層シートと前記裏面側封止層シートとが一体化して構成される前記封止層の内部に封止されること、
     を特徴とする太陽電池パネルの製造方法。
    On the light receiving surface side protective member, a light receiving surface side sealing layer sheet composed of a polyolefin resin and serving as a light receiving surface side sealing layer, a solar cell string in which a plurality of solar cells are electrically connected, and a solar cell string. The first step of sequentially laminating the back surface side sealing layer sheet to be the back surface side sealing layer and the back surface side covering member to form a laminated body.
    The second step of forming a solar cell panel by integrating the laminated bodies by heating and pressurizing the laminated body, and
    Including
    In the second step,
    The light-receiving surface-side sealing layer sheet covers the entire surface of the solar cell strings on the light-receiving surface side.
    The back surface side sealing layer sheet covers the solar cell strings from the back surface side of the solar cell strings facing the light receiving surface, and the light receiving surface side sealing layer is covered with the light receiving surface side sealing layer. Covering from the back surface side and the outer peripheral side of the light receiving surface side sealing layer,
    The solar cell strings are sealed inside the sealing layer formed by integrating the light receiving surface side sealing layer sheet and the back surface side sealing layer sheet.
    A method for manufacturing a solar cell panel.
  7.  前記第2工程では、前記裏面側封止層シートが、前記受光面側保護部材の裏面における、前記太陽電池セルストリングスの外周よりも外側の外周縁部の全周に接触すること、
     を特徴とする請求項6に記載の太陽電池パネルの製造方法。
    In the second step, the back surface side sealing layer sheet comes into contact with the entire circumference of the outer peripheral edge portion outside the outer circumference of the solar cell strings on the back surface of the light receiving surface side protective member.
    The method for manufacturing a solar cell panel according to claim 6.
  8.  前記第2工程では、前記受光面側封止層シートおよび前記裏面側封止層シートの融点以上の温度に加熱した状態で前記積層体を加圧すること、
     を特徴とする請求項6または7に記載の太陽電池パネルの製造方法。
    In the second step, the laminate is pressurized in a state of being heated to a temperature equal to or higher than the melting point of the light receiving surface side sealing layer sheet and the back surface side sealing layer sheet.
    The method for manufacturing a solar cell panel according to claim 6 or 7.
  9.  受光面側保護部材上に、ポリオレフィン系樹脂によって構成されて受光面側封止層となる受光面側封止層シートと、複数の太陽電池セルが電気的に接続された太陽電池セルストリングスと、裏面側封止層となる裏面側封止層シートと、裏面側被覆部材と、を順次積層して積層体を形成する第1工程と、
     前記積層体を加熱および加圧することにより前記積層体を一体化して太陽電池パネルを形成する第2工程と、
     前記太陽電池パネルを保持する保持フレームを、前記太陽電池パネルの外周の全周に取り付ける第3工程と、
     を含み、
     前記第2工程では、
     前記受光面側封止層シートが、前記太陽電池セルストリングスの受光面側を被覆し、
     前記裏面側封止層シートが、前記太陽電池セルストリングスを前記受光面と背向する前記太陽電池セルストリングスの裏面側から被覆するとともに、前記受光面側封止層を前記受光面側封止層の裏面側および前記受光面側封止層の外周側から被覆し、
     前記太陽電池セルストリングスが、前記受光面側封止層シートと前記裏面側封止層シートとが一体化して構成される前記封止層の内部に封止されること、
     を特徴とする太陽電池モジュールの製造方法。
    On the light receiving surface side protective member, a light receiving surface side sealing layer sheet composed of a polyolefin resin and serving as a light receiving surface side sealing layer, a solar cell string in which a plurality of solar cells are electrically connected, and a solar cell string. The first step of sequentially laminating the back surface side sealing layer sheet to be the back surface side sealing layer and the back surface side covering member to form a laminated body.
    The second step of forming a solar cell panel by integrating the laminated bodies by heating and pressurizing the laminated body, and
    The third step of attaching the holding frame for holding the solar cell panel to the entire circumference of the outer circumference of the solar cell panel, and
    Including
    In the second step,
    The light-receiving surface side sealing layer sheet covers the light-receiving surface side of the solar cell strings.
    The back surface side sealing layer sheet covers the solar cell strings from the back surface side of the solar cell strings facing the light receiving surface, and the light receiving surface side sealing layer is covered with the light receiving surface side sealing layer. Covering from the back surface side and the outer peripheral side of the light receiving surface side sealing layer,
    The solar cell strings are sealed inside the sealing layer formed by integrating the light receiving surface side sealing layer sheet and the back surface side sealing layer sheet.
    A method for manufacturing a solar cell module.
PCT/JP2019/044783 2019-11-14 2019-11-14 Solar cell panel, solar cell module, method for manufacturing solar cell panel, and method for manufacturing solar cell module WO2021095217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044783 WO2021095217A1 (en) 2019-11-14 2019-11-14 Solar cell panel, solar cell module, method for manufacturing solar cell panel, and method for manufacturing solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044783 WO2021095217A1 (en) 2019-11-14 2019-11-14 Solar cell panel, solar cell module, method for manufacturing solar cell panel, and method for manufacturing solar cell module

Publications (1)

Publication Number Publication Date
WO2021095217A1 true WO2021095217A1 (en) 2021-05-20

Family

ID=75912946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044783 WO2021095217A1 (en) 2019-11-14 2019-11-14 Solar cell panel, solar cell module, method for manufacturing solar cell panel, and method for manufacturing solar cell module

Country Status (1)

Country Link
WO (1) WO2021095217A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110197955A1 (en) * 2008-09-30 2011-08-18 Adco Products, Inc. Solar module having an encapsulant mounting adhesive
WO2013136507A1 (en) * 2012-03-16 2013-09-19 三洋電機株式会社 Solar cell module
JP2014017351A (en) * 2012-07-09 2014-01-30 Sharp Corp Solar cell module body, solar cell module, and manufacturing method of solar cell module body
JP2015198220A (en) * 2014-04-03 2015-11-09 シャープ株式会社 solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110197955A1 (en) * 2008-09-30 2011-08-18 Adco Products, Inc. Solar module having an encapsulant mounting adhesive
WO2013136507A1 (en) * 2012-03-16 2013-09-19 三洋電機株式会社 Solar cell module
JP2014017351A (en) * 2012-07-09 2014-01-30 Sharp Corp Solar cell module body, solar cell module, and manufacturing method of solar cell module body
JP2015198220A (en) * 2014-04-03 2015-11-09 シャープ株式会社 solar cell module

Similar Documents

Publication Publication Date Title
KR101215694B1 (en) Solar Cell Module And Manufacturing Method Thereof
EP1973171B1 (en) Solar cell module
US5650019A (en) Solar cell module having a surface coating material of three-layered structure
JP2915327B2 (en) Solar cell module and method of manufacturing the same
EP1921684A1 (en) Solar cell module and process for manufacture thereof
EP1172864A1 (en) Solar cell module
JPH10112549A (en) Solar battery module
JPH07302926A (en) Solar cell module
US20120080065A1 (en) Thin Film Photovoltaic Modules with Structural Bonds
JP5641728B2 (en) Thin-film solar cell module and method for manufacturing thin-film solar cell module
EP2700102A1 (en) Solar cell module structure and fabrication method for preventing polarization
JP2012089663A (en) Solar cell module and manufacturing method of the same
US9627567B2 (en) Solar cell module manufacturing method and solar cell module manufacturing apparatus
JPH09116182A (en) Solar battery module and manufacture of solar battery module
JP2002111036A (en) Solar battery module and its execution method
US20130153008A1 (en) Photovoltaic module
US20170025559A1 (en) Photovoltaic element with optically functional conversion layer for improving the conversion of the incident light and method for producing said photovoltaic element
JPH11112007A (en) Solar cell module and its manufacture
WO2021095217A1 (en) Solar cell panel, solar cell module, method for manufacturing solar cell panel, and method for manufacturing solar cell module
WO2014050193A1 (en) Photoelectric conversion module
US20120024339A1 (en) Photovoltaic Module Including Transparent Sheet With Channel
JPH09199740A (en) Solar cell module
JP2001230437A (en) Solar battery module
JP2002016273A (en) Method for manufacturing solar cell module
JP3032145B2 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP