WO2021093816A1 - 像素结构和图像传感器 - Google Patents

像素结构和图像传感器 Download PDF

Info

Publication number
WO2021093816A1
WO2021093816A1 PCT/CN2020/128425 CN2020128425W WO2021093816A1 WO 2021093816 A1 WO2021093816 A1 WO 2021093816A1 CN 2020128425 W CN2020128425 W CN 2020128425W WO 2021093816 A1 WO2021093816 A1 WO 2021093816A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
antenna
parts
pixel structure
base unit
Prior art date
Application number
PCT/CN2020/128425
Other languages
English (en)
French (fr)
Inventor
杨亮
刘永俊
杨晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20888635.8A priority Critical patent/EP4050655A4/en
Publication of WO2021093816A1 publication Critical patent/WO2021093816A1/zh
Priority to US17/663,284 priority patent/US20220278145A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier

Definitions

  • This application relates to the field of electronic technology, in particular to a pixel structure and an image sensor.
  • Image sensors can convert light signals into electrical signals and are one of the core parts of mobile phone cameras.
  • the image sensors used in the market mainly include charge coupled device (CCD) image sensors and complementary metal oxide semiconductor (complementary metal oxide semiconductor, CMOS) image sensors, both of which are essentially the use of light particles. , Allowing photons to excite free electrons in the semiconductor to generate electrical signals. In low light conditions, the number of photons that can be captured by the camera is small, which makes the electrical signal generated by night photography weak, and the photos taken by the mobile phone at night appear dim.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the present application provides a pixel structure and an image sensor, which can improve the photoelectric conversion efficiency under low-light conditions, thereby solving the problem of dim imaging under low-light conditions.
  • a pixel structure including: a metal base plate; a base unit on the metal base plate; a nano antenna unit, the nano antenna unit is located on the base unit, the nano antenna unit includes one or more nano Antenna, each of one or more nano-antennas corresponds to a light band, each nano-antenna includes M parts, and nano-slits are formed between the M parts, and the M parts and the nano-slits have metal-insulator-metal diodes
  • the function of M is a multiple of 2; the package unit, the package unit covers the nano antenna unit.
  • each orbit can only accommodate two electrons with opposite spin directions. Therefore, when the orbital is occupied, some photons cannot participate in photoelectric conversion. Since Pauli's incompatibility principle is an unchangeable basic law, and light has wave-particle duality, it can improve the photoelectric conversion efficiency from the wave point of view.
  • an enhanced light field is formed at the nano gap of the nano antenna, and the structure with the metal-insulator-metal diode function formed by the M parts and the nano gap at the nano gap is exactly in the enhanced light field.
  • the structure with the function of metal-insulator-metal diode performs photoelectric conversion in an enhanced light field, which can improve the photoelectric conversion efficiency under low light conditions, thereby solving the problem of dim imaging under low light.
  • each of the M parts has a different work function from its neighboring parts.
  • Each of the M parts, its adjacent parts and the nano-slits form a structure with a metal-insulator-metal diode function at the nano-slits. Since each part and its adjacent parts have different work functions, they are in the nano-slits Electron tunneling occurs, so it has the function of a tunneling diode, so that a structure with a metal-insulator-metal diode function can be used as a rectifier to convert the alternating current generated at the nano-gap into direct current.
  • each of the M portions and its adjacent portions are different metals with the same shape, or the same metal with different shapes, or different metals with different shapes. Therefore, it is possible to realize that each part and its neighboring parts have different work functions.
  • the width of each of the M portions decreases from a distance away from the nano-slit to a position close to the nano-slit.
  • metal-insulator-metal diodes work at optical frequencies, it is necessary to increase the cut-off frequency of metal-insulator-metal diodes to reach optical frequencies, while the cut-off frequency of metal-insulator-metal diodes needs to be lowered.
  • the capacitance value of the diode reduces the width of the metal antenna around the structure with the metal-insulator-metal diode function to achieve the effect of reducing the capacitance value of the metal-insulator-metal diode.
  • the parameter of the base unit at the position of each nano-antenna corresponds to the light waveband corresponding to each nano-antenna
  • the parameters of the base unit include thickness and Dielectric constant.
  • the light waves passing through the nano-antenna will be reflected back to the nano-antenna by the base unit with specific parameters. Thereby improving the light absorption efficiency of the nano-antenna.
  • the nano antenna includes N antenna pairs, and each antenna pair of the N antenna pairs includes two parts with a nanometer between the two parts.
  • the N antenna pairs are arranged radially and parallel to the base unit, and the radial arrangement includes any one of a straight shape, a cross shape, and a rice shape, and N is an integer greater than or equal to 1.
  • the best antenna shape should follow the polarization direction of light waves, but the light in nature is polarized in any direction. But no matter the light is polarized in any direction, it can always be decomposed into two polarization components along the x direction and along the y direction.
  • the in-line antenna can realize the photoelectric conversion of the light waves whose polarization direction is along the in-line shape.
  • the cross-shaped antenna and the Pzi-shaped antenna can split the polarized light waves in any direction into components along different parts of the antenna. Photoelectric conversion of light waves in any polarization direction.
  • each part of the N antenna pairs is elongated.
  • the nano antenna includes two parts, the two parts are arranged in a bow tie shape and are parallel to the base unit, and there is a nano gap between the two parts
  • Each of the two parts is a trapezoid, and the trapezoids are arranged oppositely with the shortest base.
  • the distance to the bottom of the trapezoid is continuously gradual, that is, the length of the nano-antenna can be considered to be continuously gradual. Therefore, the nano-antenna can realize the response to light waves in a continuous wavelength range.
  • the photoelectric conversion has increased the range of the nano-antenna for photoelectric conversion.
  • the bottom edges of the two parts of the nano-antenna at the nano-slot may also be arc-shaped protruding toward the nano-slot.
  • the nano-antenna includes two parts, one of the two parts is vertically arranged on the base unit, and the other of the two parts is connected to the One part of the two parts is arranged opposite to each other, and there is a nano gap between one part of the two parts and the other part of the two parts.
  • the part vertically arranged on the base unit is a cone, and the size of the cone is larger than that of the two parts arranged opposite to the cone. another part.
  • the lower part of the nano antenna is arranged on the base unit with its long side perpendicular to the base unit, which saves the area occupied on the base unit. Therefore, the nano antenna can be arranged on the base unit and the antenna density is increased.
  • the size of each nano-antenna in the plurality of nano-antennas may be different, thereby increasing the range of photoelectric conversion.
  • the electrode wire of the nano antenna is arranged at each of the M portions close to the nano gap.
  • the metal-insulator-metal diode converts alternating current to direct current. Since the metal part of the nano antenna has a large resistance, the electrode wire of the nano antenna is placed close to the metal-insulator-metal diode to reduce the current loss on the metal part. , Thereby improving the photoelectric conversion efficiency.
  • an image sensor including multiple pixel structures possible in any of the above aspects.
  • a camera including the pixel structure and/or image sensor of any one of the above aspects.
  • an electronic product including the pixel structure and/or image sensor and/or camera of any one of the above aspects.
  • Fig. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a camera provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an image sensor provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a pixel structure provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the first nano-antenna structure provided by an embodiment of the present application.
  • FIG. 6 is a partial enlarged view of the nano antenna provided by an embodiment of the present application at the nano gap.
  • FIG. 7 is a schematic diagram of a second nano-antenna structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a third nano-antenna structure provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fourth nano-antenna structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a fifth nano-antenna structure provided by an embodiment of the present application.
  • the smallest light-sensitive unit on the image sensor of a mobile phone camera The smallest light-sensitive unit on the image sensor of a mobile phone camera.
  • a device with two electrodes only allows current to flow in a single direction, and many uses are for its rectification function.
  • any analog-to-digital converter needs a reference analog quantity as the conversion standard, and the most common reference standard is the largest convertible signal size.
  • the output digital quantity indicates the magnitude of the input signal relative to the reference signal.
  • An optical device that selectively transmits part of the spectrum while rejecting the rest.
  • An antenna is a device that converts alternating current and electromagnetic waves.
  • Light can be regarded as electromagnetic waves, and nano-antennas are nano-scale optical antennas.
  • the pixel structure provided in the embodiments of the present application can be applied to electronic devices with camera functions such as mobile phones, tablet computers, and wearable devices.
  • the embodiments of the present application do not impose any restrictions on the specific types of electronic devices.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that the processor 110 has just used or used cyclically. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 may include one or more interfaces.
  • Interfaces can include integrated circuit (I2C) interfaces, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interfaces, pulse code modulation (PCM) interfaces, universal asynchronous transmitters receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / Or Universal Serial Bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART mobile industry processor interface
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a bidirectional synchronous serial bus, which includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple sets of I2C buses.
  • the processor 110 may couple the touch sensor 180K, the charger, the flash, the camera 193, etc., respectively through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through an I2C bus interface to implement the touch function of the electronic device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through an I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 may also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It will convert the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through a UART interface, so as to realize the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with the display screen 194, the camera 193 and other peripheral devices.
  • the MIPI interface includes a camera serial interface (camera serial interface, CSI), a display serial interface (display serial interface, DSI), and so on.
  • the processor 110 and the camera 193 communicate through a CSI interface to implement the shooting function of the electronic device 100.
  • the processor 110 and the display screen 194 communicate through a DSI interface to realize the display function of the electronic device 100.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transfer data between the electronic device 100 and peripheral devices. It can also be used to connect earphones and play audio through earphones. This interface can also be used to connect to other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present application is merely a schematic description, and does not constitute a structural limitation of the electronic device 100.
  • the electronic device 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charge management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110.
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the electronic device 100.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • BT wireless fidelity
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the electronic device 100 implements a display function through a graphics processing unit (GPU), a display screen 194, and an application processor.
  • the GPU is an image processing microprocessor, which is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs, which execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the electronic device 100 may include one or N display screens 194, and N is a positive integer greater than one.
  • the electronic device 100 may implement a shooting function through an image signal processor (ISP), a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • ISP image signal processor
  • the camera 193 may be an optical zoom lens or the like, which is not limited in this application.
  • the ISP may be set in the camera 193, which is not limited in this application.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and is projected to the photosensitive element.
  • the photosensitive element is an image sensor.
  • the image sensor converts the light signal into an electrical signal, and then transfers the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device 100 may include one or more cameras 193.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, and so on.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • applications such as intelligent cognition of the electronic device 100 can be realized, such as image recognition, face recognition, voice recognition, text understanding, and so on.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by running instructions stored in the internal memory 121.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one application program (such as a sound playback function, an image playback function, etc.) required by at least one function.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the electronic device 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • UFS universal flash storage
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 may be provided in the processor 110, or part of the functional modules of the audio module 170 may be provided in the processor 110.
  • the speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 answers a call or voice message, it can receive the voice by bringing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through the human mouth, and input the sound signal into the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement noise reduction functions in addition to collecting sound signals. In other embodiments, the electronic device 100 may also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, and a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA, CTIA
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display 194.
  • the capacitive pressure sensor may include at least two parallel plates with conductive materials.
  • the electronic device 100 determines the intensity of the pressure according to the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations that act on the same touch position but have different touch operation strengths may correspond to different operation instructions. For example, when a touch operation whose intensity of the touch operation is less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the movement posture of the electronic device 100.
  • the angular velocity of the electronic device 100 around three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shake angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shake of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the electronic device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and be used in applications such as horizontal and vertical screen switching, pedometers and so on.
  • the electronic device 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light to the outside through the light emitting diode.
  • the electronic device 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100. When insufficient reflected light is detected, the electronic device 100 can determine that there is no object near the electronic device 100.
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, and the pocket mode will automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the electronic device 100 reduces the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 due to low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can obtain the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the human pulse and receive the blood pressure pulse signal.
  • the bone conduction sensor 180M may also be provided in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can parse the voice signal based on the vibration signal of the vibrating bone block of the voice obtained by the bone conduction sensor 180M, and realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal obtained by the bone conduction sensor 180M, and realize the heart rate detection function.
  • the button 190 includes a power-on button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the electronic device 100 may receive key input, and generate key signal input related to user settings and function control of the electronic device 100.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • touch operations that act on different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminding, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface 195 or pulled out from the SIM card interface 195 to achieve contact and separation with the electronic device 100.
  • the electronic device 100 may support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the same SIM card interface 195 can insert multiple cards at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 may also be compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the electronic device 100 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100.
  • FIG. 2 is a schematic diagram of the structure of the camera 200.
  • the camera 200 may be provided in the electronic device 100 of FIG. 1 to realize the function of the camera 193.
  • the camera 200 includes a lens 201, an aperture 202, an image sensor 203, an analog preprocessor 204, an analog-digital sensor 205, a digital signal processor 206, a system controller 207, a data bus 208, a memory 209, a display 210, and the like.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the camera 200.
  • the camera 200 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the function of the camera 200.
  • the functions of the camera 200 include functions that can implement existing cameras, and are not limited to functions such as taking photos or shooting videos.
  • the lens 201 is a device that images a photographed object on the sensor, plays a role of condensing light, and may be composed of several lenses.
  • the aperture 202 is a device that controls the light passing through the lens to the sensor. In addition to controlling the amount of light, the aperture 202 also has the function of controlling the depth of field. Depth of field refers to the range of the front and back distance of the subject measured by imaging that can obtain a clear image in front of the camera lens. The larger the aperture, the smaller the depth of field.
  • the image sensor 203 is a device for receiving light passing through the lens and converting these light signals into electrical signals.
  • the image sensor 203 is composed of a pixel structure integrated with a nano-antenna and a metal-insulator-metal sensor.
  • the electrical signal generated by the image sensor 203 is an analog direct current signal, and the analog preprocessor 204 preprocesses the analog direct current signal.
  • the preprocessing includes noise reduction processing, correction processing, and compensation processing.
  • the analog-to-digital converter 205 is used to convert the preprocessed analog direct current signal into a digital signal.
  • the digital signal is passed into the digital signal processor 206 for processing.
  • the system controller 207 controls the aperture 202, the image sensor 203, the analog preprocessor 204, and the analog-to-digital converter 205.
  • the processed digital signal is transmitted to the memory 209 or the display 210 via the data bus 208.
  • the memory 209 may be a photo memory of the electronic device in FIG. 1 such as a gallery, etc.
  • the display 210 may be the display screen 194 in FIG. 1 or the like.
  • FIG. 3 is a schematic diagram of the structure of an image sensor according to an embodiment of the present application.
  • the image sensor may be the image sensor 203 in FIG. 2 and can realize all the functions of the image sensor 203.
  • the image sensor is a pixel array including a plurality of pixel structures, and the dotted line indicates the pixel structure that is not drawn. Since each pixel structure has a nano-antenna unit, the nano-antenna unit includes one or more nano-antennas, and the response of the nano-antenna to light depends on the proportional relationship between the size of the nano-antenna and the wavelength of the light.
  • each pixel structure does not need to be provided with a filter structure, and the absorption of light of different colors can be achieved by relying on the selectivity of the light wavelength of the nano-antenna. From this, it can be seen that the image sensor includes L-sized nano-antennas, and the image sensor can absorb light of L different wavelengths, where L is an integer greater than or equal to 3.
  • FIG. 4 is a schematic diagram of a pixel structure of an embodiment of the present application.
  • the pixel structure shown in FIG. 4 includes a metal bottom plate, a base unit, a nano-antenna unit, and a packaging unit.
  • the metal bottom plate is located at the bottom of the entire pixel structure and forms a capacitance between the metal nano-antenna.
  • the metal bottom plate can be made of aluminum.
  • the metal bottom plate can be made of higher-cost precious metals such as gold, silver, platinum, etc., which have a better conductive effect, which is not limited in the embodiment of the present application.
  • the nano-antenna unit may include one or more nano-antennas, and each nano-antenna includes a plurality of parts.
  • the nano antenna includes a first part and a second part, and both the first part and the second part of the nano antenna are made of metal.
  • the first part and the second part of the nano-antenna have different work functions.
  • the first part and the second part can be made of the same metal but have different shapes; or the first part and the second part can be made of different metals But have the same shape; or the first part and the second part may be made of different metals and have different shapes at the same time.
  • the metal can be any two of gold, silver, aluminum, and nickel.
  • the size of the nano-antenna corresponds to a specific light band, and the nano-antenna can absorb light of a wavelength in the light band.
  • a nano gap is formed between the first part and the second part of the nano antenna.
  • the nano gap has a nano size, and the nano gap may be an insulator such as gas or a polymer material.
  • a metal-insulator-metal (MIM) diode is formed at the nano gap, that is to say, the structure formed by the end of the first part of the nano antenna, the end of the nano gap, and the second part of the nano antenna has the function of a MIM diode . Under light conditions, the electrons on the metal surface collectively oscillate under the action of an external magnetic field to generate high-frequency alternating current.
  • MIM metal-insulator-metal
  • the MIM diode acts as a rectifier to convert the high-frequency alternating current into direct current.
  • the enhanced light field is generated at the nano-gap, and the MIM diode is exactly in the enhanced light field, so that the MIM diode can fully interact with the enhanced light, thereby improving the photoelectric conversion efficiency. Since it is necessary to deal with the alternating current of the light frequency, the diode is required to have a very high cut-off frequency. When the cut-off frequency is increased, the capacitance value of the diode needs to be reduced.
  • a capacitance is formed between the nano-antenna and the metal base plate to negatively compensate the capacitance value of the MIM diode, thereby reducing the capacitance value of the MIM diode.
  • the electrode wires of the nano-antenna are arranged at the position of each metal part of the nano-antenna close to the nano-slit.
  • the MIM diode converts alternating current to direct current. Since the metal part of the nano-antenna has a relatively large resistance, arranging the electrode wire of the nano-antenna close to the MIM diode can reduce the current loss on the metal part, thereby improving the photoelectric conversion efficiency.
  • the base unit is located between the metal base plate and the nano antenna unit.
  • the base unit is a dielectric material with specific parameters.
  • the dielectric material can be silicon, silicon carbide, silicon oxide, silicon dioxide, etc.
  • the embodiments of the present application are not limited here.
  • the parameters include thickness and dielectric constant.
  • the light waves passing through the nano-antenna will be reflected back to the nano-antenna by the base unit with specific parameters. Thereby improving the light absorption efficiency of the nano-antenna.
  • the packaging unit is located at the uppermost layer of the entire pixel structure and covers the nano-antenna.
  • the packaging unit may be a transparent dielectric material, such as glass, which is not limited in the embodiment of the present application.
  • the light wavelength corresponding to the pixel structure is related to the geometry of the nano-antenna.
  • the geometric shape of the nano-antenna can be varied in theory, in actual production, considering that the nano-antenna requires nano-size processing, the geometric shape of the nano-antenna Simple shapes should be used as much as possible, otherwise the processing will be difficult.
  • FIG. 5 is a schematic diagram of the first nano-antenna structure provided by an embodiment of the present application.
  • each nano-antenna includes two parts, and the two parts form an antenna pair, and the antenna pair is arranged in a line.
  • a nano gap is formed between the two parts of the nano antenna, and the nano gap has a nano size, and the specific size of the gap is not limited in the embodiment of the present application.
  • the two parts of the nano-antenna are in a strip shape. The wavelength of light absorbed by the nano-antenna is determined by the length of the strip shape.
  • the length of the three nano-antennas in the pixel structure can be the same, or two of the nano-antennas have the same length Or the lengths of the three nano-antennas are all different.
  • the pixel structure can correspond to lights of three different colors.
  • the parameter of the base unit in the pixel structure may correspond to the optical waveband corresponding to any one of the three nano-antennas.
  • Fig. 6 is a partial enlarged view of the nano-antenna at the nano-slit in the embodiment of the present application. It can be seen from Fig. 6 that the width of each part of the nano-antenna decreases from a place far away from the nano-slit to a place close to the nano-slit. Since increasing the cut-off frequency of the MIM diode needs to reduce the capacitance value of the MIM diode, reducing the width of the metal antenna around the MIM diode can achieve the effect of reducing the capacitance value of the MIM diode.
  • FIG. 7 is a schematic diagram of a second nano-antenna structure provided by an embodiment of the present application.
  • the nano antenna includes four parts, and the four parts are all arranged on the base unit parallel to the base unit.
  • Two adjacent parts form an antenna pair, and the work functions of the two adjacent parts are different, that is, the work functions of the two parts in each antenna pair are different.
  • the work function of each part and its opposite part may be the same or different, which is not limited in the embodiment of the present application.
  • the nano-antenna is cross-shaped.
  • the two parts of each antenna pair form a nano-slit at the center of the cross.
  • Each antenna pair and other antenna pairs also form a nano-sized gap at the center of the cross. The size of the gap is The embodiments of this application do not make limitations.
  • the best antenna shape should follow the polarization direction of light waves, but the light in nature is polarized in any direction. But no matter the light is polarized in any direction, it can always be decomposed into two polarization components along the x direction and along the y direction.
  • the cross-shaped antenna shown in FIG. 7 can be used to decompose the polarized light waves in any direction into components along different parts of the antenna, thereby realizing the photoelectric conversion of the cross-shaped antenna to the light waves in any polarization direction.
  • FIG. 8 is a schematic diagram of a third nano-antenna structure provided by an embodiment of the present application.
  • the nano antenna includes eight parts, and the eight parts are all arranged on the base unit parallel to the base unit.
  • Two adjacent parts form an antenna pair, and the work functions of the two adjacent parts are different, that is, the work functions of the two parts in each antenna pair are different.
  • the work function of each part and the opposite or alternate part may be the same or different, which is not limited in the embodiment of the present application.
  • the nano-antenna is in the shape of a m-shaped, and the two parts of each antenna pair form a nano-slit at the center of the m-shaped.
  • Each antenna pair and other antenna pairs also form a nano-sized gap at the center of the m-shaped. The size of the gap is The embodiments of this application do not make limitations.
  • the antenna in FIG. 8 is in a cross shape, and the polarized light with the polarization direction between the two parts in an antenna pair can be decomposed along two mutually perpendicular parts.
  • the antenna in Figure 8 is in the shape of a meter. For example, if the angle between the two parts of an antenna pair is 45 degrees, the polarized light between the angles of 45 degrees can be decomposed along the two parts of the antenna pair. , And the polarized light in the 45-degree direction does not need to be decomposed, thereby increasing the rate of photoelectric conversion.
  • FIG. 9 is a schematic diagram of a fourth nano-antenna structure provided by an embodiment of the present application.
  • the nano-antenna includes two parts, both of which are arranged on the base unit parallel to the base unit.
  • the work functions of the two parts of the nano antenna are different.
  • the two parts of the nano antenna are both trapezoids, and the two trapezoids are arranged opposite to each other with their shortest bases, and nano gaps are formed at the two opposite bases.
  • the embodiments of the present application do not limit the specific shape of the trapezoid.
  • the nano antenna can achieve a continuous wavelength range.
  • the photoelectric conversion of light waves increases the range of the nano-antenna for photoelectric conversion.
  • the bottom edges of the two parts of the nano-antenna at the nano-slot may also be arc-shaped protruding toward the nano-slot.
  • FIG. 10 is a schematic diagram of a fifth nano-antenna structure provided by an embodiment of the present application.
  • Figure 10 shows that the pixel structure includes two nano-antennas, each nano-antenna includes two parts, one of the two parts (hereinafter referred to as the lower part) is arranged on the base unit with its long side perpendicular to the base unit On the upper part, the other part of the two parts (hereinafter referred to as the upper part) is arranged opposite to the lower part, and is arranged on the lower part.
  • the upper part can be fixed on the lower part by using a bracket or other means, which is not specifically limited in the embodiment of the present application.
  • a nano gap is formed between the upper part and the lower part.
  • the lower part is tapered and the size is larger than the upper part.
  • the embodiment of the present application does not limit the specific shape of the upper part.
  • the lower part of the nano-antenna in Fig. 10 is arranged on the base unit with its long side perpendicular to the base unit, which saves the area occupied on the base unit. Therefore, a plurality of nano-antennas in Fig. 10 can be arranged on the base unit. Increase the antenna density.
  • the size of each nano-antenna in the plurality of nano-antennas may be different, thereby increasing the range of photoelectric conversion.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.

Abstract

一种像素结构和图像传感器(203),能够提高在弱光条件下的光电转换效率,从而解决在弱光下成像暗淡的问题。该像素结构包括:金属底板;基底单元,该基底单元位于金属底板上;纳米天线单元,该纳米天线单元位于基底单元上,该纳米天线单元包括一个或多个纳米天线,一个或多个纳米天线中的每个纳米天线对应一个光波段,每个纳米天线包括M个部分,M个部分之间形成纳米缝隙,在纳米缝隙处形成金属-绝缘体-金属二极管,M为2的倍数;封装单元,该封装单元覆盖于纳米天线单元上。该图像传感器(203)由上述多个像素结构组成。

Description

像素结构和图像传感器
本申请要求于2019年11月14日提交中国专利局、申请号为201911110638.X、申请名称为“像素结构和图像传感器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种像素结构和图像传感器。
背景技术
图像传感器能够将光信号转变为电信号,是手机相机的核心部分之一。目前市场上应用的图像传感器主要有电荷耦合器件(charge coupled device,CCD)图像传感器和互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)图像传感器,这两者本质上都是利用光的粒子性,让光子激发半导体中的自由电子,从而产生电信号。在弱光条件下,能被相机捕捉到的光子少,这使得夜晚拍照产生的电信号弱,手机在夜晚拍摄的照片显得色调暗淡。
发明内容
本申请提供一种像素结构和图像传感器,能够提高在弱光条件下的光电转换效率,从而解决在弱光下成像暗淡的问题。
第一方面,提供了一种像素结构,包括:金属底板;基底单元,该基底单元位于金属底板上;纳米天线单元,该纳米天线单元位于基底单元上,该纳米天线单元包括一个或多个纳米天线,一个或多个纳米天线中的每个纳米天线对应一个光波段,每个纳米天线包括M个部分,M个部分之间形成纳米缝隙,M个部分和纳米缝隙具有金属-绝缘体-金属二极管的功能,M为2的倍数;封装单元,该封装单元覆盖于纳米天线单元上。
根据泡利不相容原理,每一个轨道只能容纳两个自旋方向相反的电子,因此当轨道被占据时,有的光子不能参与光电转换。由于泡利不相容原理是不可改变的基本规律,而光具有波粒二象性,因此,可以从波的角度,提高光电转换效率。在本申请实施例中,在纳米天线的纳米缝隙处形成增强的光场,M个部分和纳米缝隙在纳米缝隙处形成的具有金属-绝缘体-金属二极管功能的结构恰好完全位于增强的光场中,具有金属-绝缘体-金属二极管功能的结构在增强的光场中进行光电转换,能够提高在弱光条件下的光电转换效率,从而解决在弱光下成像暗淡的问题。
结合第一方面,在第一方面的某些实现方式中,M个部分中的每个部分与其相邻部分具有不同的功函数。
M个部分中的每个部分与其相邻部分和纳米缝隙在纳米缝隙处形成具有金属-绝缘体-金属二极管功能的结构,由于每个部分与其相邻部分具有不同的功函数,因此在纳米缝隙 内会发生电子隧穿,因此具有隧穿二极管的作用,使得具有金属-绝缘体-金属二极管功能的结构可以作为整流器,将纳米缝隙处产生的交流电转变为直流电。
结合第一方面,在第一方面的某些实现方式中,M个部分中的每个部分与其相邻部分为相同形状的不同的金属,或不同形状的相同金属,或不同形状的不同金属。由此可以实现每个部分与其相邻部分具有不同的功函数。
结合第一方面,在第一方面的某些实现方式中,M个部分中的每个部分在远离纳米缝隙处到靠近纳米缝隙处的宽度递减。
由于金属-绝缘体-金属二极管在光频率下工作,因此需要提高由于提高金属-绝缘体-金属二极管的截止频率使其达到光频率,而金属-绝缘体-金属二极管的截止频率需要降低金属-绝缘体-金属二极管的电容值,将具有金属-绝缘体-金属二极管功能的结构周围的金属天线宽度减小可以达到降低金属-绝缘体-金属二极管电容值的效果。
结合第一方面,在第一方面的某些实现方式中,基底单元在所述每个纳米天线位置处的参数对应所述每个纳米天线对应的光波段,所述基底单元的参数包括厚度和介质常数。
当光照射到纳米天线表面时,部分光波会穿过纳米天线而不能被纳米天线完全吸收,在本申请实施例中,穿过纳米天线的光波会被具有特定参数的基底单元反射回纳米天线,从而提高纳米天线对光的吸收效率。
结合第一方面,在第一方面的某些实现方式中,纳米天线包括N个天线对,所述N个天线对中的每个天线对包括两个部分,所述两个部分之间具有纳米缝隙,所述N个天线对呈放射状排列并与所述基底单元平行,所述放射状排列包括一字形、十字形、米字形中的任一种,N为大于或等于1的整数。
理论上最佳的天线的形状应该顺着光波的极化方向,然而自然界的光是任意方向极化的。但无论光在任何方向极化,总能分解为沿x方向和沿y方向的两个极化分量。一字形的天线可以实现对极化方向沿着该一字形的光波的光电转换,十字形天线和米字形天线可以实现将任意方向的极化的光波分解为沿着天线不同部分的分量,从而实现对任意极化方向光波的光电转换。
结合第一方面,在第一方面的某些实现方式中,N个天线对中的每个部分为长条状。
结合第一方面,在第一方面的某些实现方式中,纳米天线包括两个部分,所述两个部分呈领结形排列并与所述基底单元平行,所述两个部分之间具有纳米缝隙,所述两个部分中的每个部分为梯形,所述梯形以最短的底边相对排列。
对于梯形斜边上任意一点来说,其到该梯形下底的距离是连续渐变的,即可以认为该纳米天线的长度是连续渐变的,因此该纳米天线可以实现对连续的波长范围内的光波进行光电转换,增大了纳米天线进行光电转换的范围。
可选地,该纳米天线的两个部分在纳米缝隙处的底边还可以是向纳米缝隙凸出的弧形。
结合第一方面,在第一方面的某些实现方式中,纳米天线包括两个部分,所述两个部分中的一部分垂直设置于基底单元上,所述两个部分中的另一部分与所述两个部分中的一部分相对排列,所述两个部分中的一部分与所述两个部分中的另一部分之间具有纳米缝隙。
结合第一方面,在第一方面的某些实现方式中,垂直设置于基底单元上的部分为锥形, 所述锥形的尺寸大于与所述锥形相对排列的所述两个部分中的另一部分。
纳米天线的下部分以其长边垂直于基底单元设置于基底单元上,节省了在基底单元上所占的面积,由此基底单元上可以设置此种纳米天线,增加了天线密度。可选地,该多个纳米天线中的每个纳米天线的尺寸可以不同,从而增大了光电转换的范围。
结合第一方面,在第一方面的某些实现方式中,纳米天线的电极线布置在所述M个部分中的每个部分靠近所述纳米缝隙处。
金属-绝缘体-金属二极管将交流电转变为直流电,由于纳米天线的金属部分具有较大电阻,将纳米天线的电极线布置在靠近金属-绝缘体-金属二极管的位置,可以减少电流在金属部分上的损失,从而提高光电转换效率。
第二方面,提供了一种图像传感器,包括上述方面任一项可能的多个像素结构。
第三方面,提供了一种相机,包括上述任一方面任一项的像素结构和/或图像传感器。
第四方面,提供了一种电子产品,包括上述任一方面任一项的像素结构和/或图像传感器和/或相机。
附图说明
图1是本申请实施例提供的一种电子设备的结构示意图。
图2是本申请实施例提供的一种相机的结构示意图。
图3是本申请实施例提供的一种图像传感器的结构示意图。
图4是本申请实施例提供的一种像素结构的结构示意图。
图5是本申请实施例提供的第一种纳米天线结构的示意图。
图6是本申请实施例提供的纳米天线在纳米缝隙处的局部放大图。
图7是本申请实施例提供的第二种纳米天线结构的示意图。
图8是本申请实施例提供的第三种纳米天线结构的示意图。
图9是本申请实施例提供的第四种纳米天线结构的示意图。
图10是本申请实施例提供的第五种纳米天线结构的示意图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
为了便于理解本申请实施例,首先对本申请中涉及到的几个名词作简单说明。
1、像素
手机相机图像传感器上的最小感光单位。
2、二极管
电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。
3、模数转换器
通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。由于数字信号本身不具有实际意义,仅仅表示一个相对大小。故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。而输出的数字量则表示输入信号相对于参考信号的大 小。
4、滤光片
一种光学器件,能够选择性地透射光谱的一部分,同时拒绝透射其余部分。
5、纳米天线
天线是一种将交流电和电磁波相互转换的器件。光可以被视为电磁波,纳米天线是纳米尺度的光学天线。
6、功函数
是指要使一粒电子立即从固体表面中逸出,所必须提供的最小能量。
本申请实施例提供的像素结构可以应用于手机、平板电脑、可穿戴设备等具有拍照功能的电子设备上,本申请实施例对电子设备的具体类型不作任何限制。
示例性的,图1示出了电子设备100的结构示意图。电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry  processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在 串行通信并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。电源管理模块141用于连接电池142,充电管理模块140与处理器110。 电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。
电子设备100通过图形处理器(graphics processing unit,GPU),显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过图像信号处理器(image signal processor,ISP),摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。在本申请中,摄像头193可以是光学变焦镜头等,本申请对此不做限定。
在一些实施例中,ISP可以设置在摄像头193中,本申请对此不做限定。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。在本申请实施例中,感光元件是图像传感器。图像传感器把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或多个摄像头193。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例 中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
图2是相机200的结构示意图。相机200可以设置于图1的电子设备100中,以实现摄像头193的功能。相机200包括镜头201、光圈202、图像传感器203、模拟预处理器204、模数传感器205、数字信号处理器206、系统控制器207、数据总线208、存储器209、 显示器210等。
应理解,本申请实施例示意的结构并不构成对相机200的具体限定。在本申请另一些实施例中,相机200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
还应理解,本申请实施例示意的结构并不构成对相机200的功能的具体限定。相机200的功能包括可以实现现有相机的功能,并不局限于拍照或拍视频等功能。
镜头201是将拍摄物体在传感器上成像的器件,起到聚光的作用,可以由几片透镜组成。
光圈202是控制通过镜头到达传感器的光线的装置,除了控制通光量,光圈202还有控制景深的功能。景深是指在相机镜头前能够取得清晰图像的成像所测得的被摄物体前后距离范围,其中,光圈越大,景深越小。
图像传感器203是用来接收通过镜头的光线,并且将这些光信号转变为电信号的装置。在本申请实施例中,图像传感器203是由纳米天线和金属-绝缘体-金属传感器集成的像素结构组成。
图像传感器203生成的电信号为模拟直流电信号,模拟预处理器204将模拟直流电信号进行预处理,该预处理包括降噪处理、修正处理和补偿处理等。
模数转换器205用于将预处理后的模拟直流电信号转变为数字信号。
数字信号传入数字信号处理器206中进行处理。
系统控制器207对光圈202、图像传感器203、模拟预处理器204和模数转换器205起控制作用。
处理后的数字信号经数据总线208传输到存储器209或显示器210中。作为示例而非限定,该存储器209可以是图1中的电子设备的照片存储器例如图库等,显示器210可以是图1中的显示屏194等。
图3是本申请实施例的图像传感器的结构示意图。该图像传感器可以是图2中的图像传感器203,并且可以实现图像传感器203的一切功能。该图像传感器是一个像素阵列,包括多个像素结构,虚线表示没有画出的像素结构。由于每个像素结构中具有纳米天线单元,纳米天线单元包括一个或多个纳米天线,纳米天线对光的响应依赖于纳米天线尺寸和光波长的比例关系。因此每个像素结构不需设置滤光结构,依靠纳米天线对光波长的选择性,即可实现对不同颜色的光的吸收。由此可知,该图像传感器中包含L中尺寸的纳米天线,则该图像传感器可以实现对L种不同波长的光的吸收,其中,L为大于或等于3的整数。
图4是本申请实施例的像素结构的示意图。
图4所示的像素结构包括金属底板、基底单元、纳米天线单元和封装单元等部分。
金属底板位于整个像素结构的最底层,与金属纳米天线之间形成电容。金属底板可以由铝制成,可选地,金属底板还可以由金、银、铂等成本更高的贵金属制成,具有更好的导电效果,本申请实施例在此不做限定。
纳米天线单元可以包括一个或多个纳米天线,每个纳米天线包括多个部分。以图4中的纳米天线为例,该纳米天线包括第一部分和第二部分,该纳米天线的第一部分和第二部分均由金属制成。纳米天线的第一部分和第二部分具有不同的功函数,例如,第一部分和 第二部分可以由相同的金属制成,但具有不同的形状;或者第一部分和第二部分可以由不同的金属制成,但具有相同的形状;或者第一部分和第二部分可以由不同的金属制成,同时具有不同的形状。可选地,该金属可以是金、银、铝、镍中的任意两种。该纳米天线的尺寸对应特定的光波段,该纳米天线可以吸收该光波段内波长的光。该纳米天线的第一部分和第二部分之间形成纳米缝隙,该纳米缝隙为纳米尺寸,该纳米缝隙处可以是气体或高分子材料等绝缘体。在该纳米缝隙处形成金属-绝缘体-金属(metal-insulator-metal,MIM)二极管,也就是说纳米天线的第一部分末端、纳米缝隙、纳米天线的第二部分末端形成的结构具有MIM二极管的功能。在光照条件下,金属表面的电子在外界磁场作用下集体振荡,产生高频交流电,MIM二极管作为整流器,将高频交流电转变为直流电。在纳米缝隙处产生增强的光场,MIM二极管恰好完全处于增强的光场中,使得MIM二极管可以与增强光充分作用,从而提高光电转换效率。由于要处理光频率的交流电,因此需要二极管有极高的截止频率,在提高截止频率时,需要降低二极管的电容值。在本申请实施例中,纳米天线与金属底板之间形成电容,对MIM二极管的电容值形成负补偿,从而降低MIM二极管的电容值。
在纳米天线单元中,纳米天线的电极线均布置在纳米天线每个金属部分靠近纳米缝隙的位置。MIM二极管将交流电转变为直流电,由于纳米天线的金属部分具有较大电阻,将纳米天线的电极线布置在靠近MIM二极管的位置,可以减少电流在金属部分上的损失,从而提高光电转换效率。
基底单元位于金属底板和纳米天线单元之间。该基底单元为具有特定的参数的介质材料,该介质材料可以是硅、碳化硅、氧化硅、二氧化硅等,本申请实施例在此不做限定,该参数包括厚度和介质常数,该参数对应于基底单元上该位置处的纳米天线对应的光波段,例如,该基底单元上有一个纳米天线,则该基底单元的参数对应于该纳米天线所对应的光波段;该基底单元上有多个纳米天线时,在每个纳米天线所处的范围内,该位置处的基底单元的参数对应于该纳米天线对应的光波段。当光照射到纳米天线表面时,部分光波会穿过纳米天线而不能被纳米天线完全吸收,在本申请实施例中,穿过纳米天线的光波会被具有特定参数的基底单元反射回纳米天线,从而提高纳米天线对光的吸收效率。
封装单元位于整个像素结构的最上层,覆盖于纳米天线之上。该封装单元可以是透明的介质材料,例如玻璃,本申请实施例在此不做限定。
像素结构对应的光波长与纳米天线的几何有关,虽然理论上纳米天线的几何形状可以是多种多样的,但在实际生产中,考虑到纳米天线需要纳米尺寸的加工,因此纳米天线的几何形状应该尽量采用简单的形状,否则加工难度大。
图5是本申请实施例提供的第一种纳米天线结构的示意图。
如图5所示,在一个像素结构中可以有多个纳米天线,该多个纳米天线均平行于基底单元设置在基底单元上。例如,有三个纳米天线。每个纳米天线包括两个部分,该两个部分组成一个天线对,该天线对呈一字形排列。该纳米天线的两个部分之间形成纳米缝隙,该纳米缝隙为纳米尺寸,缝隙的具体尺寸本申请实施例不做限定。纳米天线的两个部分均为长条形状,纳米天线吸收的光波长由长条形状的长度决定,该像素结构中的三个纳米天线的长度可以相同,或者其中两个纳米天线的长度相同,或者三个纳米天线的长度均不相同。例如,若三个纳米天线的长度均不相同,则可以实现对多个选择波长光同时进行光电 转换,相应的,该像素结构可以对应三种不同颜色的光。可选地,该像素结构中的基底单元的参数可以对应该三个纳米天线中任一个纳米天线对应的光波段。
图6是本申请实施例中纳米天线在纳米缝隙处的局部放大图。由图6可知,纳米天线中的每个部分在远离纳米缝隙处到靠近纳米缝隙处的宽度递减。由于提高MIM二极管的截止频率需要降低MIM二极管的电容值,将MIM二极管周围的金属天线宽度减小可以达到降低MIM二极管电容值的效果。
图7是本申请实施例提供的第二种纳米天线结构的示意图。
如图7所示,该纳米天线包括四个部分,该四个部分均平行于基底单元设置在基底单元上。相邻两个部分组成一个天线对,相邻两个部分的功函数不同,即每个天线对中的两个部分的功函数不同。每个部分与其相对的部分的功函数可以相同也可以不同,本申请实施例在此不做限定。该纳米天线呈十字形,每个天线对中的两个部分在十字形的中心处形成纳米缝隙,每个天线对与其他天线对在十字形的中心也形成纳米尺寸的缝隙,该缝隙的大小本申请实施例不做限定。
理论上最佳的天线的形状应该顺着光波的极化方向,然而自然界的光是任意方向极化的。但无论光在任何方向极化,总能分解为沿x方向和沿y方向的两个极化分量。采用图7所示的十字形天线,可以实现将任意方向的极化的光波分解为沿着天线不同部分的分量,从而实现十字形天线对任意极化方向光波的光电转换。
图8是本申请实施例提供的第三种纳米天线结构的示意图。
如图8所示,该纳米天线包括八个部分,该八个部分均平行于基底单元设置在基底单元上。相邻两个部分组成一个天线对,相邻两个部分的功函数不同,即每个天线对中的两个部分的功函数不同。每个部分与其相对或相间的部分的功函数可以相同也可以不同,本申请实施例在此不做限定。该纳米天线呈米字形,每个天线对中的两个部分在米字形的中心处形成纳米缝隙,每个天线对与其他天线对在米字形的中心也形成纳米尺寸的缝隙,该缝隙的大小本申请实施例不做限定。
图8中的天线呈十字形,则极化方向在一个天线对中两个部分之间的极化光可以沿两个相互垂直的部分分解。图8中的天线呈米字形,例如,一个天线对中的两个部分之间的夹角为45度,则在45度夹角之间的极化光可以沿该天线对的两个部分分解,而在45度方向上的极化光则不用分解,从而提高了光电转换的速率。
图9是本申请实施例提供的第四种纳米天线结构的示意图。
如图9所示,该纳米天线包括两个部分,该两个部分均平行于基底单元设置在基底单元上。该纳米天线的两个部分的功函数不同。该纳米天线的两个部分均为梯形,两个梯形以其最短的底边相对排列,并在两条相对的底边处形成纳米缝隙。本申请实施例对梯形的具体形状不做限定。
以图9中靠下方的梯形为例进行说明。对于该梯形斜边上任意一点来说,其到该梯形下底的距离是连续渐变的,即可以认为该纳米天线的长度是连续渐变的,因此该纳米天线可以实现对连续的波长范围内的光波进行光电转换,增大了纳米天线进行光电转换的范围。
可选地,该纳米天线的两个部分在纳米缝隙处的底边还可以是向纳米缝隙凸出的弧形。
图10是本申请实施例提供的第五种纳米天线结构的示意图。
图10示出了该像素结构中包括两个纳米天线,每个纳米天线包括两个部分,该两个部分中的一个部分(以下简称下部分)以其长边垂直于基底单元设置于基底单元上,该两个部分中的另一个部分(以下简称上部分)与下部分相对排列,设置于下部分之上。该上部分可以使用支架或者其他方式固定于下部分之上,本申请实施例不做具体限定。上部分和下部分之间形成纳米缝隙。本申请实施例中,下部分为锥形,尺寸大于上部分。本申请实施例对上部分的具体形状不做限定。
图10中纳米天线的下部分以其长边垂直于基底单元设置于基底单元上,节省了在基底单元上所占的面积,由此基底单元上可以设置多个图10中的纳米天线,增加了天线密度。可选地,该多个纳米天线中的每个纳米天线的尺寸可以不同,从而增大了光电转换的范围。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种像素结构,其特征在于,包括:
    金属底板;
    基底单元,所述基底单元位于所述金属底板上;
    纳米天线单元,所述纳米天线单元位于所述基底单元上,所述纳米天线单元包括一个或多个纳米天线,所述一个或多个纳米天线中的每个纳米天线对应一个光波段,所述每个纳米天线包括M个部分,所述M个部分之间形成纳米缝隙,所述M个部分和所述纳米缝隙具有金属-绝缘体-金属二极管的功能,M为2的倍数;
    封装单元,所述封装单元覆盖于所述纳米天线单元上。
  2. 根据权利要求1所述的像素结构,其特征在于,所述M个部分中的每个部分与其相邻部分具有不同的功函数。
  3. 根据权利要求1或2所述的像素结构,其特征在于,所述M个部分中的每个部分与其相邻部分为相同形状的不同的金属,或不同形状的相同金属,或不同形状的不同金属。
  4. 根据权利要求1至3中任一项所述的像素结构,其特征在于,所述M个部分中的每个部分在远离纳米缝隙处到靠近纳米缝隙处的宽度递减。
  5. 根据权利要求1至4中任一项所述的像素结构,其特征在于,所述基底单元在所述每个纳米天线位置处的参数对应所述每个纳米天线对应的光波段,所述基底单元的参数包括厚度和介质常数。
  6. 根据权利要求1至5中任一项所述的像素结构,其特征在于,所述纳米天线包括N个天线对,所述N个天线对中的每个天线对包括两个部分,所述两个部分之间具有纳米缝隙,所述N个天线对呈放射状排列并与所述基底单元平行,所述放射状排列包括一字形、十字形、米字形中的任一种,N为大于或等于1的整数。
  7. 根据权利要求6所述的像素结构,其特征在于,所述N个天线对中的每个部分为长条状。
  8. 根据权利要求1至5中任一项所述的像素结构,其特征在于,所述纳米天线包括两个部分,所述两个部分呈领结形排列并与所述基底单元平行,所述两个部分之间具有纳米缝隙,所述两个部分中的每个部分为梯形,所述梯形以最短的底边相对排列。
  9. 根据权利要求1至5中任一项所述的像素结构,其特征在于,所述纳米天线包括两个部分,所述两个部分中的一部分垂直设置于基底单元上,所述两个部分中的另一部分与所述两个部分中的一部分相对排列,所述两个部分中的一部分与所述两个部分中的另一部分之间具有纳米缝隙。
  10. 根据权利要求9所述的像素结构,其特征在于,所述垂直设置于基底单元上的部分为锥形,所述锥形的尺寸大于与所述锥形相对排列的所述两个部分中的另一部分。
  11. 根据权利要求1至10中任一项所述的像素结构,其特征在于,所述纳米天线的电极线布置在所述M个部分中的每个部分靠近所述纳米缝隙处。
  12. 一种图像传感器,其特征在于,包括多个权利要求1至权利要求11中任一项所述的像素结构。
  13. 一种电子产品,其特征在于,包括权利要求12所述的图像传感器。
PCT/CN2020/128425 2019-11-14 2020-11-12 像素结构和图像传感器 WO2021093816A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20888635.8A EP4050655A4 (en) 2019-11-14 2020-11-12 PIXEL STRUCTURE AND IMAGE SENSOR
US17/663,284 US20220278145A1 (en) 2019-11-14 2022-05-13 Pixel structure and image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911110638.XA CN112802827B (zh) 2019-11-14 2019-11-14 像素结构和图像传感器
CN201911110638.X 2019-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/663,284 Continuation US20220278145A1 (en) 2019-11-14 2022-05-13 Pixel structure and image sensor

Publications (1)

Publication Number Publication Date
WO2021093816A1 true WO2021093816A1 (zh) 2021-05-20

Family

ID=75804010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128425 WO2021093816A1 (zh) 2019-11-14 2020-11-12 像素结构和图像传感器

Country Status (4)

Country Link
US (1) US20220278145A1 (zh)
EP (1) EP4050655A4 (zh)
CN (1) CN112802827B (zh)
WO (1) WO2021093816A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4369403A1 (en) * 2021-07-16 2024-05-15 Huawei Technologies Co., Ltd. Image sensor and electronic device
WO2023056632A1 (zh) * 2021-10-09 2023-04-13 华为技术有限公司 图像传感器和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459185A (zh) * 2007-12-11 2009-06-17 三星电子株式会社 光电二极管、图像感测装置及图像传感器
CN102103224A (zh) * 2009-12-18 2011-06-22 乐金显示有限公司 利用表面等离子体的滤色器、液晶显示设备及其制造方法
US20180190688A1 (en) * 2017-01-03 2018-07-05 Samsung Electronics Co., Ltd. Image sensor comprising nanoantenna
CN109564323A (zh) * 2016-08-30 2019-04-02 三星电子株式会社 光学滤波器和使用其的光学装置
CN110085610A (zh) * 2019-04-23 2019-08-02 Oppo广东移动通信有限公司 图像传感器、图像处理方法以及计算机存储介质
CN110444557A (zh) * 2019-09-12 2019-11-12 江苏集萃智能传感技术研究所有限公司 一种基于纳米盘结构的多波段滤光传感器及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008002270A1 (de) * 2008-06-06 2009-12-17 Robert Bosch Gmbh Multispektraler Sensor
WO2010010562A2 (en) * 2008-07-25 2010-01-28 Ramot At Tel Aviv University Ltd. Rectifying antenna device
US20110062336A1 (en) * 2009-09-14 2011-03-17 David Ben-Bassat ELECTROMAGNETIC BASED THERMAL SENSING AND IMAGING INCORPORATING STACKED SEMICONDUCTOR STRUCTURES FOR THz DETECTION
CN101846622B (zh) * 2010-05-14 2011-08-17 重庆文理学院 一种基于纳米腔天线阵列的气体折射率传感器
FR2977937B1 (fr) * 2011-07-15 2013-08-16 Centre Nat Rech Scient Detecteur bolometrique a performances ameliorees
CN104319471A (zh) * 2014-10-17 2015-01-28 哈尔滨工业大学深圳研究生院 可调谐的纳米天线及其制备方法
CN104966745B (zh) * 2015-04-30 2017-08-29 北京空间飞行器总体设计部 一种基于硅基衬底的纳米整流天线
CN106373968A (zh) * 2016-11-14 2017-02-01 郭玮 一种含碳素材料的光电转化装置
CN106940296B (zh) * 2017-03-14 2019-03-22 南京大学 一种基于纳米图案的等离基元折射率传感器的传感方法
FR3067167B1 (fr) * 2017-06-06 2019-06-28 Office National D'etudes Et De Recherches Aerospatiales Element de conversion spectrale pour rayonnement electromagnetique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459185A (zh) * 2007-12-11 2009-06-17 三星电子株式会社 光电二极管、图像感测装置及图像传感器
CN102103224A (zh) * 2009-12-18 2011-06-22 乐金显示有限公司 利用表面等离子体的滤色器、液晶显示设备及其制造方法
CN109564323A (zh) * 2016-08-30 2019-04-02 三星电子株式会社 光学滤波器和使用其的光学装置
US20180190688A1 (en) * 2017-01-03 2018-07-05 Samsung Electronics Co., Ltd. Image sensor comprising nanoantenna
CN110085610A (zh) * 2019-04-23 2019-08-02 Oppo广东移动通信有限公司 图像传感器、图像处理方法以及计算机存储介质
CN110444557A (zh) * 2019-09-12 2019-11-12 江苏集萃智能传感技术研究所有限公司 一种基于纳米盘结构的多波段滤光传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050655A4

Also Published As

Publication number Publication date
EP4050655A4 (en) 2022-12-21
CN112802827A (zh) 2021-05-14
CN112802827B (zh) 2024-03-01
EP4050655A1 (en) 2022-08-31
US20220278145A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2020259038A1 (zh) 一种拍摄方法及设备
WO2021213120A1 (zh) 投屏方法、装置和电子设备
WO2020168965A1 (zh) 一种具有折叠屏的电子设备的控制方法及电子设备
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2021052214A1 (zh) 一种手势交互方法、装置及终端设备
CN113810601B (zh) 终端的图像处理方法、装置和终端设备
WO2021057277A1 (zh) 一种暗光下拍照的方法及电子设备
WO2022100610A1 (zh) 投屏方法、装置、电子设备及计算机可读存储介质
US20220270343A1 (en) Video image processing method and apparatus
WO2021104104A1 (zh) 一种高能效的显示处理方法及设备
WO2021052407A1 (zh) 一种电子设备操控方法及电子设备
US20220278145A1 (en) Pixel structure and image sensor
WO2022001258A1 (zh) 多屏显示方法、装置、终端设备及存储介质
WO2021208723A1 (zh) 全屏显示方法、装置和电子设备
WO2021208926A1 (zh) 一种用于拍照的装置及方法
CN215771542U (zh) 一种三模宽带终端天线和终端设备
WO2022156555A1 (zh) 屏幕亮度的调整方法、装置和终端设备
WO2021190314A1 (zh) 触控屏的滑动响应控制方法及装置、电子设备
CN110248037A (zh) 一种身份证件扫描方法及装置
CN114257920B (zh) 一种音频播放方法、系统和电子设备
WO2021057626A1 (zh) 图像处理方法、装置、设备及计算机存储介质
WO2020078267A1 (zh) 在线翻译过程中的语音数据处理方法及装置
WO2022135144A1 (zh) 自适应显示方法、电子设备及存储介质
WO2022062985A1 (zh) 视频特效添加方法、装置及终端设备
WO2022033344A1 (zh) 视频防抖方法、终端设备和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020888635

Country of ref document: EP

Effective date: 20220525

NENP Non-entry into the national phase

Ref country code: DE