WO2021093721A1 - 一种指纹识别方法和电子设备 - Google Patents

一种指纹识别方法和电子设备 Download PDF

Info

Publication number
WO2021093721A1
WO2021093721A1 PCT/CN2020/127756 CN2020127756W WO2021093721A1 WO 2021093721 A1 WO2021093721 A1 WO 2021093721A1 CN 2020127756 W CN2020127756 W CN 2020127756W WO 2021093721 A1 WO2021093721 A1 WO 2021093721A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
frequency band
fingerprint sensor
light source
fingerprint
Prior art date
Application number
PCT/CN2020/127756
Other languages
English (en)
French (fr)
Inventor
贺虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021093721A1 publication Critical patent/WO2021093721A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72484User interfaces specially adapted for cordless or mobile telephones wherein functions are triggered by incoming communication events

Definitions

  • the present invention relates to the technical field of fingerprint identification, in particular to a fingerprint identification method and electronic equipment.
  • optical fingerprint recognition which includes a light source and a fingerprint sensor.
  • the light is emitted by turning on the supplementary light source, which is projected on the finger for scattering, and the scattered light enters the fingerprint sensor, and the fingerprint sensor processes the received light to realize fingerprint recognition.
  • the embodiments of the present application provide a fingerprint identification method and electronic equipment.
  • the present application provides a fingerprint identification method, the method is executed by an electronic device, the electronic device is configured with a screen, a fingerprint sensor and at least one auxiliary light source, and the fingerprint sensor and the at least one auxiliary light source are located Below the screen, the method includes: detecting the light intensity of the first frequency band in the external ambient light; the light of the first frequency band is used by the fingerprint sensor for fingerprint recognition; when the light intensity of the first frequency band is less than When the first threshold, the at least one auxiliary light source is controlled to provide light in the second frequency band; when the light intensity of the first frequency band is not less than the first threshold, the at least one auxiliary light source is controlled not to provide the second frequency Frequency band of light; at least a part of the second frequency band overlaps with at least a part of the first frequency band.
  • the auxiliary light source when the fingerprint sensor detects that the external light is insufficient, the auxiliary light source needs to be turned on to fill light to achieve the fingerprint identification function; when the fingerprint sensor detects that the external light is sufficient, it is not turned on
  • the auxiliary light source is used to fill light to avoid the fingerprint sensor from receiving too much light signal and failing to perform fingerprint recognition, and at the same time, it is beneficial to reduce the power consumption of the electronic device.
  • the detecting the light intensity of the first frequency band in the external ambient light includes: using the fingerprint sensor or the ambient light sensor to detect the light intensity of the first frequency band.
  • the fingerprint sensor is acquiring a fingerprint image for fingerprint recognition
  • the light intensity of the image can be converted into an electrical signal to realize the detection of the light intensity of the acquired image, so as to avoid increasing the device for detecting the light intensity.
  • the light in the first frequency band and the light in the second frequency band are invisible light.
  • the present application provides an electronic device, including: a detection unit, at least one auxiliary light source, and a processor.
  • the detection unit is configured to detect the light intensity of the first frequency band in the external ambient light; the first frequency band The light of is used for fingerprint recognition of the fingerprint sensor of the electronic device; the at least one auxiliary light source is used to provide light of a second frequency band; at least a part of the second frequency band overlaps with at least a part of the first frequency band;
  • the processor is configured to control the at least one auxiliary light source to provide light in the second frequency band when the light intensity in the first frequency band is less than a first threshold; and when the light intensity in the first frequency band is not less than When the first threshold is used, the at least one auxiliary light source is controlled not to provide light in the second frequency band; wherein the fingerprint sensor and the at least one auxiliary light source are located below the screen of the electronic device.
  • the detection unit is the fingerprint sensor or an ambient light sensor.
  • the light in the first frequency band and the light in the second frequency band are invisible light.
  • the present application provides an electronic device, including: a fingerprint sensor, a screen, at least one infrared light source, and a processor.
  • the fingerprint sensor is used for fingerprint recognition using infrared light in the first frequency band and detecting external ambient light.
  • FIG. 1 is a schematic diagram of the internal side structure of an electronic device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of an internal top view structure of an electronic device provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the application for fingerprint recognition in a dark or non-infrared environment
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the application for fingerprint recognition in an environment with sufficient external environment light;
  • Fig. 5 is a flowchart of a fingerprint identification method provided by an embodiment of the application.
  • Under-screen fingerprint recognition technology refers to the fact that the fingerprint sensor is placed under the display screen, and the fingerprint sensor can be used to collect the fingerprint information of the finger located above the display screen without touching the fingerprint sensor, and then based on the collected fingerprint information Technology for fingerprint recognition. It can be understood that for an electronic device that can realize fingerprint recognition under the screen, there is no need to set a fingerprint collection area outside the display screen, which is beneficial to increase the screen-to-body ratio of the electronic device.
  • the electronic devices in the embodiments of the present application include, but are not limited to, mobile phones, notebook computers, tablet computers, and various other types of devices with display screens.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • the electronic device 100 provided in the present application includes a display screen 10, a fingerprint sensor 20, an auxiliary light source 30 and a processor 40.
  • a fingerprint sensor 20 is arranged directly under the display screen 10, and a plurality of auxiliary light sources 30 are arranged around the fingerprint sensor 20.
  • the light emitted by the multiple auxiliary light sources 30 can be transmitted through the display screen 10 to the top of the display screen 10, and projected to the fingers located above the display screen 10.
  • the reflected light is reflected at 50, and the formed reflected light is then transmitted to the fingerprint sensor 20 through the display screen 10, and the fingerprint sensor 20 collects fingerprint information of the finger 50 according to the reflected light received by the fingerprint sensor 20 to perform fingerprint identification.
  • the light in the external environment (the light shown by the dashed arrow in FIG. 1) can be refracted through the finger 50 located above the display screen 10, and the formed refracted light is transparent
  • the fingerprint sensor 20 can also collect fingerprint information of the finger 50 according to the refracted light received by the fingerprint sensor 20 to perform fingerprint identification.
  • the fingerprint sensor 20 may receive too many light signals, which may result in failure to perform fingerprint recognition.
  • the fingerprint sensor 20 is also used to obtain the light intensity of the first frequency band in the external environment.
  • the auxiliary light source 30 does not work first, so that the fingerprint sensor 20 can obtain light in the external environment. Then, according to whether the fingerprint sensor 20 needs to be supplemented with light, it is determined whether the auxiliary light source is turned on and working to perform supplemental light.
  • the display screen 10 may adopt a self-luminous display to display patterns, for example, an organic light-emitting diode (OLED) display may be used to display patterns; or a non-self-luminous display To display the pattern, for example, a liquid crystal display (LCD) is used to display the pattern.
  • OLED organic light-emitting diode
  • LCD liquid crystal display
  • the visible light sensor is now mainly used for fingerprints under the OLED display.
  • the self-luminescence of the OLED display is used for fingerprint detection.
  • the visible light in the external environment passes through the finger 50, it will be caught by the finger 50. Reflected, unable to image on the visible light sensor.
  • the light collected for fingerprint recognition in the embodiment of the present application is invisible light, preferably infrared light. In the following embodiments, infrared light will be used for fingerprint identification.
  • the auxiliary light source 30 may be an infrared LED for providing infrared light.
  • a plurality of infrared LEDs are evenly distributed around the fingerprint sensor 20, so that each infrared LED emits infrared light through reflection, and is uniformly projected on the fingerprint sensor 20.
  • an auxiliary light source 30 is set in the middle position of the four sides of the fingerprint sensor 20, and each auxiliary light source 303 corresponds to the fingerprint sensor 20.
  • the side distances are the same to ensure that the light emitted by each auxiliary light source 30 is evenly projected on the fingerprint sensor 20 through reflection.
  • the light in the first frequency band acquired by the fingerprint sensor 20 is infrared light in a specific frequency band.
  • light intensity detection is performed by acquiring infrared light in a specific frequency band, so as to prevent the fingerprint sensor 20 from detecting infrared light in the full frequency band.
  • the sensitive waveband of the fingerprint sensor has a fixed peak waveband, for example, the peak wavelength is 850nm or 940nm.
  • the light collected by the fingerprint sensor 20 is usually in a range, not a single wavelength, so the first frequency band is preferred to the sensitive wavelength band of the fingerprint sensor.
  • the absorption peak band of the fingerprint sensor is around 940 nm, while the fingerprint sensor 20 detects the first frequency band.
  • the frequency band also needs to cover the 940nm range.
  • the fingerprint sensor 20 in the embodiment of the present application is an infrared photosensitive sensor.
  • the infrared light sensor is used to receive infrared light in the external environment.
  • the infrared photosensitive sensor may be an array composed of a large number of infrared photodiodes, each infrared receiving diode can generate an electrical signal according to the infrared light it receives, and the generated electrical signal is related to the intensity of the received infrared light.
  • the infrared photosensitive sensor converts the received infrared light of a specific frequency band into a current, and then sends the current value to the processor 40.
  • the larger the current value the stronger the infrared light intensity received by the fingerprint sensor 20, and thus the stronger the infrared light intensity in the external environment where the fingerprint sensor 20 is located; conversely, the smaller the current value, the stronger the infrared light intensity received by the fingerprint sensor 20.
  • the weaker the infrared light intensity is, the weaker the infrared light intensity in the external environment where the fingerprint sensor 20 is located.
  • the processor 40 is connected to the fingerprint sensor 20 and the auxiliary light source 30 respectively.
  • the processor 40 is configured to control whether the auxiliary light source 30 provides light in the second frequency band according to the relationship between the light intensity of the first frequency band and the set threshold.
  • the processor 40 pre-stores a threshold value for detecting the light intensity in the external environment.
  • the set threshold may be an electrical signal value, an optical signal value, and so on.
  • the set threshold type matches the value type of the signal received by the processor 40, that is, matches the device connected to the processor 40.
  • the processor 40 is connected to the infrared photosensitive sensor. After receiving the current value sent by the infrared photosensitive sensor, it is compared with the stored predetermined threshold value. When the received current value is less than the predetermined threshold, it indicates that the intensity of infrared light received by the fingerprint sensor 20 is relatively weak, and the infrared light in the external environment acquired by the fingerprint sensor 20 cannot support fingerprint recognition. At this time, the processor 40 controls Each auxiliary light source 30 works to provide infrared light for supplementary light. When the received current value is greater than or equal to the predetermined threshold, it indicates that the infrared light intensity received by the fingerprint sensor 20 is relatively strong, and the infrared light in the external environment acquired by the fingerprint sensor 20 is sufficient to support fingerprint recognition. The device 40 controls each auxiliary light source 30 not to work, which is beneficial to reduce the power consumption of the electronic device 100.
  • each auxiliary light source 30 controls the intensity of the infrared light provided by each auxiliary light source 30 according to the magnitude of the received current value.
  • the received current value is smaller, it indicates that the infrared light intensity in the external environment is weaker, and more infrared light needs to be supplemented.
  • the intensity of the infrared light emitted by each auxiliary light source 30 is controlled to be stronger.
  • the received current value is larger, it indicates that the infrared light intensity in the external environment is strong, and less infrared light needs to be supplemented.
  • control each auxiliary light source 30 controls each auxiliary light source 30 to emit a small amount of infrared light to avoid the infrared light emitted by the auxiliary light source 30
  • the intensity of the light is too large, which increases the power consumption of the electronic device 100.
  • the fingerprint sensor 20 continues to collect infrared light to detect whether the fingerprint sensor 20 receives too much infrared light, so as to ensure that the fingerprint sensor 20 does not fail due to supplementary light. Perform fingerprint recognition.
  • the second frequency band of the infrared rays provided by the auxiliary light source 30 is any frequency band in the light required by the fingerprint sensor 20 for fingerprint identification.
  • the acquired light in the first frequency band must be in the second frequency band of infrared rays provided by the auxiliary light source 30.
  • the current value received by the processor 40 at this time is basically zero.
  • all the infrared light required by the fingerprint sensor 20 for fingerprint recognition is provided by the auxiliary light source 30.
  • the infrared light source emits infrared rays, and the infrared rays pass through the infrared-permeable optical film and light guide film of the display screen 10.
  • LGF low-power semiconductor
  • TFT thin film transistor
  • color filter color filter, CF
  • the fingerprint sensor 20 collects fingerprint information of the finger 50 according to the reflected light it receives, and performs fingerprint recognition.
  • the processor 40 controls not to turn on the auxiliary light source 30 for supplementary light at this time, so as to prevent the fingerprint sensor 20 from receiving too many light signals and failing to perform fingerprints. Identification is also beneficial to reduce the power consumption of the electronic device 100.
  • the infrared light source does not emit infrared rays at this time, and the external infrared rays pass through the finger 50 directly onto the display screen 10, or pass through the glass of the display screen 10.
  • the outer surface is reflected on the finger 50, it is reflected by the finger 50 to the display screen 10, and then passes through the infrared-permeable optical film, LGF, TFT, CF and other layers of the display screen 10, and then propagates to the fingerprint sensor 20.
  • the fingerprint sensor 20 collects fingerprint information of the finger 50 according to the reflected light it receives, and performs fingerprint recognition.
  • the fingerprint sensor 30 is used to obtain the light intensity of the first frequency band in the external environment in the embodiment of the present application, for those skilled in the art, other devices such as ambient light sensor, light intensity meter, etc. can be added. Intensity detectors and other devices replace the fingerprint sensor 30 to acquire the light intensity of the first frequency band in the external environment, and then send the acquired light intensity to the processor 40 for processing.
  • This solution can also be implemented in the electronic device provided in the embodiment of the present application, which is not limited herein.
  • Fig. 5 is a flowchart of a fingerprint identification method provided by an embodiment of the application. As shown in FIG. 5, an embodiment of the present application provides a fingerprint identification method, and the specific implementation steps of the method are as follows:
  • step S501 the fingerprint recognition function is triggered.
  • the fingerprint and fingerprint identification function can be triggered when pressing the "power on and off” key, waking up the screen, entering the APP, and making a payment.
  • Step S502 Detect the light intensity of the first frequency band in the external ambient light.
  • the visible light sensor is now mainly used for fingerprints under the screen of the OLED display screen.
  • the self-luminous light of the OLED display screen is used for fingerprint detection.
  • the visible light in the external environment passes through the finger 50, it is reflected by the finger and cannot be imaged on the visible light sensor.
  • the LCD display screen visible light cannot penetrate the backlight module (with a reflective sheet) in the fingerprint sensor 20, and therefore cannot be sensed by the fingerprint sensor. Therefore, the light collected for fingerprint recognition in the embodiment of the present application is invisible light, and infrared light is preferred.
  • the light in the first frequency band is infrared light in a specific frequency band, and detection of light intensity is performed by acquiring infrared light in a specific frequency band, so as to avoid detecting infrared light in the full frequency band.
  • the sensitive wavelength band of the fingerprint sensor is fixed, such as 850 nm or 940 nm.
  • the collected light is usually in a range, not a single wavelength, so the light in the first frequency band is the best wavelength between 850nm and 940nm.
  • the acquired light in the first frequency band is infrared light in a specific frequency band.
  • the current value is obtained.
  • the larger the current value the stronger the intensity of the received infrared light, and the stronger the infrared light intensity in the external environment where the fingerprint sensor 20 is located; conversely, the smaller the current value, the weaker the intensity of the received infrared light. Therefore, the infrared light intensity in the external environment where the fingerprint sensor 20 is located is weaker.
  • Step S503 Determine whether the light intensity of the first frequency band exceeds a threshold.
  • the processor 40 pre-stores a threshold value for detecting the light intensity in the external environment.
  • the set threshold may be an electrical signal value, an optical signal value, and so on.
  • the set threshold type matches the signal type into which the light intensity is converted.
  • the processor 40 After the processor 40 receives the current value, it compares it with a stored predetermined threshold. When the received current value is less than the predetermined threshold, it indicates that the intensity of the received infrared light is relatively weak, and the infrared light in the external environment detected by the fingerprint sensor 20 cannot support it for fingerprint recognition. In this case, step S504 is executed. When the received current value is greater than or equal to the predetermined threshold value, it indicates that the received infrared light intensity is relatively strong, and the light in the external environment obtained by the fingerprint sensor 20 is sufficient to support fingerprint recognition, and step S505 is executed at this time.
  • Step S504 When the light intensity of the first frequency band is less than the threshold, control at least one auxiliary light source to provide light of the second frequency band.
  • each auxiliary light source controls the intensity of the infrared light provided by each auxiliary light source according to the magnitude of the received current value.
  • the received current value is smaller, it indicates that the infrared light intensity in the external environment is weaker, and more infrared light needs to be supplemented.
  • the intensity of infrared light emitted by each auxiliary light source is controlled to be stronger.
  • the received current value is large, it indicates that the infrared light intensity in the external environment is strong, and less infrared light needs to be supplemented.
  • control each auxiliary light source to emit a small amount of infrared light to avoid the infrared light emitted by the auxiliary light source. Excessive light intensity increases the power consumption of electronic equipment.
  • the fingerprint sensor 20 continues to collect infrared light to detect whether the fingerprint sensor 20 receives too much infrared light, so as to ensure that the fingerprint sensor 20 does not fail due to supplementary light. Perform fingerprint recognition.
  • the second frequency band of the infrared rays provided by the auxiliary light source is any frequency band in the light required by the fingerprint sensor 20 for fingerprint identification.
  • the acquired light in the first frequency band must be in the infrared frequency band provided by the auxiliary light source.
  • Step S505 When the light intensity of the first frequency band is not less than the threshold, control at least one auxiliary light source not to provide light of the second frequency band.
  • the processor 40 controls and controls the auxiliary light source to not work at this time, so as to avoid the fingerprint sensor receiving too many light signals and failing to perform fingerprint recognition. Conducive to reducing the power consumption of electronic equipment.
  • Step S506 the fingerprint sensor performs fingerprint recognition.
  • the fingerprint sensor 20 collects fingerprint information of the finger 50 according to the reflected light it receives, and performs fingerprint recognition.
  • the auxiliary light source needs to be turned on to fill light to achieve the fingerprint identification function; if the fingerprint sensor detects that the external light is sufficient, The auxiliary light source is not turned on for supplementary light, so as to prevent the fingerprint sensor from receiving too many light signals and failing to perform fingerprint recognition, and at the same time, it is beneficial to reduce the power consumption of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Image Input (AREA)

Abstract

一种指纹识别方法和电子设备(100),如手机、笔记本电脑、平板电脑等。所述电子设备(100)配置有屏幕(10)、指纹传感器(20)和至少一个辅助光源(30),且指纹传感器(20)和至少一个辅助光源(30)位于屏幕(10)下方,所述方法包括:检测外部环境光中的第一频段的光强度(S502);当第一频段的光强度小于第一阈值时,控制至少一个辅助光源提供第二频段的光(S504);当第一频段的光强度不小于第一阈值时,控制至少一个辅助光源不提供第二频段的光(S505);第二频段至少有一部分与第一频段的至少一部分重叠。该指纹传感器(20)在外界光线充足的情况下,不开启辅助光源(30)进行补光,以避免指纹传感器(20)接收到光信号过多而导致无法进行指纹识别,同时有利于降低电子设备(100)的功耗。

Description

一种指纹识别方法和电子设备
本申请要求于2019年11月13日提交中国专利局、申请号为201911106018.9、申请名称为“一种指纹识别方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及指纹识别技术领域,尤其涉及一种指纹识别方法和电子设备。
背景技术
随着全面屏手机的普及,屏下指纹越来越多的应用于全面屏手机。
现有的指纹识别大多采用光学指纹识别,其包括补光光源与指纹传感器。在指纹识别过程中,通过打开补光光源发出光,投射到手指上进行散射,散射光进入指纹传感器中,指纹传感器对接收到光进行处理实现指纹识别。
但是,当在日光场景下,外界光线会穿透手指进行指纹区域,再叠加上本身补光光源提供的光线,容易造成指纹传感器探测到的信号过爆,从而在强光下无法进行指纹解锁。
发明内容
为了克服上述问题,本申请实施例提供了一种指纹识别方法和电子设备。
为了达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供一种指纹识别方法,所述方法由电子设备执行,所述电子设备配置有屏幕、指纹传感器和至少一个辅助光源,且所述指纹传感器和所述至少一个辅助光源位于所述屏幕下方,所述方法包括:检测外部环境光中的第一频段的光强度;所述第一频段的光用于所述指纹传感器进行指纹识别;当所述第一频段的光强度小于第一阈值时,控制所述至少一个辅助光源提供第二频段的光;当所述第一频段的光强度不小于所述第一阈值时,控制所述至少一个辅助光源不提供所述第二频段的光;所述第二频段至少有一部分与所述第一频段的至少一部分重叠。
本申请实施例提供的指纹识别方法,在指纹传感器检测外界光线不充足的情况下,需要开启辅助光源进行补光,来实现进行指纹识别功能;在指纹传感器检测外界光线充足的情况下,不开启辅助光源进行补光,以避免指纹传感器接收到光信号过多而导致无法进行指纹识别,同时有利于降低电子设备的功耗。
在另一个可能的实现中,所述检测外部环境光中的第一频段的光强度,包括:利用所述指纹传感器或者环境光传感器检测所述第一频段的光强度。在指纹传感器在获取指纹图像进行指纹识别的过程中,可以将图像的光线强度转换成电信号,以实现检测获取图像光线的强度,这样避免增加检测光强的器件。
在另一个可能的实现中,所述第一频段的光和所述第二频段的光为不可见光。
第二方面,本申请提供一种电子设备,包括:检测单元、至少一个辅助光源和处理器, 所述检测单元,用于检测外部环境光中的第一频段的光强度;所述第一频段的光用于所述电子设备的指纹传感器进行指纹识别;所述至少一个辅助光源,用于提供第二频段的光;所述第二频段至少有一部分与所述第一频段的至少一部分重叠;所述处理器,用于当所述第一频段的光强度小于第一阈值时,控制所述至少一个辅助光源提供所述第二频段的光;以及当所述第一频段的光强度不小于所述第一阈值时,控制所述至少一个辅助光源不提供所述第二频段的光;其中,所述指纹传感器和所述至少一个辅助光源位于所述电子设备的屏幕下方。
在另一个可能的实现中,所述检测单元为所述指纹传感器或者环境光传感器。
在另一个可能的实现中,所述第一频段的光和所述第二频段的光为不可见光。
第三方面,本申请提供一种电子设备,包括:指纹传感器、屏幕、至少一个红外光源和处理器,所述指纹传感器,用于利用第一频段的红外光进行指纹识别,以及检测外部环境光中的所述第一频段的红外光强度;所述至少一个红外光源,用于提供第二频段的红外光;所述第二频段至少有一部分与所述第一频段的至少一部分重叠;所述处理器,用于当所述第一频段的红外光强度小于第一阈值时,控制所述至少一个红外光源提供所述第二频段的红外光;以及当所述第一频段的红外光强度不小于所述第一阈值时,控制所述至少一个红外光源不提供所述第二频段的红外光;其中,所述指纹传感器和所述辅助光源位于所述屏幕下方。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为本申请实施例提供的一种电子设备的内部侧面结构示意图;
图2为本申请实施例提供的一种电子设备的内部俯视结构示意图;
图3为本申请实施例提供的电子设备在黑暗或无红外线的环境下进行指纹识别的结构示意图;
图4为本申请实施例提供的电子设备在外界环境光线充足的环境下进行指纹识别的结构示意图;
图5为本申请实施例提供的一种指纹识别方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
屏下指纹识别技术指的是,将指纹传感器设置于显示屏下方,无需手指与指纹传感器接触,即可通过该指纹传感器,实现采集位于显示屏上方的手指的指纹信息,进而基于采集的指纹信息进行指纹识别的技术。可以理解,对于能够实现屏下指纹识别的电子设备,无需在显示屏以外设置指纹采集区域,从而有利于提高电子设备的屏占比。
需要说明的是,本申请实施例中的电子设备,包括但不限于手机、笔记本电脑、平板电脑以及其它各种类型的、具有显示屏的设备。
图1为本申请实施例提供的一种电子设备的结构示意图。如图1所示,本申请提供的电子设备100包括显示屏10、指纹传感器20、辅助光源30和处理器40。其中,显示屏10的正下方设置有指纹传感器20,在指纹传感器20周边设置有多个辅助光源30。
在电子设备100中,多个辅助光源30发出的光(如图1中的实线箭头所示的光线)可透过显示屏10传播至显示屏10上方,投射到位于显示屏10上方的手指50上进行反射,形成的反射光再透过显示屏10传播至指纹传感器20,指纹传感器20根据其接收的反射光采集手指50的指纹信息,进行指纹识别。
在电子设备处在光照强度较强的环境下,外界环境中的光(如图1中的虚线箭头所示的光线)可透过位于显示屏10上方的手指50进行折射,形成的折射光透过显示屏10传播至指纹传感器20,指纹传感器20也能根据其接收的折射光采集手指50的指纹信息,进行指纹识别。
但是,如果指纹传感器20同时接收到上述的反射光和折射光后,造成指纹传感器20接收到光信号过多,从而导致无法进行指纹识别。
在本申请实施例中,指纹传感器20还用于获取外界环境中的第一频段的光强度。
需要优先说明的是,在触发电子设备100的指纹识别功能时,辅助光源30先不工作,以便指纹传感器20获取外界环境中的光。然后根据指纹传感器20是否需要补光,确定是否打开辅助光源是否工作,以进行补光。
本申请实施例的电子设备100中,显示屏10可以采用自发光显示屏来显示图案,比如采用有机发光二极管(organic light-emitting diode,OLED)显示屏来显示图案;或者采用非自发光显示屏来显示图案,比如采用液晶显示器(liquid crystal display,LCD)来显示图案。对此,本申请实施例不做限定。
但是,对于OLED显示屏来说,可见光的传感器现在主要应用在OLED显示屏的屏下指纹,利用OLED显示屏自发光进行指纹探测,外界环境中的可见光在经过手指50的时候,会被手指50反射,无法在可见光传感器上成像。对于LCD显示屏来说,可见光无法穿透指纹传感器20中的背光模组(设置有反射片),因此无法被指纹传感器所感知到。所以本申请实施例进行指纹识别所采集的光为不可见光,优选的为红外光。下述实施例中,将采用红外光来进行指纹识别。
在一个可能的实施例中,辅助光源30可以为红外LED,用于提供红外光。其中,多个红外LED均匀的分布在指纹传感器20的周边,使得各个红外LED发出红外光通过反射,均匀的投射在指纹传感器20上。
示例性的,如图2所示,当指纹传感器20为正方形时,在指纹传感器20的四个侧边的中间位置上均设置一个辅助光源30,且每个辅助光源303与指纹传感器20对应的侧边的距离相同,以保证各个辅助光源30发出光通过反射,均匀的投射在指纹传感器20上。
其中,指纹传感器20获取的第一频段的光为特定频段的红外光。本申请通过获取特定频段的红外光来进行光强度的探测,以避免指纹传感器20对全频段的红外光进行探测。
在一个可能的实施例中,通常指纹传感器的敏感波段有固定的峰值波段,比如峰值波长为850nm或者940nm。但是指纹传感器20采集的光通常是一个范围,不会是单波长,所以第一频段优先和指纹传感器的敏感波段相近,如指纹传感器的吸收峰值波段为940nm附近,而指纹传感器20检测的第一频段也需要覆盖940nm范围。
在一个可能实施例中,本申请实施例的指纹传感器20为红外感光传感器。红外感光传感器用于接收外界环境中的红外光。具体地,红外感光传感器可以由大量的红外光电二极管组成的阵列,每个红外接收二极管均可根据其接收的红外光产生电信号,且产生的电信 号关联于接收的红外光的光照强度。
在本申请实施例中,红外感光传感器通过将接收到的特定频段的红外光转换成电流,然后将电流数值发送给处理器40。其中,电流数值越大,则表示指纹传感器20接收到红外光强度越强,从而指纹传感器20所处的外界环境中的红外光强度越强;反之,电流数值越小,则表示指纹传感器20接收到红外光强度越弱,从而指纹传感器20所处的外界环境中的红外光强度越弱。
处理器40分别与指纹传感器20和辅助光源30连接。处理器40用于根据第一频段的光强度与设定的阈值之间的关系,控制辅助光源30是否提供第二频段的光。
具体地,处理器40预先存储有用于检测外界环境中的光强度的阈值。其中,设定的阈值可以为电信号数值、光信号数值等等。设定的阈值类型跟处理器40接收到信号数值类型相匹配,也即跟处理器40连接的设备相匹配。
处理器40与红外感光传感器连接。在接收由红外感光传感器发送的电流数值后,与存储的预定的阈值进行比较。当接收到的电流数值小于预定的阈值时,则表明指纹传感器20接收到红外光强度比较弱,指纹传感器20所获取的外界环境中的红外光不能支撑其进行指纹识别,此时处理器40控制各个辅助光源30进行工作,以提供红外光进行补光。当接收到的电流数值大于或等于预定的阈值时,则表明指纹传感器20接收到的红外光强度比较强,指纹传感器20所获取的外界环境中的红外光足以支撑其进行指纹识别,此时处理器40控制各个辅助光源30不进行工作,有利于降低电子设备100的功耗。
处理器40控制各个辅助光源30发出红外光进行补光过程中,其根据接收到电流数值的大小,来控制各个辅助光源30提供的红外光的强度。当接收到电流数值越小,表明外界环境中的红外光强度越弱,则需要补充的红外光越多,此时控制各个辅助光源30发出的红外光强度越强。当接收到电流数值较大,表明外界环境中的红外光强度较强,则需要补充的红外光较少,此时控制各个辅助光源30发出少量的红外光即可,避免辅助光源30所发出红外光的光照强度过大而增加电子设备100的功耗。
另外,在各个辅助光源30发出红外光进行补光的过程中,指纹传感器20继续采集红外光,以探测指纹传感器20接收到红外光是否过多,从而保证指纹传感器20不因补光而导致无法进行指纹识别。
其中,辅助光源30提供的红外线的第二频段为指纹传感器20进行指纹识别所需要的光中的任意频段。但是,获取的第一频段的光必须在辅助光源30提供的红外线的第二频段之中。
本申请实施例提供的电子设备,如果处在黑暗或无红外线的环境下,此时处理器40接收到电流值基本上为0。这种情况下,指纹传感器20进行指纹识别所需的红外光都由辅助光源30提供。
示例性的,如图3所示,当电子设备处在黑暗的环境下,此时红外光源发出红外线,该红外线穿过显示屏10的可透红外的光学膜片、导光膜(light guide film,LGF)、薄膜晶体管(thin film transistor,TFT)、彩色滤光片(color filter,CF)等组层后,通过手指50反射,然后再次穿过显示屏10的各个组层,传播至指纹传感器20,指纹传感器20根据其接收的反射光采集手指50的指纹信息,进行指纹识别。
本申请实施例提供的电子设备,如果处在外界光充足的情况下,此时处理器40控制不 开启辅助光源30进行补光,以避免指纹传感器20接收到光信号过多而导致无法进行指纹识别,同时有利于降低电子设备100的功耗。
示例性的,如图4所示,当电子设备处在外界光充足的环境下,此时红外光源不发出红外线,外界红外线穿过手指50直射到显示屏10上,或经过显示屏10的玻璃外表面反射到手指50后,再经过手指50反射到显示屏10上,然后穿过显示屏10的可透红外的光学膜片、LGF、TFT、CF等组层后,传播至指纹传感器20,指纹传感器20根据其接收的反射光采集手指50的指纹信息,进行指纹识别。
需要特别说明的是,本申请实施例虽然采用指纹传感器30来获取外界环境中的第一频段的光强度,但是对于本领域人员来说,可以增加其它器件,如环境光传感器、光强计、强度检测仪等器件,来替代指纹传感器30获取外界环境中的第一频段的光强度,然后将获取的光强度发送给处理器40进行处理。这种方案也可以在本申请实施例提供的电子设备中实现的,在此本申请不作限定。
图5为本申请实施例提供的一种指纹识别方法的流程图。如图5所示,本申请实施例提供了一种指纹识别方法,该方法具体实现步骤如下:
步骤S501,触发指纹识别功能。
具体地,对于手机来说,进行按压“开关机”键、唤醒屏幕、进入APP、进行支付等操作时,都可以触发指纹指纹识别功能。
步骤S502,检测外部环境光中的第一频段的光强度。
具体地,在指纹识别过程中,获取的光要穿过显示屏,对于OLED显示屏来说,可见光的传感器现在主要应用在OLED显示屏的屏下指纹,利用OLED显示屏自发光进行指纹探测,外界环境中的可见光在经过手指50的时候,会被手指反射,无法在可见光传感器上成像。对于LCD显示屏来说,可见光无法穿透指纹传感器20中的背光模组(设置有反射片),因此无法被指纹传感器所感知到。所以本申请实施例进行指纹识别所采集的光为不可见光,优先的为红外光。
其中,第一频段的光为特定频段的红外光,通过获取特定频段的红外光来进行光强度的探测,以避免对全频段的红外光进行探测。在一个可能的实施例中,通常指纹传感器的敏感波段是固定的,比如850nm或者940nm。但是采集的光通常是一个范围,不会是单波长,所以第一频段的光在850nm至940nm之间的波段最好。
在本申请实施例中,获取的第一频段的光为特定频段的红外光。通过将接收到的特定频段的红外光转换成电流,得到电流数值。其中,电流数值越大,则表示接收到红外光强度越强,从而指纹传感器20所处的外界环境中的红外光强度越强;反之,电流数值越小,则表示接收到红外光强度越弱,从而指纹传感器20所处的外界环境中的红外光强度越弱。
步骤S503,判断第一频段的光强度是否超过阈值。
具体地,处理器40预先存储有用于检测外界环境中的光强度的阈值。其中,设定的阈值可以为电信号数值、光信号数值等等。设定的阈值类型跟将光强度转换成的信号类型相匹配。
处理器40接收电流数值后,与存储的预定的阈值进行比较。当接收到的电流数值小于预定的阈值时,则表明接收到红外光强度比较弱,指纹传感器20所检测的外界环境中的红 外光不能支撑其进行指纹识别,此时执行步骤S504。当接收到的电流数值大于或等于预定的阈值时,则表明接收到的红外光强度比较强,指纹传感器20所获取的外界环境中的光足以支撑其进行指纹识别,此时执行步骤S505。
步骤S504,当第一频段的光强度小于阈值时,控制至少一个辅助光源提供第二频段的光线。
处理器40控制各个辅助光源发出红外光进行补光过程中,其根据接收到电流数值的大小,来控制各个辅助光源提供的红外光的强度。当接收到电流数值越小,表明外界环境中的红外光强度越弱,则需要补充的红外光越多,此时控制各个辅助光源发出的红外光强度越强。当接收到电流数值较大,表明外界环境中的红外光强度较强,则需要补充的红外光较少,此时控制各个辅助光源发出少量的红外光即可,避免辅助光源所发出红外光的光照强度过大而增加电子设备的功耗。
另外,在各个辅助光源30发出红外光进行补光的过程中,指纹传感器20继续采集红外光,以探测指纹传感器20接收到红外光是否过多,从而保证指纹传感器20不因补光而导致无法进行指纹识别。
其中,辅助光源提供的红外线的第二频段为指纹传感器20进行指纹识别所需要的光中的任意频段。但是,获取的第一频段的光必须在辅助光源提供的红外线的频段之中。
步骤S505,当第一频段的光强度不小于阈值时,控制至少一个辅助光源不提供第二频段的光线。
本申请实施例提供的电子设备,如果处在外界光充足的情况下,此时处理器40控制控制辅助光源不工作,以避免指纹传感器接收到光信号过多而导致无法进行指纹识别,同时有利于降低电子设备的功耗。
步骤S506,指纹传感器进行指纹识别。
指纹传感器20根据其接收的反射光采集手指50的指纹信息,进行指纹识别。
本申请实施例提供的一种指纹识别方法,如果指纹传感器检测外界光不充足的情况下,需要开启辅助光源进行补光,来实现进行指纹识别功能;如果指纹传感器检测外界光充足的情况下,不开启辅助光源进行补光,以避免指纹传感器接收到光信号过多而导致无法进行指纹识别,同时有利于降低电子设备的功耗。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
最后说明的是:以上实施例仅用以说明本申请的技术方案,而对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (7)

  1. 一种指纹识别方法,其特征在于,所述方法由电子设备执行,所述电子设备配置有屏幕、指纹传感器和至少一个辅助光源,且所述指纹传感器和所述至少一个辅助光源位于所述屏幕下方,所述方法包括:
    检测外部环境光中的第一频段的光强度;所述第一频段的光用于所述指纹传感器进行指纹识别;
    当所述第一频段的光强度小于第一阈值时,控制所述至少一个辅助光源提供第二频段的光;
    当所述第一频段的光强度不小于所述第一阈值时,控制所述至少一个辅助光源不提供所述第二频段的光;所述第二频段至少有一部分与所述第一频段的至少一部分重叠。
  2. 根据权利要求1所述的方法,其特征在于,所述检测外部环境光中的第一频段的光强度,包括:
    利用所述指纹传感器或者环境光传感器检测所述第一频段的光强度。
  3. 根据权利要求1-2中任一项所述的方法,其特征在于,所述第一频段的光和所述第二频段的光为不可见光。
  4. 一种电子设备,其特征在于,包括:检测单元、至少一个辅助光源和处理器,
    所述检测单元,用于检测外部环境光中的第一频段的光强度;所述第一频段的光用于所述电子设备的指纹传感器进行指纹识别;
    所述至少一个辅助光源,用于提供第二频段的光;所述第二频段至少有一部分与所述第一频段的至少一部分重叠;
    所述处理器,用于当所述第一频段的光强度小于第一阈值时,控制所述至少一个辅助光源提供所述第二频段的光;以及
    当所述第一频段的光强度不小于所述第一阈值时,控制所述至少一个辅助光源不提供所述第二频段的光;其中,所述指纹传感器和所述至少一个辅助光源位于所述电子设备的屏幕下方。
  5. 根据权利要求4所述的电子设备,其特征在于,所述检测单元为所述指纹传感器或者环境光传感器。
  6. 根据权利要求4-5中任一项所述的电子设备,其特征在于,所述第一频段的光和所述第二频段的光为不可见光。
  7. 一种电子设备,其特征在于,包括:指纹传感器、屏幕、至少一个红外光源和处理器,
    所述指纹传感器,用于利用第一频段的红外光进行指纹识别,以及检测外部环境光中的所述第一频段的红外光强度;
    所述至少一个红外光源,用于提供第二频段的红外光;所述第二频段至少有一部分与所述第一频段的至少一部分重叠;
    所述处理器,用于当所述第一频段的红外光强度小于第一阈值时,控制所述至少一个红外光源提供所述第二频段的红外光;以及
    当所述第一频段的红外光强度不小于所述第一阈值时,控制所述至少一个红外光源不提供所述第二频段的红外光;其中,所述指纹传感器和所述辅助光源位于所述屏幕下方。
PCT/CN2020/127756 2019-11-13 2020-11-10 一种指纹识别方法和电子设备 WO2021093721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911106018.9A CN112800808A (zh) 2019-11-13 2019-11-13 一种指纹识别方法和电子设备
CN201911106018.9 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021093721A1 true WO2021093721A1 (zh) 2021-05-20

Family

ID=75803096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127756 WO2021093721A1 (zh) 2019-11-13 2020-11-10 一种指纹识别方法和电子设备

Country Status (2)

Country Link
CN (1) CN112800808A (zh)
WO (1) WO2021093721A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116209944A (zh) * 2020-07-23 2023-06-02 3M创新有限公司 具有光学传感器模块的电子设备
WO2023023953A1 (zh) * 2021-08-24 2023-03-02 京东方科技集团股份有限公司 显示基板、显示装置及指纹识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107220592A (zh) * 2017-05-03 2017-09-29 广东欧珀移动通信有限公司 一种光学指纹采集方法及相关产品
US20180082101A1 (en) * 2016-09-17 2018-03-22 Shenzhen GOODIX Technology Co., Ltd. Fingerprint acquisition apparatus and method, terminal device, and method for controlling a screen to be on or off
CN107918768A (zh) * 2017-11-28 2018-04-17 广东欧珀移动通信有限公司 光学指纹识别方法、装置及电子设备
CN108833716A (zh) * 2018-06-29 2018-11-16 北京小米移动软件有限公司 光照强度确定方法及装置
CN110210353A (zh) * 2019-05-23 2019-09-06 上海思立微电子科技有限公司 光学指纹识别装置、电子设备、补光方法及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180082101A1 (en) * 2016-09-17 2018-03-22 Shenzhen GOODIX Technology Co., Ltd. Fingerprint acquisition apparatus and method, terminal device, and method for controlling a screen to be on or off
CN107220592A (zh) * 2017-05-03 2017-09-29 广东欧珀移动通信有限公司 一种光学指纹采集方法及相关产品
CN107918768A (zh) * 2017-11-28 2018-04-17 广东欧珀移动通信有限公司 光学指纹识别方法、装置及电子设备
CN108833716A (zh) * 2018-06-29 2018-11-16 北京小米移动软件有限公司 光照强度确定方法及装置
CN110210353A (zh) * 2019-05-23 2019-09-06 上海思立微电子科技有限公司 光学指纹识别装置、电子设备、补光方法及存储介质

Also Published As

Publication number Publication date
CN112800808A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
KR102457710B1 (ko) 디스플레이 하의 광학적 지문 센서
US20200293740A1 (en) Optical image capturing unit, optical image capturing system and electronic device
WO2018024099A1 (zh) 指纹识别显示装置
US9589170B2 (en) Information detection and display apparatus, and detecting method and displaying method thereof
WO2017206547A1 (zh) 触控显示面板、柔性显示面板以及显示装置
CN106934379B (zh) 一种指纹识别装置及指纹识别方法、触控显示装置
WO2018059060A1 (zh) 触控面板及显示装置
CN109993144B (zh) 光学指纹识别组件及电子设备
CN106056099A (zh) 一种指纹识别显示面板及显示装置
US20180032778A1 (en) Display with a touch sensor
CN206058222U (zh) 一种指纹识别显示装置
WO2021093721A1 (zh) 一种指纹识别方法和电子设备
US10558838B2 (en) Optimized scan sequence for biometric sensor
CN109633959A (zh) 可实现屏内指纹识别的显示装置
US20210117644A1 (en) Optical sensing systems and devices including apertures supplanting photodiodes for increased light throughput
US20210012081A1 (en) Electronic device panel, photoelectric processing unit, electronic device, and processing method for electronic device
WO2020220219A1 (zh) 生物特征识别装置、方法和电子设备
WO2018188670A1 (zh) 一种检测装置及终端设备
TWI759662B (zh) 螢幕下圖像獲取結構及電子設備
WO2020073166A1 (zh) 指纹识别方法、装置和终端设备
WO2021249380A1 (zh) 指纹识别组件和显示基板
CN111626214A (zh) 屏下指纹识别装置及系统、指纹识别方法和电子装置
US12067917B2 (en) Display device and method for driving the same
US11417141B2 (en) In-screen fingerprint identification apparatus and electronic device
CN211087274U (zh) 指纹检测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888149

Country of ref document: EP

Kind code of ref document: A1