WO2021093660A1 - 波长转换元件及其制备方法、激光荧光光源 - Google Patents

波长转换元件及其制备方法、激光荧光光源 Download PDF

Info

Publication number
WO2021093660A1
WO2021093660A1 PCT/CN2020/126555 CN2020126555W WO2021093660A1 WO 2021093660 A1 WO2021093660 A1 WO 2021093660A1 CN 2020126555 W CN2020126555 W CN 2020126555W WO 2021093660 A1 WO2021093660 A1 WO 2021093660A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion element
wavelength conversion
layer
filter layer
fluorescent
Prior art date
Application number
PCT/CN2020/126555
Other languages
English (en)
French (fr)
Inventor
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021093660A1 publication Critical patent/WO2021093660A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the invention relates to the technical field of light sources, in particular to a wavelength conversion element and a preparation method thereof, and a laser fluorescent light source.
  • Laser fluorescent light source refers to a mixed laser and fluorescent light source formed by laser excitation of fluorescent materials. Compared with projection display light sources using traditional high-brightness bulb light sources such as ultra-high definition, laser fluorescent light sources can achieve the advantages of long life, high efficiency, and pollution-free. ; Compared with the LED light source, the laser fluorescent light source has the advantages of high brightness; compared with the pure laser light source, the laser fluorescent light source does not have the speckle problem, and the cost is lower. The advantages of laser fluorescent light sources make it widely used in projection display systems. Currently commonly used laser fluorescent light sources can be divided into reflective laser fluorescent light sources and transmissive laser fluorescent light sources. Figure 1 shows a schematic diagram of a currently commonly used see-through laser fluorescent light source.
  • the laser light with the first wavelength distribution emitted by the laser 1 is incident on the fluorescent sheet 3 through the dichroic sheet 2 and is converted into the light with the second wavelength distribution by the fluorescent sheet 3,
  • the fluorescence of the second wavelength distribution usually has a wider wavelength distribution range, and the filter 4 needs to be used to filter the light to obtain the narrow-band third wavelength distribution of the emitted light.
  • interference-type filters are usually used, which is costly, and the filter performance will be affected by the angle of incident light; at the same time, the use of interference-type filters usually requires air between the filter 4 and the phosphor 3 Gap.
  • the fluorescent sheet 3 In the laser fluorescent light source, the fluorescent sheet 3 generates a lot of heat during the wavelength conversion process, and the air gap between the filter 4 and the fluorescent sheet 3 prevents the heat from being quickly discharged, and a large amount of heat is concentrated on the fluorescent sheet 3. The vicinity seriously affects the luminous performance and lifespan of the light source.
  • the first aspect of the present invention provides a wavelength conversion element, including:
  • the fluorescent layer is used to convert the excitation light of the first wavelength distribution into the received laser light of the second wavelength distribution
  • the filter layer is attached to the fluorescent layer and is used to filter the received laser light to obtain a narrow-band third wavelength distribution of emitted light, and the filter layer contains colored glass powder.
  • Another second aspect of the present invention provides a laser fluorescent light source, including:
  • the excitation light source is used to emit laser light with the first wavelength distribution
  • the above-mentioned wavelength conversion element is used to convert the excitation light into the received laser light of the second wavelength distribution, and filter the received laser light to obtain the narrow-band emission light of the third wavelength distribution;
  • the dichroic plate is located between the excitation light source and the wavelength conversion element.
  • a third aspect of the present invention provides a laser fluorescent light source, including:
  • the fluorescent layer is a fluorescent ceramic layer
  • the wavelength conversion element further includes a dichroic film
  • the dichroic film is directly formed on the side of the fluorescent layer away from the filter layer And located on the side of the wavelength conversion element facing the excitation light source.
  • the fourth aspect of the present invention provides a manufacturing method applicable to the above-mentioned wavelength conversion element, including the following steps:
  • the filter layer in the wavelength conversion element provided by the present invention contains absorbing colored glass powder, and at the same time, the fluorescent layer and the filter layer are attached to each other, and the filter layer containing colored glass powder has better thermal conductivity than air Heat dissipation performance, thereby avoiding the heat accumulation phenomenon caused by the air gap between the fluorescent layer and the filter layer in the traditional laser fluorescent light source.
  • the adhesion of the filter layer and the fluorescent layer is also beneficial to improve the light extraction efficiency of the emitted light ;
  • the use of colored glass as an effective filter material for the filter layer is conducive to cost savings.
  • Fig. 1 is a schematic diagram of a conventional see-through laser fluorescent light source.
  • FIG. 2 is a schematic structural diagram of a wavelength conversion element provided by the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of a laser fluorescent light source provided by the first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a wavelength conversion element provided by a third embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of a laser fluorescent light source provided by a third embodiment of the present invention.
  • Laser fluorescent light source 40, 50
  • Dichroic film 210 Dichroic film 210
  • the schematic diagram of the structure of the wavelength conversion element 11 according to this embodiment is shown in FIG. 2.
  • the wavelength conversion element 11 includes a fluorescent layer 111 and a filter layer 112, wherein the fluorescent layer 111 includes a first matrix and a phosphor, wherein the first matrix may include At least one of silica gel, glass and ceramic; the filter layer 112 includes a second matrix and colored glass powder, and the second matrix may include at least one of silica gel and glass.
  • the thermal expansion coefficients of the first substrate and the second substrate should be matched to avoid displacement or fracture of the wavelength conversion element 11 due to heat accumulation.
  • the filter layer 112 and the fluorescent layer 111 are closely attached to each other, and there is no air gap.
  • the fluorescent layer 111 is a silica gel encapsulated phosphor structure
  • the filter layer 112 is a silica gel encapsulated colored glass powder structure.
  • the silica gel in the fluorescent layer 111 and the silica gel in the filter layer 112 may be the same type of silica gel or different types of silica gel. When different types of silica gel are used, the thermal expansion coefficients of the two silica gels are close.
  • the refractive index of the silica gel used for the filter layer 112 is lower than the refractive index of the silica gel used for the fluorescent layer 111, which can reduce the total emission of light from the fluorescent layer 111 into the filter layer 112, so that more light can be transmitted into the filter layer. Therefore, the light extraction efficiency of the light emitted by the filter layer 112 can be improved.
  • the phosphor layer 111 is used to convert the excitation light of the first wavelength distribution into the laser light (fluorescence) of the second wavelength distribution.
  • the phosphor may be a phosphor known in the art, such as blue powder, green powder, yellow powder or red powder. And so on, the specific phosphor material can be selected according to actual needs.
  • the filter layer 112 is used to filter the light to obtain the narrow-band third wavelength distribution of the emitted light.
  • the colored glass powder in the filter layer 112 is used as an absorptive filter material, and includes a metal compound (generally a metal oxide) that can selectively absorb light incident on the filter layer 112.
  • the type of the metal compound can be Choose according to the band that needs to be filtered out in the actual situation, yes.
  • the phosphor layer 111 of this embodiment is a silica gel encapsulated phosphor structure, which can be formed by sintering and curing a slurry mainly composed of phosphor and a silica gel precursor;
  • the filter layer 112 is a silica gel encapsulated colored glass powder structure, which can pass through A slurry composed of colored glass powder and silica gel precursor is solidified and formed.
  • the manufacturing method of the wavelength conversion element 11 according to this embodiment is illustrated as follows:
  • Preparation of phosphor layer and filter layer slurry select a suitable commercial phosphor, and mix an appropriate amount of commercial phosphor and silica gel precursor uniformly to obtain a phosphor layer slurry. Select the appropriate colored glass powder, mix the appropriate amount of colored glass powder and the silica gel precursor uniformly to obtain the filter layer slurry.
  • the silica gel precursor used in the phosphor layer slurry and the silica gel precursor used in the filter layer may be the same or different.
  • the fluorescent layer 111 and the filter layer 112 can be cured by integral molding or separately molded and cured.
  • Integrated molding curing requires that the curing temperature of the phosphor layer slurry and the filter layer slurry be similar to ensure that the phosphor layer and the filter layer can be cured at the same time without damage at an appropriate temperature.
  • the specific process of integrated molding and curing is as follows: coating the phosphor layer slurry of appropriate thickness on the substrate 110 by the knife coating method, and then coating the filter layer slurry of appropriate thickness on the phosphor layer by the same method, and finally The two-layer structure of the phosphor layer slurry and the filter layer slurry on the substrate 110 is cured at an appropriate temperature, thereby obtaining a wavelength conversion element in which the phosphor layer and the filter layer are in direct contact.
  • the separate molding and curing process first use a knife coating method to coat the phosphor layer slurry with a proper thickness on the substrate 110, and cure it at a proper temperature to obtain the phosphor layer 111.
  • the same method is used to coat the phosphor layer 111 with a filter of a proper thickness.
  • the optical layer slurry is then cured to obtain the wavelength conversion element 11 in which the fluorescent layer 111 and the filter layer 112 are in direct contact.
  • FIG. 3 A schematic structural diagram of a laser fluorescent light source 40 including the wavelength conversion element 11 according to this embodiment is shown in FIG. 3.
  • the laser fluorescent light source 40 includes an excitation light source 10, a wavelength conversion element 11, and a dichroic plate 12.
  • the excitation light source 10 is used to emit excitation light with a first wavelength distribution, such as a laser, and the dichroic plate 12 is used to almost completely transmit light of a certain wavelength and almost completely reflect light of other wavelengths.
  • the dichroic plate 12 is located between the excitation light source 10 and the wavelength conversion element 11, and the fluorescent layer 111 is located on the side of the wavelength conversion element 11 facing the dichroic plate 12, that is, the excitation light emitted by the excitation light source 10 passes through first
  • the dichroic plate 12 then reaches the wavelength conversion element 11, and the dichroic plate 12 can transmit the excitation light of the first wavelength distribution, and cause the incident light to be converted by the fluorescent layer 111 to be partially reflected by the laser light and enter the filter layer 112.
  • the laser fluorescent light source 40 takes the laser fluorescent light source 40 as a green laser fluorescent light source as an example to illustrate the working principle of the laser fluorescent light source 40: wherein the excitation light source 10 is a blue laser and is used to emit excitation light with a first wavelength distribution.
  • the excitation The light is a blue laser, and its first wavelength distribution includes 500-700 nm, and the first wavelength distribution may be, for example, 490-710 nm, 485-715 nm, and so on.
  • the dichroic plate 12 is a dichroic plate that transmits blue light and reflects yellow light, can transmit excitation light of the first wavelength distribution, and reflect the light of the second wavelength distribution converted by the fluorescent layer 111;
  • the fluorescent layer 111 in the wavelength conversion element 11 It is a silica gel encapsulated YAG:Ce phosphor structure, which can convert light with a first wavelength distribution into light with a second wavelength distribution of 500nm-700nm;
  • the filter layer 112 in the wavelength conversion element 11 is a silica gel encapsulated colored glass powder structure, wherein The colored glass powder can absorb light of 550 nm to 700 nm in the light of the second wavelength distribution emitted by the fluorescent layer 111.
  • the blue laser light emitted by the excitation light source 10 enters the fluorescent layer 111 of the wavelength conversion element 11 after passing through the dichroic plate 12, and is converted by the wavelength conversion element 11 into light of the second wavelength distribution of 500nm-700nm, and part of the light enters the filter layer 112. After being scattered to the dichroic plate 12, the other part is further reflected into the filter layer 112.
  • the filter layer 112 absorbs light of 550 nm to 700 nm of the light of the second wavelength distribution, and the light of 500 nm to 550 nm of the light of the second wavelength distribution passes through the filter layer 112 and exits, thereby obtaining a narrow band filter of the third wavelength distribution.
  • the refractive index of the filter layer 112 in the preferred wavelength conversion element is lower than the refractive index of the fluorescent layer 111, so as to improve the light extraction efficiency of the fluorescent layer 111.
  • the refractive index of the filter layer 112 in the wavelength conversion element 11 is lower than the refractive index of the fluorescent layer 111, the light extraction efficiency of the fluorescent layer 111 can also be improved.
  • the structure of the wavelength conversion element according to the second embodiment is the same as that of the first embodiment.
  • the fluorescent layer 111 and the filter layer 112 of the wavelength conversion element 11 in this embodiment are both glass structures. That is, in this embodiment, the first matrix of the fluorescent layer 111 and the second matrix of the filter layer 112 are both glass frit.
  • the glass powders in the fluorescent layer 111 and the filter layer 112 may be the same or different. When using different types of glass powders, it is necessary to ensure that the thermal expansion coefficients of the first matrix and the second matrix are close, and the firing temperature is similar. Preferably, the refractive index of the glass powder used for the filter layer 112 is lower than the refractive index of the glass powder used for the fluorescent layer 111, so that the light extraction efficiency of the light emitted by the fluorescent layer 111 can be improved.
  • the glass powder described herein may be a common glass powder in the prior art, and the main component is silicon dioxide and other oxides. It can be understood that the silica gel used in this embodiment can also be replaced with other types of organic carriers, such as epoxy resin.
  • the fluorescent layer 111 is mainly composed of fluorescent powder and glass powder, which can be formed by sintering and solidifying a slurry mainly composed of fluorescent powder and glass powder precursor;
  • the filter layer 112 is mainly composed of colored glass powder and glass powder, and its passage is mainly composed of A slurry composed of colored glass powder and glass powder precursor is formed by sintering and solidification.
  • the wavelength conversion element 11 is prepared by integrated sintering, and the specific steps are as follows:
  • Preparation of phosphor layer and filter layer slurry select a suitable commercial phosphor, mix an appropriate amount of commercial phosphor, glass powder, and organic carrier to obtain a phosphor-containing glass slurry. Select appropriate colored glass powder, mix an appropriate amount of colored glass powder, glass powder, and organic carrier uniformly to obtain a filter layer slurry.
  • the wavelength conversion element in this embodiment has better heat resistance because the phosphor layer and the filter layer both contain glass powder components. And reliability.
  • the wavelength conversion element 21 in this embodiment includes a fluorescent layer 211, a filter layer 212, and a dichroic film. 210.
  • the dichroic film 210 is directly plated on one surface of the fluorescent layer 211 by magnetron sputtering or the like, and the filter layer 212 is combined with the surface of the fluorescent layer 211 on the side facing away from the dichroic film 210.
  • the fluorescent layer 211 is a fluorescent ceramic layer, which is mainly a plate-shaped structure formed by mixing, sintering, and solidifying fluorescent powder, ceramic powder, and organic binder.
  • the filter layer 212 is a glass-encapsulated colored glass powder structure. The composition of the filter layer 212 is the same as the composition of the filter layer 112 in the second embodiment.
  • the specific preparation method of the wavelength conversion element 21 according to this embodiment is as follows:
  • Preparation of the fluorescent layer 211 select a suitable fluorescent ceramic, thin it to a proper thickness, and polish it on one side.
  • Preparation of the dichroic film 210 using magnetron sputtering or the like to plate a dichroic film on the polished surface of the fluorescent ceramic.
  • the material of the dichroic film 210 may be a material known in the art, which will not be repeated here.
  • filter layer 212 select appropriate colored glass powder, mix the appropriate amount of colored glass powder with glass powder and organic carrier uniformly to obtain filter layer slurry, in which the thermal expansion coefficient of the glass powder and the thermal expansion coefficient of the fluorescent ceramic Similar; apply the filter powder slurry on the phosphor layer 211, for example, by knife coating, and dry the filter layer blank; then, sinter it at a suitable temperature to obtain the phosphor layer 211 and the filter layer 212 directly The wavelength conversion element 21 in contact.
  • the organic carrier is a silica gel precursor.
  • the laser fluorescent light source 50 using the wavelength conversion element 21 of this embodiment is shown in FIG. 5, and it includes an excitation light source 20 and a wavelength conversion element 21.
  • the dichroic film 210 is directly plated on the fluorescent layer 211 and forms an integrated wavelength conversion element with the fluorescent layer 211 and the filter layer 212, so there is no need to use additional The dichroic film.
  • the dichroic film 210 is located on the side of the wavelength conversion element 21 facing the excitation light source 20, and the excitation light emitted by the excitation light source 20 first passes through the dichroic film 210 and then enters the fluorescent layer 211.
  • the dichroic film 210 has the same function as the dichroic film 12 in the first and second embodiments.
  • the wavelength conversion element in each of the above embodiments can be used as a transmission type wavelength conversion element or a reflection type wavelength conversion element.
  • the filter layer in the wavelength conversion element in the above embodiments contains absorbing colored glass powder, and at the same time, the fluorescent layer and the filter layer are in direct contact.
  • the filter layer containing colored glass powder has better performance than air. Heat conduction and heat dissipation performance, thereby avoiding the heat accumulation phenomenon caused by the air gap between the fluorescent layer and the filter layer in the traditional laser fluorescent light source.
  • the use of colored glass as the filter layer is effective
  • the filter material is conducive to cost savings.
  • the direct contact between the filter layer and the fluorescent layer is also beneficial to improve the light extraction efficiency of the emitted light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optical Filters (AREA)

Abstract

一种波长转换元件(11),包括荧光层(111),用于将第一波长分布的激发光转换为第二波长分布的受激光;及滤光层(112),贴合于荧光层(111),用于对受激光进行滤光得到窄带的第三波长分布的出射光,滤光层(112)含有有色玻璃粉。荧光层和滤光层相互贴合使得散热性能更好,有利于提高出射光的光提取效率,使用吸收型的有色玻璃作为滤光物质有利于节约成本。

Description

波长转换元件及其制备方法、激光荧光光源 技术领域
本发明涉及光源技术领域,尤其涉及一种波长转换元件及其制备方法、激光荧光光源。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
激光荧光光源是指激光激发荧光材料形成的激光和荧光混合光源,与使用传统的超高清等高亮度灯泡光源的投影显示光源相比,激光荧光光源可实现长寿命、高效率、无污染等优点;与LED光源相比,激光荧光光源具有高亮度等优点;与纯激光光源相比,激光荧光光源不存在散斑问题,且成本较低。激光荧光光源的优点使其被广泛用于投影显示系统。目前常用的激光荧光光源可分为反射式激光荧光光源和透射式激光荧光光源。图1所示为目前常用的透视式激光荧光光源示意图,激光器1发出的第一波长分布的激光经二向色片2入射至荧光片3,被荧光片3转换为第二波长分布的光,第二波长分布的荧光通常具有较宽的波长分布范围,需使用滤光片4对其滤光,得到窄带的第三波长分布的出射光。已有技术中通常使用干涉型滤光片,成本较高,且滤光性能会受到入射光角度的影响;同时,使用干涉型滤光片通常要求滤光片4和荧光片3之间存在空气隙。在该激光荧光光源中,荧光片3在波长转换过程中会产生大量的热量,而滤光片4和荧光片3之间存在的空气隙使得这些热量无法快速导出,热量大量集中于荧光片3附近,严重影响光源的发光性能和寿命。
发明内容
鉴于上述问题,有必要提供一种散热效果良好的波长转换元件。
本发明第一方面提供一种波长转换元件,包括:
荧光层,用于将第一波长分布的激发光转换为第二波长分布的受激光;及
滤光层,贴合于所述荧光层,用于对所述受激光进行滤光得到窄带的第三波长分布的出射光,所述滤光层含有有色玻璃粉。
本发明另第二方面提供一种激光荧光光源,包括:
激发光源,用于发出第一波长分布的激光发;
上述波长转换元件,用于将所述激发光转换为第二波长分布的受激光,并对所述受激光进行滤光得到窄带的第三波长分布的出射光;及
二向色片,位于所述激发光源与所述波长转换元件之间。
本发明第三方面提供一种激光荧光光源,包括:
激发光源,用于发出第一波长分布的激光发;及
如上所述的波长转换元件,所述荧光层为荧光陶瓷层,所述波长转换元件还包括二向色膜,所述二向色膜直接形成在所述荧光层背离所述滤光层一侧的表面上,且位于所述波长转换元件朝向所述激发光源的一侧。
本发明第四方面提供一种可应用于上述波长转换元件的制备方法,包括如下步骤:
将所述荧光粉与所述第一基质的原始材料混合均匀,得到荧光层浆料;
将所述有色玻璃粉与所述第二基质的原始材料混合均匀,得到滤光层浆料;以及
将所述荧光层浆料和所述滤光层浆料进行固化,得到所述波长转换元件。
本发明提供的波长转换元件中的滤光层包含吸收型的有色玻璃粉,同时荧光层和滤光层之间相互贴合,含有有色玻璃粉的滤光层相对于空气来说具有更好导热散热性能,由此避免传统的激光荧光光源中荧光层和滤光层之间存在空气隙引起的热量堆积现象,此外,滤光层与荧光层相互贴合还有利于提高出射光的光提取效率;同时,与传 统的波长转换元件相比,使用有色玻璃作为滤光层的有效滤光物质有利于节约成本。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有的透视式激光荧光光源示意图。
图2为本发明第一实施例提供的波长转换元件的结构示意图。
图3为本发明第一实施例提供的激光荧光光源的结构示意图。
图4为本发明第三实施例提供的波长转换元件的结构示意图。
图5为本发明第三实施例提供的激光荧光光源的结构示意图。
主要元件符号说明
激光器                      1
二向色片                    2、12
荧光片                      3
滤光片                      4
波长转换元件                11、21
衬底                        110
荧光层                      111、211
滤光层                      112、212
激光荧光光源                40、50
激发光源                    10、20
二向色膜                    210
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例一
根据本实施例的波长转换元件11的结构示意图如图2所示,波长转换元件11包括荧光层111和滤光层112,其中荧光层111包括第一基质和荧光粉,其中第一基质可包括硅胶、玻璃和陶瓷中的至少一种;滤光层112包括第二基质和有色玻璃粉,第二基质可包括硅胶、玻璃中的至少一种。考虑到可靠性问题,第一基质和第二基质的热膨胀系数应匹配,以避免波长转换元件11因热量累积出现位移或断层。滤光层112和荧光层111之间紧密贴合,没有空气隙。
本实施例中荧光层111为硅胶封装荧光粉结构,滤光层112为硅胶封装有色玻璃粉结构。荧光层111中的硅胶与滤光层112中的硅胶可以为相同种类的硅胶或不同种类的硅胶,在使用不同种类的硅胶时,只要两种硅胶的热膨胀系数接近即可。优选的滤光层112所选用的硅胶的折射率低于荧光层111所用硅胶的折射率,可减少光线从荧光层111进入滤光层112的全发射,使得更多的光线透射进入滤光层,由此可提高滤光层112出射光的光提取效率。
所述荧光层111用于将第一波长分布的激发光转换为第二波长分布的受激光(荧光),荧光粉可为本领域已知的荧光粉,比如蓝粉,绿粉,黄粉或者红粉等,具体的荧光粉材料可根据实际需要进行选择。
由于第二波长分布的荧光通常具有较宽的波长分布范围,所述滤光层112用于对其滤光,得到窄带的第三波长分布的出射光。滤光层112中的所述有色玻璃粉作为吸收型的滤光物质,包括可对入射至滤光层112的光进行选择性吸收的金属化合物(一般为金属氧化物),金属化合物的种类可根据实际情况中需要滤除的波段进行选择,可以是。
本实施例的荧光层111为硅胶封装荧光粉结构,其可通过主要由荧光粉与硅胶前驱体组成的浆料烧结固化形成;滤光层112为硅胶封装有色玻璃粉结构,其可通过主要由有色玻璃粉与硅胶前驱体组成的浆料固化形成。
根据本实施例的波长转换元件11的制备方法举例说明如下:
(1)荧光层和滤光层浆料制备:选取合适的商用荧光粉,将适量的商用荧光粉和硅胶前驱体混合均匀,得到荧光层浆料。选取合适的有色玻璃粉,将适量的有色玻璃粉与硅胶前驱体混合均匀,得到滤光层浆料。其中荧光层浆料所使用的硅胶前驱体与滤光层所使用的硅胶前驱体可以相同或不同。
(2)成型及固化:本实施例中荧光层111和滤光层112可采用一体化成型固化或单独成型固化。
一体化成型固化要求荧光层浆料和滤光层浆料的固化温度相近,保证在适当的温度下,荧光层和滤光层可同时固化且不发生损坏。一体化成型固化的具体流程为:采用刮涂法在衬底110上涂覆适当厚度的荧光层浆料,之后,采用同样的方法在荧光层上涂覆适当厚度的滤光层浆料,最后将上述衬底110上的荧光层浆料和滤光层浆料双层结构在适当的温度下固化,由此得到荧光层和滤光层直接接触的波长转换元件。
单独成型固化过程中先采用刮涂法在衬底110上涂覆适当厚度的荧光层浆料,在适当温度下固化得到荧光层111,采用同样的方法在荧光层111上涂覆适当厚度的滤光层浆料,之后固化,得到荧光层111和滤光层112直接接触的波长转换元件11。
根据本实施例包含该波长转换元件11的激光荧光光源40的结构示意图如图3所示。激光荧光光源40包括激发光源10、波长转换元 件11及二向色片12。
激发光源10用于发出第一波长分布的激发光,例如激光,二向色片12用于使一定波长的光几乎完全透过,而使另一些波长的光几乎完全反射。本实施例中,二向色片12位于激发光源10与波长转换元件11之间,荧光层111位于波长转换元件11朝向二向色片12的一侧,即激发光源10发出的激发光先经过二向色片12再到达波长转换元件11,二向色片12可使第一波长分布的激发光透过,并使入射的被荧光层111转换得到部分受激光反射进入滤光层112。
以下以该激光荧光光源40为绿光激光荧光光源为例,说明该激光荧光光源40的工作原理:其中激发光源10为蓝激光器,用于发出第一波长分布的激发光,本实施例中激发光为蓝色激光,其第一波长分布包括500-700nm,第一波长分布例如可为490-710nm、485-715nm等。二向色片12为透蓝光反黄光的二向色片,可透过第一波长分布的激发光,反射荧光层111转换得到的第二波长分布的光;波长转换元件11中荧光层111为硅胶封装的YAG:Ce荧光粉结构,可将第一波长分布的光转换为500nm-700nm的第二波长分布的光;波长转换元件11中滤光层112为硅胶封装有色玻璃粉结构,其中有色玻璃粉可吸收荧光层111发出的第二波长分布的光中的550nm-700nm的光。
激发光源10发出的蓝激光经二向色片12之后入射至波长转换元件11的荧光层111,被波长转换元件11转换为500nm-700nm的第二波长分布的光,其中一部分光进入滤光层112,另一部分被散射至二向色片12后,被进一步反射进入滤光层112。滤光层112吸收第二波长分布的光中的550nm-700nm的光,第二波长分布的光中500nm-550nm的光透过滤光层112出射,由此得到第三波长分布的窄带滤光。优选的波长转换元件中滤光层112的折射率低于荧光层111的折射率,以此提高荧光层111的光提取效率。
本实施例的波长转换元件11与已有技术中使用的干涉型滤光片的波长转换元件相比,由于波长转换元件11中的滤光层采用的是吸收型滤光的有色玻璃,滤光性能与入射光的方向无关,且成本较低;同时,滤光层112与荧光层111之间无空气隙,荧光层111产生的热量直接 通过导热散热效果更好的滤光层112进行散热,有利于散热性能的提高;此外,当波长转换元件11中滤光层112的折射率低于荧光层111的折射率时,还可提高荧光层111的光提取效率。
实施例二
请参考图2,根据实施例二的波长转换元件的结构与实施例一相同。区别在于本实施例中波长转换元件11的荧光层111和滤光层112均为玻璃结构。即,本实施例中荧光层111的第一基质和滤光层112的第二基质均为玻璃粉。
荧光层111和滤光层112中的所述玻璃粉可以相同或不同,在使用不同种类的玻璃粉时,需保证第一基质和第二基质的热膨胀系数接近,烧成温度相近。优选的滤光层112所选用玻璃粉的折射率低于荧光层111所用玻璃粉的折射率,由此可提高荧光层111出射光的光提取效率。本文所述的玻璃粉可为现有技术中常见的玻璃粉,主要成分为二氧化硅和其它氧化物。可以理解,本实施例中所用的硅胶还可以替换为其它种类的有机载体,例如环氧树脂。
荧光层111主要由荧光粉、玻璃粉组成,其可通过主要由荧光粉、玻璃粉前驱体组成的浆料烧结固化形成;滤光层112主要由有色玻璃粉、玻璃粉组成,其通过主要由有色玻璃粉与玻璃粉前驱体组成的浆料烧结固化形成。
本实施例中波长转换元件11采用一体烧结制备,具体步骤如下:
(1)荧光层和滤光层浆料制备:选取合适的商用荧光粉,将适量的商用荧光粉和将玻璃粉、有机载体混合均匀,得到含荧光粉的玻璃浆料。选取合适的有色玻璃粉,将适量的有色玻璃粉与玻璃粉、有机载体混合均匀,得到滤光层浆料。
(2)成型及固化:先比如采用刮涂法在衬底110上涂覆适当厚度的荧光层浆料,之后,干燥得到荧光层素坯,比如采用同样的方法在荧光层素坯上涂覆适当厚度的滤光层浆料,干燥后得到荧光层和滤光层直接接触的波长转换元件素坯。之后,在合适的温度下烧结,得到荧光层111和滤光层112直接接触的玻璃结构的波长转换元件11。
与实施例一相比,除了具有实施例一的波长转换元件的有益效果 之外,该实施例中的波长转换元件由于荧光层与滤光层均含有玻璃粉成分,具有更好的耐热性和可靠性。
实施例三
根据实施例三的波长转换元件的结构如图4所示,与实施例一和实施例二的区别在于,本实施例中波长转换元件21包括荧光层211、滤光层212及二向色膜210,二向色膜210直接通过磁控溅射等方式镀覆在荧光层211的一侧表面上,滤光层212与荧光层211背离二向色膜210一侧的表面结合。
本实施例中荧光层211为荧光陶瓷层,其主要由荧光粉、陶瓷粉和有机粘结剂混合烧结固化形成的板状结构。滤光层212为玻璃封装的有色玻璃粉结构。滤光层212的组分与第二实施例中滤光层112的组分相同。
根据本实施例的波长转换元件21的具体制备方法为:
(1)荧光层211制备:选取合适的荧光陶瓷,减薄至适当厚度后,单面抛光。
(2)二向色膜210制备:利用磁控溅射等方式,在所述荧光陶瓷的抛光面上镀二向色膜。二向色膜210的材料可为本领域已知的材料,本文不再赘述。
(3)滤光层212制备:选取合适的有色玻璃粉,将适量的有色玻璃粉与玻璃粉、有机载体混合均匀,得到滤光层浆料,其中玻璃粉的热膨胀系数与荧光陶瓷的热膨胀系数相近;将滤光粉浆料比如通过刮涂的方式涂敷于荧光层211上,干燥后得到滤光层素坯;之后,在合适的温度下烧结,得到荧光层211和滤光层212直接接触的波长转换元件21。所述有机载体为硅胶前驱体。
使用本实施例波长转换元件21的激光荧光光源50如图5,其包括激发光源20和波长转换元件21。与实施例一和二的区别在于,本实施例中二向色膜210直接镀在荧光层211上,和荧光层211及滤光层212组成一体化的波长转换元件,因而不需要再使用额外的二向色片。二向色膜210位于波长转换元件21朝向激发光源20的一侧,激发光源20发出的激发光先经过二向色膜210再入射荧光层211。二向色膜 210与实施例一和实施例二中的二向色片12具有相同的功能。
上述各实施例中的波长转换元件即可用做透射式的波长转换元件,也可用作反射式的波长转换元件。
上述各实施例中的波长转换元件中的滤光层包含吸收型的有色玻璃粉,同时荧光层和滤光层之间直接接触,含有有色玻璃粉的滤光层相对于空气来说具有更好导热散热性能,由此避免传统的激光荧光光源中荧光层和滤光层之间存在空气隙引起的热量堆积现象,同时,与传统的波长转换元件相比,使用有色玻璃作为滤光层的有效滤光物质有利于节约成本。此外,滤光层与荧光层直接接触还有利于提高出射光的光提取效率。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种波长转换元件,其特征在于,包括:
    荧光层,用于将第一波长分布的激发光转换为第二波长分布的受激光;及
    滤光层,贴合于所述荧光层,用于对所述受激光进行滤光得到窄带的第三波长分布的出射光,所述滤光层含有有色玻璃粉。
  2. 如权利要求1所述的波长转换元件,其特征在于,所述荧光层包括第一基质和荧光粉,所述第一基质包括硅胶、玻璃和陶瓷中的至少一种。
  3. 如权利要求1或2所述的波长转换元件,其特征在于,所述滤光层包括还包括第二基质,所述第二基质包括硅胶、玻璃中的至少一种。
  4. 如权利要求3所述的波长转换元件,其特征在于,所述滤光层中的所述第二基质的折射率低于所述荧光层中的所述第一基质的折射率。
  5. 如权利要求4所述的波长转换元件,其特征在于,所述波长转换元件还包括二向色膜,所述二向色膜直接形成在所述荧光层背离所述滤光层一侧的表面上。
  6. 一种激光荧光光源,其特征在于,包括:
    激发光源,用于发出第一波长分布的激发光;
    如权利要求1-4任意一项所述的波长转换元件,用于将所述激发光转换为第二波长分布的受激光,并对所述受激光进行滤光得到窄带的第三波长分布的出射光;及
    二向色片,位于所述激发光源与所述波长转换元件之间。
  7. 一种激光荧光光源,其特征在于,包括:
    激发光源,用于发出第一波长分布的激光发;及
    如权利要求5所述的波长转换元件,所述二向色膜位于所述波长转换元件朝向所述激发光源的一侧。
  8. 一种可应用于权利要求1-5任意一项所述的波长转换元件的制 备方法,其特征在于,包括如下步骤:
    将所述荧光粉与所述第一基质的原始材料混合均匀,得到荧光层浆料,或使用荧光层;将所述有色玻璃粉与所述第二基质的原始材料混合均匀,得到滤光层浆料;以及
    将所述荧光层浆料或所述荧光层与所述滤光层浆料进行固化,得到所述波长转换元件。
  9. 如权利要求8所述的波长转换元件的制备方法,其特征在于,将所述荧光层浆料与所述滤光层浆料进行固化,得到所述波长转换元件,包括如下步骤:
    在衬底上涂覆所述荧光层浆料,固化形成所述荧光层素坯,然后在荧光层素坯上涂覆所述滤光层浆料,固化形成所述滤光层素坯,之后将所述荧光层素坯和所述滤光层素坯固化得到所述波长转换元件;或
    在衬底上涂覆所述荧光层浆料,然后在所述荧光层浆料上涂覆所述滤光层浆料,固化得到所述波长转换元件。
  10. 如权利要求8所述的波长转换元件的制备方法,其特征在于,
    将所述荧光层与所述滤光层浆料进行固化,得到所述波长转换元件,包括如下步骤:
    在所述荧光层上涂覆所述滤光层浆料,固化得到所述波长转换元件。
PCT/CN2020/126555 2019-11-13 2020-11-04 波长转换元件及其制备方法、激光荧光光源 WO2021093660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911109163.2 2019-11-13
CN201911109163.2A CN112799273B (zh) 2019-11-13 2019-11-13 波长转换元件及其制备方法、激光荧光光源

Publications (1)

Publication Number Publication Date
WO2021093660A1 true WO2021093660A1 (zh) 2021-05-20

Family

ID=75803390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126555 WO2021093660A1 (zh) 2019-11-13 2020-11-04 波长转换元件及其制备方法、激光荧光光源

Country Status (2)

Country Link
CN (1) CN112799273B (zh)
WO (1) WO2021093660A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645714A (zh) * 2011-11-09 2012-08-22 深圳市光峰光电技术有限公司 光源系统及其色轮组件
CN102830582A (zh) * 2012-06-04 2012-12-19 深圳市绎立锐光科技开发有限公司 发光装置及其相关投影系统
CN202708991U (zh) * 2012-06-29 2013-01-30 深圳市绎立锐光科技开发有限公司 波长转换装置、发光装置及相关投影系统
CN205679529U (zh) * 2016-06-03 2016-11-09 湖南华南光电科技股份有限公司 一种便携式痕量炸药探测仪
CN108023004A (zh) * 2016-11-02 2018-05-11 日本电气硝子株式会社 波长转换部件、发光器件和波长转换部件的制造方法
JP2018105941A (ja) * 2016-12-22 2018-07-05 スタンレー電気株式会社 発光ホイール
CN108803213A (zh) * 2017-04-27 2018-11-13 中强光电股份有限公司 波长转换滤光模块以及照明系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223445A1 (de) * 1982-06-23 1983-12-29 Maximilian Friedrich Prof. Dr.-Ing. 8000 München Mutzhas Strahlenschutzfilter fuer pflanzen
JP2008010556A (ja) * 2006-06-28 2008-01-17 Stanley Electric Co Ltd Led光源装置およびそれを使用したledバックライト
CN102522295B (zh) * 2011-12-30 2015-01-07 四川虹欧显示器件有限公司 等离子显示屏、等离子显示屏的障壁浆料和含有其的后基板的制作方法
CN104566229B (zh) * 2013-10-15 2016-06-08 深圳市光峰光电技术有限公司 波长转换装置的制造方法
JP6796751B2 (ja) * 2016-09-26 2020-12-09 パナソニックIpマネジメント株式会社 光源装置、及び投写型映像表示装置
CN108469645B (zh) * 2018-04-18 2021-01-26 浙江大学 一种偏振滤光元件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645714A (zh) * 2011-11-09 2012-08-22 深圳市光峰光电技术有限公司 光源系统及其色轮组件
CN102830582A (zh) * 2012-06-04 2012-12-19 深圳市绎立锐光科技开发有限公司 发光装置及其相关投影系统
CN202708991U (zh) * 2012-06-29 2013-01-30 深圳市绎立锐光科技开发有限公司 波长转换装置、发光装置及相关投影系统
CN205679529U (zh) * 2016-06-03 2016-11-09 湖南华南光电科技股份有限公司 一种便携式痕量炸药探测仪
CN108023004A (zh) * 2016-11-02 2018-05-11 日本电气硝子株式会社 波长转换部件、发光器件和波长转换部件的制造方法
JP2018105941A (ja) * 2016-12-22 2018-07-05 スタンレー電気株式会社 発光ホイール
CN108803213A (zh) * 2017-04-27 2018-11-13 中强光电股份有限公司 波长转换滤光模块以及照明系统

Also Published As

Publication number Publication date
CN112799273A (zh) 2021-05-14
CN112799273B (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
CN102709449B (zh) 荧光粉片层、荧光粉色轮及使用该荧光粉片层的光源
US11715818B2 (en) Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element
TWI823976B (zh) 波長轉換元件、製造其之方法、光轉換裝置、及產生白光的方法
CN106206904A (zh) 一种波长转换装置、荧光色轮及发光装置
US20230167357A1 (en) Phosphor wheel with inorganic binder
CN106195925A (zh) 一种波长转换装置、发光装置及投影装置
US20150138643A1 (en) Optical component
US11500278B2 (en) Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element
JP2024052910A (ja) 改良された無機結合剤を伴う光変換デバイス
CN107689554B (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
WO2014026486A1 (zh) 白光led发光装置
WO2021093660A1 (zh) 波长转换元件及其制备方法、激光荧光光源
CN212335103U (zh) 一种光色可调的双层波长转换材料结构
CN114811526A (zh) 波长转换装置及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886348

Country of ref document: EP

Kind code of ref document: A1