WO2021093578A1 - 高动态范围图像曝光控制方法、航拍相机及无人飞行器 - Google Patents

高动态范围图像曝光控制方法、航拍相机及无人飞行器 Download PDF

Info

Publication number
WO2021093578A1
WO2021093578A1 PCT/CN2020/124048 CN2020124048W WO2021093578A1 WO 2021093578 A1 WO2021093578 A1 WO 2021093578A1 CN 2020124048 W CN2020124048 W CN 2020124048W WO 2021093578 A1 WO2021093578 A1 WO 2021093578A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
gain
dynamic range
exposure control
high dynamic
Prior art date
Application number
PCT/CN2020/124048
Other languages
English (en)
French (fr)
Inventor
李昭早
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2021093578A1 publication Critical patent/WO2021093578A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to a high dynamic range image exposure control method, aerial cameras and unmanned aerial vehicles.
  • UAV unmanned aerial vehicles
  • UAV unmanned aerial vehicles
  • PTZ equipped with aerial cameras Through the PTZ equipped with aerial cameras, it can also realize the real-time image transmission and the detection of high-risk areas. It is satellite remote sensing and traditional A powerful supplement to aerial remote sensing.
  • UAVs have broad application prospects in disaster investigation and rescue, aerial surveillance, transmission line inspection, aerial photography, aerial survey and military fields.
  • HDR video is continuous multiple exposures to generate HDR image sequences to form a video.
  • HDR video is similar to ordinary video. In comparison, it can significantly increase the details of the bright and dark areas of the video, while the video image in aerial photography is moving, and the range of light and shadow changes relatively large, and the HDR video processing is not good, and the image brightness will fluctuate.
  • embodiments of the present invention provide a high dynamic range image exposure control method, an aerial camera, and an unmanned aerial vehicle that avoid the phenomenon of image brightness fluctuations in a high dynamic range image.
  • a high dynamic range image exposure control method applied to an unmanned aerial vehicle, the method includes: acquiring the current frame exposure time and current frame gain of the high dynamic range image , The exposure time of the previous frame and the gain of the previous frame;
  • the corresponding exposure control information includes:
  • the UAV is provided with a storage device, and the storage device is preset with a plurality of first preset row numbers and a plurality of first preset multiples;
  • the first preset number of rows is equal to the second preset number of rows
  • the first preset multiple is equal to the second preset multiple.
  • controlling the exposure of the high dynamic range image according to the corresponding exposure control information includes:
  • the exposure of the high dynamic range image is controlled.
  • the exposure control data includes a shutter value, analog gain, and digital gain corresponding to a long exposure, a shutter value, analog gain, and digital gain corresponding to a medium exposure, and a shutter value, analog gain, and digital gain corresponding to a short exposure;
  • the obtaining exposure control data according to the exposure control information includes:
  • the shutter value, analog gain, and digital gain corresponding to the short exposure are obtained.
  • controlling the exposure of the high dynamic range image according to the exposure control data includes:
  • the shutter value, analog gain, and digital gain corresponding to the long exposure control the high Exposure of dynamic range images.
  • the embodiments of the present invention also provide the following technical solutions: a high dynamic range image exposure control method and device.
  • the high dynamic range image exposure control method device includes: an exposure parameter acquisition module for acquiring the current frame exposure time, current frame gain, previous frame exposure time, and previous frame gain of the high dynamic range image;
  • the judging module is configured to generate the corresponding number of lines when the current frame exposure time and the previous frame exposure time meet the preset number of lines; and/or, when the current frame gain and the previous frame gain meet the preset multiples Exposure control information;
  • the control module is configured to control the exposure of the high dynamic range image according to the corresponding exposure control information.
  • the judging module is specifically configured to: when the current frame exposure time is not less than a first preset number of lines and when the previous frame exposure time is less than a second preset number of lines; and/or, when the exposure time of the previous frame is less than the second preset number of lines; When the current frame gain is not less than a first preset multiple and when the previous frame gain is less than a second preset multiple, corresponding exposure control information is generated.
  • an aerial camera the aerial camera includes: at least one processor; and,
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the above-mentioned high dynamic range image exposure control method .
  • an unmanned aerial vehicle includes:
  • An arm connected to the fuselage
  • the power device is arranged on the arm and is used to provide power for the unmanned aerial vehicle to fly;
  • the group can be used to execute the high dynamic range image exposure control method as described above.
  • the method for providing high dynamic range image exposure control can first obtain the current frame exposure time, current frame gain, previous frame exposure time, and previous frame gain of the high dynamic range image, and then When the current frame exposure time and the previous frame exposure time meet the preset number of lines; and/or, when the current frame gain and the previous frame gain meet the preset multiple, corresponding exposure control information is generated, Furthermore, according to the corresponding exposure control information, the exposure of the high dynamic range image is controlled, so as to avoid the phenomenon of image brightness fluctuations.
  • FIG. 1 is a schematic diagram of an application environment of an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a high dynamic range image exposure control method provided by one of the embodiments of the present invention
  • Fig. 3 is a schematic diagram of the flow of S20 in Fig. 2;
  • Fig. 4 is a schematic diagram of the flow of S30 in Fig. 2;
  • FIG. 5 is a block diagram of a structure of a high dynamic range image exposure control method and apparatus provided by one of the embodiments of the present invention.
  • Fig. 6 is a structural block diagram of an aerial camera provided by one of the embodiments of the present invention.
  • Fig. 7 is a structural block diagram of an unmanned aerial vehicle provided by one embodiment of the present invention.
  • the embodiment of the present invention provides a high dynamic range image exposure control method, aerial camera and unmanned aerial vehicle, wherein the high dynamic range image exposure control method applied to the unmanned aerial vehicle first obtains the current frame exposure time of the high dynamic range image , The current frame gain, the previous frame exposure time and the previous frame gain, and then when the current frame exposure time and the previous frame exposure time meet the preset number of lines; and/or, when the current frame gain and the previous frame gain When the gain of the previous frame meets the preset multiple, corresponding exposure control information is generated, and then the exposure of the high dynamic range image is controlled according to the corresponding exposure control information, so as to finally avoid the phenomenon of image brightness fluctuation.
  • the following examples illustrate the application environment of the high dynamic range image exposure control method.
  • FIG. 1 is a schematic diagram of an application environment of an aircraft-free control method provided by an embodiment of the present invention; as shown in FIG. 1, the application scenario includes an unmanned aerial vehicle 10, an infrared wireless network 20, a remote control device 30 and a user 40.
  • the user 40 can use the remote control device 30 to control the UAV 10 through the infrared wireless network.
  • the unmanned aerial vehicle 10 may be an unmanned aerial vehicle driven by any type of power, including but not limited to a rotary-wing unmanned aerial vehicle, a fixed-wing unmanned aerial vehicle, an umbrella-wing unmanned aerial vehicle, a flapping-wing unmanned aerial vehicle, and a helicopter model.
  • the unmanned aerial vehicle 10 may have corresponding volume or power according to actual needs, so as to provide load capacity, flight speed, and flight range that can meet the needs of use.
  • One or more functional modules may be added to the unmanned aerial vehicle 10 to enable the unmanned aerial vehicle 10 to realize corresponding functions.
  • the unmanned aerial vehicle 10 is provided with a battery module, a positioning device, an infrared emitting device, a pan/tilt and an aerial camera, and the aerial camera is mounted on the unmanned aerial vehicle 10 through the pan/tilt for taking pictures and videos. Wait for work.
  • the pan-tilt is used to realize the fixation of the aerial camera, or to adjust the attitude of the aerial camera at will (for example, to change the shooting direction of the aerial camera) and to keep the aerial camera stably in a set attitude.
  • the pan/tilt head 20 includes a base, a motor, and a motor controller.
  • the base is fixedly connected or detachably connected to the unmanned aerial vehicle, and is used to mount the aerial camera on the unmanned aerial vehicle; the motor is installed on the base and connected with the aerial camera,
  • the motor controller is electrically connected with the motor for controlling the motor.
  • the pan/tilt can be a multi-axis pan/tilt. To adapt to it, there are multiple motors, that is, one motor is provided for each axis.
  • multiple motors can drive the aerial camera to rotate, so as to meet the adjustment of different shooting directions of the aerial camera.
  • the motor rotation or using the program to make the motor rotate automatically so as to achieve the role of omnidirectional scanning and monitoring;
  • the rotation of the motor cancels the disturbance of the aerial camera in real time, prevents the aerial camera from shaking, and ensures the stability of the shooting picture.
  • the aerial camera includes a camera housing and a camera connected to the camera housing.
  • a pan/tilt connector is provided on the camera housing for connecting with the pan/tilt.
  • a depth camera is also installed on the camera housing, and the depth camera is connected to the main body.
  • the camera is mounted on the same surface of the camera housing.
  • the depth camera can be installed horizontally, vertically or diagonally on its mounting surface.
  • the battery module After the battery module is connected to the UAV 10, the battery module can provide power for the UAV 10.
  • the positioning device may be a GPS positioning system, and the GPS positioning system is used to obtain real-time geographic location information of the unmanned aerial vehicle.
  • the infrared emission device is used to send infrared access information and receive infrared control instructions issued by the remote control device. For example, when the remote control device issues an infrared control instruction, the infrared emission device receives the infrared control instruction, and then makes The unmanned aerial vehicle 10 controls the activation state of the unmanned aerial vehicle 10 according to the infrared control command. After the battery module is connected to the UAV 10, the infrared emitting device can send the infrared access information obtained from the access information of the battery module to the remote control device 30.
  • the unmanned aerial vehicle 10 includes at least one flight control module, which serves as the control core for the flight and data transmission of the unmanned aerial vehicle 10, and has the ability to monitor, calculate, and manipulate the flight and mission of the unmanned aerial vehicle.
  • the flight control module can also modulate the binary digital signal into an infrared signal in the form of a corresponding light pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the remote control device 30 may be any type of smart device used to establish a communication connection with the UAV 10, such as a mobile phone, a tablet computer, a notebook computer, or other mobile control terminals.
  • the remote control device 30 is equipped with an infrared receiving device for receiving infrared access information and sending infrared control instructions for controlling the unmanned aerial vehicle.
  • the remote control device 30 may be used to receive infrared access information generated by the UAV 10 when the battery module is normally connected to the UAV.
  • the remote control device 30 can also send an infrared control command generated according to the control command of the user 40 to the unmanned aerial vehicle 10 to control the activation state of the unmanned aerial vehicle 10.
  • the remote control device 30 can also be equipped with an image transmission module for controlling positioning images, pan-tilt shooting images, and aiming images return.
  • the image transmission module can also modulate a binary digital signal into an infrared signal in the form of a corresponding optical pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the remote control device 30 may also be equipped with one or more different user 40 interaction devices to collect instructions from the user 40 or display and feedback information to the user 40.
  • buttons, display screens, touch screens, speakers, and remote control joysticks are examples of interactive devices.
  • the remote control device 30 may be equipped with a touch screen, through which the user 40 receives remote control instructions for the UAV 10.
  • the unmanned aerial vehicle 10 and the remote control device 30 can also be integrated with the existing image visual processing technology to further provide more intelligent services.
  • the unmanned aerial vehicle 10 may collect images through a dual-lens camera, and the remote control device 30 may analyze the images, so as to realize the gesture control of the unmanned aerial vehicle 10 by the user 40.
  • FIG. 2 is an embodiment of a method for controlling exposure of a high dynamic range image provided by an embodiment of the present invention. This method can be performed by the unmanned aerial vehicle in FIG. 1. Specifically, referring to Figure 2, the method may include but is not limited to the following steps:
  • the UAV has a built-in image sensor chip, and the image sensor chip can obtain the current frame exposure time, the current frame gain, the previous frame exposure time, and the previous frame gain of the high dynamic range image.
  • the units of the current frame exposure time and the previous frame exposure time are both lines.
  • the current frame gain and the previous frame gain are in multiples, and 1 multiple is 1024.
  • the generated exposure control information is 2 times the exposure ratio .
  • the generated exposure control information is a 16 times exposure ratio.
  • the UAV is provided with a storage device, and the storage device is preset with a plurality of first preset row numbers and a plurality of first preset multiples; the first preset row number and the second preset row The number is equal; the first preset multiple is equal to the second preset multiple.
  • the first preset number of rows can be set as required.
  • the first preset number of rows can be set to 32, 64, 128, 758, 6064, and so on, respectively.
  • the first preset multiple can be set to 1500, 3600, 2048, 4096 respectively in sequence.
  • the storage device may be flash memory, hard disk memory, micro multimedia card memory, card memory (for example, SD or XD memory), random access memory (RAM), static random access memory (SRAM), Readable memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, magnetic disks and optical disks.
  • flash memory for example, SD or XD memory
  • card memory for example, SD or XD memory
  • RAM random access memory
  • SRAM static random access memory
  • ROM Readable memory
  • EEPROM electrically erasable programmable read-only memory
  • PROM programmable read-only memory
  • magnetic memory magnetic disks and optical disks.
  • the exposure control data is obtained according to the exposure control information, and the exposure of the high dynamic range image is controlled according to the exposure control data.
  • the exposure control data includes the shutter value, analog gain and digital gain corresponding to the long exposure, the shutter value, analog gain and digital gain corresponding to the medium exposure and the shutter value, analog gain and digital gain corresponding to the short exposure.
  • the embodiment of the present invention provides a high dynamic range image exposure control method.
  • the method first obtains the current frame exposure time, current frame gain, previous frame exposure time, and previous frame gain of a high dynamic range image, and then The current frame exposure time and the previous frame exposure time meet the preset number of lines; and/or, when the current frame gain and the previous frame gain meet the preset multiple, corresponding exposure control information is generated, and then according to The corresponding exposure control information controls the exposure of the high dynamic range image, and ultimately avoids the phenomenon of image brightness oscillation.
  • S20 includes the following steps:
  • the generated exposure control information is 2 times the exposure ratio .
  • the generated exposure control information is a 4 times exposure ratio.
  • the generated exposure control information is 8 times the exposure ratio .
  • S30 includes the following steps:
  • the exposure control data includes the shutter value, analog gain and digital gain corresponding to the long exposure, the shutter value, analog gain and digital gain corresponding to the medium exposure and the shutter value, analog gain and digital gain corresponding to the short exposure.
  • the shutter value, analog gain, and digital gain corresponding to the long exposure are obtained;
  • the shutter value, analog gain, and digital gain corresponding to the medium exposure are obtained;
  • the exposure control information obtains the shutter value, analog gain, and digital gain corresponding to the short exposure.
  • the generated exposure control information is a 2x exposure ratio
  • the exposure control data obtained according to the exposure control information of the 2x exposure ratio is:
  • Shutter value current frame exposure time x2
  • Shutter value current frame exposure time x1
  • the generated exposure control information is a 4 times exposure ratio
  • the exposure control data obtained according to the exposure control information of the 4 times exposure ratio is:
  • Shutter value current frame exposure time x4
  • Shutter value current frame exposure time x1
  • the generated exposure control information is an 8 times exposure ratio
  • the exposure control data obtained according to the exposure control information of the 8 times exposure ratio is:
  • Shutter value current frame exposure time x8
  • Shutter value current frame exposure time x1
  • S32 Control the exposure of the high dynamic range image according to the exposure control data.
  • the shutter value, analog gain, and digital gain corresponding to the long exposure the shutter value, analog gain, and digital gain corresponding to the medium exposure, and the shutter value, analog gain, and digital gain corresponding to the short exposure, control Exposure of the high dynamic range image.
  • the embodiments of the present application provide a high dynamic range image exposure control method device 50, and the high dynamic range image exposure control method device is applied to an unmanned aerial vehicle.
  • the high dynamic range image exposure control method device 50 includes: an exposure parameter acquisition module 51, a judgment module 52, and a control module 53.
  • the exposure parameter acquisition module 51 is used to acquire the current frame exposure time, the current frame gain, the previous frame exposure time, and the previous frame gain of the high dynamic range image.
  • the judgment module 52 is configured to: when the current frame exposure time and the previous frame exposure time meet a preset number of lines; and/or, when the current frame gain and the previous frame gain meet a preset multiple, Generate corresponding exposure control information.
  • the control module 53 is configured to control the exposure of the high dynamic range image according to the corresponding exposure control information.
  • the determining module 52 is specifically configured to: when the current frame exposure time is not less than a first preset number of lines and when the previous frame exposure time is less than a second preset number of lines; and /Or, when the current frame gain is not less than a first preset multiple and when the previous frame gain is less than a second preset multiple, corresponding exposure control information is generated.
  • the UAV is provided with a storage device, and the storage device is preset with a plurality of first preset row numbers and a plurality of first preset multiples; the first preset row number and the second preset row The number is equal; the first preset multiple is equal to the second preset multiple.
  • control module 53 includes an exposure control data acquisition unit and an exposure control unit;
  • the exposure control data acquisition unit is used to obtain exposure control data according to the exposure control information;
  • the exposure control data includes the shutter value, analog gain, and digital gain corresponding to the long exposure, and the shutter value, analog gain, and analog gain corresponding to the medium exposure.
  • the exposure control data acquisition unit is specifically configured to obtain the shutter value, analog gain, and digital gain corresponding to the long exposure according to the exposure control information; According to the exposure control information, the shutter value, analog gain, and digital gain corresponding to the long exposure are obtained; and according to the exposure control information, the shutter value, analog gain, and digital gain corresponding to the short exposure are obtained.
  • the exposure control unit is used for controlling the exposure of the high dynamic range image according to the exposure control data.
  • the control exposure unit is specifically used for the shutter value, analog gain, and digital gain corresponding to the long exposure, the shutter value, analog gain, and digital gain corresponding to the medium exposure, and the shutter value and analog gain corresponding to the short exposure. And digital gain to control the exposure of the high dynamic range image.
  • FIG. 6 is a schematic structural diagram of an aerial camera provided by an embodiment of the present application.
  • the aerial camera 500 can execute the high dynamic range image exposure control method provided by the above-mentioned corresponding method embodiment, or run the above-mentioned corresponding device embodiment. High dynamic range image exposure control device.
  • the aerial camera 500 includes:
  • One processor 501 is taken as an example in FIG. 6.
  • the processor 501 and the memory 502 may be connected through a bus or in other ways.
  • the connection through a bus is taken as an example.
  • the memory 502 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as the corresponding high dynamic range image exposure control method in the embodiment of this application.
  • Program instructions/modules for example, the exposure parameter acquisition module 51, the judgment module 52, and the control module 53 shown in FIG. 5.
  • the processor 501 executes various functional applications and data processing of the high dynamic range image exposure control device 50 by running the non-transitory software programs, instructions, and modules stored in the memory 502, that is, realizes any of the above-mentioned corresponding method embodiments The described high dynamic range image exposure control method.
  • the memory 502 may include a storage program area and a storage data area, where the storage program area may store an operating system and an application program required by at least one function; the storage data area may store a program created based on the use of the high dynamic range image exposure control device 50 Data etc.
  • the memory 502 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 502 may optionally include a memory remotely provided with respect to the processor 501, and these remote memories may be connected to the aerial camera 500 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 502, and when executed by the one or more processors 501, the high dynamic range image exposure control method in the above corresponding method embodiment is executed.
  • the aerial camera 500 can execute the high dynamic range image exposure control method in the above-mentioned corresponding method embodiment, and has the corresponding functional modules and beneficial effects of the execution method.
  • the high dynamic range image exposure control method in the corresponding method embodiment above.
  • FIG. 7 is a schematic structural diagram of an unmanned aerial vehicle 10 provided by an embodiment of the present application.
  • the unmanned aerial vehicle 10 may be any type of unmanned vehicle, capable of performing the high dynamic range image exposure control provided by the above corresponding method embodiment. Method, or, run the high dynamic range image exposure control method device 50 provided by the above corresponding device embodiment.
  • the unmanned aerial vehicle includes: a fuselage, an arm, a power unit, an infrared transmitting device, a flight control module 110, a memory 120, and a communication module 130.
  • the arm is connected to the fuselage;
  • the power device is provided on the arm for providing flight power to the unmanned aerial vehicle;
  • the infrared emitting device is provided in the fuselage for Send infrared access information and receive infrared control instructions from the remote control device;
  • the flight control module has the ability to monitor, calculate and manipulate the flight and mission of the unmanned aerial vehicle, and includes a set of equipment for controlling the launch and recovery of the unmanned aerial vehicle.
  • the flight control module can also modulate the binary digital signal into an infrared signal in the form of a corresponding light pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the flight control module 110, the memory 120, and the communication module 130 establish a communication connection between any two through a bus.
  • the flight control module 110 can be of any type and has one or more processing cores. It can perform single-threaded or multi-threaded operations, and is used to parse instructions to perform operations such as obtaining data, performing logical operation functions, and issuing operation processing results.
  • the memory 120 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as those corresponding to the high dynamic range image exposure control method in the embodiment of the present invention.
  • Program instructions/modules for example, the exposure parameter acquisition module 51, the judgment module 52, and the control module 53 shown in FIG. 5.
  • the flight control module 110 executes various functional applications and data processing of the high dynamic range image exposure control method device 50 by running non-transient software programs, instructions, and modules stored in the memory 120, that is, to implement any of the above methods.
  • the example of high dynamic range image exposure control method is not limited to the exposure control method.
  • the memory 120 may include a storage program area and a storage data area, where the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the high dynamic range image exposure control method device 50 Data, etc.
  • the memory 120 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the storage 120 may optionally include storage remotely provided with respect to the flight control module 110, and these remote storages may be connected to the UAV 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 120 stores instructions that can be executed by the at least one flight control module 110; the at least one flight control module 110 is used to execute the instructions to implement the high dynamic range image exposure control in any of the foregoing method embodiments
  • the method for example, executes the above-described method steps 10, 20, 30, 40, etc., to realize the functions of the modules 51-54 in FIG. 5.
  • the communication module 130 is a functional module used to establish a communication connection and provide a physical channel.
  • the communication module 130 may be any type of wireless or wired communication module 130, including but not limited to a WiFi module or a Bluetooth module.
  • the embodiment of the present invention also provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are controlled by one or more flight controllers.
  • the execution of the module 110 for example, executed by one of the flight control modules 110 in FIG. 7, can make the above one or more flight control modules 110 execute the high dynamic range image exposure control method in any of the above method embodiments, for example, execute the above The described method steps 10, 20, 30, etc. realize the functions of the modules 51-54 in FIG. 5.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by instructing relevant hardware by a computer program in a computer program product.
  • the computer program can be stored in a non-transitory computer.
  • the computer program includes program instructions, and when the program instructions are executed by a related device, the related device can execute the flow of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • the above-mentioned products can execute the high dynamic range image exposure control method provided by the embodiments of the present invention, and have the corresponding functional modules and beneficial effects for executing the high dynamic range image exposure control method.
  • the high dynamic range image exposure control method provided by the embodiment of the present invention.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

一种高动态范围图像曝光控制方法、航拍相机及无人飞行器,应用于无人飞行器的高动态范围图像曝光控制方法包括:首先获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益,然后当当前帧曝光时间和上一帧曝光时间满足预设行数;且/或,当当前帧增益和上一帧增益满足预设倍数,生成相应的曝光控制信息,进而根据相应的曝光控制信息,控制高动态范围图像的曝光,最终避免图像亮度震荡现象的出现。

Description

高动态范围图像曝光控制方法、航拍相机及无人飞行器
本申请要求于2019年11月14日提交中国专利局、申请号为201911113131.X、申请名称为“高动态范围图像曝光控制方法、航拍相机及无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及无人飞行器技术领域,尤其涉及一种高动态范围图像曝光控制方法、航拍相机及无人飞行器。
【背景技术】
目前飞行器,例如,无人飞行器(Unmanned rial Vehicle,UAV),也称无人机得到了越来越广泛的应用。无人机具有体积小、重量轻、机动灵活、反应快速、无人驾驶、操作要求低的优点,通过云台搭载航拍相机,还可以实现影像实时传输、高危地区探测功能,是卫星遥感与传统航空遥感的有力补充。近年来,无人机在灾情调查和救援、空中监控、输电线路巡检、航拍、航测以及军事领域有着广泛的应用前景
在航拍过程中,采用航拍摄影机来获取高动态范围图像(HDR),高动态范围图像就是多次曝光生成一幅图像,HDR视频就是持续多次曝光产生HDR图像序列形成视频,HDR视频跟普通视频相比,能够显著增加视频亮区和暗区的细节,而航拍中视频图像是运动的,且光影范围变化比较大,HDR视频处理不好,就会产生图像亮度震荡的情况。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种避免高动态范围图像出现图像亮度震荡现象的高动态范围图像曝光控制方法、航拍相机及无人飞行器。
为解决上述技术问题,本发明实施例提供以下技术方案:一种高动态范 围图像曝光控制方法,应用于无人飞行器,所述方法包括:获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益;
当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息;根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光。可选地,
可选地,所述当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息,包括:
当所述当前帧曝光时间不小于第一预设行数且当所述上一帧曝光时间小于第二预设行数时;且/或,
当所述当前帧增益不小于第一预设倍数且当所述上一帧增益小于第二预设倍数时,生成相应的曝光控制信息。
可选地,所述无人飞行器设置有存储装置,所述存储装置预设有多个第一预设行数和多个第一预设倍数;
所述第一预设行数与第二预设行数相等;
所述第一预设倍数与第二预设倍数相等。
可选地,所述根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光,包括:
根据所述曝光控制信息,得到曝光控制数据;
根据所述曝光控制数据,控制所述高动态范围图像的曝光。
可选地,所述曝光控制数据包括长曝光对应的快门值、模拟增益及数字增益,中曝光对应的快门值、模拟增益及数字增益和短曝光对应的快门值、模拟增益及数字增益;
所述根据所述曝光控制信息,得到曝光控制数据,包括:
根据所述曝光控制信息,得到所述长曝光对应的快门值、模拟增益及数字增益;
根据所述曝光控制信息,得到所述中曝光对应的快门值、模拟增益及数字增益;
根据所述曝光控制信息,得到所述短曝光对应的快门值、模拟增益及数字增益。
可选地,所述根据所述曝光控制数据,控制所述高动态范围图像的曝光,包括:
根据所述长曝光对应的快门值、模拟增益及数字增益,所述中曝光对应的快门值、模拟增益及数字增益和所述短曝光对应的快门值、模拟增益及数字增益,控制所述高动态范围图像的曝光。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种高动态范围图像曝光控制方法装置。所述高动态范围图像曝光控制方法装置包括:曝光参数获取模块,用于获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益;
判断模块,用于当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息;
控制模块,用于根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光。
可选地,所述判断模块具体用于当所述当前帧曝光时间不小于第一预设行数且当所述上一帧曝光时间小于第二预设行数时;且/或,当所述当前帧增益不小于第一预设倍数且当所述上一帧增益小于第二预设倍数时,生成相应的曝光控制信息。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种航拍相机,所述航拍相机包括:至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的高动态范围图像曝光控制方法。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人飞行器。所述无人飞行器包括:
机身;
机臂,与所述机身相连;
动力装置,设于所述机臂,用于给所述无人飞行器提供飞行的动力;
飞控模组;以及
与所述飞控模组通信连接的存储器;其中,所述存储器存储有可被所述飞控模组执行的指令,所述指令被所述飞控模组执行,以使所述飞控模组能够用于执行如上所述的高动态范围图像曝光控制方法。
与现有技术相比较,本发明实施例的提供高动态范围图像曝光控制方法可以通过首先获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益,然后当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息,进而根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光,最终避免图像亮度震荡现象的出现。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例的应用环境示意图;
图2为本发明其中一实施例提供的高动态范围图像曝光控制方法的流程示意图;
图3是图2中S20的流程示意图;
图4是图2中S30的流程示意图;
图5本发明其中一实施例提供的高动态范围图像曝光控制方法装置的结构框图;
图6本发明其中一实施例提供的航拍相机的结构框图;
图7本发明其中一实施例提供的无人飞行器的结构框图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、 “底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明实施例提供了一种高动态范围图像曝光控制方法、航拍相机及无人飞行器,其中,应用于无人飞行器的高动态范围图像曝光控制方法通过首先获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益,然后当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息,进而根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光,最终避免图像亮度震荡现象的出现。
以下举例说明所述高动态范围图像曝光控制方法的应用环境。
图1是本发明实施例提供的无飞行器的控制方法的应用环境的示意图;如图1所示,所述应用场景包括无人飞行器10、红外无线网路20、遥控装置30及用户40。用户40可利用遥控装置30通过所述红外无线网络控制无人飞行器10。
无人飞行器10可以是以任何类型的动力驱动的无人飞行载具,包括但不限于旋翼无人飞行器、固定翼无人飞行器、伞翼无人飞行器、扑翼无人飞行器以及直升机模型等。
该无人飞行器10可以根据实际情况的需要,具备相应的体积或者动力, 从而提供能够满足使用需要的载重能力、飞行速度以及飞行续航里程等。无人飞行器10上还可以添加有一种或者多种功能模块,令无人飞行器10能够实现相应的功能。
例如,在本实施例中,该无人飞行器10设置有电池模组、定位装置及红外发射装置、云台和航拍相机,航拍相机通过云台搭载在无人飞行器10上,以进行拍照、录像等工作。
云台用于实现航拍相机的固定、或用于随意调节航拍相机的姿态(例如,改变航拍相机的拍摄方向)以及使航拍相机稳定保持在设定的姿态上。云台20包括基座、电机和电机控制器,基座与无人飞行器固定连接或可拆卸连接,用于将航拍相机搭载在无人飞行器上;电机安装于基座,并与航拍相机连接,电机控制器与电机电连接,用于控制电机。云台可以为多轴云台,与之适应的,电机为多个,也即每个轴设置有一个电机。
多个电机一方面可带动航拍相机转动,从而满足航拍相机的不同拍摄方向的调节,通过手动远程控制电机旋转或利用程序让电机自动旋转,从而达到全方位扫描监控的作用;另一方面,在无人飞行器进行航拍的过程中,通过电机的转动实时抵消航拍相机受到的扰动,防止航拍相机抖动,保证拍摄画面的稳定。
航拍相机包括相机壳体和与相机壳体相连的摄像机,在相机壳体上设置有云台连接件,用于与云台连接,在相机壳体上还安装有深度相机,且深度相机与主摄像机安装在相机壳体的同一面上。深度相机可以横向、纵向或斜向安装在其安装面上,在云台电机转动时,深度相机与摄像机同步运动,始终朝向同一方向。
当所述电池模组接入所述无人飞行器10后,所述电池模组可为所述无人飞行器10提供电源。
所述定位装置可为GPS定位系统,所述GPS定位系统用于获取无人飞行器的实时的地理位置信息。
所述红外发射装置用于发送红外接入信息并接收遥控装置发出的红外控 制指令,例如,当所述遥控装置发出红外控制指令时,所述红外发射装置接收到所述红外控制指令,进而使所述无人飞行器10根据所述红外控制指令控制所述无人飞行器10的启动状态。当所述电池模组接入所述无人飞行器10后,所述红外发射装置可将根据由电池模组的接入信息得到的红外接入信息,发送至所述遥控装置30。
无人飞行器10上包含至少一个飞控模组,作为无人飞行器10飞行和数据传输等的控制核心,具有对无人飞行器飞行和任务进行监控、运算和操纵的能力,在本实施例中,所述飞控模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。遥控装置30可以是任何类型,用以与无人飞行器10建立通信连接的智能装置,例如手机、平板电脑、笔记本电脑或者其他移动操控终端等。
该遥控装置30装配有红外接收装置,所述红外接收装置用于接收红外接入信息并发送用于控制无人飞行器的红外控制指令。例如,所述遥控装置30可用于接收所述无人飞行器10当所述电池模组正常接入所述无人飞行器时生成的红外接入信息。所述遥控装置30同时可根据用户40的控制指令生成的红外控制指令发送至所述无人飞行器10,以控制所述无人飞行器10的启动状态。该遥控装置30还可以装配有用于控制定位画面、云台拍摄画面及瞄准画面回传的图传模组。在本实施例中,所述图传模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。
该遥控装置30还可以装配有一种或者多种不同的用户40交互装置,用以采集用户40指令或者向用户40展示和反馈信息。
这些交互装置包括但不限于:按键、显示屏、触摸屏、扬声器以及遥控操作杆。例如,遥控装置30可以装配有触控显示屏,通过该触控显示屏接收用户40对无人飞行器10的遥控指令。
在一些实施例中,无人飞行器10与遥控装置30之间还可以融合现有的图像视觉处理技术,进一步的提供更智能化的服务。例如无人飞行器10可以 通过双光相机采集图像的方式,由遥控装置30对图像进行解析,从而实现用户40对于无人飞行器10的手势控制。
图2为本发明实施例提供的一种高动态范围图像曝光控制方法的实施例。该方法可以由图1中的无人飞行器执行。具体地,请参阅图2,该方法可以包括但不限于如下步骤:
S10、获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益。
具体地,所述无人飞行器内置有图像传感器芯片,所述图像传感器芯片可获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益。
其中,当前帧曝光时间和上一帧曝光时间的单位均为行。当前帧增益和上一帧增益单位为倍数,1倍数即为1024。
S20、当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息。
具体地,当所述当前帧曝光时间不小于第一预设行数且当所述上一帧曝光时间小于第二预设行数时;且/或,当所述当前帧增益不小于第一预设倍数且当所述上一帧增益小于第二预设倍数时,生成相应的曝光控制信息。
举例说明,若第一预设行数和第二预设行数均为32,则当当前帧曝光时间≧32行且上一帧曝光时间<32,则生成的曝光控制信息为2倍曝光比。又例如,若第一预设倍数第二预设倍数均为6064,则当当前帧增益≧2048且上一帧增益<2048,则生成的曝光控制信息为16倍曝光比。
其中,所述无人飞行器设置有存储装置,所述存储装置预设有多个第一预设行数和多个第一预设倍数;所述第一预设行数与第二预设行数相等;所述第一预设倍数与第二预设倍数相等。可以理解的是,第一预设行数可根据需要进行设置,例如,所述第一预设行数可依次分别设置为32、64、128、758、6064等等。第一预设倍数可依次分别设置为1500、3600、2048、4096。
其中,所述所述存储装置可为闪存型存储器、硬盘型存储器、微型多媒体卡型存储器、卡式存储器(例如,SD或XD存储器)、随机存储器(RAM)、 静态随机存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁存储器、磁盘和光盘。
S30、根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光。
具体地,根据所述曝光控制信息,得到曝光控制数据,根据所述曝光控制数据,控制所述高动态范围图像的曝光。
其中,所述曝光控制数据包括长曝光对应的快门值、模拟增益及数字增益,中曝光对应的快门值、模拟增益及数字增益和短曝光对应的快门值、模拟增益及数字增益。
本发明实施例提供了一种高动态范围图像曝光控制方法,所述方法通过首先获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益,然后当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息,进而根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光,最终避免图像亮度震荡现象的出现。
为了更好的当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息,在一些实施例中,请参阅图3,S20包括如下步骤:
S21、当所述当前帧曝光时间不小于第一预设行数且当所述上一帧曝光时间小于第二预设行数时,生成相应的曝光控制信息。
举例说明,若第一预设行数和第二预设行数均为32,则当当前帧曝光时间≧32行且上一帧曝光时间<32,则生成的曝光控制信息为2倍曝光比。例如,若第一预设行数和第二预设行数均为64,则当当前帧曝光时间≧64行且上一帧曝光时间<64,则生成的曝光控制信息为4倍曝光比。又例如,若第一预设行数和第二预设行数均为128,则当当前帧曝光时间≧128行且上一帧曝光时间<128,则生成的曝光控制信息为8倍曝光比。
S22、当所述当前帧增益不小于第一预设倍数且当所述上一帧增益小于第二预设倍数时,生成相应的曝光控制信息。
为了更好的根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光,在一些实施例中,请参阅图4,S30包括如下步骤:
S31:根据所述曝光控制信息,得到曝光控制数据。
其中,所述曝光控制数据包括长曝光对应的快门值、模拟增益及数字增益,中曝光对应的快门值、模拟增益及数字增益和短曝光对应的快门值、模拟增益及数字增益。
具体地,根据所述曝光控制信息,得到所述长曝光对应的快门值、模拟增益及数字增益;根据所述曝光控制信息,得到所述中曝光对应的快门值、模拟增益及数字增益;根据所述曝光控制信息,得到所述短曝光对应的快门值、模拟增益及数字增益。
举例说明,如果当前帧曝光时间≧32行且上一帧曝光时间<32,则生成的曝光控制信息为2倍曝光比,根据所述2倍曝光比的曝光控制信息得到的曝光控制数据为:
长曝光:
快门值=当前帧曝光时间x2
模拟增益=1倍
数字增益=1倍
中曝光:
快门值=当前帧曝光时间x1
模拟增益=1倍
数字增益=1倍
短曝光:
快门值=当前帧曝光时间/2
模拟增益=1倍
数字增益=1倍
如果当前帧曝光时间≧64行且上一帧曝光时间<64,则生成的曝光控制信息为4倍曝光比,根据所述4倍曝光比的曝光控制信息得到的曝光控制数据为:
长曝光:
快门值=当前帧曝光时间x4
模拟增益=1倍
数字增益=1倍
中曝光:
快门值=当前帧曝光时间x1
模拟增益=1倍
数字增益=1倍
短曝光:
快门值=当前帧曝光时间/4
模拟增益=1倍
数字增益=1倍
如果当前帧曝光时间≧128行且上一帧曝光时间<128,则生成的曝光控制信息为8倍曝光比,根据所述8倍曝光比的曝光控制信息得到的曝光控制数据为:
长曝光:
快门值=当前帧曝光时间x8
模拟增益=1倍
数字增益=1倍
中曝光:
快门值=当前帧曝光时间x1
模拟增益=1倍
数字增益=1倍
短曝光:
快门值=当前帧曝光时间/8
模拟增益=1倍
数字增益=1倍
S32:根据所述曝光控制数据,控制所述高动态范围图像的曝光。
具体地,根据所述长曝光对应的快门值、模拟增益及数字增益,所述中曝光对应的快门值、模拟增益及数字增益和所述短曝光对应的快门值、模拟增益及数字增益,控制所述高动态范围图像的曝光。
需要说明的是,在上述各个实施例中,上述各步骤之间并不必然存在一定的先后顺序,本领域普通技术人员,根据本申请实施例的描述可以理解,不同实施例中,上述各步骤可以有不同的执行顺序,亦即,可以并行执行, 亦可以交换执行等等。
作为本申请实施例的另一方面,本申请实施例提供一种高动态范围图像曝光控制方法装置50,所述高动态范围图像曝光控制方法装置应用于无人飞行器。请参阅图5,该高动态范围图像曝光控制方法装置50包括:曝光参数获取模块51、判断模块52、控制模块53。
所述曝光参数获取模块51用于获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益。
所述判断模块52用于当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息。
所述控制模块53用于根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光。
因此,在本实施例中,通过首先获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益,然后当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息,进而根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光,最终避免图像亮度震荡现象的出现。
其中,在一些实施例中,所述判断模块52具体用于当所述当前帧曝光时间不小于第一预设行数且当所述上一帧曝光时间小于第二预设行数时;且/或,当所述当前帧增益不小于第一预设倍数且当所述上一帧增益小于第二预设倍数时,生成相应的曝光控制信息。其中,所述无人飞行器设置有存储装置,所述存储装置预设有多个第一预设行数和多个第一预设倍数;所述第一预设行数与第二预设行数相等;所述第一预设倍数与第二预设倍数相等。
在一些实施例中,所述控制模块53包括曝光控制数据获取单元和控制曝光单元;
所述曝光控制数据获取单元用于根据所述曝光控制信息,得到曝光控制数据;所述曝光控制数据包括长曝光对应的快门值、模拟增益及数字增益,中曝光对应的快门值、模拟增益及数字增益和短曝光对应的快门值、模拟增益及数字增益;所述曝光控制数据获取单元具体用于根据所述曝光控制信息, 得到所述长曝光对应的快门值、模拟增益及数字增益;根据所述曝光控制信息,得到所述长曝光对应的快门值、模拟增益及数字增益;根据所述曝光控制信息,得到所述短曝光对应的快门值、模拟增益及数字增益。
所述控制曝光单元用于根据所述曝光控制数据,控制所述高动态范围图像的曝光。所述控制曝光单元具体用于根据所述长曝光对应的快门值、模拟增益及数字增益,所述中曝光对应的快门值、模拟增益及数字增益和所述短曝光对应的快门值、模拟增益及数字增益,控制所述高动态范围图像的曝光。
图6是本申请实施例提供的一种航拍相机的结构示意图,该航拍相机500能够执行上述相应的方法实施例提供的高动态范围图像曝光控制方法,或者,运行上述相应的装置实施例提供的高动态范围图像曝光控制装置。
具体地,请参阅图6,该航拍相机500包括:
一个或多个处理器501以及与该至少一个处理器501通信连接的存储器502,图6中以一个处理器501为例。
处理器501和存储器502可以通过总线或者其他方式连接,图6中以通过总线连接为例。
存储器502作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本申请实施例中对应的高动态范围图像曝光控制方法对应的程序指令/模块(例如,附图5所示的曝光参数获取模块51、判断模块52、控制模块53)。处理器501通过运行存储在存储器502中的非暂态软件程序、指令以及模块,从而执行高动态范围图像曝光控制装置50的各种功能应用以及数据处理,即实现上述对应的任一方法实施例所述的高动态范围图像曝光控制方法。
存储器502可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据高动态范围图像曝光控制装置50的使用所创建的数据等。此外,存储器502可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器502可选包括相对于处理器501远程设置的存储器,这些远程存储器可以通过网络连接至航拍相机500。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器502中,当被所述一个或者多个处理器501执行时,执行上述对应的方法实施例中的高动态范围图像曝光控制方法。
航拍相机500可执行上述对应的方法实施例中的高动态范围图像曝光控制方法,具备执行方法相应的功能模块和有益效果。未在航拍相机实施例中详尽描述的技术细节,可参见上述对应的方法实施例中的高动态范围图像曝光控制方法。
图7是本申请实施例提供的一种无人飞行器10的结构示意图,该无人飞行器10可以是任意类型的无人载具,能够执行上述相应的方法实施例提供的高动态范围图像曝光控制方法,或者,运行上述相应的装置实施例提供的高动态范围图像曝光控制方法装置50。所述无人飞行器包括:机身、机臂、动力装置、红外发射装置、飞控模组110、存储器120及通信模块130。
所述机臂与所述机身相连;所述动力装置设于所述机臂,用于给所述无人飞行器提供飞行的动力;所述红外发射装置设于所述机身内,用于发送红外接入信息并接收遥控装置发出的红外控制指令;
所述飞控模组具有对无人飞行器飞行和任务进行监控、运算和操纵的能力,包含对无人飞行器发射和回收控制的一组设备。所述飞控模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。
所述飞控模组110、存储器120以及通信模块130之间通过总线的方式,建立任意两者之间的通信连接。
飞控模组110可以为任何类型,具备一个或者多个处理核心的飞控模组110。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的高动态范围图像曝光控制方法对应的程序指令/模块(例如,附图5所示的曝光参数获取模块51、判断模块52、控制模块53)。飞控模组110通过运行存储在存储器120中的非暂态软件程序、指令以及模块,从而执行高动态范围图像曝 光控制方法装置50的各种功能应用以及数据处理,即实现上述任一方法实施例中高动态范围图像曝光控制方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据高动态范围图像曝光控制方法装置50的使用所创建的数据等。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器120可选包括相对于飞控模组110远程设置的存储器,这些远程存储器可以通过网络连接至无人飞行器10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器120存储有可被所述至少一个飞控模组110执行的指令;所述至少一个飞控模组110用于执行所述指令,以实现上述任意方法实施例中高动态范围图像曝光控制方法,例如,执行以上描述的方法步骤10、20、30、40等等,实现图5中的模块51-54的功能。
通信模块130是用于建立通信连接,提供物理信道的功能模块。通信模块130以是任何类型的无线或者有线通信模块130,包括但不限于WiFi模块或者蓝牙模块等。
进一步地,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个飞控模组110执行,例如,被图7中的一个飞控模组110执行,可使得上述一个或多个飞控模组110执行上述任意方法实施例中高动态范围图像曝光控制方法,例如,执行以上描述的方法步骤10、20、30等等,实现图5中的模块51-54的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被相关设备执行时,可使相关设备执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本发明实施例所提供的高动态范围图像曝光控制方法,具备执行高动态范围图像曝光控制方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的高动态范围图像曝光控制方法。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实 施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种高动态范围图像曝光控制方法,应用于无人飞行器,其特征在于,包括:
    获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益;
    当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息;
    根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光。
  2. 根据权利要求1所述的方法,其特征在于,所述当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息,包括:
    当所述当前帧曝光时间不小于第一预设行数且当所述上一帧曝光时间小于第二预设行数时;且/或,
    当所述当前帧增益不小于第一预设倍数且当所述上一帧增益小于第二预设倍数时,生成相应的曝光控制信息。
  3. 根据权利要求2所述的方法,其特征在于,
    所述无人飞行器设置有存储装置,所述存储装置预设有多个第一预设行数和多个第一预设倍数;
    所述第一预设行数与第二预设行数相等;
    所述第一预设倍数与第二预设倍数相等。
  4. 根据权利要求3所述的方法,其特征在于,所述根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光,包括:
    根据所述曝光控制信息,得到曝光控制数据;
    根据所述曝光控制数据,控制所述高动态范围图像的曝光。
  5. 根据权利要求4所述的方法,其特征在于,所述曝光控制数据包括长曝光对应的快门值、模拟增益及数字增益,中曝光对应的快门值、模拟增益及数字增益和短曝光对应的快门值、模拟增益及数字增益;
    所述根据所述曝光控制信息,得到曝光控制数据,包括:
    根据所述曝光控制信息,得到所述长曝光对应的快门值、模拟增益及数 字增益;
    根据所述曝光控制信息,得到所述中曝光对应的快门值、模拟增益及数字增益;
    根据所述曝光控制信息,得到所述短曝光对应的快门值、模拟增益及数字增益。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述曝光控制数据,控制所述高动态范围图像的曝光,包括:
    根据所述长曝光对应的快门值、模拟增益及数字增益,所述中曝光对应的快门值、模拟增益及数字增益和所述短曝光对应的快门值、模拟增益及数字增益,控制所述高动态范围图像的曝光。
  7. 一种高动态范围图像曝光控制方法装置,其特征在于,包括:
    曝光参数获取模块,用于获取高动态范围图像的当前帧曝光时间、当前帧增益、上一帧曝光时间及上一帧增益;
    判断模块,用于当所述当前帧曝光时间和所述上一帧曝光时间满足预设行数;且/或,当所述当前帧增益和所述上一帧增益满足预设倍数,生成相应的曝光控制信息;
    控制模块,用于根据相应的所述曝光控制信息,控制所述高动态范围图像的曝光。
  8. 根据权利要求7的所述的装置,其特征在于,所述判断模块具体用于
    当所述当前帧曝光时间不小于第一预设行数且当所述上一帧曝光时间小于第二预设行数时;且/或,当所述当前帧增益不小于第一预设倍数且当所述上一帧增益小于第二预设倍数时,生成相应的曝光控制信息。
  9. 一种航拍相机,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-6任一项所述的高动态范围图像曝光控制方法。
  10. 一种无人飞行器,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂,用于给所述无人飞行器提供飞行的动力;
    飞控模组;以及
    与所述飞控模组通信连接的存储器;其中,所述存储器存储有可被所述飞控模组执行的指令,所述指令被所述飞控模组执行,以使所述飞控模组能够用于执行如权利要求1-6任一项所述的高动态范围图像曝光控制方法。
PCT/CN2020/124048 2019-11-14 2020-10-27 高动态范围图像曝光控制方法、航拍相机及无人飞行器 WO2021093578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911113131.XA CN110708473B (zh) 2019-11-14 2019-11-14 高动态范围图像曝光控制方法、航拍相机及无人飞行器
CN201911113131.X 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021093578A1 true WO2021093578A1 (zh) 2021-05-20

Family

ID=69206079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124048 WO2021093578A1 (zh) 2019-11-14 2020-10-27 高动态范围图像曝光控制方法、航拍相机及无人飞行器

Country Status (2)

Country Link
CN (1) CN110708473B (zh)
WO (1) WO2021093578A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708473B (zh) * 2019-11-14 2022-04-15 深圳市道通智能航空技术股份有限公司 高动态范围图像曝光控制方法、航拍相机及无人飞行器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972385A (zh) * 2006-12-07 2007-05-30 北京中星微电子有限公司 一种图像处理方法和摄像设备
WO2014190051A1 (en) * 2013-05-24 2014-11-27 Google Inc. Simulating high dynamic range imaging with virtual long-exposure images
CN105979162A (zh) * 2016-07-21 2016-09-28 凌云光技术集团有限责任公司 一种可扩展动态范围图像的自动曝光调整方法及装置
CN108419025A (zh) * 2018-05-30 2018-08-17 北京图森未来科技有限公司 一种曝光参数调整方法、装置和可读介质
CN109155061A (zh) * 2017-12-20 2019-01-04 深圳市大疆创新科技有限公司 图像融合的方法、装置与无人机
CN110708473A (zh) * 2019-11-14 2020-01-17 深圳市道通智能航空技术有限公司 高动态范围图像曝光控制方法、航拍相机及无人飞行器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879731B2 (en) * 2003-04-29 2005-04-12 Microsoft Corporation System and process for generating high dynamic range video
CN100562072C (zh) * 2007-04-06 2009-11-18 北京中星微电子有限公司 一种消除摄像头图像闪烁的方法、装置及一种摄像头
JP2009055433A (ja) * 2007-08-28 2009-03-12 Sanyo Electric Co Ltd 撮像装置
CN104380166B (zh) * 2012-07-12 2016-06-08 奥林巴斯株式会社 摄像装置
JP2014036401A (ja) * 2012-08-10 2014-02-24 Sony Corp 撮像装置、画像信号処理方法及びプログラム
CN103888680B (zh) * 2014-03-28 2017-07-11 中国科学技术大学 一种摄像头曝光时间的调节方法
JP2017028490A (ja) * 2015-07-22 2017-02-02 ルネサスエレクトロニクス株式会社 撮像センサ及びセンサモジュール
CN105635565A (zh) * 2015-12-21 2016-06-01 华为技术有限公司 一种拍摄方法及设备
CN105635597B (zh) * 2015-12-21 2018-07-27 湖北工业大学 车载相机的自动曝光方法及系统
WO2017107075A1 (en) * 2015-12-22 2017-06-29 SZ DJI Technology Co., Ltd. System, method, and mobile platform for supporting bracketing imaging
CN107249104A (zh) * 2017-06-15 2017-10-13 武汉云衡智能科技有限公司 一种行车记录仪智能相机自动曝光方法
CN107888839B (zh) * 2017-10-30 2019-12-06 Oppo广东移动通信有限公司 高动态范围图像获取方法、装置及设备
CN108307109B (zh) * 2018-01-16 2020-04-17 维沃移动通信有限公司 一种高动态范围图像预览方法及终端设备
CN108270977A (zh) * 2018-03-06 2018-07-10 广东欧珀移动通信有限公司 控制方法及装置、成像设备、计算机设备及可读存储介质
CN108632537B (zh) * 2018-05-04 2020-08-21 Oppo广东移动通信有限公司 控制方法及装置、成像设备、计算机设备及可读存储介质
CN109639994B (zh) * 2019-01-03 2020-08-07 湖北工业大学 嵌入式车载相机曝光时间动态调整方法
CN110177221B (zh) * 2019-06-25 2021-02-26 维沃移动通信有限公司 高动态范围图像的拍摄方法及装置
CN110266954B (zh) * 2019-06-28 2021-04-13 Oppo广东移动通信有限公司 图像处理方法、装置、存储介质及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972385A (zh) * 2006-12-07 2007-05-30 北京中星微电子有限公司 一种图像处理方法和摄像设备
WO2014190051A1 (en) * 2013-05-24 2014-11-27 Google Inc. Simulating high dynamic range imaging with virtual long-exposure images
CN105979162A (zh) * 2016-07-21 2016-09-28 凌云光技术集团有限责任公司 一种可扩展动态范围图像的自动曝光调整方法及装置
CN109155061A (zh) * 2017-12-20 2019-01-04 深圳市大疆创新科技有限公司 图像融合的方法、装置与无人机
CN108419025A (zh) * 2018-05-30 2018-08-17 北京图森未来科技有限公司 一种曝光参数调整方法、装置和可读介质
CN110708473A (zh) * 2019-11-14 2020-01-17 深圳市道通智能航空技术有限公司 高动态范围图像曝光控制方法、航拍相机及无人飞行器

Also Published As

Publication number Publication date
CN110708473A (zh) 2020-01-17
CN110708473B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US11233943B2 (en) Multi-gimbal assembly
WO2021098453A1 (zh) 目标跟踪方法及无人飞行器
US10979651B2 (en) Imaging system
WO2020102927A1 (zh) 拍摄方法和无人机
US20190144114A1 (en) Systems and methods for controlling movable object behavior
CN112650267B (zh) 一种飞行器的飞行控制方法、装置及飞行器
WO2021088684A1 (zh) 全向避障方法及无人飞行器
CN107450573B (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
JP2016180866A (ja) 空撮装置
WO2020135795A1 (zh) 一种图像显示方法、装置和电子设备
WO2018090258A1 (zh) 一种图像处理方法、装置及系统
CN109076206B (zh) 基于无人机的立体成像方法和装置
US11089235B2 (en) Systems and methods for automatic detection and correction of luminance variations in images
WO2021093578A1 (zh) 高动态范围图像曝光控制方法、航拍相机及无人飞行器
CN109949381B (zh) 图像处理方法、装置、图像处理芯片、摄像组件及飞行器
WO2021135824A1 (zh) 图像曝光方法及装置、无人机
WO2021093577A1 (zh) 高动态范围图像自动曝光方法及无人飞行器
WO2021135823A1 (zh) 飞行控制方法及装置、无人机
US20200066168A1 (en) Movable object application framework
WO2022188151A1 (zh) 影像拍摄方法、控制装置、可移动平台和计算机存储介质
WO2022109860A1 (zh) 跟踪目标对象的方法和云台
EP3919374B1 (en) Image capturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886275

Country of ref document: EP

Kind code of ref document: A1