WO2021093570A1 - 一种换电控制系统及换电控制方法 - Google Patents

一种换电控制系统及换电控制方法 Download PDF

Info

Publication number
WO2021093570A1
WO2021093570A1 PCT/CN2020/123859 CN2020123859W WO2021093570A1 WO 2021093570 A1 WO2021093570 A1 WO 2021093570A1 CN 2020123859 W CN2020123859 W CN 2020123859W WO 2021093570 A1 WO2021093570 A1 WO 2021093570A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
monitoring machine
controller
circuit breaker
signal
Prior art date
Application number
PCT/CN2020/123859
Other languages
English (en)
French (fr)
Inventor
叶万祥
梁泽华
杨焱兴
郭威
杨泽洲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20886949.5A priority Critical patent/EP4047783A4/en
Publication of WO2021093570A1 publication Critical patent/WO2021093570A1/zh
Priority to US17/743,294 priority patent/US20220271562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/066Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems characterised by the use of dynamo-electric machines

Definitions

  • This application relates to the field of power supply control, and in particular to a power swap control system and a power swap control method.
  • the communication power supply can generally adopt a multi-channel power supply system.
  • the common dual-channel power supply system is to connect two different power sources to the power plug frame through two different circuit breakers in the power plug frame. To control the on and off of different power supplies separately, each as a backup, but the power plug frame generally can only get power from one of them. If the two channels are connected at the same time, and the two different power supplies are short-circuited, it may cause a dual power supply line and grid connection accident. .
  • the dual-circuit power supply interlocking function of the communication power supply can be realized by using automatic transfer switch (ATS).
  • ATS includes two interlocking switches for power exchange.
  • a functional device whose switch is a contactor or a knife that does not have the ability to break short-circuit current.
  • the mutual locking between the two switches is realized by a mechanical linkage.
  • each power supply is also equipped with an independent input circuit breaker, which is equivalent to the series connection of the circuit breaker and the switch in the ATS, so that the two switches realized by the mechanical linkage in the ATS are encapsulated in one
  • the power exchange function can be realized only when the relative positions of the two input power sources meet the positional relationship specified by the mechanical linkage in the ATS. There are certain restrictions on the relative positions of the two connected input power sources, resulting in Wiring flexibility is poor.
  • the embodiments of the present application provide a power exchange control system and a control method thereof, which are used to optimize the power supply arrangement in a multi-channel power supply scenario.
  • the first aspect of the embodiments of the present application provides a power exchange control system, which can be applied to scenarios where multiple power supplies are supplied.
  • the multiple power supplies have current working power supplies and emergency Auxiliary backup power supply, specifically, for any one of the multiple power supplies, if the power supply is currently supplying power, it is the working power supply, and if the power supply is not currently supplying power, it is the backup power supply.
  • the working power supply and the backup The two power sources are standby for each other, wherein the switching control system includes a first circuit breaker connected to the working power source, a second circuit breaker connected to the standby power source, and used to control the on-off of the first circuit breaker and the on-off of the second circuit breaker.
  • the monitoring machine wherein the first circuit breaker includes a first controller and a first on-off device connected to each other, the first controller is connected to the monitoring machine; the second circuit breaker includes a second controller and a second on-off device connected to each other Device, the second controller is connected to the monitoring machine; when the monitoring machine itself generates or receives a power-swap instruction, the monitoring machine generates an opening signal and a closing signal according to the power-swap instruction, and sends the opening signals to the control unit respectively.
  • the first controller of the first circuit breaker where the working power supply is located sends the closing signal to the second controller for controlling the second circuit breaker where the backup power supply is located, and thereafter, the first controller is used to control according to the opening signal of the monitoring machine
  • the first on-off device in the first circuit breaker adjusts the on-off state of the working power supply from on to off; the second controller is used to control the second on-off device to switch on and off the standby power supply according to the closing signal of the monitoring machine The state is adjusted from off to on.
  • the on-off device adjusts the on-off of the power supply connected to the circuit breaker according to the signal of the monitoring machine, that is, the work that is working according to the opening signal of the monitoring machine
  • the power supply is adjusted from on to off, and the standby power is adjusted from off to on according to the closing signal of the monitoring machine.
  • the process of switching between the working power and the standby power is realized, which is the same as the process of switching the power through an independent ATS in the prior art.
  • the structure of the power input part is simplified, and the space restriction of the mechanical connection is not restricted, and the flexible arrangement of the power supply is easy to realize.
  • the power exchange control system can be applied to scenarios where multiple power supplies are supplied, where the number of power supplies corresponding to the multiple power supplies is n (n is an integer greater than 1), and the number of working power supplies and backup power supplies are respectively a And b (a and b are integers greater than 0), the quantity can be adjusted according to the working environment of the field operation, for example, the working power supply and the backup power supply can be single power supply, two power supply, multiple power supply, etc., here Not limited.
  • the power supply with better power supply quality can be selected according to the power supply quality of the backup power supply.
  • the power swap control system may also include a logic control device; wherein, the first controller is connected to the monitoring machine through the logic control device, and the second controller is also connected to the monitoring machine through the logic control device, that is, the first controller and the second controller are respectively After the logic control device is connected, the logic control device is connected to the monitoring machine; after the logic control device determines that the on-off state of the working power supply is adjusted from on to off, the logic control device makes the closing signal of the monitoring machine Send to the second controller, where the logic control device can be implemented by a hardware module or a software module. For example, it can be implemented with a logic circuit, or it can be implemented by a programmable chip with logic software. Implementation or other methods are not limited here.
  • the logic control device only after the logic control device determines that the on-off state of the working power supply is adjusted from on to off, will the logic control device send the closing signal of the monitoring machine to the second controller,
  • the second controller controls the second on-off device according to the closing signal to adjust the on-off state of the backup power supply from off to on, thereby ensuring that the working power supply and the backup power supply are connected in parallel at the same time through the setting of the logic control device.
  • the logic control device determines that the on-off state of the working power supply is adjusted from on to off in different ways.
  • the logic control device is used to send the control signal issued by the monitoring machine only to the first controller and One of the second controllers
  • the control signal can include an opening signal or a closing signal, that is to say, among the signals issued by the monitoring machine, the opening signal can only be sent to the first controller and the second controller One, the closing signal can only be sent to one of the first controller and the second controller.
  • both the working power supply and the standby power supply are cut off, and to prevent the monitoring machine from damaging the first circuit breaker and the second circuit breaker due to the fault.
  • the second circuit breaker sends a closing signal at the same time to cause a grid-connected accident of the working power supply and the backup power supply.
  • the logic control device can be used to strengthen the signal control to ensure the safety of electricity use.
  • the first on-off device It also includes a first contact for detecting the on-off state of the working power supply and feeding back the on-off state of the working power supply to the monitoring machine;
  • the second on-off device also includes a second contact, the The second contact is used for detecting the on-off state of the backup power supply and feeding back the on-off state of the backup power supply to the monitoring machine.
  • the on-off state of the working power supply indicates that the working power source is on or off
  • the on-off state of the backup power source indicates that the backup power source is on or off.
  • the monitoring machine can determine the on-off state of the power supply through the contacts provided in the on-off device in the circuit breaker, that is, the on-off state of the working power source is detected by the first contact in the first on-off device. State and feed back the on-off state of the working power supply to the monitoring machine, and detect the on-off state of the backup power supply through the second contact in the second on-off device and feed back the on-off state of the backup power supply to the monitoring machine .
  • the replacement The electrical control system may also include a sensor; one end of the sensor is connected to the working power supply and the backup power supply, and is used to collect the power supply parameters of the working power supply and the backup power supply; the other end of the sensor is connected to the monitoring machine for The power supply parameters of the working power supply and the power supply parameters of the standby power supply are sent to the monitoring machine.
  • the number of the sensor may be one or multiple.
  • the sensor is used to collect the power supply parameters of the working power supply and the power supply parameters of the backup power supply and feed them back to the monitoring machine, so that the monitoring machine
  • the power supply parameters of the working power supply and the power supply parameters of the standby power supply can be obtained.
  • the sensor can be a voltage sensor, a current sensor, etc. Therefore, the power supply parameter can include voltage value, current value, voltage, current change curve with time, etc. or other power supply parameters.
  • the monitoring machine can also be based on The power supply parameters of the working power supply and the power supply parameters of the backup power supply respectively determine the on-off status of the working power supply and the backup power supply.
  • the device It also includes a busbar, wherein the monitoring machine is respectively connected to the first controller and the second controller through the busbar.
  • connection between the monitoring machine and the first controller and the second controller can be a wired connection or a wireless connection.
  • it is limited to be connected through a busbar, which provides a specific solution.
  • Implementation mode in addition, if the system also includes a hardware-implemented logic control device and/or the sensor, the logic control device and/or the sensor may also be integrated on the busbar.
  • the second aspect of the embodiments of the present application provides a power swap control method, which is applied to a power swap control system and can be applied to scenarios where multiple power supplies are supplied.
  • a power swap control method which is applied to a power swap control system and can be applied to scenarios where multiple power supplies are supplied.
  • the current working power supply and the backup power supply for emergency auxiliary use. Specifically, for any one of the multiple power supplies, if the power supply is currently supplying power, it is the working power supply, and if the power supply is not currently supplying power, it is the working power supply.
  • a backup power source, the working power source and the backup power source are mutually backups
  • the switching control system includes a first circuit breaker connected to the working power source, a second circuit breaker connected to the backup power source, and for controlling the on and off of the first circuit breaker And the second circuit breaker on and off the monitoring machine;
  • the power exchange control method includes: the monitoring machine can generate or obtain the artificially input power exchange instruction in a variety of ways, and the power exchange instruction is used to indicate It is necessary to turn off the working power source in the multi-channel power supply and connect to the backup power source; the monitoring machine generates an opening signal for controlling the working power source to be turned off and a closing signal for controlling the backup power source to be turned on according to the power exchange instruction; ,
  • the monitoring machine sends the opening signal to a first controller, the first controller is included in the first circuit breaker, the first circuit breaker includes a first on-off device, and the first on-off device is used for Under the control of the first controller, the on-off state of the working power
  • the standby power supply is adjusted from the off state to the on state. Therefore, for the first circuit breaker and the second circuit breaker, specifically, the on-off device adjusts the on-off of the power supply connected to the circuit breaker according to the signal of the monitoring machine, that is, it will be working according to the opening signal of the monitoring machine.
  • the working power supply is adjusted from on to off, and the standby power supply is adjusted from off to on according to the closing signal of the monitoring machine.
  • the process of switching between the working power and the standby power is realized, which is replaced by an independent ATS in the prior art. Compared with the electrical process, the structure of the power input part is simplified, and it will not be restricted by the space of the mechanical connection, and it is easy to realize the flexible arrangement of the power supply.
  • the power replacement control system can be applied to scenarios where multiple power supplies are supplied, where the number of power supplies corresponding to the multiple power supplies is n (n is an integer greater than 1), and the number of power supplies corresponding to the working power supply and the standby power supply are respectively It is a and b (a and b are integers greater than 0), and the number can be adjusted according to the working environment of the field operation.
  • the working power supply and the backup power supply can be single power supply, two power supply, multiple power supply, etc. There is no limitation here.
  • the power supply with better power supply quality can be selected according to the power supply quality of the backup power supply.
  • the switching control method further includes: a monitoring machine obtains the opening feedback signal, wherein the opening feedback signal is used for Indicate that the on-off state of the working power supply is adjusted from on to off; when the monitoring machine determines that the feedback signal of the opening is received, that is, after the monitoring machine determines that the on-off state of the working power supply is adjusted from on to off, the monitoring machine determines that the on-off state of the working power supply is adjusted from on to off.
  • the monitoring machine will send the closing signal to the second controller.
  • the monitoring machine only after the monitoring machine determines that the opening feedback signal is received, that is, after the monitoring machine determines that the on-off state of the working power supply is adjusted from on to off, the monitoring machine will execute the second The controller sends the closing signal, which can prevent the second controller from sending the closing signal to the second controller when the on-off state of the working power supply has not been adjusted from on to off, so as to prevent the working power supply and the standby power supply from being turned on at the same time. Grid-connected accidents occurred.
  • the monitoring machine acquiring the opening feedback signal includes: the monitoring machine receiving the first contact transmission The opening feedback signal of the switch, the first contact is included in the first circuit breaker, and the first contact is used to detect the on-off state of the working power supply.
  • a specific implementation manner for the monitoring machine to obtain the opening feedback signal is provided, that is, it can be obtained through the first contact in the first circuit breaker, which increases the feasibility of the solution.
  • the monitoring machine acquiring the opening feedback signal includes: the monitoring machine receiving the opening sent by the sensor
  • the sensor is connected to the working power supply and used to collect power supply parameters of the working power supply.
  • the power supply parameters of the working power supply include the on-off state of the working power supply.
  • a specific implementation manner for the monitoring machine to obtain the opening feedback signal is provided, that is, it can be obtained through the power supply parameters collected by the sensor, which increases the feasibility of the solution.
  • the method further includes: The monitoring machine sends an opening check code to the first controller, where the opening check code is used by the first controller to verify the legitimacy of the opening signal; and/or, the monitoring machine sends the second control
  • the device sends a closing check code, and the closing check code is used by the second controller to verify the legitimacy of the closing signal.
  • the opening check code and/or the closing check code are added, and the signal sent by the monitoring machine to the first controller and/or the second controller includes several The fixed check digit, the first controller and/or the second controller automatically detect whether the check digit is normal, if it is normal, execute the opening and closing command, if it is not normal, then refuse to execute the opening and closing command to ensure that the monitoring machine
  • the first controller and/or the second controller can maintain the normal on/off state of the first circuit breaker and/or the second circuit breaker, and continue to supply power.
  • the method further includes: The monitoring machine receives a closing feedback signal sent by a second contact included in the second circuit breaker, and the second contact is used for detecting the on-off state of the standby power supply.
  • a specific implementation method for the monitoring machine to obtain the closing feedback signal is provided, that is, it can be obtained through the second contact in the second circuit breaker, so that the monitoring machine can know the second circuit breaker
  • the on-off state of the connected backup power supply increases the feasibility of the solution.
  • the method further includes:
  • the monitoring machine receives a closing feedback signal sent by a sensor, and the sensor is connected to the backup power supply for collecting power supply parameters of the backup power supply.
  • the power supply parameters of the backup power supply include the on-off state of the backup power supply.
  • a specific implementation method for the monitoring machine to obtain the closing feedback signal is provided, that is, it can be obtained through the second contact in the second circuit breaker, so that the monitoring machine can know the second circuit breaker
  • the on-off state of the connected backup power supply increases the feasibility of the solution.
  • the third aspect of the embodiments of the present application provides a monitoring machine, which has the function of realizing the above-mentioned second aspect or any one of the possible implementation methods of the second aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions, such as an acquisition unit, a generation unit, and a transceiver unit.
  • the fourth aspect of the embodiments of the present application provides a monitoring machine that includes at least one processor, a memory, a communication port, and computer-executable instructions stored in the memory and running on the processor.
  • the processor executes the method described in the foregoing second aspect or any one of the possible implementation manners of the second aspect.
  • the fifth aspect of the embodiments of the present application provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes the second aspect or the second aspect described above. The method described in any one of the possible implementation manners.
  • the sixth aspect of the embodiments of the present application provides a computer program product storing one or more computer-executable instructions.
  • the processor executes the second aspect or the second aspect described above. Any one of the possible implementation methods.
  • a seventh aspect of the present application provides a chip system, which includes a processor, and is configured to support a controller to implement the above-mentioned second aspect or any one of the possible implementation manners of the second aspect.
  • the chip system may also include a memory and a memory for storing necessary program instructions and data.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the technical effects brought by the third aspect to the seventh aspect or any one of the possible implementation manners may refer to the technical effects brought about by the second aspect or the different possible implementation manners of the second aspect, and details are not described herein again.
  • the switching control system includes a first circuit breaker connected to a first power source, a second circuit breaker connected to a second power source, and a monitoring machine;
  • the first circuit breaker includes a first controller and a first on-off device, A controller is used to control the first on-off device to adjust the first power supply from on to off according to the opening signal of the monitoring machine;
  • the second circuit breaker includes a second controller and a second on-off device, and the second controller is used for According to the closing signal of the monitor, the second on-off device is controlled to adjust the second power supply from off to on.
  • the circuit breaker includes a controller and an on-off device.
  • the controller implements the on-off adjustment of the on-off device to the power supply connected to the circuit breaker according to the signal of the monitoring machine, that is, according to the opening of the monitoring machine
  • the signal adjusts the working power supply from on to off, and adjusts the standby power from off to on according to the closing signal of the monitoring machine to realize the power exchange process between the working power and the standby power, which is the same as in the prior art.
  • the independent ATS simplifies the structure of the power input part, and is not limited by the space of the mechanical connection, and it is easy to realize the flexible layout of the power supply.
  • FIG. 1 is a schematic diagram of an embodiment of a power exchange control system in an embodiment of the application
  • FIG. 2 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of this application.
  • FIG. 3 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of the application.
  • FIG. 4 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of the application.
  • FIG. 5 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of the application.
  • Fig. 6 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of the application.
  • FIG. 7 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of the application.
  • FIG. 8 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of the application.
  • FIG. 9 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of the application.
  • FIG. 10 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of this application.
  • FIG. 11 is another schematic diagram of an embodiment of a power exchange control system in an embodiment of the application.
  • FIG. 12 is a schematic diagram of an embodiment of a power exchange control method in an embodiment of the application.
  • FIG. 13 is another schematic diagram of an embodiment of a power exchange control method in an embodiment of the application.
  • FIG. 14 is a schematic diagram of a monitoring machine in an embodiment of the application.
  • Fig. 15 is another schematic diagram of a monitoring machine in an embodiment of the application.
  • the embodiments of the present application provide a power exchange control system and a control method thereof, which are used to optimize the power supply arrangement in a multi-channel power supply scenario.
  • the communication power supply can generally adopt a multi-channel power supply system.
  • the common dual-channel power supply system is to connect two different power sources to the power plug frame through two different circuit breakers in the power plug frame. To control the on and off of different power supplies separately, each as a backup, but the power plug frame generally can only get power from one of them. If the two channels are connected at the same time, and the two different power supplies are short-circuited, it may cause a dual power supply line and grid connection accident. .
  • the dual-circuit power supply interlocking function of the communication power supply can be realized by using an automatic transfer switch electrical appliance ATS.
  • the ATS is a device that includes two interlocking switches to realize the power exchange function. It is a contactor or knife with no short-circuit current breaking capability, and the locking between the two switches is realized by a mechanical linkage.
  • each power supply is also equipped with an independent input circuit breaker, which is equivalent to the series connection of the circuit breaker and the switch in the ATS, so that the two switches realized by the mechanical linkage in the ATS are encapsulated in one
  • the power exchange function can be realized only when the relative positions of the two input power sources meet the positional relationship specified by the mechanical linkage in the ATS. There are certain restrictions on the relative positions of the two connected input power sources, resulting in Wiring flexibility is poor.
  • the power swap control system can be applied to scenarios where multiple power supplies are supplied.
  • multiple power supplies there are multiple power supplies.
  • the current working power supply and the backup power supply for emergency auxiliary use. Specifically, for any one of the multiple power supplies, if the power supply is currently supplying power, it is the working power supply, and if the power supply is not currently supplying power, it is the working power supply.
  • the backup power supply, the working power supply and the backup power supply are mutually backup.
  • a power exchange control system in an embodiment of the present application includes a first circuit breaker 120 connected to a working power source 100, a second circuit breaker 130 connected to a backup power source 110, and used to control the on and off of the first circuit breaker 120
  • the monitoring machine 140 is connected to the second circuit breaker 130; wherein, the first circuit breaker 120 includes a first controller 1201 and a first switching device 1202 connected to each other, and the first controller 1202 is connected to the monitoring machine 140; the second circuit breaker
  • the device 130 includes a second controller 1301 and a second on-off device 1302 that are connected to each other.
  • the second controller 1301 is connected to a monitoring machine 140; when the monitoring machine 140 itself generates or receives a power-swap instruction, the monitoring machine 140 will The switching command generates an opening signal and a closing signal, and respectively sends the opening signal to the first controller 1201 for controlling the first circuit breaker 120 where the working power supply 100 is located, and sends the closing signal to the control for the standby power supply 110
  • the second controller 1301 of the second circuit breaker 130 is located. Thereafter, the first controller 1201 is used to control the first on-off device 1202 in the first circuit breaker 120 to switch the working power supply 100 according to the 140 opening signal sent by the monitoring machine 140.
  • the on-off state of the standby power supply 110 is adjusted from on to off; the second controller 130 is used to control the second on-off device 1302 according to the closing signal sent by the monitoring machine 140 to adjust the on-off state of the backup power supply 110 from off to on .
  • the on-off device adjusts the on-off of the power supply connected to the circuit breaker according to the signal of the monitoring machine 140, that is, according to the monitoring machine 140
  • the opening signal of the working power supply 100 is adjusted from on to off
  • the backup power supply 110 is adjusted from off to on according to the closing signal of the monitoring machine 140 to realize the power exchange between the working power supply 100 and the backup power supply 110 process.
  • the power replacement control system can be applied to scenarios where multiple power supplies are supplied, where the number of power supplies corresponding to the multiple power supplies is n (n is an integer greater than 1), and the number of power supplies corresponding to the working power supply and the standby power supply are respectively It is a and b (a and b are integers greater than 0), and the number can be adjusted according to the working environment of the field operation.
  • the first circuit breaker used to control the working power supply The number can be equal to the number of power sources of the working power source, and the number of second circuit breakers used to control the standby power source can also be equal to the number of power sources of the standby power source.
  • the power source with better power supply quality can be selected according to the power supply quality of the backup power source.
  • first circuit breaker 120 and the second circuit breaker 130 may adopt a circuit breaker with a unified structure.
  • the circuit breaker 1 includes Input terminal 11 for access to power, physical button 12 for control, power output card slot 13 & 14 for output, communication card slot 15 for external communication, and power on/off
  • the device can be realized by the motor 19, the transmission mechanism 20, and the electromagnetic trip unit 21 connected to each other, and can also be realized by the main contact 19 or the auxiliary contact 20, which is not limited here.
  • the circuit breaker 1 It also includes a sensor 21 and a controller 22 for controlling various components in the circuit breaker 1.
  • the monitoring machine 140 sends an opening signal and a closing signal to the first controller 1201 and the second controller 1301 through a wired connection or a wireless connection.
  • the signal transmission speed is relatively fast.
  • the time when the first controller 1201 receives the opening signal and the second controller 1301 receives the closing signal are close, so that there may be a certain time difference between the processes of the two, and some are connected to the power supply.
  • the electrical load has a buffer device, which can make the electrical load still work normally when the working power supply 100 and the backup power supply 110 are connected or disconnected at the same time, but for the current and voltage sensitive electrical load, When the working power supply 100 and the backup power supply 110 are connected or disconnected at the same time, the electric load will fail and damage.
  • the first circuit breaker 120 and the second circuit breaker 120 and the second circuit breaker can be set by the logic control device.
  • the circuit breaker 130 performs interlocking.
  • the logic control device can be implemented by a software module or a hardware module. The interlocking process will be described below in conjunction with specific embodiments.
  • the logic control device realizes the interlocking of the first circuit breaker 120 and the second circuit breaker 130 through a software module
  • the first circuit breaker 120 and the second circuit breaker 130 can be interlocked by adding a software module.
  • the software module can be set independently or integrated in the monitoring machine 140.
  • only the software Module integration in the monitoring machine 140 is implemented as an example for description.
  • the implementation logic of the software module is that only when the monitoring machine 140 determines that the on-off state of the working power supply 100 is adjusted from on to off, that is, the first circuit breaker 120 corresponding to the working power supply 100 is received.
  • the monitoring machine sends the closing signal to the second controller 1301 in the second circuit breaker 130 that controls the on and off of the backup power supply 110.
  • the monitoring machine determines that the backup power supply 110 is received.
  • the monitoring machine may have completed the current switching process.
  • FIG. 4 for the specific working process of the monitoring machine, where the relevant steps of the monitoring machine can include:
  • Step 401 The monitoring machine judges the quality of the current working power supply, if it is qualified, proceed to step 410, if it is unqualified, proceed to step 403;
  • Step 402 When the monitoring machine receives the power replacement instruction, it triggers the execution of step 403;
  • Step 403 When the monitoring machine determines that the power supply quality of the current working power supply is unqualified in step 401 or the power replacement instruction is received in step 402, the power replacement program is started;
  • Step 404 The monitoring machine sends an opening command of the on-site circuit breaker, that is to say, sends an opening command to the circuit breaker corresponding to the current working power source;
  • Step 405 The monitoring machine judges whether it has received the feedback of successful opening, if yes, execute step 406, if not, execute step 407;
  • Step 406 If the monitoring machine confirms that it receives the feedback of successful opening, the monitoring machine sends a backup circuit breaker closing command, that is, it sends a closing command to the circuit breaker where the backup power supply is located;
  • Step 407 If the monitoring machine does not receive the feedback of successful opening, the monitoring machine waits for the preset time to see if it exceeds the limit, if yes, then determine step 408, if not, then feed back to step 405 to confirm receipt of the successful opening feedback;
  • Step 408 If the monitoring machine waits for the preset time to exceed the limit, it is determined that the system is faulty. At this time, the on-site operator can be reminded to perform manual troubleshooting through fault lights/fault alarms, etc.;
  • Step 409 After the monitoring machine in step 406 issues the backup circuit breaker closing command, the monitoring machine determines whether it receives a successful closing feedback, if yes, execute step 410, if not, execute step 411;
  • Step 410 When the monitoring machine determines in step 401 that the current working power supply command is qualified or when the monitoring machine determines in step 409 that it receives a successful closing feedback, the monitoring machine determines that the current power exchange operation is complete and can exit the power exchange program;
  • Step 411 When the monitoring machine determines that it has not received a successful closing feedback in step 409, the monitoring machine waits for the preset time to see if it exceeds the limit. If yes, then determine step 412; if not, then feed back to step 409 to confirm receipt of successful opening Feedback
  • Step 412 When the monitoring machine waits for the preset time to exceed the limit, it is determined that the system is faulty. At this time, the on-site operator can be reminded to perform manual troubleshooting through fault lights/fault alarms, etc.
  • the monitoring machine obtains the on-off state of the working power supply 100, that is, the feedback of the opening and closing of the circuit breaker.
  • the working power supply 100 can be obtained through a feedback component provided in the first circuit breaker 120, or it can be Obtained by the sensor of the working power supply, which will be introduced separately below:
  • the monitoring machine 140 is determined by the first contact of the first on-off device 1202 provided in the first circuit breaker 120.
  • the components that specifically implement the on-off control of the power supply can be realized through contact control, tripping control or other components.
  • the on-off device is used as the contact (for example, the main contact 19 and/or the auxiliary contact 20 in FIG. 2) for control.
  • the first on-off device 1202 It may also include a first contact for detecting the on-off state of the working power source 100 and feeding back the on-off state of the working power source 100 to the monitoring machine 140.
  • a similar feedback component can also be provided for the second circuit breaker 1300.
  • the second on-off device 1302 further includes a second contact.
  • the contact is used to detect the on-off state of the backup power supply 110 and feed back the on-off state of the backup power supply 110 to the monitoring machine 140.
  • the feedback process can be that the contact passes through the communication card slot in the circuit breaker for communicating with the outside. 15 is connected to the monitoring machine 140 (wired or wireless) to achieve.
  • the monitoring machine 140 can specifically determine the on-off state of the power supply through the contacts provided in the on-off device in the circuit breaker 1.
  • the monitoring machine 140 can learn the working status of the working power supply 100 and the backup power supply 110. Therefore, when the monitoring machine 140 determines that the on-off state for controlling the working power supply 100 is adjusted from on to off, the monitoring machine sends the closing signal to the second circuit breaker 130 of the second circuit breaker 130 that controls the on-off of the standby power supply 110.
  • the second controller 1301 can prevent from the source that the working power supply 100 and the backup power supply 110 will be connected at the same time, which will cause the electrical load to malfunction and damage.
  • the monitoring machine 140 can adjust the on-off state of the backup power supply 110 by turning off. After it is switched on, it can also be determined that the power swap command that triggered the power swap operation has been executed.
  • the monitoring machine 140 is determined by a sensor installed in the working power source.
  • the power exchange control system may also include a sensor; one end of the sensor is connected to the working power supply 100 and the backup power supply 110, and is used to collect the power supply parameters of the working power supply 100 and the backup power supply 110; the other side of the sensor One end is connected to the monitoring machine 140 for sending the power supply parameters of the working power supply 100 and the power supply parameters of the backup power supply 110 to the monitoring machine 140.
  • the number of the sensor may be one or multiple.
  • the sensor is used to collect the power supply parameters of the working power supply 100 and the power supply parameters of the backup power supply 110 and feed them back to the monitoring machine 140.
  • the monitoring machine 140 can learn the power supply parameters of the working power supply 100 and the power supply parameters of the backup power supply 140.
  • the sensor can be a voltage sensor, a current sensor, etc. Therefore, the power supply parameter can include voltage value, current value, voltage, current curve with time, etc. or other power supply parameters, so that the monitoring machine 140 can be based on
  • the power supply parameters of the working power supply 100 and the power supply parameters of the backup power supply 110 determine the on-off states of the working power supply 100 and the backup power supply 110, respectively.
  • the sensor that detects the working power source 100 can be arranged between the working power source 100 and the first circuit breaker 120, or between the first circuit breaker 120 and the monitoring machine 140. It is not limited here.
  • the sensor for detecting the backup power supply 110 can be arranged between the backup power supply 110 and the second circuit breaker 130, or can be arranged between the second circuit breaker 130 and the monitoring machine 140, which is not done here. limited.
  • connection between the monitoring machine 140 and the first circuit breaker 120 and the second circuit breaker 130 may be wired connections.
  • the connection may be realized through the busbar 150, for example, The communication backplane busbar 150, where the communication backplane busbar 150 connects the monitoring machine 140 and the first circuit breaker 120, the monitoring machine 140 and the second circuit breaker 130, respectively.
  • the sensor 160 is loaded on the communication backplane bus bar 150, and thereafter, the power terminal can also be connected to the electrical load through the rectifier 170.
  • conventional circuit breakers need to arrange voltage and current sensors inside each circuit breaker.
  • the (voltage, current) sensor 160 can be arranged at a suitable position on the backplane busbar 150, and the monitoring machine 140 is responsible for the collection, processing, and measurement of power supply parameters. , Protection judgment and other functions.
  • Figure 7 is a schematic diagram of the realization of the first circuit breaker (1-1) and the second circuit breaker (1-2) and the bus bar 2.
  • the communication backplane bus bar 150 includes power terminals 23 & 24 and control signal terminals 25, power terminals 23&24 is connected to the rectifier 4.
  • FIG. 8 Combining the schematic diagrams of the circuit breakers in Fig. 2 and Fig. 3, it can be seen that in Fig. 8, the connection between the first circuit breaker (1-1) and the second circuit breaker (1-2)
  • the communication card slot 15 for external communication is connected to the control signal terminal 25 of the communication backplane bus 150.
  • the opening and closing command signal and the opening and closing feedback signal can be set with special pins as shown in Figure 8. It can also be implemented in the form of a communication data packet, which is not limited here. Please refer to Table 1 below for a pin definition method for the signal card slot 15 (female) and the corresponding backplane gold finger 25 (male) in the circuit breaker:
  • the logic control device realizes the interlocking of the first circuit breaker 120 and the second circuit breaker 130 through hardware
  • the interlocking of the first circuit breaker 120 and the second circuit breaker 130 can also be realized by adding a hardware module.
  • the hardware module can be installed independently or integrated in In the monitoring machine 140, in this embodiment, only the independent setting of the hardware module is taken as an example for description.
  • the implementation logic of the hardware module is that only when the hardware module determines that the on-off state for controlling the working power supply 100 is adjusted from on to off, the hardware module will close the switch sent by the monitor 140 The signal is sent to the second controller 1301 in the second circuit breaker 130 that controls the on and off of the backup power source 110.
  • the switching control system may also include a hardware module; wherein, the first controller 120 is connected to the monitoring machine 140 through the hardware module, and the second controller 130 is also connected to the monitoring machine 140 through the hardware module. That is, after the first controller 1201 and the second controller 1301 are respectively connected to the hardware module, the hardware module is connected to the monitor 140; the hardware module determines that the on-off state of the working power supply 100 is adjusted from on to off After that, the closing signal of the monitoring machine 140 is sent to the second controller 1301, so that the second controller 1301 controls the second on-off device 1302 according to the closing signal to turn off the on-off state of the backup power supply 110 The adjustment is turned on, so that the network connection accident in which the working power supply 100 and the backup power supply 110 are simultaneously connected through the setting of the hardware module is ensured.
  • the hardware module can be further configured. Specifically, the hardware module is restricted from sending the control signal sent by the monitoring machine 140 to only the first controller 1201 and the second controller 1202.
  • the control signal may include an opening signal or a closing signal, that is, among the signals issued by the monitoring machine 140, the opening signal can only be sent to one of the first controller 1201 and the second controller 1202. 1.
  • the closing signal can only be sent to one of the first controller 1201 and the second controller 1202, so that the monitoring machine 140 can be prevented from simultaneously opening the first circuit breaker 1201 and the second circuit breaker 1202 due to a fault.
  • the signal causes both the working power supply 100 and the backup power supply 110 to be cut off, and prevents the monitoring machine 140 from simultaneously sending a closing signal to the first circuit breaker 1202 and the second circuit breaker 1302 due to a fault, causing the working power supply 100 and the backup power supply 110 to be connected to the grid.
  • the hardware module can be blocked by hardware (for example: discrete logic gate hardware), programmable logic controller (PLC, programmable logic controller), programmable chip (CPLD, complex programmable logic device), etc.
  • PLC programmable logic controller
  • CPLD complex programmable logic device
  • the working process of the monitoring machine can be seen in Figure 11, where the relevant steps performed by the monitoring machine can include:
  • Step 1101 the monitoring machine judges the quality of the current working power supply, if it is qualified, go to step 1106, if it is unqualified, go to step 1103;
  • Step 1102 when the monitoring machine receives the power-swapping instruction, it triggers the execution of step 1103;
  • Step 1103 When the monitoring machine determines that the power supply quality of the current working power supply is unqualified in step 1101 or the power replacement instruction is received in step 1102, the power replacement procedure is started;
  • Step 1104. The monitoring machine issues the opening command of the on-site circuit breaker and the backup circuit breaker closing command, that is to say, when sending the opening command to the circuit breaker corresponding to the current working power supply, it also sends the opening command to the circuit breaker corresponding to the backup power supply. Send the closing command;
  • Step 1105. The monitoring machine judges whether it has received a successful opening and closing feedback, that is, the monitoring machine judges whether it has received the opening feedback of the circuit breaker corresponding to the current working power supply and the closing feedback of the circuit breaker corresponding to the standby power supply, and if so, execute Step 1106, if not, go to step 1107;
  • Step 1106 If the monitoring machine confirms that it receives the feedback of successful opening and closing, the monitoring machine determines that the current switching operation is over, and can exit the switching procedure;
  • Step 1107 When the monitoring machine determines that it has not received the feedback of opening and closing success in step 1105, the monitoring machine waits for the preset time to exceed the limit, if yes, then determine step 1108, if not, then feed back to step 1105 to confirm receipt of opening and closing Feedback on the success of the gate;
  • Step 1108 When the monitoring machine waits for the preset time to exceed the limit, it is determined that the system is faulty. At this time, the on-site operator can be reminded to perform manual troubleshooting through fault lights/fault alarms, etc.
  • the power swap control system in the embodiments of the present application is described above, and the power swap control process of the power swap control system will be introduced from the perspective of the power swap control method.
  • a power swap control method in an embodiment of the present application is applied to the power swap control system in the foregoing embodiment. Specifically, it can be applied to a scenario where multiple power supplies are supplied.
  • the multi-channel power supply has the current working power supply and the emergency auxiliary power supply. For any one of the multi-channel power supplies, if the power supply is currently supplying power, it is the working power supply. If the power supply is not currently powered, it is the backup power supply. The working power supply and the backup power supply are mutually backup.
  • the power exchange control system includes a first circuit breaker connected to the working power supply, a second circuit breaker connected to the backup power supply, and a control
  • the monitoring machine for the on-off of the first circuit breaker and the on-off of the second circuit breaker, the specific method for controlling power exchange includes:
  • the monitoring machine obtains the power replacement instruction
  • the monitoring machine can generate or obtain a manually input power swap command in various ways.
  • the power swap command is used to indicate the need to turn off the working power source among the multiple power sources and connect the backup power source.
  • the monitoring machine obtains the power-swap instruction can be generated by the monitoring machine itself when it detects a failure of the current power supply (including frequency fluctuations, voltage fluctuations, imbalances, voltage drops, harmonics, etc.) that exceed the limit, or issued by other operations
  • the power-swap instructions (including instructions issued by the administrator remotely logging in to the monitoring machine, instructions entered by field operators, etc.) can be obtained when they are obtained, and they can also be obtained in other ways, which are not limited here.
  • the monitoring machine generates the opening signal and closing signal according to the power exchange instruction
  • the monitoring opportunity generates an opening signal for controlling the shutdown of the working power supply and a closing signal for controlling the backup power supply to turn on according to the power exchange instruction obtained in step 12001.
  • the monitoring machine sends an opening signal to the first controller
  • the monitoring machine sends an opening signal to the first controller, where the first controller is included in the first circuit breaker, the first circuit breaker includes a first on-off device, and the first on-off device is used for The on-off state of the working power supply is adjusted under the control of a controller, that is, the first on-off device is used to adjust the working power supply currently supplied from the on state to the off state under the control of the first controller.
  • the monitoring machine sends a closing signal to the second controller
  • the monitoring machine sends a closing signal to the second controller, where the second controller is included in the second circuit breaker, the second circuit breaker includes a second on-off device, and the second on-off device is used for
  • the on-off state of the standby power is adjusted under the control of the second controller, that is, the second on-off device is used to adjust the standby power that is not currently powered from the off state to the on state under the control of the second controller.
  • the on-off device adjusts the on-off of the power supply connected to the circuit breaker according to the signal of the monitoring machine, that is, it will be working according to the opening signal of the monitoring machine.
  • the working power supply is adjusted from on to off, and the standby power supply is adjusted from off to on according to the closing signal of the monitoring machine.
  • the process of switching between the working power and the standby power is realized, which is mechanically connected to the prior art. Compared with the switching process realized by controlling the circuit breaker, it will not be restricted by the space of the mechanical connection, and it is easy to realize the flexible arrangement of the power supply.
  • the power replacement control system can be applied to scenarios where multiple power supplies are supplied, where the number of power supplies corresponding to the multiple power supplies is n (n is an integer greater than 1), and the number of power supplies corresponding to the working power supply and the standby power supply are respectively It is a and b (a and b are integers greater than 0), and the number can be adjusted according to the working environment of the field operation.
  • the first circuit breaker used to control the working power supply The number can be equal to the number of power sources of the working power source, and the number of the second circuit breakers used to control the standby power source can also be equal to the number of power sources of the standby power source.
  • the number of standby power sources is large, it can be based on The power supply quality of the backup power supply is selected from the power supply with better power supply quality.
  • the switching control method further includes: the monitoring machine obtains the opening feedback signal, wherein the opening feedback signal is used to indicate that the on-off state of the working power supply is adjusted from on to off ;
  • the monitoring machine determines that it receives the opening feedback signal, that is, the monitoring machine determines that the on-off state of the working power supply is adjusted from on to off, then the monitoring machine will send the closing switch to the second controller Signal, the specific execution steps of the monitoring machine can refer to the execution process of Figure 4.
  • the closing signal can prevent the second controller from sending the closing signal to the second controller when the on-off state of the working power supply has not been adjusted from on to off, so as to avoid the parallel connection caused by the simultaneous connection of the working power supply and the standby power supply. Net accident.
  • the monitoring machine obtains the opening feedback signal in various forms, which can be obtained through a contact set in the circuit breaker. Specifically, the monitoring machine receives the first contact The opening feedback signal sent by the head, the first contact is included in the first circuit breaker, and the first contact is used to detect the on-off state of the working power source. Therefore, a specific implementation manner for the monitoring machine to obtain the opening feedback signal is provided, that is, it can be obtained through the first contact in the first circuit breaker, which increases the feasibility of the solution.
  • the process of the monitoring machine acquiring the opening feedback signal may also be obtained through a sensor.
  • the monitoring machine receives the opening feedback signal sent by the sensor, and the sensor is connected to the work
  • the power supply is used to collect the power supply parameters of the working power supply, and the power supply parameters of the working power supply include the on-off state of the working power supply. Therefore, a specific implementation manner for the monitoring machine to obtain the opening feedback signal is provided, that is, it can be obtained through the power supply parameters collected by the sensor, which increases the feasibility of the solution.
  • the switching control method may further include: the monitoring machine sends an opening check code to the first controller, and the opening check code is used by the first controller to verify the opening. The legitimacy of the closing signal; and/or, the monitoring machine sends a closing check code to the second controller, and the closing check code is used by the second controller to verify the legitimacy of the closing signal.
  • the monitoring machine sends the opening check code and the closing check code to the first controller and the second control, respectively, for the first controller and the second control, it can be specifically adjusted according to the opening check code.
  • the verification code and the closing check code are used to determine whether to execute the opening and closing instructions corresponding to the corresponding opening and closing signals.
  • the first controller and the second controller set in the first circuit breaker and the second circuit breaker can be implemented with a similar structure, and it can also be implemented with a similar structure here.
  • the controller in the circuit breaker in this embodiment, after receiving the opening and closing signal sent by the monitoring machine The execution process is shown in Figure 13. Specifically, the process can include:
  • the controller receives the opening and closing signal and check code sent by the monitoring machine. Specifically, for the circuit breaker corresponding to the current working power supply, it receives the opening signal and the opening check code. For the current standby power supply The corresponding circuit breaker receives the closing signal and closing check code;
  • step 13002. The controller judges whether the check code received in step 13001 is the same as the agreement, that is, judges whether the check code is the same as the preset content, and if so, determines that the opening and closing signal corresponding to the check code is a legal signal And step 13003 is executed, if not, it is determined that the opening and closing signal corresponding to the check code is an illegal signal and step 13004 is executed.
  • the controller determines in step 13002 that the opening/closing signal corresponding to the check code is a legal signal, it executes the opening/closing command corresponding to the opening/closing signal, specifically, for the circuit breaker corresponding to the current working power supply , It executes opening according to the opening signal, and for the circuit breaker corresponding to the current standby power supply, it executes closing according to the closing signal.
  • step 13002 determines in step 13002 that the opening/closing signal corresponding to the check code is not a legal signal, the opening/closing command corresponding to the opening/closing signal will not be executed, that is, at this time, it may be a monitoring
  • the controller sends out an incorrect command, or the controller receives a malicious operation command sent by other devices, or other circumstances, and the controller does not execute the corresponding opening and closing commands at this time.
  • the opening check code and/or the closing check code are added, and the signal sent by the monitoring machine to the first controller and/or the second controller includes several The fixed check digit, the first controller and/or the second controller automatically detect whether the check digit is normal, if it is normal, execute the opening and closing command, if it is not normal, then refuse to execute the opening and closing command to ensure that the monitoring machine
  • the first controller and/or the second controller can maintain the normal on/off state of the first circuit breaker and/or the second circuit breaker, and continue to supply power.
  • the first circuit breaker and the second circuit breaker can be circuit breakers of similar structure, that is, the monitoring machine can also obtain the standby power supply through the second contact set in the second circuit breaker.
  • the off state specifically, the monitoring machine receives the closing feedback signal sent by the second contact included in the second circuit breaker, and the second contact is used to detect the on-off state of the standby power supply . Therefore, a specific implementation method for the monitoring machine to obtain the closing feedback signal is provided, that is, it can be obtained through the second contact in the second circuit breaker, so that the monitoring machine can know the connection of the second circuit breaker.
  • the on-off state of the backup power supply increases the feasibility of the solution.
  • the first circuit breaker and the second circuit breaker can be circuit breakers of similar structure, that is, the monitoring machine can also obtain the on-off status of the standby power supply through a sensor.
  • the monitoring machine receives The closing feedback signal sent by the sensor, the sensor is connected to the backup power supply, and is used to collect the power supply parameters of the backup power supply.
  • the power supply parameters of the backup power supply include the on-off state of the backup power supply. Therefore, a specific implementation method for the monitoring machine to obtain the closing feedback signal is provided, that is, it can be obtained through the second contact in the second circuit breaker, so that the monitoring machine can know the connection of the second circuit breaker.
  • the on-off state of the backup power supply increases the feasibility of the solution.
  • the monitoring machine 1400 provided in the embodiment of the present application is applied to a power exchange control system.
  • the power exchange control system includes a first circuit breaker connected to a working power source and a second circuit breaker connected to a standby power source.
  • the monitoring machine 1400 includes :
  • the obtaining unit 1401 is used for the monitoring machine to obtain a power replacement instruction
  • the generating unit 1402 is used to generate an opening signal and a closing signal according to the power exchange instruction
  • the transceiver unit 1403 is used to send an opening signal to the first controller, the first controller is included in the first circuit breaker, the first circuit breaker includes a first on-off device, and the first on-off device is used in the first controller Adjust the on-off state of the working power supply under the control of
  • the transceiver unit 1403 is also used to send a closing signal to the second controller.
  • the second controller is included in the second circuit breaker.
  • the second circuit breaker includes a second on-off device.
  • the second on-off device is used to control the The on-off state of the standby power supply is adjusted under the control of the controller.
  • the acquiring unit 1401 is also used to acquire an opening feedback signal, and the opening feedback signal is used to indicate that the on-off state of the working power supply is adjusted from on to off;
  • the transceiver unit 1403 is also configured to send the closing signal to the second controller after the monitoring machine determines that it receives the opening feedback signal.
  • the obtaining unit 1401 is specifically configured to:
  • the opening feedback signal sent by the first contact is received, the first contact is included in the first circuit breaker, and the first contact is used for detecting the on-off state of the working power supply.
  • the obtaining unit 1401 is specifically configured to:
  • the opening feedback signal sent by the sensor is received, and the sensor is connected to a working power supply for collecting power supply parameters of the working power supply.
  • the power supply parameters of the working power supply include the on-off state of the working power supply.
  • the transceiver unit 1403 is further configured to:
  • the transceiver unit 1403 is further configured to:
  • the closing check code is sent to the second controller, and the closing check code is used by the second controller to verify the legitimacy of the closing signal.
  • the transceiver unit 1403 is further configured to:
  • the second contact is included in the second circuit breaker, and the second contact is used to detect the on-off state of the standby power supply.
  • the transceiver unit 1403 is further configured to:
  • the sensor is connected to the backup power supply, and is used to collect the power supply parameters of the backup power supply.
  • the power supply parameters of the backup power supply include the on-off state of the backup power supply.
  • FIG. 15 shows a schematic diagram of a possible logical structure of the monitoring machine 1500 involved in the above-mentioned embodiments provided by the embodiments of this application.
  • the monitoring machine 1500 includes a processor 1501, a communication port 1502, a memory 1503, and a bus 1504.
  • the processor 1501, the communication port 1502, and the memory 1503 are connected to each other through a bus 1504.
  • the processor 1501 is used to control the actions of the monitoring machine 1500.
  • the processor 1501 is used to perform the functions performed by the generating unit 1402 in FIG. 14.
  • the communication port 1502 is used to perform the functions performed by the acquisition unit 1401 and the transceiver unit 1403 in FIG. 14, and supports the monitoring machine 1500 to communicate.
  • the memory 1503 is used to store the program code and data of the monitoring machine 1500.
  • the processor 1501 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 1504 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the embodiment of the present application also provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes the above-mentioned power-swapping control method.
  • the embodiments of the present application also provide a computer program product storing one or more computer-executable instructions.
  • the processor executes the above-mentioned power-swapping control method.
  • the present application also provides a chip system, which includes a processor, and is used to support the controller to implement the functions involved in the above-mentioned power exchange control method.
  • the chip system may also include a memory and a memory for storing necessary program instructions and data.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例公开了一种换电控制系统及换电控制方法,用于实现对多路电源供电场景中电源布置的优化。在该换电控制系统中,断路器包括控制器和通断装置,控制器根据监控机的信号来实现通断装置对断路器所连接的电源通断的调整,即根据监控机的分闸信号将正在工作的工作电源由接通调整为关断,并根据监控机的合闸信号将备用电源由关断调整为接通实现工作电源与备用电源的换电过程,与现有技术中通过独立自动转换开关电器进行换电过程相比,简化了电源输入部分的结构,易于实现电源的灵活布置。

Description

一种换电控制系统及换电控制方法
本申请要求于2019年11月13日提交中国专利局、申请号为201911108961.3、发明名称为“一种换电控制系统及换电控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电源控制领域,尤其涉及一种换电控制系统及换电控制方法。
背景技术
为了确保通信系统的可靠供电,通讯电源一般可以采用多路供电系统,常见的有双路供电系统,即从两个不同的电源接线到电源插框,通过电源插框中两个不同的断路器来分别控制不同电源的通断,互为备用,但电源插框一般只能从其中一路取电,如果两路同时接通,两个不同电源短路,则可能会产生双电源进线并网事故。
在现有技术中,通信电源双路供电互锁功能的方案可以通过使用自动转换开关电器(automatic transfer switch,ATS)来实现,其中,ATS是包含互为闭锁的两个开关用以实现换电功能的装置,其开关是不具有短路电流分断能力的接触器或闸刀,两个开关之间的互为闭锁通过机械连杆实现。
然而,在使用ATS的方案中,每一路电源还配备有一个独立的输入断路器,相当于断路器和ATS中的开关串联连接,使得ATS中通过机械连杆实现的两个开关被封装在一个ATS壳体内,从而仅当两路输入电源的相对位置满足ATS中机械连杆指定的位置关系时,才可以实现换电功能,对其连接的两个输入电源的相对位置存在一定的限制,导致布线灵活性较差。
发明内容
本申请实施例提供了一种换电控制系统及其控制方法,用于实现对多路电源供电场景中电源布置的优化。
本申请实施例第一方面提供了一种换电控制系统,可应用于多路电源供电的场景,一般来说,为保证供电连续不中断,该多路电源中存在当前工作的工作电源和应急辅助使用的备用电源,具体来说,对于多路电源中的任一路电源来说,若该路电源当前正在供电即为工作电源、若该路电源当前未供电即为备用电源,工作电源和备用电源两者互为备用,其中,该换电控制系统包括连接工作电源的第一断路器、连接备用电源的第二断路器、以及用于控制第一断路器通断和第二断路器通断的监控机;其中,第一断路器包括相互连接的第一控制器和第一通断装置,第一控制器连接监控机;第二断路器包括相互连接的第二控制器和第二通断装置,第二控制器连接监控机;当监控机自身生成或者接收到换电指令时,该监控机会根据该换电指令生成分闸信号和合闸信号,并分别将分闸信号发送至用于控制工作电源所在第一断路器的第一控制器、将合闸信号发送至用于控制备用电源所在第二断路器的第二控制器,此后,第一控制器用于根据监控机的分闸信号控制第一断路器中 的第一通断装置将工作电源的通断状态由接通调整为关断;第二控制器用于根据监控机的合闸信号控制第二通断装置将备用电源的通断状态由关断调整为接通。对于第一断路器和第二断路器来说,具体是根据监控机的信号来实现通断装置对断路器所连接的电源通断的调整,即根据监控机的分闸信号将正在工作的工作电源由接通调整为关断,并根据监控机的合闸信号将备用电源由关断调整为接通实现工作电源与备用电源的换电过程,与现有技术中通过独立ATS进行换电过程相比,简化了电源输入部分的结构,不会受到机械连接的空间限制,易于实现电源的灵活布置。
需要说明的是,该换电控制系统可应用于多路电源供电的场景,其中,多路电源对应的电源数量为n(n为大于1的整数),工作电源和备用电源的数量分别为a和b(a、b均为大于0的整数),可以根据现场作业的工作环境对其数量进行调整,例如工作电源和备用电源可以为单路电源、两路电源、多路电源等,此处不做限定。此外,在实际作业过程中,当备用电源数量较多时,可以根据备用电源的供电质量来优选其中的供电质量较好的电源。
基于本申请实施例第一方面,本申请实施例第一方面的第一种实施例中,为了确保在该换电控制系统中工作电源关断之后再接入该备用电源,该换电控制系统还可以包括逻辑控制装置;其中,第一控制器通过逻辑控制装置连接监控机,第二控制器也通过逻辑控制装置连接所述监控机,也就是说,第一控制器和第二控制器分别接入该逻辑控制装置之后,该逻辑控制装置连接监控机;该逻辑控制装置在确定该工作电源的通断状态由接通调整为关断之后,该逻辑控制装置将该监控机的合闸信号发送至该第二控制器,其中,该逻辑控制装置可以通过是硬件模块来实现,也可以是软件模块来实现,例如,可以逻辑电路来实习先,也可以通过可编程芯片配合逻辑软件的方式实现或者是其他的方式,此处不做限定。
本实施例中,该逻辑控制装置只有在确定该工作电源的通断状态由接通调整为关断之后,该逻辑控制装置才会将该监控机的合闸信号发送至该第二控制器,使得第二控制器根据该合闸信号控制第二通断装置将备用电源的通断状态由关断调整为接通,从而,通过逻辑控制装置的设置确保工作电源和备用电源同时接入的并网事故,此外,具体该逻辑控制装置确定该工作电源的通断状态由接通调整为关断的方式可以有多种。
基于本申请实施例第一方面的第一种实施例,本申请实施例第一方面的第二种实施例中,逻辑控制装置用于将监控机发出的控制信号仅发送至第一控制器和第二控制器其中之一,该控制信号可以包括分闸信号或合闸信号,也就是说,监控机下发的信号中,分闸信号只能发送至第一控制器和第二控制器其中之一,合闸信号也是只能发送至第一控制器和第二控制器其中之一。
本实施例中,为了防止监控机由于故障对第一断路器和第二断路器同时发出分闸信号导致工作电源和备用电源都断电的情况,并防止监控机由于故障对第一断路器和第二断路器同时发出合闸信号导致工作电源和备用电源并网事故,可以通过逻辑控制装置来加强信号的控制,保证用电安全。
基于本申请实施例第一方面、第一方面的第一种实施例和第一方面的第二种实施例,本申请实施例第一方面的第三种实施例中,该第一通断装置还包括第一触头,该第一触头 用于检测该工作电源的通断状态并将工作电源的通断状态反馈至该监控机;该第二通断装置还包括第二触头,该第二触头用于检测该备用电源的通断状态并将该备用电源的通断状态反馈至该监控机。其中,工作电源的通断状态指示工作电源接通或者是关断,备用电源的通断状态指示备用电源接通或者是关断。
本实施例中,监控机可以通过在断路器中的通断装置中设置的触头来确定电源的通断状态,即通过第一通断装置中的第一触头检测该工作电源的通断状态并将工作电源的通断状态反馈至该监控机,并通过第二通断装置中的第二触头检测该备用电源的通断状态并将该备用电源的通断状态反馈至该监控机。
基于本申请实施例第一方面、第一方面的第一种实施例至第一方面的第三种实施例任一实施例,本申请实施例第一方面的第四种实施例中,该换电控制系统还可以包括传感器;该传感器的一端连接该工作电源和该备用电源,用于采集该工作电源的供电参数和该备用电源的供电参数;该传感器的另一端连接该监控机,用于将该工作电源的供电参数和该备用电源的供电参数发送至该监控机。
本实施例中,该传感器的数量可以为一个,也可以为多个,具体来说,该传感器用于采集工作电源的供电参数和备用电源的供电参数并将其反馈至监控机,使得监控机可以获知工作电源的供电参数和备用电源的供电参数。其中,该传感器可以是电压传感器、电流传感器等,由此,该供电参数可以包括电压值、电流值、电压、电流随时间的变化曲线等或者是其他的供电参数,此外,监控机也可以根据该工作电源的供电参数和该备用电源的供电参数来分别确定出该工作电源和该备用电源的通断状态。
基于本申请实施例第一方面、第一方面的第一种实施例至第一方面的第四种实施例任一实施例,本申请实施例第一方面的第五种实施例中,该装置还包括母排,其中,该监控机通过该母排分别连接该第一控制器和该第二控制器。
本实施例中,监控机与该第一控制器和该第二控制器的连接可以是有线连接,也可以是无线连接,此处限定其是通过母排连接,提供了方案的一种具体的实现方式,此外,若该系统中还包括有硬件实现的逻辑控制装置和/或该传感器,该逻辑控制装置和/或该传感器也可以是集成在母排上。
本申请实施例第二方面提供了一种换电控制方法,应用于换电控制系统,可应用于多路电源供电的场景,一般来说,为保证供电连续不中断,该多路电源中存在当前工作的工作电源和应急辅助使用的备用电源,具体来说,对于多路电源中的任一路电源来说,若该路电源当前正在供电即为工作电源、若该路电源当前未供电即为备用电源,工作电源和备用电源两者互为备用,其中,该换电控制系统包括连接工作电源的第一断路器、连接备用电源的第二断路器、以及用于控制第一断路器通断和第二断路器通断的监控机;对于该监控机来说,换电控制方法包括:监控机可以通过多种方式自身生成或者是获取人为输入的换电指令,该换电指令用于指示需要将多路电源中的工作电源关断、并接入备用电源;该监控机根据该换电指令生成用于控制工作电源关断的分闸信号和控制备用电源接通的合闸信号;此后,该监控机向第一控制器发送该分闸信号,该第一控制器包含于该第一断路器,该第一断路器包括第一通断装置,该第一通断装置用于在该第一控制器的控制下调整该工 作电源的通断状态,即将当前供电的工作电源由接通状态调整为关断状态;该监控机向第二控制器发送该合闸信号,该第二控制器包含于该第二断路器,该第二断路器包括第二通断装置,该第二通断装置用于在该第二控制器的控制下调整该备用电源的通断状态,即将当前未供电的备用电源由关断状态调整为接通状态。从而,对于第一断路器和第二断路器来说,具体是根据监控机的信号来实现通断装置对断路器所连接的电源通断的调整,即根据监控机的分闸信号将正在工作的工作电源由接通调整为关断,并根据监控机的合闸信号将备用电源由关断调整为接通实现工作电源与备用电源的换电过程,与现有技术中通过独立ATS进行换电过程相比,简化了电源输入部分的结构,不会受到机械连接的空间限制,易于实现电源的灵活布置。
需要说明的是,该换电控制系统可应用于多路电源供电的场景,其中,多路电源对应的电源数量为n(n为大于1的整数),工作电源和备用电源对应的电源数量分别为a和b(a、b均为大于0的整数),可以根据现场作业的工作环境对其数量进行调整,例如工作电源和备用电源可以为单路电源、两路电源、多路电源等,此处不做限定。此外,在实际作业过程中,当备用电源数量较多时,可以根据备用电源的供电质量来优选其中的供电质量较好的电源。
基于本申请实施例第二方面,本申请实施例第二方面的第一种实施例中,该换电控制方法还包括:监控机获取该分闸反馈信号,其中,该分闸反馈信号用于指示该工作电源的通断状态由接通调整为关断;当该监控机确定收到该分闸反馈信号后,即监控机确定工作电源的通断状态由接通调整为关断之后,该监控机才会执行向该第二控制器发送该合闸信号。
本实施例中,仅有当该监控机确定收到该分闸反馈信号后,即监控机确定工作电源的通断状态由接通调整为关断之后,该监控机才会执行向该第二控制器发送该合闸信号,从而可以防止在工作电源的通断状态尚未由接通调整为关断的时候就向第二控制器发送该合闸信号,避免工作电源和备用电源同时接通所产生的并网事故。
基于本申请实施例第二方面的第一种实施例,本申请实施例第二方面的第二种实施例中,该监控机获取该分闸反馈信号包括:该监控机接收第一触头发送的该分闸反馈信号,该第一触头包含于该第一断路器,该第一触头用于检测该工作电源的通断状态。
本实施例中,提供了监控机获取该分闸反馈信号的一种具体的实现方式,即可以通过第一断路器中的第一触头来获取,增加方案的可实现性。
基于本申请实施例第二方面的第一种实施例,本申请实施例第二方面的第三种实施例中,该监控机获取该分闸反馈信号包括:该监控机接收传感器发送的该分闸反馈信号,该传感器连接该工作电源,用于采集该工作电源的供电参数,该工作电源的供电参数包括该工作电源的通断状态。
本实施例中,提供了监控机获取该分闸反馈信号的一种具体的实现方式,即可以通过传感器所采集的供电参数来获取,增加方案的可实现性。
基于本申请实施例第二方面、第二方面第一种实施例至第三种实施例中的任一实施例,本申请实施例第二方面的第四种实施例中,该方法还包括:该监控机向该第一控制器发送 分闸校验码,该分闸校验码用于该第一控制器验证该分闸信号的合法性;和/或,该监控机向该第二控制器发送合闸校验码,该合闸校验码用于该第二控制器验证该合闸信号的合法性。
本实施例中,为防止通信故障导致的误动作,增加分闸校验码和/或合闸校验码,在监控机发送给第一控制器和/或第二控制器的信号中包含若干固定的校验位,第一控制器和/或第二控制器自动检测核对校验位是否正常,如果正常则执行分合闸命令,如果不正常则拒绝执行分合闸命令,保障在监控机故障(掉电)或通信故障时,第一控制器和/或第二控制器能维持第一断路器和/或第二断路器正常的接通/关断状态,继续供电。
基于本申请实施例第二方面、第二方面第一种实施例至第四种实施例中的任一实施例,本申请实施例第二方面的第五种实施例中,该方法还包括:该监控机接收第二触头发送的合闸反馈信号,该第二触头包含于该第二断路器,该第二触头用于检测该备用电源的通断状态。
本实施例中,提供了监控机获取该合闸反馈信号的一种具体的实现方式,即可以通过第二断路器中的第二触头来获取,从而使得监控机可以得知第二断路器所连接的备用电源的通断状态,增加方案的可实现性。
基于本申请实施例第二方面、第二方面第一种实施例至第五种实施例中的任一实施例,本申请实施例第二方面的第六种实施例中,该方法还包括:该监控机接收传感器发送的合闸反馈信号,该传感器连接该备用电源,用于采集该备用电源的供电参数,该备用电源的供电参数包括该备用电源的通断状态。
本实施例中,提供了监控机获取该合闸反馈信号的一种具体的实现方式,即可以通过第二断路器中的第二触头来获取,从而使得监控机可以得知第二断路器所连接的备用电源的通断状态,增加方案的可实现性。
本申请实施例第三方面提供一种监控机,该监控机具有实现上述第二方面或第二方面任意一种可能实现方式的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块,例如:获取单元、生成单元和收发单元。
本申请实施例第四方面提供了一种监控机,该监控机包括至少一个处理器、存储器、通信端口以及存储在存储器中并可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第五方面提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当所述计算机执行指令被处理器执行时,所述处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第六方面提供一种存储一个或多个计算机执行指令的计算机程序产品,当所述计算机执行指令被所述处理器执行时,所述处理器执行上述第二方面或第二方面任意一种可能实现方式的方法。
本申请第七方面提供了一种芯片系统,该芯片系统包括处理器,用于支持控制器实现 上述第二方面或第二方面任意一种可能的实现方式中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第七方面或者其中任一种可能实现方式所带来的技术效果可参见第二方面或第二方面不同可能实现方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
本实施例中,换电控制系统包括连接第一电源的第一断路器、连接第二电源的第二断路器、监控机;第一断路器包括第一控制器和第一通断装置,第一控制器用于根据监控机的分闸信号控制第一通断装置将第一电源由接通调整为关断;第二断路器包括第二控制器和第二通断装置,第二控制器用于根据监控机的合闸信号控制第二通断装置将第二电源由关断调整为接通。其中,在换电控制系统中,断路器包括控制器和通断装置,控制器根据监控机的信号来实现通断装置对断路器所连接的电源通断的调整,即根据监控机的分闸信号将正在工作的工作电源由接通调整为关断,并根据监控机的合闸信号将备用电源由关断调整为接通实现工作电源与备用电源的换电过程,与现有技术中通过独立ATS进行换电过程相比,简化了电源输入部分的结构,不会受到机械连接的空间限制,易于实现电源的灵活布置。
附图说明
图1为本申请实施例中一种换电控制系统实施例的一个示意图;
图2为本申请实施例中一种换电控制系统实施例的另一个示意图;
图3为本申请实施例中一种换电控制系统实施例的另一个示意图;
图4为本申请实施例中一种换电控制系统实施例的另一个示意图;
图5为本申请实施例中一种换电控制系统实施例的另一个示意图;
图6为本申请实施例中一种换电控制系统实施例的另一个示意图;
图7为本申请实施例中一种换电控制系统实施例的另一个示意图;
图8为本申请实施例中一种换电控制系统实施例的另一个示意图;
图9为本申请实施例中一种换电控制系统实施例的另一个示意图;
图10为本申请实施例中一种换电控制系统实施例的另一个示意图;
图11为本申请实施例中一种换电控制系统实施例的另一个示意图;
图12为本申请实施例中一种换电控制方法实施例的一个示意图;
图13为本申请实施例中一种换电控制方法实施例的另一个示意图;
图14为本申请实施例中一种监控机的一个示意图;
图15为本申请实施例中一种监控机的另一个示意图。
具体实施方式
本申请实施例提供了一种换电控制系统及其控制方法,用于实现对多路电源供电场景中电源布置的优化。
为了确保通信系统的可靠供电,通讯电源一般可以采用多路供电系统,常见的有双路供电系统,即从两个不同的电源接线到电源插框,通过电源插框中两个不同的断路器来分别控制不同电源的通断,互为备用,但电源插框一般只能从其中一路取电,如果两路同时接通,两个不同电源短路,则可能会产生双电源进线并网事故。在现有技术中,通信电源双路供电互锁功能的方案可以通过使用自动转换开关电器ATS来实现,其中,ATS是包含互为闭锁的两个开关用以实现换电功能的装置,其开关是不具有短路电流分断能力的接触器或闸刀,两个开关之间的闭锁通过机械连杆实现。
然而,在使用ATS的方案中,每一路电源还配备有一个独立的输入断路器,相当于断路器和ATS中的开关串联连接,使得ATS中通过机械连杆实现的两个开关被封装在一个ATS壳体内,从而仅当两路输入电源的相对位置满足ATS中机械连杆指定的位置关系时,才可以实现换电功能,对其连接的两个输入电源的相对位置存在一定的限制,导致布线灵活性较差。
下面将对本申请实施例中一种换电控制系统进行具体的描述,该换电控制系统可应用于多路电源供电的场景,一般来说,为保证供电连续不中断,该多路电源中存在当前工作的工作电源和应急辅助使用的备用电源,具体来说,对于多路电源中的任一路电源来说,若该路电源当前正在供电即为工作电源、若该路电源当前未供电即为备用电源,工作电源和备用电源两者互为备用。
请参阅图1,本申请实施例中一种换电控制系统包括连接工作电源100的第一断路器120、连接备用电源110的第二断路器130、以及用于控制第一断路器120通断和第二断路器通断130的监控机140;其中,第一断路器120包括相互连接的第一控制器1201和第一通断装置1202,第一控制器1202连接监控机140;第二断路器130包括相互连接的第二控制器1301和第二通断装置1302,第二控制器1301连接监控机140;当监控机140自身生成或者接收到换电指令时,该监控机140会根据该换电指令生成分闸信号和合闸信号,并分别将分闸信号发送至用于控制工作电源100所在第一断路器120的第一控制器1201、将合闸信号发送至用于控制备用电源110所在第二断路器130的第二控制器1301,此后,第一控制器1201用于根据监控机140发送的140分闸信号控制第一断路器120中的第一通断装置1202将工作电源100的通断状态由接通调整为关断;第二控制器130用于根据监控机140发送的合闸信号控制第二通断装置1302将备用电源110的通断状态由关断调整为接通。
本实施例中,对于第一断路器120和第二断路器130来说,具体是根据监控机140的信号来实现通断装置对断路器所连接的电源通断的调整,即根据监控机140的分闸信号将正在工作的工作电源100由接通调整为关断,并根据监控机140的合闸信号将备用电源110由关断调整为接通实现工作电源100与备用电源110的换电过程。
需要说明的是,该换电控制系统可应用于多路电源供电的场景,其中,多路电源对应的电源数量为n(n为大于1的整数),工作电源和备用电源对应的电源数量分别为a和b(a、b均为大于0的整数),可以根据现场作业的工作环境对其数量进行调整,此处不做限定,与之对应的,用于控制工作电源的第一断路器数量可以是与工作电源的电源数量相等,用于控制备用电源的第二断路器数量也可以是与备用电源的电源数量相等。此外,在 实际作业过程中,当备用电源数量较多时,可以根据备用电源的供电质量来优选其中的供电质量较好的电源。
此外,具体第一断路器120和第二断路器130可以采用结构统一的断路器,具体该结构统一的断路器的示意图可参考如图2和图3所示,其中,该断路器1包括用于接入电源的输入接线端子11、用于控制的物理按钮12、用于输出的功率输出卡槽13&14,用于与外部通信的通信卡槽15、用于接通/关断电源的通断装置可以通过相互连接的电机19、传动机构20与电磁脱扣器21来实现,也可以通过主触头19来实现、或者是辅触头20来实现,此处不做限定,该断路器1还包括传感器21及用于控制断路器1内各个部件的控制器22。
本申请实施例中,具体该换电控制系统中,监控机140分别通过有线连接或者是无线连接向第一控制器1201和第二控制器1301发送分闸信号和合闸信号,一般来说,由于信号传输的速度较快,第一控制器1201收到分闸信号和第二控制器1301收到合闸信号的时刻接近,使得二者执行的过程可能存在一定的时间差,有些接入电源的用电负载存在缓冲装置,该缓冲装置可以使得该用电负载在工作电源100和备用电源110同时接入或者同时断开的情况下仍旧正常工作,但是对于电流电压敏感的用电负载来说,在工作电源100和备用电源110同时接入或者同时断开的情况下会导致用电负载发生故障损坏,为了避免这种情况的发生,可以通过逻辑控制装置的设置对第一断路器120和第二断路器130进行互锁,具体实现过程来说,该逻辑控制装置可以通过软件模块来实现,也可以通过硬件模块来实现该互锁过程,下面将结合具体的实施例来进行描述。
一、逻辑控制装置通过软件模块实现第一断路器120和第二断路器130互锁
本实施例中,可以通过增加软件模块来实现第一断路器120和第二断路器130互锁,该软件模块可以独立设置、也可以集成在监控机140中,本实施例中仅以该软件模块集成在监控机140中实现为例进行说明。具体来说,该软件模块的实现逻辑是,仅有当监控机140确定用于控制工作电源100的通断状态由接通调整为关断即收到工作电源100对应的第一断路器120的分闸成功反馈之后,监控机再将合闸信号发送至控制备用电源110通断的第二断路器130中的第二控制器1301,作为一个可选步骤,监控机在确定接收到备用电源110对应的第二断路器130的合闸反馈之后,监控机可以已完成当前换电过程。
具体监控机的工作过程可参阅图4,其中,监控机执行的相关步骤过程可以包括:
步骤401、监控机判断当前工作电源供电质量,若合格则执行步骤410、若不合格,则执行步骤403;
步骤402、监控机接收到换电指令时,触发执行步骤403;
步骤403、当监控机确定在步骤401中当前工作电源供电质量不合格或者是在步骤402接收到换电指令时,启动换电程序;
步骤404、监控机发出在位断路器分闸命令,也就是说向当前的工作电源对应的断路器发送分闸命令;
步骤405、监控机判断是否收到分闸成功反馈,若是,则执行步骤406,若否,则执行步骤407;
步骤406、若监控机确认收到分闸成功反馈时,监控机发出备用断路器合闸命令,也 就是说向备用电源所在的断路器发出合闸命令;
步骤407、若监控机未收到分闸成功反馈时,监控机等待预设时长是否超限,若是,则确定步骤408,若否,则反馈至步骤405确认收到分闸成功反馈;
步骤408、若监控机等待预设时长超限时,即确定系统故障,此时可以通过故障灯/故障警报等提醒现场作业人员进行人工排障;
步骤409、在步骤406监控机发出备用断路器合闸命令之后,监控机判断是否收到合闸成功反馈,若是,则执行步骤410,若否,则执行步骤411;
步骤410、当监控机在步骤401确定当前工作电源供电指令合格或者是当监控机在步骤409确定收到合闸成功反馈时,监控机确定当前换电操作结束,可以退出换电程序;
步骤411、当监控机确定在步骤409未收到合闸成功反馈时,监控机等待预设时长是否超限,若是,则确定步骤412,若否,则反馈至步骤409确认收到分闸成功反馈;
步骤412、当监控机机等待预设时长超限时,即确定系统故障,此时可以通过故障灯/故障警报等提醒现场作业人员进行人工排障。
其中,监控机在获取工作电源100的通断状态的方式即断路器的分合闸反馈的方式也有多种,例如可以是通过设置在第一断路器120中的反馈部件来获取,也可以是通过工作电源的传感器来获取,下面将分别介绍:
(1)监控机140通过设置在第一断路器120中第一通断装置1202的第一触头来确定。
结合图2所示的断路器结构,对于其中的通断装置来说,具体实现电源通断控制的部件可以是通过触头控制、脱扣器控制或者是其他的部件来实现。此处以该通断装置为触头(例如图2中的主触头19和/或辅触头20)控制来说明,结合图1所示的换电控制系统中,该第一通断装置1202还可以包括第一触头,该第一触头用于检测该工作电源100的通断状态并将工作电源100的通断状态反馈至该监控机140。与之对应的,对于第二断路器1300来说,也可以设置类似的反馈部件,具体来说,在第二断路器1300中,第二通断装置1302还包括第二触头,该第二触头用于检测该备用电源110的通断状态并将该备用电源110的通断状态反馈至该监控机140,反馈过程可以是触头通过断路器中的用于与外部通信的通信卡槽15与监控机140相连接(有线或无线)来实现。
本实施例中,结合图1中换电系统示意图及图2中断路器的示意图,监控机140具体可以通过在断路器1中的通断装置中设置的触头来确定电源的通断状态,使得监控机140可以得知工作电源100和备用电源110的工作状态。从而,当监控机140确定用于控制工作电源100的通断状态由接通调整为关断时,监控机再将合闸信号发送至控制备用电源110通断的第二断路器130中的第二控制器1301,可以从源头上避免工作电源100和备用电源110同时接入的情况下会导致用电负载发生故障损坏,此外,监控机140在获知备用电源110的通断状态由关断调整为接通之后,也可以确定触发其执行换电操作的换电指令已执行完毕。
(2)监控机140通过设置在工作电源的传感器来确定。
其中,该换电控制系统还可以包括传感器;该传感器的一端连接该工作电源100和该备用电源110,用于采集该工作电源100的供电参数和该备用电源110的供电参数;该传 感器的另一端连接该监控机140,用于将该工作电源100的供电参数和该备用电源110的供电参数发送至该监控机140。
本实施例中,该传感器的数量可以为一个,也可以为多个,具体来说,该传感器用于采集工作电源100的供电参数和备用电源110的供电参数并将其反馈至监控机140,使得监控机140可以获知工作电源100的供电参数和备用电源140的供电参数。其中,该传感器可以是电压传感器、电流传感器等,由此,该供电参数可以包括电压值、电流值、电压、电流随时间的变化曲线等或者是其他的供电参数,从而,监控机140可以根据该工作电源100的供电参数和该备用电源110的供电参数来分别确定出该工作电源100和该备用电源110的通断状态。此外,参照图1所示的换电控制系统,检测工作电源100的传感器可以设置在工作电源100与第一断路器120之间,也可以设置在第一断路器120与监控机140之间,此处不做限定,类似地,检测备用电源110的传感器可以设置在备用电源110与第二断路器130之间,也可以设置在第二断路器130与监控机140之间,此处不做限定。
作为一个优选的实施例,监控机140分别与第一断路器120和第二断路器130的连接可以为有线连接,此时,请参阅图5,具体该连接可以通过母排150来实现,例如通信背板母排150,其中,通信背板母排150分别连接监控机140与第一断路器120、监控机140与第二断路器130,此外,在图5所示示意图的基础上,可以如图6所示,将传感器160加载在该通信背板母排150上,此后,还可以通过整流器170将电源端连接至用电负载中。此外,常规断路器需要在每一个断路器内部布置电压、电流传感器,一方面增加了系统成本和体积,另一方面断路器燃弧室的高温和强电磁干扰会对传感器的精度、寿命和可靠性带来影响,因此,本实施例中,作为一个优选方案,可以将(电压、电流)传感器160布置在背板母排150上的合适位置,监控机140负责供电参数的采集、处理、计量、保护判断等功能。
图7为第一断路器(1-1)与第二断路器(1-2)与母排2的一种实现示意图,通信背板母排150包括功率端子23&24和控制信号端子25,功率端子23&24与整流器4连接,结合图2、图3中断路器的结构示意图可以得知,在图8中,具体可以通过第一断路器(1-1)与第二断路器(1-2)的与外部通信的通信卡槽15与通信背板母排150的控制信号端子25相连接,需要说明的是,分合闸指令信号和分合闸反馈信号可以如图8中设置专门的引脚,也可以使用通信数据包的形式实现,此处不做限定。请参阅下表1,为断路器中的信号卡槽15(母头)和对应背板金手指25(公头)的一种引脚定义方式:
Figure PCTCN2020123859-appb-000001
表1
二、逻辑控制装置通过硬件实现第一断路器120和第二断路器130互锁
本申请实施例中,在逻辑控制装置的具体实现中,也可以通过增加硬件模块的方式来实现第一断路器120和第二断路器130互锁,该硬件模块可以独立设置、也可以集成在监控机140中,本实施例中仅以该硬件模块独立设置实现为例进行说明。具体来说,该硬件模块的实现逻辑是,仅当该硬件模块确定用于控制工作电源100的通断状态由接通调整为关断时,该硬件模块才会将监控机140发送的合闸信号发送至控制备用电源110通断的第二断路器130中的第二控制器1301。
具体来说,在该换电控制系统还可以包括硬件模块;其中,第一控制器120通过该硬件模块连接监控机140,第二控制器130也通过该硬件模块连接所述监控机140,也就是说,第一控制器1201和第二控制器1301分别接入该硬件模块之后,该硬件模块连接监控机140;该硬件模块在确定该工作电源100的通断状态由接通调整为关断之后,才将该监控机140的合闸信号发送至该第二控制器1301,使得第二控制器1301根据该合闸信号控制第二通断装置1302将备用电源110的通断状态由关断调整为接通,从而,通过硬件模块的设置确保工作电源100和备用电源110同时接入的并网事故。
此外,为了加强硬件互锁的可靠性,还可以对硬件模块进一步地设置,具体来说,限制该硬件模块将监控机140发出的控制信号仅发送至第一控制器1201和第二控制器1202其中之一,该控制信号可以包括分闸信号或合闸信号,也就是说,监控机140下发的信号中,分闸信号只能发送至第一控制器1201和第二控制器1202其中之一,合闸信号也是只能发送至第一控制器1201和第二控制器1202其中之一,从而,可以防止监控机140由于故障对第一断路器1201和第二断路器1202同时发出分闸信号导致工作电源100和备用电源110都断电的情况,并防止监控机140由于故障对第一断路器1202和第二断路器1302同时发出合闸信号导致工作电源100和备用电源110并网事故,通过硬件模块来加强信号的控制,保证用电安全。
在方案的具体实施过程中,硬件模块可以通过硬件闭锁电路(例如:分立逻辑门硬件)、可编程逻辑控制器(PLC,programmable logic controller)、可编程芯片(CPLD,complex programable logic device)等多种方式实现。此处仅以该硬件模块通过简单的硬件闭锁电路实现为例进行说明,请参阅图9,此处以第一断路器(1号断路器)为255-1、第二断路器(2号断路器)为255-2为例,可以在1号断路器255-1和2号断路器255-2与监控机140的连接之间增加用电子器件搭建的硬件闭锁电路,实现其中任意一路是闭合信号(对应高电平或者低电平)时,另外一路被拉到关断信号,其实现的功能是通过硬件加强互锁的可靠性,在换电操作时,只有闭合的开关先改变为关断状态,另一个开关的接通信号才能够下发,以高电平为闭合命令,且高电平为闭合状态反馈为例说明,所述硬件闭锁电路实现的功能如图9所示,在其中,仅有对应于1号断路器的控制信号或者是仅有对应于2号断路器的控制信号可以下发至对应的断路器。基于此,在有状态反馈线且采用硬件闭锁电路后,换电操作控制逻辑可以变更为图10形式,从而加快换电操作速度。
具体通过添加硬件逻辑控制装置时,监控机的工作过程可参阅图11,其中,监控机执行的相关步骤过程可以包括:
步骤1101、监控机判断当前工作电源供电质量,若合格则执行步骤1106、若不合格, 则执行步骤1103;
步骤1102、监控机接收到换电指令时,触发执行步骤1103;
步骤1103、当监控机确定在步骤1101中当前工作电源供电质量不合格或者是在步骤1102接收到换电指令时,启动换电程序;
步骤1104、监控机发出在位断路器分闸命令、并发出备用断路器合闸命令,也就是说向当前的工作电源对应的断路器发送分闸命令的时候,也向备用电源对应的断路器发送合闸命令;
步骤1105、监控机判断是否收到分合闸成功反馈,即监控机判断是否收到当前的工作电源对应的断路器的分闸反馈以及备用电源对应的断路器的合闸反馈,若是,则执行步骤1106,若否,则执行步骤1107;
步骤1106、若监控机确认收到分合闸成功反馈时,监控机确定当前换电操作结束,可以退出换电程序;
步骤1107、当监控机确定在步骤1105未收到分合闸成功反馈时,监控机等待预设时长是否超限,若是,则确定步骤1108,若否,则反馈至步骤1105确认收到分合闸成功反馈;
步骤1108、当监控机等待预设时长超限时,即确定系统故障,此时可以通过故障灯/故障警报等提醒现场作业人员进行人工排障。
上面对本申请实施例中的换电控制系统进行了描述,下面将从换电控制方法的角度来对该换电控制系统的换电控制过程进行介绍。
请参阅图12,本申请实施例中一种换电控制方法,应用于前述实施例中的换电控制系统,具体来说,可以应用在多路电源供电的场景,一般来说,为保证供电连续不中断,该多路电源中存在当前工作的工作电源和应急辅助使用的备用电源,对于多路电源中的任一路电源来说,若该路电源当前正在供电即为工作电源、若该路电源当前未供电即为备用电源,工作电源和备用电源两者互为备用,其中,该换电控制系统包括连接工作电源的第一断路器、连接备用电源的第二断路器、以及用于控制第一断路器通断和第二断路器通断的监控机,具体该换电控制方法包括:
12001、监控机获取换电指令;
本实施例中,监控机可以通过多种方式自身生成或者是获取人为输入的换电指令,该换电指令用于指示需要将多路电源中的工作电源关断、并接通备用电源。
具体地,监控机获取换电指令可以是监控机自身在检测到现行供电电源出现故障(包括超出限制的频率波动、电压波动、不平衡、电压跌落、谐波等)时生成,或者其他操作发出换电指令(包括管理员远程登录监控机下发指令、现场作业人员输入的指令等)时获取,还可以是其它方式,此处不做限定。
12002、监控机根据换电指令生成分闸信号和合闸信号;
本实施例中,监控机会根据步骤12001获取得到的换电指令生成用于控制工作电源关断的分闸信号和控制备用电源接通的合闸信号。
12003、监控机向第一控制器发送分闸信号;
本实施例中,监控机向第一控制器发送分闸信号,其中,第一控制器包含于第一断路器,第一断路器包括第一通断装置,第一通断装置用于在第一控制器的控制下调整工作电源的通断状态,即第一通断装置用于在第一控制器的控制下将当前供电的工作电源由接通状态调整为关断状态。
12004、监控机向第二控制器发送合闸信号;
本实施例中,监控机向第二控制器发送合闸信号,其中,第二控制器包含于第二断路器,第二断路器包括第二通断装置,第二通断装置用于在第二控制器的控制下调整备用电源的通断状态,即第二通断装置用于在第二控制器的控制下将当前未供电的备用电源由关断状态调整为接通状态。
从而,对于第一断路器和第二断路器来说,具体是根据监控机的信号来实现通断装置对断路器所连接的电源通断的调整,即根据监控机的分闸信号将正在工作的工作电源由接通调整为关断,并根据监控机的合闸信号将备用电源由关断调整为接通实现工作电源与备用电源的换电过程,与现有技术中通过机械连接的方式对断路器进行控制实现的换电过程相比,不会受到机械连接的空间限制,易于实现电源的灵活布置。
需要说明的是,该换电控制系统可应用于多路电源供电的场景,其中,多路电源对应的电源数量为n(n为大于1的整数),工作电源和备用电源对应的电源数量分别为a和b(a、b均为大于0的整数),可以根据现场作业的工作环境对其数量进行调整,此处不做限定,与之对应的,用于控制工作电源的第一断路器数量可以是与工作电源的电源数量相等,用于控制备用电源的第二断路器数量也可以是与备用电源的电源数量相等,此外,在实际作业过程中,当备用电源数量较多时,可以根据备用电源的供电质量来优选其中的供电质量较好的电源。
在一种可能的实现方式中,该换电控制方法还包括:监控机获取该分闸反馈信号,其中,该分闸反馈信号用于指示该工作电源的通断状态由接通调整为关断;当该监控机确定收到该分闸反馈信号后,即监控机确定工作电源的通断状态由接通调整为关断之后,该监控机才会执行向该第二控制器发送该合闸信号,具体监控机的执行步骤可以参考图4的执行过程。从而,仅有当该监控机确定收到该分闸反馈信号后,即监控机确定工作电源的通断状态由接通调整为关断之后,该监控机才会执行向该第二控制器发送该合闸信号,从而可以防止在工作电源的通断状态尚未由接通调整为关断的时候就向第二控制器发送该合闸信号,避免工作电源和备用电源同时接通所产生的并网事故。
在一种可能的实现方式中,该监控机获取该分闸反馈信号的过程有多种形式,可以是通过设置在断路器中的触头来获取,具体来说,该监控机接收第一触头发送的该分闸反馈信号,该第一触头包含于该第一断路器,该第一触头用于检测该工作电源的通断状态。从而,提供了监控机获取该分闸反馈信号的一种具体的实现方式,即可以通过第一断路器中的第一触头来获取,增加方案的可实现性。
在一种可能的实现方式中,该监控机获取该分闸反馈信号的过程还可以是通过传感器来获取,具体来说,该监控机接收传感器发送的该分闸反馈信号,该传感器连接该工作电源,用于采集该工作电源的供电参数,该工作电源的供电参数包括该工作电源的通断状态。 从而,提供了监控机获取该分闸反馈信号的一种具体的实现方式,即可以通过传感器所采集的供电参数来获取,增加方案的可实现性。
在一种可能的实现方式中,该换电控制方法还可以包括:该监控机向该第一控制器发送分闸校验码,该分闸校验码用于该第一控制器验证该分闸信号的合法性;和/或,该监控机向该第二控制器发送合闸校验码,该合闸校验码用于该第二控制器验证该合闸信号的合法性。具体来说,在监控机向第一控制器和第二控制分别发送分闸校验码和合闸校验码之后,对于第一控制器和第二控制来说,可以具体来根据该分闸校验码和合闸校验码来判断是否执行对应的分合闸信号对应的分合闸指令,如前述内容,对于设置于第一断路器和第二断路器的第一控制器和第二控制器来说,可以采用类似的结构来实现,在此处也可以是使用类似的结构来实现,对于断路器中的控制器来说,在本实施例中接收到监控机发送的分合闸信号之后,执行的过程如图13所示,具体来说,该过程可以包括:
13001、控制器接收监控机发送的分合闸信号及校验码,具体来说,对于当前工作电源对应的断路器,其接收到的是分闸信号及分闸校验码,对于当前备用电源对应的断路器,其接收到的是合闸信号及合闸校验码;
13002、控制器判断步骤13001中接收到的校验码是否与约定相同,即判断该校验码是否与预设的内容相同,若是,则确定该校验码对应的分合闸信号为合法信号并执行步骤13003,若否,则确定该校验码对应的分合闸信号为非法信号并执行步骤13004。
13003、若控制器在步骤13002中确定校验码对应的分合闸信号为合法信号时,则执行该分合闸信号对应的分合闸命令,具体来说,对于当前工作电源对应的断路器,其根据分闸信号执行分闸,对于当前备用电源对应的断路器,其根据合闸信号执行合闸。
13004、若控制器在步骤13002中确定校验码对应的分合闸信号不为合法信号时,则不执行该分合闸信号对应的分合闸命令,也就是说,此时,可能是监控机发出了错误指令、或者是控制器收到其它设备发送的恶意操作指令或者是其他的情况,此时控制器不执行对应的分合闸命令。
本实施例中,为防止通信故障导致的误动作,增加分闸校验码和/或合闸校验码,在监控机发送给第一控制器和/或第二控制器的信号中包含若干固定的校验位,第一控制器和/或第二控制器自动检测核对校验位是否正常,如果正常则执行分合闸命令,如果不正常则拒绝执行分合闸命令,保障在监控机故障(掉电)或通信故障时,第一控制器和/或第二控制器能维持第一断路器和/或第二断路器正常的接通/关断状态,继续供电。
在一种可能的实现方式中,第一断路器和第二断路器可以为类似结构的断路器,即监控机也可以通过设置在第二断路器中的第二触头来获取备用电源的通断状态,具体来说,该监控机接收第二触头发送的合闸反馈信号,该第二触头包含于该第二断路器,该第二触头用于检测该备用电源的通断状态。从而,提供了监控机获取该合闸反馈信号的一种具体的实现方式,即可以通过第二断路器中的第二触头来获取,从而使得监控机可以得知第二断路器所连接的备用电源的通断状态,增加方案的可实现性。
在一种可能的实现方式中,第一断路器和第二断路器可以为类似结构的断路器,即监控机也可以通过传感器来获取备用电源的通断状态,具体来说,该监控机接收传感器发送 的合闸反馈信号,该传感器连接该备用电源,用于采集该备用电源的供电参数,该备用电源的供电参数包括该备用电源的通断状态。从而,提供了监控机获取该合闸反馈信号的一种具体的实现方式,即可以通过第二断路器中的第二触头来获取,从而使得监控机可以得知第二断路器所连接的备用电源的通断状态,增加方案的可实现性。
以上描述了通过监控机实现的换电控制方法,下面结合附图介绍本申请实施例提供的监控机。
请参阅图14,本申请实施例中提供的监控机1400,应用于换电控制系统,换电控制系统包括连接工作电源的第一断路器、连接备用电源的第二断路器,监控机1400包括:
获取单元1401,用于监控机获取换电指令;
生成单元1402,用于根据换电指令生成分闸信号和合闸信号;
收发单元1403,用于向第一控制器发送分闸信号,第一控制器包含于第一断路器,第一断路器包括第一通断装置,第一通断装置用于在第一控制器的控制下调整工作电源的通断状态;
收发单元1403,还用于向第二控制器发送合闸信号,第二控制器包含于第二断路器,第二断路器包括第二通断装置,第二通断装置用于在第二控制器的控制下调整备用电源的通断状态。
在一种可能的实现方式中,获取单元1401,还用于获取分闸反馈信号,分闸反馈信号用于指示工作电源的通断状态由接通调整为关断;
收发单元1403,还用于当监控机确定收到分闸反馈信号后,监控机执行向第二控制器发送合闸信号。
在一种可能的实现方式中,获取单元1401具体用于:
接收第一触头发送的分闸反馈信号,第一触头包含于第一断路器,第一触头用于检测工作电源的通断状态。
在一种可能的实现方式中,获取单元1401具体用于:
接收传感器发送的分闸反馈信号,传感器连接工作电源,用于采集工作电源的供电参数,工作电源的供电参数包括工作电源的通断状态。
在一种可能的实现方式中,收发单元1403还用于:
向第一控制器发送分闸校验码,分闸校验码用于第一控制器验证分闸信号的合法性;
在一种可能的实现方式中,收发单元1403还用于:
向第二控制器发送合闸校验码,合闸校验码用于第二控制器验证合闸信号的合法性。
在一种可能的实现方式中,收发单元1403还用于:
接收第二触头发送的合闸反馈信号,第二触头包含于第二断路器,第二触头用于检测备用电源的通断状态。
在一种可能的实现方式中,收发单元1403还用于:
接收传感器发送的合闸反馈信号,传感器连接备用电源,用于采集备用电源的供电参数,备用电源的供电参数包括备用电源的通断状态。
需要说明的是,上述监控机1400的各单元之间的信息交互、执行过程等内容,具体内 容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
图15所示,为本申请的实施例提供的上述实施例中所涉及的监控机1500的一种可能的逻辑结构示意图。监控机1500包括:处理器1501、通信端口1502、存储器1503以及总线1504。处理器1501、通信端口1502以及存储器1503通过总线1504相互连接。在本申请的实施例中,处理器1501用于对监控机1500的动作进行控制处理,例如,处理器1501用于执行图14中的生成单元1402所执行的功能。通信端口1502用于执行图14中的获取单元1401、收发单元1403所执行的功能,支持监控机1500进行通信。存储器1503,用于存储监控机1500的程序代码和数据。
其中,处理器1501可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1504可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当所述计算机执行指令被处理器执行时,所述处理器执行如上述换电控制方法。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机程序产品,当所述计算机执行指令被所述处理器执行时,所述处理器执行上述换电控制方法。
本申请还提供了一种芯片系统,该芯片系统包括处理器,用于支持控制器实现上述换电控制方法中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既 可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (16)

  1. 一种换电控制系统,其特征在于,包括:
    连接工作电源的第一断路器、连接备用电源的第二断路器、监控机;
    所述第一断路器包括相互连接的第一控制器和第一通断装置,所述第一控制器连接所述监控机,所述第一控制器用于根据所述监控机的分闸信号控制所述第一通断装置将所述工作电源的通断状态由接通调整为关断;
    所述第二断路器包括相互连接的第二控制器和第二通断装置,所述第二控制器连接所述监控机,所述第二控制器用于根据所述监控机的合闸信号控制所述第二通断装置将所述备用电源的通断状态由关断调整为接通。
  2. 根据权利要求1所述的系统,其特征在于,所述系统还包括逻辑控制装置;
    所述第一控制器通过所述逻辑控制装置连接所述监控机,所述第二控制器通过所述逻辑控制装置连接所述监控机;
    所述逻辑控制装置在确定所述工作电源的通断状态由接通调整为关断之后,所述逻辑控制装置将所述监控机的合闸信号发送至所述第二控制器。
  3. 根据权利要求2所述的系统,其特征在于,所述逻辑控制装置用于将所述监控机发出的控制信号发送至所述第一控制器和所述第二控制器中的任一个,所述控制信号包括所述分闸信号或所述合闸信号。
  4. 根据权利要求1至3任一项所述的系统,其特征在于,所述第一通断装置还包括第一触头,所述第一触头用于检测所述工作电源的通断状态并将工作电源的通断状态反馈至所述监控机;
    所述第二通断装置还包括第二触头,所述第二触头用于检测所述备用电源的通断状态并将所述备用电源的通断状态反馈至所述监控机。
  5. 根据权利要求1至3任一项所述的系统,其特征在于,所述系统还包括传感器;
    所述传感器的一端连接所述工作电源和所述备用电源,用于采集所述工作电源的供电参数和所述备用电源的供电参数;
    所述传感器的另一端连接所述监控机,用于将所述工作电源的供电参数和所述备用电源的供电参数发送至所述监控机。
  6. 根据权利要求1至3任一项所述的系统,其特征在于,所述装置还包括母排;
    所述监控机通过所述母排分别连接所述第一控制器和所述第二控制器。
  7. 一种换电控制方法,其特征在于,应用于换电控制系统,所述换电控制系统包括连接工作电源的第一断路器、连接备用电源的第二断路器,所述方法包括:
    监控机获取换电指令;
    所述监控机根据所述换电指令生成分闸信号和合闸信号;
    所述监控机向第一控制器发送所述分闸信号,所述第一控制器包含于所述第一断路器,所述第一断路器包括第一通断装置,所述第一通断装置用于在所述第一控制器的控制下调整所述工作电源的通断状态;
    所述监控机向第二控制器发送所述合闸信号,所述第二控制器包含于所述第二断路器, 所述第二断路器包括第二通断装置,所述第二通断装置用于在所述第二控制器的控制下调整所述备用电源的通断状态。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述监控机获取所述分闸反馈信号,所述分闸反馈信号用于指示所述工作电源的通断状态由接通调整为关断;
    当所述监控机收到所述分闸反馈信号后,所述监控机执行向所述第二控制器发送所述合闸信号。
  9. 根据权利要求8所述的方法,其特征在于,所述监控机获取所述分闸反馈信号包括:
    所述监控机接收第一触头发送的所述分闸反馈信号,所述第一触头包含于所述第一断路器,所述第一触头用于检测所述工作电源的通断状态。
  10. 根据权利要求8所述的方法,其特征在于,所述监控机获取所述分闸反馈信号包括:
    所述监控机接收传感器发送的所述分闸反馈信号,所述传感器连接所述工作电源,用于采集所述工作电源的供电参数,所述工作电源的供电参数包括所述工作电源的通断状态。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述方法还包括:
    所述监控机向所述第一控制器发送分闸校验码,所述分闸校验码用于所述第一控制器验证所述分闸信号的合法性。
  12. 根据权利要求8至10任一项所述的方法,其特征在于,所述方法还包括:
    所述监控机向所述第二控制器发送合闸校验码,所述合闸校验码用于所述第二控制器验证所述合闸信号的合法性。
  13. 根据权利要求8至10任一项所述的方法,其特征在于,所述方法还包括:
    所述监控机接收第二触头发送的合闸反馈信号,所述第二触头包含于所述第二断路器,所述第二触头用于检测所述备用电源的通断状态。
  14. 根据权利要求8至10任一项所述的方法,其特征在于,所述方法还包括:
    所述监控机接收传感器发送的合闸反馈信号,所述传感器连接所述备用电源,用于采集所述备用电源的供电参数,所述备用电源的供电参数包括所述备用电源的通断状态。
  15. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求7至14中任一项所述的方法。
  16. 一种计算机可读存储介质,所述计算机可读存储介质用于存储程序指令,其特征在于,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求7至14中任一项所述的方法。
PCT/CN2020/123859 2019-11-13 2020-10-27 一种换电控制系统及换电控制方法 WO2021093570A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20886949.5A EP4047783A4 (en) 2019-11-13 2020-10-27 PSU SWITCH CONTROL SYSTEM AND PSU SWITCH CONTROL METHOD
US17/743,294 US20220271562A1 (en) 2019-11-13 2022-05-12 Power source switching control system and power source switching control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911108961.3A CN112803575A (zh) 2019-11-13 2019-11-13 一种换电控制系统及换电控制方法
CN201911108961.3 2019-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/743,294 Continuation US20220271562A1 (en) 2019-11-13 2022-05-12 Power source switching control system and power source switching control method

Publications (1)

Publication Number Publication Date
WO2021093570A1 true WO2021093570A1 (zh) 2021-05-20

Family

ID=75803360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123859 WO2021093570A1 (zh) 2019-11-13 2020-10-27 一种换电控制系统及换电控制方法

Country Status (4)

Country Link
US (1) US20220271562A1 (zh)
EP (1) EP4047783A4 (zh)
CN (1) CN112803575A (zh)
WO (1) WO2021093570A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4304086A1 (en) * 2022-07-08 2024-01-10 Schneider Electric Industries SAS Circuit for dual power supply system and dual power supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664465A (zh) * 2012-05-21 2012-09-12 浙江正泰电器股份有限公司 具有双电源转换功能的断路器控制器、切换系统及方法
CN103872760A (zh) * 2013-12-31 2014-06-18 石家庄博发科技有限公司 一种变压器供电自动切换控制装置
CN204732962U (zh) * 2015-07-10 2015-10-28 美登思电气(上海)有限公司 双电源切换系统
CN207819548U (zh) * 2017-12-29 2018-09-04 施耐德万高(天津)电气设备有限公司 一种通用型自动转换开关电器控制器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201374583Y (zh) * 2008-12-30 2009-12-30 上海宝路通电器有限公司 双电源自动转换开关
US20150035358A1 (en) * 2013-08-05 2015-02-05 Ragingwire Data Centers, Inc. Electrical power management system and method
EP3840168A1 (en) * 2015-04-13 2021-06-23 Bedrock Automation Platforms Inc. Secure power supply for an industrial control system
CN107958561A (zh) * 2017-11-23 2018-04-24 广东惠利普路桥信息工程有限公司 一种矿物仓库安防系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664465A (zh) * 2012-05-21 2012-09-12 浙江正泰电器股份有限公司 具有双电源转换功能的断路器控制器、切换系统及方法
CN103872760A (zh) * 2013-12-31 2014-06-18 石家庄博发科技有限公司 一种变压器供电自动切换控制装置
CN204732962U (zh) * 2015-07-10 2015-10-28 美登思电气(上海)有限公司 双电源切换系统
CN207819548U (zh) * 2017-12-29 2018-09-04 施耐德万高(天津)电气设备有限公司 一种通用型自动转换开关电器控制器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4304086A1 (en) * 2022-07-08 2024-01-10 Schneider Electric Industries SAS Circuit for dual power supply system and dual power supply system

Also Published As

Publication number Publication date
US20220271562A1 (en) 2022-08-25
EP4047783A4 (en) 2023-01-18
CN112803575A (zh) 2021-05-14
EP4047783A1 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
JP5433115B1 (ja) プロセスバス対応保護制御システム、マージングユニットおよび演算装置
CN104407556B (zh) 一种热备冗余的模块切换装置
EP2772827B1 (en) Current-coordinating system suitable for the redundancy of electrical equipment
US6246928B1 (en) Electrical interruption device comprising a communication module
CN102882267B (zh) 供电装置、电子设备和供电方法
US10075015B2 (en) Maintenance transfer switch
WO2021114719A1 (zh) 示教器的拔插控制系统和方法、机器人
CN201936169U (zh) 轨道交通站台屏蔽门中央冗余控制系统
CN110085333B (zh) 一种适用于小型反应堆的保护系统
CA2960851C (en) Method and apparatus to replace an electrical power module in a wireless valve positioner without power disruption
WO2021093570A1 (zh) 一种换电控制系统及换电控制方法
JP2017016656A (ja) インテリジェント型電力配置機能を備えたネットワーク設備
CN201315486Y (zh) 一种在直流输电系统中进行冗余逻辑切换的模块
CN103403563A (zh) 反向供电线路测试系统及设备
CN113759291B (zh) 故障检测方法、装置、储能系统及可读存储介质
CN101477922B (zh) 一种控制保护电器的母板电气连接结构
CN114039336A (zh) 集成继电器、控制方法及继电保护装置
CN111596542A (zh) 一种具有冗余功能的电动调节阀驱动装置及其控制方法
KR101345512B1 (ko) 이중화 기능을 갖는 디지털 보호 계전기
JP2008276794A (ja) 携帯通信端末
CN210007366U (zh) 一种电力系统稳控装置
CN108152615A (zh) 一种提高系统安全性的多重电路
CN219477624U (zh) 急停控制装置及群充电系统
CN213354399U (zh) 开关控制电路及汽车电路控制系统
CN214098205U (zh) 一种数控机床实时故障检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020886949

Country of ref document: EP

Effective date: 20220517

NENP Non-entry into the national phase

Ref country code: DE