WO2021093515A1 - 一种数据传输的方法以及相关装置 - Google Patents

一种数据传输的方法以及相关装置 Download PDF

Info

Publication number
WO2021093515A1
WO2021093515A1 PCT/CN2020/121743 CN2020121743W WO2021093515A1 WO 2021093515 A1 WO2021093515 A1 WO 2021093515A1 CN 2020121743 W CN2020121743 W CN 2020121743W WO 2021093515 A1 WO2021093515 A1 WO 2021093515A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
service flow
pcf
flow
delay
Prior art date
Application number
PCT/CN2020/121743
Other languages
English (en)
French (fr)
Inventor
熊春山
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to JP2022514494A priority Critical patent/JP7305038B2/ja
Priority to EP20887585.6A priority patent/EP3993495A4/en
Priority to KR1020227004711A priority patent/KR20220034855A/ko
Publication of WO2021093515A1 publication Critical patent/WO2021093515A1/zh
Priority to US17/512,742 priority patent/US12010558B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2491Mapping quality of service [QoS] requirements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiments of the present application relate to the field of communication technology, and specifically relate to data transmission.
  • the (Release16, R16) version of the fifth generation (5th Generation, 5G) introduces Time Sensitive Communication (TSC) for Time Sensitive Network (TSN) to enable 5G to support industrial automation with precise time control Manufacturing applications.
  • TSC Time Sensitive Communication
  • TSN Time Sensitive Network
  • the service communication between the user terminal (User Equipment, UE) and the UE requires the registration of the UE.
  • S-CSCF Serving Call Session Control Function
  • the communication between the UE and the UE is completed through the cooperation of the S-CSCF.
  • DN Data Network, data network
  • ES End Station, terminal station equipment
  • TSC data is transmitted based on the Quality of Service (QoS) flow (Flow) in the 3GPP network.
  • QoS Quality of Service
  • Flow Quality of Service
  • the embodiments of the present application provide a data transmission method and related devices, which can respectively trigger the establishment of a first QoS flow for transmitting service data of a first UE, and trigger the establishment of a second QoS flow for transmitting service data of a second UE.
  • Streaming realizes that the UE initiates a TSC communication request to establish a TSC transmission channel between the first UE and the second UE.
  • the first aspect of the present application provides a data transmission method, which may include:
  • the first network device receives a TSC communication request sent by the first UE, where the TSC communication request carries a first TSC session requirement parameter, and the first TSC session requirement parameter includes the identifier of the second UE and the QoS requirement of the TSC session;
  • the first network device sends the QoS requirement and first information of the first service flow to the first PCF corresponding to the first UE, and sends the first information corresponding to the second UE according to the identifier of the second UE.
  • the second PCF sends the QoS requirements of the second service flow and second information, the QoS requirements of the first service flow are used to map to the QoS policy of the first service flow through the first PCF, and the first The QoS policy of the service flow is used to establish the first QoS flow for transmitting the service data of the first UE through the first SMF, and the QoS requirement of the second service flow is used to map to the second QoS flow through the second PCF.
  • the QoS policy of the service flow where the QoS policy of the second service flow is used to establish a second QoS flow for transmitting the service data of the second UE through the second SMF.
  • the second aspect of the present application provides a data transmission method, which may include:
  • the first PCF receives the QoS requirement of the first service flow and the first information sent by the first network device, where the first PCF corresponds to the first UE;
  • the first PCF maps the QoS requirement of the first service flow to the QoS policy of the first service flow
  • the first PCF sends the QoS policy of the first service flow and the first information to the first SMF, where the QoS policy of the first service flow is used to establish and transmit the first UE through the first SMF
  • the first QoS flow of business data is used to establish and transmit the first UE through the first SMF.
  • the third aspect of the present application provides a data transmission method, which may include:
  • the first SMF receives the QoS policy of the first service flow and the first information sent by the first PCF, where the first PCF corresponds to the first UE;
  • the first SMF establishes a first QoS flow for transmitting service data of the first UE according to the QoS policy of the first service flow.
  • the fourth aspect of the present application provides a data transmission method, which may include:
  • the second PCF receives the QoS requirements and second information of the second service flow sent by the first network device, where the second PCF corresponds to the second UE;
  • the second PCF maps the QoS requirement of the second service flow to the QoS policy of the second service flow
  • the second PCF sends the QoS policy of the second service flow and the second information to a second SMF, where the QoS policy of the second service flow is used to establish and transmit the second UE through the second SMF
  • the first QoS flow of business data The first QoS flow of business data.
  • the fifth aspect of the present application provides a data transmission method, which may include:
  • the second SMF receives the QoS policy of the second service flow and the second information sent by the second PCF, where the second PCF corresponds to the second UE;
  • the second SMF establishes a second QoS flow for transmitting the service data of the second UE according to the QoS policy of the second service flow.
  • the fifth aspect of the present application provides a first network device, which may include:
  • a receiving module configured to receive a TSC communication request sent by a first UE, the TSC communication request carrying a first TSC session requirement parameter, the first TSC session requirement parameter including the identifier of the second UE and the QoS requirement of the TSC session;
  • a determining module configured to determine the QoS requirement of the first service flow, the QoS requirement of the second service flow, the first information and the second information according to the first TSC session requirement parameter;
  • the sending module is configured to send the QoS requirements and first information of the first service flow to the first PCF corresponding to the first UE, and send the second UE corresponding to the second UE according to the identifier of the second UE.
  • the PCF sends the QoS requirements of the second service flow and second information.
  • the QoS requirements of the first service flow are used to map to the QoS policy of the first service flow through the first PCF.
  • the first service The QoS policy of the flow is used to establish a first QoS flow for transmitting the service data of the first UE through the first SMF, and the QoS requirement of the second service flow is used to map to the second service through the second PCF
  • the QoS policy of the flow, the QoS policy of the second service flow is used to establish a second QoS flow for transmitting service data of the second UE through a second SMF.
  • the determining module is configured to determine the delay requirement in the QoS requirement of the first service flow and the delay requirement in the QoS requirement of the second service flow.
  • the determining module is used for:
  • the first network device is based on the delay in the first TSC session requirement parameter, and the first UE and the device side
  • the transmission delay of the NW-TT determines the delay requirement in the QoS requirement of the first service flow, and according to the delay in the first TSC session requirement parameter, the time between the first UE and the DS-TT Delay, the transmission delay of the NW-TT of the first UE, the delay between the second UE and the DS-TT, and the transmission delay of the NW-TT of the second UE determine the second service flow QoS Delay demand in demand.
  • the determining module is used for:
  • the first network device is based on the delay in the first TSC session requirement parameter, and the first UE and the DS-TT
  • the delay between the second UE and the DS-TT determines the delay requirement in the QoS requirement of the first service flow, and the corresponding delay according to the QoS requirement of the second service flow,
  • the delay between the first UE and the DS-TT and the delay between the second UE and the DS-TT determine the delay requirements in the QoS requirements of the second service flow.
  • the sending module is further configured to send the delay requirement in the QoS requirement of the first service flow to the first PCF, so that the first SMF sets the PDB value of the first QoS flow to be less than or equal to The delay value in the QoS policy of the first service flow, wherein the delay value in the QoS policy of the first service flow is determined by the first PCF according to the time delay in the QoS requirement of the first service flow.
  • the value corresponding to the extended demand is obtained;
  • the sending module is further configured to send the delay requirement in the QoS requirement of the second service flow to the second PCF, so that the second SMF sets the PDB value of the second QoS flow to be less than or equal to The delay value in the QoS policy of the second service flow, wherein the delay value in the QoS policy of the second service flow is determined by the second PCF according to the time delay in the QoS requirement of the second service flow. The value corresponding to the extended demand is obtained.
  • the determining module is further configured to:
  • the sending module Before the sending module sends the QoS requirement of the first service flow and the first information to the first PCF corresponding to the first UE, the first PCF is determined according to the identifier of the first UE.
  • the determining module is further configured to:
  • the sending module is configured to send the QoS requirement of the second service flow and the second information to the second PCF.
  • the sixth aspect of the present application provides a first policy control function device PCF, which may include:
  • a receiving module configured to receive QoS requirements and first information of a first service flow sent by a first network device, where the first PCF corresponds to the first UE;
  • a mapping module configured to map the QoS requirement of the first service flow to the QoS policy of the first service flow
  • the sending module is configured to send the QoS policy of the first service flow and the first information to the first session management function device SMF, and the QoS policy of the first service flow is used to establish a transmission station through the first SMF.
  • the receiving module is further configured to receive the delay requirement in the QoS requirement of the first service flow sent by the first network device;
  • the sending module is further configured to send the delay value in the QoS policy of the first service flow to the first SMF, so that the first SMF sets the PDB value of the first QoS flow to be less than or equal to The delay value in the QoS policy of the first service flow, wherein the delay value in the QoS policy of the first service flow is determined by the first PCF according to the time delay in the QoS requirement of the first service flow. The value corresponding to the extended demand is obtained.
  • the seventh aspect of the present application provides a first session management function device SMF, which may include:
  • a receiving module which receives the QoS policy of the first service flow and the first information sent by the first policy control function device PCF, where the first PCF corresponds to the first UE;
  • the establishment module is configured to establish a first QoS flow for transmitting service data of the first UE according to the QoS policy of the first service flow.
  • the receiving module is further configured to:
  • the establishment module is configured to establish a transmission station according to the QoS policy of the first service flow when the PDB value of the first QoS flow is set to be less than or equal to the delay value in the QoS policy of the first service flow.
  • the first SMF further includes a mapping module, which is configured to: after the first QoS flow for transmitting the service data of the first UE is established according to the QoS policy of the first service flow, The QoS policy of the first service flow and the TSCAI information are mapped to the N2 session message, and the QoS policy of the first service flow is mapped to the N1 session message, where the first information includes TSCAI information.
  • a mapping module which is configured to: after the first QoS flow for transmitting the service data of the first UE is established according to the QoS policy of the first service flow, The QoS policy of the first service flow and the TSCAI information are mapped to the N2 session message, and the QoS policy of the first service flow is mapped to the N1 session message, where the first information includes TSCAI information.
  • the eighth aspect of the present application provides a second policy control function PCF, which may include:
  • a receiving module configured to receive QoS requirements and second information of a second service flow sent by a first network device, where the second PCF corresponds to the second UE;
  • a mapping module configured to map the QoS requirement of the second service flow to the QoS policy of the second service flow
  • the sending module is configured to send the QoS policy of the second service flow and the second information to the second session management function device SMF, and the QoS policy of the second service flow is used to establish a transmission station through the second SMF.
  • the second QoS flow of the service data of the second UE is configured to send the QoS policy of the second service flow and the second information to the second session management function device SMF, and the QoS policy of the second service flow is used to establish a transmission station through the second SMF.
  • the second QoS flow of the service data of the second UE is configured to send the QoS policy of the second service flow and the second information to the second session management function device SMF, and the QoS policy of the second service flow is used to establish a transmission station through the second SMF.
  • the receiving module is further configured to receive the delay requirement in the QoS requirement of the second service flow sent by the first network device;
  • the sending module is further configured to send the delay value in the QoS policy of the second TSC service flow to the second SMF, so that the second SMF sets the PDB value of the second QoS flow to be less than or Is equal to the delay value in the QoS policy of the second service flow, wherein the delay value in the QoS policy of the second service flow is determined by the second PCF according to the QoS requirements of the second service flow The value corresponding to the delay requirement is obtained.
  • a ninth aspect of the present application provides a second session management function device SMF, which may include:
  • a receiving module configured to receive the QoS policy of the second service flow and the second information sent by the second policy control function PCF, where the second PCF corresponds to the second UE;
  • the establishment module is configured to establish a second QoS flow for transmitting service data of the second UE according to the QoS policy of the second service flow.
  • the receiving module is further configured to receive the delay value in the QoS policy of the second service flow sent by the second PCF;
  • the establishment module is configured to establish a transmission station according to the QoS policy of the second service flow when the PDB value of the second QoS flow is set to be less than or equal to the delay value in the QoS policy of the second service flow.
  • the second QoS flow of the service data of the second UE is configured to establish a transmission station according to the QoS policy of the second service flow when the PDB value of the second QoS flow is set to be less than or equal to the delay value in the QoS policy of the second service flow.
  • the second SMF further includes a mapping module, which is configured to: after establishing the second QoS flow for transmitting the service data of the second UE according to the QoS policy of the second service flow, The QoS policy of the second service flow and the TSCAI information are mapped to the N2 session message, and the QoS policy of the second service flow is mapped to the N1 session message, where the second information includes TSCAI information.
  • a mapping module which is configured to: after establishing the second QoS flow for transmitting the service data of the second UE according to the QoS policy of the second service flow, The QoS policy of the second service flow and the TSCAI information are mapped to the N2 session message, and the QoS policy of the second service flow is mapped to the N1 session message, where the second information includes TSCAI information.
  • a tenth aspect of the present application provides a first network device, which may include: a communication interface, a processor, and a memory; the memory is used to store computer execution instructions, and when the first network device is running, the communication interface is used to execute the above-mentioned first network device.
  • the processor executes the computer-executable instructions stored in the memory to execute any of the above-mentioned first aspect or any possible action of the first aspect.
  • the implementation mode determines the actions performed by the module.
  • the eleventh aspect of the present application provides a first policy control function device PCF, which may include: a communication interface, a processor, and a memory; the memory is used to store computer execution instructions, and when the first PCF is running, the communication interface is used for To execute the actions performed by the receiving module and the sending module in the foregoing second aspect or any possible implementation of the second aspect, the processor executes the computer-executable instructions stored in the memory to execute any of the foregoing second aspect or any of the second aspects.
  • the actions performed by the mapping module in a possible implementation.
  • the twelfth aspect of the present application provides a first session management function device SMF, which may include: a communication interface, a processor, and a memory; the memory is used to store computer execution instructions, and when the first SMF is running, the communication interface is used for Performing the actions performed by the receiving module in the foregoing third aspect or any possible implementation of the third aspect, the processor executes the computer-executable instructions stored in the memory to execute the foregoing third aspect or any possible implementation of the third aspect The actions performed by the establishment module and the mapping module in the method.
  • the thirteenth aspect of the present application provides a second policy control function device PCF, which may include: a communication interface, a processor, and a memory; the memory is used to store computer execution instructions, and when the second PCF is running, the communication interface is used for Performing the actions performed by the receiving module and the sending module in the foregoing fourth aspect or any possible implementation manner of the fourth aspect, the processor executes the computer-executable instructions stored in the memory to execute any of the foregoing fourth aspect or fourth aspect The actions performed by the mapping module in a possible implementation.
  • PCF policy control function device
  • the fourteenth aspect of the present application provides a second session management function device SMF, which may include: a communication interface, a processor, and a memory; the memory is used to store computer execution instructions, and when the second SMF is running, the communication interface is used for Performing the actions performed by the receiving module in the foregoing fifth aspect or any possible implementation manner of the fifth aspect, the processor executes the computer-executable instructions stored in the memory to perform any of the foregoing fifth aspect or any possible implementation of the fifth aspect The actions performed by the establishment module and the mapping module in the realization mode.
  • the fifteenth aspect of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes the computer to execute the above-mentioned aspects of the first to fifth aspects. The method described.
  • the first UE initiates a TSC communication request, so that the first network device determines the QoS requirements of the first service flow and the QoS requirements of the second service flow, respectively, to the first UE and the second UE.
  • the 5G network triggers the establishment of the first QoS flow for transmitting the service data of the first UE, and also triggers the establishment of the second QoS flow for transmitting the service data of the second UE.
  • the establishment of the TSC communication request initiated by the UE is also triggered. TSC transmission channel between the first UE and the second UE.
  • FIG. 1 is a schematic structural diagram of a TSN communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a data transmission method provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another data transmission method provided in an embodiment of the present application.
  • Figure 4 is a schematic diagram of an embodiment of a first network device provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an embodiment of a first policy control function device PCF provided in an embodiment of the present application
  • FIG. 6 is a schematic diagram of an embodiment of a first session management function device SMF provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an embodiment of a second policy control function device PCF provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an embodiment of a second session management function device SMF provided in an embodiment of the present application.
  • Fig. 9 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • the embodiment of the application provides a data transmission method, which can respectively trigger the establishment of a first QoS flow for transmitting service data of a first UE, and also trigger the establishment of a second QoS flow for transmitting service data of a second UE.
  • the UE initiates a TSC communication request to establish a TSC transmission channel between the first UE and the second UE.
  • the embodiments of the present application also provide related devices. Detailed descriptions are given below.
  • the data transmission method provided in the embodiments of the present application can be applied to the fifth generation (5G) network, and can also be applied to other networks that can support TSC data transmission.
  • 5G fifth generation
  • Fig. 1 shows a schematic structural diagram of a TSN communication system provided by an exemplary embodiment of the present application; as shown in the figure, the TSN communication system includes TSN and 5G systems.
  • the 5G system includes UE (User Equipment, user terminal) and various functional entity equipment; these functional entity equipment mainly include: 1UPF (User Plane Function, user plane function equipment); 2NG RAN (NG Radio Access Network, 5G wireless access Network access function equipment), where the NG interface is the interface between the wireless access network and the 5G core network.
  • 3AMF Access and Mobility Management Function, access and mobility management function equipment), responsible for mobility management, connected to UE and NG RAN.
  • 4SMF Session Management Function, session management function device
  • responsible for session management connected with AMF and UPF.
  • 5PCF Policy Control Function, policy control function device
  • TSN includes ES (End Station, terminal station equipment) and CNC (Centralized Network Controller, centralized network controller). The CNC is used to uniformly manage the services of the entire TSN communication system.
  • the UE in the 5G system is connected to one or more ESs in the TSN (Data Network) outside the 5G system through a DS-TT (Device Side TSN Translator).
  • UPF is connected to one or more ESs in TSN DN through NW-TT (NetWork TSN Translator, network TSN converter).
  • NW-TT Network TSN Translator
  • the UE and the time-sensitive communication device side such as the device-side TSN translator (DS-TT), belong to the device side of the bridge (Device side of Bridge).
  • the UPF network element includes the time-sensitive communication network side (NetWork TSN translator, NW-TT).
  • 5GS provides TSN entry and output ports through DS-TT and NW-TT.
  • DS-TT and NW-TT optionally support the following functions:
  • UE can include: handheld terminal, notebook computer, subscriber unit (Subscriber Unit), cellular phone (Cellular Phone), smart phone (Smart Phone), wireless data card, personal digital assistant (Personal Digital Assistant, PDA) computer, tablet computer , Wireless modem (Modem), handheld device (Handheld), laptop (Laptop Computer), cordless phone (Cordless Phone) or wireless local loop (Wireless Local Loop, WLL) station, machine type communication (Machine Type Communication, MTC) terminal or other devices that can access the network.
  • the UE and the access network equipment use a certain air interface technology to communicate with each other.
  • the UE will send uplink data, and the UPF will send downlink data. Whether it is the UE sending uplink data or UPF will send downlink data, when the data sent is TSC data, the TSC is required. The data is mapped to the QoS flow for transmission.
  • the first network device in the embodiment of the present application is composed of AF and CNC.
  • the specific process in this embodiment is introduced below.
  • FIG. 2 it is a data transmission method provided in this embodiment. The method may include:
  • the first UE sends a TSC communication request to the first network device.
  • the TSC communication request may be transparently transmitted to the first network device by the first UE through the first AMF, the first SMF, and the first PCF in sequence.
  • the TSC communication request carries the first TSC session requirement parameter, where the TSC session requirement container (TSC Session Requirement Container) is added to the TSC communication request, and the first TSC session requirement parameter is a parameter contained in the TSC session requirement container, for example .
  • the first TSC session requirement parameter may include the identifier of the second UE and the QoS requirements of the TSC stream (TSC stream QoS Requirements).
  • the QoS requirements of the TSC stream in the TSC session may include the difference between the first UE and the second UE.
  • the end-to-end time delay information the periodicity of the data, the last arrival time of the data (Burst Arrival Time), etc.
  • the first TSC session requirement parameter may also include application ID (Application ID), etc.
  • a TSC session may contain multiple TSC session streams, and the operation process of each TSC session stream is similar of.
  • the QoS requirements of the TSC session described above are the service requirements of the TSC established by the first UE in the TSN clock domain, for example: the total transmission amount required for the first UE to transmit service data to the second UE. Time delay and so on.
  • the first network device can be composed of AF and CNC. Therefore, the TSC communication request can also be transparently transmitted from the first PCF to the AF, and the CNC communication request can be transparently transmitted to the CNC by the AF.
  • the TSC communication request described above may include a PDU session modification request or a PDU session establishment request, which will not be specifically limited in the embodiments of the present application.
  • the first network device determines the QoS requirement of the first service flow, the QoS requirement of the second service flow, the first information, and the second information according to the first TSC session requirement parameter.
  • the first information may include the TSCAI information of the first UE and the TSC port management information (TSN Port Management Information) of the first UE
  • the second information may include the TSCAI information of the second UE and the TSC port management information of the second UE.
  • TSCAI TSC Assistance Information, time-sensitive communication assistance information
  • the first network device determines the first information and the second information according to the first TSC session requirement parameters, they can be sent to the first PCF corresponding to the first UE and the second PCF corresponding to the second UE, respectively.
  • the first PCF further transmits the first information to the NG RAN network element corresponding to the first UE through the first SMF and the first AMF, so that the NG RAN network element can pair with the TSCAI information in the first information
  • the data flow is precisely time controlled; in the same way, the second PCF further transmits the second information to the NG RAN network element corresponding to the second UE through the second SMF and the second AMF, so that the NG RAN network element can Perform precise time control on the data stream according to the TSCAI information in the second information.
  • TSCAI describes TSC traffic characteristics for 5G systems. Knowledge of TSN traffic patterns is useful for gNB (5G base station) to allow gNB to more effectively schedule periodic and deterministic service flows through configuration authorization, semi-persistent scheduling or dynamic authorization.
  • the definition of TSCAI information can be found in the following Table 1. Among them, the TSCAI information is provided by the first AMF and the second AMF to their respective NG RAN network elements, for example: the first SMF and the second SMF are in the process of establishing QoS Flow After transmitting the TSCAI information to the corresponding first AMF and the second AMF respectively, the first AMF and the second AMF are provided to the respective NG RAN network elements.
  • the above table includes the burst arrival time of TSC service data (Burst Arrival Time) and the periodicity of service data (Periodicity).
  • the TSC service data arrives at the NG RAN network element package by package at the time specified by Period after the arrival of Burst Arrival Time.
  • the TSCAI information and QoS parameters of the QoS flow described above are in the 5G clock domain, and the QoS requirements of the first service flow and the QoS requirements of the second service flow are actually where the first network device is located.
  • the QoS requirements for the first UE and the second UE are re-allocated on the TSN clock domain. That is to say, because the QoS requirement of the TSC session received by the first network device is established on the TSN clock domain, it is an end-to-end QoS requirement, which needs to be decomposed into requirements related to the first UE and the second UE, so as to achieve the overall End-to-end QoS requirements.
  • the first network device often needs to adjust the QoS requirements of the TSC session on the TSN clock domain according to the configuration according to the configuration of the network, thereby updating and generating the QoS requirements of the second TSC session, and thus according to the QoS of the second TSC session Requirement to retrieve the QoS requirements of the first service flow and the QoS requirements of the second service flow described above.
  • the delay in the QoS requirements of the received TSC session is that the total end-to-end transmission delay between the first UE and the second UE is 2000 microseconds, and the first network device is configured according to the network.
  • the time delay of 2000 microseconds in the QoS requirement of the TSC session on the TSN clock domain needs to be updated to 1800 microseconds.
  • other redistribution methods can also be used , There will be no specific limitations in the embodiments of this application.
  • the delay in the QoS requirements of the updated TSC session described above can be calculated for the QoS requirements of the first service flow for the first UE and the second service flow for the second UE. QoS requirements. The details can be understood with reference to step 303 in FIG. 3, and details are not described here.
  • the first network device sends the QoS requirements and first information of the first service flow to the first PCF corresponding to the first UE, and sends the second PCF corresponding to the second UE according to the identifier of the second UE. Send the QoS requirement and second information of the second service flow.
  • the first network device respectively provides the QoS requirements of the service flow to the 5G network where the first UE and the second UE are located.
  • the first network device will send the QoS requirement of the first service flow to the first PCF corresponding to the first UE and the QoS requirement of the second service flow to the second PCF corresponding to the second UE.
  • first PCF and the second PCF described above are different network elements.
  • the first network device before the first network device sends the QoS requirement of the first service flow and the first information to the first PCF corresponding to the first UE, it also needs to be based on the first UE To determine the first PCF, so as to provide the correct node for subsequent signaling transmission and establish a signaling transmission path.
  • the first network device sends the QoS requirements of the second service flow and the second information to the second PCF corresponding to the second UE according to the identifier of the second UE
  • the second PCF can be determined first according to the identity of the second UE, so as to provide a correct node for subsequent signaling transmission and establish a signaling transmission path.
  • the QoS requirement of the second service flow and the second information are sent to the second PCF.
  • the CNC can determine the QoS requirements of the first service flow, the first information, and the QoS requirements of the second service flow, and the second service flow according to the first TSC session requirement parameters after receiving the first TSC session requirement parameters sent by the AF. information. Then send the QoS requirements of the first service flow, the first information, the QoS requirements of the second service flow, and the second information to the AF. At this time, the AF receives the QoS requirements of the first service flow, the first information, and After the QoS requirements of the second service flow and the second information, the first PCF can be determined by the identity of the first UE, and the second PCF can be determined by the identity of the second UE.
  • the first PCF maps the QoS requirement of the first service flow to the QoS policy of the first service flow.
  • the 5G communication system sets the QoS flow according to the QoS requirements of the service flow, and the first PCF is responsible for the policy control of the first UE, the After the QoS requirement, the QoS requirement of the first service flow can be mapped to the QoS policy of the first service flow. In this way, the QoS policy of the first service flow can be sent to the corresponding first SMF, so that the first SMF maps the first service flow to the QoS flow according to the QoS policy of the first service flow, thereby establishing a transmission The first QoS flow of the service data of the first UE.
  • the first PCF sends the QoS policy of the first service flow and the first information to the first SMF.
  • the first SMF establishes a first QoS flow for transmitting the service data of the first UE according to the QoS policy of the first service flow.
  • the first SMF can establish and transmit the first service flow according to the QoS parameters included in the QoS policy of the first service flow.
  • the TSC port management information in the first information can be used to allocate a corresponding first Port on DS-TT and one on NW-TT for this first QoS flow.
  • the second Port thus forming a Port pair.
  • the first information includes the TSCAI information of the first UE described above. Therefore, the first SMF establishes the transmission of the first UE according to the QoS policy of the first service flow. After the first QoS flow of the service data, it also includes mapping the QoS policy of the first service flow and the TSCAI information to the N2 session message, and mapping the QoS policy of the first service flow to the N1 session message in.
  • the first SMF can map the QoS parameters included in the QoS policy of the first service flow to the QoS profile (QoS Profile), and then load it into N2 in combination with the TSCAI information included in the first message received above.
  • the session message is provided to the 5G base station gNB corresponding to the first UE; in addition, the QoS parameters included in the QoS policy of the first service flow need to be mapped to the QoS Rule (QoS Rule) and included in the received first information
  • the DS-TT port configuration information is loaded into the N1 session message and provided to the first UE. It should be understood that, since the TSCAI information described above is based on the parameter value of the TSN clock domain, the first SMF needs to convert it to the clock domain value of the 5G system through a form of mapping or the like.
  • the second PCF is mapped to the QoS policy of the second service flow according to the QoS requirement of the second service flow.
  • the second PCF is responsible for the policy control of the second UE.
  • the QoS requirement of the second service flow can be mapped to the QoS policy of the second service flow.
  • the QoS policy of the second service flow can be sent to the corresponding second SMF, so that the second SMF maps the second service flow to the QoS flow according to the QoS policy of the second service flow, thereby establishing a transmission The second QoS flow of the service data of the second UE.
  • the second PCF sends the QoS policy of the second service flow and the second information to the second SMF.
  • the second SMF establishes a second QoS flow for transmitting the service data of the second UE according to the QoS policy of the second service flow.
  • the second SMF can establish and transmit the second service flow according to the QoS parameters included in the QoS policy of the second service flow.
  • the second QoS flow of the service data of the UE When a second QoS flow is established for the second UE, the TSC port management information in the second information can be used to assign a corresponding first Port on DS-TT and one on NW-TT to this second QoS flow. The second Port, thus forming a Port pair.
  • the first information includes the TSCAI information of the second UE described above, so the second SMF is established to transmit the second UE according to the QoS policy of the second service flow.
  • the second QoS flow of the service data it also includes mapping the QoS policy of the second service flow and the TSCAI information to the N2 session message, and mapping the QoS policy of the second service flow to the N1 session message in.
  • the second SMF can map the QoS parameters contained in the QoS policy of the second service flow to the QoS profile (QoS Profile), and then load it into the N2 session in combination with the TSCAI information contained in the second information received above
  • the message is provided to the 5G base station gNB corresponding to the second UE; in addition, the QoS parameters included in the QoS policy of the second service flow need to be mapped to the QoS Rule (QoS Rule) and included in the received second message
  • the DS-TT port configuration information is loaded into the N1 session message and provided to the second UE. It should be understood that since the TSCAI information described above is based on the parameter value of the TSN clock domain, the second SMF needs to convert it to the clock domain value of the 5G system through a form of mapping or the like.
  • steps 204-206 and steps 207-209 are not limited. In practical applications, steps 207-209 may be executed first and then steps 204-206, or steps 204-206 and steps 204-206 may be executed first. 207-209 can also be executed synchronously, which will not be specifically limited in the specific embodiment of this application.
  • the first UE initiates a TSC communication request, so that the first network device determines the QoS requirement of the first service flow and the QoS requirement of the second service flow, respectively, to the first UE and the second UE
  • the 5G network triggers the establishment of the first QoS flow for transmitting the service data of the first UE and the second QoS flow for transmitting the service data of the second UE respectively, which realizes the establishment of the TSC communication request initiated by the UE TSC transmission channel between the first UE and the second UE.
  • a method of data transmission which may include:
  • the first UE sends a TSC communication request to a first network device.
  • the TSC communication request carries the first TSC session requirement parameter, where a TSC session requirement container is added to the TSC communication request, and the first TSC session requirement parameter is a parameter included in the TSC session requirement container, for example,
  • the first TSC session requirement parameter may include the identifier of the second UE and the QoS requirements of the service flow (TSC stream QoS Requirements).
  • the QoS requirement of the TSC session may include delay information between the first UE and the second UE. , The periodicity of the data, the last arrival time of the data (Burst Arrival Time), etc.
  • the first TSC session requirement parameter may also include an application ID and so on.
  • the QoS requirements of the TSC session described above are the service requirements of the TSC established by the first UE in the TSN clock domain.
  • the TSC communication request described above may include a PDU session modification request or a PDU session establishment request.
  • PDU session modification request or a PDU session establishment request.
  • the first network device determines the delay requirement in the QoS requirement of the first service flow and the delay requirement in the QoS requirement of the second service flow.
  • the delay requirement For TSC communication, the difference between the first UE and the second UE is The time delay of the inter-TSC communication is usually very precise. Therefore, the first network device can determine the delay requirement in the QoS requirement of the first service flow and the delay requirement in the QoS requirement of the second service flow according to the first TSC session requirement parameter.
  • the delay requirement in the QoS requirement of the first service flow is used for the delay requirement required to establish the first QoS flow for the first UE
  • the delay requirement in the QoS requirement of the second service flow is used for In response to the delay requirements required to establish the second QoS flow for the second UE.
  • the delay requirement in the QoS requirement of the first service flow is a parameter in the QoS requirement of the first service flow
  • the delay requirement in the QoS requirement of the second service flow is the QoS requirement of the second service flow. Parameters in.
  • the first UE may be connected to the corresponding first UPF
  • the second UE may be connected to the corresponding second UPF, that is, when the first UE and the second UE are connected to different UPFs
  • the following methods can be used to determine the delay requirements in the QoS requirements of the first service flow and the delay requirements in the QoS requirements of the second service flow, namely:
  • the first network device is based on the delay in the first TSC session requirement parameter, the delay between the first UE and the DS-TT, the transmission delay of the NW-TT of the first UE, and the The delay between the second UE and the DS-TT and the transmission delay of the NW-TT of the second UE are used to determine the delay requirements in the QoS requirements of the first service flow; similarly, the delay requirements can be determined according to the first service flow.
  • A is the delay in the first TSC session requirement parameter
  • B is the delay between the first UE and DS-TT
  • C is the transmission delay of the NW-TT of the first UE
  • D is the delay between the second UE and the DS-TT.
  • E is the NW-TT transmission delay of the second UE.
  • the delay requirement in the QoS requirement of the first service flow and the delay requirement in the QoS requirement of the second service flow may be equal.
  • the delay between the first UE and the DS-TT described above is measured by the DS-TT connected to the first UE, and the difference between the first UE and the DS-TT is obtained.
  • transparently report to the first network device through the first UE, the first SMF, and the first PCF, and the NW-TT transmission delay of the first UE described above refers to the first UE
  • the time delay between the NW-TT and the external TSN DN (data network) is measured by the NW-TT connected to the first UE.
  • the first UPF and the first UPF are passed transparently.
  • the SMF and the first PCF are reported to the first network device.
  • the delay between the second UE and the DS-TT described above is determined by the DS-TT connected to the second UE.
  • TT is measured. After the delay between the second UE and DS-TT is obtained, it is transparently reported to the first network device through the second UE, the second SMF, and the second PCF.
  • the transmission delay of the NW-TT of the second UE is measured by the NE-TT connected to the second UE. After the delay between the NW-TT of the second UE and the external TSN DN is obtained, it is transparent It is reported to the first network device through the second UPF, the second SMF, and the second PCF.
  • the first UE and the second UE may be connected in the same UPF network element.
  • the delay requirements in the QoS requirements of one service flow and the delay requirements in the QoS requirements of the second service flow can adopt the following methods, namely:
  • the first network device determines the first network device according to the delay in the first TSC session requirement parameter, the delay between the first UE and DS-TT, and the delay between the second UE and DS-TT.
  • the delay requirement in the QoS requirement of a service flow in the same way, the first network device is based on the delay in the first TSC session requirement parameter, the delay between the first UE and the DS-TT, and the The delay between the second UE and the DS-TT determines the delay requirement in the QoS requirement of the second service flow.
  • the first network device can use the Bridge ID information reported by the NW-TT and UPF to determine whether the first UE and the second UE are connected to the same UFP network element. If the Bridge ID is the same as the UFP network element ID If the same, the first network device can determine that the first UE and the second UE are connected to the same UPF.
  • the first network device uses (Formula 1) and (Formula 2) to calculate the delay requirements in the QoS requirements of the first service flow and the delay requirements in the QoS requirements of the second service flow, respectively, the first network device needs to be set.
  • the transmission delay of the NW-TT of the UE and the transmission delay of the NW-TT of the second UE are both zero or the transmission delay of the NW-TT of the first UE and the transmission time of the NW-TT of the second UE are not used , So as to obtain the above-mentioned (Equation 3) and (Equation 4) respectively.
  • the time calculation unit ratio rateRatio of the TSN clock domain and the 5G clock domain is not equal to 1, then all the time parameters of the TSN domain in the above (Formula 1) to (Formula 4)
  • the time parameters mapped to the 5G clock domain for example, the “delay corresponding to the QoS requirements of the service flow” in the TSN domain divided by the rateRatio to obtain the “delay corresponding to the QoS requirements of the service flow” in the 5G clock domain, and then calculate it.
  • the first network device sends the QoS requirement of the first service flow and the first information to the first PCF corresponding to the first UE, and sends the QoS requirement of the second service flow to the second PCF corresponding to the second UE. And second information.
  • the TSC communication request may include a PDU session creation request or a PDU session modification request
  • the first network device will perform according to the first TSC session described above.
  • the NW-TT transmission delay of the second UE is calculated from the delay requirements in the QoS requirements of the first service flow calculated by the foregoing (Formula 1) and (Formula 3), and according to the first TSC session described above
  • After the transmission delay of the NW-TT of the second UE is calculated from the delay requirements in the QoS requirements of the second service flow in the previous (Formula 2) and (Formula 4), the QoS requirements of the first service flow
  • the delay requirements in the first service flow are included in the QoS requirements of the first service flow described above, and the delay requirements in the QoS requirements of the second service flow are
  • first PCF and the second PCF described above are generally different network elements.
  • the first PCF maps the QoS requirement of the first service flow to the QoS policy of the first service flow.
  • the TSN communication system sets the QoS flow according to the QoS requirements of the service flow, and the first PCF is responsible for the policy control of the first UE
  • the first service flow sent by the first network device is received After the QoS requirements are set, the QoS requirements of the first service flow can be mapped to the QoS policy of the first service flow.
  • the QoS policy of the first service flow can be sent to the corresponding first SMF, so that the first SMF maps the first service flow to the QoS flow according to the QoS policy of the first service flow, thereby establishing a transmission The first QoS flow of the service data of the first UE.
  • the first PCF after receiving the QoS requirement of the first service flow sent by the first network device, the first PCF correspondingly obtains the delay requirement in the QoS requirement of the first service flow. At this time, the first PCF can The value corresponding to the delay requirement in the QoS requirement of the first service flow is modified, so as to obtain the delay value in the QoS policy of the first service flow. In this way, after the first PCF obtains the QoS policy of the first service flow by mapping, the delay value in the QoS policy of the first service flow may also be included in the QoS policy of the first service flow.
  • the first PCF may not modify the value corresponding to the delay requirement in the QoS requirement of the first service flow, and the delay value in the QoS policy of the first service flow obtained in this way is the same as that of the first service flow.
  • the values corresponding to the delay requirements in the QoS requirements of a service flow are equal.
  • the first PCF sends the QoS policy of the first service flow and the first information to the first SMF.
  • the QoS policy of the first service flow includes the delay value in the QoS policy of the first service flow, so the first PCF can send the QoS policy of the first service flow to the first SMF, so that the first SMF can obtain To the QoS policy of the first service flow and the delay value in the QoS policy of the first service flow.
  • the delay value in the QoS policy of the first service flow is to enable the first SMF to establish the required requirement during the process of establishing the first QoS flow for transmitting the service data of the first UE.
  • the PDB value of the first QoS flow is set to be less than or equal to the delay value in the QoS policy of the first service flow, so that when the first QoS flow transmits this first service flow, its transmission delay is less than or equal to this The delay value in the QoS policy of the first service flow provided by the first PCF.
  • the first SMF When the PDB value of the first QoS flow set by the first SMF is less than or equal to the delay value of the QoS policy of the first service flow, the first SMF establishes and transmits the first service flow according to the QoS policy of the first service flow.
  • the first QoS flow of the UE's service data The first QoS flow of the UE's service data.
  • the QoS policy of the first service flow includes the QoS parameters applied to establish the QoS flow, such as the delay value in the QoS policy of the first service flow. Therefore, the first SMF can set the PDB value of the first QoS flow to be less than or equal to the delay value in the QoS policy of the first service flow, and establish the transmission of the first UE according to the QoS policy of the first service flow.
  • the first SMF can assign a corresponding DS-TT to the first QoS flow when a first QoS flow is established for the first UE.
  • the first Port and a second Port on the NW-TT form a Port pair.
  • the first SMF maps the QoS policy of the first service flow and the TSCAI information to the N2 session message, and maps the QoS policy of the first service flow to the N1 session message.
  • the first SMF may map the QoS parameters contained in the QoS policy of the first service flow to the QoS profile (QoS Profile), and then combine the TSCAI information contained in the first information of the first UE received above Load the N2 session message and provide it to the 5G base station gNB corresponding to the first UE; in addition, it is also necessary to map the QoS parameters included in the QoS policy of the first service flow to the QoS Rule (QoS Rule) and the received first
  • the DS-TT port configuration information included in the first information of a UE is loaded into the N1 session message and provided to the first UE. It should be understood that, since the TSCAI information described above is based on the parameter value of the TSN clock domain, the first SMF needs to convert it to the clock domain value of the 5G system through a form of mapping or the like.
  • the first SMF sends the N2 session message and the N1 session message to the first AMF.
  • the first AMF sends an N1 session message to the first UE.
  • the first UE can configure the service flow data according to the QoS rules and TSC port management The information sends the service flow data to the second UE or receives the service flow data sent by the second UE, thereby establishing the TSC communication between the first UE and the second UE.
  • the second PCF maps the QoS requirements of the second service flow to the QoS policy of the second service flow.
  • the second PCF is responsible for the policy control of the second UE, so after receiving the QoS of the second service flow sent by the second network device After the requirement, the QoS requirement of the second service flow can be mapped to the QoS policy of the second service flow.
  • the QoS policy of the second service flow can be sent to the corresponding second SMF, so that the second SMF maps the second service flow to the QoS flow according to the QoS policy of the second service flow, thereby establishing the transmission station.
  • the second QoS flow of the service data of the second UE since the 5G communication system establishes the QoS flow according to the QoS requirements of the service flow, the second PCF is responsible for the policy control of the second UE, so after receiving the QoS of the second service flow sent by the second network device After the requirement, the QoS requirement of the second service flow can be mapped to the QoS policy of the second service flow.
  • the QoS policy of the second service flow can be sent to the corresponding second SMF
  • the second PCF after receiving the QoS requirement of the second service flow sent by the second network device, the second PCF correspondingly obtains the delay requirement in the QoS requirement of the second service flow.
  • the second PCF can The value corresponding to the delay requirement in the QoS requirement of the second service flow is modified, so as to obtain the delay value in the QoS policy of the second service flow.
  • the delay value in the QoS policy of the second service flow may also be included in the QoS policy of the second service flow.
  • the second PCF may not modify the value corresponding to the delay requirement in the QoS requirement of the second service flow, and then the delay value in the QoS policy of the second service flow obtained in this way is the same as that of the first service flow. Second, the values corresponding to the delay requirements in the QoS requirements of the service flow are equal.
  • the second PCF sends the QoS policy and second information of the second service flow to the second SMF.
  • the QoS policy of the second service flow includes the delay value in the QoS policy of the second service flow, so the second PCF can send the QoS policy of the second service flow to the corresponding second SMF, so that the first The second SMF can obtain the QoS policy of the second service flow and the delay value in the QoS policy of the second service flow.
  • the delay value in the QoS policy of the second service flow is to enable the second SMF to establish the required requirement during the process of establishing the second QoS flow for transmitting the service data of the second UE.
  • the PDB value of the second QoS flow is set to be less than or equal to the delay value in the QoS policy of the second service flow, so that when the second QoS flow transmits this second service flow, its transmission delay is less than or equal to this The delay value in the QoS policy of the second service flow provided by the second PCF.
  • the second SMF sets the PDB value of the second QoS flow to be less than or equal to the delay value in the QoS policy of the second service flow
  • the second SMF establishes and transmits the transmission according to the QoS policy of the second service flow.
  • the QoS policy of the second service flow includes the QoS parameters applied to establish the QoS flow, such as the delay value in the QoS policy of the second service flow. Therefore, the second SMF can set the PDB value of the second QoS flow to be less than or equal to the delay value in the QoS policy of the second service flow, and establish the transmission of the second service flow according to the QoS policy of the second service flow.
  • the second QoS flow of the UE's service data is also assign a corresponding DS-TT to the second QoS flow when a second QoS flow is established for the second UE.
  • the first Port and a second Port on the NW-TT form a Port pair.
  • the second SMF maps the QoS policy of the second service flow and the TSCAI information to the N2 session message, and maps the QoS policy of the second service flow to the N1 session message.
  • the second SMF may map the QoS parameters contained in the QoS policy of the second service flow to the QoS profile (QoS Profile), and then combine the information contained in the second UE's received second information.
  • the TSCAI information is loaded into the N2 session message and provided to the 5G base station gNB corresponding to the second UE; in addition, the QoS parameters included in the QoS policy of the second service flow need to be mapped to the QoS Rule and received
  • the DS-TT port configuration information included in the second information of the second UE is loaded into the N1 session message and provided to the second UE. It should be understood that since the TSCAI information described above is based on the parameter value of the TSN clock domain, the second SMF needs to convert it to the clock domain value of the 5G system through a form of mapping or the like.
  • the second SMF sends the N2 session message and the N1 session message to the second AMF.
  • the second AMF sends an N1 session message to the second UE.
  • the second UE can configure the service flow data according to the QoS rules and TSC port management The information sends the service flow data to the first UE or receives the service flow data sent by the first UE, thereby establishing the TSC communication between the first UE and the second UE.
  • steps 304-309 and steps 310-315 are not limited. In practical applications, steps 310-315 may be executed first and then steps 304-309, or steps 304-309 and steps 304-309 may be executed first. 310-315 can also be executed synchronously, which will not be specifically limited in the specific embodiment of this application.
  • the first UE initiates a TSC communication request, so that the first network device determines the QoS requirements of the first service flow and the QoS requirements of the second service flow, respectively, to the first UE and the second UE.
  • the 5G network triggers the establishment of the first QoS flow for transmitting the service data of the first UE and the second QoS flow for transmitting the service data of the second UE respectively, which realizes the establishment of the TSC communication request initiated by the UE TSC transmission channel between the first UE and the second UE.
  • the embodiments of the present application may divide the device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 4 is a schematic diagram of an embodiment of the first network device 40 provided in an embodiment of the present application.
  • the first network device 40 may include:
  • the receiving module 401 is configured to receive a TSC communication request sent by a first UE, where the TSC communication request carries a first TSC session requirement parameter, and the first TSC session requirement parameter includes the identifier of the second UE and the QoS requirement of the TSC session;
  • the determining module 402 is configured to determine the QoS requirement of the first service flow, the QoS requirement of the second service flow, the first information and the second information according to the first TSC session requirement parameter;
  • the sending module 403 is configured to send the QoS requirement and first information of the first service flow to the first PCF corresponding to the first UE, and send the first information corresponding to the second UE according to the identifier of the second UE.
  • the second PCF sends the QoS requirements of the second service flow and second information, the QoS requirements of the first service flow are used to map to the QoS policy of the first service flow through the first PCF, and the first The QoS policy of the service flow is used to establish the first QoS flow for transmitting the service data of the first UE through the first SMF, and the QoS requirement of the second service flow is used to map to the second The QoS policy of the service flow, where the QoS policy of the second service flow is used to establish a second QoS flow for transmitting the service data of the second UE through the second SMF.
  • the determining module 402 is configured to determine the delay requirement in the QoS requirement of the first service flow and the delay requirement in the QoS requirement of the second service flow.
  • the determining module 402 is configured to:
  • the transmission delay of the NW-TT of the first UE, the delay between the second UE and the DS-TT, and the transmission delay of the NW-TT of the second UE determine the QoS of the first service flow
  • the delay demand in the demand, and the delay in the first TSC session demand parameter, the delay between the first UE and the device-side TSN converter DS-TT, and the network TSN of the first UE The transmission delay of the converter NW-TT, the delay between the second UE and the DS-TT, and the transmission delay of the NW-TT of the second UE determine the delay in the QoS requirement of the second service flow demand.
  • the determining module 402 is configured to:
  • the first network device is based on the delay in the first TSC session requirement parameter, and the first UE and the DS-TT
  • the delay between the second UE and the DS-TT determines the delay requirement in the QoS requirement of the first service flow
  • the delay and the delay requirement in the first TSC session requirement parameter are determined according to the time delay and the delay between the second UE and the DS-TT.
  • the delay between the first UE and the DS-TT and the delay between the second UE and the DS-TT determine the delay requirements in the QoS requirements of the second service flow.
  • the sending module 403 is further configured to send the delay requirement in the QoS requirement of the first service flow to the first PCF, so that the first SMF sets the second The PDB value of a QoS flow is less than or equal to the delay value in the QoS policy of the first service flow, wherein the delay value in the QoS policy of the first service flow is determined by the first PCF according to the first The value corresponding to the delay requirement in the QoS requirement of a service flow is obtained;
  • the sending module 403 is further configured to send the delay requirement in the QoS requirement of the second service flow to the second PCF, so that the second SMF sets the PDB value of the second QoS flow to be less than or Is equal to the delay value in the QoS policy of the second service flow, wherein the delay value in the QoS policy of the second service flow is determined by the second PCF according to the QoS requirements of the second service flow The value corresponding to the delay requirement is obtained.
  • the determining module 402 is further configured to send the QoS requirements of the first service flow and the first information to the first PCF corresponding to the first UE in the sending module 403 Previously, the first PCF was determined according to the identity of the first UE.
  • the determining module 402 is further configured to send the QoS requirements of the second service flow and the second information to the second PCF corresponding to the second UE in the sending module 403 Previously, the second PCF corresponding to the second UE was determined according to the identity of the second UE.
  • an embodiment of the first policy control function device PCF 50 provided in the embodiment of the present application may include:
  • the receiving module 501 is configured to receive QoS requirements and first information of a first service flow sent by a first network device, where the first PCF corresponds to the first UE;
  • the mapping module 502 is configured to map the QoS requirement of the first service flow to the QoS policy of the first service flow;
  • the sending module 503 is configured to send the QoS policy of the first service flow and the first information to the first session management function device SMF, and the QoS policy of the first service flow is used to establish transmission through the first SMF The first QoS flow of the service data of the first UE.
  • the receiving module 501 is further configured to receive the delay requirement in the QoS requirement of the first service flow sent by the first network device;
  • the sending module 503 is further configured to send the delay value in the QoS policy of the first service flow to the first SMF, so that the first SMF sets the PDB value of the first QoS flow to be less than Or equal to the delay value in the QoS policy of the first service flow, wherein the delay value in the QoS policy of the first service flow is determined by the first PCF according to the QoS requirements of the first service flow The value corresponding to the delay requirement is obtained.
  • an embodiment of the first session management function device SMF 60 provided in the embodiment of the present application may include:
  • the receiving module 601 receives the QoS policy of the first service flow and the first information sent by the first PCF, where the first PCF corresponds to the first UE;
  • the establishment module 602 is configured to establish a first QoS flow for transmitting service data of the first UE according to the QoS policy of the first service flow.
  • the receiving module 601 is further configured to receive the delay value in the QoS policy of the first service flow sent by the first PCF;
  • the establishing module 602 is configured to establish a transmission according to the QoS policy of the first service flow when the PDB value of the first QoS flow is set to be less than or equal to the delay value in the QoS policy of the first service flow.
  • the first SMF 60 further includes:
  • the mapping module is configured to map the QoS policy of the first service flow and the TSCAI information to the first QoS flow for transmitting the service data of the first UE according to the QoS policy of the first service flow.
  • the QoS policy of the first service flow is mapped to the N1 session message, where the first information includes TSCAI information.
  • an embodiment of the second policy control function device PCF 70 provided in the embodiment of the present application may include:
  • the receiving module 701 is configured to receive QoS requirements and second information of a second service flow sent by a first network device, where the second PCF corresponds to the second UE;
  • the mapping module 702 is configured to map the QoS requirement of the second service flow to the QoS policy of the second service flow;
  • the sending module 703 is configured to send the QoS policy of the second service flow and the second information to the second SMF, where the QoS policy of the second service flow is used to establish and transmit the second SMF through the second SMF.
  • the second QoS flow of the UE's service data is configured to send the QoS policy of the second service flow and the second information to the second SMF, where the QoS policy of the second service flow is used to establish and transmit the second SMF through the second SMF.
  • the receiving module 701 is further configured to receive the delay requirement in the QoS requirement of the second service flow sent by the first network device;
  • the sending module 703 is further configured to send the delay value in the QoS policy of the second TSC service flow to the second SMF, so that the second SMF sets the PDB value of the second QoS flow to be smaller than Or equal to the delay value in the QoS policy of the second service flow, wherein the delay value in the QoS policy of the second service flow is determined by the second PCF according to the QoS requirements of the second service flow The value corresponding to the delay requirement is obtained.
  • an embodiment of the second session management function device SMF 80 provided in the embodiment of the present application may include:
  • the receiving module 801 is configured to receive the QoS policy of the second service flow and the second information sent by the second PCF, where the second PCF corresponds to the second UE;
  • the establishment module 802 is configured to establish a second QoS flow for transmitting service data of the second UE according to the QoS policy of the second service flow.
  • the receiving module 801 is further configured to receive the delay value in the QoS policy of the second service flow sent by the second PCF;
  • the establishing module 802 is configured to establish according to the QoS policy of the second service flow when the PDB value of the second QoS flow is set to be less than or equal to the delay value in the QoS policy of the second service flow The second QoS flow for transmitting the service data of the second UE.
  • the second session management function device SMF 80 further includes:
  • the mapping module is configured to map the QoS policy of the second service flow and the TSCAI information to the second QoS flow for transmitting the service data of the second UE according to the QoS policy of the second service flow.
  • the QoS policy of the second service flow is mapped to the N1 session message, where the first information includes TSCAI information.
  • first network device first policy control function device PCF
  • first session management function device SMF second policy control function device PCF
  • second session management function device SMF implement the above functions, which include execution The hardware structure and/or software module corresponding to each function.
  • present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the above-mentioned first network device, the first policy control function device PCF, the first session management function device SMF, the second policy control function device PCF, and the second session management function device SMF can all be implemented by one physical device.
  • the implementation may also be implemented by multiple physical devices, or it may be a logical function unit in one physical device, which is not specifically limited in the embodiment of the present application.
  • FIG. 9 shows a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • the communication device includes at least one processor 901, a memory 902, and a communication line 903.
  • the communication device may further include at least one of a transceiver 904 and a communication interface 906.
  • the processor 901 may be a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an Application-Specific Integrated Circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • CPU Central Processing Unit
  • ASIC Application-Specific Integrated Circuit
  • the communication line 903 may include a path to transmit information between the above-mentioned components.
  • Transceiver 904 using any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • the transceiver 904 may also be a transceiver circuit or a transceiver.
  • the communication device may also include a communication interface 906.
  • the memory 902 may be a read-only memory (Read-Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random Access Memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory may exist independently, and is connected to the processor 901 through a communication line 903.
  • the memory 902 may also be integrated with the processor 801.
  • the memory 902 is used to store computer-executable instructions for executing the solutions of the present application, and the processor 901 controls the execution.
  • the processor 901 is configured to execute computer-executable instructions stored in the memory 902, so as to implement the data transmission method provided in the foregoing method embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9.
  • the communication device may include multiple processors, such as the processor 901 and the processor 905 in FIG. 9.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer execution instructions).
  • this application can divide the first network device, the first PCF, the first SMF, the second PCF, or the second SMF according to the above method embodiments.
  • each function can be divided corresponding to each function.
  • Unit, two or more functions can also be integrated into one functional unit.
  • the above-mentioned integrated functional unit can be implemented in the form of hardware or software functional unit.
  • receiving module 401, sending module 403, receiving module 501, sending module 503, receiving module 601, receiving module 701, sending module 703, and receiving module 801 can all be implemented by transceiver 904, determining module 402, mapping module 502, and establishing The module 602, the mapping module 603, the mapping module 702, the establishment module 802, and the mapping module 803 can all be implemented by the processor 901 or the processor 905.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the program can be stored in a computer-readable storage medium, and the storage medium can include: ROM, RAM, magnetic disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据传输的方法及相关装置,由UE发起TSC通信请求来建立第一UE与第二UE之间的TSC传输通道。包括:接收第一UE发送携带第一TSC会话需求参数的TSC通信请求;根据第一TSC会话需求参数确定第一业务流的QoS需求、第二业务流的QoS需求;向第一PCF发送第一业务流的QoS需求,第一业务流的QoS需求用于通过第一PCF映射为第一业务流的QoS策略,及向第二PCF发送第二业务流的QoS需求,第二业务流的QoS需求用于通过第二PCF映射为第二业务流的QoS策略,第一业务流的QoS策略、第二业务流的QoS策略分别用于通过第一SMF、第二SMF建立第一QoS流、第二QoS流。

Description

一种数据传输的方法以及相关装置
本申请要求于2019年11月13日提交中国专利局、申请号201911109143.5、申请名称为“一种数据传输的方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及数据传输。
背景技术
第五代(5th Generation,5G)的(Release16,R16)版本引入了时间敏感网络(Time Sensitive Network,TSN)的时间敏感通信(Time Sensitive Communication,TSC),以使5G支持精确时间控制的工业自动化制造应用。
而在第三代合作项目(3rd generation partnership project,3GPP)的IMS(IP Multimedia Subsystem,IP多媒体子系统)协议中用户终端(User Equipment,UE)与UE之间的业务通信是需要通过将UE注册到IMS系统的S-CSCF(Serving Call Session Control Function,服务呼叫会议控制功能)中,通过S-CSCF的协作来完成UE与UE之间的通信。然而,在目前的R16版本的TSN中只是定义了由DN(Data Network,数据网络)ES(End Station,终端站设备)来发起通信建立起UE ES与DN ES的TSN通信,但TSC至少要支持UE与UE之间的通信。
TSC数据在3GPP网络中是基于服务质量(Quality of Service,QoS)流(Flow)来传输的。
发明内容
本申请实施例提供一种数据传输的方法以及相关装置,可以分别触发建立起用于传输第一UE的业务数据的第一QoS流,及触发建立起用于传输第二UE的业务数据的第二QoS流,实现了由UE发起TSC通信请求来建立第一UE与第二UE之间的TSC传输通道。
本申请第一方面提供一种数据传输的方法,该方法可以包括:
第一网络设备接收第一UE发送的TSC通信请求,所述TSC通信请求携带第一TSC会话需求参数,所述第一TSC会话需求参数包括第二UE的标识和TSC会话的QoS需求;
所述第一网络设备根据所述第一TSC会话需求参数确定第一业务流的QoS需求、第二业务流的QoS需求、第一信息和第二信息;
所述第一网络设备向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和第一信息,以及根据所述第二UE的标识向所述第二UE对应的第二PCF发送所述第二业 务流的QoS需求和第二信息,所述第一业务流的QoS需求用于通过所述第一PCF映射为所述第一业务流的QoS策略,所述第一业务流的QoS策略用于通过第一SMF建立传输所述第一UE的业务数据的第一QoS流,所述第二业务流的QoS需求用于通过所述第二PCF映射为所述第二业务流的QoS策略,所述第二业务流的QoS策略用于通过第二SMF建立传输所述第二UE的业务数据的第二QoS流。
本申请第二方面提供一种数据传输的方法,该方法可以包括:
第一PCF接收第一网络设备发送的第一业务流的QoS需求和第一信息,所述第一PCF与所述第一UE对应;
所述第一PCF将所述第一业务流的QoS需求映射为所述第一业务流的QoS策略;
所述第一PCF向第一SMF发送所述第一业务流的QoS策略和所述第一信息,所述第一业务流的QoS策略用于通过所述第一SMF建立传输所述第一UE的业务数据的第一QoS流。
本申请第三方面提供一种数据传输的方法,该方法可以包括:
第一SMF接收第一PCF发送的第一业务流的QoS策略和所述第一信息,所述第一PCF与第一UE相对应;
所述第一SMF根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
本申请第四方面提供一种数据传输的方法,该方法可以包括:
第二PCF接收第一网络设备发送的第二业务流的QoS需求和第二信息,所述第二PCF与所述第二UE对应;
所述第二PCF将所述第二业务流的QoS需求映射为所述第二业务流的QoS策略;
所述第二PCF向第二SMF发送所述第二业务流的QoS策略和所述第二信息,所述第二业务流的QoS策略用于通过所述第二SMF建立传输所述第二UE的业务数据的第一QoS流。
本申请第五方面提供一种数据传输的方法,该方法可以包括:
第二SMF接收第二PCF发送的第二业务流的QoS策略和所述第二信息,所述第二PCF与第二UE相对应;
所述第二SMF根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
本申请第五方面提供一种第一网络设备,可以包括:
接收模块,用于接收第一UE发送的TSC通信请求,所述TSC通信请求携带第一TSC会话需求参数,所述第一TSC会话需求参数包括第二UE的标识和TSC会话的QoS需求;
确定模块,用于根据所述第一TSC会话需求参数确定第一业务流的QoS需求、第二业务流的QoS需求、第一信息和第二信息;
发送模块,用于向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和第一信息,以及根据所述第二UE的标识向所述第二UE对应的第二PCF发送所述第二业务流的QoS需求和第二信息,所述第一业务流的QoS需求用于通过所述第一PCF映射为所述第一业务流的QoS策略,所述第一业务流的QoS策略用于通过第一SMF建立传输所述第一UE的业务数据的第一QoS流,所述第二业务流的QoS需求用于通过所述第二PCF映射为所述第二业务流的QoS策略,所述第二业务流的QoS策略用于通过第二SMF建立传输所述第二UE的业务数据的第二QoS流。
一种可能的实现方式中,
所述确定模块,用于确定所述第一业务流的QoS需求中的时延需求和所述第二业务流的QoS需求中的时延需求。
一种可能的实现方式中,所述确定模块用于:
当所述第一UE与所述第二UE连接在不相同的UPF网元时,所述第一网络设备根据所述第一TSC会话需求参数中的时延、所述第一UE与设备侧TSN转换器DS-TT之间的时延、所述第一UE的网络TSN转换器NW-TT的传输时延、所述第二UE与DS-TT之间的时延和所述第二UE的NW-TT的传输时延确定第一业务流的QoS需求中的时延需求,以及根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第一UE的NW-TT的传输时延、所述第二UE与DS-TT之间的时延和所述第二UE的NW-TT的传输时延确定第二业务流QoS需求中的时延需求。
一种可能的实现方式中,所述确定模块用于:
当所述第一UE与所述第二UE连接在相同的UPF网元时,所述第一网络设备根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延和所述第二UE与DS-TT之间的时延确定第一业务流的QoS需求中的时延需求,以及根据所述第二业务流的QoS需求对应的时延、所述第一UE与DS-TT之间的时延以及所述第二UE与DS-TT之间的时延确定第二业务流的QoS需求中的时延需求。
一种可能的实现方式中,
所述发送模块,还用于向所述第一PCF发送所述第一业务流的QoS需求中的时延需求,以使得所述第一SMF设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值,其中,所述第一业务流的QoS策略中的时延值由所述第一PCF根据所述第一业务流的QoS需求中的时延需求对应的值得到;
所述发送模块,还用于向所述第二PCF发送所述第二业务流的QoS需求中的时延需求,以使得所述第二SMF设置所述第二QoS流的PDB值小于或等于所述第二业务流的QoS策略中的时延值,其中,所述第二业务流的QoS策略中的时延值由所述第二PCF根据所述第二业务流的QoS需求中的时延需求对应的值得到。
一种可能的实现方式中,所述确定模块还用于:
在所述发送模块向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和所述第一信息之前,根据所述第一UE的标识确定所述第一PCF。
一种可能的实现方式中,所述确定模块还用于:
根据所述第二UE的标识确定所述第二UE对应的所述第二PCF;
所述发送模块用于向所述第二PCF发送所述第二业务流的QoS需求和所述第二信息。
本申请第六方面提供一种第一策略控制功能设备PCF,可以包括:
接收模块,用于接收第一网络设备发送的第一业务流的服务质量QoS需求和第一信息,所述第一PCF与所述第一UE对应;
映射模块,用于将所述第一业务流的QoS需求映射为所述第一业务流的QoS策略;
发送模块,用于向第一会话管理功能设备SMF发送所述第一业务流的QoS策略和所述第一信息,所述第一业务流的QoS策略用于通过所述第一SMF建立传输所述第一UE的业务数据的第一QoS流。
一种可能的实现方式中,所述接收模块,还用于接收所述第一网络设备发送的第一业务流的QoS需求中的时延需求;
所述发送模块,还用于向所述第一SMF发送所述第一业务流的QoS策略中的时延值,以使得所述第一SMF设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值,其中,所述第一业务流的QoS策略中的时延值由所述第一PCF根据所述第一业务流的QoS需求中的时延需求对应的值得到。
本申请第七方面提供一种第一会话管理功能设备SMF,可以包括:
接收模块,接收第一策略控制功能设备PCF发送的第一业务流的服务质量QoS策略和所述第一信息,所述第一PCF与第一UE相对应;
建立模块,用于根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
一种可能的实现方式中,所述接收模块还用于:
接收所述第一PCF发送的第一业务流的QoS策略中的时延值;
所述建立模块,用于在设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值时,根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
一种可能的实现方式中,所述第一SMF还包括映射模块,用于在根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流之后,将所述第一业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第一业务流的QoS策略映射到所述N1会话消息中,其中,所述第一信息包括TSCAI信息。
本申请第八方面提供一种第二策略控制功能设PCF,可以包括:
接收模块,用于接收第一网络设备发送的第二业务流的QoS需求和第二信息,所述第二PCF与所述第二UE对应;
映射模块,用于将所述第二业务流的QoS需求映射为所述第二业务流的QoS策略;
发送模块,用于向第二会话管理功能设备SMF发送所述第二业务流的QoS策略和所述第二信息,所述第二业务流的QoS策略用于通过所述第二SMF建立传输所述第二UE的业务数据的第二QoS流。
一种可能的实现方式中,所述接收模块,还用于接收所述第一网络设备发送的第二业务流的QoS需求中的时延需求;
所述发送模块,还用于向所述第二SMF发送所述第二TSC业务流的QoS策略中的时延值,以使得所述第二SMF设置所述第二QoS流的PDB值小于或等于所述第二业务流的QoS策略中的时延值,其中,所述第二业务流的QoS策略中的时延值由所述第二PCF根据所述第二业务流的QoS需求中的时延需求对应的值得到。
本申请第九方面提供一种第二会话管理功能设备SMF,可以包括:
接收模块,用于接收第二策略控制功能设PCF发送的第二业务流的QoS策略和所述第二信息,所述第二PCF与第二UE相对应;
建立模块,用于根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
一种可能的实现方式中,所述接收模块,还用于接收所述第二PCF发送的第二业务流的QoS策略中的时延值;
所述建立模块,用于在设置所述第二Qos流的PDB值小于或等于所述第二业务流的QoS策略中的时延值时,根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
一种可能的实现方式中,所述第二SMF还包括映射模块,用于在根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流之后,将所述第二业务流的 QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第二业务流的QoS策略映射到所述N1会话消息中,其中,所述第二信息包括TSCAI信息。
本申请第十方面提供一种第一网络设备,可以包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第一网络设备运行时,该通信接口用于执行上述第一方面或第一方面任一可能的实现方式中接收模块、发送模块所执行的动作,该处理器执行该存储器存储的该计算机执行指令,以执行上述第一方面或第一方面任一可能的实现方式中确定模块所执行的动作。
本申请第十一方面提供一种第一策略控制功能设备PCF,可以包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第一PCF运行时,该通信接口用于执行上述第二方面或第二方面任一可能的实现方式中接收模块、发送模块所执行的动作,该处理器执行该存储器存储的该计算机执行指令,以执行上述第二方面或第二方面任一可能的实现方式中映射模块所执行的动作。
本申请第十二方面提供一种第一会话管理功能设备SMF,可以包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第一SMF运行时,该通信接口用于执行上述第三方面或第三方面任一可能的实现方式中接收模块所执行的动作,该处理器执行该存储器存储的该计算机执行指令,以执行上述第三方面或三方面任一可能的实现方式中建立模块、映射模块所执行的动作。
本申请第十三方面提供一种第二策略控制功能设备PCF,可以包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第二PCF运行时,该通信接口用于执行上述第四方面或第四方面任一可能的实现方式中接收模块、发送模块所执行的动作,该处理器执行该存储器存储的该计算机执行指令,以执行上述第四方面或第四方面任一可能的实现方式中映射模块所执行的动作。
本申请第十四方面提供一种第二会话管理功能设备SMF,可以包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第二SMF运行时,该通信接口用于执行上述第五方面或第五方面任一可能的实现方式中接收模块所执行的动作,该处理器执行该存储器存储的该计算机执行指令,以执行上述第五方面或第五方面任一可能的实现方式中建立模块、映射模块所执行的动作。
本申请的第十五方面提提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面至第五方面所述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,通过第一UE发起TSC通信请求,使得第一网络设备在确定第一业务流的QoS需求、第二业务流的QoS需求后分别提供给第一UE和第二UE所在的5G网络,从而分别触发建立起用于传输第一UE的业务数据的第一QoS流,也触发建立起用于 传输第二UE的业务数据的第二QoS流,实现了由UE发起TSC通信请求来建立第一UE与第二UE之间的TSC传输通道。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1是本申请实施例提供的一种TSN通信系统的结构示意图;
图2是本申请实施例中提供的一种数据传输的方法示意图;
图3是本申请实施例中提供的另一种数据传输的方法示意图;
图4是本申请实施例中提供的第一网络设备一个实施例示意图;
图5是本申请实施例中提供的第一策略控制功能设备PCF一个实施例示意图;
图6是本申请实施例中提供的第一会话管理功能设备SMF一个实施例示意图;
图7是本申请实施例中提供的第二策略控制功能设备PCF一个实施例示意图;
图8是本申请实施例中提供的第二会话管理功能设备SMF一个实施例示意图;
图9是本申请实施例提供的通信设备的硬件结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供一种数据传输的方法,可以分别触发建立起用于传输第一UE的业务数据的第一QoS流,也触发建立起用于传输第二UE的业务数据的第二QoS流,实现了由UE发起TSC通信请求来建立第一UE与第二UE之间的TSC传输通道。本申请实施例还提供了相关装置。以下分别进行详细说明。
本申请实施例提供的数据传输的方法,可应用与第五代(5th generation,5G)网络中,也可以应用于其他可支持TSC数据传输的网络,下面以5G网络为例进行介绍。
5G系统的R16标准中引入了TSC(Time Sentive Communication,时间敏感通信),这使得5G系统能够支持精确时间控制的工业自动化制造应用。按照5G系统的R16标准的指引,5G系统可作为TSN的一个Ethernet Bridge(以太网桥接器)而被整合到TSN中,整合后的系统可被称作TSN通信系统。图1示出了本申请一个示例性实施例提供的一种TSN通信系统的结构示意图;如图所示,该TSN通信系统包括TSN和5G系统。
其中,5G系统包括UE(User Equipment,用户终端)及各种功能实体设备;这些功能实体设备主要包括:①UPF(User Plane Function,用户面功能设备);②NG RAN(NG Radio Access Network,5G无线接入网功能设备),其中NG接口是无线接入网与5G核心网之间的接口。③AMF(Access and Mobility Management Function,接入和移动管理功能设备),负责移动性管理,与UE和NG RAN相连接。④SMF(Session Management Function,会话管理功能设备),负责会话管理,与AMF和UPF相连接。⑤PCF(Policy Control Function,策略控制功能设备),负责策略控制,并与SMF相连。⑥UDM(Unified Data Manager,统一数据管理设备),用于对业务数据进行统一管理。⑦AF(Application Function,应用功能设备),用于提供业务数据。TSN包括ES(End Station,终端站设备)和CNC(Centralized Network Controller,集中网络控制器),该CNC用于对整个TSN通信系统的业务进行统一管理。如图1所示,5G系统中的UE通过DS-TT(Device Side TSN Translator,设备侧TSN转换器)与5G系统外部的TSN DN(Data Network,数据网络)中的一个或多个ES相连。UPF通过NW-TT(NetWork TSN Translator,网络TSN转换器)与TSN DN中的一个或多个ES相连。其中,DS-TT及NW-TT均可提供用于进行数据传输的Port(端口)。
在TSN中,UE与时间敏感通信设备侧例如设备侧TSN转换器(Device-side TSN translator,DS-TT)都属于设备侧桥(Device side of Bridge),该设备侧桥与时间敏感通信系统(TSN System)连接。UPF网元中包括时间敏感通信网络侧(NetWork TSN translator,NW-TT)。
为了实现对TSN网络的这种透明性,以及5GS(5G系统)作为任何其他TSN桥的外观,5GS通过DS-TT和NW-TT提供TSN进入和输出端口。DS-TT和NW-TT可选地支持以下功能:
保持和转发功能,以消除抖动;
链路层连接性发现和报告。
UE可以包括:手持终端、笔记本电脑、用户单元(Subscriber Unit)、蜂窝电话(Cellular Phone)、智能电话(Smart Phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(Modem)、手持设备(Handheld)、膝上型电脑(Laptop Computer)、无绳电话(Cordless Phone)或者无线本地环路(Wireless Local Loop,WLL)台、机器类型通信(Machine Type Communication,MTC)终端或是其他可以接入网络的设备。UE与接入网设备之间采用某种空口技术相互通信。
上述图1所示的网元中,UE会发送上行数据,UPF会发送下行数据,无论是UE发送上行数据,还是UPF会发送下行数据,在发送的数据是TSC数据时,都需要将该TSC数据映射到QoS流上进行传输。
应理解的是,在本申请实施例中的第一网络设备由AF和CNC构成。为便于更好地理解本申请实施例所提出的方案,下面对本实施例中的具体流程进行介绍,如图2所示,是本实施例提供的一种数据传输的方法,该方法可以包括:
201、第一UE向第一网络设备发送TSC通信请求。
本实施例中,TSC通信请求可以由第一UE依次通过第一AMF、第一SMF以及第一PCF透明地传输到该第一网络设备。TSC通信请求携带了第一TSC会话需求参数,其中,TSC通信请求中增加了TSC会话需求容器(TSC Session Requirement Container),该第一TSC会话需求参数是包含于TSC会话需求容器中的参数,例如,该第一TSC会话需求参数可以包括第二UE的标识和TSC流的QoS需求(TSC stream QoS Requirements),又如,该TSC会话中TSC流的QoS需求可以包括第一UE与第二UE之间端到端的时延信息、数据的周期性、数据的最后到达时间(Burst Arrival Time)等。当然了,在实际应用中,该第一TSC会话需求参数还可以包括应用标识(Application ID)等,一个TSC会话中可能包含有多个TSC会话流,每个TSC会话流的操作过程都是类似的。
需要说明的是,上述所描述的TSC会话的QoS需求是第一UE在TSN时钟域上建立起的TSC的业务需求,例如:第一UE传输业务数据到第二UE之间所需要的传输总时延等。
另外,需要说明的一点是,由于第一网络设备可以由AF和CNC组成。因此,对于该TSC通信请求还可以由第一PCF透明地传输到AF,由AF将该CNC通信请求透明地传输到CNC中。
可选地,在一些实施例中,上述所描述的TSC通信请求可以包括PDU会话修改请求或PDU会话建立请求,在本申请实施例中将不做具体限定。
202、第一网络设备根据第一TSC会话需求参数确定第一业务流的QoS需求、第二业务流的QoS需求、第一信息和第二信息。
实际上,第一信息可以包括第一UE的TSCAI信息以及第一UE的TSC端口管理信息(TSN Port Management Information),第二信息可以包括第二UE的TSCAI信息以及第二UE的TSC端口管理信息。所描述的TSCAI(TSCAssistance Information,时间敏感通信辅助信息)信息实际上是数据流的信息,如前所述,5G系统的R16标准中引入TSC的目的在于使得5G系统能够支持精确时间的工业自动化制造应用,而TSCAI信息能够帮助对数据流进行精确的时间控制。因此,在第一网络设备根据第一TSC会话需求参数确定出第一信息、第二信息后,可以将其分别发送给第一UE所对应的第一PCF和第二UE所对应的第二PCF,使得第一PCF进一步地通过第一SMF、第一AMF将该第一信息传输给该第一 UE对应的NG RAN网元,从而使得NG RAN网元可以根据该第一信息中的TSCAI信息对数据流进行精确的时间控制;同理,使得第二PCF进一步地通过第二SMF、第二AMF将该第二信息传输给该第二UE对应的NG RAN网元,从而使得NG RAN网元可以根据该第二信息中的TSCAI信息对数据流进行精确的时间控制。下述是关于TSCAI的一些说明,具体如下:
TSCAI描述了用于5G系统的TSC流量特征。TSN流量模式的知识对于gNB(5G基站)是有用的,以允许gNB通过配置授权、半持久调度或动态授权更有效地调度周期性、确定性的业务流。TSCAI信息的定义可参见下述表一,其中,TSCAI信息由第一AMF和第二AMF分别提供给各自相应的NG RAN网元,例如:第一SMF和第二SMF在建立QoS Flow的过程中将TSCAI信息分别传输给相应的第一AMF和第二AMF后,使得第一AMF和第二AMF提供给各自的NG RAN网元。
表一:TSCAI信息
Figure PCTCN2020121743-appb-000001
上表包括TSC业务数据的突发到达时间(Burst Arrival Time),以及业务数据的周期性(Periodicity)。TSC业务数据是从Burst Arrival Time到达后,以Periodicity规定的时间一包一包的到达NG RAN网元。
还可以理解的是,上述所描述的TSCAI信息及QoS流的QoS参数是在5G时钟域上的,而第一业务流的QoS需求、第二业务流的QoS需求实际上是第一网络设备所在的TSN时钟域上为第一UE和第二UE重新分配的QoS需求。也就是说由于第一网络设备所接收到的TSC会话的QoS需求是在TSN时钟域上建立的,是端到端的QoS需求,需要分解为第一UE与第二UE相关的需求,从而实现总的端到端的QoS需求。另外,第一网络设备往往根据网络的配置,需要将该TSN时钟域上的TSC会话的QoS需求根据配置作调整,从而更新并生成第二TSC会话的QoS需求,从而依据第二TSC会话的QoS需求来重新得到上述所描述的第一业务流的QoS需求、第二业务流的QoS需求。例如,假设上述所接收到的TSC会话的QoS需求中的时延是第一UE到第二UE之间的端到端的总传输时延为2000微秒,而第一网络设备根据网络的配置,需要将该TSN时钟域上的TSC会话的QoS需求中的2000微秒的时延更新为1800微秒。然后依据更新后的第二TSC会话QoS需求中的1800微秒,确定出第一UE和第二UE等分地分配的QoS需求为800微秒,如:1800/2=900, 900微秒减去一些其它的100微秒时延得到800微秒,即第一业务流的QoS需求、第二业务流的QoS需求均为800微秒等,在实际应用中,还可以是其他的重新分配方式,本申请实施例中将不做具体限定。
需要说明的是,上述所描述的更新后的TSC会话的QoS需求中的时延是可以计算出用于第一UE的第一业务流的QoS需求和用于第二UE的第二业务流的QoS需求。具体可以参照图3中步骤303进行理解,此处不做赘述。
203、所述第一网络设备向第一UE对应的第一PCF发送所述第一业务流的QoS需求和第一信息,以及根据所述第二UE的标识向第二UE对应的第二PCF发送所述第二业务流的QoS需求和第二信息。
本实施例中,第一网络设备分别给第一UE和第二UE所在的5G网络提供业务流的QoS需求。第一网络设备会向第一UE对应的第一PCF发送该第一业务流的QoS需求以及向第二UE对应的第二PCF发送该第二业务流的QoS需求。
需要说明的是,上述所描述的第一PCF和第二PCF是不相同的网元。
可选地,在另一些实施例中,第一网络设备向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和所述第一信息之前,还需要根据第一UE的标识来确定第一PCF,以便于为后续的信令传输提供正确的节点,建立起信令传输路径。同理,在另一些实施例中,第一网络设备根据所述第二UE的标识向所述第二UE对应的第二PCF发送所述第二业务流的QoS需求和所述第二信息时,可以先根据第二UE的标识来确定第二PCF,以便于为后续的信令传输提供正确的节点,建立起信令传输路径。进而向第二PCF发送第二业务流的QoS需求和第二信息。
由于CNC可以在接收了由AF发送的第一TSC会话需求参数后根据该第一TSC会话需求参数确定出第一业务流的QoS需求、第一信息、以及第二业务流的QoS需求、第二信息。然后将第一业务流的QoS需求、第一信息、以及第二业务流的QoS需求、第二信息发送给AF,那么此时AF在接收了第一业务流的QoS需求、第一信息、以及第二业务流的QoS需求、第二信息后,就可以通过第一UE的标识来确定第一PCF,以及通过第二UE的标识来确定第二PCF。
204、第一PCF将第一业务流的QoS需求映射为第一业务流的QoS策略。
本实施例中,由于5G通信系统是依据业务流的QoS需求来设置QoS流的,而第一PCF是负责第一UE的策略控制,因此在接收到第一网络设备发送的第一业务流的QoS需求后,便可以将该第一业务流的QoS需求映射成第一业务流的QoS策略。这样,便可以将该第一业务流的QoS策略发送给相应的第一SMF,从而使得第一SMF根据该第一业务流的QoS策略将第一业务流映射到QoS流中,从而建立起传输所述第一UE的业务数据的第一QoS流。
205、第一PCF向第一SMF发送所述第一业务流的QoS策略和所述第一信息。
206、第一SMF根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
本实施例中,由于第一业务流的QoS策略包括了建立QoS流所应用到的QoS参数,所以第一SMF可以根据该第一业务流的QoS策略所包括的QoS参数来建立起传输该第一UE的业务数据的第一QoS流。当为第一UE建立起一个第一QoS流时,可以使用第一信息中的TSC端口管理信息为这个第一QoS流分配对应的DS-TT上的一个第一Port以及NW-TT上的一个第二Port,从而组成一个Port对。
可选地,在另一些实施例中,该第一信息包括前述所描述的第一UE的TSCAI信息,所以在第一SMF根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流之后,还包括将所述第一业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第一业务流的QoS策略映射到所述N1会话消息中。
本实施例中,第一SMF可以将该第一业务流的QoS策略所包含的QoS参数映射到QoS配置(QoS Profile),然后结合上述收到的第一信息中包含的TSCAI信息载入到N2会话消息,提供给第一UE所对应的5G基站gNB;另外,还需要将第一业务流的QoS策略所包含的QoS参数映射到QoS规则(QoS Rule)及收到的第一信息中包含的DS-TT端口配置信息,载入N1会话消息中,提供给第一UE。应当理解的是,由于上述所描述的TSCAI信息是基于TSN时钟域的参数值,所以第一SMF需要将其通过映射等形式转换到5G系统的时钟域值。
207、第二PCF根据所述第二业务流的QoS需求映射为第二业务流的QoS策略。
本实施例中,由于5G通信系统是依据业务流的QoS需求来设置QoS流的,而第二PCF是负责第二UE的策略控制,因此在接收到第二网络设备发送的第二业务流的QoS需求后,便可以将该第二业务流的QoS需求映射成第二业务流的QoS策略。这样,便可以将该第二业务流的QoS策略发送给相应的第二SMF,从而使得第二SMF根据该第二业务流的QoS策略将第二业务流映射到QoS流中,从而建立起传输所述第二UE的业务数据的第二QoS流。
208、第二PCF向第二SMF发送所述第二业务流的QoS策略和所述第二信息。
209、第二SMF根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
本实施例中,由于第二业务流的QoS策略包括了建立QoS流所应用到的QoS参数,所以第二SMF可以根据该第二业务流的QoS策略所包括的QoS参数来建立起传输该第二UE的业务数据的第二QoS流。当为第二UE建立起一个第二QoS流时,可以使用第二信息中的TSC端口管理信息为这个第二QoS流分配对应的DS-TT上的一个第一Port以及NW-TT上的一个第二Port,从而组成一个Port对。
可选地,在另一些实施例中,该第一信息包括前述所描述的第二UE的TSCAI信息,所以在第二SMF根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流之后,还包括将所述第二业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第二业务流的QoS策略映射到所述N1会话消息中。
本实施例中,第二SMF可以该第二业务流的QoS策略所包含的QoS参数映射到QoS配置(QoS Profile),然后结合上述收到的第二信息中包含的TSCAI信息载入到N2会话消息,提供给第二UE所对应的5G基站gNB;另外,还需要将第二业务流的QoS策略所包含的QoS参数映射到QoS规则(QoS Rule)后及收到的第二信息中包含的DS-TT端口配置信息,载入N1会话消息中,提供给第二UE。应当理解的是,由于上述所描述的TSCAI信息是基于TSN时钟域的参数值,所以第二SMF需要将其通过映射等形式转换到5G系统的时钟域值。
应该理解的是,上述步骤204-206与步骤207-209的执行顺序不做限定,在实际应用中,也可以先执行步骤207-209后执行步骤204-206,又或者步骤204-206与步骤207-209还可以同步执行,具体本申请实施例中将不做具体限定。
本申请实施例中,通过第一UE发起TSC通信请求,使得第一网络设备在确定第一业务流的QoS需求和第二业务流的QoS需求后分别提供给第一UE和第二UE所在的5G网络,从而分别触发建立起用于传输第一UE的业务数据的第一QoS流,及触发建立起用于传输第二UE的业务数据的第二QoS流,实现了由UE发起TSC通信请求来建立第一UE与第二UE之间的TSC传输通道。
为便于更好地理解本申请实施例所提出的方案,在上述图2所描述的实施例的基础上,下面对本实施例中的具体流程进行介绍,如图3所示,是本实施例提供的一种数据传输的方法,该方法可以包括:
301、第一UE向第一网络设备发送TSC通信请求。
本实施例中,TSC通信请求携带了第一TSC会话需求参数,其中,TSC通信请求中增加了TSC会话需求容器,该第一TSC会话需求参数是包含于TSC会话需求容器中的参数,例如,该第一TSC会话需求参数可以包括第二UE的标识和业务流的QoS需求(TSC stream QoS Requirements),又如,该TSC会话的QoS需求可以包括第一UE与第二UE之间的延迟信息、数据的周期性、数据的最后到达时间(Burst Arrival Time)等。当然了,在实际应用中,该第一TSC会话需求参数还可以包括应用ID等。
需要说明的是,上述所描述的TSC会话的QoS需求是第一UE在TSN时钟域上建立起的TSC的业务需求。
可选地,在一些实施例中,上述所描述的TSC通信请求可以包括PDU会话修改请求或PDU会话建立请求。在本申请实施例中将不做具体限定。
302、第一网络设备确定第一业务流的QoS需求中的时延需求和第二业务流的QoS需求中的时延需求。
本实施例中,由于5G是依据TSC会话的QoS需求来设置QoS流的,其中TSC会话的QoS需求的一个重要的特性是时延需求,对于TSC通信而言,第一UE与第二UE之间的TSC通信的时延通常要求非常精确。因此,第一网络设备可以根据第一TSC会话需求参数确定第一业务流的QoS需求中的时延需求和确定第二业务流的QoS需求中的时延需求。其中,该第一业务流的QoS需求中的时延需求是用于针对为第一UE建立第一QoS流所需要的时延需求,第二业务流的QoS需求中的时延需求是用于针对为第二UE建立第二QoS流所需要的时延需求。
另外需要说明的是,第一业务流的QoS需求中的时延需求是第一业务流的QoS需求中的参数,第二业务流的QoS需求中的时延需求是第二业务流的QoS需求中的参数。
可选地,在一些实施例中,第一UE可以连接在相应的第一UPF,第二UE可以连接在相应的第二UPF,也就是当第一UE与第二UE连接在不相同的UPF网元时,对于确定第一业务流的QoS需求中的时延需求和第二业务流的QoS需求中的时延需求可以采用如下方式,即:
所述第一网络设备根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第一UE的NW-TT的传输时延、所述第二UE与DS-TT之间的时延以及所述第二UE的NW-TT的传输时延来确定第一业务流的QoS需求中的时延需求;同样地,可以根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第一UE的NW-TT的传输时延、所述第二UE与DS-TT之间的时延以及所述第二UE的NW-TT的传输时延来确定第二业务流的QoS需求中的时延需求。
参见如下公式所示,
Figure PCTCN2020121743-appb-000002
Figure PCTCN2020121743-appb-000003
其中,A为第一TSC会话需求参数中的时延,B为第一UE与DS-TT之间的时延,C为第一UE的NW-TT的传输时延,D为第二UE与DS-TT之间的时延,E为第二UE的NW-TT的传输时延。
也就是说上述的第一业务流的QoS需求中的时延需求和第二业务流的QoS需求中的时延需求可以相等。
需要说明的是,上述所描述的所述第一UE与DS-TT之间的时延是由与第一UE连接的DS-TT进行测量得到的,在得到该第一UE与DS-TT之间的时延之后,透明地通过第一UE、第一SMF、第一PCF上报给第一网络设备,而上述所描述的所述第一UE的NW-TT的传输时延是指第一UE的NW-TT与外部TSN DN(数据网络)的通信之间的时延,由与第一UE连接的NW-TT进行测量得到的,在得到该值之后,透明地通过第一UPF、第一SMF、第一PCF上报给第一网络设备。同理,由于第一UE与第二UE所连接的实体网元均不相同,那么上述所描述的所述第二UE与DS-TT之间的时延是由与第二UE连接的DS-TT进行测量得到的,在得到该第二UE与DS-TT之间的时延之后,透明地通过第二UE、第二SMF、第二PCF上报给第一网络设备,而上述所描述的所述第二UE的NW-TT的传输时延是由与第二UE连接的NE-TT进行测量得到的,在得到该第二UE的NW-TT与外部TSN DN之间的时延之后,透明地通过第二UPF、第二SMF、第二PCF上报给第一网络设备。
可选地,在另一些实施例中,第一UE可以与第二UE连接在相同的UPF网元中,此时当第一UE与第二UE连接在相同的UPF网元时,对于确定第一业务流的QoS需求中的时延需求和第二业务流的QoS需求中的时延需求可以采用如下方式,即:
所述第一网络设备根据第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第二UE与DS-TT之间的时延来确定第一业务流的QoS需求中的时延需求;同理,第一网络设备根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第二UE与DS-TT之间的时延来确定第二业务流的QoS需求中的时延需求。
参见如下公式所示,
Figure PCTCN2020121743-appb-000004
Figure PCTCN2020121743-appb-000005
需要说明的是,第一网络设备可以通过NW-TT与UPF上报的Bridge ID信息来判断出第一UE与第二UE是否连接在相同的UFP网元上,若Bridge ID与UFP网元的ID相同,那么第一网络设备就可以判断出第一UE与第二UE连接在相同的UPF上。
此时,因为NW-TT是UPF中的一部分功能,第一UE与第二UE的通信在UPF与NW-TT内部进行,无需UPF和NW-TT与外部TSN DN进行数据交换与通信,因此,第一网络设备在分别使用(公式一)和(公式二)计算第一业务流的QoS需求中的时延需求与第二业务流的QoS需求中的时延需求时,需要设置所述第一UE的NW-TT传输时延和所述第二UE的NW-TT的传输时延均为零或不使用第一UE的NW-TT的传输时延与第二UE的NW-TT的传输时延,从而分别得到上述的(公式三)与(公式四)。
进一步说明的是,第一网络设备在计算第一业务流的QoS需求中的时延需求与第二业务流的QoS需求中的时延需求时,是基于TSN的时钟域相对于5G的时钟域的时间计算单元比rateRatio=1,若TSN的时钟域与5G的时钟域的时间计算单元比rateRatio不等于1,则需要将上面(公式一)至(公式四)中的TSN域的时间参数全部映射到5G时钟域的时间参数,例如,TSN域的“业务流的QoS需求对应的时延”除以rateRatio,得到5G时钟域“业务流的QoS需求对应的时延”,然后再作计算。
303、第一网络设备向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和第一信息,以及向第二UE对应的第二PCF发送第二业务流的QoS需求和第二信息。
本实施例中,由于TSC通信请求可以包括PDU会话创建请求或者PDU会话修改请求,那么需要在PDU会话创建请求或者PDU会话修改请求的过程中,第一网络设备将根据上述描述的第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第一UE的NW-TT的传输时延、所述第二UE与DS-TT之间的时延、所述第二UE的NW-TT传输时延通过前面的(公式一)和(公式三)计算得到的第一业务流的QoS需求中的时延需求,以及根据上述描述的第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第一UE的NW-TT传输时延、所述第二UE与DS-TT之间的时延、所述第二UE的NW-TT的传输时延通过前面的(公式二)和(公式四)计算得到的第二业务流的QoS需求中的时延需求之后,将第一业务流的QoS需求中的时延需求包含于上述所描述的第一业务流的QoS需求中,将第二业务流的QoS需求中的时延需求包含于上述所描述的第二业务流的的QoS需求中,并结合第一信息、第二信息,分别发送给第一PCF和第二PCF。
需要理解的是,上述所描述的第一PCF和第二PCF一般是不相同的网元。
304、第一PCF将第一业务流的QoS需求映射为第一业务流的QoS策略。
本实施例中,由于TSN通信系统是依据业务流的QoS需求来设置QoS流的,而第一PCF是负责第一UE的策略控制,因此在接收到第一网络设备的发送的第一业务流的QoS需求后,便可以将该第一业务流的QoS需求映射成第一业务流的QoS策略。这样,便可以将该第一业务流的QoS策略发送给相应的第一SMF,从而使得第一SMF根据该第一业务流的QoS策略将第一业务流映射到QoS流中,从而建立起传输所述第一UE的业务数据的第一QoS流。
应当理解的是,第一PCF在接收了第一网络设备发送的第一业务流的QoS需求后,便相应的得到该第一业务流的QoS需求中的时延需求,此时第一PCF可以对该第一业务流的QoS需求中的时延需求对应的值进行修改,从而得到第一业务流的QoS策略中的时延值。这样,第一PCF在映射得到第一业务流的QoS策略后,也可以将该第一业务流的QoS策略中的时延值包含在该第一业务流的QoS策略内。
需要说明的是,该第一PCF也可以不修改该第一业务流的QoS需求中的时延需求对应的值,那么这样得到的第一业务流的QoS策略中的时延值则与该第一业务流的QoS需求中的时延需求对应的值相等。
305、第一PCF向第一SMF发送第一业务流的QoS策略和第一信息。
本实施例中,由于5G通信系统是依据业务流的QoS需求来建立QoS流的,而业务流的QoS需求最主要的一个特性则是业务流的时延需求。而该第一业务流的QoS策略包含了第一业务流的QoS策略中的时延值,因此第一PCF可以将该第一业务流的QoS策略发送给第一SMF,使得第一SMF能够获取到该第一业务流的QoS策略、以及该第一业务流的QoS策略中的时延值。
需要说明的是,该第一业务流的QoS策略中的时延值,是为了使得第一SMF在建立起传输第一UE的业务数据的第一QoS流的过程中,将该所需求建立起的第一QoS流的PDB值设置为小于或等于该第一业务流的QoS策略中的时延值,这样,使得第一QoS流传输此第一业务流时,其传输时延小于或等于该第一PCF所提供的第一业务流的QoS策略中的时延值。
306、当第一SMF设置第一QoS流的PDB值小于或等于所述第一业务流QoS策略的时延值时,第一SMF根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
本实施例中,由于第一业务流的QoS策略包括了建立QoS流所应用到的QoS参数,如:第一业务流的QoS策略中的时延值。所以第一SMF可以在设置第一QoS流的PDB值小于或等于第一业务流的QoS策略中的时延值时,且根据该第一业务流的QoS策略来建立起传输该第一UE的业务数据的第一QoS流。另外,第一SMF根据第一PCF所提供的第一UE的第一信息,当为第一UE建立起一个第一QoS流时,可以为这个第一QoS流分配对应的DS-TT上的一个第一Port以及NW-TT上的一个第二Port,从而组成一个Port对。
307、第一SMF将所述第一业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第一业务流的QoS策略映射到所述N1会话消息中。
本实施例中,第一SMF可以将该第一业务流的QoS策略所包含的QoS参数映射到QoS配置(QoS Profile),然后结合上述收到的第一UE的第一信息中包含的TSCAI信息载入到N2会话消息,提供给第一UE所对应的5G基站gNB;另外,还需要将第一业务流的QoS策略所包含的QoS参数映射到QoS规则(QoS Rule)后及收到的第一UE的第一信息中包含的DS-TT端口配置信息,载入N1会话消息中,提供给第一UE。应当理解的是,由于上述所描述的TSCAI信息是基于TSN时钟域的参数值,所以第一SMF需要将其通过映射等形式转换到5G系统的时钟域值。
308、第一SMF将N2会话消息和N1会话消息发送给第一AMF。
309、第一AMF向第一UE发送N1会话消息。
本实施例中,在第一UE在接收第一AMF发送的QoS规则以及第一信息中的DS-TT端口管理信息后,第一UE便可以在配置业务流数据后根据QoS规则以及TSC端口管理信息将该业务流数据发送至第二UE了或者接收第二UE发送的业务流数据,从而建立起了第一UE与第二UE之间的TSC通信。
310、第二PCF将第二业务流QoS需求映射为第二业务流的QoS策略。
本实施例中,由于5G通信系统是依据业务流的QoS需求来建立QoS流的,第二PCF是负责第二UE的策略控制,因此在接收到第二网络设备发送的第二业务流的QoS需求后,便可以将该第二业务流的QoS需求映射成第二业务流的QoS策略。这样,便可以将该第二业务流的QoS策略发送给相应的第二SMF,使得第二SMF根据该第二业务流的QoS策略将第二业务流映射到QoS流中,从而建立起传输所述第二UE的业务数据的第二QoS流。
应当理解的是,第二PCF在接收了第二网络设备发送的第二业务流的QoS需求后,便相应的得到该第二业务流的QoS需求中的时延需求,此时第二PCF可以对该第二业务流的QoS需求中的时延需求对应的值进行修改,从而得到第二业务流的QoS策略中的时延值。这样,第二PCF在映射得到第二业务流的QoS策略后,也可以将该第二业务流的QoS策略中的时延值包含在该第二业务流的QoS策略内。
需要说明的是,该第二PCF也可以不修改该第二业务流的QoS需求中的时延需求对应的值,那么这样得到的第二业务流的QoS策略中的时延值则与该第二业务流的QoS需求中的时延需求对应的值相等。
311、第二PCF向第二SMF发送第二业务流的QoS策略和第二信息。
本实施例中,由于5G通信系统是依据业务流的QoS需求来建立QoS流的,而业务流的QoS需求最主要的一个特性则是业务流的时延需求。而该第二业务流的QoS策略中包含了该第二业务流的QoS策略中的时延值,因此第二PCF可以将该第二业务流的QoS策略发送给相应的第二SMF,使得第二SMF能够获取到该第二业务流的QoS策略、以及该第二业务流的QoS策略中的时延值。
需要说明的是,该第二业务流的QoS策略中的时延值,是为了使得第二SMF在建立起传输第二UE的业务数据的第二QoS流的过程中,将该所需求建立起的第二QoS流的PDB值设置为小于或等于该第二业务流的QoS策略中的时延值,这样,使得第二QoS流传输此第二业务流时,其传输时延小于或等于该第二PCF所提供的第二业务流的QoS策略中的时延值。
312、当第二SMF设置第二QoS流的PDB值小于或等于所述第二业务流的QoS策略中的时延值时,第二SMF根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
本实施例中,由于第二业务流的QoS策略包括了建立QoS流所应用到的QoS参数,如:第二业务流的QoS策略中的时延值。所以第二SMF可以在设置第二QoS流的PDB值 小于或等于所述第二业务流的QoS策略中的时延值时,且根据该第二业务流的QoS策略来建立起传输该第二UE的业务数据的第二QoS流。另外,第二SMF根据第二PCF所提供的第二UE的第二信息,当为第二UE建立起一个第二QoS流时,可以为这个第二QoS流分配对应的DS-TT上的一个第一Port以及NW-TT上的一个第二Port,从而组成一个Port对。
313、第二SMF将所述第二业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第二业务流的QoS策略映射到所述N1会话消息中。
本实施例中,具体地第二SMF可以将该第二业务流的QoS策略所包含的QoS参数映射到QoS配置(QoS Profile),然后结合上述收到的第二UE的第二信息中包含的TSCAI信息载入到N2会话消息,提供给第二UE所对应的5G基站gNB;另外,还需要将第二业务流的QoS策略所包含的QoS参数映射到QoS规则(QoS Rule)后及收到的第二UE的第二信息中包含的DS-TT端口配置信息,载入N1会话消息中,提供给第二UE。应当理解的是,由于上述所描述的TSCAI信息是基于TSN时钟域的参数值,所以第二SMF需要将其通过映射等形式转换到5G系统的时钟域值。
314、第二SMF将N2会话消息和N1会话消息发送给第二AMF。
315、第二AMF向第二UE发送N1会话消息。
本实施例中,在第二UE在接收第二AMF发送的QoS规则以及第二信息中的DS-TT端口管理信息后,第二UE便可以在配置业务流数据后根据QoS规则以及TSC端口管理信息将该业务流数据发送至第一UE了或者接收第一UE发送的业务流数据,从而建立起了第一UE与第二UE之间的TSC通信。
应该理解的是,上述步骤304-309与步骤310-315的执行顺序不做限定,在实际应用中,也可以先执行步骤310-315后执行步骤304-309,又或者步骤304-309与步骤310-315还可以同步执行,具体本申请实施例中将不做具体限定。
本申请实施例中,通过第一UE发起TSC通信请求,使得第一网络设备在确定第一业务流的QoS需求、第二业务流的QoS需求后分别提供给第一UE和第二UE所在的5G网络,从而分别触发建立起用于传输第一UE的业务数据的第一QoS流,及触发建立起用于传输第二UE的业务数据的第二QoS流,实现了由UE发起TSC通信请求来建立第一UE与第二UE之间的TSC传输通道。
上述主要从交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是为了实现上述功能,包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面对本申请实施例中的第一网络设备40进行详细描述,请参阅图4,图4为本申请实施例中提供的第一网络设备40一个实施例示意图,该第一网络设备40可以包括:
接收模块401,用于接收第一UE发送的TSC通信请求,所述TSC通信请求携带第一TSC会话需求参数,所述第一TSC会话需求参数包括第二UE的标识和TSC会话的QoS需求;
确定模块402,用于根据所述第一TSC会话需求参数确定第一业务流的QoS需求、第二业务流的QoS需求、第一信息和第二信息;
发送模块403,用于向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和第一信息,以及根据所述第二UE的标识向所述第二UE对应的第二PCF发送所述第二业务流的QoS需求和第二信息,所述第一业务流的QoS需求用于通过所述第一PCF映射为所述第一业务流的QoS策略,所述第一业务流的QoS策略用于通过第一SMF建立传输所述第一UE的业务数据的第一QoS流,所述第二业务流的QoS需求用于通过所述第二PCF映射为所述第二业务流的QoS策略,所述第二业务流的QoS策略用于通过第二SMF建立传输所述第二UE的业务数据的第二QoS流。
一种可能的实现方式中,所述确定模块402,用于确定所述第一业务流的QoS需求中的时延需求和所述第二业务流的QoS需求中的时延需求。
一种可能的实现方式中,所述确定模块402用于:
当所述第一UE与所述第二UE连接在不相同的UPF网元时,根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第一UE的NW-TT的传输时延、所述第二UE与DS-TT之间的时延和所述第二UE的NW-TT的传输时延确定第一业务流的QoS需求中的时延需求,以及根据所述第一TSC会话需求参数中的时延、所述第一UE与设备侧TSN转换器DS-TT之间的时延、所述第一UE的网络TSN转换器NW-TT的传输时延、所述第二UE与DS-TT之间的时延以及所述第二UE的NW-TT的传输时延确定第二业务流的QoS需求中的时延需求。
一种可能的实现方式中,所述确定模块402用于:
当所述第一UE与所述第二UE连接在相同的UPF网元时,所述第一网络设备根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延以及所述第二UE与DS-TT之间的时延确定第一业务流的QoS需求中的时延需求,以及根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延以及所述第二UE与DS-TT之间的时延确定第二业务流的QoS需求中的时延需求。
一种可能的实现方式中,所述发送模块403,还用于向所述第一PCF发送所述第一业务流的QoS需求中的时延需求,以使得所述第一SMF设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值,其中,所述第一业务流的QoS策略中的时延值由所述第一PCF根据所述第一业务流的QoS需求中的时延需求对应的值得到;
所述发送模块403,还用于向所述第二PCF发送所述第二业务流的QoS需求中的时延需求,以使得所述第二SMF设置所述第二QoS流的PDB值小于或等于所述第二业务流的QoS策略中的时延值,其中,所述第二业务流的QoS策略中的时延值由所述第二PCF根据所述第二业务流的QoS需求中的时延需求对应的值得到。
一种可能的实现方式中,所述确定模块402,还用于在所述发送模块403向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和所述第一信息之前,根据所述第一UE的标识确定所述第一PCF。
一种可能的实现方式中,所述确定模块402,还用于在所述发送模块403向所述第二UE对应的第二PCF发送所述第二业务流的QoS需求和所述第二信息之前,根据所述第二UE的标识确定所述第二UE对应的所述第二PCF。
如图5所示,本申请实施例提供的第一策略控制功能设备PCF 50的一实施例可以包括:
接收模块501,用于接收第一网络设备发送的第一业务流的QoS需求和第一信息,所述第一PCF与所述第一UE对应;
映射模块502,用于将所述第一业务流的QoS需求映射为所述第一业务流的QoS策略;
发送模块503,用于向第一会话管理功能设备SMF发送所述第一业务流的QoS策略和所述第一信息,所述第一业务流的QoS策略用于通过所述第一SMF建立传输所述第一UE的业务数据的第一QoS流。
一种可能的实现方式中,所述接收模块501,还用于接收所述第一网络设备发送的第一业务流的QoS需求中的时延需求;
所述发送模块503,还用于向所述第一SMF发送所述第一业务流的的QoS策略中的时延值,以使得所述第一SMF设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值,其中,所述第一业务流的QoS策略中的时延值由所述第一PCF根据所述第一业务流的QoS需求中的时延需求对应的值得到。
如图6所示,本申请实施例提供的第一会话管理功能设备SMF 60的一实施例可以包括:
接收模块601,接收第一PCF发送的第一业务流的QoS策略和所述第一信息,所述第一PCF与第一UE相对应;
建立模块602,用于根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
一种可能的实现方式中,所述接收模块601,还用于接收所述第一PCF发送的第一业务流的QoS策略中的时延值;
所述建立模块602,用于在设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值时,根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
一种可能的实现方式中,所述第一SMF 60还包括,
映射模块,用于在根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流之后,将所述第一业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第一业务流的QoS策略映射到所述N1会话消息中,其中,所述第一信息包括TSCAI信息。
如图7所示,本申请实施例提供的第二策略控制功能设备PCF 70的一实施例可以包括:
接收模块701,用于接收第一网络设备发送的第二业务流的QoS需求和第二信息,所述第二PCF与所述第二UE对应;
映射模块702,用于将所述第二业务流的QoS需求映射为所述第二业务流的QoS策略;
发送模块703,用于向第二SMF发送所述第二业务流的QoS策略和所述第二信息,所述第二业务流的QoS策略用于通过所述第二SMF建立传输所述第二UE的业务数据的第二QoS流。
一种可能的实现方式中,所述接收模块701,还用于接收所述第一网络设备发送的第二业务流的QoS需求中的时延需求;
所述发送模块703,还用于向所述第二SMF发送所述第二TSC业务流的QoS策略中的时延值,以使得所述第二SMF设置所述第二QoS流的PDB值小于或等于所述第二业务流的QoS策略中的时延值,其中,所述第二业务流的QoS策略中的时延值由所述第二PCF根据所述第二业务流的QoS需求中的时延需求对应的值得到。
如图8所示,本申请实施例提供的第二会话管理功能设备SMF 80的一实施例可以包括:
接收模块801,用于接收第二PCF发送的第二业务流的QoS策略和所述第二信息,所述第二PCF与第二UE相对应;
建立模块802,用于根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
一种可能的实现方式中,所述接收模块801,还用于接收所述第二PCF发送的第二业务流的QoS策略中的时延值;
所述建立模块802,用于在设置所述第二Qos流的PDB值小于或等于所述第二业务流的QoS策略中的时延值时,则根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
一种可能的实现方式中,所述第二会话管理功能设备SMF 80,还包括:
映射模块,用于在根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流之后,将所述第二业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第二业务流的QoS策略映射到所述N1会话消息中,其中,所述第一信息包括TSCAI信息。
可以理解的是,上述第一网络设备、第一策略控制功能设备PCF、第一会话管理功能设备SMF、第二策略控制功能设备PCF以及第二会话管理功能设备SMF实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的功能,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
从实体装置角度来描述,上述第一网络设备、第一策略控制功能设备PCF、第一会话管理功能设备SMF、第二策略控制功能设备PCF以及第二会话管理功能设备SMF都可以由一个实体装置实现,也可以由多个实体装置共同实现,还可以是一个实体装置内的一个逻辑功能单元,本申请实施例对此不作具体限定。
例如,上述第一网络设备、第一策略控制功能设备PCF、第一会话管理功能设备SMF、第二策略控制功能设备PCF或第二会话管理功能设备SMF可以由图9中的通信设备来实现。图9所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备包括至少一个处理器901、存储器902、通信线路903。该通信设备还可以包括收发器904以及通信接口906中的至少一个。
处理器901可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路903可包括一通路,在上述组件之间传送信息。
收发器904,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。该收发器904也可以是收发电路或者收发信机。
该通信设备也可以包括通信接口906。
存储器902可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路903与处理器901相连接。存储器902也可以和处理器801集成在一起。
其中,存储器902用于存储执行本申请方案的计算机执行指令,并由处理器901来控制执行。处理器901用于执行存储器902中存储的计算机执行指令,从而实现本申请上述方法实施例提供的数据传输的方法。
一种可能的实现方式,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图9中的处理器901和处理器905。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机执行指令)的处理核。
从功能单元的角度,本申请可以根据上述方法实施例对第一网络设备、第一PCF、第一SMF、第二PCF或第二SMF进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个功能单元中。上述集成的功能单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述接收模块401、发送模块403、接收模块501、发送模块503、接收模块601、接收模块701、发送模块703、接收模块801都可以通过收发器904来实现,确定模块402、映射模块502、建立模块602、映射模块603、映射模块702、建立模块802和映射模块803都可以通过处理器901或处理器905来实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本申请实施例所提供的数据传输的方法、管理服务质量流的方法以及设备和存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (29)

  1. 一种数据传输的方法,包括:
    第一网络设备接收第一用户终端UE发送的时间敏感通信TSC通信请求,所述TSC通信请求携带第一TSC会话需求参数,所述第一TSC会话需求参数包括第二UE的标识和TSC会话的服务质量QoS需求;
    所述第一网络设备根据所述第一TSC会话需求参数确定第一业务流的QoS需求、第二业务流的QoS需求、第一信息和第二信息;
    所述第一网络设备向所述第一UE对应的第一策略控制功能设备PCF发送所述第一业务流的QoS需求和所述第一信息,以及根据所述第二UE的标识向所述第二UE对应的第二PCF发送所述第二业务流的QoS需求和所述第二信息,所述第一业务流的QoS需求用于通过所述第一PCF映射为所述第一业务流的QoS策略,所述第一业务流的QoS策略用于通过第一会话管理功能设备SMF建立传输所述第一UE的业务数据的第一QoS流,所述第二业务流的QoS需求用于通过所述第二PCF映射为所述第二业务流的QoS策略,所述第二业务流的QoS策略用于通过第二SMF建立传输所述第二UE的业务数据的第二QoS流。
  2. 根据权利要求1所述的方法,所述第一网络设备根据所述第一TSC会话需求参数确定第一业务流的QoS需求、第二业务流的QoS需求、第一信息和第二信息,包括:
    所述第一网络设备确定所述第一业务流的QoS需求中的时延需求和所述第二业务流的QoS需求中的时延需求。
  3. 根据权利要求2所述的方法,所述第一网络设备确定所述第一业务流的QoS需求中的时延需求和所述第二业务流的QoS需求中的时延需求,包括:
    当所述第一UE与所述第二UE连接在不相同的UPF网元时,所述第一网络设备根据所述第一TSC会话需求参数中的时延、所述第一UE与设备侧TSN转换器DS-TT之间的时延、所述第一UE的网络TSN转换器NW-TT的传输时延、所述第二UE与DS-TT之间的时延和所述第二UE的NW-TT的传输时延确定第一业务流的QoS需求中的时延需求,以及根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延、所述第一UE的NW-TT的传输时延、所述第二UE与DS-TT之间的时延和所述第二UE的NW-TT的传输时延确定第二业务流的QoS需求中的时延需求。
  4. 根据权利要求2所述的方法,所述第一网络设备确定第一业务流的QoS需求中的时延需求和所述第二业务流的QoS需求中的的时延需求,包括:
    当所述第一UE与所述第二UE连接在相同的UPF网元时,所述第一网络设备根据所述第一TSC会话需求参数中的时延、所述第一UE与DS-TT之间的时延以及所述第二UE与DS-TT之间的时延确定第一业务流的QoS需求中的时延需求,以及根据所述第一TSC 会话需求参数中的时延、所述第一UE与DS-TT之间的时延以及所述第二UE与DS-TT之间的时延确定第二业务流的QoS需求中的时延需求。
  5. 根据权利要求2-4中任一所述的方法,所述第一网络设备向所述第一UE对应的第一策略控制功能设备PCF发送所述第一业务流的QoS需求和所述第一信息,以及根据所述第二UE的标识向所述第二UE对应的第二PCF发送所述第二业务流的QoS需求和所述第二信息,包括:
    所述第一网络设备向所述第一PCF发送所述第一业务流的QoS需求中的时延需求,以使得所述第一SMF设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值,其中,所述第一业务流的QoS策略中的时延值由所述第一PCF根据所述第一业务流的QoS需求中的时延需求对应的值得到;
    所述第一网络设备向所述第二PCF发送所述第二业务流的的QoS需求中时延需求,以使得所述第二SMF设置所述第二QoS流的PDB值小于或等于所述第二业务流的QoS策略中的时延值,其中,所述第二业务流的QoS策略中的时延值由所述第二PCF根据所述第二业务流的QoS需求中的时延需求对应的值得到。
  6. 根据权利要求1-4中任一所述的方法,所述第一网络设备向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和所述第一信息之前,所述方法还包括:
    所述第一网络设备根据所述第一UE的标识确定所述第一PCF。
  7. 根据权利要求1-4中任一所述的方法,所述第一网络设备根据所述第二UE的标识向所述第二UE对应的第二PCF发送所述第二业务流的QoS需求和所述第二信息,包括:
    所述第一网络设备根据所述第二UE的标识确定所述第二UE对应的所述第二PCF;
    所述第一网络设备向所述第二PCF发送所述第二业务流的QoS需求和所述第二信息。
  8. 根据权利要求1至4中任一所述的方法,所述第一信息包括所述第一UE的DS-TT与第一UPF的端口配置信息,所述第二信息包括所述第二UE的DS-TT与第二UPF的端口配置信息。
  9. 一种数据传输的方法,包括:
    第一策略控制功能设备PCF接收第一网络设备发送的第一业务流的服务质量QoS需求和第一信息,所述第一PCF与所述第一用户终端UE对应;
    所述第一PCF将所述第一业务流的QoS需求映射为所述第一业务流的QoS策略;
    所述第一PCF向第一会话管理功能设备SMF发送所述第一业务流的QoS策略和所述第一信息,所述第一业务流的QoS策略用于通过所述第一SMF建立传输所述第一UE的业务数据的第一QoS流。
  10. 根据权利要求9所述的方法,所述第一策略控制功能设备PCF接收第一网络设备发送的第一业务流的服务质量QoS需求和第一信息,包括:
    所述第一PCF接收所述第一网络设备发送的第一业务流的QoS需求中的时延需求;
    所述第一PCF向第一会话管理功能设备SMF发送所述第一业务流的QoS策略和所述第一信息,包括:
    所述第一PCF根据所述第一业务流的QoS需求中的时延需求对应的值确定所述第一业务流的QoS策略中的时延值;
    所述第一PCF向所述第一SMF发送所述第一业务流的QoS策略中的时延值,以使得所述第一SMF设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值。
  11. 一种数据传输的方法,包括:
    第一会话管理功能设备SMF接收第一策略控制功能设备PCF发送的第一业务流的服务质量QoS策略和第一信息,所述第一PCF与第一用户终端UE相对应;
    所述第一SMF根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
  12. 根据权利要求11所述的方法,所述方法还包括:
    所述第一SMF接收所述第一PCF发送的第一业务流的QoS策略中的时延值;
    所述第一SMF根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流,包括:
    当设置所述第一QoS流的PDB值小于或等于所述第一业务流的QoS策略中的时延值时,所述第一SMF根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
  13. 根据权利要求11或12所述的方法,所述第一信息包括TSCAI信息,所述第一SMF根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流之后,所述方法还包括:
    所述第一SMF将所述第一业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第一业务流的QoS策略映射到所述N1会话消息中。
  14. 一种数据传输的方法,包括:
    第二策略控制功能设备PCF接收第一网络设备发送的第二业务流的服务质量QoS需求和第二信息,所述第二PCF与所述第二用户终端UE对应;
    所述第二PCF将所述第二业务流的QoS需求映射为所述第二业务流的QoS策略;
    所述第二PCF向第二会话管理功能设备SMF发送所述第二业务流的QoS策略和所述第二信息,所述第二业务流的QoS策略用于通过所述第二SMF建立传输所述第二UE的业务数据的第二QoS流。
  15. 根据权利要求14所述的方法,所述第二策略控制功能设备PCF接收第一网络设备发送的第二业务流的服务质量QoS需求和第二信息,包括:
    所述第二PCF接收所述第一网络设备发送的第二业务流的QoS需求中的时延需求;
    所述第二PCF向第二会话管理功能设备SMF发送所述第二业务流的QoS策略和所述第二信息,包括:
    所述第二PCF根据所述第二业务流的QoS需求中的时延需求对应的值确定所述第二业务流的QoS策略中的时延值;
    所述第二PCF向所述第二SMF发送所述第二业务流的QoS策略中的时延值,以使得所述第二SMF设置所述第二QoS流的PDB值小于或等于所述第二业务流的QoS策略中的时延值。
  16. 一种数据传输的方法,包括:
    第二会话管理功能设备SMF接收第二策略控制功能设备PCF发送的第二业务流的服务质量QoS策略和第二信息,所述第二PCF与第二用户终端UE相对应;
    所述第二SMF根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
  17. 根据权利要求16所述的方法,所述方法还包括:
    所述第二SMF接收所述第二PCF发送的第二业务流的QoS策略中的时延值;
    所述第二SMF根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流,包括:
    当设置所述第二Qos流的PDB值小于或等于所述第二业务流的QoS策略中的时延值时,所述第二SMF根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
  18. 根据权利要求16或17所述的方法,所述第二信息包括TSCAI信息,所述第二SMF根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流之后,还包括:
    所述第二SMF将所述第二业务流的QoS策略、所述TSCAI信息映射到N2会话消息中,将所述第二业务流的QoS策略映射到所述N1会话消息中。
  19. 一种第一网络设备,包括:
    接收模块,用于收第一UE发送的TSC通信请求,所述TSC通信请求携带第一TSC会话需求参数,所述第一TSC会话需求参数包括第二UE的标识和TSC会话的QoS需求;
    确定模块,用于根据所述第一TSC会话需求参数确定第一业务流的QoS需求、第二业务流的QoS需求、第一信息和第二信息;
    发送模块,用于向所述第一UE对应的第一PCF发送所述第一业务流的QoS需求和所述第一信息,以及根据所述第二UE的标识向所述第二UE对应的第二PCF发送所述第二业务流的QoS需求和所述第二信息,所述第一业务流的QoS需求用于通过所述第一PCF映射为所述第一业务流的QoS策略,所述第一业务流的QoS策略用于通过第一会话管理功能设备SMF建立传输所述第一UE的业务数据的第一QoS流,所述第二业务流的QoS需求用于通过所述第二PCF映射为所述第二业务流的QoS策略,所述第二业务流的QoS策略用于通过第二SMF建立传输所述第二UE的业务数据的第二QoS流。
  20. 一种第一策略控制功能设备PCF,包括:
    接收模块,用于接收第一网络设备发送的第一业务流的服务质量QoS需求和第一信息,所述第一PCF与所述第一UE对应;
    映射模块,用于将所述第一业务流的QoS需求映射为所述第一业务流的QoS策略;
    发送模块,用于向第一会话管理功能设备SMF发送所述第一业务流的QoS策略和所述第一信息,所述第一业务流的QoS策略用于通过所述第一SMF建立传输所述第一UE的业务数据的第一QoS流。
  21. 一种第一会话管理功能设备SMF,包括:
    接收模块,用于接收第一策略控制功能设备PCF发送的第一业务流的QoS策略和所述第一信息,所述第一PCF与第一用户终端UE相对应;
    建立模块,用于根据所述第一业务流的QoS策略建立传输所述第一UE的业务数据的第一QoS流。
  22. 一种第二策略控制功能设备PCF,包括:
    接收模块,用于接收第一网络设备发送的第二业务流的服务质量QoS需求和第二信息,所述第二PCF与所述第二用户终端UE对应;
    映射模块,用于将所述第二业务流的QoS需求映射为所述第二业务流的QoS策略;
    发送模块,用于向第二会话管理功能设备SMF发送所述第二业务流的QoS策略和所述第二信息,所述第二业务流的QoS策略用于通过所述第二SMF建立传输所述第二UE的业务数据的第二QoS流。
  23. 一种第二会话管理功能设备SMF,包括:
    接收模块,用于接收第二策略控制功能设备PCF发送的第二业务流的服务质量QoS策略和所述第二信息,所述第二PCF与第二用户终端UE相对应;
    建立模块,用于根据所述第二业务流的QoS策略建立传输所述第二UE的业务数据的第二QoS流。
  24. 一种第一网络设备,包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第一网络设备运行时,该通信接口用于执行上述权利要求1-8中任一项的数据传输的步骤,该处理器执行该存储器存储的该计算机执行指令,以执行上述权利要求1-8中任一项的数据传输的步骤。
  25. 一种第一策略控制功能设备PCF,包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第一PCF运行时,该通信接口用于执行上述权利要求9-10中任一项的数据传输的步骤,该处理器执行该存储器存储的该计算机执行指令,以执行上述权利要求9-10中任一项的数据传输的步骤。
  26. 一种第一会话管理功能设备SMF,包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第一SMF运行时,该通信接口用于执行上述权利要求11-13中任一项的数据传输的步骤,该处理器执行该存储器存储的该计算机执行指令,以执行上述权利要求11-13中任一项的数据传输的步骤。
  27. 一种第二策略控制功能设备PCF,包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第二PCF运行时,该通信接口用于执行上述权利要求14-15中任一项的数据传输的步骤,该处理器执行该存储器存储的该计算机执行指令,以执行上述权利要求14-15中任一项的数据传输的步骤。
  28. 一种第二会话管理功能设备SMF,包括:通信接口、处理器和存储器;该存储器用于存储计算机执行指令,当该第二SMF运行时,该通信接口用于执行上述权利要求16-18中任一项的数据传输的步骤,该处理器执行该存储器存储的该计算机执行指令,以执行上述权利要求16-18中任一项的数据传输的步骤。
  29. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如上述权利要求1-8、9-10、11-13、14-15或16-18任一项所述的数据传输的方法。
PCT/CN2020/121743 2019-11-13 2020-10-19 一种数据传输的方法以及相关装置 WO2021093515A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022514494A JP7305038B2 (ja) 2019-11-13 2020-10-19 データ伝送方法及び関連装置
EP20887585.6A EP3993495A4 (en) 2019-11-13 2020-10-19 DATA TRANSMISSION METHOD AND ASSOCIATED APPARATUS
KR1020227004711A KR20220034855A (ko) 2019-11-13 2020-10-19 데이터 전송 방법 및 관련된 장치
US17/512,742 US12010558B2 (en) 2019-11-13 2021-10-28 Data transmission method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911109143.5 2019-11-13
CN201911109143.5A CN110809295B (zh) 2019-11-13 2019-11-13 一种数据传输的方法以及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/512,742 Continuation US12010558B2 (en) 2019-11-13 2021-10-28 Data transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2021093515A1 true WO2021093515A1 (zh) 2021-05-20

Family

ID=69502420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121743 WO2021093515A1 (zh) 2019-11-13 2020-10-19 一种数据传输的方法以及相关装置

Country Status (5)

Country Link
EP (1) EP3993495A4 (zh)
JP (1) JP7305038B2 (zh)
KR (1) KR20220034855A (zh)
CN (1) CN110809295B (zh)
WO (1) WO2021093515A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809295B (zh) * 2019-11-13 2023-03-21 腾讯科技(深圳)有限公司 一种数据传输的方法以及相关装置
US11696112B2 (en) 2020-03-31 2023-07-04 Sony Group Corporation TS operation for RTA session management
CN113676907B (zh) * 2020-04-30 2023-08-04 华为技术有限公司 一种确定服务质量流的方法,装置,设备及计算机可读存储介质
US11818755B2 (en) * 2020-06-15 2023-11-14 Nokia Technologies Oy Time sensitive communication
CN111935744B (zh) * 2020-08-12 2022-05-17 中国联合网络通信集团有限公司 资源更新方法及会话管理功能实体
CN114205854A (zh) * 2020-09-17 2022-03-18 华为技术有限公司 数据传输及链路质量检测方法、通信装置及存储介质
CN112437122B (zh) * 2020-11-08 2023-05-05 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
CN114765578A (zh) * 2021-01-11 2022-07-19 中国移动通信有限公司研究院 一种服务质量控制方法及相关设备
US20230180207A1 (en) * 2021-01-14 2023-06-08 Apple Inc. Optimizing of scheduling
CN115037697B (zh) * 2021-03-04 2023-07-21 中国移动通信集团四川有限公司 业务访问请求处理方法及装置、系统、可读存储介质
CN117581586A (zh) * 2021-07-02 2024-02-20 上海诺基亚贝尔股份有限公司 方法、装置和计算机程序
CN116828620A (zh) * 2022-03-18 2023-09-29 华为技术有限公司 一种通信方法及装置
CN116939725A (zh) * 2022-04-01 2023-10-24 华为技术有限公司 通信业务保障方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180006955A1 (en) * 2016-06-30 2018-01-04 General Electric Company Communication system and method for integrating a data distribution service into a time sensitive network
US20180237040A1 (en) * 2016-03-21 2018-08-23 General Electric Company Locomotive control system
CN110213007A (zh) * 2019-06-24 2019-09-06 腾讯科技(深圳)有限公司 一种时钟漂移处理的方法、网络功能网元及存储介质
CN110267312A (zh) * 2019-06-17 2019-09-20 腾讯科技(深圳)有限公司 数据传输的方法、管理服务质量流的方法、设备及介质
CN110809295A (zh) * 2019-11-13 2020-02-18 腾讯科技(深圳)有限公司 一种数据传输的方法以及相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180237040A1 (en) * 2016-03-21 2018-08-23 General Electric Company Locomotive control system
US20180006955A1 (en) * 2016-06-30 2018-01-04 General Electric Company Communication system and method for integrating a data distribution service into a time sensitive network
CN110267312A (zh) * 2019-06-17 2019-09-20 腾讯科技(深圳)有限公司 数据传输的方法、管理服务质量流的方法、设备及介质
CN110213007A (zh) * 2019-06-24 2019-09-06 腾讯科技(深圳)有限公司 一种时钟漂移处理的方法、网络功能网元及存储介质
CN110809295A (zh) * 2019-11-13 2020-02-18 腾讯科技(深圳)有限公司 一种数据传输的方法以及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993495A4

Also Published As

Publication number Publication date
EP3993495A1 (en) 2022-05-04
KR20220034855A (ko) 2022-03-18
CN110809295B (zh) 2023-03-21
CN110809295A (zh) 2020-02-18
JP7305038B2 (ja) 2023-07-07
JP2022547475A (ja) 2022-11-14
EP3993495A4 (en) 2022-08-03
US20220053381A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2021093515A1 (zh) 一种数据传输的方法以及相关装置
WO2020259134A1 (zh) 一种时钟漂移处理的方法、网络功能网元及存储介质
EP3986024A1 (en) Data transmission method and device, quality of service flow management method and device, and medium
JP7183416B2 (ja) 時間依存ネットワーキング通信方法及び装置
WO2021057547A1 (zh) 发起时间敏感通信业务的方法、终端和存储介质
WO2019085753A1 (zh) 会话建立方法、设备及系统
CN111865830A (zh) 一种时延敏感网络业务tsn的处理方法、装置及系统
AU2019323009B2 (en) Quality of service monitoring method and system, and device
WO2020164290A1 (zh) 策略控制方法、装置及系统
WO2020073903A1 (zh) 时延敏感网络通信方法及其装置
WO2019120073A1 (zh) 数据传输方法、设备及系统
WO2020238292A1 (zh) 确定业务传输需求的方法、设备及系统
WO2021159724A1 (zh) 通信方法、装置及系统
US10972904B2 (en) Handling mobile device administration in anchorless mobile networks
US12010558B2 (en) Data transmission method and related apparatus
WO2019149078A1 (zh) 会话管理方法、设备及系统
WO2021042381A1 (zh) 一种通信方法、装置及系统
WO2019024514A1 (en) VIRTUAL ANCHORING IN MOBILE NETWORKS WITHOUT ANCHORING
WO2023179172A1 (zh) 通信方法及装置
WO2020011173A1 (zh) 搬迁管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020887585

Country of ref document: EP

Effective date: 20220128

ENP Entry into the national phase

Ref document number: 20227004711

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022514494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE