WO2021093392A1 - 移动机器人 - Google Patents

移动机器人 Download PDF

Info

Publication number
WO2021093392A1
WO2021093392A1 PCT/CN2020/109338 CN2020109338W WO2021093392A1 WO 2021093392 A1 WO2021093392 A1 WO 2021093392A1 CN 2020109338 W CN2020109338 W CN 2020109338W WO 2021093392 A1 WO2021093392 A1 WO 2021093392A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile robot
camera
camera module
collision mechanism
housing
Prior art date
Application number
PCT/CN2020/109338
Other languages
English (en)
French (fr)
Inventor
周骥
张鹏
冯歆鹏
Original Assignee
上海肇观电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海肇观电子科技有限公司 filed Critical 上海肇观电子科技有限公司
Priority to KR1020227019697A priority Critical patent/KR20220101140A/ko
Priority to US17/037,516 priority patent/US11054838B2/en
Publication of WO2021093392A1 publication Critical patent/WO2021093392A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the present disclosure relates to the field of robots, and in particular to a mobile robot.
  • a vision-based mobile robot can use a camera to collect images of the outside of the mobile robot.
  • a mobile robot including: a driving mechanism for driving the mobile robot to move; a chassis for installing the driving mechanism; and a camera main board on the camera main board
  • a camera module for acquiring images of the external environment is provided on the camera module, and the camera module has at least two optical axes, wherein the camera main board is arranged on the chassis so that each of the at least two optical axes The optical axis is parallel to the horizontal plane.
  • Fig. 1 shows a schematic diagram of a mobile robot according to an exemplary embodiment of the present disclosure
  • Fig. 2 shows a schematic diagram of a mobile robot with a housing removed according to an exemplary embodiment of the present disclosure
  • Fig. 3 shows a schematic diagram of a bracket for a main control chip and a camera module of a mobile robot according to an exemplary embodiment of the present disclosure
  • Fig. 4 shows a schematic diagram of a mobile robot with an anti-collision mechanism removed according to an exemplary embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of an anti-collision mechanism of a mobile robot according to an exemplary embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of a housing of a mobile robot according to an exemplary embodiment of the present disclosure.
  • first, second, etc. to describe various elements is not intended to limit the positional relationship, timing relationship, or importance relationship of these elements. Such terms are only used for Distinguish one element from another.
  • first element and the second element may refer to the same instance of the element, and in some cases, based on the description of the context, they may also refer to different instances.
  • horizontal plane refers to a two-dimensional plane on which a mobile robot can move.
  • characteristic object refers to an object associated with performing obstacle avoidance and positioning of a mobile robot.
  • obstacle avoidance refers to avoiding obstacles, such as processing and controlling so as not to collide with obstacles.
  • obstacle objects refer to characteristic objects that the mobile robot needs to avoid during the movement
  • non-obstacle objects refer to characteristic objects that the mobile robot does not need to avoid during the movement
  • a mobile robot In order to achieve a certain accuracy of positioning, a mobile robot needs to obtain data including depth information of characteristic objects through multiple images with a certain parallax. It is known that tilting the camera at an angle higher than the horizontal plane can increase the motion parallax observed by the camera in the field of view.
  • mobile robots use feature objects located above the horizontal plane as reference objects for positioning. These feature objects may be static feature objects located at a certain height.
  • these characteristic objects can be, for example, clocks, photo frames, various decorative pieces, wall-mounted air conditioners hung on the wall, or they can be lighting lamps or central air conditioners installed on the ceiling.
  • the optical axis of the camera equipped with the mobile robot in the related art is usually set to be inclined upward.
  • the camera can only capture the characteristic objects at a higher place (for example, on the wall or ceiling), but cannot capture the characteristic objects on the horizontal plane where the mobile robot moves. Obstacle avoidance function.
  • the mobile robot in the related art cannot perform both obstacle avoidance and positioning of the mobile robot at the same time only through the image acquired by the camera. Therefore, in the related art, in order to perform obstacle avoidance of the mobile robot during the movement, the mobile robot needs to be able to perceive the characteristic objects on the horizontal plane. Therefore, an additional measuring unit (such as a distance measuring sensor) becomes necessary.
  • the present disclosure provides a mobile robot in which the optical axis of the camera is set in a direction parallel to the horizontal plane, and positioning is performed by using binocular parallax, without having to increase the camera’s view by tilting the optical axis of the camera.
  • the parallax of the motion observed in the field is used to perform positioning.
  • the optical axis of the camera according to the present disclosure is set in a direction parallel to the horizontal plane, so the mobile robot according to the present disclosure can use the information obtained by the camera.
  • the images perform obstacle avoidance and positioning of the mobile robot at the same time, so that ranging sensors are no longer necessary.
  • the mobile robot according to the present disclosure may not be equipped with a ranging sensor, this reduces the cost of the mobile robot.
  • additional ranging sensors can still be provided. In this case, both the camera and the ranging sensor can participate in the obstacle avoidance of the mobile robot. To further improve the accuracy of obstacle avoidance and positioning.
  • the distance measuring sensor equipped with the mobile robot in the related art can only measure the distance between the mobile robot and the characteristic object on the horizontal plane, but cannot determine whether the characteristic object is an obstacle or a non-obstacle.
  • the mobile robot according to the present disclosure can obtain an image of a characteristic object on a horizontal plane through a camera, so that whether the characteristic object is an obstacle object or a non-obstacle object can be further analyzed through image processing technology.
  • mobile robots in the related art use feature objects located above the horizontal plane to perform positioning.
  • These feature objects located above the horizontal plane usually have fixed positions, such as wall-mounted air conditioners, lighting lamps, etc.
  • the adaptability to changes in the external environment is poor.
  • the mobile robot according to the present disclosure uses characteristic objects on the horizontal plane to perform obstacle avoidance and positioning.
  • the characteristic objects on these horizontal planes include not only beds, sofas, etc., which usually have fixed positions, but also people, animals, and paper whose positions often change.
  • the mobile robot according to the present disclosure has better adaptability to changes in the external environment, so that it can have higher obstacle avoidance and positioning when the external environment of the mobile robot changes. performance.
  • FIG. 1 and 2 show schematic diagrams of a mobile robot 1 according to an exemplary embodiment of the present disclosure.
  • the housing 50 of the mobile robot is removed.
  • the mobile robot 1 may include: a driving mechanism (not shown in the figure) for driving the mobile robot to move; a chassis 10 for installing the driving mechanism; and a camera main board 20
  • a camera module 210 for acquiring images of the external environment is provided on the camera main board 20, and the camera module 210 has at least two optical axes.
  • the camera main board 20 is arranged on the chassis 10 so that each of the at least two optical axes of the camera module 210 is parallel to the horizontal plane.
  • the line connecting the optical axis centers of at least two optical axes can be parallel to the horizontal plane or perpendicular to the horizontal plane.
  • the mobile robot 1 may be any type of mobile robot capable of moving indoors or outdoors, including but not limited to mobile robots for sweeping floors, mobile robots for weeding, mobile robots for cleaning windows, and mobile welcoming guests. Robots and so on.
  • the mobile robot may include a housing
  • the housing may be a housing adapted to protect other components of the mobile robot to prevent intrusions such as water, dust, and the like.
  • the housing can have any shape, such as a flat cylindrical shape as shown in FIG. 1 or a human-shaped shape that simulates a human being.
  • the driving mechanism may be any type of mechanism capable of driving the mobile robot to move in translation, rotation, etc., for example, a motor.
  • a motor or other type of driving mechanism can drive various parts of the mobile robot to perform various operations.
  • a motor or other type of driving mechanism can drive the camera to perform telescopic or rotational movement.
  • the camera module 210 has at least two optical axes. According to some embodiments, based on each of the at least two optical axes, corresponding images in the field of view of the camera can be obtained respectively. Due to the distance between the at least two optical axes, for the same feature object in the external environment of the mobile robot, at least two images with binocular parallax between each other can be obtained, and at least two images can be sent to The processor performs obstacle avoidance and positioning.
  • the principle of binocular parallax generated by using at least two optical axes is similar to the principle of binocular parallax generated by using two lenses of a binocular camera.
  • the camera module 210 may include any type of camera suitable for mobile robots.
  • the camera may be a camera with a wide-angle lens.
  • the camera can contain any number of lenses.
  • the camera may be at least one of a binocular camera, a multi-eye camera, and a monocular camera with at least one optical axis.
  • each of the at least two optical axes of the camera module 210 is parallel to the horizontal plane.
  • a camera with at least two optical axes parallel to the horizontal plane can acquire the optical information of the characteristic objects on the horizontal plane.
  • the mobile robot can "see” the characteristic objects on the horizontal plane, so that it can avoid avoidance during movement. barrier.
  • the camera may have a certain pitch angle of view. Therefore, the characteristic objects on the horizontal surface that the mobile robot can "see” not only include characteristic objects that are in direct contact with the horizontal surface, but also include objects that are not directly in contact with the horizontal surface. Direct contact with other characteristic objects but within the viewing angle of the camera.
  • each of the at least two optical axes is parallel to the horizontal plane does not mean that the angle between each of the at least two optical axes and the horizontal plane must be zero degrees.
  • the included angle may also have other angles close to zero degrees, which is usually caused by inevitable errors in the production process of the mobile robot. For example, under normal circumstances, the angle between each of the at least two optical axes and the horizontal plane is between -5 degrees and +5 degrees.
  • each of the at least two optical axes may be parallel to each other, and if each of the at least two optical axes are parallel to each other, it may be analyzed that there are at least two binocular parallaxes. Image, and calculate the depth information of the characteristic object based on the principle of similar triangles.
  • each of the at least two optical axes may have a preset angle between each other, and if each of the at least two optical axes is not parallel to each other, the acquired at least In addition to the binocular parallax between the two images, there may also be an offset of the coordinate system.
  • coordinate transformation may be performed on at least one of the acquired at least two images, so that the coordinate system of the at least one image after the coordinate transformation is unified with the coordinate systems of the remaining images, and is based on at least two of the coordinate systems.
  • the binocular disparity between the two images is calculated to obtain the depth information of the characteristic object.
  • the measuring unit 220 and the camera module 210 can be arranged on the camera main board 20 together.
  • the measurement unit 220 may be at least one of a lidar sensor, an ultrasonic sensor, an infrared sensor, an inertial measurement unit IMU, a global positioning system GPS, and a wheel odometer. According to some embodiments, the measurement unit 220 and the camera module 210 may be commonly connected to the same processor.
  • the measurement unit 220 is an inertial measurement unit IMU.
  • the inertial measurement unit IMU is a device that measures the three-axis attitude angle (or angular rate) and acceleration of an object, and can be used to measure the relative movement distance of the object and to locate the object.
  • the inertial measurement unit IMU and the camera module 210 are jointly arranged on the camera main board 20, so that the relative positions of the inertial measurement unit IMU and the camera module 210 remain unchanged, and the measurement unit and the camera module can move synchronously.
  • the inertial measurement unit IMU and the camera The modules 210 can be in the same system time, so that the time stamp of the data acquired by the inertial measurement unit IMU and the camera module 210 can be calibrated and aligned.
  • the calibration method from the coordinate system of the inertial measurement unit IMU to the coordinate system of the camera module 210 is easily affected by the noise when the relative positions of the two are changed.
  • the two are set on the same camera main board 20, which can avoid the difference between the two coordinate systems. Conversion and calibration between the two to reduce the influence of noise.
  • the inertial measurement unit IMU and the camera module 210 may be commonly connected to the same processor.
  • At least one or all of the at least two optical axes of the camera module 210 is about 3 cm away from the ground. This is to meet the FOV (Field of View) requirements of the camera, so that the camera can recognize the surrounding environment, so the camera can neither be set too high nor too low, about 3cm is the best, but in other embodiments
  • the distance between at least one or all of the at least two optical axes of the camera module 210 and the ground is not limited to 3 cm, and can also be set to other values, as long as it can meet the requirements of the camera's field of view angle. can.
  • the chassis 10 may include a bracket 30 for fixing the camera main board 20, and other components, such as the main control chip 40 of a mobile robot, may also be arranged on the bracket 30.
  • the bracket 30 plays a fixed role to ensure that the camera module 210, the measurement unit 220, and other components on the camera main board 20 will not be deformed during the movement of the mobile robot, and there will be no relative displacement; on the other hand, due to Chips, such as the measuring unit chip, main control chip and other components will generate a lot of heat during use. Therefore, the bracket 30 can be made of materials with sufficient strength and easy to dissipate heat, such as aluminum alloy profiles. At the same time, a good heat dissipation effect is achieved.
  • FIG. 3 schematically shows the support 30 for the camera module 20 and the main control chip 40 of the mobile robot according to an exemplary embodiment of the present disclosure.
  • the bracket 30 includes a horizontal part 310 for setting the main control chip 40 and a vertical part 320 connected to the horizontal part 310, and the camera main board 20 is fixed on the vertical part 320.
  • the vertical portion 320 of the bracket 30 may be in the shape of a grid to form a heat dissipation grid, thereby further improving the heat dissipation effect.
  • the vertical portion 320 may include a plurality of vertical strip portions and at least one horizontal strip portion, and the vertical portion 320 is connected to the horizontal portion 310 through one of the at least one horizontal strip portion.
  • the vertical portion 320 includes three vertical strip portions and one horizontal strip portion, forming a “king” shape that is similar to a 90-degree rotation.
  • the horizontal portion 310 and the vertical portion 320 of the bracket 30 may be formed as a whole, for example, by a CNC machine tool.
  • the horizontal part of the bracket may also be formed into a grid shape to improve the heat dissipation effect of the main control chip.
  • the camera main board 20 is fixed on the vertical portion 320 of the bracket 30 through a threaded connection, thereby ensuring that the camera main board 20 will not be deformed during the process of being fixed to the bracket 30, and ensuring that the measuring unit 220 and There is no relative displacement between the camera modules 210.
  • the vertical portion 320 of the bracket one is provided in each of the lower left corner, the lower right corner, and the upper middle side (that is, the upper part of the vertical strip in the middle). Screw holes are used to fix the camera main board 20 to the vertical part 320 of the bracket 30 by locking screws at the corners or in the middle.
  • the camera main board 20 can be reliably fixed; on the other hand, it can be ensured that no deformation occurs during the process of fixing the camera main board 20 to the bracket 30, which will cause the measurement unit 220 and the camera module 210 to fail.
  • the relative position changes.
  • the overall size of the vertical part of the bracket 30 may be slightly larger than that of the camera main board 20, thereby facilitating fixing the camera main board 20 on the vertical part of the bracket 30.
  • the overall size of the horizontal portion of the bracket may be slightly larger than the size of the main control chip arranged on it, thereby facilitating the installation of the main control chip on the horizontal portion of the bracket.
  • the mobile robot 1 may further include an anti-collision mechanism 60 disposed on the outer side of the casing 50 in the circumferential direction. As shown in FIG. 1, the anti-collision mechanism 60 may be arranged in front of the camera module of the mobile robot 1 to prevent damage to the camera module due to collision.
  • FIG. 4 shows a mobile robot 1 according to an exemplary embodiment of the present disclosure, in which the anti-collision mechanism 60 is removed from the mobile robot 1.
  • 5 and 6 respectively show the anti-collision mechanism 60 and the housing 50 of the mobile robot 1 according to an exemplary embodiment of the present disclosure.
  • At least one hook may be provided on the inner side of the anti-collision mechanism 60, and at least one hook corresponding to the at least one hook may be provided on the housing 50.
  • a card slot the at least one hook is engaged in the at least one card slot, so that the anti-collision mechanism 60 can move back and forth relative to the housing 50, and when the anti-collision mechanism 60 moves to a rear critical position When there is a gap with the camera module 210.
  • the anti-collision mechanism 60 protrudes from the camera module 210 along the robot's advancing direction, thereby preventing other objects from directly colliding with the camera module 210 while the robot is advancing.
  • the upper shell of the housing 50 is approximately circular, and the collision avoidance mechanism 60 is in the shape of at least a part of the ring that covers the camera module 210.
  • a plurality of upper hooks 610 are provided on the upper side of the anti-collision mechanism 60, and a plurality of lower hooks 620 are provided on the lower side of the anti-collision mechanism 60.
  • the hook bodies of the plurality of upper hooks 610 respectively extend downward in the axial direction and engage in the grooves 510 provided in the upper side wall of the housing, and the plurality of lower hooks 620 The hook bodies respectively extend radially inward and engage in the grooves 520 provided in the circumferential side wall of the housing 50.
  • the upper side of the anti-collision mechanism 60 and the upper side of the housing 50 form a smooth surface
  • the outer circumferential side of the anti-collision mechanism 60 and the outer circumferential side of the housing 50 form a smooth surface.
  • the housing 50 may be provided with a notch 530 at a circumferential position corresponding to the camera module, and the camera module 210 may protrude from the notch 530.
  • the anti-collision mechanism 60 may be provided with a window 630 at a circumferential position corresponding to the notch 530, and a transparent lens may be installed on the window 630 for protecting the camera module 210 while not obstructing
  • the transparent lens can withstand a certain impact force when the mobile robot collides with other objects.
  • the transparent lens may be an acrylic lens, and the acrylic material itself has good light transmittance and good mechanical properties against impact.
  • the inner edge and/or the outer edge of the window 630 are chamfered to avoid obstructing the view of the camera module 210.
  • a chassis for installing the driving mechanism A chassis for installing the driving mechanism
  • a camera main board on which a camera module for obtaining images of the external environment is provided, and the camera module has at least two optical axes;
  • the camera main board is arranged on the chassis so that each of the at least two optical axes is parallel to the horizontal plane.
  • Solution 2 The mobile robot according to solution 1, further comprising a measurement unit, the measurement unit being arranged on the camera main board.
  • Solution 3 The mobile robot according to claim 1, wherein the camera module is at least one of a binocular module, a multi-eye module, and a monocular module with at least two optical axes.
  • Solution 4 The mobile robot according to claim 1, wherein the chassis includes a bracket made of a heat-dissipating material, and the bracket includes a horizontal portion for setting the main control chip and a vertical portion connected to the horizontal portion , The camera main board is fixed on the vertical part.
  • Solution 5 The mobile robot according to claim 4, wherein the vertical portion is in a grid shape.
  • Item 6 The mobile robot according to item 5, wherein the vertical portion includes a plurality of vertical strip portions and at least one horizontal strip portion, and the vertical portion passes through one of the at least one horizontal strip portion. One is connected to the horizontal part.
  • Item 7 The mobile robot according to any one of items 4 to 6, wherein the horizontal portion is in a grid shape.
  • Solution 8 The mobile robot according to Solution 1, wherein the mobile robot further comprises:
  • An anti-collision mechanism is arranged on the circumferential outer side of the housing;
  • At least one hook is provided on the inner side of the anti-collision mechanism, at least one groove corresponding to the at least one hook is provided on the housing, and the at least one hook is engaged with the In at least one slot, the anti-collision mechanism can move back and forth relative to the housing, and there is a gap with the camera module when the anti-collision mechanism moves to a rear critical position.
  • the at least one hook includes a plurality of upper hooks arranged on an upper side of the anti-collision mechanism and a plurality of upper hooks arranged under the anti-collision mechanism.
  • a plurality of lower hooks on the side, and the hook bodies of the plurality of upper hooks respectively extend downward in the axial direction and engage in the grooves provided in the upper side wall of the housing, so The hook bodies of the plurality of lower hooks respectively extend radially inward and engage in the grooves provided in the circumferential side wall of the housing.
  • Solution 10 The mobile robot according to claim 8, wherein the anti-collision mechanism protrudes from the camera module along the robot's forward direction.
  • Solution 11 The mobile robot according to claim 8, wherein the housing is provided with a notch in a circumferential position corresponding to the camera module, and the anti-collision mechanism is disposed on a circumference corresponding to the notch.
  • a window is arranged on the facing position, and a transparent lens is installed on the window.
  • Solution 12 The mobile robot according to claim 11, wherein the inner edge and/or the outer edge of the window are provided with chamfers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Studio Devices (AREA)

Abstract

一种移动机器人(1),所述移动机器人包括:驱动机构,用于驱动所述移动机器人移动;底盘(10),用于安装所述驱动机构;以及摄像头主板(20),在所述摄像头主板(20)上设有用于获取外部环境图像的摄像头模组(210),所述摄像头模组(210)具有至少两个光轴,其中,所述摄像头主板(20)设置在所述底盘(10)上,使所述至少两个光轴中的每一个光轴与水平面平行。

Description

移动机器人 技术领域
本公开涉及机器人领域,特别涉及一种移动机器人。
背景技术
存在与移动机器人相关的避障和定位的相关技术。在相关技术中,采用各种类型的设备来实现定位,所述各种类型的设备例如可以是罗盘、惯性导航系统、全球定位系统(GPS)、轮式里程计等。在实际情况中,单独使用上述设备经常会遇到各种挑战,而视觉信息具有获取范围广且不受移动轮打滑的特点,因而基于视觉的移动机器人在近些年得到快速发展。在相关技术中,基于视觉的移动机器人可以利用摄像头来采集移动机器人外部的图像。
在此部分中描述的方法不一定是之前已经设想到或采用的方法。除非另有指明,否则不应假定此部分中描述的任何方法仅因其包括在此部分中就被认为是现有技术。类似地,除非另有指明,否则此部分中提及的问题不应认为在任何现有技术中已被公认。
发明内容
根据本公开的一方面,提供一种移动机器人,所述移动机器人包括:驱动机构,用于驱动所述移动机器人移动;底盘,用于安装所述驱动机构;以及摄像头主板,在所述摄像头主板上设有用于获取外部环境图像的摄像头模组,所述摄像头模组具有至少两个光轴,其中,所述摄像头主板设置在所述底盘上,使所述至少两个光轴中的每一个光轴与水平面平行。
附图说明
附图示例性地示出了实施例并且构成说明书的一部分,与说明书的文字描述一起用于讲解实施例的示例性实施方式。所示出的实施例仅出于例示的目的,并不限制权利要求的范围。在所有附图中,相同的附图标记指代类似但不一定相同的要素。
图1示出了根据本公开示例性实施例的移动机器人的示意图;
图2示出了本公开示例性实施例的拆除了壳体的移动机器人的示意图;
图3示出了根据本公开示例性实施例的移动机器人的用于主控芯片和摄像头模组的支架的示意图;
图4示出了根据本公开示例性实施例的拆除了防碰撞机构的移动机器人的示意图;
图5示出了根据本公开示例性实施例的移动机器人的防碰撞机构的示意图;以及
图6示出了根据本公开示例性实施例的移动机器人的壳体的示意图。
具体实施方式
在本公开中,除非另有说明,否则使用术语“第一”、“第二”等来描述各种要素不意图限定这些要素的位置关系、时序关系或重要性关系,这种术语只是用于将一个元件与另一元件区分开。在一些示例中,第一要素和第二要素可以指向该要素的同一实例,而在某些情况下,基于上下文的描述,它们也可以指代不同实例。
在本公开中,对各种所述示例的描述中所使用的术语只是为了描述特定示例的目的,而并非旨在进行限制。除非上下文另外明确地表明,如果不特意限定要素的数量,则该要素可以是一个也可以是多个。此外,本公开中所使用的术语“和/或”涵盖所列出的项目中的任何一个以及全部可能的组合方式。
在本公开中,“水平面”是指移动机器人能够在其上移动的二维平面。
在本公开中,“特征物体”是指与执行移动机器人的避障和定位相关联的物体。
在本公开中,“避障”指的是避开障碍物,例如进行处理和控制以便不与障碍物发生碰撞。
在本公开中,“障碍对象”是指移动机器人在移动过程中需要避开的特征物体,而“非障碍对象”是指移动机器人在移动过程中无需避开的特征物体。
为了实现一定精度的定位,移动机器人需要通过具有一定视差的多个图像来获得包括特征物体的深度信息的数据。已知的是,以高于水平面的角度使摄像头倾斜可以增大摄像头在视场中观察到的运动视差。通常,移动机器人使用位于水平面上方的特征物体作为定位的参照物,这些特征物体可以是位于一定高度处的静态特征物体。在室内的情况下,这些特征物体例如可以是墙上悬挂的钟表、相框、各种装饰件、壁挂式空调,或者可以是天花板上安装的照明灯、中央空调等。换言之,相关技术中的移动机器人所配备的摄像头的光轴通常设置成斜向上方倾斜。在这种情况下,在移动机器人的移动过程中,摄像头仅能拍摄到较高处(例如墙壁或天花板上)的特征物体,而无法拍摄到移动机器人移动的水平面上的特征物体,因而无法实现避障的功能。换言之,相关技术中的移动机器人无法仅通过摄像头获取的图像而同时执行移动机器人的避障和定位二者。因 此,在相关技术中,为了在移动过程中执行移动机器人的避障,需要使移动机器人能够感知到水平面上的特征物体,因此额外的测量单元(如测距传感器)成为必需。
为此,本公开提供了一种移动机器人,其摄像头的光轴以平行于水平面的方向设置,并利用双目视差来执行定位,而不必须通过使摄像头的光轴倾斜来增大摄像头在视场中观察到的运动视差来执行定位。
与相关技术中的移动机器人所配备的摄像头的光轴斜向上方倾斜设置不同,根据本公开的摄像头的光轴以平行于水平面的方向设置,因此根据本公开的移动机器人可以利用通过摄像头获取的图像同时执行所述移动机器人的避障和定位,使得测距传感器不再是必需的。在一些实施例中,由于根据本公开的移动机器人可以不配备有测距传感器,这降低了移动机器人的成本。根据另一些实施例,虽然利用摄像头已经可以同时实现避障和定位,但是仍然可以设置额外的测距传感器,在这种情况下,摄像机和测距传感器二者均可以参与移动机器人的避障,以进一步提高避障和定位的精度。
另外,相关技术中的移动机器人所配备的测距传感器仅能测量移动机器人与水平面上的特征物体之间的距离,而无法判断该特征物体是障碍对象还是非障碍对象。而根据本公开的移动机器人能够通过摄像机获取水平面上的特征物体的图像,使得能够通过图像处理技术进一步分析该特征物体是障碍对象还是非障碍对象。
此外,相关技术中的移动机器人利用位于水平面上方的特征物体来执行定位,其中位于水平面上方的这些特征物体通常具有固定位置,例如壁挂式空调、照明灯等,这使得相关技术中的移动机器人对外部环境变化的适应性较差。而根据本公开的移动机器人利用水平面上的特征物体来执行避障和定位,其中这些水平面上的特征物体既包括通常具有固定位置的床、沙发等,还包括位置经常改变的人、动物、纸屑等,这使得与相关技术中的移动机器人相比,根据本公开的移动机器人对外部环境变化的适应性更好,从而在移动机器人的外部环境发生变化时能够具有更高的避障和定位性能。
以下将结合附图详细描述根据本公开的移动机器人。
图1和图2示出了根据本公开的示例性实施例的移动机器人1的示意图。在图2中,为了清楚地示出移动机器人内部的各部件,拆掉了移动机器人的壳体50。
根据本公开的示例性实施例的移动机器人1可以包括:驱动机构(在图中未示出),用于驱动所述移动机器人移动;底盘10,用于安装所述驱动机构;以及摄像头主板20,在所述摄像头主板20上设有用于获取外部环境图像的摄像头模组210,所述摄像头模组210具有至少两个光轴。所述摄像头主板设20置在所述底盘10上,使所述摄像头模组210的至少两个光轴中的 每一个光轴与水平面平行。至少两个光轴的光轴中心的连线可以与水平面平行,也可以与水平面垂直。
参照图1,根据一些实施例,所述移动机器人1可以是能够在室内或户外移动的任何用途类型的移动机器人,包括但不限于扫地移动机器人、除草移动机器人、擦窗移动机器人、迎宾移动机器人等。
根据一些实施例,移动机器人可以包括壳体,壳体可以是适于保护所述移动机器人的其他部件的外壳,以阻止诸如水、灰尘等侵入物。壳体可以具有任何形状,例如如图1所示的扁平圆柱形或者模拟人类的人型形状等。
根据一些实施例,驱动机构可以是能够驱动所述移动机器人进行平移、旋转等移动的任何类型的机构,例如为电机。根据一些实施例,电机或其他类型的驱动机构可以驱动所述移动机器人的各个部件进行各种操作。例如,电机或其他类型的驱动机构可以驱动所述摄像机进行伸缩运动或者旋转运动等。
根据一些实施例,摄像头模组210具有至少两个光轴。根据一些实施例,基于所述至少两个光轴中的每一个光轴,可以分别获得摄像机的视场内的相应图像。由于所述至少两个光轴之间存在距离,使得对于所述移动机器人外部环境中的同一特征物体,可以获得彼此之间存在双目视差的至少两个图像,至少两个图像可以被发送到处理器进行避障和定位。利用至少两个光轴产生的双目视差与利用双目摄像机的两个镜头产生的双目视差的原理类似。
摄像头模组210可以包括适于移动机器人的任何类型的摄像头。根据一些实施例,所述摄像头可以是采用广角镜头的摄像头。摄像头可以包含任意数量的镜头。根据一些实施例,所述摄像头可以是双目摄像头、多目摄像头、以及具有至少一个光轴的单目摄像机头中的至少一种。
根据一些实施例,所述摄像头模组210所具有的至少两个光轴中的每一个光轴与水平面平行。具有与水平面平行的至少两个光轴的摄像机可以获取所述水平面上的特征物体的光学信息,换言之,所述移动机器人可以“看到”水平面上的特征物体,从而可以在移动过程中实现避障。根据一些实施例,摄像机可以具有一定的俯仰视角,因此所述移动机器人可以“看到”的水平面上的特征物体不仅可以包括与水平面直接接触的特征物体,还可以包括虽然并未与所述水平面直接接触但在所述摄像机的视角范围内其他特征物体。换言之,利用具有与水平面平行的至少两个光轴的摄像机,可以获取所述移动机器人在其上移动的水平面与所述摄像机的最大视角面之间的三维空间内的所有特征物 体,其中所述摄像机的最大视角面与所述摄像机的最大视角、最大视距、类型(双目或单目)、数量(一个或多个)等相关联。应当指出的是,本公开提到的“至少两个光轴中的每一个光轴与水平面平行”并不意味着至少两个光轴中的每一个光轴与水平面的夹角一定是零度,该夹角也可以具有近似于零度的其他角度,这通常是由于移动机器人在生产过程中出现不可避免的误差等导致的。例如,在通常情况下,至少两个光轴中的每一个光轴与水平面的夹角介于-5度和+5度之间。
根据一些实施例,所述至少两个光轴中的每一个光轴可以彼此平行,并且如果所述至少两个光轴的每一个光轴彼此平行,则可以分析存在双目视差的至少两个图像,并且根据相似三角形原理计算得到特征物体的深度信息。根据一些实施例,所述至少两个光轴中的每一个光轴可以彼此之间存在预设角度,并且如果所述至少两个光轴中的每一个光轴彼此不平行,则获取的至少两个图像除了存在双目视差之外,还可能存在坐标系的偏移。在这种情况下,可以对获取的至少两个图像中的至少一个图像进行坐标变换,使得经过坐标变换的至少一个图像的坐标系与其余图像的坐标系实现统一,并且基于坐标系统的至少两个图像之间的双目视差计算得到特征物体的深度信息。
测量单元220可以与摄像头模组210共同设置在所述摄像头主板20上。所述测量单元220可以是激光雷达传感器、超声波传感器、红外传感器、惯性测量单元IMU、全球定位系统GPS、轮式里程计中的至少一种。根据一些实施例,测量单元220可以与摄像头模组210共同连接至同一处理器。
在一些实施例中,测量单元220为惯性测量单元IMU,惯性测量单元IMU是测量物体三轴姿态角(或角速率)以及加速度的装置,可用于测量物体的相对运动距离、用于定位物体。惯性测量单元IMU和摄像头模组210共同设置于摄像头主板20上,使得惯性测量单元IMU与摄像头模组210的相对位置保持不变,保证测量单元和摄像头模组同步移动,惯性测量单元IMU与摄像头模组210能够处于同一系统时间下,以使惯性测量单元IMU与摄像头模组210获取到数据的时间戳可以标定对齐。此外,惯性测量单元IMU的坐标系到摄像头模组210的坐标系的标定方法容易受到二者相对位置发生变化时的噪声影响,二者设置于同一摄像头主板20上,可以避免二者坐标系之间的转换标定,降低噪声影响。根据一些实施例,惯性测量单元IMU可以与摄像头模组210共同连接至同一处理器。
根据一些实施例,摄像头模组210的至少两个光轴中的至少一个光轴或所有光轴距离地面约3cm左右。这是为了满足摄像头视场角FOV(Field of View)的要求,使摄像 头能够识别周围环境,因此摄像头既不能设置得过高,也不能过低,约3cm左右最佳,但在其他实施例中,摄像头模组210的至少两个光轴中的至少一个光轴或所有光轴与地面之间的距离不限于3cm,也可以为设定为其他数值,只要能够满足摄像头视场角的要求即可。
根据一些实施例,底盘10可包括用于固定摄像头主板20的支架30,其他元器件、例如移动机器人的主控芯片40也可以设置在支架30上。一方面,支架30起固定作用,保证在移动机器人的移动过程中摄像头主板20上的摄像头模组210和测量单元220、以及其他元器件不会发生变形,并且没有相对位移;另一方面,由于芯片,例如测量单元的芯片、主控芯片等元器件在使用过程中会产生大量热量,因此支架30可采用例如铝合金型材等既拥有足够强度又易于散热的材料,由此在提供固定作用的同时实现良好的散热效果。
图3示意性示出了根据本公开示例性实施例的移动机器人的用于摄像头模组20和主控芯片40的支架30。所述支架30包括用于设置所述主控芯片40的水平部分310和与所述水平部分310连接的竖直部分320,所述摄像头主板20固定在所述竖直部分320上。所述支架30的竖直部分320可呈格栅状,形成散热格栅,由此进一步改善散热效果。例如,所述竖直部分320可包括多个竖向条形部和至少一个横向条形部,所述竖直部分320通过所述至少一个横向条形部之一与所述水平部分310连接。在图2所示的实施例中,所述竖直部分320包括三个竖向条形部和一个横向条形部,形成类似旋转90度的“王”字形。
根据一些实施例,所述支架30的水平部分310和竖直部分320可以形成为一体,例如通过数控机床一体加工而成。
根据一些实施例,所述支架的水平部分也可形成为格栅状,提高对主控芯片的散热效果。
根据一些实施例,所述摄像头主板20通过螺纹连接固定在所述支架30的竖直部分320上,由此保证摄像头主板20在固定至支架30的过程中不会产生形变,确保测量单元220和摄像头模组210之间不会发生相对位移。例如,在图3所示的实施例中,在所述支架的竖直部分320上,在左下角、右下角以及中间上侧(即位于中间的竖向条形部的上部)各设有一个螺纹孔,通过在角部或中间锁螺丝而将所述摄像头主板20固定到所述支架30的竖直部分320上。一方面,可以实现对所述摄像头主板20的可靠的固定;另一 方面,可以保证在摄像头主板20固定到所述支架30的过程中不会产生变形进而导致测量单元220和摄像头模组210的相对位置发生变化。
根据一些实施例,所述支架30的竖直部分的整体尺寸可以比所述摄像头主板20稍大,由此便于将所述摄像头主板20固定在所述支架30的竖直部分上。当然也可设想的是,所述支架的水平部分的整体尺寸可以比设置于其上的主控芯片的尺寸略大,由此便于将所述主控芯片安装在所述支架的水平部分上。
根据一些实施例,所述移动机器人1还可以包括防碰撞机构60,所述防碰撞机构60设置在所述壳体50的周向外侧。如在图1中所示,所述防碰撞机构60可以设置在所述移动机器人1的摄像头模组的前方,防止由于碰撞而损坏摄像头模组。
图4示出了根据本公开示例性实施例的移动机器人1,其中从所述移动机器人1上拆除了防碰撞机构60。图5和图6分别示出了根据本公开示例性实施例的移动机器人1的防碰撞机构60和壳体50。
在图4至6所示的实施例中,在所述防碰撞机构60的内侧可以设有至少一个卡钩,在所述壳体50上设有与所述至少一个卡钩相对应的至少一个卡槽,所述至少一个卡钩接合在所述至少一个卡槽中,使得所述防碰撞机构60相对于所述壳体50能够前后运动,且在所述防碰撞机构60运动至后临界位置时与所述摄像头模组210有间隙。
所述防碰撞机构60沿机器人的前进方向凸出于所述摄像头模组210设置,由此防止在机器人前进过程中其他物体直接碰撞到摄像头模组210上。在图4至图6所示的实施例中,所述壳体50的上壳大致为圆形,所述防碰撞机构60为至少覆盖所述摄像头模组210的部分环形。在所述防碰撞机构60的上侧边上设有多个上侧卡钩610,并且在所述防碰撞机构60的下侧边上设有多个下侧卡钩620。所述多个上侧卡钩610的卡钩本体分别沿轴向向下延伸并接合在设置于所述壳体的上侧壁中的卡槽510内,所述多个下侧卡钩620的卡钩本体分别沿径向向内延伸并接合在设置于所述壳体50的周向侧壁中的卡槽520内。
如在图1中所示,在所述防碰撞机构60安装到所述壳体50上之后,所述防碰撞机构60的上侧面与所述壳体50的上侧面形成一个平滑的表面,且所述防碰撞机构60的周向外侧面与所述壳体50的周向外侧面形成一个平滑的表面。
所述壳体50可以在与所述摄像头模组对应的周向位置上设有凹口530,所述摄像头模组210可以从所述凹口530伸出。所述防碰撞机构60可以在与所述凹口530对应的周向位置上设有窗口630,所述窗口630上可以安装有透明镜片,用于在保护所述摄像头模 组210的同时不妨碍摄像头模组210的视线,此外,所述透明镜片能够在移动机器人与其他物体发生碰撞时承受一定的撞击力。例如,所述透明镜片可以为亚克力镜片,亚克力材料本身具有良好的透光性以及良好的抵抗冲击的力学性能。
所述窗口630的内棱边和/或外棱边设有倒角,以避免遮挡所述摄像头模组210的视野。
下列枚举的各个方案有助于体会本公开的多个方面。
方案1.一种移动机器人,所述移动机器人包括:
驱动机构,用于驱动所述移动机器人移动;
底盘,用于安装所述驱动机构;以及
摄像头主板,在所述摄像头主板上设有用于获取外部环境图像的摄像头模组,所述摄像头模组具有至少两个光轴;
其中,所述摄像头主板设置在所述底盘上,使所述至少两个光轴中的每一个光轴与水平面平行。
方案2.根据方案1所述的移动机器人,还包括测量单元,所述测量单元设置在所述摄像头主板上。
方案3.根据方案1所述的移动机器人,其中,所述摄像头模组为双目模组、多目模组、以及具有至少两个光轴的单目模组中的至少一种。
方案4.根据方案1所述的移动机器人,其中,所述底盘包括由散热材料制成的支架,所述支架包括用于设置主控芯片的水平部分和与所述水平部分连接的竖直部分,所述摄像头主板固定在所述竖直部分上。
方案5.根据方案4所述的移动机器人,其中,所述竖直部分呈格栅状。
方案6.根据方案5所述的移动机器人,其中,所述竖直部分包括多个竖向条形部和至少一个横向条形部,所述竖直部分通过所述至少一个横向条形部之一与所述水平部分连接。
方案7.根据方案4至6中任一项所述的移动机器人,其中,所述水平部分呈格栅状。
方案8.根据方案1所述的移动机器人,其中,所述移动机器人还包括:
壳体;以及
防碰撞机构,所述防碰撞机构设置在所述壳体的周向外侧;
其中,在所述防碰撞机构的内侧设有至少一个卡钩,在所述壳体上设有与所述至少一个卡钩相对应的至少一个卡槽,所述至少一个卡钩接合在所述至少一个卡槽中,使所 述防碰撞机构相对于所述壳体能够前后运动,且在所述防碰撞机构运动至后临界位置时与所述摄像头模组有间隙。
方案9.根据方案8所述的移动机器人,其中,所述至少一个卡钩包括设置在所述防碰撞机构的上侧边上的多个上侧卡钩和设置在所述防碰撞机构的下侧边上的多个下侧卡钩,所述多个上侧卡钩的卡钩本体分别沿轴向向下延伸并接合在设置于所述壳体的上侧壁中的卡槽内,所述多个下侧卡钩的卡钩本体分别沿径向向内延伸并接合在设置于所述壳体的周向侧壁中的卡槽内。
方案10.根据方案8所述的移动机器人,其中,所述防碰撞机构沿机器人前进方向凸出于所述摄像头模组设置。
方案11.根据方案8所述的移动机器人,其中,所述壳体在与所述摄像头模组对应的周向位置上设有凹口,所述防碰撞机构在与所述凹口对应的周向位置上设有窗口,所述窗口上安装有透明镜片。
方案12.根据方案11所述的移动机器人,其中,所述窗口的内棱边和/或外棱边设有倒角。
虽然已经参照附图描述了本公开的实施例或示例,但应理解,上述的方法、系统和设备仅仅是示例性的实施例或示例,本公开的范围并不由这些实施例或示例限制,而是仅由授权后的权利要求书及其等同范围来限定。实施例或示例中的各种要素可以被省略或者可由其等同要素替代。此外,可以通过不同于本公开中描述的次序来执行各步骤。进一步地,可以以各种方式组合实施例或示例中的各种要素。重要的是随着技术的演进,在此描述的很多要素可以由本公开之后出现的等同要素进行替换。

Claims (12)

  1. 一种移动机器人(1),所述移动机器人(1)包括:
    驱动机构,用于驱动所述移动机器人移动;
    底盘(10),用于安装所述驱动机构;以及
    摄像头主板(20),在所述摄像头主板(20)上设有用于获取外部环境图像的摄像头模组(210),所述摄像头模组(210)具有至少两个光轴;
    其中,所述摄像头主板(20)设置在所述底盘(10)上,使所述至少两个光轴中的每一个光轴与水平面平行。
  2. 根据权利要求1所述的移动机器人(1),还包括测量单元(220),所述测量单元(220)设置在所述摄像头主板(20)上。
  3. 根据权利要求1所述的移动机器人(1),其中,所述摄像头模组(210)为双目模组、多目模组、以及具有至少两个光轴的单目模组中的至少一种。
  4. 根据权利要求1所述的移动机器人(1),其中,所述底盘(10)包括由散热材料制成的支架(30),所述支架(30)包括用于设置主控芯片(40)的水平部分(310)和与所述水平部分(310)连接的竖直部分(320),所述摄像头主板(20)固定在所述竖直部分(320)上。
  5. 根据权利要求4所述的移动机器人(1),其中,所述竖直部分(320)呈格栅状。
  6. 根据权利要求5所述的移动机器人(1),其中,所述竖直部分(320)包括多个竖向条形部和至少一个横向条形部,所述竖直部分通过所述至少一个横向条形部之一与所述水平部分(310)连接。
  7. 根据权利要求4至6中任一项所述的移动机器人(1),其中,所述水平部分(310)呈格栅状。
  8. 根据权利要求1所述的移动机器人(1),其中,所述移动机器人(1)还包括:
    壳体(50);以及
    防碰撞机构(60),所述防碰撞机构(60)设置在所述壳体(50)的周向外侧;
    其中,在所述防碰撞机构(60)的内侧设有至少一个卡钩,在所述壳体(50)上设有与所述至少一个卡钩相对应的至少一个卡槽,所述至少一个卡钩接合在所述至少一个卡槽中,使所述防碰撞机构(60)相对于所述壳体(50)能够前后运动,且在所述防碰撞机构(60)运动至后临界位置时与所述摄像头模组(210)有间隙。
  9. 根据权利要求8所述的移动机器人(1),其中,所述至少一个卡钩包括设置在所述防碰撞机构(60)的上侧边上的多个上侧卡钩(610)和设置在所述防碰撞机构(60)的下侧边上的多个下侧卡钩(620),所述多个上侧卡钩(610)的卡钩本体分别沿轴向向下延伸并接合在设置于所述壳体(50)的上侧壁中的第一卡槽(510)内,所述多个下侧卡钩(620)的卡钩本体分别沿径向向内延伸并接合在设置于所述壳体(50)的周向侧壁中的第二卡槽(520)内。
  10. 根据权利要求8所述的移动机器人(1),其中,所述防碰撞机构(60)沿机器人前进方向凸出于所述摄像头模组(210)设置。
  11. 根据权利要求8所述的移动机器人(1),其中,所述壳体(50)在与所述摄像头模组(210)对应的周向位置上设有凹口(530),所述防碰撞机构(60)在与所述凹口(530)对应的周向位置上设有窗口(630),所述窗口(630)上安装有透明镜片。
  12. 根据权利要求11所述的移动机器人(1),其中,所述窗口(630)的内棱边和/或外棱边设有倒角。
PCT/CN2020/109338 2019-11-12 2020-08-14 移动机器人 WO2021093392A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227019697A KR20220101140A (ko) 2019-11-12 2020-08-14 이동 로봇
US17/037,516 US11054838B2 (en) 2019-11-12 2020-09-29 Mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921943519.8 2019-11-12
CN201921943519.8U CN210998737U (zh) 2019-11-12 2019-11-12 移动机器人

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,516 Continuation US11054838B2 (en) 2019-11-12 2020-09-29 Mobile robot

Publications (1)

Publication Number Publication Date
WO2021093392A1 true WO2021093392A1 (zh) 2021-05-20

Family

ID=71502174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109338 WO2021093392A1 (zh) 2019-11-12 2020-08-14 移动机器人

Country Status (4)

Country Link
EP (1) EP3821780B1 (zh)
JP (1) JP6906821B6 (zh)
CN (1) CN210998737U (zh)
WO (1) WO2021093392A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220101140A (ko) 2019-11-12 2022-07-19 넥스트브이피유 (상하이) 코포레이트 리미티드 이동 로봇
CN210998737U (zh) * 2019-11-12 2020-07-14 上海肇观电子科技有限公司 移动机器人
CN113848964A (zh) * 2021-09-08 2021-12-28 金华市浙工大创新联合研究院 一种非平行光轴双目测距方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106826749A (zh) * 2017-01-22 2017-06-13 深圳悉罗机器人有限公司 移动机器人
CN108323238A (zh) * 2018-01-23 2018-07-24 深圳前海达闼云端智能科技有限公司 多目摄像系统、终端设备及机器人
CN208179600U (zh) * 2017-12-29 2018-12-04 杭州萤石软件有限公司 移动机器人
CN109213137A (zh) * 2017-07-05 2019-01-15 广东宝乐机器人股份有限公司 扫地机器人、扫地机器人系统及其工作方法
US20190086933A1 (en) * 2014-11-26 2019-03-21 Irobot Corporation Systems and Methods for Performing Simultaneous Localization and Mapping using Machine Vision Systems
CN209063102U (zh) * 2018-08-24 2019-07-05 科沃斯机器人股份有限公司 自移动机器人
CN110123215A (zh) * 2019-06-20 2019-08-16 小狗电器互联网科技(北京)股份有限公司 扫地机器人
CN209593641U (zh) * 2019-05-13 2019-11-05 广东宝乐机器人股份有限公司 摄像头模组、双目摄像头模组及移动机器人
CN210998737U (zh) * 2019-11-12 2020-07-14 上海肇观电子科技有限公司 移动机器人

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280740A (ja) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd 移動装置
JP2005296510A (ja) * 2004-04-15 2005-10-27 Funai Electric Co Ltd 監視カメラを備えた自走式掃除機
JP5105596B2 (ja) * 2007-10-30 2012-12-26 株式会社Ihi 自律走行移動体の走行経路決定用地図作成装置及び走行経路決定用地図作成方法
US8229595B2 (en) * 2008-06-19 2012-07-24 Seelinger Michael J Method and system for providing autonomous control of a platform
JP2011018150A (ja) * 2009-07-08 2011-01-27 Toyota Auto Body Co Ltd 無人走行システム
US9483055B2 (en) * 2012-12-28 2016-11-01 Irobot Corporation Autonomous coverage robot
JP2016042285A (ja) * 2014-08-18 2016-03-31 株式会社東芝 自律型移動体
CN109478320B (zh) * 2016-07-12 2022-03-18 深圳市大疆创新科技有限公司 处理图像以获得环境信息
JP6850107B2 (ja) * 2016-11-02 2021-03-31 東芝ライフスタイル株式会社 自律型電気掃除装置
JP6831213B2 (ja) * 2016-11-09 2021-02-17 東芝ライフスタイル株式会社 電気掃除機
JP6837319B2 (ja) * 2016-11-18 2021-03-03 日立グローバルライフソリューションズ株式会社 自走式電気掃除機
JP7042031B2 (ja) * 2017-03-17 2022-03-25 日立グローバルライフソリューションズ株式会社 自律走行型掃除機、及び、自律走行型掃除機と充電台とを有するシステム
KR102203439B1 (ko) * 2018-01-17 2021-01-14 엘지전자 주식회사 이동 로봇 및 이동 로봇의 제어방법
JP7149502B2 (ja) * 2018-03-29 2022-10-07 パナソニックIpマネジメント株式会社 自律移動掃除機、自律移動掃除機による掃除方法、及び自律移動掃除機用プログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190086933A1 (en) * 2014-11-26 2019-03-21 Irobot Corporation Systems and Methods for Performing Simultaneous Localization and Mapping using Machine Vision Systems
CN106826749A (zh) * 2017-01-22 2017-06-13 深圳悉罗机器人有限公司 移动机器人
CN109213137A (zh) * 2017-07-05 2019-01-15 广东宝乐机器人股份有限公司 扫地机器人、扫地机器人系统及其工作方法
CN208179600U (zh) * 2017-12-29 2018-12-04 杭州萤石软件有限公司 移动机器人
CN108323238A (zh) * 2018-01-23 2018-07-24 深圳前海达闼云端智能科技有限公司 多目摄像系统、终端设备及机器人
CN209063102U (zh) * 2018-08-24 2019-07-05 科沃斯机器人股份有限公司 自移动机器人
CN209593641U (zh) * 2019-05-13 2019-11-05 广东宝乐机器人股份有限公司 摄像头模组、双目摄像头模组及移动机器人
CN110123215A (zh) * 2019-06-20 2019-08-16 小狗电器互联网科技(北京)股份有限公司 扫地机器人
CN210998737U (zh) * 2019-11-12 2020-07-14 上海肇观电子科技有限公司 移动机器人

Also Published As

Publication number Publication date
EP3821780B1 (en) 2022-05-25
JP6906821B6 (ja) 2021-08-25
JP2021077361A (ja) 2021-05-20
EP3821780A1 (en) 2021-05-19
CN210998737U (zh) 2020-07-14
JP6906821B2 (ja) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2021093392A1 (zh) 移动机器人
CN105164549B (zh) 用于机器人的多传感立体视觉的方法、系统和设备
CN106537186B (zh) 用于使用机器视觉系统执行同时定位和映射的系统和方法
US8699005B2 (en) Indoor surveying apparatus
WO2020088165A1 (zh) 一种摄像头与激光雷达融合系统
Nieuwenhuisen et al. Multimodal obstacle detection and collision avoidance for micro aerial vehicles
CN108227699B (zh) 用于运行自动前进的车辆的方法
US10259593B2 (en) Obstacle avoidance device
TW201337306A (zh) 用於建築工地之資訊擷取
US10053230B2 (en) Magnetic levitation obstacle avoidance device and magnetic levitation holder
Nishimoto Three dimensional measurement using fisheye stereo vision
US11054838B2 (en) Mobile robot
Satoh et al. An omnidirectional stereo vision-based smart wheelchair
US20160381257A1 (en) Sphere panorama image capturing device
Lemkens et al. Multi RGB-D camera setup for generating large 3D point clouds
JP2010078466A (ja) マーカ自動登録方法及びシステム
US10869019B2 (en) Dual depth camera module without blind spot
CN111571561B (zh) 移动机器人
CN103744110A (zh) 超声与单目视觉传感器结合的障碍物识别装置
CN108322698B (zh) 基于多摄像机和惯性测量单元融合的系统和方法
JP7105059B2 (ja) 内部センサによる相対測位
CN110941288B (zh) 一种用于低空航空器的自动避障装置和方法
EP2476014B1 (en) Device and method for object detection and location
CN210742498U (zh) 一种用于玻璃幕墙清洗作业的无人机相对位姿测量系统
Conduraru et al. Localization methods for mobile robots-a review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227019697

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886803

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20886803

Country of ref document: EP

Kind code of ref document: A1