WO2021093371A1 - 一种load line电路及电子设备 - Google Patents

一种load line电路及电子设备 Download PDF

Info

Publication number
WO2021093371A1
WO2021093371A1 PCT/CN2020/104986 CN2020104986W WO2021093371A1 WO 2021093371 A1 WO2021093371 A1 WO 2021093371A1 CN 2020104986 W CN2020104986 W CN 2020104986W WO 2021093371 A1 WO2021093371 A1 WO 2021093371A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
voltage
circuit
sampling
coupled
Prior art date
Application number
PCT/CN2020/104986
Other languages
English (en)
French (fr)
Inventor
王晓坤
陈忠建
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20888247.2A priority Critical patent/EP4050778A4/en
Publication of WO2021093371A1 publication Critical patent/WO2021093371A1/zh
Priority to US17/743,237 priority patent/US20220271644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This application relates to the technical field of switching power supplies, and in particular to a load line circuit and electronic equipment.
  • a switching power supply can provide current for a system on chip (SoC).
  • SoC system on chip
  • VRM voltage regulator module
  • a switching power supply with load line function the output voltage of the switching power supply can linearly decrease as the output current of the switching power supply increases. Therefore, when the SoC is running at a high load, the output current of the switching power supply increases, and the output voltage of the switching power supply decreases with the increase of the output current, so that the output power of the switching power supply can be restricted from increasing to reduce the power consumption of the SoC.
  • this application provides a load line circuit and electronic equipment.
  • the load line circuit can be set in the feedback loop of a conventional switching power supply, so that a conventional switching power supply that does not have the load line function can also implement the load line function, thereby providing It is helpful to overcome the limitation of the selection of switching power supply.
  • an embodiment of the present application provides a load line circuit including: a first sampling circuit, a second sampling circuit, and a feedback circuit.
  • the output terminal of the first sampling circuit is coupled with the first input terminal of the feedback circuit
  • the output terminal of the second sampling circuit is coupled with the second input terminal of the feedback circuit
  • the output terminal of the feedback circuit is used for coupling with the switching power supply.
  • the first sampling circuit can generate a second voltage and provide the second voltage to the feedback circuit, wherein the voltage value of the second voltage is linearly positively correlated with the voltage value of the first voltage, and the first voltage is provided to the load circuit by the switching power supply The voltage.
  • the second sampling circuit may generate the adjustment voltage and provide the adjustment voltage to the feedback circuit, wherein the voltage value of the adjustment voltage is linearly positively correlated with the current value of the first current, and the first current is the current provided by the switching power supply to the load circuit.
  • the feedback circuit may generate a feedback voltage according to the second voltage and the adjustment voltage, and feed the feedback voltage to the switching power supply, wherein the voltage value of the feedback voltage is linearly positively correlated with the voltage value of the second voltage and the voltage value of the adjustment voltage, respectively.
  • the voltage value of the second voltage generated by the first sampling circuit is linearly positively correlated with the voltage value of the first voltage
  • the voltage value of the feedback voltage generated by the feedback circuit is linearly positively correlated with the voltage value of the second voltage.
  • the voltage value of the feedback voltage is linearly positively correlated with the voltage value of the first voltage.
  • the voltage value of the adjustment voltage generated by the second sampling circuit is linearly positively correlated with the current value of the first current
  • the voltage value of the feedback voltage generated by the feedback circuit is linearly positively correlated with the voltage value of the adjustment voltage, so the voltage value of the feedback voltage is linearly positively correlated with The current value of the first current is linearly positively correlated.
  • the switching power supply without the load line function will adjust the output voltage according to the feedback voltage, so that the feedback voltage received next can approach the rated voltage, so when the first current increases, the first voltage will decrease linearly.
  • the first voltage provided by the switching power supply to the load circuit can be equivalent to the output voltage of the switching power supply
  • the first current provided by the switching power supply to the load circuit can be equivalent to the output current of the switching power supply. Therefore, the load line circuit provided by the embodiment of the present application can make the output voltage of the conventional switching power supply without the load line function linearly decrease with the increase of the output current, that is, the conventional switching unit can also realize the load line function.
  • the first sampling circuit includes a resistor R1, a resistor R2, a resistor R3, a resistor R4, and a first differential amplifier.
  • one end of the resistor R1 is used for coupling with the negative input terminal of the load circuit, the other end of the resistor R1 is coupled with the negative input terminal of the first differential amplifier, and both ends of the resistor R3 are respectively connected with the negative input terminal and the first differential amplifier of the first differential amplifier.
  • the output end of a differential amplifier is coupled, one end of the resistor R2 is used to couple with the positive output end of the switching power supply, the other end of the resistor R2 is coupled to the positive input end of the first differential amplifier, and one end of the resistor R4 is coupled to the positive input end of the first differential amplifier.
  • the input end is coupled, and the other end of the resistor R4 is coupled to the ground circuit.
  • resistor R1 is coupled with the negative input terminal of the load circuit
  • resistor R2 is coupled with the positive input terminal of the load circuit
  • the resistors R1 and R2 can detect the first voltage provided to the load circuit.
  • resistor R1, resistor R2, resistor R3, and resistor R4 you can set the voltage provided to the positive input terminal of the first differential amplifier, and the voltage provided to the negative input terminal of the first differential amplifier, so that the first differential amplifier The output terminal can output the second voltage.
  • the resistance of the resistor R1 is the same as the resistance of the resistor R2
  • the resistance of the resistor R3 is the same as the resistance of the resistor R4.
  • the ratio between the voltage value and the voltage value of the first voltage is equal to the ratio between the resistance value of the resistor R1 and the resistance value of the resistor R2.
  • the resistance value of the resistance R1, the resistance value of the resistance R2, the resistance value of the resistance R3 and the resistance value of the resistance R4 are the same.
  • the voltage value of the second voltage output by the first differential amplifier is equal to the voltage value of the first voltage.
  • the first sampling circuit may further include a first capacitor, and the first capacitor is connected in parallel with the resistor R3.
  • the first capacitor can integrate and filter the high-frequency signal in the first voltage detected by the first sampling circuit, so as to reduce the high-frequency noise in the feedback voltage, thereby helping to improve the stability of the switching power supply.
  • the first sampling circuit may further include a second capacitor, and the second capacitor is connected in parallel with the resistor R2.
  • the addition of the second capacitor in the first sampling circuit is beneficial to increase the sampling bandwidth and voltage gain of the first sampling circuit, which in turn is beneficial to improve the detection speed of the first sampling circuit and the accuracy of the detection result.
  • the second sampling circuit includes a resistor R5, a resistor R6, a resistor R7, a resistor R8, and a second differential amplifier.
  • one end of the resistor R5 is used for coupling with the first end of the sampling resistor, the other end of the resistor R5 is coupled with the negative input end of the second differential amplifier, and the first end of the sampling resistor is coupled with the positive input end of the load circuit; resistor R6
  • the two ends of the resistor R7 are respectively coupled to the negative input terminal of the second differential amplifier and the output terminal of the second differential amplifier; one end of the resistor R7 is used to couple with the second end of the sampling resistor, and the other end of the resistor R7 is coupled to the positive end of the second differential amplifier.
  • the input end is coupled, the second end of the sampling resistor is coupled to the positive output end of the switching power supply; one end of the resistor R8 is coupled to the positive input end of the second differential amplifier, and the other end of the resistor R8 is coupled to the ground circuit.
  • the first end of the sampling resistor is coupled with the positive input end of the load circuit
  • the second end of the sampling resistor is coupled with the positive output end of the switching power supply
  • the current value of the sampling current flowing through the sampling resistor is the same as the first current.
  • the current value meets the proportional relationship. Specifically, if the first current is transmitted between the switching power supply and the load circuit through N transmission paths, and the sampling resistor is set in any one of the N transmission paths, the current value of the sampling current is the current value of the first current Of 1/N. If one end of the sampling resistor is coupled with the N transmission paths, and the other end is coupled with the positive input terminal of the load circuit, the current value of the sampling current is equal to the current value of the first current.
  • the second sampling circuit In the second sampling circuit provided by the embodiment of the present application, one end of the resistor R5 is coupled to the first end of the sampling resistor, and one end of the resistor R7 is coupled to the second end of the sampling resistor. Therefore, the second sampling circuit can be connected to the second end of the sampling resistor through the resistor R5.
  • the resistor R7 receives the voltage drop of the sampling resistor.
  • the voltage value of the voltage drop of the sampling resistor and the current value of the sampling current meet a positive proportional relationship, and the current value of the sampling current meets the positive proportional relationship with the current value of the first current, so the second sampling circuit can generate adjustments according to the voltage drop of the sampling resistor Voltage, the voltage value of the adjusted voltage is linearly positively correlated with the current value of the first current.
  • the voltage provided to the positive input terminal of the second differential amplifier and the voltage provided to the negative input terminal of the second differential amplifier can be set, so that The output terminal of the second differential amplifier can output an adjustment voltage that is linearly positively correlated with the voltage drop of the sampling resistor. Since the voltage drop of the sampling resistor and the current value of the sampling current meet a positive proportional relationship, and the current value of the sampling current meets a positive proportional relationship with the current value of the first current, the voltage value of the adjustment voltage is linearly positively related to the current value of the first current .
  • the resistance of the resistor R5 is the same as the resistance of the resistor R7, and the resistance of the resistor R6 and the resistor R8 are the same.
  • the ratio between the voltage value of the adjustment voltage and the voltage value of the voltage drop of the sampling resistor is equal to the ratio between the resistance value of the resistor R6 and the resistance value of the resistor R5.
  • the second sampling circuit further includes a resistor R9 and a third capacitor.
  • the first end of the resistor R9 is coupled to the resistor R7
  • the second end of the resistor R9 is coupled to the positive input end of the second differential amplifier
  • one end of the third capacitor is coupled to the first end of the resistor R9
  • the other end of the third capacitor Grounded The resistor R9 and the third capacitor can form a first-order filter circuit to filter out the high-frequency noise signal in the input signal of the second amplifier (that is, the voltage at the second end of the sampling resistor RT), thereby helping to improve the sampling result of the second sampling circuit Accuracy, and improve the stability of the second sampling circuit.
  • the sum of the resistance value of the resistor R9 and the resistance value of the resistor R7 is the resistance value of the resistor R5; the resistance value of the resistor R6 and the resistor R8 are the same.
  • the ratio between the voltage value of the adjustment voltage and the voltage value of the voltage drop of the sampling resistor is still equal to the ratio between the resistance value of the resistor R6 and the resistance value of the resistor R5.
  • the sampling resistor is located in any transmission path of the N transmission paths, and N is an integer greater than or equal to 1; the resistance of the resistor R6 is N times the resistance of resistor R5.
  • the current value of the sampling current is 1/N of the current value of the first current, and the resistance value of the resistor R6 is N times the resistance value of the resistor R5, so that the voltage value of the adjustment voltage can be equal to the voltage drop of the sampling resistor The voltage value.
  • the feedback circuit may perform addition op amp processing on the second voltage and the adjustment voltage.
  • the feedback circuit may be an additive operational amplifier circuit, and the additive operational amplifier circuit may be a non-inverting addition circuit or an inverting addition circuit.
  • the feedback circuit includes a resistor R10, a resistor R11, a resistor R12, a resistor R13, a resistor R14, and a third differential amplifier.
  • one end of the resistor R11 is coupled to the output terminal of the first sampling circuit, the other end of the resistor R11 is respectively coupled to one end of the resistor R12 and the positive input end of the third differential amplifier, and the other end of the resistor R12 is grounded; one end of the resistor R14 is connected to The output end of the second sampling circuit is coupled, the other end of the resistor R14 is coupled to the positive input end of the third differential amplifier; one end of the resistor R13 is grounded, and the other end of the resistor R13 is coupled to the negative input end of the third differential amplifier; The two ends are respectively coupled with the negative input terminal of the third differential amplifier and the output terminal of the third differential amplifier.
  • the feedback circuit may receive the second voltage provided by the first sampling circuit through the first input terminal, and receive the adjustment voltage provided by the second sampling circuit through the second input terminal.
  • the resistance R10, the resistance R11, the resistance R12, the resistance R13, and the resistance R14 By reasonably setting the resistance R10, the resistance R11, the resistance R12, the resistance R13, and the resistance R14, the voltage provided to the positive input terminal of the third differential amplifier and the voltage provided to the negative input terminal of the third differential amplifier can be set to make the third differential amplifier
  • the output terminal of can output the feedback voltage, and the voltage value of the feedback voltage is linearly positively correlated with the voltage value of the second voltage and the voltage value of the adjustment voltage, respectively.
  • the feedback circuit may further include a fourth capacitor, and two ends of the fourth capacitor are respectively coupled to the negative input terminal of the third differential amplifier and the output terminal of the third differential amplifier.
  • the fourth capacitor can integrate and filter the high-frequency signal in the voltage input to the third differential amplifier, thereby reducing the high-frequency noise in the feedback voltage, thereby helping to improve the stability of the switching power supply.
  • the resistance of the resistor R11, the resistance of the resistor R12 and the resistance of the resistor R14 are the same; the resistance of the resistor R10 is twice the resistance of the resistor R13.
  • the voltage value of the feedback voltage may be equal to the sum of the voltage value of the second voltage and the voltage value of the feedback voltage.
  • an embodiment of the present application provides an electronic device that includes a switching power supply, a load circuit, a sampling resistor, and a load line circuit as provided in any possible implementation manner in the first aspect.
  • the positive output terminal of the switching power supply is coupled with the second terminal using a resistor
  • the first terminal of the sampling resistor is coupled with the positive input terminal of the load circuit
  • the negative output terminal of the switching power supply is coupled with the negative input terminal of the load circuit
  • load line circuit The first sampling circuit of the load circuit is respectively coupled to the positive input terminal of the load circuit and the negative input terminal of the load circuit.
  • the second sampling circuit of the load line circuit is respectively coupled to the first end of the sampling resistor and the second end of the sampling resistor; the switching power supply can be Through the sampling resistor, the first voltage and the first current are provided to the load circuit.
  • the load line circuit is equivalent to being arranged in the feedback loop of the switching power supply, and the load line circuit provides the feedback voltage to the switching power supply, so that the switching power supply can adjust its output voltage according to the feedback voltage. Since the switching power supply does not have the load line function, its own processing logic is to maintain the feedback voltage at the rated voltage. Therefore, when the first current increases and the feedback voltage rises linearly, the switching power supply will reduce the output voltage to make The feedback voltage received next can return to the rated voltage, that is, the output voltage of the switching power supply will linearly decrease with the increase of the output current, thus realizing the load line function.
  • N transmission paths are included between the positive output terminal of the switching power supply and the positive input terminal of the load circuit, the sampling resistor is located in any transmission path of the N transmission paths, and N is greater than or equal to 1. Integer. Setting multiple transmission paths between the switching power supply and the load circuit is beneficial to reduce transmission loss and increase the maximum transmission power.
  • Figure 1 is a schematic diagram of the structure of an electronic device
  • Figure 2 is a schematic diagram of the power consumption gain of a load function
  • FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a load line circuit structure provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a first sampling circuit provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a frequency-voltage gain curve of a first sampling circuit according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a second sampling circuit provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a second sampling circuit provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a frequency-voltage gain curve of a second sampling circuit according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a feedback circuit provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of output voltage simulation of a conventional switching power supply provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of output voltage simulation of a conventional switching power supply integrated with a load line circuit provided by an embodiment of the application.
  • Coupled in this application refers to an energy transfer relationship, specifically, it can be electrical energy.
  • a and B coupling means that A and B can transmit electric energy to each other, and it can also be understood that A and B can transmit electric energy to each other.
  • the electrical connection relationship it can be a direct electrical connection between A and B, or an indirect electrical connection between A and B through other conductors or electronic devices, so that A and B can transfer electrical energy to each other.
  • linear positive correlation can be understood as a variable that linearly increases with the increase of another variable.
  • the positive linear correlation between y and x can be understood as the value of y increases linearly with the increase of the value of x.
  • Linear negative correlation can be understood as a linear decrease of one variable with the increase of another variable.
  • y and x are linearly negatively correlated, which can be understood as the value of y decreases linearly as the value of x increases.
  • Fig. 1 exemplarily shows a schematic diagram of the structure of an electronic device.
  • the electronic device may be an electronic device provided with a switching power supply, such as a smart phone, a tablet computer, a car, or smart glasses.
  • the electronic device mainly includes a switching power supply 100, a battery 200, and a load circuit 300.
  • the load circuit 300 may be a SoC of an electronic device, a central processing unit (CPU), a peripheral chip, etc., which are not limited in the embodiment of the present application.
  • the switching power supply 100 can receive power from the battery 200 and provide the received power to the load circuit 300.
  • the output terminal of the switching power supply 100 includes N ports, and N is an integer greater than or equal to 1.
  • the N ports of the positive output end of the switching power supply 100 are respectively coupled to one end of the N transmission paths in a one-to-one correspondence.
  • the other ends of the N transmission paths are connected in parallel and coupled with the positive input end of the load circuit 300.
  • the negative output terminal of the switching power supply 100 is coupled with the negative input terminal of the load circuit 300.
  • the switching power supply 100 and the load circuit 300 form a loop, so that the output current of the switching power supply 100 can be transmitted to the load circuit 300 through N transmission paths, where the output current of the switching power supply 100 can be understood as the positive output terminal of the switching power supply 100
  • the output current is the sum of the currents respectively output by the N ports of the positive output terminal.
  • the current provided by the switching power supply 100 to the load circuit 300 can be referred to as the first current, and the first current can be understood as the input current of the load circuit 300.
  • the first current It can also be understood as the output current of the switching power supply 100, or the first current can also be understood as the sum of the currents transmitted by N transmission paths, where the current transmitted by each transmission path can also be referred to as the sub-current of the first current. .
  • each transmission path can include a filter inductor.
  • transmission path 1 one end of the filter inductor in transmission path 1 is coupled with the positive output terminal of the switching power supply 100 corresponding to transmission path 1, and the other end of the filter inductor is coupled with the positive input terminal of the load circuit 300.
  • the filter inductor can filter the sub-currents of the first current flowing through, which is beneficial to enhance the DC characteristics of the first current as a whole, thereby helping to reduce the power consumption of the load circuit 300 caused by the high-frequency noise signal in the first current. .
  • a feedback loop is also provided between the switching power supply 100 and the load circuit 300.
  • a sampling resistor RT is also provided between the N transmission paths and the load circuit 300, one end of the N transmission paths in parallel is coupled with one end of the sampling resistor RT, and the other end of the sampling resistor RT is connected to the load.
  • the positive input terminal of the circuit 300 is coupled.
  • the first current is input to the load circuit 300 through the sampling resistor RT.
  • the switching power supply 100 is respectively coupled to both ends of the sampling resistor RT, and the switching power supply 100 can sample the current flowing through the sampling resistor RT through the sampling resistor RT.
  • the switching power supply 100 can sample the voltage across the resistor RT to obtain the voltage value of the sampling resistor RT, and then can obtain the sampling current passing through the sampling resistor RT according to the resistance value of the sampling resistor RT.
  • the sampling current passing through the sampling resistor RT is equivalent to the first current.
  • the switching power supply 100 is also coupled with the positive input terminal of the load circuit 300, and the switching power supply 100 can sample the first voltage provided to the load circuit 300.
  • the first voltage can be understood as the input voltage of the load circuit 300 or the voltage received by the load circuit 300.
  • the switching power supply 100 can detect the voltage difference between the positive input terminal of the load circuit 300 and the negative input terminal of the load circuit 300 to obtain the first voltage provided to the load circuit 300.
  • the first voltage is slightly lower than the output voltage of the switching power supply 100.
  • the voltage drop caused by the transmission loss is much smaller than the output voltage of the switching power supply 100.
  • the first voltage can be equivalent to the output voltage of the switching power supply 100.
  • the magnitude of the first current is generally determined by the load condition of the load circuit 300.
  • the load circuit 300 as a system on chip (SoC) as an example, during the operation of the electronic device, the total load of the SoC often fluctuates in a relatively large range, so that the magnitude of the first current also fluctuates greatly.
  • SoC system on chip
  • the total load of the SoC in the smart phone is small, and the first current is also small.
  • the total load of the SoC is larger, and the first current is also larger.
  • the processing logic of the switching power supply 100 is to maintain the first voltage provided by the switching power supply 100 to the load circuit 300 at the rated voltage.
  • the first current also increases, causing the output current of the switching power supply 100 to increase.
  • the switching power supply 100 still maintains the first voltage at the rated voltage, which causes the output power of the switching power supply 100 to increase, and the power consumption of the load circuit 300 also increases accordingly.
  • the switching power supply 100 due to the delay of the output power response of the switching power supply 100, that is, the switching power supply 100 cannot increase the output power while the first current increases, so there will be certain fluctuations in the first voltage. Specifically, when the first current increases instantaneously, due to the delay of the output power response of the switching power supply 100, the output voltage of the switching power supply 100 decreases due to the increase in output current, and the load circuit 300 further detects that the first voltage decreases. Furthermore, the switching power supply 100 will increase the output power, so that the output voltage of the switching power supply 100 will gradually increase until the first voltage detected by the switching power supply 100 approaches the rated voltage.
  • the power consumption generated by the switching power supply 100 can be as follows As shown in Figure 2.
  • curve A is the relationship between output voltage (equivalent to the first voltage) and output current (equivalent to the first current) in a conventional switching power supply without load line function.
  • the integral area of curve A can be Indicates the power consumption of a switching power supply without load line function.
  • the output voltage of the switching power supply 100 will linearly decrease as the output current increases, as shown by curve B in FIG. 2.
  • the integral area of curve B can represent the power consumption of the switching power supply with load line function.
  • the part of the power consumption gain is the part where the integration area of curve A is larger than the integration area of curve B.
  • the area of this part of the area can represent the power consumption saved by the load line function, that is, the load line function brings Power consumption gains.
  • the load line function can also improve the transient characteristics of the switching power supply. Specifically, due to the delay of the power response of the switching power supply, the output voltage of the switching power supply will also decrease instantaneously when the output current of the switching power supply increases instantaneously. If the output voltage of the switching power supply is too low, the load circuit will stop working; When the output current of the switching power supply decreases instantaneously, the output voltage of the switching power supply will also increase instantaneously. If the output voltage of the switching power supply is too large, it will cause damage to the load circuit or shorten the life of the load. The better the transient characteristics of the switching power supply, the smaller the fluctuation range of its output voltage, which is more conducive to protecting the load circuit. For the switching power supply with load line function, at the moment of output current change, the output voltage fluctuation range of the switching power supply is smaller and has better transient characteristics.
  • VRM voltage regulator
  • switching power supply is a commonly used electronic component.
  • the VRM power supply is an industrial-grade switching power supply and cannot be used in vehicles. At present, most automotive-grade switching power supplies generally do not have the load-line function, and vehicle manufacturers can only customize them to power supply manufacturers.
  • an embodiment of the present application provides a load line circuit.
  • the voltage value of the feedback voltage provided by the load line circuit to the switching power supply is linearly positively correlated with the voltage value of the first voltage and the current value of the first current, respectively.
  • the first voltage is the voltage provided to the load circuit
  • the first current is the current provided to the load circuit.
  • the load line circuit 400 provided in the embodiment of the present application can be connected to the switching power supply 100, the positive input terminal and the negative input terminal of the load circuit 300, and two of the sampling resistor RT, respectively. End coupling.
  • the load line circuit 400 can generate the feedback voltage V F according to the first voltage V 1 provided by the switching power supply 100 to the load circuit 300 and the voltage drop V T of the sampling resistor RT.
  • the value of the voltage sampling resistor RT the voltage drop V T V T 0 the current value of the first current I 1 I 1 0 linear correlation.
  • the sampling resistor RT is located between the N transmission paths and the load circuit 300.
  • the sampling current I T passing through the sampling resistor RT is Is the first current I 1 , so the voltage drop V T of the sampling resistor RT satisfies the following formula:
  • V T 0 I 1 0 ⁇ R T 0 (Formula 1)
  • R T 0 represents the resistance value of the sampling resistor RT, which is generally a constant.
  • the sampling resistor RT is located in any one of the N transmission paths.
  • the resistance value R T 0 of the RT of the sampling resistor is small, which will not have a significant impact on the current sub-current of the first current passing through the transmission path. Therefore, it can still be approximated as the sub-current of the first current of the N transmission paths.
  • the currents are equal in magnitude.
  • the voltage value of the voltage drop V T of the sampling resistor RT is linearly positively correlated with the current value I 1 0 of the first current I 1 , and the proportional coefficient can be the resistance value R T 0 of the sampling resistor RT, can also be When the first current I 1 increases, the voltage drop V T of the sampling resistor RT increases linearly.
  • the voltage value of the feedback voltage V F is associated with a first positive voltage V and the voltage value of the linear voltage value sampling resistor RT the voltage drop V T 1 embodiment of the present application, respectively, and sampling resistor RT is a voltage drop V T
  • the value is linearly positively correlated with the current value of the first current I 1 , so the voltage value of the feedback voltage V F is linearly positively correlated with the voltage value of the first voltage V 1 and the current value of the first current I 1 respectively.
  • the voltage value of the first voltage V 1 and the current value of the first current I 1 are linearly negatively correlated, that is, the conventional switching power supply 100 keeps the feedback voltage V F stable at the rated voltage (or the rated voltage accessory), The first voltage V 1 linearly decreases as the first current I 1 increases. Therefore, using the load line circuit 400 provided by the embodiment of the present application can enable the conventional switching power supply 100 to also realize the load line function.
  • the first voltage V 1 is at the rated voltage, when the first current I 1 is increased, the feedback voltage V F exceeds the rated voltage.
  • the load line circuit 400 feeds back the feedback voltage V F to the switching power supply 100.
  • the switching power supply 100 is a conventional switching power supply. After receiving the feedback voltage V F , since the feedback voltage V F is greater than the rated voltage, the switching power supply 100 will reduce the output voltage until The feedback voltage V F returns to the rated voltage.
  • the load line circuit 400 mainly includes a first sampling circuit 401, a second sampling circuit 402, and a feedback circuit 403.
  • the output terminal of the first sampling circuit 401 is coupled to the first input terminal of the feedback circuit 403,
  • the output terminal of the second sampling circuit 402 is coupled with the second input terminal of the feedback circuit 403.
  • the first sampling circuit 401 can generate the second voltage V 2 and provide the second voltage V 2 to the feedback circuit 403.
  • the voltage value of the second voltage V 2 is linearly positively correlated with the voltage value of the first voltage V 1.
  • the second sampling circuit 402 can generate the adjusted voltage V s and provide the adjusted voltage V s to the feedback circuit 403.
  • the voltage value of the adjustment voltage V s is linearly positively correlated with the current value of the first current I 1.
  • the feedback circuit 403 can generate a feedback voltage V F according to the second voltage V 2 and the adjustment voltage V s , and feed the feedback voltage V F to the switching power supply 100.
  • the voltage value of the feedback voltage V F generated by the feedback circuit 403 is linearly positively correlated with the voltage value of the second voltage V 2 and the voltage value of the adjustment voltage V s , respectively, the voltage value of the feedback voltage V F is also directly related to the voltage value of the first voltage.
  • the voltage value of the voltage V 1 and the current value of the first current I 1 are linearly positively correlated.
  • the second voltage V 2 satisfies the following formula:
  • V 2 0 A 1 ⁇ V 1 0 (Formula 3)
  • V 2 0 represents the voltage value of the second voltage V 2
  • V 1 0 represents the voltage value of the first voltage V 1
  • a 1 represents the proportional coefficient between the first voltage V 1 and the second voltage V 2
  • the adjustment voltage V s satisfies the following formula:
  • V s 0 A 2 ⁇ R T 0 ⁇ I T 0 (Equation 4)
  • V s 0 represents the voltage value of the adjustment voltage V s
  • R T 0 represents the resistance value of the sampling resistor RT
  • I T 0 represents the current value of the sampling current I T
  • a 2 represents the voltage drop V T of the sampling resistor RT and adjustment The proportional coefficient between the voltages V s , A 2 is greater than zero.
  • the feedback voltage V F satisfies the following formula:
  • V F 0 B1V 2 0 +B2V s 0 (Equation 5)
  • V F 0 represents the voltage value of the feedback voltage V F.
  • B1 and B2 are all proportional coefficients. In a possible implementation, A1, A2, B1, and B2 can all be equal to 1.
  • example load line circuit 400 may be provided to the feedback voltage V F of the switching power supply 100, the voltage value of the feedback voltage V F V F 0 V respectively, the voltage value of the first voltage V 1 1 0 and a first current of a current value I 1 I 1 0 linear correlation, i.e. the first voltage V voltage value V 1 of the first current 10 and the current value I 1 I 1 0 negative linear correlation.
  • the load line circuit 400 provided in the embodiment of the present application can make the switching power supply 100
  • the output voltage of the switching power supply 100 decreases linearly with the increase of the output current of the switching power supply 100, that is, the load line circuit 400 provided in the embodiment of the present application can enable the switching power supply 100 to realize the load line function.
  • the embodiment of the present application uses the following specific examples to further exemplify the first sampling circuit 401, the second sampling circuit 402, and the feedback circuit 403, respectively.
  • FIG. 5 exemplarily shows a schematic structural diagram of a first sampling circuit 401.
  • the first sampling circuit 401 mainly includes a resistor R1, a resistor R2, a resistor R3, a resistor R4, and a first differential amplifier A1.
  • One end of the resistor R1 is used for coupling with the negative input terminal of the load circuit 300, and the other end of the resistor R1 is coupled with the negative input terminal of the first differential amplifier A1 (as shown by the "-" sign in FIG. 5).
  • the two ends of the resistor R3 are respectively coupled with the negative input terminal of the first differential amplifier A1 and the output terminal of the first differential amplifier A1.
  • One end of the resistor R2 is used for coupling with the positive input terminal of the load circuit 300, and the other end of the resistor R2 is coupled with the positive input terminal of the first differential amplifier A1 (as shown by the "+" sign in FIG. 5).
  • One end of the resistor R4 is coupled with the positive input end of the first differential amplifier A1, and the other end of the resistor R4 is coupled with the ground circuit.
  • the positive electrode of the first differential amplifier A1 can receive the constant current voltage V5, the negative electrode is coupled to the ground circuit, and the constant current voltage V5 is used to power the first differential amplifier A1.
  • the positive input terminal voltage V 1+ of the first differential amplifier A1 can be as shown in formula 2:
  • V 1+ 0 represents the voltage value of the positive input terminal voltage V 1+ of the first differential amplifier A1
  • R 4 0 represents the resistance value of the resistor R4
  • R 2 0 represents the resistance value of the resistor R2
  • V P 0 represents the load circuit The voltage value of the positive input terminal voltage V P of 300.
  • the negative input terminal voltage V 1- of the first differential amplifier A1 can be as shown in formula 3:
  • V 1- 0 represents the voltage value of the negative input terminal voltage V 1- of the first differential amplifier A1
  • R 3 0 represents the resistance value of the resistor R3
  • R 1 0 represents the resistance value of the resistor R1
  • V N 0 represents the load circuit The voltage value of the negative input terminal voltage V N of 300.
  • the resistance value of the resistor R1, the resistance value of the resistor R2, the resistance value of the resistor R3 and the resistance value of the resistor R4 are the same.
  • the formula 9 can be further simplified as:
  • the first sampling circuit Ten seen from the formula, at 0, under Resistance R1 R 1 0 R 2 the resistance of resistor R2 the resistance of the resistor R3 and the resistor R4 R 3 0 R 4 0 the same resistance, the first sampling circuit The voltage value V 2 0 of the second voltage V 2 provided by the 401 to the feedback circuit 403 is the same as the voltage value V 1 0 of the first voltage V 1.
  • the first sampling circuit 401 further includes a first capacitor C1, and the first capacitor C1 is connected in parallel with the resistor R3.
  • the first capacitor C1 can integrate and filter the high-frequency signal in the first voltage detected by the first sampling circuit 401, so as to reduce the high-frequency noise in the feedback voltage, thereby helping to improve the stability of the switching power supply 100.
  • the differential sampling bandwidth and voltage gain are important performance indicators of the first sampling circuit 401.
  • the first sampling circuit 401 may further include a second capacitor C2, and the second capacitor C2 is connected in parallel with the resistor R2.
  • the frequency-voltage gain curve of the first sampling circuit 401 may be as shown in FIG. 6.
  • the abscissa of FIG. 6 represents frequency, and the ordinate represents voltage gain.
  • Fig. 6 shows multiple frequency-voltage gain curves, and different frequency-voltage gain curves correspond to different capacitance values of the second capacitor C2. According to the direction of the arrow in FIG. 6, the multiple frequency-voltage gain curves in FIG. 6 respectively correspond to different capacitance values of the second capacitor C2 ranging from 10 pf to 1 nf. It can be seen from Fig.
  • the capacitance value of the second capacitor C2 is reasonably configured so that the voltage gain can increase with the increase of the frequency, the voltage gain rises from the gain 0 point, and the voltage gain is a positive value.
  • the voltage gain reaches the maximum value, the voltage gain decreases with the increase of the frequency, and the voltage gain becomes negative after the gain 0 point is exceeded.
  • the frequency corresponding to the position where the voltage gain starts to rise from the gain 0 point can be called the zero turning frequency f z
  • the frequency corresponding to the position where the voltage gain crosses the gain 0 point and becomes a negative value can be called the pole turning Frequency f p .
  • the positive input terminal voltage V1+ of the first differential amplifier A1 can be expressed as:
  • C 2 0 represents the capacitance value of the second capacitor C2
  • C 2 0 S represents the reciprocal of the frequency domain impedance of the second capacitor C2.
  • the calculated zero-point turning frequency can be expressed as:
  • f z 0 is the frequency value of the zero turning frequency f z.
  • the pole turning frequency f p can be expressed as:
  • f p 0 is the frequency value of the pole turning frequency f p.
  • the zero turning frequency f z is less than the pole turning frequency f p .
  • the voltage gain of the first sampling circuit 401 is positive Therefore, the second capacitor can increase the voltage gain of the first sampling circuit 401.
  • the range between the zero turning frequency f z and the pole turning frequency f p can also be referred to as the sampling bandwidth of the first sampling circuit 401. It can be seen that adding the second capacitor C2 to the first sampling circuit 401 is beneficial to increase the sampling bandwidth and voltage gain of the first sampling circuit 401, thereby helping to improve the detection speed of the first sampling circuit 401 and the accuracy of the detection results. .
  • FIG. 7 exemplarily shows a schematic structural diagram of a second sampling circuit 402.
  • the second sampling circuit 402 mainly includes a resistor R5, a resistor R6, a resistor R7, a resistor R8, and a second differential amplifier A2.
  • one end of the resistor R5 is used for coupling with the first end of the sampling resistor RT, and the other end of the resistor R5 is coupled with the negative input end of the second differential amplifier A2.
  • the sampling resistor RT may be as shown in FIG. 3, the first end of the sampling resistor RT is coupled to the load circuit 300, and the second end of the sampling resistor RT is coupled to the N positive output ends of the switching power supply 100 through N transmission paths.
  • the second terminal of the sampling resistor RT may also be coupled to one output terminal of the N positive output terminals of the switching power supply 100, that is, the sampling resistor RT is located in any transmission path of the N transmission paths.
  • the two ends of the resistor R6 are respectively coupled with the negative input terminal of the second differential amplifier A2 and the output terminal of the second differential amplifier A2.
  • One end of the resistor R7 is used for coupling with the second end of the sampling resistor RT, and the other end of the resistor R7 is coupled with the positive input end of the second differential amplifier A2.
  • One end of the resistor R8 is coupled to the positive input end of the second differential amplifier A2, and the other end of the resistor R8 is coupled to the ground circuit.
  • the positive electrode of the second differential amplifier A2 can receive the constant current voltage V5, the negative electrode is coupled to the ground circuit, and the constant current voltage V5 is used to power the second differential amplifier A2.
  • the resistor R7 can receive the voltage V T2 at the second end of the sampling resistor RT
  • the resistor R5 can receive the voltage V T1 at the first end of the sampling resistor RT, the voltage V T2 at the second end of the sampling resistor RT and the voltage V T2 at the second end of the sampling resistor RT.
  • the difference between the voltage V T1 at the first terminal can be understood as the voltage drop V T of the sampling resistor RT.
  • the positive input terminal voltage V 2+ of the second differential amplifier A2 may be as shown in formula fourteen:
  • V 2+ 0 indicates a positive input terminal of the second differential voltage value of the voltage V of the amplifier A2 2+
  • R 8 0 is the resistance of resistor R8
  • R 7 0 is the resistance of the resistor R7
  • V T2 0 represents a sampling resistor The voltage value of V T2 at the second terminal of RT.
  • Second differential amplifier A2 to the negative input voltage may be as shown in formula V 2- fifteen:
  • V 2- 0 for negative input of the voltage value of the second voltage V 2 of the differential amplifier A2 R 5 0 is the resistance of the resistor R5, R 6 0 represents the resistance of the resistor R6, V T1 0 represents a sampling resistor The voltage value of the voltage V T1 at the first terminal of RT.
  • the resistance value R of resistor R5 and the resistor R 5 0 70 R7 is the same, the resistance value of the resistor R6 and resistor R8 R 6 0 of the same resistance value R 80, in which case below, formula 16 can be simplified to:
  • the voltage value V s 0 of the adjustment voltage V s is linearly positively correlated with the voltage value V T 0 of the voltage drop of the sampling resistor RT.
  • the voltage value V T 0 of the voltage drop of the sampling resistor RT is linearly positively correlated with the current value I 1 0 of the first current I 1.
  • the adjustment voltage V s linearly increases with the increase of the first current I 1
  • the second voltage V 2 linearly decreases when the feedback voltage V F is maintained at the rated voltage.
  • the second voltage value V 2 is the voltage V 20 the voltage value of the first voltage V 1 is V 1 0 linear correlation, the first voltage V 1 is decreased along linearly, i.e. to achieve a load line function.
  • the second sampling circuit 402 may further include a resistor R9 and a third capacitor C3.
  • the first end of the resistor R9 is coupled with the resistor R7, and the second end of the resistor R9 is coupled with the positive input end of the second differential amplifier A2.
  • One end of the third capacitor C3 is coupled with the first end of the resistor R9, and the other end of the third capacitor C3 is grounded.
  • the resistor R9 and the third capacitor C3 can form a first-order filter circuit to filter out the high-frequency noise signal in the input signal of the second amplifier A2 (that is, the voltage V T2 at the second end of the sampling resistor RT), thereby helping to improve the second sampling
  • the accuracy of the sampling result of the circuit 402 and the stability of the second sampling circuit 402 are improved.
  • the frequency-voltage gain curves of multiple second sampling circuits 402 are exemplarily shown.
  • the abscissa of FIG. 9 represents the frequency, and the ordinate represents the voltage gain.
  • the capacitance values of the third capacitor C3 corresponding to the multiple frequency-voltage gain curves are from 100 pf to 10 nf.
  • the sampling bandwidth of the second sampling circuit 402 can be defined as the frequency range between the frequency corresponding to the position where the voltage gain starts to decrease from 0 and the frequency corresponding to the position where the voltage gain is -20dB.
  • the time constant of the first-order filter circuit formed by the resistor R9 and the third capacitor C3 needs to be greater than twice the switching period of the switching power supply 100.
  • the third capacitor C3 should not be too large.
  • the positive input terminal voltage V 2+ of the second differential amplifier A2 can be as shown in Equation 18:
  • R 9 0 represents the resistance value of the resistor R9.
  • Second differential amplifier A2 to the negative input terminal of voltage V 2- can be prepared as shown in Equation fifteen, and is not repeated.
  • the resistor R5 is R 50 equal to the resistance R7 of the resistance R 70 of resistor R9 and the resistance value R and 90, the resistance of the resistor R6 and the resistor R 6 0 R8, 80 the same resistance R, in this case, the equation can be simplified to equation nineteen seventeen.
  • sampling resistor RT when the sampling resistor RT is located between the N transmission path and the load circuit 300, sampling resistor RT 3 as shown by a solid line, the resistance of the resistor R5 and the resistor R 5 0 can R6 same resistance R 60, seventeen formula can be further simplified as:
  • the voltage value V s 0 of the adjustment voltage V s is linearly positively correlated with the current value I 1 0 of the first current I 1 , and the proportional coefficient is the resistance value R of the sampling resistor RT T 0 .
  • the resistance value R R6 may be a resistance of 60
  • the resistance value of R5 is R 5 0 N times, formula 17 can also be further simplified to formula 20.
  • the feedback circuit 403 may perform addition op amp processing on the second voltage V 2 and the adjustment voltage V s to generate the feedback voltage V F.
  • the feedback circuit 403 may be implemented based on an addition operational amplifier circuit.
  • the addition operational amplifier circuit performs addition operational amplifier processing on the second voltage V 2 and the adjustment voltage V s to obtain the feedback voltage V F.
  • the feedback circuit 403 can be implemented by an analog circuit (such as the above-mentioned additive operational amplifier circuit), or can be implemented by a combination of an analog circuit and a digital circuit, which is not limited in the embodiment of the present application.
  • the feedback circuit 403 is an addition operational amplifier circuit
  • the feedback circuit 403 may be a non-inverting addition circuit or an inverting addition circuit, which is not limited in the embodiment of the present application.
  • FIG. 10 exemplarily shows a schematic structural diagram of a second sampling circuit 402.
  • the feedback circuit 403 includes a resistor R10, a resistor R11, a resistor R12, a resistor R13, a resistor R14, and a third differential amplifier A3.
  • One end of the resistor R11 is coupled to the output terminal of the first sampling circuit 401, the other end of the resistor R11 is respectively coupled to one end of the resistor R12 and the positive input end of the third differential amplifier A3, and the other end of the resistor R12 is grounded.
  • One end of the resistor R14 is coupled to the output end of the second sampling circuit 402, and the other end of the resistor R14 is coupled to the positive input end of the third differential amplifier.
  • One end of the resistor R13 is grounded, and the other end of the resistor R13 is coupled to the negative input terminal of the third differential amplifier.
  • the two ends of the resistor R10 are respectively coupled to the negative input terminal of the third differential amplifier A3 and the output terminal of the third differential amplifier A3.
  • the positive electrode of the first differential amplifier A1 can receive the constant current voltage V5, the negative electrode is coupled to the ground circuit, and the constant current voltage V5 is used to power the first differential amplifier A1.
  • the resistor R11 can receive the second voltage V 2 provided by the first sampling circuit 401
  • the resistor R14 can receive the adjustment voltage V s provided by the second sampling circuit 402
  • the third differential amplifier A3 can be based on the second voltage V 2 and adjust the voltage V s to generate a feedback voltage V F
  • the feedback voltage V F is fed back to the switching power supply 100 so that the switching power supply 100 can adjust the output voltage according to the received feedback voltage V F.
  • the voltage V 3+ at the positive input terminal of the third differential amplifier A3 can be as shown in formula 21:
  • V 3+ 0 represents the voltage value of the voltage V 3+ at the positive input terminal of the third differential amplifier A3
  • R 11 0 represents the resistance value of the resistor R11
  • R 12 0 represents the resistance value of the resistor R12
  • R 14 0 represents the resistor R14 The resistance value.
  • the voltage V 3- of the negative input terminal of the third differential amplifier A3 can be as shown in formula 22:
  • V 3- 0 represents the voltage value of the voltage V 3- of the negative input terminal of the third differential amplifier A3
  • R 10 0 represents the resistance value of the resistor R10
  • R 13 0 represents the resistance value of the resistor R13
  • V F 0 represents the feedback voltage The voltage value of V F.
  • the voltage value V F 0 of the feedback voltage V F is linearly positively correlated with the voltage value of the second voltage and the voltage value V s 0 of the adjustment voltage V s . Therefore, the feedback voltage V F is fed back to the switching power supply 100, the output voltage of the switching power supply 100 can be linearly reduced with the increase of the output current, that is, the load line function is realized.
  • the resistance of resistor R11. 11 R 0 is the resistance of resistor R12 and resistor R14 R 12 0 R is the same as the resistance 140, the resistance of resistor R10 to resistor R13 R 10 0 barrier The value R 13 0 is twice.
  • formula 23 can be simplified to formula 24:
  • V F 0 V 2 0 +V s 0 (Equation 24)
  • the voltage value V F 0 of the feedback voltage V F is the sum of the voltage value V 2 0 of the second voltage V 2 and the voltage value V s 0 of the adjustment voltage V s.
  • formula twenty-four can be further simplified as:
  • V F 0 V 1 0 +I 1 0 (Formula 25)
  • the feedback circuit 403 further includes a fourth capacitor C4.
  • the two ends of the fourth capacitor C4 are respectively connected to the negative input terminal of the third differential amplifier A3 and the third differential amplifier A3.
  • the output is coupled.
  • the fourth capacitor C4 can also generate a feedback pole, which can improve the accuracy and stability of the feedback circuit, which will not be repeated here.
  • the load line circuit 400 in the embodiment of the present application is used as a peripheral circuit of the conventional switching power supply, which can enable the switching power supply to realize the load line function, and it is also beneficial to improve the transient response of the switching power supply.
  • the embodiment of the present application uses the power supply simulation software Simplis to build a simulation circuit, and verifies the effect of the load line circuit 400 in improving the transient response of the switching power supply.
  • Fig. 11 exemplarily shows a schematic diagram of the output voltage of a conventional switching power supply.
  • the ordinate represents the output voltage
  • the abscissa represents time.
  • the voltage curve of a conventional switching power supply in which the output current of the switching power supply changes periodically
  • the output current of the switching power supply suddenly decreases at 0.65ms, suddenly increases at 0.725ms, and at 0.8ms Suddenly decreased, suddenly decreased at 0.875ms...
  • the peak-to-peak voltage of the output voltage of the switching power supply is about 112mV.
  • the load line circuit 400 provided by the embodiment of the present application is beneficial to reduce the peak-to-peak voltage of the output voltage of the switching power supply, that is, to reduce the fluctuation range of the output voltage of the switching power supply, and is beneficial to improve the transient of the switching power supply. State response.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

本申请提供一种load line电路及电子设备,其中load line电路应用于电子设备中。load line电路提供给开关电源的反馈电压的电压值,分别与第一电压的电压值和第一电流的电流值线性正相关。其中,第一电压为提供给负载电路的电压,第一电流为提供给负载电路的电流。通过设置load line电路,可以使开关电源实现load line功能。

Description

一种load line电路及电子设备
相关申请的交叉引用
本申请要求在2019年11月14日提交中国国家知识产权局、申请号为201911114288.4、申请名称为“一种load line电路及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及开关电源技术领域,尤其涉及一种load line电路及电子设备。
背景技术
在电子设备中,开关电源可以为系统芯片(system on chip,SoC)提供电流。随着系统SoC的功能提升,SoC高负载运行所需的电流也越来越大,导致SoC的功耗问题也随之越发严重。
为了降低SOC的功耗,目前出现了一些具有负载线(load line)功能的开关电源。例如,电压调节(voltage regulator module,VRM)电源便是一种具备load line功能的开关电源。对于具备load line功能的开关电源,开关电源的输出电压可以随开关电源的输出电流的增大而线性降低。因此,在SoC高负载运行时,开关电源的输出电流增大,且开关电源的输出电压随输出电流的增大而降低,从而可以限制开关电源的输出功率升高,以降低SoC的功耗。
然而,目前仅有如VRM电源这种本身具备load line功能的开关电源,能够通过load line功能降低SoC的功耗,而其它不具备load line功能的常规开关电源,则无法通过load line功能降低SoC的功耗。因此,load line功能在开关电源中的应用还存在诸多局限。
发明内容
有鉴于此,本申请提供一种load line电路及电子设备,该load line电路可以设置于常规开关电源的反馈回路中,使不具备load line功能的常规开关电源也能够实现load line功能,从而有利于克服开关电源的选型局限。
第一方面,本申请实施例提供一种负载线load line电路,包括:第一采样电路,第二采样电路和反馈电路。其中,第一采样电路的输出端与反馈电路的第一输入端耦合,第二采样电路的输出端与反馈电路的第二输入端耦合,反馈电路的输出端用于与开关电源耦合。第一采样电路可以生成第二电压,并将第二电压提供给反馈电路,其中,第二电压的电压值与第一电压的电压值线性正相关,该第一电压为开关电源提供给负载电路的电压。第二采样电路可以生成调整电压,并将调整电压提供给反馈电路,其中,调整电压的电压值与第一电流的电流值线性正相关,该第一电流为开关电源提供给负载电路的电流。反馈电路可以根据第二电压和调整电压生成反馈电压,并将反馈电压反馈给开关电源,其中,反馈电压的电压值分别与第二电压的电压值和调整电压的电压值线性正相关。
在本申请实施例中,第一采样电路生成的第二电压的电压值与第一电压的电压值线性 正相关,而反馈电路生成的反馈电压的电压值又与第二电压的电压值线性正相关,因此,反馈电压的电压值与第一电压的电压值线性正相关。第二采样电路生成的调整电压的电压值与第一电流的电流值线性正相关,而反馈电路生成的反馈电压的电压值又与调整电压的电压值线性正相关,因此反馈电压的电压值与第一电流的电流值线性正相关。也就是说,第一电流和第一电压之间线性负相关。由于不具备load line功能的开关电源会将根据反馈电压调整输出电压,使接下来收到的反馈电压可以趋近额定电压,因此当第一电流增大时,第一电压会随之线性降低。一般来说,开关电源提供给负载电路的第一电压可以等效于开关电源的输出电压,开关电源提供给负载电路的第一电流可以等效于开关电源的输出电流。因此,本申请实施例提供的load line电路可以使不具备load line功能的常规开关电源的输出电压随输出电流的增大而线性降低,即可以使常规开关单元也可以实现load line功能。
在一种可能的实现方式中,第一采样电路包括电阻R1、电阻R2、电阻R3、电阻R4和第一差分放大器。其中,电阻R1的一端用于与负载电路的负输入端耦合,电阻R1的另一端与第一差分放大器的负输入端耦合,电阻R3的两端分别与第一差分放大器的负输入端和第一差分放大器的输出端耦合,电阻R2的一端用于与开关电源的正输出端耦合,电阻R2的另一端与第一差分放大器的正输入端耦合,电阻R4的一端与第一差分放大器的正输入端耦合,电阻R4的另一端与接地电路耦合。
具体来说,电阻R1的一端与负载电路的负输入端耦合,电阻R2的一端与负载电路的正输入端耦合,因此电阻R1与电阻R2可以检测提供给负载电路的第一电压。合理设置电阻R1、电阻R2、电阻R3和电阻R4的阻值,可以设置提供给第一差分放大器的正输入端的电压,以及提供给第一差分放大器的负输入端的电压,使第一差分放大器的输出端可以输出第二电压。
例如,电阻R1的阻值和电阻R2的阻值相同,电阻R3的阻值和电阻R4的阻值相同。在此情况下,对于第一差分放大器输出的第二电压,其电压值与第一电压的电压值之间的比值,等于电阻R1的阻值和电阻R2的阻值之间的比值。
又例如,电阻R1的阻值、电阻R2的阻值、电阻R3的阻值和电阻R4的阻值相同。在此情况下,对于第一差分放大器输出的第二电压的电压值与第一电压的电压值相等。
在一种可能的实现方式中,第一采样电路还可以包括第一电容,第一电容与电阻R3并联。第一电容可以对第一采样电路检测的第一电压中的高频信号进行积分滤波,从而降低反馈电压中的高频噪声,进而有利于提高开关电源的稳定性。
在一种可能的实现方式中,第一采样电路还可以包括第二电容,第二电容与电阻R2并联。在第一采样电路中增设第二电容有利于增大第一采样电路的采样带宽和电压增益,进而有利于提高第一采样电路的检测速度,以及检测结果的准确性。
在一种可能的实现方式中,第二采样电路包括电阻R5、电阻R6、电阻R7、电阻R8和第二差分放大器。其中,电阻R5的一端用于与采样电阻的第一端耦合,电阻R5的另一端与第二差分放大器的负输入端耦合,采样电阻的第一端与负载电路的正输入端耦合;电阻R6的两端分别与第二差分放大器的负输入端和第二差分放大器的输出端耦合;电阻R7的一端用于与采样电阻的第二端耦合,电阻R7的另一端与第二差分放大器的正输入端耦合,采样电阻的第二端与开关电源的正输出端耦合;电阻R8的一端与第二差分放大器的正输入端耦合,电阻R8的另一端与接地电路耦合。
本申请实施例中,采样电阻的第一端与负载电路的正输入端耦合,采样电阻的第二端 与开关电源的正输出端耦合,流经采样电阻的采样电流的电流值与第一电流的电流值满足正比例关系。具体来说,若开关电源与负载电路之间通过N条传输通路传输第一电流,且采样电阻设置于N条传输通路中的任一通路,则采样电流的电流值为第一电流的电流值的1/N。若采样电阻的一端与N条传输通路耦合,另一端与负载电路的正输入端耦合,则采样电流的电流值等于第一电流的电流值。
在本申请实施例所提供的第二采样电路中,电阻R5的一端与采样电阻的第一端耦合,电阻R7的一端与采样电阻的第二端耦合,因此第二采样电路可以通过电阻R5和电阻R7接收采样电阻的压降。采样电阻的压降的电压值与采样电流的电流值满足正比例关系,而采样电流的电流值又与第一电流的电流值满足正比例关系,因此第二采样电路根据采样电阻的压降可以生成调整电压,该调整电压的电压值与第一电流的电流值线性正相关。具体来说,通过合理配置电阻R5、电阻R6、电阻R7和电阻R8的阻值,可以设置提供给第二差分放大器的正输入端的电压,以及提供给第二差分放大器的负输入端的电压,使第二差分放大器的输出端可以输出与采样电阻的压降线性正相关的调整电压。由于采样电阻的压降与采样电流的电流值满足正比例关系,而采样电流的电流值又与第一电流的电流值满足正比例关系,因此调整电压的电压值与第一电流的电流值线性正相关。
例如,电阻R5的阻值与电阻R7的阻值相同,电阻R6和电阻R8的阻值相同。在此情况下,调整电压的电压值与采样电阻的压降的电压值之间的比值,等于电阻R6的阻值与电阻R5的阻值之间的比值。
又例如,第二采样电路还包括电阻R9和第三电容。其中,电阻R9的第一端与电阻R7耦合,电阻R9的第二端与第二差分放大器的正输入端耦合,第三电容的一端与电阻R9的第一端耦合,第三电容的另一端接地。电阻R9和第三电容可以构成一阶滤波电路,滤除第二放大器的输入信号(即采样电阻RT的第二端的电压)中的高频噪声信号,从而有利于提高第二采样电路的采样结果的准确性,以及提高第二采样电路的稳定性。
有鉴于此,在一种可能的实现方式中,电阻R9的阻值与电阻R7的阻值之和,为电阻R5的阻值;电阻R6和电阻R8的阻值相同。在此情况下,调整电压的电压值与采样电阻的压降的电压值之间的比值,依旧等于电阻R6的阻值与电阻R5的阻值之间的比值。
还例如,负载电路和开关电源的正输出端之间包括并联的N个传输通路,采样电阻位于N个传输通路中的任一传输通路,N为大于等于1的整数;电阻R6的阻值为电阻R5的阻值的N倍。在此情况下,采样电流的电流值为第一电流的电流值的1/N,电阻R6的阻值为电阻R5的阻值的N倍,可以使调整电压的电压值等于采样电阻的压降的电压值。
在一种可能的实现方式中,反馈电路可以对第二电压和调整电压进行加法运放处理。具体来说,反馈电路可以为加法运放电路,该加法运放电路既可以是同相加法电路,也可以是反相加法电路。
示例性的,反馈电路包括电阻R10、电阻R11、电阻R12、电阻R13、电阻R14和第三差分放大器。其中,电阻R11的一端与第一采样电路的输出端耦合,电阻R11的另一端分别与电阻R12的一端和第三差分放大器的正输入端耦合,电阻R12的另一端接地;电阻R14的一端与第二采样电路的输出端耦合,电阻R14的另一端与第三差分放大器的正输入端耦合;电阻R13的一端接地,电阻R13的另一端与第三差分放大器的负输入端耦合;电阻R10的两端分别与第三差分放大器的负输入端和第三差分放大器的输出端耦合。
反馈电路可以通过第一输入端接收第一采样电路提供的第二电压,以及通过第二输入端接收第二采样电路提供的调整电压。通过合理设置电阻R10、电阻R11、电阻R12、电 阻R13和电阻R14,可以设置提供给第三差分放大器的正输入端的电压,以及提供给第三差分放大器的负输入端的电压,使第三差分放大器的输出端可以输出反馈电压,且该反馈电压的电压值分别与第二电压的电压值和调整电压的电压值线性正相关。
在一种可能的实现方式中,反馈电路还可以包括第四电容,第四电容的两端分别与第三差分放大器的负输入端和第三差分放大器的输出端耦合。第四电容可以对输入第三差分放大器的电压中的高频信号进行积分滤波,从而降低反馈电压中的高频噪声,进而有利于提高开关电源的稳定性。
示例性的,电阻R11的阻值、电阻R12的阻值和电阻R14的阻值相同;电阻R10的阻值为电阻R13的阻值的两倍。在此情况下,反馈电压的电压值可以等于第二电压的电压值与反馈电压的电压值之和。
第二方面,本申请实施例提供一种电子设备,该电子设备包括开关电源、负载电路、采样电阻和如第一方面中任一种可能的实现方式所提供的load line电路。其中,开关电源的正输出端与采用电阻的第二端耦合,采样电阻的第一端与负载电路的正输入端耦合,开关电源的负输出端与负载电路的负输入端耦合;load line电路的第一采样电路分别与负载电路的正输入端和负载电路的负输入端耦合,load line电路的第二采样电路分别与采样电阻的第一端和采样电阻的第二端耦合;开关电源可以通过采样电阻,向负载电路提供第一电压和第一电流。
在上述电子设备中,load line电路相当于设置在开关电源的反馈回路中,load line电路将反馈电压提供给开关电源,使得开关电源可以根据反馈电压调节自身的输出电压。由于不具备load line功能的开关电源,其本身的处理逻辑是将反馈电压维持在额定电压,因此当第一电流增大导致反馈电压随之线性升高时,开关电源会降低输出电压,以使接下来收到的反馈电压可以回归额定电压,也就是说,开关电源的输出电压会随输出电流的增大而线性降低,从而实现了load line功能。
在一种可能的实现方式中,开关电源的正输出端和负载电路的正输入端之间包括N个传输通路,采样电阻位于N个传输通路中的任一传输通路,N为大于等于1的整数。在开关电源和负载电路之间设置多条传输通路,有利于降低传输损耗,以及增大最大传输功率。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为一种电子设备结构示意图;
图2为一种load功能的功耗收益示意图;
图3为本申请实施例提供的一种电子设备结构示意图;
图4为本申请实施例提供的一种load line电路结构示意图;
图5为本申请实施例提供的一种第一采样电路的结构示意图;
图6为本申请实施例提供的一种第一采样电路的频率-电压增益曲线示意图;
图7为本申请实施例提供的一种第二采样电路的结构示意图;
图8为本申请实施例提供的一种第二采样电路的结构示意图;
图9为本申请实施例提供的一种第二采样电路的频率-电压增益曲线示意图;
图10为本申请实施例提供的一种反馈电路的结构示意图;
图11为本申请实施例提供的一种常规开关电源的输出电压仿真示意图;
图12为本申请实施例提供的一种集成load line电路的常规开关电源的输出电压仿真示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请中“耦合”指的是能量传递关系,具体来说,可以是电能。例如,“A与B”耦合指的是A与B之间可以互相传递电能,也可以理解为,A与B之间可以互相传递电能。反应在电连接关系上,便可以是A与B之间直接电连接,或者也可以是A与B之间通过其它导体或电子器件间接电连接,从而使得A与B之间可以互相传递电能。
本申请实施例中,“线性正相关”可以理解为一个变量随另一个变量的增加而线性增加。例如,y与x线性正相关,可以理解为y的取值随x的取值的增大而线性增大。“线性负相关”可以理解为一个变量随另一个变量的增加而线性降低。例如,y与x线性负相关,可以理解为y的取值随x的取值的增大而线性降低。示例性的,y=ax+b、y=ax等关系式中,当a为负值时,y与x线性负相关,当a为正值时,y与x线性正相关。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1示例性示出了一种电子设备结构示意图,该电子设备可以是智能手机、平板电脑、汽车、智能眼镜等设置有开关电源的电子设备。图1中,电子设备主要包括开关电源100、电池200和负载电路300。其中,负载电路300可以是电子设备的SoC、中央处理器(central processing unit,CPU)、外围芯片等等,本申请实施例对此并不多作限制。
开关电源100可以从电池200接收电能,并将接收到的电能提供给负载电路300。具体来说,如图1所示,开关电源100的输出端包括N个端口,N为大于等于1的整数。开关电源100的正输出端的N个端口与N条传输通路的一端分别一一对应耦合。N条传输通路的另一端并联,并与负载电路300的正输入端耦合。开关电源100的负输出端与负载电路300的负输入端耦合。开关电源100和负载电路300之间构成回路,从而使得开关电源100的输出电流可以经N条传输通路传输给负载电路300,其中,开关电源100的输出电流可以理解为开关电源100的正输出端输出的电流,也就是正输出端的N个端口分别输出的电流之和。
在本申请实施例中,开关电源100提供给负载电路300的电流可以称为第一电流,第一电流可以理解为负载电路300的输入电流,在无其它负载电路存在的情况下,第一电流 也可以理解为开关电源100的输出电流,或者,第一电流也可以理解为N条传输通路传输的电流之和,其中,每一条传输通路所传输的电流也可以称为第一电流的分电流。
如图1所示,每一条传输通路中皆可以包括滤波电感。以传输通路1为例,传输通路1中滤波电感的一端与开关电源100中与传输通路1对应的正输出端耦合,滤波电感的另一端与负载电路300的正输入端耦合。滤波电感可以对流经的第一电流的分电流进行滤波,有利于从整体上增强第一电流的直流特性,进而有利于降低第一电流中的高频噪声信号为负载电路300带来的功耗。
此外,开关电源100与负载电路300之间还设置有反馈回路。具体来说,如图1所示,N条传输通路与负载电路300之间还设置有采样电阻RT,N条传输通路并联的一端与采样电阻RT的一端耦合,采样电阻RT的另一端与负载电路300的正输入端耦合。第一电流通过采样电阻RT输入负载电路300。开关电源100分别与采样电阻RT的两端耦合,开关电源100可以通过采样电阻RT对流经采样电阻RT的电流进行采样。具体来说,开关电源100可以采样电阻RT两端电压,从而得到采样电阻RT的电压值,进而可以根据采样电阻RT的阻值,得到经过采样电阻RT的采样电流。在图1所示的连接关系中,经过采样电阻RT的采样电流相当于第一电流。
此外,开关电源100还与负载电路300的正输入端耦合,开关电源100可以对提供给负载电路300的第一电压进行采样。其中,第一电压可以理解为负载电路300的输入电压,或负载电路300接收到的电压。具体来说,开关电源100可以检测负载电路300的正输入端与负载电路300的负输入端之间的电压差,从而得到提供给负载电路300的第一电压。一般来说,由于传输损耗的存在,使得第一电压略低于开关电源100的输出电压。但传输损耗带来的压降远远小于开关电源100的输出电压,在本申请实施例中,可以将第一电压等效于开关电源100的输出电压。
需要指出的是,一般由负载电路300的负载情况决定第一电流的大小。以负载电路300为系统芯片(system on chip,SoC)为例,在电子设备工作过程中,SoC的总负载常会在较大范围内波动,使第一电流的大小也随之出现较大波动。以智能手机为例,在待机状态下,智能手机中SoC的总负载较小,第一电流也较小。而当智能手机运行电子游戏时,SoC的总负载较大,第一电流也较大。
若开关电源100为不具备负载线(load line)功能的常规开关电源,则开关电源100处理逻辑是使开关电源100提供给负载电路300的第一电压维持在额定电压。当负载电路300的负载增大时,第一电流也随之增大,导致开关电源100的输出电流增大。但开关电源100依旧会将第一电压维持在额定电压,致使开关电源100的输出功率增大,负载电路300的功耗也相应增大。
需要指出的是,由于开关电源100的输出功率响应延迟,也就是开关电源100无法在第一电流增大的同时便增大输出功率,因此第一电压会存在一定波动。具体来说,在第一电流瞬间增大时,由于开关电源100的输出功率响应延迟,致使开关电源100的输出电压因输出电流的增大而降低,负载电路300进而检测到第一电压降低。进而,开关电源100便会增大输出功率,使开关电源100的输出电压逐渐升高,直至开关电源100检测到的第一电压趋近于额定电压。
由此可见,若开关电源100不具备load line功能,则开关电源100的输出功率会随负载电路300中负载的增大而增大,在此情况下,开关电源100所产生的功耗可以如图2所 示。图2中,曲线A为不具备load line功能的常规开关电源中,输出电压(与第一电压等效)与输出电流(与第一电流等效)之间的关系,曲线A的积分区域可以表示不具备load line功能的开关电源的功耗。
若开关电源100为具备load line功能的开关电源,则开关电源100的输出电压会随输出电流的增大而线性降低,如图2中曲线B所示。其中,曲线B的积分区域便可以表示具备load line功能的开关电源的功耗。图2中,功耗收益所示的部分便是曲线A的积分区域大于曲线B的积分区域的部分,该部分区域的面积可以表示load line功能所节省的功耗,也即load line功能带来的功耗收益。
此外,load line功能还可以改善开关电源的瞬态特性。具体来说,由于开关电源功率响应延迟,致使:当开关电源输出电流瞬间增大时,开关电源的输出电压也会瞬间降低,若开关电源的输出电压过低,则会导致负载电路停止工作;当开关电源输出电流瞬间降低时,开关电源的输出电压也会瞬间增大,若开关电源的输出电压过大,则会导致负载电路损坏或寿命缩短。开关电源的瞬态特性越好,其输出电压的波动范围便越小,越有利于保护负载电路。对于具有load line功能的开关电源,在输出电流变化的瞬间,开关电源的输出电压波动范围更小,具有更好的瞬态特性。
由于load line功能可以带来的诸多收益,目前已有部分经过针对性设计的开关电源能够实现load line功能,例如电压调节(voltage regulator module,VRM)电源便是一种具有load lien功能的开关电源。然而,开关电源是一种被普遍使用的电子元件,开关电源的种类及应用场景繁多,仅靠针对性地设计开关电源,会造成开关电源选型困难。例如,VRM电源为工业级开关电源,无法应用于车辆中。而目前大多数的车规级开关电源,又普遍不具备load line功能,车辆制造商只能向电源厂商定制。
有鉴于此,本申请实施例提供一种load line电路,load line电路提供给开关电源的反馈电压的电压值分别与第一电压的电压值和第一电流的电流值线性正相关。其中,第一电压为提供给负载电路的电压,第一电流为提供给负载电路的电流。通过在常规开关电源(不具备load line功能的开关电源)的反馈回路中增设该load line电路,便可以使常规开关电源也可以实现load line功能,也就是说,本申请实施例所提供的load line电路可以使常规开关电源的输出电压随输出电流的增大而线性降低。
示例性的,如图3所示,在电子设备中,本申请实施例提供的load line电路400可以分别与开关电源100、负载电路300的正输入端和负输入端,以及采样电阻RT的两端耦合。load line电路400可以根据开关电源100提供给负载电路300的第一电压V 1和采样电阻RT的压降V T生成反馈电压V F
需要指出的是,采样电阻RT的压降V T的电压值V T 0与第一电流I 1的电流值I 1 0线性正相关。具体来说,如图3中实线的采样电阻RT所示的连接关系,采样电阻RT位于N条传输通路与负载电路300之间,在此情况下,经过采样电阻RT的采样电流I T即为第一电流I 1,因此采样电阻RT的压降V T满足以下公式:
V T 0=I 1 0·R T 0  (公式一)
其中,R T 0表示采样电阻RT的阻值,一般为一常数。
在另一种可能的实现方式中,如图3中虚线的采样电阻RT所示的连接关系,采样电阻RT位于N条传输通路中的任一条传输通路。一般来说,采样电阻的RT的阻值R T 0较小,对经过传输通路的第一电流的分电流不会造成较大影响,因此仍可以近似认为N条传输通路的第一电流的分电流大小相等。
在此情况下,采样电流I T的电流值
Figure PCTCN2020104986-appb-000001
因此采样电阻RT的压降V T满足以下公式:
Figure PCTCN2020104986-appb-000002
由公式一和公式二可见,采样电阻RT的压降V T的电压值与第一电流I 1的电流值I 1 0线性正相关,其比例系数可以是采样电阻RT的阻值R T 0,也可以是
Figure PCTCN2020104986-appb-000003
当第一电流I 1的增大时,采样电阻RT的压降V T随之线性增大。
本申请实施例中,反馈电压V F的电压值分别与第一电压V 1的电压值和采样电阻RT的压降V T的电压值线性正相关,而采样电阻RT的压降V T的电压值又与第一电流I 1的电流值线性正相关,因此反馈电压V F的电压值分别与第一电压V 1的电压值和第一电流I 1的电流值线性正相关。也就是说,第一电压V 1的电压值和第一电流I 1的电流值线性负相关,即常规开关电源100在保持反馈电压V F稳定在额定电压(或额定电压附件)的情况下,第一电压V 1随第一电流I 1的增大而线性降低。因此,采用本申请实施例提供的load line电路400,可以使常规开关电源100也能够实现load line功能。
示例性的,假设第一电流I 1增大之前,第一电压V 1处于额定电压,则当第一电流I 1增大之后,反馈电压V F将超过额定电压。load line电路400将反馈电压V F反馈给开关电源100,开关电源100为常规开关电源,在接收到反馈电压V F后,由于反馈电压V F大于额定电压,开关电源100将降低输出电压,直至反馈电压V F回复至额定电压。
接下来,对本申请实施例所提供的load line电路400的结构作进一步的示例性说明。如图4所示,load line电路400主要包括第一采样电路401、第二采样电路402和反馈电路403,其中,第一采样电路401的输出端与反馈电路403的第一输入端耦合,第二采样电路402的输出端与反馈电路403的第二输入端耦合。
在本申请实施例中,第一采样电路401可以生成第二电压V 2,并将第二电压V 2提供给反馈电路403。第二电压V 2的电压值与第一电压V 1的电压值线性正相关。第二采样电路402可以生成调整电压V s,并将调整电压V s提供给反馈电路403。调整电压V s的电压值与第一电流I 1的电流值线性正相关。反馈电路403可以根据第二电压V 2和调整电压V s生成反馈电压V F,并将反馈电压V F反馈给开关电源100。由于反馈电路403所生成的反馈电压V F的电压值分别与第二电压的电压值V 2和调整电压V s的电压值线性正相关,因此该反馈电压V F的电压值也分别与第一电压V 1的电压值和第一电流I 1的电流值线性正相关。
示例性的,第二电压V 2满足以下公式:
V 2 0=A 1·V 1 0  (公式三)
其中,V 2 0表示第二电压V 2的电压值,V 1 0表示第一电压V 1的电压值,A 1表示第一电压V 1与第二电压V 2之间的比例系数,A 1大于0。
示例性的,调整电压V s满足以下公式:
V s 0=A 2·R T 0·I T 0  (公式四)
其中,V s 0表示调整电压V s的电压值,R T 0表示采样电阻RT的阻值,I T 0表示采样电流I T的电流值,A 2表示采样电阻RT的压降V T与调整电压V s之间的比例系数,A 2大于0。
示例性的,反馈电压V F满足以下公式:
V F 0=B1V 2 0+B2V s 0  (公式五)
其中,V F 0表示反馈电压V F的电压值。B1、B2皆为比例系数。在一种可能的实现方式中,A1、A2、B1和B2皆可以等于1。
结合公式意至五可见,本申请实施例中load line电路400可以提供给开关电源100的反馈电压V F,反馈电压V F的电压值V F 0分别与第一电压V 1的电压值V 1 0和第一电流I 1的电流值I 1 0线性正相关,也就是第一电压V 1的电压值V 1 0和第一电流I 1的电流值I 1 0线性负相关。由于第一电压V 1可以等效于开关电源100的输出电压,第一电流I 1可以等效于开关电源100的输出电流,因此,本申请实施例所提供的load line电路400可以使开关电源100的输出电压随开关电源100的输出电流的增大而线性降低,即,本申请实施例所提供的load line电路400可以使开关电源100实现load line功能。
接下来,本申请实施例通过以下具体示例,分别对第一采样电路401、第二采样电路402和反馈电路403作进一步的示例性说明。
第一采样电路401
图5示例性示出了一种第一采样电路401的结构示意图。如图5所示,第一采样电路401主要包括电阻R1、电阻R2、电阻R3、电阻R4和第一差分放大器A1。其中,电阻R1的一端用于与负载电路300的负输入端耦合,电阻R1的另一端与第一差分放大器A1的负输入端(如图5中“-”号所示)耦合。电阻R3的两端分别与第一差分放大器A1的负输入端和第一差分放大器A1的输出端耦合。电阻R2的一端用于与负载电路300的正输入端耦合,电阻R2的另一端与第一差分放大器A1的正输入端(如图5中“+”号所示)耦合。电阻R4的一端与第一差分放大器A1的正输入端耦合,电阻R4的另一端与接地电路耦合。
其中,第一差分放大器A1的正极可以接收恒流电压V5,负极与接地电路耦合,恒流电压V5用于为第一差分放大器A1供能。
具体来说,电阻R2可以接收负载电路300的正输入端电压V P,电阻R1可以接收负载电路300的负输入端电压V N,电压V P与电压V N之间的偏压便可以理解为第一电压V 1
基于图5所示的电路结构,第一差分放大器A1的正输入端电压V 1+可以如公式二所示:
Figure PCTCN2020104986-appb-000004
其中,V 1+ 0表示第一差分放大器A1的正输入端电压V 1+的电压值,R 4 0表示电阻R4的阻值,R 2 0表示电阻R2的阻值,V P 0表示负载电路300的正输入端电压V P的电压值。
第一差分放大器A1的负输入端电压V 1-可以如公式三所示:
Figure PCTCN2020104986-appb-000005
其中,V 1- 0表示第一差分放大器A1的负输入端电压V 1-的电压值,R 3 0表示电阻R3的阻值,R 1 0表示电阻R1的阻值,V N 0表示负载电路300的负输入端电压V N的电压值。
由于第一差分放大器A1中,电压V 1+等于电压V 1-,则根据公式六和公式七计算,可得第二电压V 2满足以下公式八:
Figure PCTCN2020104986-appb-000006
假设电阻R4的阻值R 4 0和电阻R3的阻值R 3 0相同,电阻R2的阻值R 2 0和电阻R1的阻值R 1 0相同,则公式九可以简化为:
Figure PCTCN2020104986-appb-000007
由公式九可见,第二电压V 2的电压值V 2 0与第一电压V 1的电压值V 1 0之间线性正相关,且比例系数为
Figure PCTCN2020104986-appb-000008
在一种可能的实现方式中,电阻R1的阻值、电阻R2的阻值、电阻R3的阻值和电阻R4的阻值相同,在此情况下,公式九可以进一步简化为:
V 2 0=V 1 0  (公式十)
由公式十可见,在电阻R1的阻值R 1 0、电阻R2的阻值R 2 0、电阻R3的阻值R 3 0和电阻R4的阻值R 4 0相同的情况下,第一采样电路401提供给反馈电路403的第二电压V 2的电压值V 2 0与第一电压V 1的电压值V 1 0相同。
在一种可能的实现方式中,如图5所示,第一采样电路401还包括第一电容C1,且,第一电容C1与电阻R3并联。第一电容C1可以对第一采样电路401检测的第一电压中的高频信号进行积分滤波,从而降低反馈电压中的高频噪声,进而有利于提高开关电源100的稳定性。
此外,差分采样带宽和电压增益是第一采样电路401的重要性能指标,第一采样电路401的采样带宽和电压增益越高,第一采样电路401对高频信号的检测结果越准确。有鉴于此,在一种可能的实现方式中,如图5所示,第一采样电路401还可以包括第二电容C2,且第二电容C2与电阻R2并联。
在此情况下,第一采样电路401的频率-电压增益曲线可以如图6所示。图6的横坐标表示频率,纵坐标表示电压增益。图6中示出了多条频率-电压增益曲线,不同的频率-电压增益曲线分别对应第二电容C2的不同电容值。图6中按箭头方向,图6中的多条频率-电压增益曲线分别对应第二电容C2的电容值由10pf至1nf之间的不同电容值。由图6可见,合理配置第二电容C2的电容值,使电压增益可以随着频率的升高,电压增益从增益0点升起,电压增益为正值。当电压增益达到最大值后,电压增益又随着频率的增大而降低,并越过增益0点,电压增益变为负值。
其中,电压增益开始从增益0点升起的位置所对应的频率,可以称为零点转折频率f z,电压增益越过增益0点而变为负值的位置所对应的频率,可以称为极点转折频率f p。本申请实施例中,在考虑到高频噪声信号的影响后,第一差分放大器A1的正输入端电压V1+可以表示为:
Figure PCTCN2020104986-appb-000009
公式十一中,C 2 0表示第二电容C2的电容值,C 2 0S表示第二电容C2的频域阻抗的倒数。
根据公式十一,计算可得零点转折频率可以表示为:
Figure PCTCN2020104986-appb-000010
其中,f z 0为零点转折频率f z的频率值。
极点转折频率f p可以表示为:
Figure PCTCN2020104986-appb-000011
其中,f p 0为极点转折频率f p的频率值。
由图6、公式十二和公式十三可见,零点转折频率f z小于极点转折频率f p,在零点转折频率f z与极点转折频率f p之间,第一采样电路401的电压增益为正值,因此,第二电容可以提高第一采样电路401的电压增益,相应的,零点转折频率f z与极点转折频率f p之间也可以称为第一采样电路401的采样带宽。可见,在第一采样电路401中增设第二电容C2,有利于增大第一采样电路401的采样带宽和电压增益,进而有利于提高第一采样电路401的检测速度,以及检测结果的准确性。
第二采样电路402
图7示例性示出了一种第二采样电路402的结构示意图。如图7所示,第二采样电路402主要包括电阻R5、电阻R6、电阻R7、电阻R8和第二差分放大器A2。其中,电阻R5的一端用于与采样电阻RT的第一端耦合,电阻R5的另一端与第二差分放大器A2的负输入端耦合。
采样电阻RT可以如图3所示,采样电阻RT的第一端与负载电路300耦合,采样电阻RT的第二端通过N条传输通路,与开关电源100的N个正输出端耦合。采样电阻RT的第二端也可以与开关电源100的N个正输出端中的1个输出端耦合,也就是,采样电阻RT位于N条传输通路的任一传输通路中。
电阻R6的两端分别与第二差分放大器A2的负输入端和第二差分放大器A2的输出端耦合。电阻R7的一端用于与采样电阻RT的第二端耦合,电阻R7的另一端与第二差分放大器A2的正输入端耦合。电阻R8的一端与第二差分放大器A2的正输入端耦合,电阻R8的另一端与接地电路耦合。
其中,第二差分放大器A2的正极可以接收恒流电压V5,负极与接地电路耦合,恒流电压V5用于为第二差分放大器A2供能。
具体来说,电阻R7可以接收采样电阻RT的第二端的电压V T2,电阻R5可以接收采样电阻RT的第一端的电压V T1,采样电阻RT的第二端的电压V T2和采样电阻RT的第一端的电压V T1之差可以理解为采样电阻RT的压降V T
示例性的,基于图7所示的电路结构,第二差分放大器A2的正输入端电压V 2+可以如公式十四所示:
Figure PCTCN2020104986-appb-000012
其中,V 2+ 0表示第二差分放大器A2的正输入端电压V 2+的电压值,R 8 0表示电阻R8的阻值,R 7 0表示电阻R7的阻值,V T2 0表示采样电阻RT的第二端的V T2的电压值。
第二差分放大器A2的负输入端电压V 2-可以如公式十五所示:
Figure PCTCN2020104986-appb-000013
其中,V 2- 0表示第二差分放大器A2的负输入端电压V 2-的电压值,R 5 0表示电阻R5的阻值,R 6 0表示电阻R6的阻值,V T1 0表示采样电阻RT的第一端的电压V T1的电压值。
由于第二差分放大器A2中,正输入端电压V 2+等于负输入端电压V 2-,则根据公式十四和公式十五计算,可得调整电压V s满足以下公式十六:
Figure PCTCN2020104986-appb-000014
在一种可能的实现方式中,电阻R5的阻值R 5 0与电阻R7的阻值R 7 0相同,电阻R6的阻值R 6 0和电阻R8的阻值R 8 0相同,在此情况下,公式十六可以简化为:
Figure PCTCN2020104986-appb-000015
由公式十七可见,调整电压V s的电压值V s 0与采样电阻RT的压降的电压值V T 0线性正相关。而采样电阻RT的压降的电压值V T 0又与第一电流I 1的电流值I 1 0线性正相关。因此,调整电压V s的电压值V s 0与第一电流I 1的电流值I 1 0线性正相关。调整电压V s随第一电流I 1的增大而线性增大,在保持反馈电压V F为额定电压的情况下,第二电压V 2线性降低。而第二电压V 2的电压值V 2 0与第一电压V 1的电压值V 1 0线性正相关,因此第一电压V 1随之线性降低,也就是实现了load line功能。
在第二采样电路402的另一种可能的实现方式中,如图8所示,第二采样电路402还可以包括电阻R9和第三电容C3。电阻R9的第一端与电阻R7耦合,电阻R9的第二端与第二差分放大器A2的正输入端耦合。第三电容C3的一端与电阻R9的第一端耦合,第三电容C3的另一端接地。
电阻R9和第三电容C3可以构成一阶滤波电路,滤除第二放大器A2的输入信号(即采样电阻RT的第二端的电压V T2)中的高频噪声信号,从而有利于提高第二采样电路402的采样结果的准确性,以及提高第二采样电路402的稳定性。
具体来说,如图9所示,示例性示出了多条第二采样电路402的频率-电压增益曲线。图9的横坐标表示频率,纵坐标表示电压增益。沿图9中箭头方向所示,该多条频率-电压增益曲线分别对应的第三电容C3的电容值由100pf至10nf。其中,第二采样电路402的采样带宽可以定义为电压增益由0开始降低的位置对应的频率,与电压增益为-20dB的位置对应的频率之间的频率范围。
由图9可见,随着第三电容C3的电容值增大,一阶滤波电路的时间常数随之增大,第二采样电路402的采样带宽逐渐降低。为了降低一阶滤波电路对第二采样电路402的采样带宽的影响,一般来说,电阻R9和第三电容C3构成的一阶滤波电路的时间常数需要大于开关电源100的开关周期的2倍,第三电容C3不宜过大。
基于图8所示的电路结构,第二差分放大器A2的正输入端电压V 2+可以如公式十八所示:
Figure PCTCN2020104986-appb-000016
其中,R 9 0表示电阻R9的阻值。
第二差分放大器A2的负输入端电压V 2-可以如公式十五所示,对此不再赘述。
由于第二差分放大器A2中,正输入端电压V 2+等于负输入端电压V 2-,则根据公式十八和公式十五计算,可得调整电压V s满足以下公式:
Figure PCTCN2020104986-appb-000017
在一种可能的实现方式中,电阻R5的阻值R 5 0等于电阻R7的阻值R 7 0和电阻R9的阻值R 9 0之和,电阻R6的阻值R 6 0和电阻R8的阻值R 8 0相同,在此情况下,公式十九可以简化为公式十七。
在一种可能的实现方式中,若采样电阻RT位于N条传输通路与负载电路300之间,如图3中实线的采样电阻RT所示,则电阻R5的阻值R 5 0可以和电阻R6的阻值R 6 0相同,公式十七可以进一步简化为:
V s 0=V T 0=R T 0·I 1 0  (公式二十)
由公式二十可见,在此情况下,调整电压V s的电压值V s 0与第一电流I 1的电流值I 1 0之间线性正相关,且比例系数为采样电阻RT的阻值R T 0
在另一种可能的实现方式中,若采样电阻RT位于N条传输通路中的任一传输通路,如图3中虚线的采样电阻RT所示,则电阻R6的阻值R 6 0可以是电阻R5的阻值R 5 0N的倍,公式十七也可以进一步简化为公式二十。
反馈电路403
在一种可能的实现方式中,反馈电路403可以对第二电压V 2和调整电压V s进行加法运放处理,从而生成反馈电压V F。具体来说,反馈电路403可以基于加法运放电路实现,由加法运放电路对第二电压V 2和调整电压V s进行加法运放处理,从而得到反馈电压V F
应理解,反馈电路403存在多种可能的实现方式。例如,反馈电路403既可以通过模拟电路(如上述加法运放电路)实现,也可以通过模拟电路与数字电路结合的方式实现,本申请实施例对此并不多作限制。在反馈电路403为加法运放电路的情况下,反馈电路403可以是同相加法电路,也可以是反相加法电路,本申请实施例对此并不多作限制。
示例性的,图10示例性示出了一种第二采样电路402的结构示意图。如图10所示,反馈电路403包括电阻R10、电阻R11、电阻R12、电阻R13、电阻R14和第三差分放大器A3。电阻R11的一端与第一采样电路401的输出端耦合,电阻R11的另一端分别与电阻R12的一端和第三差分放大器A3的正输入端耦合,电阻R12的另一端接地。电阻R14的一端与第二采样电路402的输出端耦合,电阻R14的另一端与第三差分放大器的正输入端耦合。电阻R13的一端接地,电阻R13的另一端与第三差分放大器的负输入端耦合。电阻R10的两端分别与第三差分放大器A3的负输入端和第三差分放大器A3的输出端耦合。
其中,第一差分放大器A1的正极可以接收恒流电压V5,负极与接地电路耦合,恒流电压V5用于为第一差分放大器A1供能。
在反馈电路403中,电阻R11可以接收第一采样电路401提供的第二电压V 2,电阻R14可以接收第二采样电路402提供的调整电压V s,第三差分放大器A3可以根据第二电压V 2和调整电压V s,生成反馈电压V F,该反馈电压V F被反馈给开关电源100,使得开关电源100可以根据接收到的反馈电压V F调节输出电压。
基于图10所示的电路结构,第三差分放大器A3的正输入端的电压V 3+可以如公式二十一所示:
Figure PCTCN2020104986-appb-000018
其中,V 3+ 0表示第三差分放大器A3的正输入端的电压V 3+的电压值,R 11 0表示电阻R11的阻值,R 12 0表示电阻R12的阻值,R 14 0表示电阻R14的阻值。
第三差分放大器A3的负输入端的电压V 3-可以如公式二十二所示:
Figure PCTCN2020104986-appb-000019
其中,V 3- 0表示第三差分放大器A3的负输入端的电压V 3-的电压值,R 10 0表示电阻R10的阻值,R 13 0表示电阻R13的阻值,V F 0表示反馈电压V F的电压值。
由于第三差分放大器A3的正输入端的电压V 3+与负输入端的电压V 3-相同,则根据公式二十一和公式二十二计算可得:
Figure PCTCN2020104986-appb-000020
由公式二十三可见,反馈电压V F的电压值V F 0与第二电压的电压值和调整电压V s的电压值V s 0线性正相关,因此,将反馈电压V F反馈给开关电源100,可以使开关电源100的输出电压随输出电流的增大而线性降低,即实现了load line功能。
在一种可能的实现方式中,电阻R11的阻值R 11 0、电阻R12的阻值R 12 0和电阻R14的阻值R 14 0相同,电阻R10的阻值R 10 0为电阻R13的阻值R 13 0的两倍。在此情况下,公式二十三可以简化为公式二十四:
V F 0=V 2 0+V s 0  (公式二十四)
即,反馈电压V F的电压值V F 0为第二电压V 2的电压值V 2 0和调整电压V s的电压值V s 0之和。在一种具体的应用场景中,结合公式十和公式二十,当R T 0=1时,公式二十四可以进一步简化为:
V F 0=V 1 0+I 1 0  (公式二十五)
即反馈电压V F的电压值V F 0为第一电压V 1的电压值V 1 0和第一电流I 1的电流值I 1 0之和,由公式二十五所示,可以更加直接地示出本申请实施例中第一电压V 1的电压值V 1 0和第一电流I 1的电流值I 1 0之间的线性负相关关系。
在一种可能的实现方式中,如图10所示,反馈电路403还包括第四电容C4,第四电容C4的两端分别与第三差分放大器A3的负输入端和第三差分放大器A3的输出端耦合。与第一采样电路401中的第一电容C1类似,第四电容C4也可以生成一个反馈极点,可以提高反馈电路的精度和稳定性,对此不再赘述。
瞬态响应
此外,本申请实施例中load line电路400作为常规开关电源的外围电路,可以使开关电源实现load line功能,而且还有利于改善开关电源的瞬态响应。本申请实施例采用电源仿真软件Simplis搭建仿真电路,对load line电路400改善开关电源的瞬态响应的效果进行了验证。
图11示例性示出了常规开关电源的输出电压示意图。其中,纵坐标表示输出电压,横坐标表示时间。如图11所示,常规开关电源的电压曲线,其中,开关电源的输出电流周期性变化,如图11中,开关电源的输出电流在0.65ms突然降低,在0.725ms突然升高,在0.8ms突然降低,在0.875ms突然降低……,由图11可见,开关电源的输出电压的峰-峰值电压约为112mV。
如图12所示,为在设置有本申请实施例所提供的load line电路400的情况下,开关电 源的电压曲线。其中,开关电源的输出电流与图11中开关电源的输出电流相同。由图12可见,开关电源的输出电压的峰-峰值电压约为83mV。因此,通过实验验证,本申请实施例所提供的load line电路400有利于减小开关电源的输出电压的峰-峰值电压,即降低开关电源的输出电压的波动范围,有利于改善开关电源的瞬态响应。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种负载线load line电路,其特征在于,包括:第一采样电路,第二采样电路和反馈电路;其中,所述第一采样电路的输出端与所述反馈电路的第一输入端耦合,所述第二采样电路的输出端与所述反馈电路的第二输入端耦合,所述反馈电路的输出端用于与开关电源耦合;
    所述第一采样电路,用于生成第二电压,并将所述第二电压提供给所述反馈电路,所述第二电压的电压值与第一电压的电压值线性正相关,所述第一电压为所述开关电源提供给负载电路的电压;
    所述第二采样电路,用于生成调整电压,并将所述调整电压提供给所述反馈电路,所述调整电压的电压值与第一电流的电流值线性正相关,所述第一电流为所述开关电源提供给所述负载电路的电流;
    所述反馈电路,用于根据所述第二电压和所述调整电压生成反馈电压,并将所述反馈电压反馈给所述开关电源,所述反馈电压的电压值分别与所述第二电压的电压值和所述调整电压的电压值线性正相关。
  2. 根据权利要求1所述的load line电路,其特征在于,所述第一采样电路包括电阻R1、电阻R2、电阻R3、电阻R4和第一差分放大器;
    所述电阻R1的一端用于与所述负载电路的负输入端耦合,所述电阻R1的另一端与所述第一差分放大器的负输入端耦合;
    所述电阻R3的两端分别与所述第一差分放大器的负输入端和所述第一差分放大器的输出端耦合;
    所述电阻R2的一端用于与所述开关电源的正输出端耦合,所述电阻R2的另一端与所述第一差分放大器的正输入端耦合;
    所述电阻R4的一端与所述第一差分放大器的正输入端耦合,所述电阻R4的另一端与接地电路耦合。
  3. 根据权利要求2所述的load line电路,其特征在于,所述电阻R1的阻值和所述电阻R2的阻值相同,所述电阻R3的阻值和所述电阻R4的阻值相同。
  4. 根据权利要求2或3所述的load line电路,其特征在于,所述电阻R1的阻值、所述电阻R2的阻值、所述电阻R3的阻值和所述电阻R4的阻值相同。
  5. 根据权利要求2至4中任一项所述的load line电路,其特征在于,所述第一采样电路还包括第一电容,所述第一电容与所述电阻R3并联。
  6. 根据权利要求2至5中任一项所述的load line电路,其特征在于,所述第一采样电路还包括第二电容,所述第二电容与所述电阻R2并联。
  7. 根据权利要求1至6中任一项所述的load line电路,其特征在于,所述第二采样电路包括电阻R5、电阻R6、电阻R7、电阻R8和第二差分放大器;
    所述电阻R5的一端用于与采样电阻的第一端耦合,所述电阻R5的另一端与所述第二差分放大器的负输入端耦合,所述采样电阻的第一端与所述负载电路的正输入端耦合;
    所述电阻R6的两端分别与所述第二差分放大器的负输入端和所述第二差分放大器的输出端耦合;
    所述电阻R7的一端用于与所述采样电阻的第二端耦合,所述电阻R7的另一端与所述 第二差分放大器的正输入端耦合,所述采样电阻的第二端与所述开关电源的正输出端耦合;
    所述电阻R8的一端与所述第二差分放大器的正输入端耦合,所述电阻R8的另一端与接地电路耦合。
  8. 根据权利要求7所述的load line电路,其特征在于,所述电阻R5的阻值与所述电阻R7的阻值相同,所述电阻R6和所述电阻R8的阻值相同。
  9. 根据权利要求7所述的load line电路,其特征在于,所述第二采样电路还包括电阻R9和第三电容,所述电阻R9的第一端与所述电阻R7耦合,所述电阻R9的第二端与所述第二差分放大器的正输入端耦合;
    所述第三电容的一端与所述电阻R9的第一端耦合,所述第三电容的另一端接地。
  10. 根据权利要求9所述的load line电路,其特征在于,所述电阻R9的阻值与所述电阻R7的阻值之和,为所述电阻R5的阻值;所述电阻R6和所述电阻R8的阻值相同。
  11. 根据权利要求9所述的load line电路,其特征在于,所述负载电路和所述开关电源的正输出端之间包括并联的N个传输通路,所述采样电阻位于所述N个传输通路中的任一传输通路,N为大于等于1的整数;
    所述电阻R6的阻值为所述电阻R5的阻值的N倍。
  12. 根据权利要求1至11中任一项所述的load line电路,其特征在于,所述反馈电路具体用于:
    对所述第二电压和所述调整电压进行加法运放处理,生成所述反馈电压。
  13. 根据权利要求12所述的load line电路,其特征在于,所述反馈电路包括电阻R10、电阻R11、电阻R12、电阻R13、电阻R14和第三差分放大器;
    所述电阻R11的一端与所述第一采样电路的输出端耦合,所述电阻R11的另一端分别与所述电阻R12的一端和所述第三差分放大器的正输入端耦合,所述电阻R12的另一端接地;
    所述电阻R14的一端与所述第二采样电路的输出端耦合,所述电阻R14的另一端与所述第三差分放大器的正输入端耦合;
    所述电阻R13的一端接地,所述电阻R13的另一端与所述第三差分放大器的负输入端耦合;
    所述电阻R10的两端分别与所述第三差分放大器的负输入端和所述第三差分放大器的输出端耦合。
  14. 根据权利要求13所述的load line电路,其特征在于,所述反馈电路还包括第四电容,所述第四电容的两端分别与所述第三差分放大器的负输入端和所述第三差分放大器的输出端耦合。
  15. 根据权利要求13或14所述的load line电路,其特征在于,所述电阻R11的阻值、所述电阻R12的阻值和所述电阻R14的阻值相同;所述电阻R10的阻值为所述电阻R13的阻值的两倍。
  16. 一种电子设备,其特征在于,包括开关电源、负载电路、采样电阻和如权利要求1至15中任一项所述的load line电路;
    所述开关电源的正输出端与所述采用电阻的第二端耦合,所述采样电阻的第一端与所述负载电路的正输入端耦合,所述开关电源的负输出端与所述负载电路的负输入端耦合;
    所述load line电路的第一采样电路分别与所述负载电路的正输入端和所述负载电路的 负输入端耦合,所述load line电路的第二采样电路分别与所述采样电阻的第一端和所述采样电阻的第二端耦合;
    所述开关电源,用于通过所述采样电阻,向所述负载电路提供所述第一电压和第一电流。
  17. 根据权利要求16所述的电子设备,其特征在于,所述开关电源的正输出端和所述负载电路的正输入端之间包括N个传输通路,所述采样电阻位于所述N个传输通路中的任一传输通路,N为大于等于1的整数。
PCT/CN2020/104986 2019-11-14 2020-07-27 一种load line电路及电子设备 WO2021093371A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20888247.2A EP4050778A4 (en) 2019-11-14 2020-07-27 LOAD LINE CIRCUIT AND ELECTRONIC DEVICE
US17/743,237 US20220271644A1 (en) 2019-11-14 2022-05-12 Load line circuit and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911114288.4 2019-11-14
CN201911114288.4A CN111010021B (zh) 2019-11-14 2019-11-14 一种load line电路及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/743,237 Continuation US20220271644A1 (en) 2019-11-14 2022-05-12 Load line circuit and electronic device

Publications (1)

Publication Number Publication Date
WO2021093371A1 true WO2021093371A1 (zh) 2021-05-20

Family

ID=70112164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104986 WO2021093371A1 (zh) 2019-11-14 2020-07-27 一种load line电路及电子设备

Country Status (4)

Country Link
US (1) US20220271644A1 (zh)
EP (1) EP4050778A4 (zh)
CN (1) CN111010021B (zh)
WO (1) WO2021093371A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010021B (zh) * 2019-11-14 2021-06-22 华为技术有限公司 一种load line电路及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043849A1 (en) * 2011-08-18 2013-02-21 Broadcom Corporation Voltage Converter Including Variable Mode Switching Regulator And Related Method
CN103227412A (zh) * 2013-04-12 2013-07-31 南京诺威尔光电系统有限公司 一种大功率半导体激光器恒流互补控制电路
CN105406723A (zh) * 2015-12-24 2016-03-16 杭州士兰微电子股份有限公司 恒功率控制电路及包含所述恒功率控制电路的驱动系统
CN108183610A (zh) * 2018-02-28 2018-06-19 深圳市恒惠源电子有限公司 一种高精度的恒功率直流电源
CN111010021A (zh) * 2019-11-14 2020-04-14 华为技术有限公司 一种load line电路及电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977492B2 (en) * 2002-07-10 2005-12-20 Marvell World Trade Ltd. Output regulator
US7080268B2 (en) * 2002-12-03 2006-07-18 Intel Corporation Method and apparatus for regulating power to electronic circuits
CN101236441B (zh) * 2007-01-29 2011-09-21 中兴通讯股份有限公司 改善电源负载调整率的电路
US9397564B2 (en) * 2012-09-27 2016-07-19 Texas Instruments Incorporated DC-DC switching regulator with transconductance boosting
US9543834B2 (en) * 2013-04-26 2017-01-10 Fujitsu Ten Limited Switching regulator, electronic device, and electronic circuit
US9577508B2 (en) * 2013-05-15 2017-02-21 Texas Instruments Incorporated NMOS LDO PSRR improvement using power supply noise cancellation
CN107834847B (zh) * 2016-08-31 2020-03-31 杰华特微电子(张家港)有限公司 一种开关电路的控制电路及控制方法、开关电源电路
JP6911677B2 (ja) * 2017-09-27 2021-07-28 富士電機株式会社 交流−直流変換装置
DE102018101932A1 (de) * 2018-01-29 2019-08-01 Infineon Technologies Ag Schaltwandler, der Pulsfrequenzmodulation und Strombetriebssteuerung verwendet
US11086377B2 (en) * 2018-04-29 2021-08-10 Oracle International Corporation Load line compensation in power monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043849A1 (en) * 2011-08-18 2013-02-21 Broadcom Corporation Voltage Converter Including Variable Mode Switching Regulator And Related Method
CN103227412A (zh) * 2013-04-12 2013-07-31 南京诺威尔光电系统有限公司 一种大功率半导体激光器恒流互补控制电路
CN105406723A (zh) * 2015-12-24 2016-03-16 杭州士兰微电子股份有限公司 恒功率控制电路及包含所述恒功率控制电路的驱动系统
CN108183610A (zh) * 2018-02-28 2018-06-19 深圳市恒惠源电子有限公司 一种高精度的恒功率直流电源
CN111010021A (zh) * 2019-11-14 2020-04-14 华为技术有限公司 一种load line电路及电子设备

Also Published As

Publication number Publication date
EP4050778A4 (en) 2022-11-30
US20220271644A1 (en) 2022-08-25
EP4050778A1 (en) 2022-08-31
CN111010021A (zh) 2020-04-14
CN111010021B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
US7323853B2 (en) Low drop-out voltage regulator with common-mode feedback
WO2022033457A1 (zh) 一种自适应快速响应的ldo电路及其芯片
CN109814650B (zh) 一种低压差线性稳压器用箝位晶体管结构
CN201152948Y (zh) 一种带短路保护的可变输出线性稳压器
CN106575865A (zh) 电压调节器的短路保护
US10949375B2 (en) Methods and apparatus for an interface
CN105334900A (zh) 快速瞬态响应低压差线性稳压器
WO2021093371A1 (zh) 一种load line电路及电子设备
US9678111B2 (en) Current sensing with compensation for component variations
CN115333334A (zh) 开关电源设备
US20110175585A1 (en) Current balance circuit
CN112327987A (zh) 一种低压差线性稳压器及电子设备
US7969176B2 (en) Voltage margin test device
CN111463855B (zh) 充电控制电路及充电控制方法、电子设备及其充电方法
CN105630058A (zh) 一种改进型片上线性稳压器
CN103592991B (zh) 用于双极型线性稳压器的功率限制型保护电路
CN105573393A (zh) 集成电路与其电流校正方法以及电子装置
CN116581976B (zh) 电流缓冲电路及线性稳压器
CN205405319U (zh) 一种改进型片上线性稳压器
CN108170195B (zh) 源极跟随器
CN212965129U (zh) 一种针对多路交流配电电压的差分采样电路
JP4429843B2 (ja) 終端回路、試験装置、テストヘッド、及び通信デバイス
CN218918000U (zh) 一种恒流电路
TW201810951A (zh) 電子裝置及輸入電壓補償方法
CN208224880U (zh) 一种快速响应低压线性稳压源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020888247

Country of ref document: EP

Effective date: 20220525

NENP Non-entry into the national phase

Ref country code: DE