WO2021093288A1 - 基于天花板式二维码的仿磁条定位方法及装置 - Google Patents

基于天花板式二维码的仿磁条定位方法及装置 Download PDF

Info

Publication number
WO2021093288A1
WO2021093288A1 PCT/CN2020/089643 CN2020089643W WO2021093288A1 WO 2021093288 A1 WO2021093288 A1 WO 2021093288A1 CN 2020089643 W CN2020089643 W CN 2020089643W WO 2021093288 A1 WO2021093288 A1 WO 2021093288A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional code
mobile platform
code image
image
deviation value
Prior art date
Application number
PCT/CN2020/089643
Other languages
English (en)
French (fr)
Inventor
符建
胡展雄
伦志伟
黄晓鑫
李桂平
Original Assignee
浙江大学华南工业技术研究院
广州达泊智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学华南工业技术研究院, 广州达泊智能科技有限公司 filed Critical 浙江大学华南工业技术研究院
Publication of WO2021093288A1 publication Critical patent/WO2021093288A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes

Definitions

  • This application relates to the technical field of spatial positioning, and in particular to a method and device for imitation magnetic stripe positioning based on a ceiling-type two-dimensional code.
  • the mobile platform In order to apply the mobile platform in automated production and warehouse management, the mobile platform is required to be able to accurately identify the current location in order to move the items to the designated area.
  • the commonly used positioning methods for mobile platforms include magnetic track positioning method and two-dimensional code positioning method.
  • the magnetic track positioning method is positioned by the magnetic navigation sensor set on the mobile platform and the magnetic stripe laid on the ground.
  • the dimensional code positioning method uses a positioning camera set on a mobile platform and a two-dimensional code set on the ceiling or the ground to perform positioning.
  • the two-dimensional code positioning method involves the work of pasting the two-dimensional code on the ceiling or the ground. Before pasting the two-dimensional code, it is necessary to plan the coordinates of the installation plane to paste the corresponding two-dimensional code at the corresponding position. The work of pasting two-dimensional codes is very tedious and difficult.
  • the existing two-dimensional code positioning method has the problem of cumbersome and difficult two-dimensional code pasting work, and the problem that the magnetic strip is easily damaged in the magnetic track-type positioning method.
  • the imitation magnetic stripe positioning method based on a ceiling-type two-dimensional code includes: arranging multiple two-dimensional codes on the ceiling to Form an imitation magnetic stripe track; collect at least one two-dimensional code image on the ceiling through a positioning camera set on the mobile platform; obtain the rotation angle of the two-dimensional code image and locate the center point of the image picked up by the camera and the preset straight line The vertical distance, the slope value of the preset straight line is equal to the tangent value of the rotation angle; according to the rotation angle and the vertical distance, the deviation value of the mobile platform relative to a single two-dimensional code image is calculated; and the mobile platform is acquired Calculate the deviation value of the mobile platform relative to the magnetic stripe track according to the deviation value of the mobile platform relative to each two-dimensional code image; according to the deviation value of the mobile platform relative to the magnetic stripe track The deviation value adjusts the pose of the mobile platform until the deviation value
  • the obtaining the rotation angle of the two-dimensional code image includes: obtaining the coordinates of the four corner points of the two-dimensional code image; determining a preset straight line with any two adjacent corner points, and calculating the preset straight line Slope value; calculating the rotation angle of the two-dimensional code image according to the slope value.
  • the obtaining the four corner coordinates of the two-dimensional code image includes: extracting the two-dimensional code image in the picked-up image; performing threshold processing and binarization on the two-dimensional code image to obtain the The threshold image of the two-dimensional code image; extract the contour from the threshold image of the two-dimensional code image to obtain the four corner points of the two-dimensional code image; calculate that the four corner points of the two-dimensional code image are in the Describe the coordinates in the picked up image.
  • the calculation of the deviation value of the mobile platform relative to the magnetic stripe track according to the deviation value of the mobile platform relative to each two-dimensional code image includes: according to the position of each two-dimensional code image relative to the center of the picked-up image, relative to the mobile platform The deviation value of each two-dimensional code image is assigned a corresponding weight coefficient; according to the deviation value of the mobile platform relative to each two-dimensional code image and the corresponding weight coefficient, and according to the formula Calculate the deviation value of the mobile platform relative to the magnetic stripe track; where Q is the deviation value of the mobile platform relative to the magnetic stripe track, K is the weight coefficient, P is the deviation value of the mobile platform relative to a single two-dimensional code, and n is positive Integer.
  • the application also proposes an imitation magnetic stripe positioning device based on a ceiling-type two-dimensional code.
  • the imitation magnetic stripe positioning device based on a ceiling-type two-dimensional code includes: a track setting module for arranging a plurality of two-dimensional codes on the ceiling To form an imitation magnetic stripe track; an image acquisition module for acquiring at least one two-dimensional code image on the ceiling through a positioning camera set on the mobile platform; a variable acquisition module for acquiring the rotation angle of the two-dimensional code image And positioning the vertical distance between the center point of the image picked up by the camera and a preset straight line, where the slope value of the preset straight line is equal to the tangent value of the rotation angle; , Calculate the deviation value of the mobile platform relative to a single two-dimensional code image; the second calculation module is used to obtain the deviation value of the mobile platform relative to each two-dimensional code image, and according to the mobile platform relative to each two-dimensional code image Calculate the deviation value of the mobile platform relative to the magnetic stripe track; the mobile platform adjustment module
  • variable acquisition module includes: a coordinate acquisition unit for acquiring four corner coordinates of the two-dimensional code image; a slope calculation unit for determining a preset straight line with any two adjacent corner points, And calculate the slope value of the preset straight line; the rotation angle calculation unit is used to calculate the rotation angle of the two-dimensional code image according to the slope value.
  • the coordinate acquisition unit includes: a two-dimensional code extraction subunit for extracting a two-dimensional code image in the picked-up image; a threshold image acquisition subunit for thresholding and processing the two-dimensional code image Binarization operation to obtain the threshold image of the two-dimensional code image; corner acquisition subunit for extracting contours from the threshold image of the two-dimensional code image to obtain four of the two-dimensional code image Corner points; a calculation subunit for calculating the coordinates of the four corner points of the two-dimensional code image in the picked-up image.
  • the second calculation module includes: a weight coefficient distribution unit, configured to assign weight coefficients to the deviation values of the mobile platform relative to each two-dimensional code image according to the position of each two-dimensional code image relative to the center of the picked-up image Calculating unit, used for the deviation value of the mobile platform relative to each two-dimensional code image and the corresponding weight coefficient, and according to the formula Calculate the deviation value of the mobile platform relative to the magnetic stripe track; where Q is the deviation value of the mobile platform relative to the magnetic stripe track, K is the weight coefficient, P is the deviation value of the mobile platform relative to a single two-dimensional code, and n is positive Integer.
  • a weight coefficient distribution unit configured to assign weight coefficients to the deviation values of the mobile platform relative to each two-dimensional code image according to the position of each two-dimensional code image relative to the center of the picked-up image Calculating unit, used for the deviation value of the mobile platform relative to each two-dimensional code image and the corresponding weight coefficient, and according to the formula Calculate the deviation value of the mobile platform relative to
  • a two-dimensional code is used to imitate the arrangement on the ceiling to form a magnetic stripe track similar to the ground magnetic track.
  • the two-dimensional code image is recognized by the positioning camera set on the mobile platform, and the deviation value of the positioning camera relative to the magnetic stripe track is calculated according to the rotation angle and vertical distance of the two-dimensional code image, and then the position of the mobile platform is adjusted according to the deviation value. posture.
  • the imitation magnetic stripe positioning method based on the ceiling-type two-dimensional code of the present application can reduce the damage rate of the imitation magnetic stripe track, thereby achieving the purpose of reducing costs.
  • the mobile platform uses the preset magnetic track of the magnetic stripe as a reference, and calculates its deviation from the magnetic stripe track through the two-dimensional code image, so as to ensure that the mobile platform follows the preset magnetic track.
  • the magnetic stripe track travels to reach the designated position.
  • the imitation magnetic stripe positioning method proposed in this application does not need to be the same as the existing ceiling two-dimensional code positioning.
  • the ceiling needs to be coordinated to determine the location of each two-dimensional code on the ceiling. Then paste the QR code accurately on the corresponding position.
  • This application only needs to calculate the deviation value of the magnetic stripe track during the traveling of the mobile platform, without knowing the QR code. Specific location information, therefore, for the arrangement of the two-dimensional code proposed in this application, only the label needs to be pasted on the ceiling to form a traveling track, thereby achieving the purpose of reducing the difficulty of two-dimensional code deployment.
  • FIG. 1 is a flowchart of a first embodiment of a magnetic imitation magnetic stripe positioning method based on a ceiling-type two-dimensional code according to this application;
  • FIG. 2 is a schematic diagram of the magnetic stripe track of the mobile platform of the magnetic stripe positioning method based on the ceiling-type two-dimensional code of the present application;
  • FIG. 3 is the first reference diagram of the target image of the imitation magnetic stripe positioning method based on the ceiling-type two-dimensional code of this application;
  • FIG. 5 is a flowchart of a second embodiment of a magnetic imitation magnetic stripe positioning method based on a ceiling-type two-dimensional code according to the present application;
  • FIG. 6 is a flowchart of a third embodiment of a magnetic imitation magnetic stripe positioning method based on a ceiling-type two-dimensional code according to this application;
  • FIG. 7 is a flowchart of a fourth embodiment of a magnetic imitation magnetic stripe positioning method based on a ceiling-type two-dimensional code according to this application;
  • FIG. 8 is a functional module diagram of an embodiment of a magnetic-like magnetic stripe positioning device based on a ceiling-type two-dimensional code according to the present application.
  • the present application proposes a magnetic imitation stripe positioning method based on a ceiling-type two-dimensional code.
  • the imitation magnetic stripe positioning method based on a ceiling-type two-dimensional code includes:
  • Step S10 arranging a plurality of two-dimensional codes on the ceiling to form an imitation magnetic stripe track
  • the magnetic stripe track refers to a travel route pre-paved on the ground using a magnetic stripe, and the mobile platform uses this as a reference and moves along this travel route.
  • Mobile platforms include AGV automated guided vehicles (Automated Guided Vehicles), inspection robots, trackless shelves, etc., including but not limited to these.
  • a magnetic navigation sensor is provided on the mobile platform to detect the magnetic field strength at the location of the mobile platform through the magnetic navigation sensor, and combined with the magnetic field characteristics of the magnetic stripe, it can be determined
  • the position information of the mobile platform relative to the magnetic stripe track, and the position of the mobile platform is adjusted in real time based on this, so as to avoid the mobile platform from deviating from the pre-paved travel route.
  • the mobile platform does not need to obtain its current position information, but only needs to calculate its deviation from the pre-paved route to adjust the mobile platform's performance according to the deviation value.
  • Direction and route of travel Therefore, when the magnetic stripe is used to lay the travel route of the mobile platform, there is no need to plan the coordinates of the ground to lay the magnetic stripe on the designated position.
  • This application uses a two-dimensional code to replace the magnetic strip, and imitates the arrangement of the magnetic strip on the ground, and uses the two-dimensional code to lay the travel route of the mobile platform on the ceiling.
  • the two-dimensional code has the advantages of small area and light weight, which makes it much easier to lay the two-dimensional code on the ceiling. Therefore, the construction difficulty can be greatly reduced.
  • the two-dimensional code is laid on the ceiling, damage caused by the rolling of the mobile platform can be avoided, thereby reducing the damage rate of the two-dimensional code.
  • the travel route of the mobile platform is pre-laid on the ceiling using a QR code, and the mobile platform only needs to move along the travel route to reach the designated location.
  • a positioning camera is set on the mobile platform to obtain a two-dimensional code image on the ceiling, and the two-dimensional code image is used to adjust the pose of the mobile platform in real time, so as to prevent the mobile platform from deviating from the travel route.
  • Step S20 collecting at least one two-dimensional code image on the ceiling through the positioning camera set on the mobile platform;
  • the two-dimensional code image on the ceiling needs to be collected by positioning the camera to calculate the current deviation value of the mobile platform based on the information reflected in the two-dimensional code image. Position the camera's viewing angle toward the ceiling position. Under normal circumstances, multiple two-dimensional code images can be captured in one image for the calculation of the deviation value of the mobile platform.
  • Step S30 obtaining the rotation angle of the two-dimensional code image, and positioning the vertical distance between the center point of the image picked up by the camera and a preset straight line, where the slope value of the preset straight line is equal to the tangent value of the rotation angle;
  • the rotation angle of the two-dimensional code image represents the direction of the travel route, that is, the mobile platform can adjust the travel direction according to the rotation angle of the two-dimensional code, so that the moving direction of the mobile platform is the same as that of the pre-laid
  • the direction of the travel route is the same.
  • the rotation angle is calculated to be 45°, and the head of the mobile platform is adjusted accordingly until the rotation angle is 0.
  • the image picked up by the positioning camera is the image defined by the entire rectangular frame, and the two-dimensional code image is the two-dimensional code appearing in the picked-up image.
  • the vertical distance represents the shortest distance that the mobile platform deviates from the preset travel route.
  • the mobile platform can adjust the position of the mobile platform according to the vertical distance, so that the mobile platform is located on the preset travel route.
  • the two-dimensional code image collected by the positioning camera is exactly at the center of the picked-up image. At this time, the vertical distance is 0, which means that the mobile platform is on the preset travel route. on.
  • Step S40 Calculate the deviation value of the mobile platform relative to a single QR code image according to the rotation angle and the vertical distance;
  • the rotation angle and vertical distance information are combined, and the movement is calculated according to the preset first calculation method.
  • the preset first calculation method can be set according to the actual situation, for example, considering the lens distortion of the positioning line machine, the size of the field of view, the road surface smoothness and other factors, the corresponding parameter correction items can be added accordingly to cause it Compensate for the deviation of calculation to ensure positioning accuracy.
  • Step S50 Obtain the deviation value of the mobile platform relative to each two-dimensional code image, and calculate the deviation value of the mobile platform relative to the magnetic stripe track according to the deviation value of the mobile platform relative to each two-dimensional code image;
  • the method steps of S20 and S30 are performed on each two-dimensional code image to calculate the deviation value of the mobile platform relative to each two-dimensional code image.
  • the preset second calculation method can adopt the method of averaging, or the method of determining the weight coefficient and summing it according to the distance from the center of each two-dimensional code image to the center of the picked-up image. It can also be based on the relative value of each two-dimensional code image.
  • the method of determining the weight coefficient and summing the position of the center of the picked-up image includes but is not limited to this.
  • step S60 the pose of the mobile platform is adjusted according to the deviation value of the mobile platform relative to the magnetic stripe track until the deviation value is zero.
  • the adjustment direction of the mobile platform is determined according to the positive or negative of the deviation value, and then the mobile platform is controlled to adjust the posture to the left or right, so that The deviation value of the adjusted mobile platform is zero.
  • the deviation value of the mobile platform relative to a single QR code image can be calculated according to the following formula:
  • P is the deviation value of the mobile platform relative to a single two-dimensional code
  • d is the vertical distance
  • r is the rotation angle
  • k1 and k2 are the proportional coefficients.
  • the continuous change of the r value depends on the orientation of the two-dimensional code pasted on the ceiling and the turning action of the mobile platform during the movement.
  • a two-dimensional code whose orientation changes continuously is pasted on the ceiling.
  • the rotation angle of the current two-dimensional code image collected by the positioning camera in the picked-up image will change relative to the rotation angle of the same two-dimensional code image in the previous picked-up image.
  • obtaining the rotation angle of the two-dimensional code image includes:
  • Step S31 obtaining the coordinates of the four corner points of the two-dimensional code image
  • Step S32 Determine a straight line with any two adjacent corner points, and calculate the slope value of the straight line
  • Step S33 Calculate the rotation angle of the two-dimensional code image according to the slope value.
  • a straight line is determined by any two adjacent corner points, and the slope of the straight line is calculated.
  • the four corner coordinates of the two-dimensional code image are A (x1, y1), B (x2, y2), C (x13, y3), D (x4, y4).
  • the center point is O(x0, y0).
  • the slope value of the preset straight line is calculated, and then the rotation angle r of the two-dimensional code image is inversely calculated according to the slope value, which is the ⁇ in the formula.
  • obtaining the coordinates of the four corner points of the two-dimensional code image includes:
  • Step S311 extract the two-dimensional code image in the picked-up image
  • Step S312 Perform threshold processing and binarization operations on the two-dimensional code image to obtain a threshold image of the two-dimensional code image;
  • Step S313 extract contours from the threshold image of the two-dimensional code image to obtain four corner points of the two-dimensional code image
  • Step S314 Calculate the coordinates of the four corner points of the two-dimensional code image in the picked-up image.
  • the positioning camera collects the picked-up image containing the two-dimensional code image, it extracts the two-dimensional code image in the picked-up image, and then executes the method steps of S312, S313, and S314 to image the two-dimensional code image. Through processing, the coordinates of the four corner points of the two-dimensional code image in the picked-up image are obtained.
  • calculating the deviation value of the mobile platform relative to the magnetic stripe track according to the deviation value of the mobile platform relative to each two-dimensional code image includes:
  • Step S51 According to the position of each two-dimensional code image relative to the center of the picked-up image, a weight coefficient corresponding to the deviation value of the mobile platform relative to each two-dimensional code image is assigned;
  • Step S52 according to the deviation value of the mobile platform relative to each two-dimensional code image and the corresponding weight coefficient, and according to the formula Calculate the deviation value of the mobile platform relative to the magnetic stripe track;
  • Q is the deviation value of the mobile platform relative to the magnetic stripe track
  • K is the weight coefficient
  • P is the deviation value of the mobile platform relative to a single two-dimensional code
  • n is a positive integer.
  • the two-dimensional code image located in front of the center point of the picked-up image is assigned the largest weighting coefficient
  • the two-dimensional code image located near the center of the picked-up image center point is assigned the second weight coefficient
  • the weighting coefficient is located behind the center point of the picked-up image
  • the weight coefficient assigned to the QR code image is the smallest. The reason for this allocation is that the two-dimensional code located in front of the center point of the picked-up image determines the next direction of travel of the mobile platform.
  • three two-dimensional code images appear in the current picked-up image, namely P1, P2, and P3.
  • the mobile platform is calculated relative to each The deviation value of the QR code image.
  • the corresponding weight coefficients are determined.
  • the deviation value of the mobile platform relative to the magnetic stripe track can be calculated.
  • the principle of the imitation magnetic stripe positioning method based on the ceiling-type two-dimensional code proposed in this application is as follows: First, based on the original ground magnetic stripe track, the two-dimensional code is arranged on the ceiling in the same traveling mode, thereby forming a guide for moving The path of the platform movement; secondly, the two-dimensional code image on the ceiling is collected by the positioning camera set on the mobile platform, and the rotation angle of the two-dimensional code image in the picked-up image and the center point of the picked-up image and the preset straight line are calculated Then, according to the rotation angle and vertical distance, calculate the deviation value of the mobile platform relative to the two-dimensional code image; finally, adjust the pose of the mobile platform according to the calculated deviation value until the deviation value Is zero.
  • the mobile platform When there is only one two-dimensional code image in the picked-up image, it can be adjusted according to the deviation value of the mobile platform relative to the two-dimensional code; when there are multiple two-dimensional code images in the picked-up image, the mobile platform can be compared with each other The deviation value of the QR code is adjusted to improve the positioning accuracy.
  • the weighting method is mainly used to calculate the final output deviation value of the mobile platform.
  • this application also proposes an imitation magnetic stripe positioning device based on the ceiling-type two-dimensional code, see Fig. 8, the imitation magnetic stripe based on the ceiling-type two-dimensional code
  • the strip positioning device includes:
  • the track setting module 10 is used for arranging a plurality of two-dimensional codes on the ceiling to form an imitation magnetic stripe track;
  • the image acquisition module 20 is used to acquire at least one two-dimensional code image on the ceiling through a positioning camera set on the mobile platform;
  • the variable acquisition module 30 is used for acquiring the rotation angle of the two-dimensional code image and locating the vertical distance between the center point of the image picked up by the camera and the preset straight line, and the slope value of the preset straight line is equal to the tangent value of the rotation angle;
  • the first calculation module 40 is configured to calculate the deviation value of the mobile platform relative to a single two-dimensional code image according to the rotation angle and the vertical distance;
  • the second calculation module 50 is configured to obtain the deviation value of the mobile platform relative to each two-dimensional code image, and calculate the deviation value of the mobile platform relative to the magnetic stripe track according to the deviation value of the mobile platform relative to each two-dimensional code image;
  • the mobile platform adjustment module 60 is used to adjust the posture of the mobile platform according to the deviation value of the mobile platform relative to the magnetic stripe track until the deviation value is zero.
  • variable acquisition module 30 includes:
  • the coordinate acquiring unit 31 is used to acquire the coordinates of the four corner points of the two-dimensional code image
  • the slope calculation unit 32 is configured to determine a preset straight line with any two adjacent corner points, and calculate the slope value of the preset straight line;
  • the rotation angle calculation unit 33 is configured to calculate the rotation angle of the two-dimensional code image according to the slope value.
  • the coordinate acquisition unit 31 includes:
  • the two-dimensional code extraction subunit 311 is used to extract the two-dimensional code image in the picked-up image
  • the threshold image acquisition subunit 312 is configured to perform threshold processing and binarization operations on the two-dimensional code image to obtain a threshold image of the two-dimensional code image;
  • the corner point obtaining subunit 313 is used to extract contours from the threshold image of the two-dimensional code image to obtain four corner points of the two-dimensional code image;
  • the calculation subunit 314 is used to calculate the coordinates of the four corner points of the two-dimensional code image in the picked-up image.
  • the second calculation module 50 includes:
  • the weight coefficient allocating unit 51 is configured to assign weight coefficients to the deviation values of the mobile platform relative to each two-dimensional code image according to the position of each two-dimensional code image relative to the center of the picked-up image;
  • the calculation unit 52 is used to calculate the deviation value of the mobile platform relative to each two-dimensional code image and the corresponding weight coefficient, and according to the formula Calculate the deviation value of the mobile platform relative to the magnetic stripe track;
  • Q is the deviation value of the mobile platform relative to the magnetic stripe track
  • K is the weight coefficient
  • P is the deviation value of the mobile platform relative to a single two-dimensional code
  • n is a positive integer.
  • the modules in the magnetic stripe positioning device based on the ceiling-type two-dimensional code described above can be implemented in whole or in part by software, hardware, and combinations thereof.
  • the above-mentioned modules may be embedded in the computer equipment in the form of hardware, or stored in the memory in the form of software, so that the computer equipment can call and execute the functions corresponding to the above-mentioned modules.
  • the working principles and functions of the above-mentioned functional modules can be referred to the implementation process of the imitation magnetic stripe positioning method based on the ceiling-type two-dimensional code shown in FIG. 1, FIG. 5, FIG. 6, and FIG. 7, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种基于天花板式二维码的仿磁条定位方法,仿磁条定位方法包括:通过设置在移动平台上的定位相机采集天花板上的至少一个二维码图像(S20);获取二维码图像的旋转角度以及定位相机所拾取图像的中心点与预设直线的垂直距离(S30);根据旋转角度和垂直距离,计算移动平台相对单个二维码图像的偏离值(S40);获取移动平台相对各个二维码图像的偏离值,并根据移动平台相对各个二维码图像的偏离值计算移动平台相对仿磁条轨道的偏离值(S50);根据移动平台相对仿磁条轨道的偏离值调整移动平台的位姿,直至偏离值为零(S60)。基于天花板式二维码的仿磁条定位方法可有效降低二维码导引轨道的损坏率,降低施工难度,从而降低成本。此外,还公开一种基于天花板式二维码的仿磁条定位装置。

Description

基于天花板式二维码的仿磁条定位方法及装置 技术领域
本申请涉及空间定位技术领域,具体涉及一种基于天花板式二维码的仿磁条定位方法及装置。
背景技术
为在自动化生产和仓储管理中应用移动平台,要求移动平台能够精确识别当前位置,以将物品搬运至指定区域。
目前,移动平台的常用定位方法有磁轨式定位方法及二维码定位方法,磁轨式定位方法是通过设置在移动平台上的磁导航传感器和铺设在地面上的磁条进行定位的,二维码定位方法则是通过设置在移动平台上的定位相机和布置在天花板或地面上的二维码进行定位的。
众所周知,磁轨式定位方法所应用到的磁条在长时间的碾压下,会造成磁条永久性的损坏。而二维码定位方法涉及到二维码在天花板或地面上的粘贴工作,在粘贴二维码之前需要对安装平面进行坐标规划,以将相应的二维码粘贴在对应位置,如此,将使得二维码的粘贴工作十分繁琐且难度较大。
技术问题
现有的二维码定位方法存在的二维码粘贴工作十分繁琐且难度较大,以及磁轨式定位方法存在的磁条易损坏的问题。
技术解决方案
为解决上述技术问题,本申请提出一种基于天花板式二维码的仿磁条定位方法,该基于天花板式二维码的仿磁条定位方法包括:在天花板上布置多个二维码,以形成仿磁条轨道;通过设置在移动平台上的定位相机采集天花板上的至少一个二维码图像;获取所述二维码图像的旋转角度以及定位相机所拾取图像的中心点与预设直线的垂直距离,所述预设直线的斜率值与所述 旋转角度的正切值相等;根据所述旋转角度和垂直距离,计算所述移动平台相对单个二维码图像的偏离值;获取所述移动平台相对各个二维码图像的偏离值,并根据所述移动平台相对各个二维码图像的偏离值计算所述移动平台相对仿磁条轨道的偏离值;根据所述移动平台相对仿磁条轨道的偏离值调整所述移动平台的位姿,直至所述偏离值为零。
优选地,按照以下公式计算所述移动平台相对单个二维码图像的偏离值:P=k1*d+k2*r,其中,P为移动平台相对单个二维码的偏离值、d为垂直距离、r为旋转角度,k1、k2为比例系数。
优选地,所述获取二维码图像的旋转角度包括:获取所述二维码图像的四个角点坐标;以任意相邻的两角点确定一条预设直线,并计算该预设直线的斜率值;根据所述斜率值计算所述二维码图像的旋转角度。
优选地,所述获取二维码图像的四个角点坐标包括:提取所述拾取图像中的二维码图像;对所述二维码图像进行阈值处理和二值化操作,以获得所述二维码图像的阈值图像;从所述二维码图像的阈值图像中提取轮廓,以获取所述二维码图像的四个角点;计算所述二维码图像的四个角点在所述拾取图像中的坐标。
优选地,所述根据移动平台相对各个二维码图像的偏离值计算移动平台相对仿磁条轨道的偏离值包括:根据各所述二维码图像相对拾取图像的中心的位置,给移动平台相对各个二维码图像的偏离值对应分配权重系数;根据所述移动平台相对各个二维码图像的偏离值及对应的权重系数,并按照公式
Figure PCTCN2020089643-appb-000001
计算所述移动平台相对仿磁条轨道的偏离值;其中,Q为移动平台相对仿磁条轨道的偏离值、K为权重系数、P为移动平台相对单个二维码的偏离值,n为正整数。
本申请还提出一种基于天花板式二维码的仿磁条定位装置,该基于天花板式二维码的仿磁条定位装置包括:轨道设定模块,用于在天花板上布置多个二维码,以形成仿磁条轨道;图像采集模块,用于通过设置在移动平台上的定位相机采集天花板上的至少一个二维码图像;变量获取模块,用于获取所述二维码图像的旋转角度以及定位相机所拾取图像的中心点与预设直线的垂直距离,所述预设直线的斜率值与所述旋转角度的正切值相等;第一计算模块,用于根据所述旋转角度和垂直距离,计算所述移动平台相对单个二维 码图像的偏离值;第二计算模块,用于获取所述移动平台相对各个二维码图像的偏离值,并根据所述移动平台相对各个二维码图像的偏离值计算所述移动平台相对仿磁条轨道的偏离值;移动平台调整模块,用于根据所述移动平台相对仿磁条轨道的偏离值调整所述移动平台的位姿,直至所述偏离值为零。
优选地,按照以下公式计算所述移动平台相对单个二维码图像的偏离值:P=k1*d+k2*r,其中,P为移动平台相对单个二维码的偏离值、d为垂直距离、r为旋转角度,k1、k2为比例系数。
优选地,所述变量获取模块包括:坐标获取单元,用于获取所述二维码图像的四个角点坐标;斜率计算单元,用于以任意相邻的两角点确定一条预设直线,并计算该预设直线的斜率值;旋转角计算单元,用于根据所述斜率值计算所述二维码图像的旋转角度。
优选地,所述坐标获取单元包括:二维码提取子单元,用于提取所述拾取图像中的二维码图像;阈值图像获取子单元,用于对所述二维码图像进行阈值处理和二值化操作,以获得所述二维码图像的阈值图像;角点获取子单元,用于从所述二维码图像的阈值图像中提取轮廓,以获取所述二维码图像的四个角点;计算子单元,用于计算所述二维码图像的四个角点在所述拾取图像中的坐标。
优选地,所述第二计算模块包括:权重系数分配单元,用于根据各所述二维码图像相对拾取图像的中心的位置,给移动平台相对各个二维码图像的偏离值对应分配权重系数;计算单元,用于根据所述移动平台相对各个二维码图像的偏离值及对应的权重系数,并按照公式
Figure PCTCN2020089643-appb-000002
计算所述移动平台相对仿磁条轨道的偏离值;其中,Q为移动平台相对仿磁条轨道的偏离值、K为权重系数、P为移动平台相对单个二维码的偏离值,n为正整数。
有益效果
根据磁条在地面的布置形式,利用二维码在天花板上进行仿照布置,以形成类似地面磁轨道的仿磁条轨道。通过设置在移动平台上的定位相机识别二维码图像,再根据二维码图像的旋转角度和垂直距离,计算定位相机相对仿磁条轨道的偏离值,然后根据该偏离值调整移动平台的位姿。本申请基于天花板式二维码的仿磁条定位方法可降低仿磁条轨道的损坏率,从而达到降 低成本的目的。同时,移动平台在行进时,是以预先设定的仿磁条磁轨道作为参考,并通过二维码图像计算其相对仿磁条轨道的偏离值,以保移动平台按照该预先设定的仿磁条轨道行进,从而到达指定位置。由此可知,通过本申请所提出的仿磁条定位方法,无需同现有的天花板二维码定位一样,在布置二维码时需要对天花板进行坐标规划,以确定各个二维码在天花板上的具体位置信息,然后再将二维码准确粘贴在对应的位置上,本申请仅需在移动平台的行进过程中计算其相对仿磁条轨道的偏离值即可,而无需知道二维码的具体位置信息,因此,对于本申请所提出的二维码的布置,只需将标签粘贴在天花板上,形成一条行进轨迹即可,从而达到降低二维码部署难度的目的。
附图说明
图1为本申请基于天花板式二维码的仿磁条定位方法第一实施例的流程图;
图2为本申请基于天花板式二维码的仿磁条定位方法的移动平台的仿磁条轨道示意图;
图3为本申请基于天花板式二维码的仿磁条定位方法的目标图像第一参考图;
图4为本申请基于天花板式二维码的仿磁条定位方法的目标图像第二参考图;
图5为本申请基于天花板式二维码的仿磁条定位方法第二实施例的流程图;
图6为本申请基于天花板式二维码的仿磁条定位方法第三实施例的流程图;
图7为本申请基于天花板式二维码的仿磁条定位方法第四实施例的流程图;
图8为本申请基于天花板式二维码的仿磁条定位装置一实施例的功能模块图。
本申请实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制,基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提出一种基于天花板式二维码的仿磁条定位方法,参见图1、图2,在一实施方式中,该基于天花板式二维码的仿磁条定位方法包括:
步骤S10,在天花板上布置多个二维码,以形成仿磁条轨道;
需要说明的是,磁条轨道指的是利用磁条在地面上预先铺设出的行进路线,移动平台以此作为参考,并沿着此行进路线移动。移动平台包括AGV自动导引车(Automated Guided Vehicle)、巡检机器人及无轨货架等,包括但不限于此。
为保证移动平台始终沿着预先铺设的行进路线移动,在移动平台上设置有磁导航传感器,以通过磁导航传感器检测移动平台所在位置的磁场强度,再结合磁条的磁场特性,就能够确定出移动平台相对磁条轨道的位置信息,并据此实时调整移动平台的位姿,从而避免移动平台偏离预先铺设的行进路线。
可以理解的是,利用磁条轨道进行定位导航时,移动平台无需获取其当前的位置信息,只需计算其相对于预先铺设的行进路线的偏离值即可,以根据该偏离值调整移动平台的行进方向和路线。因此,在利用磁条铺设移动平台的行进路线时,也就无需对地面进行坐标规划,以将磁条铺设在指定位置上。
基于前述内容可知,利用磁条轨道进行定位导航的方式,具有施工较为简便,施工难度相对较低的优势。但是,考虑到现有的磁条定位方式都是将磁条铺设在地面上的,其存在磁条易损坏的缺陷。此外,如果将磁条铺设在天花板上,会加大施工难度。
本申请利用二维码替代磁条,并仿照磁条在地面上的布置方式,在天花板上利用二维码铺设出移动平台的行进路线。由于二维码相对磁条具有面积 小及重量轻等优势,使得二维码在天花板上的铺设要容易很多,因此,可大大降低施工难度。另外,由于二维码是铺设在天花板上的,因此,能够避免因移动平台的碾压而导致的损坏,从而降低二维码的损坏率。
本实施例中,利用二维码在天花板上预先铺设出移动平台的行进路线,移动平台只需沿着该行进路线移动即可到达指定位置,为保证移动平台始终沿着该行进路线移动,在移动平台上设置有定位相机,以获取天花板上的二维码图像,并利用二维码图像对移动平台的位姿进行实时调整,从而避免移动平台偏离行进路线。
步骤S20,通过设置在移动平台上的定位相机采集天花板上的至少一个二维码图像;
在铺设出移动平台的行进路线后,需要通过定位相机采集天花板上的二维码图像,以根据二维码图像所反映的信息计算移动平台的当前偏离值。定位相机的视角朝向天花板位置,在正常情况下,能够在一张图像中捕捉到多个二维码图像,以用于移动平台的偏离值计算。
步骤S30,获取二维码图像的旋转角度,以及定位相机所拾取图像的中心点与预设直线的垂直距离,该预设直线的斜率值与旋转角度的正切值相等;
本实施例中,二维码图像的旋转角度表示的是行进路线的方向,也就是说,移动平台可根据二维码的旋转角度去调整行进方向,以使得移动平台的移动方向与预先铺设的行进路线的方向一致。比如,AGV自动导引车在行进过程中,计算得到旋转角度为45°,则据此调整移动平台的车头朝向,直至旋转角度为0。
参见图3、图4,定位相机所拾取图像为整个矩形框所限定出的图像,而二维码图像则为该拾取图像中出现的二维码,拾取图像的中心点O与预设直线的垂直距离表示的是移动平台偏离预设行进路线的最短距离。移动平台可根据该垂直距离调整移动平台的位置,以使得移动平台位于该预设行进路线上。当二维码位于定位相机的正下方时,定位相机采集到的二维码图像是正好处于拾取图像的中心位置上的,此时,垂直距离为0,表示移动平台正处于预设的行进路线上。
步骤S40,根据旋转角度和垂直距离,计算移动平台相对单个二维码图像的偏离值;
本实施例中,在分别获取到二维码图像的旋转角度及拾取图像的中心与预设直线的垂直距离后,融合旋转角度和垂直距离信息,并按照预设的第一计算方式,计算移动平台相对该二维码图像的偏离值。该预设的第一计算方式可根据实际情况进行设定,比如,考虑到定位线机的镜头畸变、视野大小、路面平整度等因素,可据此加入对应的参数修正项,以对其造成的计算偏差进行补偿,从而保证定位精度。
步骤S50,获取移动平台相对各个二维码图像的偏离值,并根据移动平台相对各个二维码图像的偏离值计算移动平台相对仿磁条轨道的偏离值;
当定位相机所拾取图像中出现多个二维码图像时,对各个二维码图像分别执行上述S20、S30的方法步骤,以分别计算移动平台相对各个二维码图像的偏离值。
而后,根据移动平台相对各个二维码图像的偏离值,并按照预设的第二计算方式,计算移动平台相对仿磁条轨道的偏离值。该预设的第二计算方式可以采用求平均值的方式,也可以根据各个二维码图像的中心到拾取图像的中心距离确定权重系数并求和的方式,还可以根据各个二维码图像相对拾取图像中心的位置确定权重系数并求和的方式,包括但不限于此。
步骤S60,根据移动平台相对仿磁条轨道的偏离值调整移动平台的位姿,直至偏离值为零。
本实施例中,在根据二维码图像计算得到的移动平台的偏离值后,再根据偏离值的正负确定移动平台的调整方向,然后控制移动平台向左或向右调整位姿,以使得调整后的移动平台的偏离值为零。
为便于理解,举例说明,该示例仅为示意性的,而非限定性的。规定:当移动平台的偏离值大于零时,向右调整移动平台的位姿,当移动平台的偏离值小于零时,向左调整移动平台的位姿。假设计算得到的移动平台的偏离值为3,则需要控制移动平台向右调整,直至移动平台的偏离值为零。
在一实施例中,可按照以下公式计算移动平台相对单个二维码图像的偏离值:
P=k1*d+k2*r
其中,P为移动平台相对单个二维码的偏离值、d为垂直距离、r为旋转角度,k1、k2为比例系数。
参见图3、图4,以拾取图像的中心点O为参考,规定:在中心点O左边的二维码图像所对应的d值为负,而在拾取图像的中心点O右边的二维码图像所对应的d值为正,并且将旋转角度360°划分成0-180°和-180°-0,以赋予旋转角度r正负值。
应当注意的是,r值的连续变化取决于二维码粘贴在天花板上的朝向及移动平台在移动过程中的转向动作。为引导移动平台进行弧形及其他不同轨迹的运动,在天花板上粘贴有朝向连续变化的二维码。移动平台在转向过程中,可以理解的是,由定位相机采集到的当前二维码图像在拾取图像中的旋转角度相对同一二维码图像在前一拾取图像中的旋转角度,会发生变化。
在获取到d值和r值后,由于k1、k2为比例常数,因此,将d、r、k1、k2代入到公式P=k1*d+k2*r后,即可获取到移动平台相对该二维码的偏离值。此外,考虑到各种可能出现的情况,比如在不同的使用场景下,定位相机与二维码之间的高度是不同的。在更换使用场地后,要求移动平台仍然能够根据更换后的场地的天花板上的二维码进行精准的定位,则需要对k1值进行动态调整。
在另一实施例中,参见图5,获取二维码图像的旋转角度包括:
步骤S31,获取二维码图像的四个角点坐标;
步骤S32,以任意相邻的两角点确定一条直线,并计算该直线的斜率值;
步骤S33,根据斜率值计算二维码图像的旋转角度。
本实施例中,在获取到二维码图像的四个角点坐标后,以任意相邻的两角点确定一条直线,并计算该直线的斜率。参见图3、图4,二维码图像的四个角点坐标分别为A(x1,y1)、B(x2,y2)、C(x13,y3)、D(x4,y4),拾取图像的中心点为O(x0,y0)。为便于理解,以AB两角点确定一条预设直线V,按照斜率计算公式:
Figure PCTCN2020089643-appb-000003
计算得到预设直线的斜率值,然后,再根据该斜率值反算二维码图像的旋转角度r,也就是公式中的α。
在上述实施例中,参见图6,获取二维码图像的四个角点坐标包括:
步骤S311,提取拾取图像中的二维码图像;
本实施例中,由于采集到的拾取图像除二维码图像外,还存在其它的图 像,为从拾取图像中获取二维码图像,需从采集到的拾取图像中提取出二维码图像。
步骤S312,对二维码图像进行阈值处理和二值化操作,以获得二维码图像的阈值图像;
步骤S313,从二维码图像的阈值图像中提取轮廓,以获取二维码图像的四个角点;
步骤S314,计算二维码图像的四个角点在拾取图像中的坐标。
本实施例中,定位相机采集到包含有二维码图像的拾取图像后,提取拾取图像中的二维码图像,再分别执行S312、S313、S314的方法步骤,以对二维码图像进行图像处理,从而获得二维码图像的四个角点在拾取图像中的坐标。
在又一实施例中,参见图7,根据移动平台相对各个二维码图像的偏离值计算移动平台相对仿磁条轨道的偏离值包括:
步骤S51,根据各二维码图像相对拾取图像的中心的位置,给移动平台相对各个二维码图像的偏离值对应分配权重系数;
步骤S52,根据移动平台相对各个二维码图像的偏离值及对应的权重系数,并按照公式
Figure PCTCN2020089643-appb-000004
计算移动平台相对仿磁条轨道的偏离值;
其中,Q为移动平台相对仿磁条轨道的偏离值、K为权重系数、P为移动平台相对单个二维码的偏离值,n为正整数。
本实施例中,位于拾取图像中心点前方的二维码图像所分配的权重系数最大,位于拾取图像中心点中部附近的二维码图像所分配的权重系数次之,而位于拾取图像中心点后方的二维码图像所分配的权重系数最小。之所以如此分配,是因为位于拾取图像中心点前方的二维码决定了移动平台接下来的行进方向。
比如,在当前的拾取图像中出现三个二维码图像,分别为P1、P2、P3,根据d值和r值,并按照公式P=k1*d+k2*r,计算得到移动平台相对各个二维码图像的偏离值。然后,再根据该三个二维码图像相对拾取图像中心点的位置,确定对应的权重系数。最后,根据权重系数及偏离值,并按照公式
Figure PCTCN2020089643-appb-000005
可计算得到移动平台相对仿磁条轨道的偏离值。移动平台相对仿磁条轨道的偏离值为:Q=K1*P1+K2*P2+K3*P3,其中,K1+K2+K3=1。
本申请所提出的基于天花板式二维码的仿磁条定位方法的原理为:首先,基于原先地面磁条轨道的形式,在天花板上以同样行进方式布置二维码,从而形成用于引导移动平台移动的行进路线;其次,通过设置在移动平台上的定位相机采集天花板上的二维码图像,并计算二维码图像在拾取图像中的旋转角度以及拾取图像的中心点与预设直线之间的最短距离(垂直距离);然后,再根据旋转角度和垂直距离,计算移动平台相对该二维码图像的偏离值;最后,根据计算得到的偏离值调整移动平台的位姿,直至偏离值为零。
当拾取图像中只存在一个二维码图像时,则根据移动平台相对该二维码的偏离值进行调整即可;当拾取图像中存在多个二维码图像时,则可根据移动平台相对各个二维码的偏离值进行调整,以提高定位精度。对于多个二维码图像,主要采取权重的方式,计算最终输出的移动平台偏离值。
基于上述提出的基于天花板式二维码的仿磁条定位方法,本申请还提出一种基于天花板式二维码的仿磁条定位装置,参见图8,该基于天花板式二维码的仿磁条定位装置包括:
轨道设定模块10,用于在天花板上布置多个二维码,以形成仿磁条轨道;
图像采集模块20,用于通过设置在移动平台上的定位相机采集天花板上的至少一个二维码图像;
变量获取模块30,用于获取二维码图像的旋转角度以及定位相机所拾取图像的中心点与预设直线的垂直距离,预设直线的斜率值与旋转角度的正切值相等;
第一计算模块40,用于根据旋转角度和垂直距离,计算移动平台相对单个二维码图像的偏离值;
第二计算模块50,用于获取移动平台相对各个二维码图像的偏离值,并根据移动平台相对各个二维码图像的偏离值计算移动平台相对仿磁条轨道的偏离值;
移动平台调整模块60,用于根据移动平台相对仿磁条轨道的偏离值调整移动平台的位姿,直至所述偏离值为零。
在一实施例中,变量获取模块30包括:
坐标获取单元31,用于获取二维码图像的四个角点坐标;
斜率计算单元32,用于以任意相邻的两角点确定一条预设直线,并计算该预设直线的斜率值;
旋转角计算单元33,用于根据斜率值计算二维码图像的旋转角度。
在上述实施例中,坐标获取单元31包括:
二维码提取子单元311,用于提取拾取图像中的二维码图像;
阈值图像获取子单元312,用于对二维码图像进行阈值处理和二值化操作,以获得二维码图像的阈值图像;
角点获取子单元313,用于从二维码图像的阈值图像中提取轮廓,以获取二维码图像的四个角点;
计算子单元314,用于计算二维码图像的四个角点在拾取图像中的坐标。
在另一实施例中,第二计算模块50包括:
权重系数分配单元51,用于根据各二维码图像相对拾取图像的中心的位置,给移动平台相对各个二维码图像的偏离值对应分配权重系数;
计算单元52,用于根据移动平台相对各个二维码图像的偏离值及对应的权重系数,并按照公式
Figure PCTCN2020089643-appb-000006
计算移动平台相对仿磁条轨道的偏离值;
其中,Q为移动平台相对仿磁条轨道的偏离值、K为权重系数、P为移动平台相对单个二维码的偏离值,n为正整数。
上述记载的基于天花板式二维码的仿磁条定位装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于计算机设备中,也可以以软件形式存储于存储器中,以便于计算机设备调用并执行以上各个模块对应的功能。上述各功能模块的工作原理及其所起作用可参见图1、图5、图6、图7所示的基于天花板式二维码的仿磁条定位方法的实现过程,在此不再赘述。
以上所述的仅为本申请的部分或优选实施例,无论是文字还是附图都不能因此限制本申请保护的范围,凡是在与本申请一个整体的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请保护的范围内。

Claims (10)

  1. 一种基于天花板式二维码的仿磁条定位方法,其特征在于,包括:
    在天花板上布置多个二维码,以形成仿磁条轨道;
    通过设置在移动平台上的定位相机采集天花板上的至少一个二维码图像;
    获取所述二维码图像的旋转角度以及定位相机所拾取图像的中心点与预设直线的垂直距离,所述预设直线的斜率值与所述旋转角度的正切值相等;
    根据所述旋转角度和垂直距离,计算所述移动平台相对单个二维码图像的偏离值;
    获取所述移动平台相对各个二维码图像的偏离值,并根据所述移动平台相对各个二维码图像的偏离值计算所述移动平台相对仿磁条轨道的偏离值;
    根据所述移动平台相对仿磁条轨道的偏离值调整所述移动平台的位姿,直至所述偏离值为零。
  2. 根据权利要求1所述的仿磁条定位方法,其特征在于,按照以下公式计算所述移动平台相对单个二维码图像的偏离值:
    P=k1*d+k2*r
    其中,P为移动平台相对单个二维码的偏离值、d为垂直距离、r为旋转角度,k1、k2为比例系数。
  3. 根据权利要求1所述的仿磁条定位方法,其特征在于,所述获取二维码图像的旋转角度包括:
    获取所述二维码图像的四个角点坐标;
    以任意相邻的两角点确定一条预设直线,并计算该预设直线的斜率值;
    根据所述斜率值计算所述二维码图像的旋转角度。
  4. 根据权利要求3所述的仿磁条定位方法,其特征在于,所述获取二维码图像的四个角点坐标包括:
    提取所述拾取图像中的二维码图像;
    对所述二维码图像进行阈值处理和二值化操作,以获得所述二维码图像 的阈值图像;
    从所述二维码图像的阈值图像中提取轮廓,以获取所述二维码图像的四个角点;
    计算所述二维码图像的四个角点在所述拾取图像中的坐标。
  5. 根据权利要求1所述的仿磁条定位方法,其特征在于,所述根据移动平台相对各个二维码图像的偏离值计算移动平台相对仿磁条轨道的偏离值包括:
    根据各所述二维码图像相对拾取图像的中心的位置,给移动平台相对各个二维码图像的偏离值对应分配权重系数;
    根据所述移动平台相对各个二维码图像的偏离值及对应的权重系数,并按照公式
    Figure PCTCN2020089643-appb-100001
    计算所述移动平台相对仿磁条轨道的偏离值;
    其中,Q为移动平台相对仿磁条轨道的偏离值、K为权重系数、P为移动平台相对单个二维码的偏离值,n为正整数。
  6. 一种基于天花板式二维码的仿磁条定位装置,其特征在于,包括:
    轨道设定模块,用于在天花板上布置多个二维码,以形成仿磁条轨道;
    图像采集模块,用于通过设置在移动平台上的定位相机采集天花板上的至少一个二维码图像;
    变量获取模块,用于获取所述二维码图像的旋转角度以及定位相机所拾取图像的中心点与预设直线的垂直距离,所述预设直线的斜率值与所述旋转角度的正切值相等;
    第一计算模块,用于根据所述旋转角度和垂直距离,计算所述移动平台相对单个二维码图像的偏离值;
    第二计算模块,用于获取所述移动平台相对各个二维码图像的偏离值,并根据所述移动平台相对各个二维码图像的偏离值计算所述移动平台相对仿磁条轨道的偏离值;
    移动平台调整模块,用于根据所述移动平台相对仿磁条轨道的偏离值调整所述移动平台的位姿,直至所述偏离值为零。
  7. 根据权利要求6所述的仿磁条定位装置,其特征在于,按照以下公式计算所述移动平台相对单个二维码图像的偏离值:
    P=k1*d+k2*r
    其中,P为移动平台相对单个二维码的偏离值、d为垂直距离、r为旋转角度,k1、k2为比例系数。
  8. 根据权利要求6所述的仿磁条定位装置,其特征在于,所述变量获取模块包括:
    坐标获取单元,用于获取所述二维码图像的四个角点坐标;
    斜率计算单元,用于以任意相邻的两角点确定一条预设直线,并计算该预设直线的斜率值;
    旋转角计算单元,用于根据所述斜率值计算所述二维码图像的旋转角度。
  9. 根据权利要求8所述的仿磁条定位装置,其特征在于,所述坐标获取单元包括:
    二维码提取子单元,用于提取所述拾取图像中的二维码图像;
    阈值图像获取子单元,用于对所述二维码图像进行阈值处理和二值化操作,以获得所述二维码图像的阈值图像;
    角点获取子单元,用于从所述二维码图像的阈值图像中提取轮廓,以获取所述二维码图像的四个角点;
    计算子单元,用于计算所述二维码图像的四个角点在所述拾取图像中的坐标。
  10. 根据权利要求6所述的仿磁条定位装置,其特征在于,所述第二计算模块包括:
    权重系数分配单元,用于根据各所述二维码图像相对拾取图像的中心的位置,给移动平台相对各个二维码图像的偏离值对应分配权重系数;
    计算单元,用于根据所述移动平台相对各个二维码图像的偏离值及对应的权重系数,并按照公式
    Figure PCTCN2020089643-appb-100002
    计算所述移动平台相对仿磁条轨道的偏离值;
    其中,Q为移动平台相对仿磁条轨道的偏离值、K为权重系数、P为移动平台相对单个二维码的偏离值,n为正整数。
PCT/CN2020/089643 2019-11-15 2020-05-11 基于天花板式二维码的仿磁条定位方法及装置 WO2021093288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911120330.3 2019-11-15
CN201911120330.3A CN110864691B (zh) 2019-11-15 2019-11-15 基于天花板式二维码的仿磁条定位方法及装置

Publications (1)

Publication Number Publication Date
WO2021093288A1 true WO2021093288A1 (zh) 2021-05-20

Family

ID=69654419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089643 WO2021093288A1 (zh) 2019-11-15 2020-05-11 基于天花板式二维码的仿磁条定位方法及装置

Country Status (2)

Country Link
CN (1) CN110864691B (zh)
WO (1) WO2021093288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113934216A (zh) * 2021-11-25 2022-01-14 机械工业第九设计研究院股份有限公司 一种用于单舵轮agv的二维码加惯性导航控制方法
CN116674920A (zh) * 2023-04-25 2023-09-01 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110864691B (zh) * 2019-11-15 2021-10-19 浙江大学华南工业技术研究院 基于天花板式二维码的仿磁条定位方法及装置
CN112364964B (zh) * 2020-11-23 2024-04-19 广东塔斯克机器人有限公司 二维码、二维码生成方法及其解码方法
CN113246148A (zh) * 2021-04-30 2021-08-13 上海擎朗智能科技有限公司 配送机器人及其定位方法
CN114249078A (zh) * 2021-12-10 2022-03-29 广东智源机器人科技有限公司 轨道标识定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425807A (zh) * 2016-01-07 2016-03-23 朱明� 一种基于人工路标的室内机器人导航方法及装置
CN205879193U (zh) * 2016-07-13 2017-01-11 哈尔滨工大服务机器人有限公司 一种机器人视觉导航路标及系统
CN107689063A (zh) * 2017-07-27 2018-02-13 南京理工大学北方研究院 一种基于天花板图像的机器人室内定位方法
WO2018204300A1 (en) * 2017-05-01 2018-11-08 Symbol Technologies, Llc Multimodal localization and mapping for a mobile automation apparatus
CN110057368A (zh) * 2019-05-22 2019-07-26 合肥工业大学 一种新型室内定位与导航方法
CN110864691A (zh) * 2019-11-15 2020-03-06 浙江大学华南工业技术研究院 基于天花板式二维码的仿磁条定位方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135429B (zh) * 2010-12-29 2012-06-13 东南大学 一种基于视觉的机器人室内定位导航方法
CN105651286B (zh) * 2016-02-26 2019-06-18 中国科学院宁波材料技术与工程研究所 一种移动机器人视觉导航方法与系统、以及仓库系统
CN107421542B (zh) * 2017-06-07 2020-07-28 东莞理工学院 一种基于机器视觉与wsn的室内定位系统及定位方法
CN107490379B (zh) * 2017-08-28 2020-11-27 山东非凡智能科技有限公司 利用二维码地标定位agv工作点位置的方法及系统
CN108225303B (zh) * 2018-01-18 2024-06-14 港湾智能科技(苏州)有限公司 二维码定位标签、基于二维码的定位导航系统和方法
US11087492B2 (en) * 2018-03-21 2021-08-10 ISVision America Methods for identifying location of automated guided vehicles on a mapped substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425807A (zh) * 2016-01-07 2016-03-23 朱明� 一种基于人工路标的室内机器人导航方法及装置
CN205879193U (zh) * 2016-07-13 2017-01-11 哈尔滨工大服务机器人有限公司 一种机器人视觉导航路标及系统
WO2018204300A1 (en) * 2017-05-01 2018-11-08 Symbol Technologies, Llc Multimodal localization and mapping for a mobile automation apparatus
CN107689063A (zh) * 2017-07-27 2018-02-13 南京理工大学北方研究院 一种基于天花板图像的机器人室内定位方法
CN110057368A (zh) * 2019-05-22 2019-07-26 合肥工业大学 一种新型室内定位与导航方法
CN110864691A (zh) * 2019-11-15 2020-03-06 浙江大学华南工业技术研究院 基于天花板式二维码的仿磁条定位方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113934216A (zh) * 2021-11-25 2022-01-14 机械工业第九设计研究院股份有限公司 一种用于单舵轮agv的二维码加惯性导航控制方法
CN116674920A (zh) * 2023-04-25 2023-09-01 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质
CN116674920B (zh) * 2023-04-25 2024-01-23 中国铁建电气化局集团有限公司 一种智能化运输方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN110864691A (zh) 2020-03-06
CN110864691B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2021093288A1 (zh) 基于天花板式二维码的仿磁条定位方法及装置
CN108571971B (zh) 一种agv视觉定位系统及方法
CN106291278B (zh) 一种基于多视觉系统的开关柜局部放电自动检测方法
CN106338245B (zh) 一种工件非接触移动测量方法
CN110455189B (zh) 一种大尺寸物料的视觉定位方法和搬运机器人
CN102646343B (zh) 车辆检测装置
CN113280798B (zh) 隧道gnss拒止环境下车载扫描点云的几何纠正方法
JP7252581B2 (ja) 物品検出装置、物品検出方法、及び産業車両
CN107689063A (zh) 一种基于天花板图像的机器人室内定位方法
CN110308729A (zh) 基于视觉与imu或里程计的agv组合导航定位方法
CN111037552A (zh) 一种配电房轮式巡检机器人的巡检配置及实施方法
CN109459032B (zh) 移动机器人定位方法、导航方法和网格地图建立方法
CN112561998B (zh) 一种基于三维点云配准的机器人定位和自主充电方法
KR101379787B1 (ko) 구멍을 가진 구조물을 이용한 카메라와 레이저 거리 센서의 보정 장치 및 보정 방법
CN110108269A (zh) 基于多传感器数据融合的agv定位方法
CN110136211A (zh) 一种基于主动双目视觉技术的工件定位方法及系统
CN112224590B (zh) 一种基于三维点云的钢坯贴标方法及系统
CN109141402B (zh) 一种基于激光栅格的定位方法以及机器人自主充电方法
CN112388626B (zh) 机器人辅助导航方法
JP3589293B2 (ja) 道路の白線検出方法
CN116958218A (zh) 一种基于标定板角点对齐的点云与图像配准方法及设备
CN113435412B (zh) 一种基于语义分割的水泥布料区域检测方法
CN112611344B (zh) 一种自主移动式平面度检测方法、设备及存储介质
CN114526740A (zh) 基于自然物体的单目自动驾驶导航方法、系统及装置
CN207115499U (zh) 基于双目视觉的行车自动定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887950

Country of ref document: EP

Kind code of ref document: A1