WO2021093040A1 - 一种割草机器人的定位系统及定位方法 - Google Patents

一种割草机器人的定位系统及定位方法 Download PDF

Info

Publication number
WO2021093040A1
WO2021093040A1 PCT/CN2019/122117 CN2019122117W WO2021093040A1 WO 2021093040 A1 WO2021093040 A1 WO 2021093040A1 CN 2019122117 W CN2019122117 W CN 2019122117W WO 2021093040 A1 WO2021093040 A1 WO 2021093040A1
Authority
WO
WIPO (PCT)
Prior art keywords
uwb
positioning
base station
lawn mower
positioning base
Prior art date
Application number
PCT/CN2019/122117
Other languages
English (en)
French (fr)
Inventor
李华京
陈禹伸
Original Assignee
垒途智能教科技术研究院江苏有限公司
南京中垒科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 垒途智能教科技术研究院江苏有限公司, 南京中垒科技发展有限公司 filed Critical 垒途智能教科技术研究院江苏有限公司
Publication of WO2021093040A1 publication Critical patent/WO2021093040A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes

Definitions

  • the invention belongs to the field of lawn mower robots, and specifically relates to a positioning system and a positioning method of the lawn mower robot.
  • the lawn mower robot is generally composed of a body, a walking mechanism, a cutting mechanism, and a control system.
  • the boundary line needs to be embedded before work.
  • the lawn mower robot uses electromagnetic sensors to detect the current signal strength on the boundary line to determine the distance from the boundary.
  • the controller based on the single-chip microcomputer controls the motor to adjust the walking path of the lawn mower robot. Therefore, the lawn mower robot can only determine whether it is out of bounds by sensing the boundary line, but cannot obtain its own precise position, and the degree of intelligence is low.
  • the lawn mower robot needs to accurately identify the front of the fuselage when it is started to avoid duplication of lines; at the same time, the lawn mower robot needs to identify the direction angle of the fuselage and correct the machine in time, especially when the fuselage is turning.
  • the body is offset to realize the reasonable planning of the running line to avoid the phenomenon of missing mowing in some areas.
  • the steering angle information of the fuselage is usually obtained by using a gyroscope, but the gyroscope has accumulated errors, which affects the positioning accuracy of the fuselage.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and propose a positioning system and a positioning method for a lawnmower robot.
  • the lawnmower robot can distinguish the front face of the fuselage and the position coordinates and direction angle of the fuselage.
  • the present invention proposes the following technical solutions:
  • a method for positioning a lawn mower robot In the fuselage coordinate positioning system, the controller uses a triangulation algorithm to obtain the absolute coordinates of the lawn mower robot itself; in the fuselage front positioning system, the controller calculates the connection between two UWB positioning tags and The included angle ⁇ of the positive X axis in the plane coordinate system is taken as the front direction angle of the fuselage, and the direction in which the first UWB positioning label points to the second UWB positioning label is the front direction of the fuselage.
  • the fuselage coordinate positioning system is composed of a UWB positioning base station and a UWB auxiliary positioning base station through UWB communication.
  • the fuselage front positioning system is composed of a UWB positioning base station and a UWB positioning tag through UWB communication.
  • the coordinate axis X of the plane coordinate system is the connection line between the UWB positioning base station and the first UWB auxiliary positioning base station
  • the coordinate axis Y is a straight line perpendicular to the coordinate axis X and passing through the UWB positioning base station.
  • the absolute coordinates of the lawn mower robot itself are the coordinates of the center point of the line between the two UWB positioning tags (X 1 , Y 1 ) and (X 2 , Y 2 ) are the coordinates of the two UWB positioning tags respectively.
  • v is the propagation speed of the pulse
  • t a1 , t b1 , and t c1 are the propagation time of the pulse from the first UWB positioning tag to the UWB positioning base station, the first UWB auxiliary positioning base station and the second UWB auxiliary positioning base station, respectively
  • (X a , Y a ) are the coordinates of the UWB positioning base station
  • (X b , Y b ) are the coordinates of the first UWB auxiliary positioning base station
  • (X c , Y c ) are the coordinates of the second UWB auxiliary positioning base station
  • X a , Y a are the coordinates of the UWB positioning base station
  • X b , Y b are the coordinates of the first UWB auxiliary positioning base station
  • (X c , Y c ) are the coordinates of the second UWB auxiliary positioning base station
  • t a2 , t b2 , and t c2 are respectively the propagation time of the pulse from the second UWB positioning tag to the UWB positioning base station, the first UWB auxiliary positioning base station and the second UWB auxiliary positioning base station.
  • a positioning system of a lawn mower robot includes a controller, the controller is connected with a UWB positioning tag signal, and the UWB positioning tag communicates with a UWB positioning base station.
  • the UWB positioning label includes a first UWB positioning label and a second UWB positioning label, both of which are arranged on the upper part of the robot body.
  • the installation heights of the two UWB positioning labels are the same, and the line connecting the center lines of the two UWB positioning labels is consistent with the mowing.
  • the central axis of the robot body coincides.
  • the UWB positioning base station includes a UWB main positioning base station, a first UWB auxiliary positioning base station, and a second UWB auxiliary positioning base station, which are all fixedly installed in the mowing area.
  • the present invention has the beneficial effects that the lawnmower robot can obtain more accurate body coordinate information to realize the frontal recognition and accurate path planning of the lawnmower robot, especially when the machine starts, it can ensure that the front of the body is pressed. Run towards. When the fuselage is turned, the steering deviation of the fuselage can be corrected in time.
  • Fig. 1 is a schematic structural diagram of a positioning system of a lawn mower robot according to the present invention
  • Fig. 2 is a schematic diagram of a plane coordinate system established by a positioning method of a lawn mower robot of the present invention.
  • 1-first UWB positioning tag 2-second UWB positioning tag; 3-UWB positioning base station; 4-first UWB auxiliary positioning base station; 5-second UWB auxiliary positioning base station; 6-controller.
  • a positioning system for a lawn mower robot includes a first UWB positioning tag 1, a second UWB positioning tag 2, a UWB main positioning base station 3, a first UWB auxiliary positioning base station 4, and a second UWB auxiliary positioning base station 5 and controller 6.
  • the installation heights of the first UWB positioning label 1 and the second UWB positioning label 2 are the same.
  • the first UWB positioning label 1 is arranged in the middle of the rear of the fuselage, and the second UWB positioning label 2 is arranged on the machine.
  • the first UWB positioning label 1 is located directly behind the second UWB positioning label 2.
  • the line connecting the center line of the first UWB positioning label 1 and the second UWB positioning label 2 is always the central axis of the mowing robot body .
  • the first UWB positioning tag 1 is signally connected to the controller 6 to provide the controller 6 with the propagation time of the pulse from the first UWB positioning tag 1 to the UWB main positioning base station 3, and the pulse from the first UWB positioning tag 1 to the first UWB auxiliary positioning The propagation time of the base station 4 and the propagation time of the pulse from the first UWB positioning tag 1 to the second UWB auxiliary positioning base station 5.
  • the second UWB positioning tag 2 is signally connected to the controller 6, and provides the controller 6 with the propagation time of the pulse from the second UWB positioning tag 2 to the UWB main positioning base station 3, and the pulse from the second UWB positioning tag 2 to the first UWB auxiliary positioning The propagation time of the base station 4 and the propagation time of the pulse from the second UWB positioning tag 2 to the second UWB auxiliary positioning base station 5.
  • the UWB main positioning base station 3, the first UWB auxiliary positioning base station 4, and the second UWB auxiliary positioning base station 5 are all fixedly installed in the mowing area.
  • the UWB main positioning base station 3, the first UWB auxiliary positioning base station 4, and the second UWB auxiliary positioning base station 5 form the fuselage coordinate positioning system through UWB communication.
  • the UWB main positioning base station 3 and the first UWB auxiliary positioning system The connecting line of the base station 4 is used as the coordinate axis X, and a straight line perpendicular to the coordinate axis X and through the UWB main positioning base station 3 is used as the coordinate axis Y to establish a plane coordinate system.
  • the UWB main positioning base station 3 and the first UWB positioning tag 1 and the second UWB positioning tag 2 form the fuselage front positioning system through UWB communication.
  • the controller 6 calculates the first UWB
  • the angle between the connecting line 2 of the positioning label 1 and the second UWB positioning label 2 and the positive direction of the X axis in the coordinate system is the front direction angle of the fuselage, and the fuselage is the direction of the first UWB positioning label 1 pointing to the second UWB positioning label 2 Front facing.
  • the controller 6 uses a triangulation algorithm to obtain the absolute coordinates of the first UWB positioning tag 1, the absolute coordinates of the second UWB positioning tag 2, and the absolute coordinates of the lawn mower robot itself. Specifically:
  • UWB main positioning station 3 is provided with a coordinate point A (X a, Y a) , a first auxiliary UWB positioning station 4 with a coordinate point B (X b, Y b) , the second auxiliary UWB positioning station 5 with a coordinate point C (X c , Y c ), the coordinate point of the first UWB positioning label 1 is L 1 (X 1 , Y 1 ), and the coordinate point of the second UWB positioning label 2 is L 2 (X 2 , Y 2 ).
  • the coordinates (X 1 , Y 1 ) of the point L 1 can be obtained to satisfy the following equations:
  • v is the propagation speed of the pulse
  • t a1 is the propagation time of the pulse from the UWB main positioning base station 3 to the first UWB positioning tag
  • t b1 is the pulse from the first UWB auxiliary positioning base station 4 to the first UWB positioning tag
  • t c1 is the propagation time of the pulse from the second UWB auxiliary positioning base station 5 to the first UWB positioning tag 1.
  • the coordinates (X 1 , Y 1 ) of the first UWB positioning tag 1 can be obtained by solving the above equations.
  • the coordinates (X 2 , Y 2 ) of the point L 2 can be obtained to satisfy the following equations:
  • v is the propagation speed of the pulse
  • t a2 is the propagation time of the pulse from the UWB main positioning base station 3 to the second UWB positioning tag
  • t b2 is the pulse from the first UWB auxiliary positioning base station 4 to the second UWB positioning tag
  • t c2 is the propagation time of the pulse from the second UWB auxiliary positioning base station 5 to the second UWB positioning tag 2.
  • the coordinates (X 2 , Y 2 ) of the second UWB positioning tag 2 can be obtained by solving the above equations.
  • the controller 6 calculates the angle ⁇ between the connection line of the first UWB positioning label 1 and the second UWB positioning label 2 and the positive direction of the X axis in the coordinate system, as the frontal direction angle of the fuselage, and uses the first The direction in which one UWB positioning label 1 points to the second UWB positioning label 2 is the front of the fuselage. Specifically:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Harvester Elements (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种割草机器人的定位系统及定位方法,其中UWB主定位基站(3)与UWB辅助定位基站(4,5)通过UWB通信构成机身坐标定位系统,在机身坐标定位系统中,控制器(6)采用三角定位算法获得割草机器人自身的绝对坐标;UWB主定位基站(3)与两UWB定位标签(1,2)通过UWB通信构成机身正面定位系统,在机身正面定位系统中,控制器(6)计算两UWB定位标签(1,2)连线与平面坐标系中X轴正向的夹角θ,作为机身正面方向角,并以第一UWB定位标签(1)指向第二UWB定位标签(2)的方向为机身正面朝向。割草机器人的定位系统及定位方法能准确的获取割草机器人机身坐标,保证割草机器人按机身正面朝向运行。

Description

一种割草机器人的定位系统及定位方法 技术领域
本发明属于割草机器人领域,具体涉及一种割草机器人的定位系统及定位方法。
背景技术
割草机器人一般由机身、行走机构、切割机构、控制系统所组成,在工作前需要预埋边界线,割草机器人通过使用电磁传感器检测边界线上电流信号强弱来判断与边界间距离,基于单片机的控制器控制通过电机来调整割草机器人的行走路径。因此,割草机器人只能通过感应边界线确定是否出界,而无法得到自身精确位置,智能化程度较低。在目前的实际使用时,割草机器人启动时需要准确识别机身正面朝向,以避免线路重复;同时割草机器人运行中,尤其是机身调头时,需要识别机身的方向角、及时纠正机身偏移,实现运行线路的合理规划,以避免部分区域漏割草现象出现。现有技术中,机身的转向角度信息通常采用陀螺仪获取,但是陀螺仪存在累积误差,影响机身定位精确度。
发明内容
本发明的目的是为了克服现有技术所存在的不足,而提出了一种割草机器人的定位系统及定位方法,割草机器人能够判别机身正面朝向以及机身的位置坐标和方向角度。
为了解决上述技术问题,本发明提出如下技术方案:
一种割草机器人的定位方法,在机身坐标定位系统中,控制器采用三角定位算法获得割草机器人自身的绝对坐标;在机身正面定位系统中,控制器计算两UWB定位标签连线与平面坐标系中X轴正向的夹角θ,作为机身正面方向角,并以第一UWB定位标签指向第二UWB定位标签的方向为机身正面朝向。
进一步,所述机身坐标定位系统由UWB定位基站与UWB辅助定位基站通过UWB通信构成。
进一步,所述机身正面定位系统由UWB定位基站与UWB定位标签通过UWB通信构成。
进一步,所述平面坐标系的坐标轴X为UWB定位基站与第一UWB辅助定位基站的连线,坐标轴Y为垂直于坐标轴X且通过UWB定位基站的直线。
进一步,所述割草机器人自身的绝对坐标为两UWB定位标签之间连线的中心点坐标
Figure PCTCN2019122117-appb-000001
其中(X 1,Y 1)、(X 2,Y 2)分别为两UWB定位标签的坐标。
更进一步,所述(X 1,Y 1)满足:
Figure PCTCN2019122117-appb-000002
式中:v是脉冲的传播速度,t a1、t b1、t c1分别为是脉冲从第一UWB定位标签到UWB定位基站、第一UWB辅助定位基站和第二UWB辅助定位基站的传播时间,(X a,Y a)为UWB定位基站的坐标,(X b,Y b)为第一UWB辅助定位基站的坐标,(X c,Y c)为第二UWB辅助定位基站的坐标;
所述(X 2,Y 2)满足:
Figure PCTCN2019122117-appb-000003
式中:t a2、t b2、t c2分别为是脉冲从第二UWB定位标签到UWB定位基站、第一UWB辅助定位基站和第二UWB辅助定位基站的传播时间。
更进一步,所述夹角θ满足:
Figure PCTCN2019122117-appb-000004
一种割草机器人的定位系统,包括控制器,控制器与UWB定位标签信号连接,UWB定位标签与UWB定位基站进行通信。
优选地,所述UWB定位标签包括第一UWB定位标签和第二UWB定位标签,均布置在机器人机身上部,两UWB定位标签的安装高度一致,且两UWB定位标签中线的连线与割草机器人机身的中轴线重合。
优选地,所述UWB定位基站包括均固定安装在割草区域内的UWB主定位基站、第一UWB辅助定位基站和第二UWB辅助定位基站。
相比现有技术,本发明的有益效果为:割草机器人可以获得更加准确的机身坐标信息以,实现割草机器人正面识别和精确路径规划,尤其是机器启动时,能够保证按机身正面 朝向运行。机身调头时,能够及时纠正机身转向偏差。
附图说明
图1为本发明一种割草机器人的定位系统的结构示意图;
图2为本发明一种割草机器人的定位方法建立的平面坐标系示意图。
其中:1-第一UWB定位标签;2-第二UWB定位标签;3-UWB定位基站;4-第一UWB辅助定位基站;5-第二UWB辅助定位基站;6-控制器。
具体实施方式
下面结合附图和具体实施案例对本发明的具体实施方式作进一步的详细描述。
如图1所示,一种割草机器人的定位系统,包括第一UWB定位标签1、第二UWB定位标签2、UWB主定位基站3、第一UWB辅助定位基站4、第二UWB辅助定位基站5和控制器6。
第一UWB定位标签1和第二UWB定位标签2的安装高度一致,沿着割草机器人前进方向,第一UWB定位标签1布置在机身后部中间位置,第二UWB定位标签2布置在机身前部中间位置,第一UWB定位标签1位于第二UWB定位标签2的正后方,第一UWB定位标签1和第二UWB定位标签2中线的连线始终为割草机器人机身的中轴线。
第一UWB定位标签1与控制器6信号连接,向控制器6提供脉冲从第一UWB定位标签1到UWB主定位基站3的传播时间、脉冲从第一UWB定位标签1到第一UWB辅助定位基站4的传播时间、脉冲从第一UWB定位标签1到第二UWB辅助定位基站5的传播时间。
第二UWB定位标签2与控制器6信号连接,向控制器6提供脉冲从第二UWB定位标签2到UWB主定位基站3的传播时间、脉冲从第二UWB定位标签2到第一UWB辅助定位基站4的传播时间、脉冲从第二UWB定位标签2到第二UWB辅助定位基站5的传播时间。
UWB主定位基站3、第一UWB辅助定位基站4和第二UWB辅助定位基站5均固定安装在割草区域内。
UWB主定位基站3与第一UWB辅助定位基站4、第二UWB辅助定位基站5通过UWB通信构成机身坐标定位系统,如图2所示,是以UWB主定位基站3与第一UWB辅助定位基站4的连线作为坐标轴X,垂直于坐标轴X且通过UWB主定位基站3的直线为坐标轴Y建立平面坐标系。在该坐标系中,UWB主定位基站3与第一UWB定位标签1、第二UWB定位标签2通过UWB通信构成机身正面定位系统,在机身正面定位系统中,控 制器6计算第一UWB定位标签1和第二UWB定位标签连线2与坐标系中X轴正向的夹角为机身正面方向角,并以第一UWB定位标签1指向第二UWB定位标签2的方向为机身正面朝向。
在机身坐标定位系统中,控制器6采用三角定位算法分别获得第一UWB定位标签1的绝对坐标、第二UWB定位标签2的绝对坐标以及割草机器人自身的绝对坐标。具体为:
设UWB主定位基站3坐标点为A(X a,Y a)、第一UWB辅助定位基站4坐标点为B(X b,Y b)、第二UWB辅助定位基站5坐标点为C(X c,Y c)、第一UWB定位标签1坐标点为L 1(X 1,Y 1)、第二UWB定位标签2坐标点为L 2(X 2,Y 2)。
对于第一UWB定位标签1,根据UWB三角定位原理,可获得L 1点的坐标(X 1,Y 1)满足以下方程组:
Figure PCTCN2019122117-appb-000005
上式中,v为脉冲的传播速度,t a1为脉冲从UWB主定位基站3到第一UWB定位标签1的传播时间,t b1为脉冲从第一UWB辅助定位基站4到第一UWB定位标签1的传播时间,t c1为脉冲从第二UWB辅助定位基站5到第一UWB定位标签1的传播时间。通过求解上述方程组可获得第一UWB定位标签1的坐标(X 1,Y 1)。
对于第二UWB定位标签2,根据UWB三角定位原理,可获得L 2点的坐标(X 2,Y 2)满足以下方程组:
Figure PCTCN2019122117-appb-000006
上式中,v为脉冲的传播速度,t a2为脉冲从UWB主定位基站3到第二UWB定位标签2的传播时间,t b2为脉冲从第一UWB辅助定位基站4到第二UWB定位标签2的传播时间,t c2为脉冲从第二UWB辅助定位基站5到第二UWB定位标签2的传播时间。通过求解上述方程组可获得第二UWB定位标签2的坐标(X 2,Y 2)。
计算第一UWB定位标签1与第二UWB定位标签2之间连线的中心点L的坐标为
Figure PCTCN2019122117-appb-000007
该坐标即为割草机器人自身的坐标。
在机身正面定位系统中,控制器6计算第一UWB定位标签1和第二UWB定位标签2连线与坐标系中X轴正向的夹角θ,作为机身正面方向角,并以第一UWB定位标签1指向第二UWB定位标签2的方向为机身正面朝向。具体为:
设L 1与L 2连线与X轴正向的夹角为θ,则θ可通过以下公式计算:
Figure PCTCN2019122117-appb-000008
以上具体实施方式及实施例是对本发明提出的一种割草机器人的定位系统及定位方法技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍属于本发明技术方案保护的范围。

Claims (10)

  1. 一种割草机器人的定位方法,其特征在于:在机身坐标定位系统中,控制器采用三角定位算法获得割草机器人自身的绝对坐标;在机身正面定位系统中,控制器计算两UWB定位标签连线与平面坐标系中X轴正向的夹角θ,作为机身正面方向角,并以第一UWB定位标签指向第二UWB定位标签的方向为机身正面朝向。
  2. 根据权利要求1所述的割草机器人的定位方法,其特征在于:所述机身坐标定位系统由UWB定位基站与UWB辅助定位基站通过UWB通信构成。
  3. 根据权利要求1所述的割草机器人的定位方法,其特征在于:所述机身正面定位系统由UWB定位基站与UWB定位标签通过UWB通信构成。
  4. 根据权利要求1所述的割草机器人的定位方法,其特征在于:所述平面坐标系的坐标轴X为UWB定位基站与第一UWB辅助定位基站的连线,坐标轴Y为垂直于坐标轴X且通过UWB定位基站的直线。
  5. 根据权利要求1所述的割草机器人的定位方法,其特征在于:所述割草机器人自身的绝对坐标为两UWB定位标签之间连线的中心点坐标
    Figure PCTCN2019122117-appb-100001
    其中(X 1,Y 1)、(X 2,Y 2)分别为两UWB定位标签的坐标。
  6. 根据权利要求5所述的割草机器人的定位方法,其特征在于:所述(X 1,Y 1)满足:
    Figure PCTCN2019122117-appb-100002
    式中:v是脉冲的传播速度,t a1、t b1、t c1分别为是脉冲从第一UWB定位标签到UWB定位基站、第一UWB辅助定位基站和第二UWB辅助定位基站的传播时间,(X a,Y a)为UWB定位基站的坐标,(X b,Y b)为第一UWB辅助定位基站的坐标,(X c,Y c)为第二UWB辅助定位基站的坐标;
    所述(X 2,Y 2)满足:
    Figure PCTCN2019122117-appb-100003
    式中:t a2、t b2、t c2分别为是脉冲从第二UWB定位标签到UWB定位基站、第一UWB辅助定位基站和第二UWB辅助定位基站的传播时间。
  7. 根据权利要求5或6所述的割草机器人的定位方法,其特征在于:所述夹角θ满足:
    Figure PCTCN2019122117-appb-100004
  8. 一种割草机器人的定位系统,其特征在于:包括控制器,控制器与UWB定位标签信号连接,UWB定位标签与UWB定位基站进行通信。
  9. 根据权利要求8所述的割草机器人的定位系统,其特征在于:所述UWB定位标签包括第一UWB定位标签和第二UWB定位标签,均布置在机器人机身上部,两UWB定位标签的安装高度一致,且两UWB定位标签中线的连线与割草机器人机身的中轴线重合。
  10. 根据权利要求8所述的割草机器人的定位系统,其特征在于:所述UWB定位基站包括均固定安装在割草区域内的UWB主定位基站、第一UWB辅助定位基站和第二UWB辅助定位基站。
PCT/CN2019/122117 2019-11-15 2019-11-29 一种割草机器人的定位系统及定位方法 WO2021093040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911120590.0 2019-11-15
CN201911120590.0A CN111093145A (zh) 2019-11-15 2019-11-15 一种割草机器人的定位系统及定位方法

Publications (1)

Publication Number Publication Date
WO2021093040A1 true WO2021093040A1 (zh) 2021-05-20

Family

ID=70393271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122117 WO2021093040A1 (zh) 2019-11-15 2019-11-29 一种割草机器人的定位系统及定位方法

Country Status (2)

Country Link
CN (1) CN111093145A (zh)
WO (1) WO2021093040A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550841A (zh) * 2022-11-25 2022-12-30 深圳华云时空技术有限公司 一种基于uwb的测向定位装置和测向定位方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768361B (zh) * 2020-05-09 2022-12-02 中铁第四勘察设计院集团有限公司 地下空间品质评价及其可视化呈现方法及系统
CN113110432B (zh) * 2021-04-02 2024-05-28 深圳优地科技有限公司 机器人姿态调整方法、设备、机器人及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150328775A1 (en) * 2014-05-15 2015-11-19 Irobot Corporation Autonomous Mobile Robot Confinement System
CN106647727A (zh) * 2015-10-28 2017-05-10 苏州宝时得电动工具有限公司 智能割草机的定位系统
US20170322562A1 (en) * 2016-05-06 2017-11-09 Mtd Products Inc Autonomous mower navigation system and method
CN108613671A (zh) * 2018-04-25 2018-10-02 东南大学 一种基于uwb定位和航迹定位的智能割草机定位装置及方法
CN109407659A (zh) * 2018-01-29 2019-03-01 大连理工大学 网球场机器人的定位方法及系统
CN109883420A (zh) * 2019-01-21 2019-06-14 深圳市普渡科技有限公司 机器人位姿识别方法、系统及机器人
CN110972679A (zh) * 2019-11-15 2020-04-10 江苏若博机器人科技有限公司 一种uwb定位的割草机器人
CN111045423A (zh) * 2019-11-15 2020-04-21 江苏若博机器人科技有限公司 一种智能四轮驱动uwb定位割草机器人及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150328775A1 (en) * 2014-05-15 2015-11-19 Irobot Corporation Autonomous Mobile Robot Confinement System
CN106647727A (zh) * 2015-10-28 2017-05-10 苏州宝时得电动工具有限公司 智能割草机的定位系统
US20170322562A1 (en) * 2016-05-06 2017-11-09 Mtd Products Inc Autonomous mower navigation system and method
CN109407659A (zh) * 2018-01-29 2019-03-01 大连理工大学 网球场机器人的定位方法及系统
CN108613671A (zh) * 2018-04-25 2018-10-02 东南大学 一种基于uwb定位和航迹定位的智能割草机定位装置及方法
CN109883420A (zh) * 2019-01-21 2019-06-14 深圳市普渡科技有限公司 机器人位姿识别方法、系统及机器人
CN110972679A (zh) * 2019-11-15 2020-04-10 江苏若博机器人科技有限公司 一种uwb定位的割草机器人
CN111045423A (zh) * 2019-11-15 2020-04-21 江苏若博机器人科技有限公司 一种智能四轮驱动uwb定位割草机器人及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550841A (zh) * 2022-11-25 2022-12-30 深圳华云时空技术有限公司 一种基于uwb的测向定位装置和测向定位方法
CN115550841B (zh) * 2022-11-25 2023-02-24 深圳华云时空技术有限公司 一种基于uwb的测向定位方法

Also Published As

Publication number Publication date
CN111093145A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2021093040A1 (zh) 一种割草机器人的定位系统及定位方法
EP3698618B1 (en) Smart lawn mowing system
CN107065864A (zh) 磁条导航的单驱单向自动导引运输车纠偏控制系统及方法
WO2019113877A1 (zh) 一种无人车控制方法及无人割草车
CN103353758B (zh) 一种室内机器人导航方法
CN105737838A (zh) 一种agv路径跟踪方法
CN105620470A (zh) 一种作业车辆行偏移检测调整方法及系统
KR101927038B1 (ko) 차량 위치 추정 장치, 차량 위치 추정 방법
CN108613671A (zh) 一种基于uwb定位和航迹定位的智能割草机定位装置及方法
CN109388140A (zh) 一种改进的用于地面车辆路径跟踪的纯追踪控制方法
CN107544534A (zh) 一种基于bds、ins的植保无人机自动精细作业及避障方法
WO2015074532A1 (zh) 带有矫正装置的自移动机器人及其矫正方法
JP2017159879A (ja) 車両位置認識システム
US20230305575A1 (en) Environment boundary construction method based on remote sensor and mobile robot
CN108334083A (zh) 一种基于农具位置的自动驾驶系统
CN107489430A (zh) 一种管片自动识别定位装置及方法
CN111090284B (zh) 自行走设备返回基站的方法及自行走设备
CN106168803A (zh) 一种用于移动机器人的位置感知方法
CN203520162U (zh) 基于导引路径的agv举升校正系统
CN110865640A (zh) 一种智能机器人的避障结构
CN108549391A (zh) Agv小车控制系统及方法
CN110209170A (zh) 一种停车机器人的行进轨迹矫正方法
CN106292674A (zh) 一种实时监控定位agv的方法
CN112605987A (zh) 机器人导航工作方法、装置及机器人
CN211063789U (zh) 一种割草机器人的定位系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952181

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19952181

Country of ref document: EP

Kind code of ref document: A1