WO2021092786A1 - 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质 - Google Patents

无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质 Download PDF

Info

Publication number
WO2021092786A1
WO2021092786A1 PCT/CN2019/117875 CN2019117875W WO2021092786A1 WO 2021092786 A1 WO2021092786 A1 WO 2021092786A1 CN 2019117875 W CN2019117875 W CN 2019117875W WO 2021092786 A1 WO2021092786 A1 WO 2021092786A1
Authority
WO
WIPO (PCT)
Prior art keywords
take
landing
drone
area
platform
Prior art date
Application number
PCT/CN2019/117875
Other languages
English (en)
French (fr)
Inventor
张顺
钟志勇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/117875 priority Critical patent/WO2021092786A1/zh
Priority to CN201980039843.3A priority patent/CN112292321B/zh
Publication of WO2021092786A1 publication Critical patent/WO2021092786A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • This application relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle take-off and landing platform, an unmanned aerial vehicle take-off and landing control method, an unmanned aerial vehicle take-off and landing control device, and a machine-readable storage medium.
  • UAVs can adapt to complex environments, they play an important role in many fields such as film and television, search and rescue, police, military, and civilian use.
  • UAVs can carry shooting equipment for aerial photography, and aerial images have the advantages of high definition, large scale, small area, and high visibility.
  • UAV aerial photography technology can be widely used in ecological environmental protection, mineral resource exploration, marine environment monitoring, land use investigation, water resources development, crop growth monitoring and yield estimation, agricultural operations, natural disaster monitoring and evaluation, urban planning and municipal management , Forest disease and insect pest protection and monitoring, public security, national defense, digital earth and advertising photography, etc., have a broad market demand.
  • the drone can land on the drone landing platform, the drone landing platform can replace the drone's battery, and then the drone can take off again.
  • This application provides an unmanned aerial vehicle take-off and landing platform, an unmanned aerial vehicle take-off and landing control method, an unmanned aerial vehicle take-off and landing control device, and a machine-readable storage medium.
  • an unmanned aerial vehicle take-off and landing platform including: a platform main body, including a landing zone for parking the unmanned aerial vehicle, and a take-off zone separate from the landing zone; a transmission component, On the platform main body, used to transport the drone parked in the landing area to the take-off area; and a battery disassembly assembly, provided on the platform main body, used to align the drones in the take-off area
  • the drone performs operations of removing old batteries and installing new batteries.
  • an unmanned aerial vehicle take-off and landing control method for an unmanned aerial vehicle take-off and landing platform includes a platform main body, a transmission component, and a battery disassembly and assembly component,
  • the platform main body includes a landing zone and a take-off zone separated from the landing zone, the transmission assembly is arranged on the platform main body, the battery disassembly assembly is arranged on the platform main body;
  • the method includes: after the first UAV located in the take-off area leaves the take-off area, controlling the transmission component to transmit the second UAV parked in the landing area to the take-off area; and controlling the station
  • the battery disassembly and assembly assembly performs operations of removing old batteries and installing new batteries on the second drone delivered to the take-off area.
  • an unmanned aerial vehicle take-off and landing control device for an unmanned aerial vehicle take-off and landing platform.
  • the unmanned aerial vehicle take-off and landing control device includes one or more processors for use in an unmanned aerial vehicle.
  • Man-machine take-off and landing control method is provided.
  • a machine-readable storage medium having a program stored thereon, and when the program is executed by a processor, a method for controlling the take-off and landing of an unmanned aerial vehicle is realized.
  • the main body of the platform in the embodiment of the present application is provided with a landing zone separated from the take-off zone, which can suspend at least one drone, which can improve the efficiency of battery replacement for multiple drones.
  • Fig. 1 is a top view of a state of the drone take-off and landing platform according to an embodiment of the application.
  • Fig. 2 is a top view of another state of the UAV take-off and landing platform shown in Fig. 1.
  • Fig. 3 is a side view of the UAV take-off and landing platform shown in Fig. 2.
  • Fig. 4 is a rear view of the UAV take-off and landing platform shown in Fig. 2.
  • Fig. 5 is a partial three-dimensional schematic diagram of the UAV take-off and landing platform shown in Fig. 2.
  • Fig. 6 is a three-dimensional schematic diagram of the transmission assembly of the UAV take-off and landing platform shown in Fig. 2.
  • Fig. 7 is a partial three-dimensional schematic diagram of the UAV take-off and landing platform shown in Fig. 2.
  • FIG. 8 is a three-dimensional schematic diagram of the indicator board and the indicator board driving device of the UAV take-off and landing platform shown in FIG. 2.
  • Fig. 9 is a plan view showing another state of the UAV take-off and landing platform shown in Fig. 1.
  • Fig. 10 shows a top view of an unmanned aerial vehicle take-off and landing platform according to another embodiment of the application.
  • Fig. 11 shows a flowchart of an embodiment of a method for controlling take-off and landing of a drone according to the present application.
  • Fig. 12 shows a block diagram of an embodiment of a drone take-off and landing control device according to the present application.
  • the drone take-off and landing platform of the embodiment of the present application includes a platform main body, a transmission component, and a battery disassembly and assembly component.
  • the main body of the platform includes a landing zone for parking drones and a take-off zone separate from the landing zone.
  • the conveying component is arranged on the main body of the platform and is used to convey the UAV parked in the landing area to the take-off area.
  • the battery disassembly and assembly assembly is arranged on the main body of the platform, and is used to remove the old battery and install the new battery for the UAV located in the take-off area.
  • the platform main body of the drone take-off and landing platform of the embodiment of the application includes a landing area and a take-off area that are separately arranged.
  • the drone lands in the landing area, and the transmission component transmits the drone from the landing area to the take-off area, and the drone is in the take-off area.
  • the drone replaces the battery.
  • the next drone or multiple drones can land in the landing zone and wait for the drones in the take-off zone to take off.
  • the transmission component transmits the drones parked in the landing area to the take-off area, and in this way, the batteries of multiple drones are replaced in turn.
  • the landing area is used as a stand-by position, and at least one drone can be suspended, which can improve the efficiency of battery replacement for multiple drones.
  • the UAV take-off and landing control method of the embodiment of the application is used for a UAV take-off and landing platform.
  • the UAV take-off and landing platform includes a platform main body, a transmission component, and a battery disassembly and assembly component.
  • the platform main body includes a landing zone and a landing zone separated from the landing zone.
  • the transmission assembly is arranged on the platform main body, and the battery disassembly and assembly assembly is arranged on the platform main body.
  • the UAV take-off and landing control method includes: after the first UAV located in the take-off area leaves the take-off area, controlling the transmission component to transmit the second UAV parked in the landing area to the take-off area; and controlling the battery disassembly and assembly components.
  • the second drone delivered to the take-off area performs the operation of removing the old battery and installing the new battery.
  • the UAV take-off and landing control method can realize that multiple UAVs can efficiently replace the batteries in sequence.
  • the drone take-off and landing control device of the embodiment of the present application is used for a drone take-off and landing platform.
  • the UAV take-off and landing control device includes one or more processors for the UAV take-off and landing control method.
  • the drone take-off and landing control device can realize multiple drones to efficiently replace the batteries in sequence.
  • the machine-readable storage medium of the embodiment of the present application has a program stored thereon, and when the program is executed by a processor, a method for controlling the take-off and landing of a drone is realized.
  • the machine-readable storage medium can enable multiple drones to efficiently replace batteries in sequence.
  • Fig. 1 is a top view of a state of the drone take-off and landing platform 100 according to an embodiment.
  • FIG. 2 shows a top view of the drone landing platform 100 in another state.
  • the UAV landing platform 100 includes a platform main body 101, a transmission assembly 102 and a battery assembly and disassembly assembly 103.
  • the platform body 101 includes a landing area 110 for parking the drone 20 and a take-off area 111 separated from the landing area 110.
  • the transfer assembly 102 is provided on the platform main body 101 and is used to transfer the drone 20 parked in the landing area 110 to the take-off area 111.
  • the battery disassembly and assembly assembly 103 is provided on the platform main body 101 and is used for removing old batteries and installing new batteries for the drone located in the take-off area 111.
  • the unmanned aerial vehicle in the embodiment of the application is an unmanned aerial vehicle.
  • the first drone 30 is parked in the take-off area 111, and the first drone 30 has replaced the battery and is waiting for flight.
  • a second drone 20 is parked in the landing area 110 and is waiting to be delivered to the take-off area 111.
  • the transmission component 102 transmits the second UAV 20 to the take-off area 111, as shown in FIG. 2.
  • the second drone 20 can fly out of the take-off area 111 after the battery is replaced in the take-off area 111, and the next drone 20 can be transferred to the take-off area 111. In this way, multiple drones can be replaced in sequence.
  • a maximum of one UAV 20 is parked in the landing area 110, and after the UAV 20 is delivered to the take-off area 111, another UAV can land in the landing area 110.
  • multiple drones 20 can be parked in the landing area 110, and one of the drones 20 can be transferred to the take-off area 111, and the other drones 20 are waiting in the landing area 110.
  • another drone 20 parked in the landing area 110 can be transferred to the take-off area 111 for battery replacement. In this way, the drone landing platform 100 can carry more drones to park, so that more drones can land in time.
  • the platform body 101 of the drone landing platform 100 in the embodiment of the present application includes a landing area 110 and a take-off area 111 that are separately provided.
  • the drone 20 is landed in the landing area 110, and the transmission component 102 removes the drone 20 from the landing area 110. Transfer to the take-off area 111, and replace the battery of the drone 20 in the take-off area 111.
  • the next drone or drones 20 can land in the landing zone 110 and wait for the drone 30 in the take-off zone 111 to take off.
  • the landing area 111 is used as a standby position, and at least one UAV 20 can be suspended. When there are no UAVs in the take-off area 110, the UAV 20 parked in the landing area 111 can be transmitted to the take-off area 110 in time, which can increase the number of The efficiency of UAV 20 battery replacement.
  • the drone lands on an area of the drone landing platform, replaces the battery in that area, and then takes off from that area.
  • the landing and take-off of the drone are in the same area, the landing area and the take-off area are the same area, the take-off path and the landing path of the drone are the same, and the next drone needs to wait for the previous drone to leave the drone.
  • the next drone is hovering in the air and waiting for the previous drone to replace the battery.
  • the drone needs to complete a series of actions from hovering to landing, which takes a long time, which leads to the replacement of multiple drones. ,low efficiency.
  • a UAV landing platform can only correspond to one UAV, and the UAV landing platform can only serve the UAV during the time period from landing to take-off of a UAV.
  • the platform main body 101 of the embodiment of the present application provides a landing area 110 separated from the take-off area 111, so that the drone can land in the landing area 110 and wait, and then can be taken in time when there is no drone in the take-off area 111.
  • the transmission to the take-off area 111 is shorter than the time from hovering to landing, thereby improving the efficiency of battery replacement for multiple drones 20.
  • the drone take-off and landing platform 100 can serve at least two drones in the same time period, can replace the battery of at least one drone in the same time period, and carry at least one other drone to wait in the landing area.
  • a loop may be formed between the take-off zone 111 and the landing zone 110, and multiple drones may fly along the loop.
  • FIG. 3 is a side view of the UAV take-off and landing platform 100 shown in FIG. 2.
  • FIG. 4 is a rear view of the UAV take-off and landing platform 100 shown in FIG. 2.
  • the platform body 101 is roughly a box with a receiving space inside.
  • the upper surface 112 of the platform body 101 includes a take-off area 111 and a landing area 110.
  • the platform main body 101 includes pulleys 113, so that the platform main body 101 can be moved, and it is convenient to move and change positions.
  • the platform body 101 is fixed at a specific position and does not move.
  • FIG. 5 shows a partial three-dimensional schematic diagram of the UAV take-off and landing platform 100.
  • FIG. 6 shows a three-dimensional schematic diagram of the transmission assembly 102 of the UAV landing platform 100.
  • the transmission assembly 102 includes a push block 120 movably arranged on the platform main body 101, and a first transmission assembly 121 arranged on the platform main body 101.
  • the first transmission assembly 121 drives the push baffle 120 to move between the landing zone 110 and the take-off zone 111, so that the push baffle 120 pushes the drone 20 parked in the landing zone 110 to the take-off zone 111.
  • Pushing the UAV 20 through the pushing baffle 120 has a simple structure and is easy to manufacture.
  • the initial position of the push baffle 120 may be the outside of the landing area 110 away from the take-off area 111, as shown in FIG. 1.
  • the UAV 20 can land to the side of the push block 120 facing the take-off area 111, so the push block 120 can push the UAV 20 to the take-off area 111.
  • the push block 120 is in the shape of a block, and its longitudinal length is greater than the maximum dimension of the drone 20 in the front-to-rear direction.
  • the push baffle 120 extends longitudinally to the edge of the landing zone 110 or extends beyond the edge of the landing zone 110, so that the UAV 20 landing in the landing zone 110 is located between the longitudinal ends of the push baffle 120 , So that the push baffle 120 can push the drone 20 stably.
  • the first transmission assembly 121 is located in the receiving space of the platform main body 101.
  • the first transmission assembly 121 includes a power device 122 and a transmission belt 123 connecting the power device 122 and the pusher body 120.
  • the power device 122 drives the transmission belt 123 to move to drive the pusher body 120 to move.
  • the transmission distance of the power unit 122 and the transmission belt 123 is relatively long, so the area of the landing area 110 can be designed to be larger, so that the drone 20 can easily land in the landing area 110.
  • the transmission belt 123 can extend from the landing area 110 to the take-off area 111 to drive the push baffle 120 to move between the landing area 110 and the take-off area 111.
  • the transmission belt 123 can drive the push baffle 120 to move from the landing zone 110 to the take-off zone 111, push the drone 20 to the take-off zone 111, and can drive the push baffle 120 to move from the take-off zone 111 to the landing zone 110, so that the push baffle 120 can be moved from the take-off zone 111 to the landing zone 110. Reset, return to the initial position, you can push the next drone.
  • the power plant 122 may be located on the side of the first transmission assembly 121 away from the take-off area 111. In other embodiments, the power plant 122 may be located in another location.
  • the power device 122 includes a motor, and the motor is connected to the transmission belt 123 to drive the transmission belt 123 to move. The rotating shaft of the motor can rotate forward or backward, and can drive the transmission belt 123 to move in different directions, and drive the push baffle 120 to reciprocate between the take-off zone 111 and the landing zone 110.
  • the first transmission assembly 121 may include an air cylinder, and the push rod movement of the air cylinder drives the pusher block 120 to move.
  • the platform body 101 is provided with a first sliding rail 124 extending from the landing area 110 to the take-off area 111.
  • the pushing block 120 is slidably disposed on the first sliding rail 124, and is slid along the first sliding rail 124 under the driving of the first transmission assembly 121.
  • the first sliding rail 124 can guide the movement of the push baffle 120 so that the push baffle 120 moves smoothly according to a predetermined trajectory.
  • the first sliding rail 124 is located in the receiving space of the platform main body 101.
  • the landing zone 110 and the take-off zone 111 are distributed in the X direction
  • the first slide rail 124 extends linearly in the X direction
  • the drive belt 123 extends in the X direction.
  • the platform body 101 is provided with a first chute 114 passing through the upper surface 112 of the platform body 101, and the first chute 114 extends from the landing area 110 to the take-off area 111.
  • the pushing block 120 is protrudingly provided on the upper surface 112 of the platform main body 101, and extends into the platform main body 101 from the first sliding groove 114, and is slidably connected with the first sliding rail 124 in the platform main body 101.
  • the push stop body 120 is located above the upper surface 112 of the platform body 101, and can be connected to the first slide rail 124 in the platform body 101 through the first slide groove 114, so that the push stop body 120 can slide along the first slide groove 114 and the first slide rail 124.
  • the sliding of the rail 124 can push and push the drone 20 parked above the upper surface 112 of the platform body 101.
  • the structure is simple, and the pushing block 120 can slide stably along a predetermined path.
  • the first slide rail 124 is located in the platform main body 101, so that the appearance of the drone take-off and landing platform 100 is more beautiful.
  • the platform main body 101 is provided with a pair of first sliding grooves 114 parallel to each other, and two ends of the pushing block 120 extend into the platform main body 101 from the corresponding first sliding grooves 114.
  • the drone take-off and landing platform 100 includes a positioning block 130 disposed on the platform body 101, the positioning block 130 is disposed relative to the push block 120, the positioning block 130 and The push baffle 120 positions the drone 20 between the two in the take-off area 111.
  • the positioning block 130 and the push block 120 are arranged oppositely in the Y direction.
  • the UAV 20 is clamped from both sides of the UAV 20, so that the UAV 20 is positioned in the Y direction, so that the UAV 20 is on the battery.
  • the battery disassembly assembly 103 can replace the battery of the drone 20.
  • the platform body 101 includes an active area 117 located on the side of the take-off area 111 away from the landing area 110.
  • the positioning block 130 moves in the active area 117 and can move from the active area 117 to one side of the take-off area 111.
  • the extension direction of the positioning baffle 130 facing the inner side of the push baffle 120 and the extension direction of the push baffle 120 facing the inner side of the positioning baffle 130 is adapted to the shape of the drone 20, which can better hold and position the unmanned aerial vehicle 20.
  • Man machine 20 the drone 20 is a rotary-wing drone, and includes a pair of forearms 21 and a pair of rear arms 22. The forearms 21 are longer than the rear arms 22. After unfolding, the distance between the ends of the pair of forearms 21 Larger.
  • the inner side surface of the positioning block 130 extends obliquely from a direction away from the battery dismounting assembly 103 to a direction approaching the battery dismounting assembly 103 and toward the direction of the pushing block 120.
  • the inner side surface of the push block 120 extends obliquely from a direction away from the battery disassembly and assembly assembly 103 to a direction close to the battery disassembly and assembly assembly 103 and toward the positioning block 130.
  • the pushing block 120 and the positioning block 130 relatively push the front arm 21 and the rear arm 22. In this way, the drone 20 can be better positioned.
  • the push stop body 120 is provided with a first positioning member 126 movable relative to the push stop body 120
  • the positioning stop body 130 is provided with a second positioning member movable relative to the positioning stop body 130.
  • Pieces 131 The push stop body 120 and the positioning stop body 130 position the drone 20 in the first direction
  • the first positioning member 126 extends from the push stop body 120 to the direction of the positioning stop body 130
  • the second positioning member 131 extends from the positioning stop body.
  • the first positioning member 126 and the second positioning member 131 position the drone 20 in a second direction that intersects the first direction.
  • the first positioning member 126 can move relative to the pushing block 120 in the second direction.
  • the first positioning member 126 can move from a position close to the end of the pushing block 120 to the middle of the pushing block 120 to position the drone 20. After the positioning of the drone 20 is completed, the first positioning member 126 can move in the direction of the end of the pushing block 120, so that the drone 20 can fly after the battery is replaced, and avoid blocking the flight of the drone 20.
  • the first positioning member 126 is rotatable relative to the pushing block 120. When positioning the drone 20, the first positioning member 126 rotates and extends out of the pushing block 120; after positioning is completed, it can be rotated and retracted into the pushing block 120 or retracted to extend along one side of the pushing block 120.
  • the first positioning member 126 when positioning the drone 20, the first positioning member 126 rotates and extends at the end of the push block 120, and then moves to the middle of the push block 120 until the drone is positioned in the second direction. Machine 20. After the positioning is completed, the first positioning member 126 can move to the end of the pushing block 120 and rotate and retract.
  • the second positioning member 131 can move relative to the positioning block 130 in the second direction.
  • the second positioning member 131 can move from a position close to the end of the positioning block 130 to the middle of the positioning block 130 to position the drone 20. After the positioning of the drone 20 is completed, the second positioning member 131 can move in the direction of the end of the positioning block 130, so that the drone 20 can fly after the battery is replaced, so as to avoid blocking the flight of the drone 20.
  • the second positioning member 131 is rotatable relative to the positioning block 130.
  • the second positioning member 131 rotates and extends out of the positioning block 130; after positioning is completed, it can be retracted into the positioning block 130 or retracted to extend along one side of the positioning block 130. In other embodiments, when positioning the drone 20, the second positioning member 131 rotates and extends at the end of the positioning block 130, and then moves to the middle of the positioning block 130 until the drone is positioned in the second direction. Machine 20. After the positioning is completed, the second positioning member 131 can move to the end of the positioning block 130 and rotate and retract.
  • the first direction is the Y direction
  • the pushing block 120 and the positioning block 130 are spaced apart in the Y direction
  • the drone 20 is positioned in the Y direction.
  • the second direction intersects the Y direction.
  • the second direction and the first direction are perpendicular to each other.
  • the second direction is the X direction.
  • the push block 120 is provided with a pair of first positioning members 126, and the pair of first positioning members 126 are spaced apart in the second direction to clamp and position the drone 20 between the two.
  • the positioning block 130 is provided with a pair of second positioning members 131, and the pair of second positioning members 131 are arranged at intervals in the second direction to clamp and position the drone 20 between the two.
  • a pair of first positioning members 126 is provided, and a second positioning member 131 is provided.
  • a pair of second positioning members 131 is provided, and a first positioning member 126 is provided.
  • a second positioning member 131 is provided, and a first positioning member 126 is provided.
  • the second positioning member 131 and the first positioning member 126 are arranged at intervals in the second direction and clamped in the second direction. UAV 20.
  • the positioning block 130 is movably provided on the platform main body 101, and the UAV take-off and landing platform 100 includes a second transmission assembly 132 provided on the platform main body 101, and the second transmission The assembly 132 drives the positioning block 130 to move.
  • the push block 120 pushes the UAV 20 to the take-off area 111, and the positioning block 130 moves in a direction close to the push block 120 to locate the UAV 20 in the take-off area 111.
  • the positioning block 130 can move to a direction away from the take-off area 111 to reset and return to the initial position, as shown in FIG. 1, to avoid hindering the take-off of the drone 20.
  • the platform body 101 is provided with a second slide rail 136 extending toward the take-off area 111, and the positioning block 130 is slidably provided on the second slide rail 136, and the second transmission assembly Driven by 132, it slides along the second slide rail 136.
  • the second slide rail 136 extends from the take-off area 111 in a direction away from the landing area 110.
  • the second sliding rail 136 can guide the positioning block 130 to slide, so that the positioning block 130 slides along a predetermined track, and has a simple structure and is easy to implement.
  • the second slide rail 136 is located in the platform body 101.
  • the platform body 101 is provided with a second chute 115 passing through the upper surface 112 of the platform body 101, and the second chute 115 extends toward the take-off area 111.
  • the positioning block 130 is protrudingly provided on the upper surface 112 of the platform main body 101, extends from the second sliding groove 115 into the platform main body 101, and is slidably connected with the second sliding rail 136 in the platform main body 101.
  • the positioning block 130 slides along the second sliding groove 115. In this way, the positioning block 130 can be located above the platform main body 101 to position the drone 20, and can extend into the platform main body 101 and slide along the second slide rail 136.
  • the structure is simple, and the drone take-off and landing platform 100 has a relatively good appearance. Beautiful.
  • the second chute 115 extends from the take-off area 111 in a direction away from the landing area 110.
  • a pair of second sliding grooves 115 extending in parallel may be provided, and the end of the positioning block 130 may extend into the platform body 101 from the corresponding second sliding groove 115.
  • the maximum stroke of the positioning block 130 is less than the maximum stroke of the pushing block 120. After the positioning is completed, the positioning block 130 is reset back to the initial position that can avoid the drone 20, and the push block 120 is reset back to the landing zone 110.
  • the maximum stroke of the positioning block 130 can be shorter, which can also meet the need for avoidance. In this way, the area of the upper surface 112 of the platform body 101 can be saved, and the maximum stroke of the push block 120 is longer, making the landing area 110 larger and convenient landing.
  • the second transmission assembly 132 includes an air cylinder 133 connected to the positioning block 130, and the air cylinder 133 drives the positioning block 130 to move.
  • the air cylinder 133 drives the positioning block 130 to move.
  • the maximum stroke of the positioning block 130 is relatively short, and the cylinder 133 can satisfy the movement of the positioning block 130 with a short stroke.
  • the cylinder 133 is located below the positioning block 130, so that it will not hinder the drone 20, fully utilize the space, and have a compact structure layout.
  • the air cylinder 133 is located in the platform main body 101, and the space of the platform main body 101 is utilized, and the appearance of the platform main body 101 is more beautiful.
  • the cylinder 133 includes a piston rod 134 connected to the positioning block 130.
  • the piston rod 134 drives the positioning block 130 to move.
  • the piston rod 134 extends from the positioning block 130 to the direction of the pushing block 120.
  • the positioning block 130 and the pushing block 120 are spaced apart.
  • the piston rod 134 drives the positioning block 130 to move to the take-off area 111, the piston rod 134 can extend toward the take-off area 111, and the piston rod 134 extends below the take-off area 111. In this way, the space of the platform main body 101 can be fully utilized, and the structure can be made compact.
  • the second transmission assembly 132 includes a power device (such as a motor) and a transmission belt to drive the positioning block 130 to move.
  • a power device such as a motor
  • the battery dismounting assembly 103 includes a bracket 141 provided on the platform body 101 and a grasping assembly 142 provided on the bracket 141.
  • the bracket 141 extends from one side of the take-off area 111 to above the take-off area 111, and the grabbing assembly 142 is used to grab the battery to replace the battery of the drone 20, so that the battery can be replaced automatically.
  • the bracket 141 can extend out of the platform main body 101, as shown in FIG. 3, and extend above the drone 20 in the take-off area 111.
  • the grabbing component 142 can grab the drone 20 and grab old batteries from the drone 20. The old battery can be transferred into the platform body 101.
  • a plurality of charging slots 116 are provided in the platform main body 101, as shown in FIG. 7, for placing the battery 40 and charging the battery 40.
  • the grabbing assembly 142 is used to put the battery of the drone 20 into the charging slot 116 and grab another battery 40 in the charging slot 116 to assemble it to the drone 20.
  • the old battery removed from the drone 20 can be put into the charging slot 116 for charging.
  • the grabbing component 142 can grab a new battery charged to a threshold value, and load it into the drone 20, thus realizing battery replacement.
  • a plurality of charging slots 116 may be arranged in an array.
  • the bracket 141 is telescopically provided on the platform main body 101.
  • the bracket 141 and the grasping assembly 142 are housed in the platform main body 101, as shown in FIG. 1.
  • the bracket 141 can extend from the platform main body 101 to the take-off area 111 to perform the operation of replacing the battery, as shown in FIG. 2.
  • the bracket 141 can be retracted away from the take-off area 111 to avoid the drone 30 in the take-off area 111, as shown in FIG. 1.
  • the bracket 141 can be lowered and retracted into the platform body 101.
  • the upper surface of the bracket 141 and the upper surface of the platform body 101 can be substantially flush, making the overall upper surface of the platform It is relatively flat and can be used for landing and parking of drones in other scenarios besides battery replacement.
  • the battery disassembly assembly 103 includes a servo motor 143. As shown in FIG. 2, the servo motor 143 is connected to the bracket 141 for driving the bracket 141 and recording the position of the bracket 141.
  • the drone landing platform 100 includes a controller 105 connected to a servo motor 143, and the controller 105 is used to control the servo motor 143 to drive the bracket 141 to reset according to the current position of the bracket 141 in response to a reset instruction. In this way, since the servo motor can obtain the position of the mechanical arm, the bracket 141 can be controlled to automatically reset, without manual reset.
  • the controller 105 may receive a reset instruction input by the user, and control the servo motor 143 to drive the bracket 141 to reset.
  • the unmanned aerial vehicle landing platform 100 is powered off and re-energized, and the controller 105 drives the bracket 141 to reset.
  • the restoring of the bracket 141 can mean that the bracket 141 is retracted into the platform body 101.
  • the UAV landing platform 100 includes an indicator board 150 provided on the platform main body 101.
  • the side of the indicator board 150 facing the take-off area 111 is provided with an identification code, which is used to provide the UAV 20 with instructions for starting the flight after the battery disassembly assembly 103 completes the removal of the old battery and the installation of the new battery.
  • the identification code may be a two-dimensional code or the like.
  • the camera of the drone 20 scans the identification code, and the control system of the drone 20 can identify the identification code and generate an instruction instructing the drone 20 to take off.
  • the control system can respond to instructions to control the drone 20 to take off. In this way, the drone can fly automatically after replacing the battery.
  • the indicator board 150 may be located at the side of the take-off area 111 opposite to the battery assembly 103, facing the head of the drone 20, and can be scanned by the head camera.
  • the indicator board 150 is set on the platform main body 101 so as to be liftable.
  • the drone landing platform 100 includes an indicator board driving device 151 connected with the indicator board 150 to drive the indicator board 150 to move up and down. The automatic lifting of the indicating board 150.
  • the controller 105 may control the indicating board driving device 151 to drive the indicating board 150 to move. Before the drone 20 takes off, the indicating board 150 is raised and protrudes out of the platform main body 101. After the drone 20 flies away, the indicator board 150 can be lowered.
  • the indicator board driving device 151 may include an air cylinder, which has a simple structure and low cost. The indicator board driving device 151 is located in the platform main body 101.
  • the indicator board 150 when the indicator board 150 is lowered, it is housed in the platform main body 101, so that the platform main body 101 has a better appearance, and the upper surface of the platform is flat. It can be used in other scenarios other than battery replacement to facilitate the parking of the drone. .
  • the indicator board driving device 151 is used to drive the indicator board 150 to move closer to or away from the take-off area 111 on one side of the take-off area 111. According to the location and size of the drone 20, the indicator board 150 can be driven to approach or move away from the drone 20, so that the drone 20 can scan the identification code on the indicator board 150.
  • the platform main body 101 is provided with a plurality of indicator board escape slots 118 for the indicator board 150 to extend, and the multiple indicator board escape slots 118 are arranged on one side of the take-off area 111 in a direction away from the take-off area 111. cloth.
  • the indicator board driving device 151 is used to drive the indicator board 150 to extend out of the platform main body 101 from one of the indicator board vacant slots 118.
  • the multiple indicator boards have different distances from the slot 118 to the take-off area 111 and different distances from the drone 20.
  • the indicating board driving device 151 can drive the indicating board 150 to extend from one of the indicating board vacant slots 118 according to the location and size of the UAV 20, so that the UAV 20 can scan the identification code.
  • the multiple indicator board relief slots 118 may be arranged in parallel and spaced apart.
  • the platform main body 101 is provided with an indicator board escape slot 118, and the indicator board driving device 151 can drive the indicator board 150 to extend from the indicator board escape slot 118, and then move closer to or away from the drone. 20 direction movement.
  • FIG. 9 is a top view of the drone landing platform 100 in another state.
  • the UAV landing platform 100 includes an in-position detection device 160, and the in-position detection device 160 is used to detect the UAV in the landing zone 110.
  • the transmission component 102 transmits the drone to the take-off area 111 for a preset period of time.
  • the preset time can be greater than or equal to the time for the drone to replace the battery and take off to ensure that there is no drone in the take-off area 111. In this way, automatic detection and transmission can be realized.
  • the drone in the landing zone is delivered to the take-off zone at a preset time interval, such as an interval of 2 minutes; within the preset time, battery replacement and take-off preparation can be guaranteed.
  • the landing detection device 160 includes a photodetector 161 with high sensitivity.
  • the photodetector 161 includes a transmitter 162 and a receiver 163 corresponding to the transmitter 162.
  • One of the transmitter 162 and the corresponding receiver 163 is disposed on the pusher body 120, and the other is disposed on the pusher body 120. ⁇ Locating block 130.
  • the transmitter 162 sends out a light signal, passes through the landing area 110 and the take-off area 111, and is received by the receiver 163.
  • the receiver 163 converts the light signal into It means that there is no electric signal from the drone in the landing zone 110.
  • the transmitter 162 sends out the light signal and is blocked by the drone, and the receiver 163 cannot receive the light signal. electric signal.
  • the controller 105 can collect the electrical signal of the receiver 163 when there is no drone in the take-off area 111, and determine whether there is a drone in the landing area 110 according to the electrical signal.
  • the landing-on-position detection device 160 includes a plurality of photodetectors 161 arranged at intervals, so that a grating can be emitted to prevent the unmanned aerial vehicle from deviating and missing detection.
  • the plurality of photodetectors 161 may be arranged at intervals in the longitudinal extension direction of the pushing barrier 120 and the positioning barrier 130, and the distance of the interval is smaller than the maximum dimension in the front and rear direction of the drone.
  • the UAV landing platform 100 includes a take-off in-position detection device 165, and the take-off and in-position detection device 165 is used to detect the UAV in the take-off area 111.
  • the controller 105 can control the battery disassembly assembly 103 to perform the operation of battery replacement.
  • the controller 105 is used to control the transmission component 102 to transfer the drone from when the take-off on-position detection device 165 detects that there is no drone in the take-off area 111, and the landing detector 160 detects that the drone is parked in the landing area 110 The landing zone 110 is transferred to the take-off zone 111.
  • the controller 105 is used to control the first drone when the takeoff in-position detection device 165 detects that there is no drone in the take-off zone 111, and the landing in-position detector 160 detects that there is a drone in the landing zone 110.
  • the transmission assembly 102 drives the push block 120 to push the drone to the take-off area 111 and further controls the push block 120 to return to the landing zone 110. After the drone is positioned in the take-off zone 111, the controller 105 controls the first transmission assembly 102 to drive the pusher 120 to return to the landing zone 110.
  • the takeoff in-position detection device 165 is provided under the takeoff area 111 to make full use of the space of the platform main body 101.
  • the controller 105 can also control the second transmission assembly 132 (as shown in FIG. 5).
  • the take-off in-position detection device 165 detects that there is a drone in the take-off area 111, and the controller 105 controls the second transmission assembly 132 to drive the positioning block 130 to move to the take-off area 111.
  • the controller 105 controls the second transmission assembly 132 to drive the positioning block 130 to move away from the take-off area 111 to reset.
  • a flight aging test is performed on multiple drones, and the drone take-off and landing platform 100 can be used as a base station device. After the first UAV landed in the landing area 110, it was transferred to the take-off area 111 to replace the battery, and the second UAV landed in the landing area 1110. The first drone takes off and can fly according to the set flight path and flight mode, and then returns to the drone landing platform 100. Multiple drones cyclically land, replace batteries, take off, and land at intervals. In this way, the automated flight aging test of multiple UAVs is realized. Compared with the landing and take-off of the drone in the related technology, the take-off path and the landing path of the drone are the same.
  • the flight path of the drone is single, and it can only fly forward, hover, and retreat, which cannot be formed.
  • a landing zone separated from the take-off zone is provided, so that the take-off and landing paths can be separated, so that multiple drones can fly and move along the loop, take off from the take-off zone, and fly in the air to the landing zone. Then move from the landing area to the take-off area to form a circular loop. Therefore, multiple drones can be designed to have more diverse flight modes, and multiple drones can have a sufficient safety distance to prevent mutual collisions.
  • the UAV take-off and landing platform 100 can also be used in other scenarios, for example as a battery supply base station for agricultural machinery.
  • FIG. 10 shows a top view of another embodiment of a drone landing platform 400.
  • the UAV landing platform 400 shown in FIG. 10 is similar to the UAV landing platform 100 shown in FIGS. 1-9.
  • the transmission assembly 402 of the UAV landing platform 400 shown in FIG. 10 includes a conveyor belt 420 exposing the upper surface 412 of the platform body 401.
  • the conveyor belt 420 is used for Therefore, the drone 20 is transferred from the landing area 410 to the take-off area 411.
  • the first transmission assembly 421 includes the conveyor belt 420 described above.
  • the drone 20 can land on the conveyor belt 420, and the conveyor belt 420 can be driven by the power device 422 to move to transport the drone 20 to the take-off area 411.
  • the conveyor belt 420 conveys the drone 20 more stably and avoids friction between the drone 20 and the upper surface 412 of the platform main body 101.
  • FIG. 11 shows a flowchart of an embodiment of a method 200 for controlling take-off and landing of a drone.
  • the UAV take-off and landing control method 200 is used for the UAV take-off and landing platform, and can be used for the UAV take-off and landing platform 100 or 400 described above.
  • the UAV take-off and landing platform includes the platform main body, transmission components and battery disassembly and assembly components.
  • the platform main body includes a landing zone and a take-off zone separated from the landing zone.
  • the transmission component is arranged on the platform main body, and the battery disassembly and assembly components are arranged on the platform main body.
  • the drone take-off and landing control method 200 includes steps 201 and 202.
  • step 201 after the first UAV located in the take-off area leaves the take-off area, the transmission component is controlled to transmit the second UAV parked in the landing area to the take-off area.
  • step 202 the battery disassembly assembly is controlled to perform operations of removing the old battery and installing the new battery on the second drone delivered to the take-off area.
  • the control transmission component transmits the second UAV parked in the landing area to the take-off area. This ensures that the first drone flies a certain distance, and the second drone will not collide with the first drone when it reaches the take-off area.
  • the take-off in-position detection device detects whether there is the first UAV in the take-off area; the landing in-position detection device detects whether there is a second UAV in the landing area; if the take-off in-position detection device detects the take-off area There is no first UAV, and the landing on-position detector detects that there is a second UAV in the landing area, and the transmission component is controlled to transmit the second UAV to the take-off area.
  • control the transmission assembly before controlling the battery disassembly assembly to perform the old battery removal and new battery installation operations on the second drone delivered to the take-off area, control the transmission assembly to intersect the second drone in the take-off area at the first intersection. Positioning in one direction and a second direction.
  • control transmission component moves to a direction away from the take-off area to reset.
  • the drone take-off and landing platform includes an indicator board arranged on the main body of the platform, and the side of the indicator board facing the take-off area is provided with an identification code for providing instruction information for the drone to start flying.
  • the take-off and landing control method of the UAV includes: controlling the indicator board to rise so that the identification code is displayed in front of the second UAV located on the take-off platform, so that the second UAV recognizes the identification code after installing a new battery and starts the flight.
  • the battery disassembly assembly includes a bracket provided on the main body of the platform, a grasping component provided on the bracket, and a servo motor connected to the bracket, and the bracket extends from one side of the take-off area to above the take-off area.
  • the drone take-off and landing control method includes: in response to a reset instruction, controlling the servo motor to drive the bracket to reset according to the current position of the bracket recorded by the servo motor.
  • the relevant part can refer to the part of the description of the device embodiment.
  • the method embodiment and the device embodiment are complementary to each other.
  • Fig. 12 shows a block diagram of an embodiment of a drone take-off and landing control device 300.
  • the drone take-off and landing control device 300 is used for a drone take-off and landing platform.
  • the drone takeoff and landing control device 300 includes one or more processors 301 for implementing the drone takeoff and landing control method 200 described above.
  • the drone take-off and landing control device 300 may include a machine-readable storage medium 304, which may store a program that can be called by the processor 301, and may include a non-volatile storage medium.
  • the drone take-off and landing control device 300 may include a memory 303 and an interface 302.
  • the UAV take-off and landing control device 300 may also include other hardware according to actual applications.
  • the machine-readable storage medium 304 of the embodiment of the present application has a program stored thereon, and when the program is executed by the processor 301, the drone take-off and landing control method 200 is implemented.
  • This application may take the form of a computer program product implemented on one or more storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing program codes.
  • Machine-readable storage media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be machine-readable instructions, data structures, program modules, or other data.
  • machine-readable storage media include, but are not limited to: phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only Memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage , Magnetic cassette tape, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by computing devices.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only Memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • CD-ROM compact disc
  • DVD digital versatile disc
  • Magnetic cassette tape magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by computing devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机起降平台(100)、无人机起降控制方法(200)、无人机起降控制装置(300)及机器可读存储介质(304)。无人机起降平台(100)包括平台主体(101)、传送组件(102)和电池拆装组件(103)。平台主体(101)包括用于停放无人机(20)的降落区(110),和与降落区(110)分离的起飞区(111)。传送组件(102)设于平台主体(101),用于将停放在降落区(110)的无人机(20)传送至起飞区(111)。电池拆装组件(103)设于平台主体(101),用于对位于起飞区(111)的无人机(20)进行旧电池拆除和新电池安装操作。

Description

无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质 技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质。
背景技术
无人机因能够适应复杂的环境,在影视、搜救、警用、军事、民用等很多领域发挥很重要的作用。无人机可以承载拍摄设备进行航拍,航拍影像具有高清晰、大比例尺、小面积、高现势性的优点。无人机航拍摄影技术可广泛应用于生态环境保护、矿产资源勘探、海洋环境监测、土地利用调查、水资源开发、农作物长势监测与估产、农业作业、自然灾害监测与评估、城市规划与市政管理、森林病虫害防护与监测、公共安全、国防事业、数字地球以及广告摄影等领域,有着广阔的市场需求。
随着无人机技术水平不断提高,对无人机的自动起飞与降落,自动更换电池实现自动化的需求越来越迫切。无人机可以降落在无人机起降平台,无人机起降平台可以对无人机进行更换电池,之后无人机可再次起飞。
发明内容
本申请提供一种无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质。
根据本申请实施例的一个方面,提供一种无人机起降平台,包括: 平台主体,包括用于停放无人机的降落区,和与所述降落区分离的起飞区;传送组件,设于所述平台主体,用于将停放在所述降落区的所述无人机传送至所述起飞区;及电池拆装组件,设于所述平台主体,用于对位于所述起飞区的所述无人机进行旧电池拆除和新电池安装操作。
根据本申请实施例的另一个方面,提供一种无人机起降控制方法,用于无人机起降平台,所述无人机起降平台包括平台主体、传送组件和电池拆装组件,所述平台主体包括降落区和与所述降落区分离的起飞区,所述传送组件设于所述平台主体,所述电池拆装组件设于所述平台主体;所述无人机起降控制方法包括:在位于所述起飞区的第一无人机离开所述起飞区后,控制所述传送组件将停放在所述降落区的第二无人机传送至所述起飞区;及控制所述电池拆装组件对传送至所述起飞区的所述第二无人机进行旧电池拆除和新电池安装操作。
根据本申请实施例的另一个方面,提供一种无人机起降控制装置,用于无人机起降平台,所述无人机起降控制装置包括一个或多个处理器,用于无人机起降控制方法。
根据本申请实施例的另一个方面,提供一种机器可读存储介质,其上存储有程序,该程序被处理器执行时,实现无人机起降控制方法。
本申请实施例的平台主体设置与起飞区分离的降落区,可以暂停至少一架无人机,如此可以提高对多台无人机更换电池的效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1所示为本申请一个实施例的无人机起降平台的一个状态的俯视图。
图2所示为图1所示的无人机起降平台的另一个状态的俯视图。
图3所示为图2所示的无人机起降平台的侧视图。
图4所示为图2所示的无人机起降平台的后视图。
图5所示为图2所示的无人机起降平台的部分立体示意图。
图6所示为图2所示的无人机起降平台的传送组件的立体示意图。
图7所示为图2所示的无人机起降平台的部分立体示意图。
图8所示为图2所示的无人机起降平台的指示板和指示板驱动装置的立体示意图。
图9所示为图1所示的无人机起降平台的另一个状态的俯视图。
图10所示为本申请另一个实施例的无人机起降平台的俯视图。
图11所示为本申请无人机起降控制方法的一个实施例的流程图。
图12所示为本申请无人机起降控制装置的一个实施例的模块框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或 相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。
本申请实施例的无人机起降平台包括平台主体、传送组件和电池拆装组件。平台主体包括用于停放无人机的降落区,和与降落区分离的起飞区。传送组件设于平台主体,用于将停放在降落区的无人机传送至起飞区。电池拆装组件设于平台主体,用于对位于起飞区的无人机进行旧电池拆除和新电池安装操作。
本申请实施例的无人机起降平台的平台主体包括分离设置的降落区和起飞区,无人机降落在降落区,传送组件将无人机从降落区传送到起飞区,在起飞区对无人机更换电池。下一架或多架无人机可以降落至降落区,等待起飞区的无人机起飞。起飞区的无人机起飞之后,传送组件再将停在降落区的无人机传送至起飞区,如此依次对多台无人机进行更换电池。降落区作为待机停留位置,可以暂停至少一架无人机,如此可以提高对多台无人机更换电池的效率。
本申请实施例的无人机起降控制方法用于无人机起降平台,无人机起降平台包括平台主体、传送组件和电池拆装组件,平台主体包括降落区和与降落区分离的起飞区,传送组件设于所述平台主体,电池拆装组件设 于平台主体。无人机起降控制方法包括:在位于起飞区的第一无人机离开起飞区后,控制传送组件将停放在降落区的第二无人机传送至起飞区;及控制电池拆装组件对传送至起飞区的第二无人机进行旧电池拆除和新电池安装操作。无人机起降控制方法可以实现多台无人机高效地依次更换电池。
本申请实施例的无人机起降控制装置,用于无人机起降平台。无人机起降控制装置包括一个或多个处理器,用于无人机起降控制方法。无人机起降控制装置可以实现多台无人机高效地依次更换电池。
本申请实施例的机器可读存储介质,其上存储有程序,该程序被处理器执行时,实现无人机起降控制方法。机器可读存储介质可以实现多台无人机高效地依次更换电池。
下面结合附图,对本申请的无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
图1所示为一个实施例的无人机起降平台100的一个状态的俯视图。图2所示为无人机起降平台100的另一个状态的俯视图。参考图1和2,无人机起降平台100包括平台主体101、传送组件102和电池拆装组件103。平台主体101包括用于停放无人机20的降落区110,和与降落区110分离的起飞区111。传送组件102设于平台主体101,用于将停放在降落区110的无人机20传送至起飞区111。电池拆装组件103设于平台主体101,用于对位于起飞区111的无人机进行旧电池拆除和新电池安装操作。
本申请实施例的无人机为无人飞行器。在图1中,起飞区111停放有第一无人机30,第一无人机30更换完电池,等待飞行。降落区110停放有第二无人机20,等待传送至起飞区111。在第一无人机30飞离起飞区111后,传送组件102将第二无人机20传送至起飞区111,如图2所示。第二无人机20在起飞区111更换完电池后可以飞离起飞区111,下一架无 人机20可以被传送至起飞区111。如此可以实现多台无人机依次更换电池。
在一些实施例中,降落区110最多停放一架无人机20,在该无人机20传送至起飞区111后,另一架无人机可以降落至降落区110。在另一些实施例中,降落区110可以停放多架无人机20,传送其中一架无人机20至起飞区111,其他无人机20在降落区110等待。在起飞区111没有无人机20时,另一架停放在降落区110的无人机20可以被传送至起飞区111进行更换电池。如此无人机起降平台100可以承载更多的无人机停放,使得更多的无人机可以及时降落。
本申请实施例的无人机起降平台100的平台主体101包括分离设置的降落区110和起飞区111,无人机20降落在降落区110,传送组件102将无人机20从降落区110传送到起飞区111,在起飞区111对无人机20更换电池。下一架或多架无人机20可以降落至降落区110,等待起飞区111的无人机30起飞。降落区111作为待机停留位置,可以暂停至少一架无人机20,在起飞区110没有无人机时,降落区111停放的无人机20可以及时传送至起飞区110,如此可以提高对多台无人机20更换电池的效率。
相关技术中,无人机降落至无人机起降平台的一个区域,在该区域进行更换电池,之后从该区域起飞。无人机降落和起飞在同一区域,降落区和起飞区为同一区域,无人机起飞路径和降落路径是同一条,下一架无人机需等待上一架无人机离开无人机起降平台后,才可降落。下一架无人机在空中悬停等待上一架无人机更换电池,无人机从悬停到降落需要完成一系列动作,时间较长,从而导致对多台无人机进行更换电池时,效率低。一个无人机起降平台只能对应一台无人机,一台无人机从降落到起飞的时间段内,该无人机起降平台只能为该台无人机服务。
相比较于相关技术,本申请实施例的平台主体101提供与起飞区111分离的降落区110,使无人机可以降落到降落区110等待,之后可以在起飞区111没有无人机时及时被传送至起飞区111,相对于从悬停到降落的 时间短,从而提高对多台无人机20更换电池的效率。无人机起降平台100在同一时间段可以服务至少两台无人机,同一时间段可以对至少一台无人机更换电池,并承载至少另外的一台无人机在降落区等待。在一些实施例中,起飞区111和降落区110之间可以形成循环回路,多台无人机可以沿循环回路飞行。
图3所示为图2所示的无人机起降平台100的侧视图。图4所示为图2所示的无人机起降平台100的后视图。参考图2-4,在一些实施例中,平台主体101大致呈箱体,内部具有收容空间。平台主体101的上表面112包括起飞区111和降落区110。在一些实施例中,平台主体101包括滑轮113,使得平台主体101可以移动,方便挪动、变换位置。在另一些实施例中,平台主体101固定在特定的位置,不挪动。
图5所示为无人机起降平台100的部分立体示意图。图6所示为无人机起降平台100的传送组件102的立体示意图。参考图2、5和6,传送组件102包括可活动地设于平台主体101的推送挡体120,和设于平台主体101的第一传动组件121。第一传动组件121驱动推送挡体120在降落区110和起飞区111之间运动,使推送挡体120将停放在降落区110的无人机20推送到起飞区111。通过推送挡体120推送无人机20,结构简单,易于制造。
在一些实施例中,推送挡体120的初始位置可以为降落区110背离起飞区111的外侧,如图1所示。无人机20可以降落至推送挡体120面向起飞区111的一侧,如此推送挡体120可以将无人机20向起飞区111推送。在一些实施例中,推送挡体120呈挡块状,其纵向长度大于无人机20的前后方向的最大尺寸。在一些实施例中,推送挡体120纵向延伸到降落区110的边缘或延伸超过降落区110的边缘,如此使降落在降落区110的无人机20位于推送挡体120的纵向两端之间,使推送挡体120可以稳定地推动无人机20。
继续参考图1、5和6,在一些实施例中,第一传动组件121位于平台主体101的收容空间内。在一些实施例中,第一传动组件121包括动力装置122和连接动力装置122和推送挡体120的传动带123,动力装置122驱动传动带123运动,以带动推送挡体120运动。动力装置122和传动带123可以传送的距离较远,因此可以允许将降落区110的面积设计得较大,使无人机20较容易降落至降落区110内。传动带123可以从降落区110向起飞区111延伸,带动推送挡体120在降落区110和起飞区111之间运动。传动带123可以带动推送挡体120从降落区110向起飞区111运动,推送无人机20至起飞区111,并且可以带动推送挡体120从起飞区111向降落区110运动,使推送挡体120复位,回到初始位置,可以推送下一架无人机。
在一些实施例中,动力装置122可以位于第一传动组件121背离起飞区111的一侧。在另一些实施例中,动力装置122可以位于其他位置。在一些实施例中,动力装置122包括电机,电机与传动带123连接,带动传动带123运动。电机的转轴可以正转或反转,可以驱动传动带123向不同的方向运动,带动推送挡体120在起飞区111和降落区110之间往复运动。
在另一些实施例中,第一传动组件121可以包括气缸,气缸的推杆运动,带动推送挡体120运动。
在一些实施例中,平台主体101设有从降落区110延伸至起飞区111的第一滑轨124。推送挡体120滑动设于第一滑轨124,在第一传动组件121的带动下沿第一滑轨124滑动。第一滑轨124可以导引推送挡体120的运动,使推送挡体120平稳地按照预定轨迹运动。第一滑轨124位于平台主体101的收容空间内。在一些实施例中,降落区110和起飞区111在X方向分布,第一滑轨124在X方向上直线延伸,传动带123在X方向上延伸。
在一些实施例中,平台主体101设有贯穿平台主体101的上表面112的第一滑槽114,第一滑槽114从降落区110延伸至起飞区111。推送挡体120凸设于平台主体101的上表面112上,且从第一滑槽114伸入平台主体101内,与位于平台主体101内的第一滑轨124滑动连接。推送挡体120位于平台主体101的上表面112上方,可以通过第一滑槽114与平台主体101内的第一滑轨124连接,如此推送挡体120可以沿第一滑槽114和第一滑轨124滑动,可以抵推停放于平台主体101的上表面112上方的无人机20,结构简单,推送挡体120可以沿预定路径稳定滑动。第一滑轨124位于平台主体101内,从而使得无人机起降平台100的外观较美观。在一些实施例中,平台主体101设有一对相互平行的第一滑槽114,推送挡体120的两端从对应的第一滑槽114伸入平台主体101内。
参考图2、5和6,在一些实施例中,无人机起降平台100包括设置于平台主体101的定位挡体130,定位挡体130相对于推送挡体120设置,定位挡体130和推送挡体120在起飞区111将无人机20定位于两者之间。定位挡体130和推送挡体120在Y方向上相对设置,从无人机20的两侧夹持无人机20,使无人机20在Y方向上定位,以使无人机20在电池拆装组件103的操作范围内,电池拆装组件103可以对无人机20进行更换电池。平台主体101包括位于起飞区111背离降落区110的一侧的活动区117,定位挡体130在活动区117内运动,可以从活动区117运动至起飞区111的一侧。
在一些实施例中,定位挡体130面向推送挡体120的内侧面和推送挡体120面向定位挡体130的内侧面的延伸方向适应无人机20的外形,可以更好地夹持定位无人机20。在一个实施例中,无人机20为旋翼无人机,包括一对前臂21和一对后臂22,前臂21比后臂22长,展开后,一对前臂21的端部之间的距离较大。无人机20停在平台主体101上时,前端背向电池拆装组件103,方便更换电池后从电池拆装组件103前方飞离。定 位挡体130的内侧面从远离电池拆装组件103向靠近电池拆装组件103的方向,向推送挡体120的方向倾斜延伸。推送挡体120的内侧面从远离电池拆装组件103向靠近电池拆装组件103的方向,向定位挡体130的方向倾斜延伸。推送挡体120和定位挡体130相对抵推前臂21和后臂22。如此可以更好地定位无人机20。
重点参考图2,在一些实施例中,推送挡体120设有相对于推送挡体120可活动的第一定位件126,定位挡体130设有相对于定位挡体130可活动的第二定位件131。推送挡体120和定位挡体130在第一方向上定位无人机20,第一定位件126从推送挡体120向定位挡体130的方向伸出,且第二定位件131从定位挡体130向推送挡体120的方向伸出时,第一定位件126和第二定位件131在与第一方向相交的第二方向上定位无人机20。如此在相交的两个方向上定位无人机20,可以将无人机20定位在电池拆装组件103方便操作的区域内,且可以适用不同机型,适用不同尺寸的无人机。
在一些实施例中,第一定位件126可在第二方向上相对于推送挡体120运动。第一定位件126可从靠近推送挡体120端部的位置向推送挡体120中部运动,来定位无人机20。无人机20定位完成之后,第一定位件126可以向推送挡体120端部的方向运动,使无人机20可以在更换完电池后飞行,避免阻挡无人机20飞行。在另一些实施例中,第一定位件126可相对于推送挡体120转动。第一定位件126在定位无人机20时,向推送挡体120外转动伸出;在定位完成后,可转动收回推送挡体120内或收回沿推送挡体120的一侧延伸。在另一些实施例中,第一定位件126在定位无人机20时,在推送挡体120的端部转动伸出,之后向推送挡体120中部移动,直至在第二方向上定位无人机20。定位完成后,第一定位件126可向推送挡体120的端部运动,并转动收回。
类似于第一定位件126,在一些实施例中,第二定位件131可在第 二方向上相对于定位挡体130运动。第二定位件131可从靠近定位挡体130端部的位置向定位挡体130中部运动,来定位无人机20。无人机20定位完成之后,第二定位件131可以向定位挡体130端部的方向运动,使无人机20可以在更换完电池后飞行,避免阻挡无人机20飞行。在另一些实施例中,第二定位件131可相对于定位挡体130转动。第二定位件131在定位无人机20时,向定位挡体130外转动伸出;在定位完成后,可转动收回定位挡体130内或收回沿定位挡体130的一侧延伸。在另一些实施例中,第二定位件131在定位无人机20时,在定位挡体130的端部转动伸出,之后向定位挡体130中部移动,直至在第二方向上定位无人机20。定位完成后,第二定位件131可向定位挡体130的端部运动,并转动收回。
在一些实施例中,第一方向为Y方向,推送挡体120和定位挡体130在Y方向上间隔设置,在Y方向上定位无人机20。第二方向与Y方向相交。在一些实施例中,第二方向与第一方向相互垂直。第二方向为X方向。
在一些实施例中,推送挡体120设有一对第一定位件126,一对第一定位件126在第二方向上间隔设置,将无人机20夹持定位在两者之间。定位挡体130设有一对第二定位件131,一对第二定位件131在第二方向上间隔设置,将无人机20夹持定位在两者之间。在另一些实施例中,设置一对第一定位件126,设置一个第二定位件131。在另一些实施例中,设置一对第二定位件131,设置一个第一定位件126。在另一些实施例中,设置一个第二定位件131,设置一个第一定位件126,第二定位件131和第一定位件126在第二方向上间隔排布,在第二方向上夹持无人机20。
参考图2、5和6,在一些实施例中,定位挡体130可活动地设于平台主体101,无人机起降平台100包括设于平台主体101的第二传动组件132,第二传动组件132驱动定位挡体130运动。推送挡体120将无人机20推送到起飞区111,定位挡体130向靠近推送挡体120的方向运动,在起飞区111定位无人机20。定位完成后,定位挡体130可以向远离起飞区 111的方向运动复位,回到初始位置,如图1所示,避免阻碍无人机20起飞。
继续参考图2、5和6,在一些实施例中,平台主体101设有向起飞区111延伸的第二滑轨136,定位挡体130滑动设于第二滑轨136,在第二传动组件132的驱动下沿第二滑轨136滑动。第二滑轨136从起飞区111向背离降落区110的方向延伸。第二滑轨136可以引导定位挡体130滑动,使定位挡体130沿预定轨迹滑动,结构简单,易于实现。第二滑轨136位于平台主体101内。
在一些实施例中,平台主体101设有贯穿平台主体101的上表面112的第二滑槽115,第二滑槽115向起飞区111延伸。定位挡体130凸设于平台主体101的上表面112上,且从第二滑槽115伸入平台主体101内,与位于平台主体101内的第二滑轨136滑动连接。定位挡体130沿第二滑槽115滑动。如此,定位挡体130可以位于平台主体101上方,定位无人机20,且可以伸入平台主体101内,沿第二滑轨136滑动,结构简单,且无人机起降平台100的外观较美观。在一些实施例中,第二滑槽115从起飞区111向背离降落区110的方向延伸。可以设置一对平行延伸的第二滑槽115,定位挡体130的端部可以从对应的第二滑槽115伸入平台主体101内。
在一些实施例中,定位挡体130的最大行程小于推送挡体120的最大行程。定位完成后,定位挡体130复位回到可以避让无人机20的初始位置,推送挡体120复位回到降落区110。定位挡体130的最大行程可以较短,也可满足避让需求,如此可以节省平台主体101的上表面112的面积,且推送挡体120的最大行程较长,使得降落区110面积较大,方便降落。
重点参考图6,在一些实施例中,第二传动组件132包括与定位挡体130连接的气缸133,气缸133带动定位挡体130运动。利用气缸133传动,使得传动结构简单。定位挡体130的最大行程较短,气缸133可以 满足定位挡体130较短行程的运动。在一些实施例中,气缸133位于定位挡体130的下方,如此不会妨碍无人机20,充分利用空间,结构布局紧凑。气缸133位于平台主体101内,利用平台主体101的空间,平台主体101的外观较美观。
在一些实施例中,气缸133包括活塞杆134,活塞杆134与定位挡体130连接。活塞杆134运动时带动定位挡体130运动。活塞杆134从定位挡体130向推送挡体120的方向延伸。定位挡体130和推送挡体120间隔开,活塞杆134带动定位挡体130向起飞区111运动时,活塞杆134可以向起飞区111方向伸长,活塞杆134延伸于起飞区111的下方。如此,可以充分利用平台主体101的空间,使结构紧凑。
在其他一些实施例中,第二传动组件132包括动力装置(例如电机)和传动带,来带动定位挡体130运动。
参考图2和5,在一些实施例中,电池拆装组件103包括设于平台主体101的支架141和设于支架141的抓取组件142。支架141从起飞区111的一侧延伸至起飞区111上方,抓取组件142用于抓取电池,以更换无人机20的电池,如此可以自动实现电池的更换。支架141可以伸出平台主体101外,如图3所示,并伸至起飞区111的无人机20上方。抓取组件142可以抓持无人机20,并从无人机20上抓取旧电池。旧电池可以被传送至平台主体101内。
平台主体101内设有多个充电槽116,如图7所示,用于放置电池40,对电池40充电。抓取组件142用于将无人机20的电池放入充电槽116,且抓取充电槽116内的另一电池40,组装至无人机20。从无人机20取下的旧电池可以放入充电槽116内充电。抓取组件142可以抓取充电达到阈值的新电池,装入无人机20,如此实现电池更换。在一些实施例中,多个充电槽116可以成阵列排布。
支架141可伸缩地设于平台主体101。支架141缩回平台主体101时,支架141和抓取组件142收容于平台主体101内,如图1所示。支架141可以从平台主体101内伸出,向起飞区111延伸,进行更换电池的操作,如图2所示。更换电池完成后,支架141可以向远离起飞区111的方向缩回,避让起飞区111的无人机30,如图1所示。在无人机起降平台100不进行更换电池工作时,支架141可以下降,缩回平台主体101内,支架141的上表面和平台主体101的上表面可基本平齐,使得平台整体的上表面较平整,可以用于更换电池之外的其他场景下的无人机的降落和停放。
在一些实施例中,电池拆装组件103包括伺服电机143,如图2所示,伺服电机143与支架141连接,用于驱动支架141并记录支架141的位置。无人机起降平台100包括与伺服电机143连接的控制器105,控制器105用于响应于复位指令,根据支架141的当前位置控制伺服电机143驱动支架141复位。如此,由于伺服电机能够获取机械臂的位置,则可以控制支架141自动复位,无需手动复位。在一些实施例中,控制器105可以接收用户输入的复位指令,控制伺服电机143驱动支架141复位。在一些实施例中,无人机起降平台100断电后重新通电,控制器105驱动支架141复位。支架141复位可以为支架141收回平台主体101内。
参考图2、5和8,无人机起降平台100包括设于平台主体101的指示板150。指示板150面向起飞区111的一侧设有识别码,用于在电池拆装组件103完成旧电池拆除和新电池安装操作后,提供无人机20启动飞行的指示信息。识别码可以为二维码等。无人机20更换电池后重新开机启动,无人机20的摄像头扫描识别码,无人机20的控制系统可以识别识别码,产生指示无人机20起飞的指令。控制系统可以响应指令,控制无人机20起飞。如此可以实现无人机更换电池后自动飞行。在一些实施例中,指示板150可位于起飞区111相对于电池拆装组件103的一侧,面向无人机20的头部,可以被头部的摄像头扫描到。
在一些实施例中,指示板150可升降地设于平台主体101,无人机起降平台100包括与指示板150连接的指示板驱动装置151,用于驱动指示板150的升降运动,可以实现指示板150的自动升降。控制器105可以控制指示板驱动装置151驱动指示板150运动。在无人机20起飞前,指示板150升起,伸出平台主体101外。无人机20飞离后,指示板150可以降下。在一些实施例中,指示板驱动装置151可以包括气缸,结构简单,成本低。指示板驱动装置151位于平台主体101内。在一些实施例中,指示板150降下时,收容于平台主体101内,使得平台主体101的外观较好,平台上表面平整,可以用于更换电池之外的其他场景下,便于无人机停放。
在一些实施例中,指示板驱动装置151用于驱动指示板150在起飞区111的一侧向靠近或远离起飞区111的方向运动。可以根据无人机20定位的位置和大小,驱动指示板150靠近或远离无人机20,使无人机20可以扫描到指示板150上的识别码。
在一些实施例中,平台主体101设有多个供指示板150伸出的指示板让位槽118,多个指示板让位槽118在起飞区111的一侧向远离起飞区111的方向排布。指示板驱动装置151用于驱动指示板150从其中一个指示板让位槽118中伸出平台主体101。多个指示板让位槽118到起飞区111的距离不等,到无人机20的距离不等。指示板驱动装置151可以根据无人机20定位的位置和大小,驱动指示板150从其中一个指示板让位槽118中伸出,以使无人机20可以扫描到识别码。多个指示板让位槽118可以平行间隔排布。
在另一些实施例中,平台主体101设有一个指示板让位槽118,指示板驱动装置151可以驱动指示板150从指示板让位槽118中伸出后,再向靠近或远离无人机20的方向运动。
图9所示为无人机起降平台100的另一状态的俯视图。在一些实施例中,无人机起降平台100包括降落在位探测装置160,降落在位探测装 置160用于探测降落区110的无人机。在一些实施例中,降落在位探测装置160探测到降落区110有无人机后达到预设时长,传动组件102将无人机传送至起飞区111。预设时长可以大于等于无人机更换电池并起飞的时间,保证起飞区111没有无人机。如此,可以实现自动探测和传送。在一些实施例中,间隔预设的时间,例如间隔2分钟,将降落区的无人机传送至起飞区;在预设的时间内,能够保证电池的更换和起飞准备。
在一些实施例中,降落在位探测装置160包括光电探测器161,灵敏度高。在一些实施例中,光电探测器161包括发射器162和与发射器162对应设置的接收器163,发射器162和对应的接收器163中的一者设于推送挡体120,另一者设于定位挡体130。在起飞区111没有无人机时,若降落区110没有无人机,发射器162发出光信号,穿过降落区110和起飞区111,被接收器163接收,接收器163将光信号转换为表示降落区110没有无人机的电信号。在起飞区111没有无人机时,若降落区110有无人机,发射器162发出光信号被无人机遮挡,接收器163接收不到光信号,产生表示降落区110有无人机的电信号。控制器105可以在起飞区111没有无人机时,采集接收器163的电信号,根据电信号确定降落区110是否停有无人机。
在一些实施例中,降落在位探测装置160包括间隔排布的多个光电探测器161,如此可以实现发射光栅,防止无人机位置偏离而漏检。多个光电探测器161可以在推送挡体120和定位挡体130的纵向延伸方向上间隔排布,间隔的距离小于无人机的前后方向的最大尺寸。
在一些实施例中,无人机起降平台100包括起飞在位探测装置165,起飞在位探测装置165用于探测起飞区111的无人机。在起飞在位探测装置165探测到起飞区111有无人机时,控制器105可以控制电池拆装组件103进行更换电池的操作。控制器105用于在起飞在位探测装置165探测到起飞区111没有无人机,且降落在位探测器160探测到降落区110停有 无人机时,控制传送组件102将无人机从降落区110传送到起飞区111。如此可以实现自动传送。在一些实施例中,控制器105用于在起飞在位探测装置165探测到起飞区111没有无人机,且降落在位探测器160探测到降落区110停有无人机时,控制第一传动组件102驱动推送挡体120,推动无人机至起飞区111,且进一步控制推送挡体120返回降落区110。无人机在起飞区111定位后,控制器105控制第一传动组件102驱动推送挡体120返回降落区110。在一些实施例中,起飞在位探测装置165设于起飞区111下方,充分利用平台主体101的空间。
在一些实施例中,控制器105还可以控制第二传动组件132(如图5所示)。在无人机被传送到起飞区111时,起飞在位探测装置165探测到起飞区111有无人机,控制器105控制第二传动组件132驱动定位挡体130向起飞区111运动。无人机定位后,控制器105控制第二传动组件132驱动定位挡体130向远离起飞区111的方向运动复位。
在一个应用场景中,对多台无人机进行飞行老化测试,无人机起降平台100可以作为基站设备。第一架无人机降落至降落区110后,被传送至起飞区111更换电池,第二架无人机降落至降落区1110。第一架无人机起飞,可以按照设定飞行路径和飞行方式进行飞行,之后再回到无人机起降平台100。多台无人机依次间隔地循环降落、更换电池、起飞、再降落。如此实现多台无人机的自动化的飞行老化测试。相对于相关技术中的无人机降落和起飞在同一位置,无人机起飞路径和降落路径是同一条,无人机的飞行路径单一,仅能进行前进、悬停、后退的飞行,无法形成一个有效的循环回路。本申请实施例中因设置有与起飞区分离的降落区,起飞和降落路径可以分离,从而多台无人机可以沿循环回路飞行和移动,可以从起飞区起飞,在空中飞行至降落区,再从降落区移动至起飞区,如此形成循环回路,因此可以设计多台无人机的飞行方式更多样,且可以使多台无人机之间有足够的安全距离,防止相互撞机。无人机起降平台100还可以用 于其他场景,例如作为农机的电池补给基站。
图10所示为无人机起降平台400的另一个实施例的俯视图。图10所示的无人机起降平台400类似于图1-9所示的无人机起降平台100。相比较于图1-9所示的无人机起降平台100,图10所示的无人机起降平台400的传送组件402包括露出平台主体401的上表面412的传送带420,传送带420用于将无人机20从降落区410传送至起飞区411。第一传动组件421包括上述传送带420。无人机20可以降落至传送带420上,传送带420可以通过动力装置422驱动而运动,将无人机20传送至起飞区411。传送带420传送无人机20,更平稳,避免无人机20和平台主体101的上表面412摩擦。
图11所示为无人机起降控制方法200的一个实施例的流程图。无人机起降控制方法200用于无人机起降平台,可以用于上文所述的无人机起降平台100或400。无人机起降平台包括平台主体、传送组件和电池拆装组件。平台主体包括降落区和与降落区分离的起飞区,传送组件设于平台主体,电池拆装组件设于平台主体。
无人机起降控制方法200包括步骤201和202。在步骤201中,在位于起飞区的第一无人机离开起飞区后,控制传送组件将停放在降落区的第二无人机传送至起飞区。在步骤202中,控制电池拆装组件对传送至起飞区的第二无人机进行旧电池拆除和新电池安装操作。
在一些实施例中,在位于起飞区的第一无人机离开起飞区预设时长后,控制传送组件将停放在降落区的第二无人机传送至起飞区。如此保证第一无人机飞起一定距离,第二无人机到达起飞区时不会与第一无人机相撞。
在一些实施例中,通过起飞在位探测装置探测起飞区是否有第一无人机;通过降落在位探测装置探测降落区是否有第二无人机;若起飞在位 探测装置探测到起飞区没有第一无人机,且降落在位探测器探测到降落区停有第二无人机,控制传送组件将第二无人机传送至起飞区。
在一些实施例中,在控制电池拆装组件对传送至起飞区的第二无人机进行旧电池拆除和新电池安装操作之前,控制传送组件在起飞区对第二无人机在相交的第一方向和第二方向上定位。
在一些实施例中,在控制传送组件在起飞区对第二无人机在相交的第一方向和第二方向上定位后,控制传送组件向远离起飞区的方向运动复位。
在一些实施例中,无人机起降平台包括设于平台主体的指示板,指示板面向起飞区的一侧设有识别码,用于提供无人机启动飞行的指示信息。无人机起降控制方法包括:控制指示板升起,使识别码展示在位于起飞平台的第二无人机前,使第二无人机在安装新电池后识别识别码而启动飞行。
在一些实施例中,电池拆装组件包括设于平台主体的支架、设于支架的抓取组件和与支架连接的伺服电机,支架从起飞区的一侧延伸至起飞区上方。无人机起降控制方法包括:响应于复位指令,根据伺服电机记录的支架的当前位置,控制伺服电机驱动支架复位。
对于方法实施例而言,由于其基本对应于装置实施例,所以相关之处参见装置实施例的部分说明即可。方法实施例和装置实施例互为补充。
图12所示为无人机起降控制装置300的一个实施例的模块框图。无人机起降控制装置300用于无人机起降平台。无人机起降控制装置300包括一个或多个处理器301,用于实现上文所述的无人机起降控制方法200。
无人机起降控制装置300可以包括机器可读存储介质304,机器可读存储介质可以存储有可被处理器301调用的程序,可以包括非易失性存储介质。在一些实施例中,无人机起降控制装置300可以包括内存303和接口302。在一些实施例中,无人机起降控制装置300还可以根据实际应 用包括其他硬件。
本申请实施例的机器可读存储介质304,其上存储有程序,该程序被处理器301执行时,实现无人机起降控制方法200。
本申请可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。机器可读存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是机器可读指令、数据结构、程序的模块或其他数据。机器可读存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一 般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (40)

  1. 一种无人机起降平台,其特征在于,包括:
    平台主体,包括用于停放无人机的降落区,和与所述降落区分离的起飞区;
    传送组件,设于所述平台主体,用于将停放在所述降落区的所述无人机传送至所述起飞区;及
    电池拆装组件,设于所述平台主体,用于对位于所述起飞区的所述无人机进行旧电池拆除和新电池安装操作。
  2. 根据权利要求1所述的无人机起降平台,其特征在于,所述传送组件包括可活动地设于所述平台主体的推送挡体,和设于所述平台主体的第一传动组件,所述第一传动组件驱动所述推送挡体在所述降落区和所述起飞区之间运动,使所述推送挡体将停放在所述降落区的所述无人机推送到所述起飞区。
  3. 根据权利要求2所述的无人机起降平台,其特征在于,所述第一传动组件包括动力装置和连接所述动力装置和所述推送挡体的传动带,所述动力装置驱动所述传动带运动,以带动所述推送挡体运动。
  4. 根据权利要求2所述的无人机起降平台,其特征在于,所述平台主体设有从所述降落区延伸至所述起飞区的第一滑轨,所述推送挡体滑动设于所述第一滑轨,在所述第一传动组件的带动下沿所述第一滑轨滑动。
  5. 根据权利要求4所述的无人机起降平台,其特征在于,所述平台主体设有贯穿所述平台主体的上表面的第一滑槽,所述第一滑槽从所述降落区延伸至所述起飞区,所述推送挡体凸设于所述平台主体的上表面上,且从所述第一滑槽伸入所述平台主体内,与位于所述平台主体内的第一滑轨滑动连接。
  6. 根据权利要求2所述的无人机起降平台,其特征在于,所述无人机起降平台包括设置于所述平台主体的定位挡体,所述定位挡体相对于所述 推送挡体设置,所述定位挡体和所述推送挡体在所述起飞区将所述无人机定位于两者之间。
  7. 根据权利要求6所述的无人机起降平台,其特征在于,所述定位挡体可活动地设于所述平台主体,所述无人机起降平台包括设于所述平台主体的第二传动组件,所述第二传动组件驱动所述定位挡体运动。
  8. 根据权利要求7所述的无人机起降平台,其特征在于,所述第二传动组件包括与所述定位挡体连接的气缸,所述气缸带动所述定位挡体运动。
  9. 根据权利要求8所述的无人机起降平台,其特征在于,所述气缸位于所述定位挡体的下方。
  10. 根据权利要求8所述的无人机起降平台,其特征在于,所述气缸包括活塞杆,所述活塞杆与所述定位挡体连接,所述活塞杆运动时带动所述定位挡体运动,所述活塞杆从所述定位挡体向所述推送挡体的方向延伸。
  11. 根据权利要求7所述的无人机起降平台,其特征在于,所述定位挡体的最大行程小于所述推送挡体的最大行程。
  12. 根据权利要求7所述的无人机起降平台,其特征在于,所述平台主体设有向所述起飞区延伸的第二滑轨,所述定位挡体滑动设于所述第二滑轨,在所述第二传动组件的驱动下沿所述第二滑轨滑动。
  13. 根据权利要求12所述的无人机起降平台,其特征在于,所述平台主体设有贯穿所述平台主体的上表面的第二滑槽,所述第二滑槽向所述起飞区延伸,所述定位挡体凸设于所述平台主体的上表面上,且从所述第二滑槽伸入所述平台主体内,与位于所述平台主体内的第二滑轨滑动连接。
  14. 根据权利要求6所述的无人机起降平台,其特征在于,所述推送挡体设有相对于所述推送挡体可活动的第一定位件,所述定位挡体设有相对于所述定位挡体可活动的第二定位件;所述推送挡体和所述定位挡体在第一方向上定位所述无人机,所述第一定位件从所述推送挡体向所述定位挡体的方向伸出,且所述第二定位件从所述定位挡体向所述推送挡体的方向伸出时,所述第一定位件和所述第二定位件在与所述第一方向相交的第 二方向上定位所述无人机。
  15. 根据权利要求6所述的无人机起降平台,其特征在于,所述无人机起降平台包括降落在位探测装置,所述降落在位探测装置用于探测所述降落区的所述无人机。
  16. 根据权利要求15所述的无人机起降平台,其特征在于,所述降落在位探测装置包括光电探测器。
  17. 根据权利要求16所述的无人机起降平台,其特征在于,所述光电探测器包括发射器和与所述发射器对应设置的接收器,所述发射器和对应的所述接收器中的一者设于所述推送挡体,另一者设于所述定位挡体。
  18. 根据权利要求16所述的无人机起降平台,其特征在于,所述降落在位探测装置包括间隔排布的多个所述光电探测器。
  19. 根据权利要求15所述的无人机起降平台,其特征在于,所述无人机起降平台包括起飞在位探测装置,所述起飞在位探测装置用于探测所述起飞区的所述无人机。
  20. 根据权利要求19所述的无人机起降平台,其特征在于,所述起飞在位探测装置设于所述起飞区下方。
  21. 根据权利要求19所述的无人机起降平台,其特征在于,所述无人机起降平台包括控制器,所述控制器用于在所述起飞在位探测装置探测到所述起飞区没有所述无人机,且所述降落在位探测器探测到所述降落区停有所述无人机时,控制所述第一传动组件驱动所述推送挡体,推动所述无人机至所述起飞区,且进一步控制所述推送挡体返回所述降落区。
  22. 根据权利要求1所述的无人机起降平台,其特征在于,所述传送组件包括露出所述平台主体的上表面的传送带,所述传送带用于将所述无人机从所述降落区传送至所述起飞区。
  23. 根据权利要求1所述的无人机起降平台,其特征在于,所述无人机起降平台包括设于所述平台主体的指示板,所述指示板面向所述起飞区的一侧设有识别码,用于在所述电池拆装组件完成旧电池拆除和新电池安 装操作后,提供所述无人机启动飞行的指示信息。
  24. 根据权利要求23所述的无人机起降平台,其特征在于,所述指示板可升降地设于所述平台主体,所述无人机起降平台包括与所述指示板连接的指示板驱动装置,用于驱动所述指示板的升降运动。
  25. 根据权利要求24所述的无人机起降平台,其特征在于,所述指示板降下时,收容于所述平台主体内。
  26. 根据权利要求24所述的无人机起降平台,其特征在于,所述指示板驱动装置用于驱动所述指示板在所述起飞区的一侧向靠近或远离所述起飞区的方向运动。
  27. 根据权利要求24所述的无人机起降平台,其特征在于,所述平台主体设有多个供所述指示板伸出的指示板让位槽,多个所述指示板让位槽在所述起飞区的一侧向远离所述起飞区的方向排布,所述指示板驱动装置用于驱动所述指示板从其中一个所述指示板让位槽中伸出所述平台主体。
  28. 根据权利要求1所述的无人机起降平台,其特征在于,所述电池拆装组件包括设于所述平台主体的支架和设于所述支架的抓取组件,所述支架从所述起飞区的一侧延伸至所述起飞区上方,所述抓取组件用于抓取电池,以更换所述无人机的电池。
  29. 根据权利要求28所述的无人机起降平台,其特征在于,所述支架可伸缩地设于所述平台主体,所述支架缩回所述平台主体时,所述支架和所述抓取组件收容于所述平台主体内。
  30. 根据权利要求29所述的无人机起降平台,其特征在于,所述电池拆装组件包括伺服电机,所述伺服电机与所述支架连接,用于驱动所述支架并记录所述支架的位置,所述无人机起降平台包括与所述伺服电机连接的控制器,所述控制器用于响应于复位指令,根据所述支架的当前位置控制所述伺服电机驱动所述支架复位。
  31. 根据权利要求28所述的无人机起降平台,其特征在于,所述平 台主体内设有多个充电槽,用于放置电池,对所述电池充电,所述抓取组件用于将所述无人机的电池放入所述充电槽,且抓取所述充电槽内的另一电池,组装至所述无人机。
  32. 一种无人机起降控制方法,用于无人机起降平台,其特征在于,所述无人机起降平台包括平台主体、传送组件和电池拆装组件,所述平台主体包括降落区和与所述降落区分离的起飞区,所述传送组件设于所述平台主体,所述电池拆装组件设于所述平台主体;所述无人机起降控制方法包括:
    在位于所述起飞区的第一无人机离开所述起飞区后,控制所述传送组件将停放在所述降落区的第二无人机传送至所述起飞区;及
    控制所述电池拆装组件对传送至所述起飞区的所述第二无人机进行旧电池拆除和新电池安装操作。
  33. 根据权利要求32所述的无人机起降控制方法,其特征在于,所述在位于所述起飞区的第一无人机离开所述起飞区后,控制所述传送组件将停放在所述降落区的第二无人机传送至所述起飞区,包括:
    在位于所述起飞区的所述第一无人机离开所述起飞区预设时长后,控制所述传送组件将停放在所述降落区的所述第二无人机传送至所述起飞区。
  34. 根据权利要求32所述的无人机起降控制方法,其特征在于,所述无人机起降平台包括降落在位探测装置和起飞在位探测装置;所述无人机起降控制方法包括:
    通过所述起飞在位探测装置探测所述起飞区是否有所述第一无人机;
    通过所述降落在位探测装置探测所述降落区是否有所述第二无人机;
    若所述起飞在位探测装置探测到所述起飞区没有所述第一无人机,且所述降落在位探测器探测到所述降落区停有所述第二无人机,控制所述传送组件将所述第二无人机传送至所述起飞区。
  35. 根据权利要求32所述的无人机起降控制方法,其特征在于,所述无人机起降控制方法包括:
    在控制所述电池拆装组件对传送至所述起飞区的所述第二无人机进行旧电池拆除和新电池安装操作之前,控制所述传送组件在所述起飞区对所述第二无人机在相交的第一方向和第二方向上定位。
  36. 根据权利要求35所述的无人机起降控制方法,其特征在于,所述无人机起降控制方法包括:
    在控制所述传送组件在所述起飞区对所述第二无人机在相交的第一方向和第二方向上定位后,控制所述传送组件向远离所述起飞区的方向运动复位。
  37. 根据权利要求32所述的无人机起降控制方法,其特征在于,所述无人机起降平台包括设于所述平台主体的指示板,所述指示板面向所述起飞区的一侧设有识别码,用于提供所述无人机启动飞行的指示信息;
    所述无人机起降控制方法包括:控制所述指示板升起,使所述识别码展示在位于所述起飞平台的所述第二无人机前,使所述第二无人机在安装新电池后识别所述识别码而启动飞行。
  38. 根据权利要求32所述的无人机起降控制方法,其特征在于,所述电池拆装组件包括设于所述平台主体的支架、设于所述支架的抓取组件和与所述支架连接的伺服电机,所述支架从所述起飞区的一侧延伸至所述起飞区上方;
    所述无人机起降控制方法包括:响应于复位指令,根据所述伺服电机记录的所述支架的当前位置,控制所述伺服电机驱动所述支架复位。
  39. 一种无人机起降控制装置,用于无人机起降平台,其特征在于,所述无人机起降控制装置包括一个或多个处理器,用于实现如权利要求32-38中任一项所述的无人机起降控制方法。
  40. 一种机器可读存储介质,其特征在于,其上存储有程序,该程序被处理器执行时,实现如权利要求32-38中任一项所述的无人机起降控制 方法。
PCT/CN2019/117875 2019-11-13 2019-11-13 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质 WO2021092786A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/117875 WO2021092786A1 (zh) 2019-11-13 2019-11-13 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质
CN201980039843.3A CN112292321B (zh) 2019-11-13 2019-11-13 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/117875 WO2021092786A1 (zh) 2019-11-13 2019-11-13 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质

Publications (1)

Publication Number Publication Date
WO2021092786A1 true WO2021092786A1 (zh) 2021-05-20

Family

ID=74419425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117875 WO2021092786A1 (zh) 2019-11-13 2019-11-13 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质

Country Status (2)

Country Link
CN (1) CN112292321B (zh)
WO (1) WO2021092786A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115285074A (zh) * 2022-08-25 2022-11-04 国网山东省电力公司莱芜供电公司 一种无人机电池自动更换系统
WO2023017027A1 (de) * 2021-08-10 2023-02-16 H I V E Systems Gmbh Hangar und anordnung zum wechseln einer batterie aus einem luftfahrzeug
WO2023172224A1 (en) * 2022-03-07 2023-09-14 Met İleri̇ Teknoloji̇ Si̇stemleri̇ Mühendi̇sli̇k İmalat İthalat Ve İhracat Ti̇caret Li̇mi̇ted Şi̇rketi̇ An unmanned aerial vehicle maintenance station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130313A1 (zh) * 2022-01-06 2023-07-13 深圳市大疆创新科技有限公司 无人飞行器循环存储装置和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106101511A (zh) * 2016-08-10 2016-11-09 南京奇蛙智能科技有限公司 一种全自动无人机系统
CN106227246A (zh) * 2016-09-18 2016-12-14 成都天麒科技有限公司 一种植保无人机自动作业基站
US20170050749A1 (en) * 2015-08-17 2017-02-23 Skyyfish, LLC Autonomous system for unmanned aerial vehicle landing, charging and takeoff
CN107021240A (zh) * 2017-05-27 2017-08-08 北京京东尚科信息技术有限公司 无人机地面管理系统
CN109502039A (zh) * 2018-11-30 2019-03-22 山东大学 一种车载无人机停机箱设备、自动更换电池方法和系统
CN209080184U (zh) * 2018-09-30 2019-07-09 深圳市大疆创新科技有限公司 基站及具有其的车辆
CN110127071A (zh) * 2019-05-21 2019-08-16 北京三快在线科技有限公司 一种无人机起降平台

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765038B1 (ko) * 2016-01-09 2017-08-03 김성호 무인항공기의 배터리 자동교환시스템
CN107065614B (zh) * 2017-04-27 2019-05-10 王湘元 无人机收容换电装置及方法
WO2018219226A1 (zh) * 2017-05-27 2018-12-06 星逻智能科技(苏州)有限公司 无人机停机库
KR20190055925A (ko) * 2017-11-16 2019-05-24 주식회사 웨이브쓰리디 드론 배터리 교환 방법 및 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170050749A1 (en) * 2015-08-17 2017-02-23 Skyyfish, LLC Autonomous system for unmanned aerial vehicle landing, charging and takeoff
CN106101511A (zh) * 2016-08-10 2016-11-09 南京奇蛙智能科技有限公司 一种全自动无人机系统
CN106227246A (zh) * 2016-09-18 2016-12-14 成都天麒科技有限公司 一种植保无人机自动作业基站
CN107021240A (zh) * 2017-05-27 2017-08-08 北京京东尚科信息技术有限公司 无人机地面管理系统
CN209080184U (zh) * 2018-09-30 2019-07-09 深圳市大疆创新科技有限公司 基站及具有其的车辆
CN109502039A (zh) * 2018-11-30 2019-03-22 山东大学 一种车载无人机停机箱设备、自动更换电池方法和系统
CN110127071A (zh) * 2019-05-21 2019-08-16 北京三快在线科技有限公司 一种无人机起降平台

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017027A1 (de) * 2021-08-10 2023-02-16 H I V E Systems Gmbh Hangar und anordnung zum wechseln einer batterie aus einem luftfahrzeug
WO2023172224A1 (en) * 2022-03-07 2023-09-14 Met İleri̇ Teknoloji̇ Si̇stemleri̇ Mühendi̇sli̇k İmalat İthalat Ve İhracat Ti̇caret Li̇mi̇ted Şi̇rketi̇ An unmanned aerial vehicle maintenance station
CN115285074A (zh) * 2022-08-25 2022-11-04 国网山东省电力公司莱芜供电公司 一种无人机电池自动更换系统

Also Published As

Publication number Publication date
CN112292321A (zh) 2021-01-29
CN112292321B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2021092786A1 (zh) 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质
US11926428B2 (en) Propeller safety for automated aerial vehicles
US12032391B2 (en) Virtual safety shrouds for aerial vehicles
Chabot et al. Evaluation of an off-the-shelf unmanned aircraft system for surveying flocks of geese
US10762926B2 (en) Automated data storage library drone accessor
EP3929616A1 (en) Sense and avoid for automated mobile vehicles
KR101817280B1 (ko) 드론용 스마트 격납고
US11912407B1 (en) Unmanned vehicle morphing
CN111178148A (zh) 一种基于无人机视觉系统的地面目标地理坐标定位方法
CN104322048A (zh) 便携式移动照明台架
WO2020051791A1 (zh) 基站及无人机的控制方法和无人机系统
CN106628146A (zh) 一种悬崖垃圾清除飞行器
CA3091634C (en) Methods and systems for shifting objects
Pohudina et al. Group flight automation using Tello EDU unmanned aerial vehicle
EP3762294B1 (en) Dynamic race course using an aircraft system swarm
JP7166587B2 (ja) 監視システム
US11238281B1 (en) Light source detection in field of view
CN107591036A (zh) 无人机安全飞行自动管理系统
JP7360683B2 (ja) 作業計画生成システム
KR102714222B1 (ko) 드론 무인충전 시스템
Končar et al. Application of Unmanned Aerial Vehicle Technology in Commerce
Dunaway et al. Bioinspired Unmanned Aircraft System Nest Concepts for Urban Cities
Baidya et al. Simulation and Real-Life Implementation of UAV Autonomous Landing System Based on Object Recognition and Tracking for Safe Landing in Uncertain Environments
CN117073639A (zh) 一种空地协同无人探测系统
Majumdar Autonomous Intelligent Control for UAV with Self Docking, Charging and Learning Capabilities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952244

Country of ref document: EP

Kind code of ref document: A1