WO2021091237A1 - Device, consumable supplies, method and system for processing blood - Google Patents

Device, consumable supplies, method and system for processing blood Download PDF

Info

Publication number
WO2021091237A1
WO2021091237A1 PCT/KR2020/015354 KR2020015354W WO2021091237A1 WO 2021091237 A1 WO2021091237 A1 WO 2021091237A1 KR 2020015354 W KR2020015354 W KR 2020015354W WO 2021091237 A1 WO2021091237 A1 WO 2021091237A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
blood
chamber
chambers
flow path
Prior art date
Application number
PCT/KR2020/015354
Other languages
French (fr)
Korean (ko)
Inventor
이경수
Original Assignee
이경수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190139273A external-priority patent/KR102128206B1/en
Application filed by 이경수 filed Critical 이경수
Priority to JP2021500390A priority Critical patent/JP7374510B2/en
Priority to CN202080077000.5A priority patent/CN114845751A/en
Publication of WO2021091237A1 publication Critical patent/WO2021091237A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/26Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/30Single needle dialysis ; Reciprocating systems, alternately withdrawing blood from and returning it to the patient, e.g. single-lumen-needle dialysis or single needle systems for hemofiltration or pheresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits

Definitions

  • the present invention relates to an apparatus, consumables, and method for blood treatment, and more particularly, by simultaneously compressing or expanding a plurality of fluid chambers and transporting blood and dialysis solution together through this, the entire apparatus is simplified, installation is easy, and treatment. It relates to a blood treatment apparatus and method with reduced cost.
  • hemodialysis therapy which circulates blood outside the body and removes urea toxin and excess water accumulated in the body through a semi-permeable membrane, has been mainly implemented.
  • Hemodialysis uses the principle of diffusion due to the difference in concentration of the two fluids and filtration due to the difference in pressure by flowing blood to the other side of the semipermeable membrane to remove urinary toxins and excess moisture in the body. It is a method of removing and balancing electrolytes.
  • Blood treatment therapy is a method of circulating blood to the outside of the body to remove toxic substances in the blood or to supply beneficial components.
  • Hemodialysis is a typical blood treatment therapy.
  • Blood treatment therapy is used with a blood treatment filter in which substances are transferred between physiological body fluids such as blood and purified sterile solutions such as dialysis solutions.
  • a hollow fiber membrane type blood treatment filter in which a semi-permeable membrane is loaded in a cylindrical container and potted using a synthetic resin such as polyurethane at both ends is mainly used so that material movement can easily occur while the blood and dialysis solution pass. This is because the hollow fiber type blood treatment filter has a large mass transfer area compared to its size, so that high mass transfer efficiency can be achieved.
  • the hydrostatic pressure decreases.Since the blood and the dialysis solution flow in opposite directions within the blood treatment filter, the blood pressure in the inlet part of the blood treatment filter Since the pressure is higher than the pressure, a filtration phenomenon occurs in which the water in the blood moves to the dialysis solution area. On the contrary, in the blood outflow part, the dialysis solution pressure is higher than the blood pressure.
  • the flow of the dialysis solution is controlled by using a balancing chamber connected to a plurality of dialysis solution lines and two or more dialysis solution pumps, and blood is transferred through a blood pump.
  • periodic sterilization is inevitable for the above-described balancing chamber and dialysis solution pump, and therefore, the existing blood treatment apparatus is very complicated and it is very difficult for patients to use it.
  • the present invention has been devised to solve the problem of such an existing blood treatment apparatus, and simultaneously compresses or expands a plurality of fluid chambers using a single chamber pressing member, thereby simultaneously transferring blood and a dialysis solution.
  • the plurality of fluid chambers may maintain the same amount of the dialysis solution supplied to the blood treatment filter and the dialysis solution discharged from the blood treatment filter. Therefore, the use of the existing blood pump and balancing chamber can be excluded, and through this, the entire blood processing device can be drastically reduced in size and weight, it is easy to install, and the cost of blood processing can be reduced. Accordingly, the blood processing apparatus according to the present invention is characterized by providing a blood processing apparatus capable of efficiently performing blood processing not only in a hospital but also in a place outside the hospital.
  • a blood processing apparatus for achieving the above object includes a plurality of fluid chambers each having an internal space, a chamber pressing member capable of compressing or expanding the internal space of each fluid chamber, and pressurizing the chamber. It is configured to include a pressing member driver capable of driving the member, and a flow path control unit.
  • the plurality of fluid chambers includes n fluid chambers, where n has an integer value of 2 or more.
  • each of the n fluid chambers may be configured by being connected to an inlet pipe through which a fluid flows into the chamber and an outlet pipe through which the fluid inside the chamber flows out.
  • the flow path control unit is characterized in that it controls the flow (or flow path) through the inlet pipe and the outlet pipe connected to the n number of fluid chambers.
  • a variety of valve structures can be used to open or shut off the flow, for example:
  • a one-way valve installed in each flow pipe through which an internal flow path is controlled by the flow path control unit to restrict the internal flow to flow in one direction;
  • a solenoid valve installed in each flow pipe through which an internal flow path is controlled by the flow path control unit to open or block the internal flow;
  • a flow path blocking member capable of blocking the flow by compressing a part of the flow pipe through linear or curved movement, a flow blocking wall supporting the flow pipe compressed by the flow blocking member, and a flow blocking member driving the flow blocking member
  • a pressurized valve comprising an actuator
  • a flow path control housing having an internal space, a flow path control rotor installed to rotate or move linearly in the internal space of the flow control housing, a plurality of flow control porters installed to pass through the flow control housing, and drive the flow control rotor
  • the flow path control unit is characterized in that when the chamber is compressed or expanded, the flow path through about half of the flow pipes in which the internal flow path is controlled by the flow path control unit is blocked. .
  • a plurality of fluid chambers are simultaneously compressed or expanded using a single chamber pressurizing member, thereby simultaneously transferring blood and a dialysis solution.
  • the plurality of fluid chambers may maintain the same amount of the dialysis solution supplied to the blood treatment filter and the dialysis solution discharged from the blood treatment filter. Therefore, the use of the existing blood pump and balancing chamber can be excluded, and through this, the entire blood processing device can be drastically reduced in size and weight, it is easy to install, and the cost of blood processing can be reduced. Therefore, the blood processing apparatus according to the present invention can efficiently perform blood processing not only in a hospital, but also in a place outside the hospital.
  • FIG. 1 is a conceptual diagram of a blood processing apparatus according to an embodiment of the present invention.
  • FIGS. 2 and 3 are flow circuit diagrams of a blood processing device according to an embodiment of the present invention.
  • FIGS. 4 and 5 show an example of a fluid transfer device included in the blood processing apparatus according to an embodiment of the present invention.
  • FIG. 6 shows a blood processing filter according to an embodiment of the present invention.
  • FIG. 7 and 8 show a flow path control unit according to an embodiment of the present invention configured as a pressurized valve.
  • FIGS. 9 and 10 show a flow path control unit according to an embodiment of the present invention configured as a rotary valve.
  • FIG. 11 is a flow circuit diagram of a blood treatment apparatus according to an embodiment of the present invention having a flow path control unit configured as a rotary valve.
  • FIG. 12 shows a flow path control unit according to an embodiment of the present invention configured as a rotary valve.
  • FIG. 13 and 14 are flow circuit diagrams of a blood processing apparatus according to an embodiment of the present invention having four fluid chambers.
  • 15 is a flow circuit diagram of a blood treatment apparatus according to an embodiment of the present invention having three fluid chambers.
  • 16 is a flow circuit diagram of a blood treatment apparatus according to an embodiment of the present invention having four fluid chambers.
  • 17 and 18 are flow circuit diagrams of a blood treatment apparatus according to an embodiment of the present invention having five fluid chambers.
  • 19 and 20 are flow circuit diagrams of a blood processing apparatus according to an embodiment of the present invention having six fluid chambers.
  • 21 and 22 are flow circuit diagrams of a blood treatment apparatus according to another embodiment of the present invention having six fluid chambers.
  • 23 and 24 are flow circuit diagrams of a blood treatment apparatus according to another embodiment of the present invention having six fluid chambers.
  • 25 and 26 are flow circuit diagrams of a blood treatment apparatus according to another embodiment of the present invention having a flow path control unit composed of a one-way valve and six fluid chambers.
  • 27 and 28 are flow circuit diagrams of a blood treatment apparatus according to another embodiment of the present invention having eight fluid chambers.
  • 29 is a flow circuit diagram of a blood processing apparatus according to another embodiment of the present invention having a blood pump.
  • FIG. 30 is a flow circuit diagram of a blood processing apparatus according to another embodiment of the present invention in which the fluid chamber is vertically configured.
  • FIG. 31 shows a method of operating a flow path control unit according to an embodiment of the present invention.
  • the elements of the invention expressed in the singular are preferably interpreted as including the meaning that there may be a plurality of the elements. Also, in the case of expressions that determine the position between the elements of the invention, it is desirable to be interpreted as broadly as possible. For example, meaning that a first element is on, between, or next to a second element may be a third other element between two elements.
  • the meaning of “the same or the same” is preferably interpreted as including substantially the same or identical cases in addition to the meaning of “completely” the same.
  • the meaning of expressing the equality of time, such as “at the same time”, includes a case that occurs at a very similar time (time) in addition to the meaning that occurs completely “at the same time”.
  • the blood processing apparatus 1 shows a conceptual diagram of a blood processing apparatus 1 according to an embodiment of the present invention.
  • the blood processing apparatus according to the present invention is a concept including various apparatuses for providing treatment to a patient through blood, as well as simple processing such as separating plasma or blood cells from blood or preserving blood.
  • Hemodialysis devices for patients with renal failure hepatodialysis devices for patients with acute liver failure, extracorporeal life supporter (ECLS) that replaces the function of the lungs or heart, or various treatments for multi-organ failure. It may include a purification device or the like.
  • the blood processing device may include a blood processing device unit 2 and a consumable set 3.
  • the blood processing unit 2 is a hardware unit, and various electronic devices are usually provided inside a housing, and through this, a blood processing therapy can be performed.
  • Various software and programs are installed to drive various electronic devices inside the blood processing unit 2.
  • the consumable set 3 is a one-time element that is usually discarded after being used for a short period of time, such as once or twice, and a flow pipe through which blood, dialysis solution, or various solutions flow, an air chamber for removing air, or/and a blood treatment filter 10 And the like.
  • the blood treatment device 1 includes a fluid transfer device 50 for transferring blood and a dialysis solution, a dialysis solution treatment part 30 for preparing a dialysis solution by adjusting the ion balance (concentration), It is configured to include a water treatment device unit 40 for producing ultrapure water, and a flow path control unit 60 for adjusting a flow path through a flow pipe through which the fluid flows.
  • a water treatment device unit 40 for producing ultrapure water
  • a flow path control unit 60 for adjusting a flow path through a flow pipe through which the fluid flows.
  • it includes various monitoring sensors 24 and 34, and includes a blood processing filter 10 in which blood processing occurs. For example, material transfer may occur between the blood and the dialysis solution within the blood treatment filter 10.
  • the fluid transfer device 50 drives a plurality of fluid chambers having an inner space, a chamber pressurizing member 59 for compressing or expanding the inner spaces of the plurality of fluid chambers, and a chamber pressurizing member. It is configured to include a pressurizing member driver (not shown).
  • the plurality of fluid chambers include n-th fluid chambers having an inner space, where n has a positive integer value of 2 or more.
  • the blood processing apparatus 1 according to an embodiment of the present invention may be configured to include 3 to 8 fluid chambers.
  • FIGS. 2 and 3 are diagrams illustrating a flow circuit diagram of a blood processing apparatus 1 according to an embodiment of the present invention, which is configured to include 4 fluid chambers and 6 fluid chambers 51 to 56, respectively. will be.
  • dialysis solution is used, it is an expression to distinguish it from blood, and the dialysis solution is not limited to a dialysis solution used for hemodialysis, peritoneal dialysis, and continuous renal replacement therapy (CRRT) for acute renal failure patients.
  • the dialysis solution is meant to include various fluids used in blood treatment therapy, and may include, for example, plasma, serum, distilled water, physiological saline, lactose solution, and the like.
  • Each of the chambers may be connected to an inlet pipe through which fluid flows into the chamber and an outlet pipe through which fluid flows out of the chamber.
  • the first chamber 51 is connected to the first chamber inlet pipe 51a and the first chamber outlet pipe 51b, and the fluid flows into the first chamber 51 through the first chamber inlet pipe 51a.
  • the fluid in the first chamber 51 may be discharged through the first chamber outlet pipe 51b.
  • the second chamber 52 is connected to the second chamber inlet pipe 52a and the second chamber outlet pipe 52b, and fluid flows into the second chamber 52 through the second chamber inlet pipe 52a. And the fluid in the second chamber 52 may flow out through the second chamber outlet pipe 52b. The same goes for other chambers.
  • inlet pipe and outlet pipe are used, but this does not mean that the fluid flows into the chamber through the inlet pipe and the fluid flows out through the outlet pipe.
  • the fluid may be introduced into the chamber through the outlet pipe, or the fluid may be introduced or discharged through both the inlet pipe and the outlet pipe.
  • two flow pipes that is, an inlet pipe and an outlet pipe
  • the inlet pipe and the outlet pipe connected to each chamber partially overlap each other, and each chamber has one Flow pipes can be connected.
  • the n fluid chambers are simultaneously compressed or expanded. That is, all n chambers may be compressed at the same time, or all n chambers may be expanded at the same time. Alternatively, some of the n fluid chambers may be compressed and other parts may be expanded at the same time. For example, when the fluid transfer device 50 includes six fluid chambers, all six chambers may be compressed or expanded at once. Alternatively, any three of the six chambers may be compressed and the other three may be expanded. Alternatively, any four of the six chambers may be compressed and the other two may be expanded at the same time, or conversely, any four may be expanded and the other two may be compressed.
  • the fluid chamber has a cylindrical inner space
  • the chamber pressing member 59 is shown to have a piston shape for compressing or expanding the cylindrical inner space.
  • the chamber and the chamber pressing member according to an embodiment of the present invention are not limited to the illustrated shape.
  • a container having an inner space to accommodate a fluid and various members capable of transferring the fluid therein by compressing or expanding the inner space of the container may be used as the chamber and the chamber pressing member of the present invention.
  • a fluid sac having an internal space, a fluid bag, a flexible fluid tube capable of compression expansion, and the fluid cell, a fluid bag or the inside of a fluid tube are expanded or compressed. By doing so, it may be composed of a pressurizing member capable of discharging the fluid therein.
  • the fluid chamber is made of a hard material to have a predetermined shape (for example, a cylinder shape), and at this time, the chamber pressing member 59 may include a portion made of a soft material such as rubber, polymer, silicone, etc. .
  • the chamber may be formed of a flexible material that is easily compressed and expanded, and in this case, the chamber pressing member 59 may be formed of a hard material that compresses or expands the soft fluid chamber.
  • FIGS. 4 and 5 illustrate a fluid transfer device 50 having a chamber in the form of a fluid sachet (or fluid bag) made of a soft material and having the same internal space.
  • the fluid sacks described above may be installed in the frame 590 so that they can be easily installed.
  • the chamber pressurizing member 59 has a structure that compresses or expands the fluid sachet, for example, the fluid sacks can be compressed or expanded by the operation of a pneumatic actuator such as a pneumatic pump, a gas pump, or a vacuum pump. . That is, the pneumatic channel 591 is expanded or compressed by a pneumatic actuator located in the housing 4 of the blood treatment device 1, through which the fluid sac can be compressed or expanded.
  • the pneumatic channel 591 is connected to the space surrounding the fluid sac. That is, it means that the pneumatic channel 591 can serve as the chamber pressing member 59.
  • a gasket 592 may be additionally installed to prevent leakage of the space surrounding the fluid sac, and the gasket 592 may be made of a hard material such as plastic, metal, polymer, etc. as well as a soft material. have.
  • the chambers can be compressed or expanded at the same time, and thus the chambers are compressed or expanded by one chamber pressing member 59, and similarly, the chamber pressing member 59 ) Can be driven.
  • the pressurizing member driver may be of various forms capable of transferring a linear motion or a curved motion to the chamber pressurizing member 59.
  • it may be configured to include a motor and a cam rotated by the motor to move the chamber pressing member 59 in one direction.
  • a motor and a circular gear rotated by the motor, a linear gear that performs linear motion by the rotation of the circular gear, or the like can be used.
  • the chamber pressing member 59 moves in one direction by the rotation of the cam or circular gear, and the chamber pressing member 59 can move in the opposite direction by further rotating the cam or circular gear or rotating in the reverse direction.
  • FIG. 6 shows an example of a blood treatment filter 10, wherein the blood treatment filter 10 is accommodated in a blood treatment filter housing 11 having an internal space, the blood treatment filter housing 11, and is used for blood and dialysis. It may consist of a blood treatment membrane 12 in which mass transfer occurs between solutions.
  • the inner space of the blood treatment filter 10 may be divided into a plurality of fluid flow regions by the membrane 12.
  • the inner space of the blood treatment filter housing 11 is located in the blood treatment membrane 12. As a result, it can be divided into a section through which blood flows and a section through which dialysis solution flows.
  • a first blood porter 13 and a second blood porter 14 are provided at one end and the other end of the blood treatment filter housing 11, and blood flows into the blood treatment filter 10 through the first blood porter 13 And may be discharged through the second blood porter 14. Accordingly, the first blood porter 13 and the second blood porter 14 are connected to the first blood flow pipe 21 and the second blood flow pipe 22, respectively, through which blood is transferred to the blood processing filter 10. It can flow.
  • a first dialysis solution porter 15 and a second dialysis solution porter 16 are provided on one side and the other side of the outer circumferential surface of the blood treatment filter housing 11 to allow the dialysis solution to flow. It is supplied to the blood treatment filter 10 through the solution porter 15, and the second dialysis solution porter 16 may be discharged from the blood treatment filter 10.
  • the blood treatment filter is not limited to the illustrated form and may be changed in various forms, and may include, for example, a hemodialysis filter, a hemodiafilter, an adsorption filter, and the like.
  • the blood treatment apparatus 1 may further include a dialysis solution treatment unit 30 for preparing a dialysis solution.
  • the dialysis solution treatment unit 30 contains acid ions and bicarbonate solutions, or acid ions and bicarbonate powder in ultrapure water generated through the water treatment unit 40. It can be prepared by mixing and adjusting the concentration and pH of electrolytes such as bicarbonate and sodium.
  • the dialysis solution processing unit 30 may further include a dialysis solution processing pump 31 for transferring the above-described acid ion solution and bicarbonate ion solution.
  • the dialysis solution processing pump 31 may also be divided into a first dialysis solution processing pump 31a for transferring the first ionic solution and a second dialysis solution processing pump 31b for transferring the second ionic solution.
  • the dialysis solution processing pump 31 needs to transfer an exact amount of ionic solution, so it is really preferable to use a fluid pump. Examples include rotary piston pumps, metering pulsation pumps, and precision piston pumps.
  • the blood treatment apparatus 1 may be configured to additionally include a supply dialysis solution storage unit 36 and a discharge dialysis solution storage unit 38, and the supplied dialysis solution storage unit 36 ) Stores the dialysis solution and then supplies it to the blood treatment filter 10, and the discharge dialysis solution storage unit 38 may store the used dialysis solution.
  • the dialysis solution is not stored in the supplied dialysis solution storage unit 36 and can be directly supplied to the blood treatment filter 10, and the used dialysis solution is not stored in the discharged dialysis solution storage unit 38 and is immediately discharged and discarded. Can be.
  • the dialysis solution is not limited to being formed through the dialysis solution treatment unit 30 as described above, and may be supplied using, for example, a dialysis solution bag already made.
  • the blood processing apparatus 1 may further include a means for measuring the purity of the prepared dialysis solution, such as a conductivity sensor.
  • the water treatment unit 40 undergoes several filtration steps to produce ultrapure water, including, for example, a pretreatment filter, a carbon filter, a reverse osmosis pressure filter, an ion exchange resin, and an endotoxin filter. Can be configured.
  • the structure of the water treatment device 40 may be changed to meet the purpose of blood treatment therapy.
  • the flow path control unit 60 is characterized in that it controls the flow (or flow path) through the inlet pipes and outlet pipes connected to the n number of fluid chambers. Accordingly, various valve structures capable of opening or blocking the flow may be used as the flow path control unit 60.
  • the flow path control unit 60 may be any one of a one-way valve, a solenoid valve, an on-off valve, a pressing type valve, a rotating-type valve, and a pneumatic valve. It may have one structure, or may be made of a combination of these valves.
  • the one-way valve is installed in each of the flow pipes in which the internal flow path is controlled by the flow path control unit 60 to limit the internal flow to flow in one direction.
  • the solenoid valve and the on-off valve are installed in each of the flow pipes in which the internal flow path is controlled by the flow path control unit 60 to open or block the internal flow.
  • the pneumatic valve or pneumatic valve assembly may be composed of a pneumatic driver and a pneumatic channel.
  • the pneumatic actuator can pressurize or depressurize the pneumatic channel, through which the flow pipe connected to the pneumatic channel can be expanded or pressurized, that is, open or block the flow inside.
  • An exemplary pneumatic flow path control unit 60 is shown in FIGS. 4 and 5. As described above, it is possible to pressurize or depressurize the pneumatic channel and the flow pipe through various types of pneumatic actuators.
  • a pressurized valve includes a flow path blocking member 61 capable of blocking flow by compressing a part of the flow pipe through linear or curved movement, and a flow pipe compressed by the flow blocking member 61 It may be configured to include a flow path blocking wall 62 for supporting the, and a flow path blocking member driver for driving the flow blocking member 61.
  • FIG. 7 and 8 are a flow path control unit 60 of an example for controlling a flow path through eight flow pipes (51a, 51b, 52a, 52b, 53a, 53b, 54a and 54b) connected to the four chambers (51 to 54) Is shown.
  • the flow path blocking member 61 moves toward the flow pipes 51a, 52b, 53a, and 54b, one end of the flow path blocking member 61 compresses the flow pipes supported by the flow path blocking wall 62 to block internal flow. .
  • the flow paths through the flow pipes 51b, 52a, 53b, and 54a are opened.
  • the other end of the flow path blocking member 61 compresses the flow pipes 51b, 52a, 53b, and 54a to block internal flow.
  • the flow path control unit 60 is not limited to the illustrated structure.
  • the flow through flow pipes 51a, 52b, 53a, 54b and flow pipes 51b, 52a, 53b, 54a are alternated by two or more separated flow path blocking members 61a and 61b. It can be blocked, and the flow path blocking member driver can be changed to drive the separated flow path blocking members 61a and 61b, respectively.
  • the flow tube when the flow tube is made of a soft material such as silicone, polyurethane, polyacetate, etc., when the flow tube is bent by a predetermined angle, internal flow may be blocked. That is, it will be apparent to those skilled in the art that the flow path blocking member 61 is not limited to blocking internal flow by compressing the flow tube, and can operate so that the flow tubes can be bent by a predetermined angle.
  • the flow path blocking member driver may be of various structures capable of causing linear motion or curved movement to the flow path blocking member 61.
  • the description of the chamber pressing member driver described above may be equally applied to the flow path blocking member driver.
  • a cam for moving the flow path blocking member 61 toward the flow path blocking wall 62 and a motor for rotating the cam may be included. The flow is blocked, and when the external force by the cam is removed, the flow path blocking member is separated from the flow pipe, and the flow pipe is restored to its original state by its own elastic force and opened.
  • the eccentric cam connected to the motor rotates to compress the flow pipe on one side, the flow inside the compressed flow pipe is blocked.
  • the cam When the cam is further rotated, the external force of the cam compressing the tube is removed and the tube can be opened as it is restored to its original state.
  • the flow pipe through which internal flow is regulated by the flow path control unit 60 may be pressurized, thereby blocking the internal flow.
  • the cam rotates further or rotates in the reverse direction, the external force by the cam is removed, the flow pipe is restored to its original state, and the internal flow can be opened.
  • the flow path control unit 60 is 12 flow pipes (51a, 51b, 52a, 52b, 53a, 53b, 54a, 54b, 55a) connected to the six chambers (51 to 56), as shown in FIG. 55b, 56a and 56b) can be changed to control the flow path.
  • the flow path control unit 60 is characterized in that the flow pipes 51a, 52b, 53a, 54b, 55a, 56b and flow pipes 51b, 52a, 53b, 54a, 55b, 56a are alternately blocked.
  • the flow path control unit 60 configured as a pressure type valve may further include a tube fixing part 63 (not shown).
  • the flow path control unit 60 blocks a flow path through at least half of the flow pipes in which the internal flow is controlled by the flow control unit 60.
  • the flow path control unit 60 is not limited to the above-described structure and may be changed to another structure.
  • the flow path control unit 60 constituted by a rotary valve includes a flow path control housing 64 having an internal space, and an internal space of the flow control housing.
  • a flow path control rotor 66 installed to be rotated or linearly moved, a plurality of flow path control porters 65 installed to penetrate through the flow control housing 64, and a rotor driving unit for driving the flow control rotor 66 ( 67) can be included.
  • the inner space of the flow control housing 64 and the flow control rotor 66 have a cylinder shape. It is more preferable to have it.
  • the flow path control rotor 66 may be changed to perform linear motion while rotating. That is, a flow path between at least two or more flow path control porters 65 may be connected through a rotational motion or a linear motion of the flow path control rotor 66.
  • the flow path adjustment unit 60 may be configured to further include a flow path adjustment depression 68 in the flow path adjustment rotor 66, the flow adjustment depression 68
  • a flow path adjustment depression 68 in the flow path adjustment rotor 66, the flow adjustment depression 68
  • the shape of the flow path adjustment depression 68 is not limited to the drawings, and may be changed to other shapes such as a square, a triangle, or the like.
  • 11 shows a flow circuit diagram of the blood processing apparatus 1 according to an embodiment of the present invention in which the flow path control unit 60 is configured as a rotary valve.
  • the plurality of flow path control porters 65 may be installed to be spaced apart along the circumferential direction of the inner space (or the flow path control rotor having a cylinder shape) of the flow control housing 64 having a cylindrical shape.
  • the plurality of flow path control porters 65 may be located on the same cross-section. Specifically, when considering a cross section perpendicular to the axial direction of the flow path control rotor 66, the flow path control porters 65 It can be installed so that it is located on the cross section In FIG. 9, it can be seen that the flow path control porter 65 is located on the cross-sections marked D-D' and E-E'.
  • the meaning of being positioned at the same cross-section means not only being positioned at the same cross-section, but also means being positioned at a fairly similar height along the axial direction of the flow path control rotor 66.
  • the flow path control porter 65 may be divided and installed in two or more cross-sections, as shown in G-G' and H-H' of FIG. 11.
  • the flow path control porter 65 is characterized in that it can be located on a plane of substantially the same height along the axial direction of the flow path control rotor (66).
  • the flow path control rotor 66 may rotate in one direction, but may rotate in both directions, such as clockwise and counterclockwise.
  • the flow path control rotor 66 may be implemented in another way to open or block the flow between the flow path control porters 65, such as performing a linear motion while rotating.
  • the blocking or opening time of the flow path between the flow path adjustment porters 65 may be adjusted through the rotational speed of the flow path adjustment rotor 66.
  • the flow control rotor 66 When the flow path control rotor 66 is in close contact with the inside of the flow control housing 64, it is preferable that there is no leakage of fluid through this coupling surface.
  • the flow control rotor 66 or/and the flow control housing 64 are preferably made of a material such as polymer, metal, ABS, acrylic, etc. that can suppress fluid leakage.
  • the flow path control unit 60 includes a protrusion such as an O-ring or a gasket on the circumferential surface of the flow path control rotor 66. It may be configured to further include (69). These protrusions 69 are made of a flexible material such as silicone or rubber in order to suppress fluid leakage through the adhesive surface of the flow control rotor 66 and the flow control housing 64, or to more efficiently suppress fluid leakage. It can be made of hard materials such as metal, aluminum, polymer, and plastic.
  • the protrusion 69 such as an O-ring or a gasket may be changed to a protrusion 69 provided in the inner space of the flow control housing 64 instead of the flow control rotor 66.
  • the flow control porter 65 passing through the flow control housing 64 is It is preferable not to deviate from the cylinder circumferential surface of the flow path control rotor 66 having a cylinder shape.
  • the flow through at least one of the flow path control porters 65 is always blocked.
  • the rotary valve is not limited to the above-described structure and may be changed to another structure.
  • the flow path control unit 60 is also not limited to the above-described structures, and may be changed to another structure capable of developing or blocking a flow path through a flow pipe connected to the fluid chamber.
  • the blood processing device 1 may be configured to include various sensors 24 and 34. These sensors serve to monitor blood treatment treatment, and may include, for example, a pressure sensor, an air bubble sensor, a blood leak sensor, a temperature sensor, a conductivity sensor, and the like.
  • the blood processing device 1 may further include an endotoxin filter, which removes harmful substances such as endotoxins and bacteria that may be included in the dialysis solution so that it does not come into contact with the blood. .
  • the blood processing apparatus 1 is configured to include four fluid chambers 51, 52, 55 and 56 including first, second, fifth, and sixth (Fig. 13).
  • the two chambers 51 and 52 are connected to the dialysis solution porter of the blood treatment filter 10 to transfer the dialysis solution, and the other two chambers 55 and 56 are connected to the blood porter to transfer blood.
  • the flow path control unit 60 is configured as a pressurized valve to control the flow through the inlet pipe and the outlet pipe of each chamber.
  • Two chambers 52 and 56 are compressed and the other two chambers 51 and 55 are expanded.
  • the flow path control unit 60 blocks the flow path through the flow pipes 51a, 52b, 55a, and 56b, and opens the flow path through the flow pipes 51b, 52a, 55b, and 56a (FIG. 13).
  • the dialysis solution Due to the expansion of the first chamber 51, the dialysis solution is introduced into the chamber through the first chamber inlet pipe 51a. Due to the compression of the second chamber 52, the dialysis solution inside the chamber is discharged through the second chamber outlet pipe 52b. Due to the expansion of the fifth chamber 55, the patient's blood flows into the chamber through the fifth chamber inlet pipe 55a. Due to the compression of the sixth chamber 56, blood inside the chamber is returned to the patient. At this time, neither the blood nor the dialysis solution flows through the blood treatment filter 10.
  • the thick black line in the drawing means that there is flow through the flow pipe. That is, the flow path of the flow pipe is opened by the flow path control unit 60.
  • a thin black line means that there is no flow through the flow tube. That is, the flow path of the flow pipe is blocked by the flow path control unit 60.
  • the dotted line shows the auxiliary dialysis solution flow pipe 81 and the auxiliary dialysis solution pump 82 installed therein.
  • the flow path control unit 60 opens the flow path through the flow pipes 51a, 52b, 55a, and 56b.
  • the flow paths through the flow pipes 51b, 52a, 55b and 56a are blocked (Fig. 13).
  • the dialysis solution inside the chamber is supplied to the blood treatment filter 10 through the first chamber outlet pipe 51b.
  • the dialysis solution of the blood treatment filter 10 is introduced into the second chamber 52 through the second chamber inlet pipe 52a.
  • Due to the compression of the fifth chamber 55 blood inside the chamber is supplied to the blood treatment filter 10 through the fifth chamber outlet pipe 55b.
  • Due to the expansion of the sixth chamber 56 the blood of the blood treatment filter 10 flows into the sixth chamber 56 through the sixth chamber inlet pipe 56a. At this time, the blood and the dialysis solution flow through the blood treatment filter (10).
  • the first chamber 51 supplies a clean dialysis solution to the blood treatment filter 10 and the second chamber 52 discharges the used dialysis solution from the blood treatment filter 10.
  • the fifth chamber 55 supplies the patient's blood to the blood treatment filter 10, and the sixth chamber 56 returns the blood from the blood treatment filter 10 to the patient.
  • the dialysis solution processing unit 30 may be connected to the first chamber 51. Specifically, the first chamber inlet pipe ( 51a).
  • the chambers have the same compression-expansion stroke volume or different compression-expansion stroke volumes.
  • the chamber pressing member 59 moves to the left and right by a predetermined length, and thereby the chambers are compressed or expanded.
  • the compressed and expanded volume of each chamber may be defined as a stroke volume.
  • the chambers 51 and 52 may have the same stroke volume, and the chambers 55 and 56 may also have the same stroke volume. As described above, the meaning of the same includes the meaning of fairly similar in addition to the meaning of completely the same. Also, the stroke volumes of chambers 51 and 52 may be larger than those of chambers 55 and 56. For example, the stroke volume of chambers 51 and 52 can be designed to be about twice the stroke volume of chambers 55 and 56. However, the stroke volume of the chamber can be changed sufficiently differently depending on the purpose of the blood treatment therapy. In order for the chambers to have the same stroke volume, the cross-sectional area of the inner space of the chambers may be the same or very similar. If the inner space of the chambers has a cylindrical shape, the inner diameter of the cross-sectional area of the inner space may be the same or similar.
  • the blood treatment device 1 may be changed differently. For example, a clean dialysis solution is supplied to the blood treatment filter 10 through the second chamber 52, and the used dialysis solution of the blood treatment filter 10 is It may be discharged through the first chamber 51. Similarly, blood is supplied to the blood treatment filter 10 through the sixth chamber 56 and the blood of the blood treatment filter 10 may be returned to the patient through the fifth chamber 55.
  • the flow path control unit 60 is not limited to being configured as a pressurized valve to control the flow path of the inlet pipe and the outlet pipe connected to the chambers 55 and 56, and the flow control unit ( 60) may be composed of one-way valves (55c and 56c).
  • the blood processing apparatus 1 is configured to include three fluid chambers 51, 52 and 55, such as first, second, and fifth (Fig. 15).
  • the two chambers 51 and 52 are connected to the dialysis solution porter of the blood treatment filter 10 to transfer the dialysis solution, and the other chamber 55 is connected to the blood porter to transfer blood.
  • the flow path control unit 60 is configured as a pressurized valve to control the flow through the inlet pipe and outlet pipe connected to each of the chambers 51, 52, and 55.
  • a flow path control unit 60 may be additionally installed in the blood flow pipe 22, thereby opening and closing the flow through the blood flow pipe 22 connected to the second blood porter 14.
  • the flow path control unit 60 opens the flow path through the flow pipes 51a, 52b, 55b and 22, and the flow pipe 51b, The flow path through 52a and 55a is blocked (Fig. 15). Due to the expansion of the first chamber 51, the dialysis solution of the blood treatment filter 10 flows into the chamber through the first chamber inlet pipe 51a. Due to the compression of the second chamber 52, the dialysis solution inside the chamber is supplied to the blood treatment filter 10 through the second chamber outlet pipe 52b. Due to the compression of the fifth chamber 55, the blood inside the chamber is supplied to the blood treatment filter 10 through the fifth chamber inlet pipe 55a, and is returned to the white child through the blood flow pipe 22.
  • the flow path control unit 60 blocks the flow path through the flow pipes 51a, 52b, 55b and 22, and the flow pipe 51b ,
  • the flow paths through 52a and 55a are open. Due to the compression of the first chamber 51, the dialysis solution inside the chamber is discharged through the first chamber outlet pipe 51b. Due to the expansion of the second chamber 52, a dialysis solution is supplied to the chamber through the second chamber inlet pipe 52a. Due to the expansion of the fifth chamber 55, blood from the patient is supplied to the chamber.
  • blood may be leaked or returned by a single needle (or catheter) connected to the patient.
  • the blood processing apparatus 1 is not limited to the above-described structure and may be changed to another circuit structure.
  • the patient's blood may be supplied to the blood treatment filter 10 by two separate chambers 55 and 56 or may be returned to the patient.
  • These two fluid chambers 55 and 56 can be compressed or expanded at once ( Figure 16). That is, the blood processing device 1 is configured to include four chambers as in the above-described embodiment 1, but when one chamber is compressed, the other three chambers are expanded. Conversely, when one chamber is expanded, the other three chambers are expanded. The chamber can be compressed.
  • the flow path control unit 60 may be configured as a one-way valve installed in each flow pipe to control the flow through the flow pipes 55a, 55b, 56a and 56b connected to the fifth and sixth chambers 55 and 56. .
  • the operation is similar to that of the second embodiment, in the blood processing apparatus 1 of FIG. 16, blood flows through the blood processing filter 10 when both chambers 55 and 56 are compressed or expanded.
  • FIG 17 and 18 illustrate a blood processing apparatus 1 according to an embodiment of the present invention including five fluid chambers.
  • the four chambers 51 to 54 are connected to the dialysis solution porters 15 and 16 to flow the dialysis solution, and the other chamber 55 is connected to the first blood porter 13 to transfer blood.
  • the blood processing apparatus 1 may be modified to have six fluid chambers 51 to 56 in order to transfer blood and a dialysis solution. 17 and 18, the dialysis solution is transferred by the first to fourth chambers 51 to 54. However, blood is transported by two chambers 55 and 56, but these two chambers are characterized in that they are compressed or expanded simultaneously, as shown in FIG. 16. At this time, the flow path control unit 60 for adjusting the flow path through the flow pipes 55a, 55b, 56a, and 56b connected to the chambers 55 and 56 may be configured as a one-way valve.
  • the flow path control unit 60 for adjusting the flow path through the flow pipes connected to the chambers 51 to 54 may be formed of any one of a one-way valve, a solenoid valve, a pressurized valve, and a rotary valve, or a combination thereof.
  • the blood treatment device 1 includes six fluid chambers 51 to 56, and the dialysis solution is transferred through the chambers 51 to 54.
  • the dialysis solution is supplied to the blood treatment filter 10 through the first chamber 51 and the fourth chamber 54 and is discharged through the second chamber 52 and the third chamber 53.
  • the chambers 51 and 54 are connected to the first dialysis solution porter 15 and the chambers 52 and 53 are connected to the second dialysis solution porter 16.
  • the dialysis solution processing unit 30 may be connected to the first chamber 51 and the fourth chamber 54 through the first chamber inlet pipe 51a and the fourth chamber inlet pipe 54a, respectively.
  • Blood is conveyed through chambers 55 and 56. Blood is supplied to the blood processing filter 10 through the fifth chamber 55 and the blood is returned to the patient through the sixth chamber 56. Accordingly, the fifth chamber 55 may be connected to the first blood porter 13 and the sixth chamber 56 may be connected to the second blood porter 14.
  • the flow path control unit 60 may be composed of a pressurized blood valve for flow pipes connected to the chambers 51 to 54, and one-way valves installed in the flow pipes of the flow pipes connected to the chambers 55 and 56, respectively.
  • the flow path control unit 60 opens the flow through the first chamber inlet pipe 51a, the second chamber outlet pipe 52b, the third chamber inlet pipe 53a, and the fourth chamber outlet pipe 54b. , The flow through the first chamber outlet pipe 51b, the second chamber inlet pipe 52a, the third chamber outlet pipe 53b, and the fourth chamber inlet pipe 54a is blocked.
  • the dialysis solution is introduced into the chamber through the first chamber inlet pipe 51a. Due to the compression of the second chamber 52, the inner dialysis solution is discharged through the second chamber outlet pipe 52b. Due to the expansion of the third chamber 53, the dialysis solution of the blood treatment filter 10 flows into the chamber through the third chamber inlet pipe 53a. Due to the compression of the fourth chamber 54, the inner dialysis solution is supplied to the blood treatment filter 10 through the fourth chamber outlet pipe 54b. Due to the expansion of the fifth chamber 55, the patient's blood flows into the chamber through the fifth chamber inlet pipe 55a. Due to the compression of the sixth chamber 56, internal blood is supplied to the blood treatment filter 10 through the sixth chamber outlet pipe 56b.
  • the blood in the sixth chamber 56 does not flow back to the patient by the operation of the check valves 55c and 56c installed in the inlet pipe and the outlet pipe of the fifth chamber 55 and the sixth chamber 56, and the blood is processed. Blood from the filter 10 does not flow back into the fifth chamber 55. At this time, it can be seen that blood does not flow through the blood processing filter 10.
  • the first, third, and fifth chambers 51, 53, and 55 are compressed by the chamber pressing member 59, and the second, fourth, and sixth chambers (52, 54, 56) expands.
  • the flow path control unit 60 blocks the flow through the flow pipes 51a, 52b, 53a, and 54b, and opens the flow through the flow pipes 51b, 52a, 53b, and 54a.
  • the inner dialysis solution is supplied to the blood treatment filter 10 through the second chamber outlet pipe 52b. Due to the expansion of the second chamber 52, the dialysis solution of the blood treatment filter 10 flows into the chamber through the second chamber inlet pipe 52a. Due to the compression of the third chamber 53, the inner dialysis solution is discharged through the third chamber outlet pipe 53b. Due to the expansion of the fourth chamber 54, the dialysis solution is introduced into the chamber through the fourth chamber inlet pipe 54a. Due to the compression of the fifth chamber 55, internal blood is supplied to the blood treatment filter 10 through the fifth chamber outlet pipe 55b. Due to the expansion of the sixth chamber 56, the patient's blood flows into the chamber through the sixth chamber inlet pipe 56a.
  • the blood in the fifth chamber 55 does not flow back to the patient by the one-way valves 55c and 56c installed in the inlet and outlet pipes of the fifth chamber 55 and the sixth chamber 56, and the blood treatment filter 10 Blood does not flow back into the sixth chamber (56). At this time, it is characterized in that both the blood and the dialysis solution flow through the blood treatment filter (10).
  • FIGS. 21 and 22 show an embodiment of the present invention in which the first chamber 51 and the third chamber 53 have a larger stroke volume than the second chamber 52 and the fourth chamber 54. It shows a flow circuit diagram of the blood treatment device 1 by.
  • FIG. 21 When moving to the left of the chamber pressing member 59 (FIG. 21), since the third chamber 53 has a larger stroke volume than the fourth chamber 54, moisture and urinary toxins in the blood are removed from the membrane 12 ), an ultrafiltration phenomenon that moves to the dialysis solution compartment of the blood treatment filter 10 occurs.
  • stroke volumes of chambers 55 and 56 may all be the same, or all may be set differently.
  • the flow control unit 60 is composed of a pressurized valve in the flow pipes connected to the first to fourth chambers 51 to 54, and a one-way valve in the flow pipes connected to the fifth and sixth chambers 55 and 56 Became.
  • the flow path control unit 60 is not limited to this configuration.
  • the flow path control unit 60 may be configured as a pressurized valve to open and close a flow path through a flow pipe connected to the first to sixth chambers 51 to 56. That is, as shown in Fig. 8, the flow path control unit 60 having the form of a pressurized valve includes flow pipes 51a, 51b, 52a, 52b, 53a, 53b connected to the first to sixth chambers 51 to 56, 54a, 54b, 55a, 55b, 56a and 56b).
  • the flow path control unit 60 may be configured as a one-way valve installed in each flow pipe to open and close a flow path through a flow pipe connected to the first to sixth chambers 51 to 56. This is described in more detail below.
  • FIG. 23 and 24 show a blood processing apparatus 1 according to another embodiment of the present invention. Blood is supplied to the blood treatment filter 10 through the fifth chamber 55 and the sixth chamber 56. However, unlike the fifth embodiment described above, it can be seen that both the fifth and sixth chambers 55 and 56 are connected to the first blood porter 13.
  • the first, third, and fifth chambers 51, 53, 55 are compressed by the chamber pressing member 59, and the second, fourth, and sixth chambers 52, 54, 56 are expanded. 24), by the compression of the fifth chamber 55, the heal liquid in the chamber is supplied to the blood treatment filter 10 through the fifth chamber outlet pipe 55b. Due to the expansion of the sixth chamber 55, the patient's blood flows into the chamber through the sixth chamber inlet pipe 56a. Therefore, both the blood and the dialysis solution flow through the blood treatment filter 10 during compression and expansion of the chamber.
  • the first to fourth chambers 51 to 54 have substantially the same stroke volume, but the stroke volumes of the chambers 55 and 56 may be different from the stroke volumes of the chambers 51 to 54.
  • the stroke volume of chambers 55 and 56 may be set to have about half the stroke volume of chambers 51 to 54.
  • the number of chambers through which the first fluid (such as blood) flows and the number of chambers through which the second fluid (such as dialysis solution) flows are suitable for the purpose of blood treatment therapy. It is natural to those skilled in the art that can be changed.
  • the flow path control unit 60 is composed of a one-way valve (or a check valve) installed in the flow pipes connected to the first to sixth chambers 51 to 56, respectively. That is, the first chamber check valve 51c is installed in the first chamber inlet pipe 51a and the first chamber outlet pipe 51b. Similarly, a second chamber check valve 52c is provided in the second chamber inlet pipe 52a and the second chamber outlet pipe 52b.
  • the first, third, and fifth chambers 51, 53, and 55 are expanded by the chamber pressing member 59, and the second, fourth, and sixth chambers 52, 54, 56) are compressed.
  • the dialysis solution is introduced into the chamber through the first chamber inlet pipe 51a. At this time, the dialysis solution of the blood treatment filter 10 does not flow back into the chamber by the first chamber check valve 51c. Due to the compression of the second chamber 52, the inner dialysis solution is discharged through the second chamber outlet pipe 52b. At this time, the dialysis solution does not flow back to the blood treatment filter 10 by the second chamber check valve 52c. Due to the expansion of the third chamber 53, the dialysis solution of the blood treatment filter 10 flows into the chamber through the third chamber inlet pipe 53a. At this time, the dialysate used by the third chamber check valve 53c does not flow back into the chamber.
  • the inner dialysis solution is supplied to the blood treatment filter 10 through the fourth chamber outlet pipe 54b. At this time, the dialysis solution does not flow back toward the supplied dialysis solution storage unit 36 by the fourth chamber check valve 54c.
  • Due to the expansion of the fifth chamber 55 blood of the patient flows into the chamber through the fifth chamber inlet pipe 55a. Blood from the blood processing filter 10 does not flow back to the fifth chamber 55 by the fifth chamber check valve 55c.
  • Due to the compression of the sixth chamber 56 internal blood is supplied to the blood treatment filter 10 through the sixth chamber outlet pipe 56b. At this time, the blood in the sixth chamber 56 does not flow back to the patient by the sixth chamber check valve 56c.
  • the first, third, and fifth chambers 51, 53, and 55 are compressed by the chamber pressing member 59, and the second, fourth, and sixth chambers ( 52, 54, 56) are inflated.
  • the inner dialysis solution is supplied to the blood treatment filter 10 through the second chamber outlet pipe 52b. At this time, the dialysis solution does not flow back toward the supply dialysis solution storage unit 36 by the first chamber check valve 51c. Due to the expansion of the second chamber 52, the dialysis solution of the blood treatment filter 10 flows into the chamber through the second chamber inlet pipe 52a. At this time, the dialysis solution used by the second chamber check valve 52c does not flow back into the second chamber 52. Due to the compression of the third chamber 53, the inner dialysis solution is discharged through the third chamber outlet pipe 53b. At this time, the dialysis solution does not flow back to the blood treatment filter 10 by the third chamber check valve 53c.
  • the dialysis solution is introduced into the chamber through the fourth chamber inlet pipe 54a. At this time, the dialysis solution of the blood treatment filter 10 does not flow back into the fourth chamber 54 by the fourth chamber check valve 54c. Due to the compression of the fifth chamber 55, internal blood is supplied to the blood treatment filter 10 through the fifth chamber outlet pipe 55b. The blood inside the chamber does not flow back to the patient by the fifth chamber check valve 55c. Due to the expansion of the sixth chamber 56, the patient's blood flows into the chamber through the sixth chamber inlet pipe 56a. Blood from the blood processing filter 10 does not flow back to the sixth chamber 56 by the sixth chamber check valve 56c.
  • a check valve installed in the flow pipe restricts the flow of fluid through the flow pipe in one direction.
  • the check valve cracking pressure capable of opening the check valve does not have a predetermined value and may be set to an appropriate value required for driving the blood treatment device.
  • the opening pressure refers to a pressure difference between upstream and downstream of the one-way valve capable of opening the flow through the one-way valve.
  • a one-way valve according to an embodiment of the present invention May have an opening pressure of 10 mmHg to 180 mmHg. More specifically, it can have an opening pressure of 12 mmHg to 60 mmHg.
  • the blood treatment device 1 may be changed to a different structure, and as shown in FIGS. 27 and 28, the blood treatment device 1 may be changed to have eight fluid chambers. At this time, four chambers transfer the dialysis solution, and the other four chambers can transfer blood.
  • the first to fourth chambers 51 to 54 transfer the dialysis solution
  • the two chambers 51 and 54 supply the dialysis solution to the blood treatment filter 10
  • the other two chambers 52 and 53 Serves to discharge the dialysis solution of the blood treatment filter (10). This is the same as described above.
  • the flow path control unit 60 controls a flow path through an inlet pipe and an outlet pipe connected to the first to eighth chambers 51 to 58, a one-way valve, a solenoid valve, an on-off valve, a pressurized valve, and a rotary valve. And the like.
  • the flow path control unit 60 may block the flow path through any of the eight flow pipes and open the flow path through the other eight flow pipes.
  • the blood processing apparatus 1 is characterized in that it is configured to further include a blood pump 23 installed in the blood flow pipe 21 or 22. 29 shows a blood processing apparatus 1 having a blood pump 23 installed in the blood flow pipe 21.
  • the dialysis solution flows through the first to fourth chambers 51 to 54.
  • the two chambers 51 and 54 supply the dialysis solution to the blood treatment filter 10, and the other two chambers 52 and 53 serve to discharge the dialysis solution from the blood treatment filter 10.
  • the plurality of fluid chambers described above are not limited to being configured to be left and right, and may be changed to be installed in a vertical direction as shown in FIG. 30.
  • the chamber pressing member 59 may be divided into a first chamber pressing member 59a and a second chamber pressing member 59b, and can compress or expand the left and right chambers of the drawing, respectively.
  • a pressurized valve is installed in the flow pipes connected to the chambers 51 to 54, and a one-way valve is installed in the flow pipes connected to the chambers 55 and 56.
  • the flow path control unit 60 is a one-way valve, a solenoid valve, an on-off valve, a pressurized valve, a rotary valve, etc. to control a flow path through a flow pipe connected to the first to sixth chambers 51 to 56. It can be composed of.
  • the blood treatment device 1 may be configured to further include an auxiliary dialysis solution flow pipe 81 and an auxiliary dialysis solution pump 82.
  • the auxiliary dialysis solution pump 82 may be installed in the auxiliary dialysis solution flow pipe 81 to further remove the dialysis solution from the blood treatment filter 10. Therefore, the auxiliary dialysis solution flow pipe 81 is the inlet pipe of the second chamber 52 or the third chamber 53 (that is, the dialysis solution inlet of the blood treatment filter 10) and the discharged dialysis solution storage unit 38 or Drain lines can be connected to each other.
  • the auxiliary dialysis solution pump 82 may additionally remove the dialysis solution. Therefore, the auxiliary dialysis solution pump 82 needs to determine the amount of pure water to be removed from the patient and transfer the correct amount of water.
  • the auxiliary dialysis solution pump 82 various types of precision pumps may be used. For example, a precision pulsating pump, a roller pump, a cylinder-based pulsating pump, a gear pump, and the like may be used. According to the present invention, a metering rotary piston pump can be used.
  • the flow path control unit 60 is characterized in that the flow path through some of the flow pipes is blocked and the flow path through the other partial flow pipes is opened. And the flow path control unit 60 repeats such blocking and opening.
  • the flow path control unit 60 of the first embodiment described above alternately blocks the flow pipes 51a, 52b, 55a, and 56b and the flow pipes 51b, 52a, 55b, and 56a.
  • the flow path control unit 60 may be divided into a first flow path control unit 60a and a second flow path control unit 60b.
  • the flow pipes 51a, 52b, 55a and 56b are controlled by the first flow path control part 60a
  • the flow pipes 51b, 52a, 55b and 56a are controlled by the second flow path control part 60b. Can be adjusted.
  • the flow path by the second flow path control part 60b may be opened.
  • the first and second flow path control units 60a and 60b repeat compression and expansion, according to an embodiment of the present invention, the first and second flow path control units 60a and 60b At the same time, there may be moments when the flow path is blocked. That is, the flow path control unit 60 may instantly block all of the flow paths through the flow pipe through which the internal flow is controlled by the flow control unit 60. This may occur when the first flow path control unit 60a and the second flow path control unit 60b switch compression or expansion.
  • the flow control method of the flow path control unit 60 may be composed of the following steps.
  • the flow path control unit 60 may further include a step of delaying a time by a predetermined time between steps S1 to S6.
  • a first time delay step (D1) between S1 and S2 a second time delay step (D2) between S2 and S3, and/or a third time delay step (D3) between S3 and S4.
  • D1 to D3 have a set value for the stability of blood treatment therapy.
  • D1 and D2 may have similar values from 0 to 1.2 seconds
  • D3 may have values from 0 to 2.5 seconds.
  • steps S1 and S4 may be the same, and similarly, the time required for the steps S2 and S5 may be the same.
  • steps S1, S2, S4 and S5 take quite the same time, and the time ranges from about 0.2 to 1.2 seconds. More specifically, it takes from 0.4 to 0.8 seconds.
  • steps S3 and S6 take quite the same amount of time, ranging from about 0.4 to 2.4 seconds.
  • a plurality of fluid chambers are simultaneously compressed or expanded using a single chamber pressurizing member, thereby simultaneously transferring blood and a dialysis solution.
  • the plurality of fluid chambers may maintain the same amount of the dialysis solution supplied to the blood treatment filter and the dialysis solution discharged from the blood treatment filter. Therefore, the use of the existing blood pump and balancing chamber can be excluded, and through this, the entire blood processing device can be drastically reduced in size and weight, it is easy to install, and the cost of blood processing can be reduced. Therefore, the blood processing apparatus according to the present invention can efficiently perform blood processing not only in a hospital, but also in a place outside the hospital.

Abstract

A blood processing device according to one embodiment of the present invention comprises: a plurality of fluid chambers having inner spaces; a chamber pressurizing member for compressing or expanding the inner spaces of the plurality of fluid chambers; a pressurizing member actuator for actuating the chamber pressurizing member; and a flow path regulating part. Each of the plurality of chambers is connected to a first flow tube through which fluid flows into the chambers and a second flow tube through which the fluid of the chambers flows out, and the flow path regulating part regulates the flow through the flow tubes connected to the chambers.

Description

혈액처리를 위한 장치, 소모품, 방법 및 시스템Devices, consumables, methods and systems for blood processing
본 발명은 혈액처리를 위한 장치, 소모품 및 방법에 관한 것으로, 더욱 상세하게는 복수개의 유체 챔버를 동시에 압축 혹은 팽창시키며 이를 통해 혈액과 투석용액을 함께 이송시킴으로써 전체 장치가 단순화되고 설치가 용이하며 처치 비용을 절감한 혈액처리장치 및 방법에 관한 것이다.The present invention relates to an apparatus, consumables, and method for blood treatment, and more particularly, by simultaneously compressing or expanding a plurality of fluid chambers and transporting blood and dialysis solution together through this, the entire apparatus is simplified, installation is easy, and treatment. It relates to a blood treatment apparatus and method with reduced cost.
신장 기능에 장애가 생기면 체외로 배출되어야 할 수분과 노폐물이 체내에 축적되는 동시에 전해질 불균형이 발생하게 된다. 이와 같은 신부전 증상을 개선하는 방법으로 혈액을 체외로 순환시켜, 반투과성 막(membrane)을 통하여 체내에 축적된 요독소와 잉여 수분을 제거하는 혈액투석 요법이 주로 시행되고 있다. 혈액투석은 반투과성 막의 일측으로 혈액을 타측으로 투석용액을 유동시킴으로써, 이 두 유체의 농도차에 의한 확산(diffusion)과 압력차에 의한 여과(filtration)의 원리를 이용하여 체내 요독소와 잉여 수분을 제거하며 전해질 균형을 도모하는 방법이다.When kidney function is impaired, water and waste products to be discharged from the body accumulate in the body, and at the same time, an electrolyte imbalance occurs. As a method of improving such symptoms of renal failure, hemodialysis therapy, which circulates blood outside the body and removes urea toxin and excess water accumulated in the body through a semi-permeable membrane, has been mainly implemented. Hemodialysis uses the principle of diffusion due to the difference in concentration of the two fluids and filtration due to the difference in pressure by flowing blood to the other side of the semipermeable membrane to remove urinary toxins and excess moisture in the body. It is a method of removing and balancing electrolytes.
혈액처리 요법은 혈액을 체외로 순환시켜 혈액중의 독성물질을 제거하거나 혹은 유익한 성분을 공급하는 방법인데, 혈액투석은 대표적인 혈액처리 요법에 해당한다. 혈액처리 요법은 내부에서 혈액 등의 생리적인 체액과 투석용액 등의 정화된 무균용액 사이에 물질전달이 일어나는 혈액처리필터와 함께 사용된다.Blood treatment therapy is a method of circulating blood to the outside of the body to remove toxic substances in the blood or to supply beneficial components. Hemodialysis is a typical blood treatment therapy. Blood treatment therapy is used with a blood treatment filter in which substances are transferred between physiological body fluids such as blood and purified sterile solutions such as dialysis solutions.
혈액과 투석용액이 지나는 동안 물질 이동이 용이하게 일어날 수 있도록 원통형 용기에 반투과성 막을 장전하고 그 양단부에 폴리우레탄 등의 합성수지를 이용하여 포팅 가공한 중공사막형 혈액처리필터가 주로 사용되고 있다. 이는 중공사 형태의 혈액처리필터는 그 크기에 비해 물질전달 면적이 넓기 때문에 매추 높은 물질전달 효율을 달성할 수 있기 때문이다.A hollow fiber membrane type blood treatment filter in which a semi-permeable membrane is loaded in a cylindrical container and potted using a synthetic resin such as polyurethane at both ends is mainly used so that material movement can easily occur while the blood and dialysis solution pass. This is because the hollow fiber type blood treatment filter has a large mass transfer area compared to its size, so that high mass transfer efficiency can be achieved.
혈액과 투석용액은 혈액처리필터를 지나면서 정수압이 감소하게 되는데, 혈액과 투석용액이 혈액처리필터 내에서 서로 반대방향으로 유동하기 때문에, 혈액처리필터 내에서 혈액의 유입파트에서는 혈액 압력이 투석용액 압력보다 높아서 혈액 중의 수분이 투석용액 영역으로 이동하는 여과 현상이 발생하며, 반대로 혈액 유출파트에서는 투석용액 압력이 혈액 압력보다 높기 때문에 투석용액으로부터 혈액 영역으로 수분이 이동하는 역여과 현상이 일어나게 된다.As the blood and the dialysis solution pass through the blood treatment filter, the hydrostatic pressure decreases.Since the blood and the dialysis solution flow in opposite directions within the blood treatment filter, the blood pressure in the inlet part of the blood treatment filter Since the pressure is higher than the pressure, a filtration phenomenon occurs in which the water in the blood moves to the dialysis solution area. On the contrary, in the blood outflow part, the dialysis solution pressure is higher than the blood pressure.
기존 혈액처리장치의 경우 복수개의 투석용액 라인에 연결된 밸런싱 챔버와 두 개 이상의 투석용액 펌프를 이용하여 투석용액의 흐름을 조절하며, 또한 혈액펌프를 통해 혈액을 이송시킨다. 또한 전술한 밸런싱 챔버 및 투석용액 펌프는 주기적인 소독이 불가피한데, 따라서 기존의 혈액처리장치는 매우 복잡하고 환자가 사용하기에 큰 어려움이 있다.In the case of the existing blood treatment device, the flow of the dialysis solution is controlled by using a balancing chamber connected to a plurality of dialysis solution lines and two or more dialysis solution pumps, and blood is transferred through a blood pump. In addition, periodic sterilization is inevitable for the above-described balancing chamber and dialysis solution pump, and therefore, the existing blood treatment apparatus is very complicated and it is very difficult for patients to use it.
본 발명은 이러한 기존 혈액처리장치의 문제점을 해결하기 위하여 고안된 것으로써, 단일 챔버가압부재를 이용하여 복수개의 유체 챔버를 동시에 압축 혹은 팽창시키며, 이를 통해 혈액과 투석용액을 동시에 이송시킬 수 있다. 상기 복수개의 유체 챔버는 혈액처리필터로 공급되는 투석용액과 혈액처리필터로부터 배출되는 투석용액의 양을 동일하게 유지시킬 수 있다. 따라서 기존의 혈액펌프 및 밸런싱 챔버의 사용을 배제할 수 있으며, 이를 통해 전체 혈액처리장치를 비약적으로 소형화 및 경량화시킬 수 있으며, 설치하기가 용이하고, 혈액처리 비용을 절감할 수 있다. 따라서 본 발명에 의한 혈액처리장치는 병원뿐만 아니라 병원 외부의 장소에서도 혈액처리를 효율적으로 수행할 수 있는 혈액처리장치를 제공하는 것을 특징으로 한다.The present invention has been devised to solve the problem of such an existing blood treatment apparatus, and simultaneously compresses or expands a plurality of fluid chambers using a single chamber pressing member, thereby simultaneously transferring blood and a dialysis solution. The plurality of fluid chambers may maintain the same amount of the dialysis solution supplied to the blood treatment filter and the dialysis solution discharged from the blood treatment filter. Therefore, the use of the existing blood pump and balancing chamber can be excluded, and through this, the entire blood processing device can be drastically reduced in size and weight, it is easy to install, and the cost of blood processing can be reduced. Accordingly, the blood processing apparatus according to the present invention is characterized by providing a blood processing apparatus capable of efficiently performing blood processing not only in a hospital but also in a place outside the hospital.
상기와 같은 목적을 달성하기 위한 본 발명의 일실시예에 의한 혈액처리장치는 각각 내부 공간을 갖는 복수개의 유체 챔버, 각 유체 챔버의 내부공간을 압축 혹은 팽창시킬 수 있는 챔버 가압부재, 상기 챔버 가압부재를 구동시킬 수 있는 가압부재 구동기, 및 유로조절부를 포함하여 구성된다.A blood processing apparatus according to an embodiment of the present invention for achieving the above object includes a plurality of fluid chambers each having an internal space, a chamber pressing member capable of compressing or expanding the internal space of each fluid chamber, and pressurizing the chamber. It is configured to include a pressing member driver capable of driving the member, and a flow path control unit.
상기 복수개의 유체 챔버는 n개의 유체 챔버를 포함하여 구성되는데 여기서 n은 2이상의 정수값을 갖는다. 그리고 n개의 유체 챔버 각각은 챔버로 유체가 유입되는 유입관 및 챔버 내부의 유체가 유출되는 유출관과 연결되어 구성될 수 있다.The plurality of fluid chambers includes n fluid chambers, where n has an integer value of 2 or more. In addition, each of the n fluid chambers may be configured by being connected to an inlet pipe through which a fluid flows into the chamber and an outlet pipe through which the fluid inside the chamber flows out.
상기 유로조절부는 n개의 유체 챔버와 연결되는 유입관과 유출관을 통한 유동(혹은 유로)을 조절하는 것을 특징으로 한다. 따라서 유동을 개방 혹은 차단할 수 있는 다양한 밸브 구조가 이용될 수 있는데, 예를 들면:The flow path control unit is characterized in that it controls the flow (or flow path) through the inlet pipe and the outlet pipe connected to the n number of fluid chambers. Thus, a variety of valve structures can be used to open or shut off the flow, for example:
상기 유로조절부에 의해서 내부의 유로가 조절되는 유동관 각각에 설치되어 내부의 유동을 한방향으로 흐르도록 제한하는 일방향 밸브;A one-way valve installed in each flow pipe through which an internal flow path is controlled by the flow path control unit to restrict the internal flow to flow in one direction;
상기 유로조절부에 의해서 내부의 유로가 조절되는 유동관 각각에 설치되어 내부의 유동을 개방 혹은 차단하는 솔레노이드 밸브;A solenoid valve installed in each flow pipe through which an internal flow path is controlled by the flow path control unit to open or block the internal flow;
직선운동 혹은 곡선운동을 통해 상기 유동관의 일부를 압축하여 유동을 차단할 수 있는 유로차단부재, 상기 유로차단부재에 의해 압축되는 유동관을 지지하는 유로차단벽, 및 상기 유로차단부재를 구동하는 유로차단부재 구동기를 포함하여 구성되는 가압형 밸브; 및A flow path blocking member capable of blocking the flow by compressing a part of the flow pipe through linear or curved movement, a flow blocking wall supporting the flow pipe compressed by the flow blocking member, and a flow blocking member driving the flow blocking member A pressurized valve comprising an actuator; And
내부공간을 갖는 유로조절 하우징, 상기 유로조절 하우징의 내부공간에 회전 혹은 직선 이동이 가능하도록 설치되는 유로조절 로터, 유로조절 하우징을 관통하도록 설치되는 복수개의 유로조절 포터, 및 상기 유로조절 로터를 구동하는 로터구동부를 포함하는 회전형 밸브; 등으로 구성될 수 있다.A flow path control housing having an internal space, a flow path control rotor installed to rotate or move linearly in the internal space of the flow control housing, a plurality of flow control porters installed to pass through the flow control housing, and drive the flow control rotor A rotary valve including a rotor driving unit; And the like.
여기서, 본 발명의 일실시예에 의한 유로조절부는, 상기 챔버가 압축 혹은 팽창될 때, 유로조절부에 의해서 내부의 유로가 조절되는 유동관 중 약 절반의 유동관을 통한 유로를 차단하는 것을 특징으로 한다.Here, the flow path control unit according to an embodiment of the present invention is characterized in that when the chamber is compressed or expanded, the flow path through about half of the flow pipes in which the internal flow path is controlled by the flow path control unit is blocked. .
본 발명의 일실시예에 의한 혈액처리장치에 의하면, 단일 챔버가압부재를 이용하여 복수개의 유체 챔버를 동시에 압축 혹은 팽창시키며, 이를 통해 혈액과 투석용액을 동시에 이송시킬 수 있다. 상기 복수개의 유체 챔버는 혈액처리필터로 공급되는 투석용액과 혈액처리필터로부터 배출되는 투석용액의 양을 동일하게 유지시킬 수 있다. 따라서 기존의 혈액펌프 및 밸런싱 챔버의 사용을 배제할 수 있으며, 이를 통해 전체 혈액처리장치를 비약적으로 소형화 및 경량화시킬 수 있으며, 설치하기가 용이하고, 혈액처리 비용을 절감할 수 있다. 따라서 본 발명에 의한 혈액처리장치는 병원뿐만 아니라, 병원 외부의 장소에서도 혈액처리를 효율적으로 수행할 수 있다.According to the blood processing apparatus according to an embodiment of the present invention, a plurality of fluid chambers are simultaneously compressed or expanded using a single chamber pressurizing member, thereby simultaneously transferring blood and a dialysis solution. The plurality of fluid chambers may maintain the same amount of the dialysis solution supplied to the blood treatment filter and the dialysis solution discharged from the blood treatment filter. Therefore, the use of the existing blood pump and balancing chamber can be excluded, and through this, the entire blood processing device can be drastically reduced in size and weight, it is easy to install, and the cost of blood processing can be reduced. Therefore, the blood processing apparatus according to the present invention can efficiently perform blood processing not only in a hospital, but also in a place outside the hospital.
도 1은 본 발명의 일실시예에 의한 혈액처리장치의 개념도이다.1 is a conceptual diagram of a blood processing apparatus according to an embodiment of the present invention.
도 2 및 도 3은 본 발명의 일실시예에 의한 혈액처리필장치의 유동회로도(flow circuit diagram)이다.2 and 3 are flow circuit diagrams of a blood processing device according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 일실시예에 의한 혈액처리장치에 포함되는 유체이송장치부의 일례를 도시한 것이다.4 and 5 show an example of a fluid transfer device included in the blood processing apparatus according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 의한 혈액처리필터를 도시한 것이다.6 shows a blood processing filter according to an embodiment of the present invention.
도 7 및 도 8은 가압형 밸브로 구성된 본 발명의 일실시예에 의한 유로조절부를 도시한 것이다.7 and 8 show a flow path control unit according to an embodiment of the present invention configured as a pressurized valve.
도 9 및 도 10은 회전형 밸브로 구성된 본 발명의 일실시예에 의한 유로조절부를 도시한 것이다.9 and 10 show a flow path control unit according to an embodiment of the present invention configured as a rotary valve.
도 11은 회전형 밸브로 구성된 유로조절부를 갖는 본 발명의 일실시예에 의한 혈액처리장치의 유동회로도이다.11 is a flow circuit diagram of a blood treatment apparatus according to an embodiment of the present invention having a flow path control unit configured as a rotary valve.
도 12는 회전형 밸브로 구성된 본 발명의 일실시예에 의한 유로조절부를 도시한 것이다.12 shows a flow path control unit according to an embodiment of the present invention configured as a rotary valve.
도 13 및 도 14는 4개의 유체 챔버를 갖는 본 발명의 일실시예에 의한 혈액처리장치의 유동회로도이다.13 and 14 are flow circuit diagrams of a blood processing apparatus according to an embodiment of the present invention having four fluid chambers.
도 15는 3개의 유체 챔버를 갖는 본 발명의 일실시예에 의한 혈액처리장치의 유동회로도이다.15 is a flow circuit diagram of a blood treatment apparatus according to an embodiment of the present invention having three fluid chambers.
도 16은 4개의 유체 챔버를 갖는 본 발명의 일실시예에 의한 혈액처리장치의 유동회로도이다.16 is a flow circuit diagram of a blood treatment apparatus according to an embodiment of the present invention having four fluid chambers.
도 17 및 도 18은 5개의 유체 챔버를 갖는 본 발명의 일실시예에 의한 혈액처리장치의 유동회로도이다.17 and 18 are flow circuit diagrams of a blood treatment apparatus according to an embodiment of the present invention having five fluid chambers.
도 19 및 도 20은 6개의 유체 챔버를 갖는 본 발명의 일실시예에 의한 혈액처리장치의 유동회로도이다.19 and 20 are flow circuit diagrams of a blood processing apparatus according to an embodiment of the present invention having six fluid chambers.
도 21 및 도 22는 6개의 유체 챔버를 갖는 본 발명의 다른 일실시예에 의한 혈액처리장치의 유동회로도이다.21 and 22 are flow circuit diagrams of a blood treatment apparatus according to another embodiment of the present invention having six fluid chambers.
도 23 및 도 24는 6개의 유체 챔버를 갖는 본 발명의 또 다른 일실시예에 의한 혈액처리장치의 유동회로도이다.23 and 24 are flow circuit diagrams of a blood treatment apparatus according to another embodiment of the present invention having six fluid chambers.
도 25 및 도 26은 일방향 밸브로 구성된 유로조절부와 6개의 유체 챔버를 갖는 본 발명의 또 다른 일실시예에 의한 혈액처리장치의 유동회로도이다.25 and 26 are flow circuit diagrams of a blood treatment apparatus according to another embodiment of the present invention having a flow path control unit composed of a one-way valve and six fluid chambers.
도 27 및 도 28은 8개의 유체 챔버를 갖는 본 발명의 또 다른 일실시예에 의한 혈액처리장치의 유동회로도이다.27 and 28 are flow circuit diagrams of a blood treatment apparatus according to another embodiment of the present invention having eight fluid chambers.
도 29는 혈액펌프를 갖는 본 발명의 또 다른 일실시예에 의한 혈액처리장치의 유동회로도이다.29 is a flow circuit diagram of a blood processing apparatus according to another embodiment of the present invention having a blood pump.
도 30은 유체 챔버가 수직으로 구성된 본 발명의 또 다른 일실시예에 의한 혈액처리장치의 유동회로도이다.30 is a flow circuit diagram of a blood processing apparatus according to another embodiment of the present invention in which the fluid chamber is vertically configured.
도 31은 본 발명의 일실시예에 의한 유로조절부의 작동 방법을 도시한 것이다.31 shows a method of operating a flow path control unit according to an embodiment of the present invention.
첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 하지만 본 발명은 후술한 실시예에 한정되지 않으며 다양하게 변형될 수 있다. 본 발명을 설명함에 있어서, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의를 위해 과장되거나 단순화되어질 수 있다. 또한 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들은 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.A preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described later and may be variously modified. In describing the present invention, the size or shape of the components shown in the drawings may be exaggerated or simplified for clarity and convenience of description. In addition, terms specifically defined in consideration of the configuration and operation of the present invention may vary according to the intention or custom of users or operators. These terms should be interpreted as meanings and concepts consistent with the technical idea of the present invention based on the contents throughout the present specification.
본 발명을 설명함에 있어, 단수로 표현된 발명의 요소들은 그 요소들이 복수개 존재할 수 있다는 의미를 포함하는 것으로 해석되는 게 바람직하다. 또한 발명의 요소들 사이의 위치를 규명하는 표현들의 경우 가능한 가장 폭넓게 해석되는 게 바람직하다. 예를 들어, 제 1 요소가 제 2 요소의 위에, 사이에, 혹은 옆에 존재한다는 의미는 두 요소 사이에 제 3의 다른 요소가 존재할 수 있다. 본 발명을 설명함에 있어서, “같다 혹은 동일하다” 등의 의미는 “완전히” 동일하다는 의미 외에 상당히 같거나 동일한 경우를 포함하는 의미로 해석되는 게 바람직하다. “동시에” 등 시간의 동등성을 표현하는 의미는 완전히 “동시에” 일어나는 의미 외에 상당히 비슷한 시간(때)에 일어나는 경우를 포함한다. 도면상에서 동일한 발명의 구성요소는 명세서 전반에 걸쳐서 동일한 도면 부호를 사용하여 표현되었다.In describing the present invention, the elements of the invention expressed in the singular are preferably interpreted as including the meaning that there may be a plurality of the elements. Also, in the case of expressions that determine the position between the elements of the invention, it is desirable to be interpreted as broadly as possible. For example, meaning that a first element is on, between, or next to a second element may be a third other element between two elements. In describing the present invention, the meaning of “the same or the same” is preferably interpreted as including substantially the same or identical cases in addition to the meaning of “completely” the same. The meaning of expressing the equality of time, such as “at the same time”, includes a case that occurs at a very similar time (time) in addition to the meaning that occurs completely “at the same time”. Components of the same invention in the drawings are represented by the same reference numerals throughout the specification.
이하에서는 첨부된 도면을 참조하여 본 발명의 일실시예에 의한 혈액처리장치에 대하여 상세히 설명한다.Hereinafter, a blood processing apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 의한 혈액처리장치(1)의 개념도를 도시한 것이다. 본 발명에 의한 혈액처리장치는 혈액으로부터 혈장 혹은 혈구를 분리하거나, 또는 혈액을 보존하는 등의 단순한 처리뿐만 아니라, 혈액을 통해 환자에게 치료를 제공하는 다양한 장치를 포함하는 개념이다. 신부전 환자를 위한 혈액투석 장치, 급성 간부전 환자를 위한 간투석 장치, 폐 혹은 심장의 기능을 대체하는 체외순환장치(extracorporeal life supporter, ECLS), 혹은 다중장기 부전(multi-organ failure) 치료를 위한 각종 정화장치 등을 포함할 수 있다.1 shows a conceptual diagram of a blood processing apparatus 1 according to an embodiment of the present invention. The blood processing apparatus according to the present invention is a concept including various apparatuses for providing treatment to a patient through blood, as well as simple processing such as separating plasma or blood cells from blood or preserving blood. Hemodialysis devices for patients with renal failure, hepatodialysis devices for patients with acute liver failure, extracorporeal life supporter (ECLS) that replaces the function of the lungs or heart, or various treatments for multi-organ failure. It may include a purification device or the like.
상기 혈액처리장치는 혈액처리장치부(2)와 소모품세트(3)를 포함하여 구성될 수 있다. 상기 혈액처리장치부(2)는 하드웨어로 유닛으로서 통상 하우징 내부에 각종 전자장치들이 마련되어 있으며 이를 통해 혈액처리 요법을 수행할 수 있다. 각종 소프트웨어 및 프로그램이 설치되어 혈액처리장치부(2) 내부의 각종 전자장치들을 구동한다. 상기 소모품세트(3)는 통상 한두번 등 짧은 기간 사용된 후 폐기되는 일회성 요소들로서 혈액, 투석용액, 혹은 각종 용액들이 유동하는 유동관, 공기를 제거하기 위한 에어 챔버, 혹은/및 혈액처리필터(10) 등을 들 수 있다.The blood processing device may include a blood processing device unit 2 and a consumable set 3. The blood processing unit 2 is a hardware unit, and various electronic devices are usually provided inside a housing, and through this, a blood processing therapy can be performed. Various software and programs are installed to drive various electronic devices inside the blood processing unit 2. The consumable set 3 is a one-time element that is usually discarded after being used for a short period of time, such as once or twice, and a flow pipe through which blood, dialysis solution, or various solutions flow, an air chamber for removing air, or/and a blood treatment filter 10 And the like.
도 2 및 도 3은 본 발명의 일실시예에 의한 혈액처리장치(1)의 유동회로도를 나타낸 것이다. 본 발명의 일실시예에 의한 혈액처리장치(1)는 혈액과 투석용액을 이송시키는 유체이송장치부(50), 이온 균형(농도)을 조정함으로써 투석용액을 제조하는 투석용액 처리부(30), 초순수를 제조하는 수처리장치부(40), 및 유체가 유동하는 유동관을 통한 유로를 조절하는 유로조절부(60)를 포함하여 구성된다. 뿐만 아니라, 각종 모니터링 센서들(24, 34)을 포함하여 구성되며, 내부에서 혈액처리가 일어나는 혈액처리필터(10)를 포함하여 구성된다. 예를 들어, 혈액처리필터(10) 내부에서 혈액과 투석용액 사이에 물질전달이 일어날 수 있다.2 and 3 show a flow circuit diagram of the blood processing apparatus 1 according to an embodiment of the present invention. The blood treatment device 1 according to an embodiment of the present invention includes a fluid transfer device 50 for transferring blood and a dialysis solution, a dialysis solution treatment part 30 for preparing a dialysis solution by adjusting the ion balance (concentration), It is configured to include a water treatment device unit 40 for producing ultrapure water, and a flow path control unit 60 for adjusting a flow path through a flow pipe through which the fluid flows. In addition, it includes various monitoring sensors 24 and 34, and includes a blood processing filter 10 in which blood processing occurs. For example, material transfer may occur between the blood and the dialysis solution within the blood treatment filter 10.
본 발명의 일실시예에 의한 유체이송장치부(50)는 내부 공간을 갖는 복수개의 유체 챔버, 상기 복수개의 유체 챔버의 내부 공간을 압축 혹은 팽창시키는 챔버가압부재(59), 챔버 가압부재를 구동하는 가압부재 구동기(미도시)를 포함하여 구성된다. 상기 복수개의 유체 챔버는 내부 공간을 갖는 제 n개의 유체 챔버를 포함하여 구성되는데 여기서 n은 2 이상의 양의 정수값을 갖는다. 바람직하게는 본 발명의 일실시예에 의한 혈액처리장치(1)는 3개에서 8개의 유체 챔버를 포함하여 구성될 수 있다. 예를 들면, 도 2와 도 3은 각각 4개의 유체 챔버 및 6개의 유체 챔버(51 내지 56)를 포함하여 구성되는 본 발명의 일실시예에 의한 혈액처리장치(1)의 유동회로도를 도시한 것이다.The fluid transfer device 50 according to an embodiment of the present invention drives a plurality of fluid chambers having an inner space, a chamber pressurizing member 59 for compressing or expanding the inner spaces of the plurality of fluid chambers, and a chamber pressurizing member. It is configured to include a pressurizing member driver (not shown). The plurality of fluid chambers include n-th fluid chambers having an inner space, where n has a positive integer value of 2 or more. Preferably, the blood processing apparatus 1 according to an embodiment of the present invention may be configured to include 3 to 8 fluid chambers. For example, FIGS. 2 and 3 are diagrams illustrating a flow circuit diagram of a blood processing apparatus 1 according to an embodiment of the present invention, which is configured to include 4 fluid chambers and 6 fluid chambers 51 to 56, respectively. will be.
여기서, 투석용액이라는 표현을 사용했지만 이는 혈액과 구분하기 위한 표현이며, 상기 투석용액은 혈액투석, 복막투석, 급성신부전 환자를 위한 연속신대체요법(CRRT) 등에 사용되는 투석액으로 한정되지 않는다. 투석용액은 혈액처리 요법에 사용되는 다양한 유체를 포함하는 의미인데,예를 들어 혈장, 혈청, 증류수, 생리식염수, 락토즈 용액 등을 포함할 수 있다.Here, although the expression “dialysis solution” is used, it is an expression to distinguish it from blood, and the dialysis solution is not limited to a dialysis solution used for hemodialysis, peritoneal dialysis, and continuous renal replacement therapy (CRRT) for acute renal failure patients. The dialysis solution is meant to include various fluids used in blood treatment therapy, and may include, for example, plasma, serum, distilled water, physiological saline, lactose solution, and the like.
각각의 챔버는 챔버로 유체가 유입되는 유입관 및 챔버의 유체가 유출되는 유출관과 연결될 수 있다. 제 1 챔버(51)는 제 1 챔버 유입관(51a) 및 제 1 챔버 유출관(51b)과 연결되는데, 제 1 챔버 유입관(51a)을 통해 유체가 제 1 챔버(51)로 유입되며 제 1 챔버(51)의 유체는 상기 제 1 챔버 유출관(51b)을 통하여 배출될 수 있다. 마찬가지로, 제 2 챔버(52)는 제 2 챔버 유입관(52a) 및 제 2 챔버 유출관(52b)과 연결되며, 제 2 챔버 유입관(52a)을 통해 유체가 제 2 챔버(52)로 유입되며 제 2 챔버(52)의 유체는 제 2 챔버 유출관(52b)을 통해 유출될 수 있다. 다른 챔버도 마찬가지이다.Each of the chambers may be connected to an inlet pipe through which fluid flows into the chamber and an outlet pipe through which fluid flows out of the chamber. The first chamber 51 is connected to the first chamber inlet pipe 51a and the first chamber outlet pipe 51b, and the fluid flows into the first chamber 51 through the first chamber inlet pipe 51a. The fluid in the first chamber 51 may be discharged through the first chamber outlet pipe 51b. Similarly, the second chamber 52 is connected to the second chamber inlet pipe 52a and the second chamber outlet pipe 52b, and fluid flows into the second chamber 52 through the second chamber inlet pipe 52a. And the fluid in the second chamber 52 may flow out through the second chamber outlet pipe 52b. The same goes for other chambers.
여기서 유입관 및 유출관이라는 표현을 사용했지만, 이는 유체가 반드시 유입관을 통해서 챔버로 유입되며 유출관을 통해서 유체가 유출되는 것을 의미하지는 않는다. 예를 들어, 유체는 유출관을 통해서 챔버로 유입될 수 있으며, 혹은 유입관 및 유출관을 모두 통해 유체가 유입되거나 유출될 수 있다. 각 챔버에 두 개의 유동관(즉 유입관 및 유출관)이 연결된 것으로 도시하였지만, 도 2 및 도 3에 도시한 것과 같이 각 챔버와 연결된 유입관 및 유출관은 일부가 서로 겹쳐지며 각 챔버에는 하나의 유동관이 연결될 수 있다.Here, the expressions inlet pipe and outlet pipe are used, but this does not mean that the fluid flows into the chamber through the inlet pipe and the fluid flows out through the outlet pipe. For example, the fluid may be introduced into the chamber through the outlet pipe, or the fluid may be introduced or discharged through both the inlet pipe and the outlet pipe. Although it is shown that two flow pipes (that is, an inlet pipe and an outlet pipe) are connected to each chamber, as shown in Figs. 2 and 3, the inlet pipe and the outlet pipe connected to each chamber partially overlap each other, and each chamber has one Flow pipes can be connected.
상기 n개의 유체 챔버는 동시에 압축 혹은 팽창되는 것을 특징으로 한다. 즉, n개의 챔버 모두 동시에 압축되거나, 혹은 n개의 챔버 모두가 동시에 팽창될 수 있다. 혹은 상기 n개의 유체 챔버 중 일부는 압축되며 동시에 다른 일부는 팽창될 수 있다. 예를 들어, 상기 유체이송장치부(50)가 6개의 유체 챔버를 포함할 때, 6개의 챔버 모두가 한번에 압축되거나 혹은 한번에 팽창될 수 있다. 혹은 상기 6개의 챔버 중 어느 3개는 압축되며 다른 3개는 팽창될 수 있다. 혹은 상기 6개의 챔버 중 어느 4개는 압축되며 동시에 다른 2개는 팽창되거나 혹은 반대로 어느 4개는 팽창되며 다른 2개는 압축될 수 있다.The n fluid chambers are simultaneously compressed or expanded. That is, all n chambers may be compressed at the same time, or all n chambers may be expanded at the same time. Alternatively, some of the n fluid chambers may be compressed and other parts may be expanded at the same time. For example, when the fluid transfer device 50 includes six fluid chambers, all six chambers may be compressed or expanded at once. Alternatively, any three of the six chambers may be compressed and the other three may be expanded. Alternatively, any four of the six chambers may be compressed and the other two may be expanded at the same time, or conversely, any four may be expanded and the other two may be compressed.
도 2 및 도 3에서 보는 바와 같이, 상기 유체 챔버는 실린더 형상의 내부공간을 가지며, 챔버가압부재(59)는 실린더 형상의 내부공간을 압축 혹은 팽창시키는 피스톤 형상을 갖도록 도시하였다. 하지만 본 발명의 일실시예에 의한 챔버와 챔버 가압부재는 도시한 형상으로 한정되지 않는다. 유체를 수용할 수 있도록 내부 공간을 갖는 용기와 그 용기 내부 공간을 압축 혹은 팽창시킴으로써 내부에 유체를 이송시킬 수 있는 다양한 부재는 본원 발명의 챔버와 챔버 가압부재로 사용될 수 있다. 일례를 들어, 내부 공간을 갖는 유체 쌕(fluid sac), 유체 백(fluid bag), 압축 팽창이 가능한 연질의 유체 튜브(fluid tube), 그리고 그 유체 쎅, 유체 백 혹은 유체 튜브 내부를 팽창 혹은 압축시킴으로써 내부에 유체를 토출시킬 수 있는 가압부재로 구성될 수 있다.2 and 3, the fluid chamber has a cylindrical inner space, and the chamber pressing member 59 is shown to have a piston shape for compressing or expanding the cylindrical inner space. However, the chamber and the chamber pressing member according to an embodiment of the present invention are not limited to the illustrated shape. A container having an inner space to accommodate a fluid and various members capable of transferring the fluid therein by compressing or expanding the inner space of the container may be used as the chamber and the chamber pressing member of the present invention. For example, a fluid sac having an internal space, a fluid bag, a flexible fluid tube capable of compression expansion, and the fluid cell, a fluid bag or the inside of a fluid tube are expanded or compressed. By doing so, it may be composed of a pressurizing member capable of discharging the fluid therein.
또한 상기 유체 챔버는 정해진 형상(이를 테면, 실린더 형상)을 갖도록 딱딱한 재질로 제조되며 이때 상기 챔버가압부재(59)는 고무, 폴리머, 실리콘 등의 연질의 재질로 만들어진 부분을 포함하여 구성될 수 있다. 또는 챔버는 압축 팽창이 용이한 유연한 재질로 형성되며 이때 상기 챔버가압부재(59)는 연질의 유체 챔버를 압축 혹은 팽창시키는 딱딱한 재질로 형성될 수 있다.In addition, the fluid chamber is made of a hard material to have a predetermined shape (for example, a cylinder shape), and at this time, the chamber pressing member 59 may include a portion made of a soft material such as rubber, polymer, silicone, etc. . Alternatively, the chamber may be formed of a flexible material that is easily compressed and expanded, and in this case, the chamber pressing member 59 may be formed of a hard material that compresses or expands the soft fluid chamber.
예를 들어, 도 4 및 도 5는 연질로 만들어지고 내부공간을 같는 유체 쌕(혹은 유체 주머니) 형태의 챔버를 갖는 유체이송장치부(50)를 도시하였다. 여기서 전술한 유체 쌕은 용이하게 설치될 수 있도록 프레임(590) 내에 설치될 수 있다. 상기 챔버가압부재(59)는 상기 유체 쌕을 압축 혹은 팽창시키는 구조를 갖는데, 예를 들어, 상기 유체 쌕은 공압펌프, 가스펌프, 진공펌프 등의 공압 구동기의 작동에 의해 압축 혹은 팽창될 수 있다. 즉 혈액처리장치(1)의 하우징(4)에 위치한 공압구동기에 의해 공압채널(591)이 팽창 혹은 압축되는데, 이를 통해 유체 쌕이 압축 혹은 팽창될 수 있다. 이는 상기 공압채널(591)이 상기 유체 쌕을 둘러싸는 공간과 연결되어 있기 때문이다. 즉 상기 공압채널(591)이 상기 챔버가압부재(59)의 역할을 수행할 수 있음을 의미한다. 이때 상기 유체 쌕을 둘러싼 공간의 누출이 발생하지 않도록 개스킷(592)이 추가로 설치될 수 있는데, 이 개스킷(592)은 연질의 재질뿐만 아니라, 플라스틱, 금속, 폴리머 등의 딱딱한 재질로 제작될 수 있다.For example, FIGS. 4 and 5 illustrate a fluid transfer device 50 having a chamber in the form of a fluid sachet (or fluid bag) made of a soft material and having the same internal space. Here, the fluid sacks described above may be installed in the frame 590 so that they can be easily installed. The chamber pressurizing member 59 has a structure that compresses or expands the fluid sachet, for example, the fluid sacks can be compressed or expanded by the operation of a pneumatic actuator such as a pneumatic pump, a gas pump, or a vacuum pump. . That is, the pneumatic channel 591 is expanded or compressed by a pneumatic actuator located in the housing 4 of the blood treatment device 1, through which the fluid sac can be compressed or expanded. This is because the pneumatic channel 591 is connected to the space surrounding the fluid sac. That is, it means that the pneumatic channel 591 can serve as the chamber pressing member 59. At this time, a gasket 592 may be additionally installed to prevent leakage of the space surrounding the fluid sac, and the gasket 592 may be made of a hard material such as plastic, metal, polymer, etc. as well as a soft material. have.
본 발명의 일실시예에 의하며, 상기 챔버들은 동시에 압축 혹은 팽창될 수 있으며 따라서 하나의 챔버가압부재(59)에 의해 챔버들은 압축 혹은 팽창되며, 마찬가지로 단일 가압부재 구동기에 의해 상기 챔버가압부재(59)는 구동될 수 있다. 가압부재 구동기는 챔버가압부재(59)에 직선운동 혹은 곡선운동을 전가할 수 있는 다양한 형태가 이용될 수 있다. 예를 들어, 챔버가압부재(59)를 한 방향으로 이동시키기 위하여 모터와 모터에 의해 회전하는 캠을 포함하여 구성될 수 있다. 혹은 모터와 모터에 의해 회전하는 원형 기어, 원형 기어의 회전에 의해 직선운동을 하는 리니어 기어 등을 이용할 수 있다. 캠 혹은 원형 기어의 회전에 의해 챔버가압부재(59)가 한 방향으로 이동하며, 캠 혹은 원형기어가 더 회전하거나 혹은 역방향으로 회전함으로써더 챔버가압부재(59)는 반대 방향으로 이동할 수 있다.According to an embodiment of the present invention, the chambers can be compressed or expanded at the same time, and thus the chambers are compressed or expanded by one chamber pressing member 59, and similarly, the chamber pressing member 59 ) Can be driven. The pressurizing member driver may be of various forms capable of transferring a linear motion or a curved motion to the chamber pressurizing member 59. For example, it may be configured to include a motor and a cam rotated by the motor to move the chamber pressing member 59 in one direction. Alternatively, a motor and a circular gear rotated by the motor, a linear gear that performs linear motion by the rotation of the circular gear, or the like can be used. The chamber pressing member 59 moves in one direction by the rotation of the cam or circular gear, and the chamber pressing member 59 can move in the opposite direction by further rotating the cam or circular gear or rotating in the reverse direction.
상기 혈액처리필터(10)는 혈액처리를 할 수 있는 다양한 필터장치들이 이용될 수 있다. 도 6은 혈액처리필터(10)의 일례를 도시한 것인데, 상기 혈액처리필터(10)는 내부 공간을 갖는 혈액처리필터 하우징(11), 상기 혈액처리필터 하우징(11)에 수용되며 혈액과 투석용액 사이에 물질전달이 일어나는 혈액처리 멤브레인(12)으로 구성될 수 있다. 상기 혈액처리필터(10)의 내부공간은 상기 멤브레인(12)에 의해 복수개의 유체 유동영역으로 구분될 수 있는데, 일례를 들어 혈액처리필터 하우징(11)의 내부공간은 혈액처리 멤브레인(12)에 의해 혈액이 유동하는 구간과 투석용액이 유동하는 구간으로 구획될 수 있다. As the blood treatment filter 10, various filter devices capable of blood treatment may be used. 6 shows an example of a blood treatment filter 10, wherein the blood treatment filter 10 is accommodated in a blood treatment filter housing 11 having an internal space, the blood treatment filter housing 11, and is used for blood and dialysis. It may consist of a blood treatment membrane 12 in which mass transfer occurs between solutions. The inner space of the blood treatment filter 10 may be divided into a plurality of fluid flow regions by the membrane 12. For example, the inner space of the blood treatment filter housing 11 is located in the blood treatment membrane 12. As a result, it can be divided into a section through which blood flows and a section through which dialysis solution flows.
혈액처리필터 하우징(11)의 일단과 타단에는 제 1 혈액 포터(13)와 제 2 혈액 포터(14)가 구비되며, 제 1 혈액 포터(13)를 통해 혈액이 혈액처리필터(10)로 유입되며 제 2 혈액 포터(14)를 통해 배출될 수 있다. 따라서, 상기 제 1 혈액 포터(13) 및 제 2 혈액 포터(14)는 각각 제 1 혈액유동관(21) 및 제 2 혈액유동관(22)과 연결되며 이를 통해 혈액이 상기 혈액처리필터(10)로 유동할 수 있다. 상기 혈액처리필터 하우징(11)의 외주면 일측과 타측에는 투석용액이 유동할 수 있도록 제 1투석용액 포터(15)와 제 2 투석용액 포터(16)가 구비되는데, 구체적으로 투석용액은 제 1 투석용액 포터(15)을 통해 혈액처리필터(10)로 공급되며 제 2 투석용액 포터(16)를 혈액처리필터(10)로부터 배출될 수 있다.A first blood porter 13 and a second blood porter 14 are provided at one end and the other end of the blood treatment filter housing 11, and blood flows into the blood treatment filter 10 through the first blood porter 13 And may be discharged through the second blood porter 14. Accordingly, the first blood porter 13 and the second blood porter 14 are connected to the first blood flow pipe 21 and the second blood flow pipe 22, respectively, through which blood is transferred to the blood processing filter 10. It can flow. A first dialysis solution porter 15 and a second dialysis solution porter 16 are provided on one side and the other side of the outer circumferential surface of the blood treatment filter housing 11 to allow the dialysis solution to flow. It is supplied to the blood treatment filter 10 through the solution porter 15, and the second dialysis solution porter 16 may be discharged from the blood treatment filter 10.
혈액은 혈액처리필터(10) 내부의 혈액유동영역(compartment)을 지나며 투석용액은 혈액처리필터(10) 내부의 투석용액 유동영역을 지나게 된다. 이때 혈액과 투석용액은 혈액처리필터(10) 내부에서 서로 반대방향으로 유동할 수 있다. 혈액처리필터는 도시한 형태로 한정되지 않으며 다양한 형태로 변경될 수 있는데, 예를 들어 혈액투석필터(hemodialyzer), 혈액투석여과필터(hemodiafilter), 흡착필터(adsorption filter) 등을 포함할 수 있다.Blood passes through a blood flow compartment inside the blood treatment filter 10 and the dialysis solution passes through the dialysis solution flow region inside the blood treatment filter 10. At this time, the blood and the dialysis solution may flow in opposite directions within the blood treatment filter 10. The blood treatment filter is not limited to the illustrated form and may be changed in various forms, and may include, for example, a hemodialysis filter, a hemodiafilter, an adsorption filter, and the like.
본 발명의 일실시예에 의한 혈액처리장치(1)는 투석용액을 제조하는 투석용액 처리부(30)를 추가로 포함하여 구성될 있다. 투석용액 처리부(30)는 수처리장치부(40)을 통해 생성된 초순수(ultrapure water)에 산이온(acid ion) 및 중탄산(bicarbonate) 용액, 혹은 산이온(acid ion) 및 중탄산(bicarbonate) 파우더를 혼합하여 bicarbonate, sodium 등 전해질 농도와 pH 등을 조정하여 제조될 수 있다.The blood treatment apparatus 1 according to an embodiment of the present invention may further include a dialysis solution treatment unit 30 for preparing a dialysis solution. The dialysis solution treatment unit 30 contains acid ions and bicarbonate solutions, or acid ions and bicarbonate powder in ultrapure water generated through the water treatment unit 40. It can be prepared by mixing and adjusting the concentration and pH of electrolytes such as bicarbonate and sodium.
투석용액 처리부(30)는 전술한 산이온 용액 및 중탄산 이온 용액을 이송하기 위한 투석용액 프로세싱펌프(31)를 추가로 포함하여 구성될 수 있다. 상기 투석용액 프로세싱펌프(31)는 또한 제 1 이온 용액을 이송하기 위한 제 1 투석용액 프로세싱펌프(31a)와 제 2 이온 용액을 이송하기 위한 제 2 투석용액 프로세싱펌프(31b)로 구분될 수 있다. 여기서 상기 투석용액 프로세싱펌프(31)는 정확한 양의 이온 용액을 이송할 필요가 이는데, 따라서 정말 유체 펌프를 사용하는 게 바람직하다. 이를 테면, 로터리 피스톤 펌프, 미터링 맥동펌프, 정밀 피스톤 펌프 등을 들 수 있다.The dialysis solution processing unit 30 may further include a dialysis solution processing pump 31 for transferring the above-described acid ion solution and bicarbonate ion solution. The dialysis solution processing pump 31 may also be divided into a first dialysis solution processing pump 31a for transferring the first ionic solution and a second dialysis solution processing pump 31b for transferring the second ionic solution. . Here, the dialysis solution processing pump 31 needs to transfer an exact amount of ionic solution, so it is really preferable to use a fluid pump. Examples include rotary piston pumps, metering pulsation pumps, and precision piston pumps.
또한 본 발명의 일실시예에 의한 혈액처리장치(1)는 공급 투석용액 저장부(36)와 배출 투석용액 저장부(38)를 추가로 포함하여 구성될 수 있는데, 공급 투석용액 저장부(36)는 상기 투석용액을 저장한 뒤 혈액처리필터(10)에 공급하며 상기 배출 투석용액 저장부(38)는 사용된 투석용액을 저장할 수 있다. 하지만 투석용액은 공급 투석용액 저장부(36)에 저장되지 않고 곧바로 혈액처리필터(10)에 공급될 수 있으며 사용된 투석용액은 상기 배출 투석용액 저장부(38)에 저장되지 않고 곧바로 배출, 폐기될 수 있다. In addition, the blood treatment apparatus 1 according to an embodiment of the present invention may be configured to additionally include a supply dialysis solution storage unit 36 and a discharge dialysis solution storage unit 38, and the supplied dialysis solution storage unit 36 ) Stores the dialysis solution and then supplies it to the blood treatment filter 10, and the discharge dialysis solution storage unit 38 may store the used dialysis solution. However, the dialysis solution is not stored in the supplied dialysis solution storage unit 36 and can be directly supplied to the blood treatment filter 10, and the used dialysis solution is not stored in the discharged dialysis solution storage unit 38 and is immediately discharged and discarded. Can be.
투석용액은 전술한 바와 같이 상기 투석용액 처리부(30)를 통해 조성되는 것으로 한정되지 않으며, 일례를 들어 이미 만들어진 투석용액 백(bag)을 이용하여 공급될 수 있다. 또한 본 발명의 일실시예에 의한 혈액처리장치(1)는 제조된 투석용액의 순도를 측정할 수 있는 수단, 이를 테면 전도도 센서 등을 추가로 포함하여 구성될 수 있다.The dialysis solution is not limited to being formed through the dialysis solution treatment unit 30 as described above, and may be supplied using, for example, a dialysis solution bag already made. In addition, the blood processing apparatus 1 according to an embodiment of the present invention may further include a means for measuring the purity of the prepared dialysis solution, such as a conductivity sensor.
상기 수처리장치부(40)는 초순수를 제조하기 위하여 여러 단계의 여과 단계를 거치게 되는데, 일례를 들어 전처리 필터, 카본 필터, 역삼투압 피터, 이온교환 수지, 그리고 내독소(endotoxin) 필터 등을 포함하여 구성될 수 잇다. 상기 수처리장치부(40)는 혈액처리요법의 목적에 부합하도록 그 구성이 변경될 수 있다.The water treatment unit 40 undergoes several filtration steps to produce ultrapure water, including, for example, a pretreatment filter, a carbon filter, a reverse osmosis pressure filter, an ion exchange resin, and an endotoxin filter. Can be configured. The structure of the water treatment device 40 may be changed to meet the purpose of blood treatment therapy.
상기 유로조절부(60)는 상기 n개의 유체 챔버와 연결되는 유입관과 유출관을 통한 유동(혹은 유로)을 조절하는 것을 특징으로 한다. 따라서 유동을 개방 혹은 차단할 수 있는 다양한 밸브 구조가 상기 유로조절부(60)로 이용될 수 있다. 예를 들어, 상기 유로조절부(60)는 일방향 밸브, 솔레노이드 밸브, 온오프밸브, 가압형 밸브(pressurizing type valv), 회전형 밸브(rotating-type valve), 및 공압밸브(pneumatic valve) 중 어느 하나의 구조를 갖거나, 이들 밸브의 조합으로 이루어질 수 있다.The flow path control unit 60 is characterized in that it controls the flow (or flow path) through the inlet pipes and outlet pipes connected to the n number of fluid chambers. Accordingly, various valve structures capable of opening or blocking the flow may be used as the flow path control unit 60. For example, the flow path control unit 60 may be any one of a one-way valve, a solenoid valve, an on-off valve, a pressing type valve, a rotating-type valve, and a pneumatic valve. It may have one structure, or may be made of a combination of these valves.
일방향 밸브는 상기 유로조절부(60)에 의해서 내부의 유로가 조절되는 유동관 각각에 설치되어 내부의 유동을 한방향으로 흐르도록 제한한다. 솔레노이드 밸브와 온오프 밸브는 상기 유로조절부(60)에 의해서 내부의 유로가 조절되는 유동관 각각에 설치되어 내부의 유동을 개방 혹은 차단한다. 공압밸브 혹은 공압밸브 어셈블리는 공압구동기(pneumatic driver)와 공압채널(pneumatic channel. )로 구성될 수 있다. 공압 구동기는 공압 채널을 가압 혹은 감압할 수 있는데, 이를 통해 공압 채널과 연결된 유동관을 팽창 혹은 가압, 즉 내부의 유동을 개방 혹은 차단시킬 수 있다. 일례의 공압 유로조절부(60)를 도 4 및 도 5에 도시하였다. 전술한 바와 같이, 다양한 형태의 공압 구동기를 통해서 공압채널과 유동관을 가압 혹은 감압할 수 있다.The one-way valve is installed in each of the flow pipes in which the internal flow path is controlled by the flow path control unit 60 to limit the internal flow to flow in one direction. The solenoid valve and the on-off valve are installed in each of the flow pipes in which the internal flow path is controlled by the flow path control unit 60 to open or block the internal flow. The pneumatic valve or pneumatic valve assembly may be composed of a pneumatic driver and a pneumatic channel. The pneumatic actuator can pressurize or depressurize the pneumatic channel, through which the flow pipe connected to the pneumatic channel can be expanded or pressurized, that is, open or block the flow inside. An exemplary pneumatic flow path control unit 60 is shown in FIGS. 4 and 5. As described above, it is possible to pressurize or depressurize the pneumatic channel and the flow pipe through various types of pneumatic actuators.
도 7 내지 도 9는 상기 가압형 밸브, 즉 가압형 유로조절부(60)를 도시한 것이다. 본 발명의 일실시예에 의한 가압형 밸브는 직선운동 혹은 곡선운동을 통해 상기 유동관의 일부를 압축하여 유동을 차단할 수 있는 유로차단부재(61), 상기 유로차단부재(61)에 의해 압축되는 유동관을 지지하는 유로차단벽(62), 및 상기 유로차단부재(61)를 구동하는 유로차단부재 구동기를 포함하여 구성될 수 있다.7 to 9 show the pressurized valve, that is, the pressurized flow path control unit 60. A pressurized valve according to an embodiment of the present invention includes a flow path blocking member 61 capable of blocking flow by compressing a part of the flow pipe through linear or curved movement, and a flow pipe compressed by the flow blocking member 61 It may be configured to include a flow path blocking wall 62 for supporting the, and a flow path blocking member driver for driving the flow blocking member 61.
도 7 및 도 8은 4개의 챔버(51 내지 54)와 연결된 8개의 유동관(51a, 51b, 52a, 52b, 53a, 53b, 54a 및 54b)을 통한 유로를 조절하는 일례의 유로조절부(60)를 도시한 것이다. 상기 유로차단부재(61)가 유동관 51a, 52b, 53a, 54b 쪽으로 이동하면 유로차단부재(61)의 일단이 유로차단벽(62)에 지지되고 있는 이 유동관들을 압축하며 내부의 유동을 차단할 수 있다. 이때 유동관 51b, 52a, 53b, 54a를 통한 유로는 개방된다. 또한 유로차단부재(61)가 반대로 이동하면 유로차단부재(61)의 타단이 유동관 51b, 52a, 53b, 54a를 압축하여 내부의 유동을 차단할 수 있다.7 and 8 are a flow path control unit 60 of an example for controlling a flow path through eight flow pipes (51a, 51b, 52a, 52b, 53a, 53b, 54a and 54b) connected to the four chambers (51 to 54) Is shown. When the flow path blocking member 61 moves toward the flow pipes 51a, 52b, 53a, and 54b, one end of the flow path blocking member 61 compresses the flow pipes supported by the flow path blocking wall 62 to block internal flow. . At this time, the flow paths through the flow pipes 51b, 52a, 53b, and 54a are opened. In addition, when the flow path blocking member 61 moves in the opposite direction, the other end of the flow path blocking member 61 compresses the flow pipes 51b, 52a, 53b, and 54a to block internal flow.
여기서 설명의 편의를 위하여 유로차단부재(61)의 일단과 타단을 언급하였지만, 본 발명의 일실시예에 의한 유로조절부(60)는 도시한 구조로 한정되지 않는다. 예를 들어, 도 7에 도시한 바와 같이, 두 개 이상의 분리된 유로차단부재(61a 및 61 b)에 의하여 유동관 51a, 52b, 53a, 54b와 유동관 51b, 52a, 53b, 54a를 통한 유동을 교번하여 차단할 수 있으며 유로차단부재 구동기는 분리된 유로차단부재(61a 및 61 b) 각각 구동하도록 변경될 수 있다.Here, for convenience of explanation, one end and the other end of the flow path blocking member 61 are mentioned, but the flow path control unit 60 according to an embodiment of the present invention is not limited to the illustrated structure. For example, as shown in Fig. 7, the flow through flow pipes 51a, 52b, 53a, 54b and flow pipes 51b, 52a, 53b, 54a are alternated by two or more separated flow path blocking members 61a and 61b. It can be blocked, and the flow path blocking member driver can be changed to drive the separated flow path blocking members 61a and 61b, respectively.
혹은 상기 유동관이 실리콘, 폴리우레탄, 폴리아세테이트 등 연질의 재료로 제조된 경우, 유동관이 소정의 각도만큼 구부러지게 되면 내부의 유동은 차단될 수 있다. 즉 상기 유로차단부재(61)는 상기 유동관을 압착하여 내부의 유동을 차단하는 것으로 한정되지 않고, 상기 유동관들이 정해진 각도만큼 구부러질 수 있도록 작동할 수 있다는 것은 당업자에게 자명하다.Alternatively, when the flow tube is made of a soft material such as silicone, polyurethane, polyacetate, etc., when the flow tube is bent by a predetermined angle, internal flow may be blocked. That is, it will be apparent to those skilled in the art that the flow path blocking member 61 is not limited to blocking internal flow by compressing the flow tube, and can operate so that the flow tubes can be bent by a predetermined angle.
유로차단부재 구동기는 유로차단부재(61)에 직선 운동 혹은 곡선 운동을 일으킬 수 있는 다양한 구조의 것이 이용될 수 있다. 전술한 챔버가압부재 구동기에 대한 설명이 유로차단부재 구동기에도 동일하게 적용될 수 있다. 일례를 들어, 유로차단부재(61)를 유로차단벽(62) 쪽으로 이동시키기 위한 캠과 캠을 회전시키기 위한 모터를 포함할 수 있으며, 캠의 회전에 의해 유로차단부재가 유동관을 압축하면 내부의 유동은 차단되며, 캠에 의한 외력이 제거되면 유로차단부재는 유동관으로부터 이격되고 유동관은 자체 탄성력으로 원래 상태로 복원되면서 개방된다. 혹은, 모터에 연결된 편심 캠이 회전하여 일측의 유동관을 압축하면 압축된 유동관 내부의 유동은 차단된다. 캠이 더 회전하면 관을 압축하는 캠의 외력은 제거되고 관은 원래 상태로 복원되면서 개방될 수 있다. 혹은 모터에 연결된 이심캠(eccentric cam)이 회전을 함으로써 상기 유로조절부(60)에 의해 내부의 유동이 조절되는 유동관을 가압하고 이를 통해 내부의 유동을 차단할 수 있다. 또한 캠이 더 회전을 하거나 혹은 역방향으로 회전을 함으로써 캠에 의한 외력은 제거되고 유동관은 원래의 상태로 복원하며 내부의 유동은 개방될 수 있다.The flow path blocking member driver may be of various structures capable of causing linear motion or curved movement to the flow path blocking member 61. The description of the chamber pressing member driver described above may be equally applied to the flow path blocking member driver. For example, a cam for moving the flow path blocking member 61 toward the flow path blocking wall 62 and a motor for rotating the cam may be included. The flow is blocked, and when the external force by the cam is removed, the flow path blocking member is separated from the flow pipe, and the flow pipe is restored to its original state by its own elastic force and opened. Alternatively, when the eccentric cam connected to the motor rotates to compress the flow pipe on one side, the flow inside the compressed flow pipe is blocked. When the cam is further rotated, the external force of the cam compressing the tube is removed and the tube can be opened as it is restored to its original state. Alternatively, by rotating an eccentric cam connected to the motor, the flow pipe through which internal flow is regulated by the flow path control unit 60 may be pressurized, thereby blocking the internal flow. In addition, as the cam rotates further or rotates in the reverse direction, the external force by the cam is removed, the flow pipe is restored to its original state, and the internal flow can be opened.
여기서, 상기 유로조절부(60)는 도 8에 도시한 것과 같이, 6개의 챔버(51 내지 56)와 연결된 12개의 유동관(51a, 51b, 52a, 52b, 53a, 53b, 54a, 54b, 55a, 55b, 56a 및 56b)을 통한 유로를 조절할 수 있도록 변경될 수 있다. 특히 상기 유로조절부(60)는 유동관 51a, 52b, 53a, 54b, 55a, 56b고 유동관 51b, 52a, 53b, 54a, 55b, 56a를 교번하여 차단하는 것을 특징으로 한다. 이때 상기 유로차단부재(61)에 의해 가압되는 유동관을 지지하기 위하여 가압형 밸브로 구성된 유로조절부(60)는 튜브고정부(63, 미도시)를 추가로 포함하여 구성될 수 있다.Here, the flow path control unit 60 is 12 flow pipes (51a, 51b, 52a, 52b, 53a, 53b, 54a, 54b, 55a) connected to the six chambers (51 to 56), as shown in FIG. 55b, 56a and 56b) can be changed to control the flow path. In particular, the flow path control unit 60 is characterized in that the flow pipes 51a, 52b, 53a, 54b, 55a, 56b and flow pipes 51b, 52a, 53b, 54a, 55b, 56a are alternately blocked. In this case, in order to support the flow pipe pressurized by the flow path blocking member 61, the flow path control unit 60 configured as a pressure type valve may further include a tube fixing part 63 (not shown).
상기 유체 챔버가 압축 혹은 팽창될 때, 상기 유로조절부(60)는 유로조절부(60)에 의해 내부의 유동이 조절되는 유동관 중 최소한 절반 이상의 유동관을 통한 유로를 차단하는 것을 특징으로 한다.When the fluid chamber is compressed or expanded, the flow path control unit 60 blocks a flow path through at least half of the flow pipes in which the internal flow is controlled by the flow control unit 60.
상기 유로조절부(60)는 전술한 구조로 한정되지 않으며 다른 구조로 변경될 수 있다. 도 9 및 도 10에 도시한 것과 같이, 회전형 밸브로 구성된 본 발명의 일실시예에 의한 유로조절부(60)는 내부공간을 갖는 유로조절 하우징(64), 상기 유로조절 하우징의 내부공간에 회전 혹은 직선 이동이 가능하도록 설치되는 유로조절 로터(66), 유로조절 하우징(64)을 관통하도록 설치되는 복수개의 유로조절 포터(65), 및 상기 유로조절 로터(66)를 구동하는 로터구동부(67)를 포함하여 구성될 수 있다.The flow path control unit 60 is not limited to the above-described structure and may be changed to another structure. As shown in Figs. 9 and 10, the flow path control unit 60 according to an embodiment of the present invention constituted by a rotary valve includes a flow path control housing 64 having an internal space, and an internal space of the flow control housing. A flow path control rotor 66 installed to be rotated or linearly moved, a plurality of flow path control porters 65 installed to penetrate through the flow control housing 64, and a rotor driving unit for driving the flow control rotor 66 ( 67) can be included.
여기서 상기 유로조절 로터(66)가 상기 유로조절 하우징(64)에 밀착결합한 상태에서 원활하게 회전 혹은 직선 이동하기 위해서는 유로조절 하우징(64)의 내부공간과 상기 유로조절 로터(66)는 실린더 형상을 갖는 게 보다 바람직하다. 혹은 상기 유로조절 로터(66)은 회전을 하면서 직선운동을 하도록 변경될 수 있다. 즉 상기 유로조절 로터(66)의 회전운동 혹은 직선운동을 통해 적어도 두 개이상의 유로조절 포터(65) 사이의 유로가 연결될 수 있다. Here, in order to smoothly rotate or linearly move while the flow path control rotor 66 is in close contact with the flow control housing 64, the inner space of the flow control housing 64 and the flow control rotor 66 have a cylinder shape. It is more preferable to have it. Alternatively, the flow path control rotor 66 may be changed to perform linear motion while rotating. That is, a flow path between at least two or more flow path control porters 65 may be connected through a rotational motion or a linear motion of the flow path control rotor 66.
또한, 본 발명의 일실시예에 의한 유로조절부(60)는 상기 유로조절 로터(66)에 유로조절 함몰부(68)를 추가로 포함하여 구성될 수 있는데, 유로조절 함몰부(68)는 어느 두개의 유로조절 포터(65) 사이의 유동이 개방되었을 때 이 유로조절 포터(65)들을 통한 유체의 이동을 보다 더 용이하게 할 수 있다. 도 9에서는 단면상의 모양이 초승달 모양인 유로조절 함몰부(68)를 도시하였지만 유로조절 함몰부(68)의 형상은 도면으로 한정되지 않고, 사각형, 삼각형, 등 다른 형상으로 변경될 수 있다. 도 11은 상기 유로조절부(60)가 회전형 밸브로 구성된 본 발명의 일실시예에 의한 혈액처리장치(1)의 유동회로도를 도시한 것이다.In addition, the flow path adjustment unit 60 according to an embodiment of the present invention may be configured to further include a flow path adjustment depression 68 in the flow path adjustment rotor 66, the flow adjustment depression 68 When the flow between any two flow path control porters 65 is opened, it is possible to more easily move the fluid through the flow path control porters 65. In FIG. 9, although a cross-sectional shape of the flow path adjustment depression 68 is shown, the shape of the flow path adjustment depression 68 is not limited to the drawings, and may be changed to other shapes such as a square, a triangle, or the like. 11 shows a flow circuit diagram of the blood processing apparatus 1 according to an embodiment of the present invention in which the flow path control unit 60 is configured as a rotary valve.
상기 복수개의 유로조절 포터(65)는 실린더 형상을 갖는 유로조절 하우징(64) 내부공간(혹은 실린더 형상을 갖는 유로조절 로터)의 원주방향을 따라 이격되어 설치될 수 있다. 그리고 상기 복수개의 유로조절 포터(65)는 동일한 단면상에 위치할 수 있는데, 구체적으로 상기 유로조절 로터(66)의 축방향에 수직인 단면을 고려했을 때 상기 유로조절 포터(65)들이 어느 하나의 단면에 위치하도록 설치할 수 있다. 도 9에서 D-D’ 및 E-E'로 표시된 단면상에 상기 유로조절 포터(65)가 위치한 것을 알 수 있다. 여기서 동일한 단면에 위치한다는 의미는 반드시 동일한 단면에 위치함을 의미할 뿐만 아니라, 유로조절 로터(66)의 축방향을 따라 상당히 비슷한 높이에 위치함을 의미한다는 것을 당업자라면 알 수 있을 것이다. 뿐만 아니라, 상기 유로조절 포터(65)는 도 11의 G-G’ 및 H-H’에 도시한 것과 같이, 두개 혹은 그 이상의 단면에 나뉘어서 설치될 수 있다. 즉 상기 유로조절 포터(65)는 유로조절 로터(66)의 축방향을 따라 상당히 동일한 높이의 평면상에 위치할 수 있는 것을 특징으로 한다.The plurality of flow path control porters 65 may be installed to be spaced apart along the circumferential direction of the inner space (or the flow path control rotor having a cylinder shape) of the flow control housing 64 having a cylindrical shape. In addition, the plurality of flow path control porters 65 may be located on the same cross-section. Specifically, when considering a cross section perpendicular to the axial direction of the flow path control rotor 66, the flow path control porters 65 It can be installed so that it is located on the cross section In FIG. 9, it can be seen that the flow path control porter 65 is located on the cross-sections marked D-D' and E-E'. Here, it will be appreciated by those skilled in the art that the meaning of being positioned at the same cross-section means not only being positioned at the same cross-section, but also means being positioned at a fairly similar height along the axial direction of the flow path control rotor 66. In addition, the flow path control porter 65 may be divided and installed in two or more cross-sections, as shown in G-G' and H-H' of FIG. 11. In other words, the flow path control porter 65 is characterized in that it can be located on a plane of substantially the same height along the axial direction of the flow path control rotor (66).
위에 설명한 바와 같이, 유로조절 로터(66)는 한 방향으로 회전할 수도 있지만, 시계방향 및 반시계방향 등 양방향으로 회전할 수 있다. 또한 상기 유로조절 로터(66)는 회전을 하면서 직선운동을 하는 등 상기 유로조절 포터(65)들 사이의 유동을 개방하거나 차단할 수 있는 다른 방법으로 구현될 수 있다. 여기서, 유로조절 로터(66)의 회전속도를 통해 상기 유로조절 포터(65)들 사이의 유로의 차단 혹은 개방 시간을 조절할 수 있다. As described above, the flow path control rotor 66 may rotate in one direction, but may rotate in both directions, such as clockwise and counterclockwise. In addition, the flow path control rotor 66 may be implemented in another way to open or block the flow between the flow path control porters 65, such as performing a linear motion while rotating. Here, the blocking or opening time of the flow path between the flow path adjustment porters 65 may be adjusted through the rotational speed of the flow path adjustment rotor 66.
유로조절 로터(66)가 유로조절 하우징(64)의 내부에 밀착결합 했을 때 이 결합면을 통해서는 유체의 누출이 없는 것이 바람직하다. 이를 위해, 상기 유로조절 로터(66) 혹은/및 상기 유로조절 하우징(64)은 유체 누출을 억제할 수 있는 폴리머, 금속, ABS, 아크릴 등의 재료로 제작되는 게 바람직하다. When the flow path control rotor 66 is in close contact with the inside of the flow control housing 64, it is preferable that there is no leakage of fluid through this coupling surface. To this end, the flow control rotor 66 or/and the flow control housing 64 are preferably made of a material such as polymer, metal, ABS, acrylic, etc. that can suppress fluid leakage.
또한 이러한 누출을 방지하기 위하여, 도 12에 도시한 것과 같이, 본 발명의 일실시예에 의한 유로조절부(60)는 상기 유로조절 로터(66)의 원주면에 오링 혹은 개스킷(gasket) 등 돌출부(69)를 더 포함하여 구성될 수 있다. 이러한 돌출부(69)는 유로조절 로터(66)와 유로조절 하우징(64)의 접착면을 통한 유체 누출을 억제하기 위하여 실리콘, 고무 등 유연한 재질로 구성되거나, 혹은 유체 누출을 보다 효율적으로 억제하기 위하여 금속, 알루미늄, 폴리머, 플라스틱 등 단단한 재질로 구성될 수 있다. 여기서 오링 혹은 개스킷(gasket) 등의 돌출부(69)는 상기 유로조절 로터(66) 대신 상기 유로조절 하우징(64)의 내부 공간에 마련된 돌출부(69)로 변경될 수 있다. 도 9 및 도 10에 도시한 바와 같이, 상기 유로조절 로터(66)가 상기 유로조절 하우징(64)의 내부공간에 결합되었을 때 상기 유로조절 하우징(64)을 관통하는 유로조절 포터(65)는 실린더 형상을 갖는 상기 유로조절 로터(66)의 실린더 원주면을 벗어나지 않는 것이 바람직하다. 또한 본 발명의 일실시예에 의한 회전형 밸브에서 상기 유로조절 포터(65) 중 적어도 어느 하나의 포터를 통한 유동은 항상 차단되어 있는 것을 특징으로 한다.In addition, in order to prevent such leakage, as shown in FIG. 12, the flow path control unit 60 according to an embodiment of the present invention includes a protrusion such as an O-ring or a gasket on the circumferential surface of the flow path control rotor 66. It may be configured to further include (69). These protrusions 69 are made of a flexible material such as silicone or rubber in order to suppress fluid leakage through the adhesive surface of the flow control rotor 66 and the flow control housing 64, or to more efficiently suppress fluid leakage. It can be made of hard materials such as metal, aluminum, polymer, and plastic. Here, the protrusion 69 such as an O-ring or a gasket may be changed to a protrusion 69 provided in the inner space of the flow control housing 64 instead of the flow control rotor 66. 9 and 10, when the flow control rotor 66 is coupled to the inner space of the flow control housing 64, the flow control porter 65 passing through the flow control housing 64 is It is preferable not to deviate from the cylinder circumferential surface of the flow path control rotor 66 having a cylinder shape. In addition, in the rotary valve according to an embodiment of the present invention, the flow through at least one of the flow path control porters 65 is always blocked.
상기 회전형 밸브는 전술한 구조로 한정되지 않으며 다른 구조로 변경될 수 있다. 아울러 상기 유로조절부(60) 역시 전술한 구조들로 한정되지 않으며 유체 챔버와 연결된 유동관을 통한 유로를 개발 혹은 차단할 수 있는 다른 구조로 변경될 수 있다.The rotary valve is not limited to the above-described structure and may be changed to another structure. In addition, the flow path control unit 60 is also not limited to the above-described structures, and may be changed to another structure capable of developing or blocking a flow path through a flow pipe connected to the fluid chamber.
뿐만 아니라, 상기 혈액처리장치(1)는 각종 센서(24, 34)들을 포함하여 구성될 수 있다. 이러한 센서들은 혈액처리 처치를 모니터링하는 역할을 하는데, 예를 들어 압력센서, 공기 버블센서(air bubble sensor), 혈액누출센서(blood leak sensor), 온도센서, 전도도센서 등을 포함할 수 있다. 또한 상기 혈액처리장치(1)는 내독소 필터(endotoxin filter)를 추가로 포함하여 구성될 수 있는데, 이는 투석용액 중에 혹시 포함될 수 있는 여러 내독소, 세균 등 해로운 물질을 제거함으로써 혈액과 닿지 않도록 한다.In addition, the blood processing device 1 may be configured to include various sensors 24 and 34. These sensors serve to monitor blood treatment treatment, and may include, for example, a pressure sensor, an air bubble sensor, a blood leak sensor, a temperature sensor, a conductivity sensor, and the like. In addition, the blood processing device 1 may further include an endotoxin filter, which removes harmful substances such as endotoxins and bacteria that may be included in the dialysis solution so that it does not come into contact with the blood. .
이하 첨부된 도면을 참조하여 본 발명의 일실시예에 의한 혈액처리장치(1)의 다양한 실시예들을 상세히 설명한다. 도 13 내지 도 28은 혈액처리장치(1)의 여러 실시예와 작동을 도시한 것이다.Hereinafter, various embodiments of the blood processing apparatus 1 according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 13 to 28 illustrate various embodiments and operations of the blood processing apparatus 1.
실시예1Example 1
혈액처리장치(1)는 제 1, 제 2, 제 5, 및 제 6 등 4개의 유체 챔버(51, 52, 55 및 56)를 포함하여 구성된다(도13). 두 개의 챔버(51 및 52)는 투석용액을 이송시키기 위하여 혈액처리필터(10)의 투석용액 포터와 연결되며, 다른 두 챔버(55 및 56)는 혈액을 이송시키기 위하여 혈액 포터와 연결된다. 상기 유로조절부(60)는 각 챔버들의 유입관 및 유출관을 통한 유동을 조절할 수 있도록 가압형 밸브로 구성된 것을 알 수 있다.The blood processing apparatus 1 is configured to include four fluid chambers 51, 52, 55 and 56 including first, second, fifth, and sixth (Fig. 13). The two chambers 51 and 52 are connected to the dialysis solution porter of the blood treatment filter 10 to transfer the dialysis solution, and the other two chambers 55 and 56 are connected to the blood porter to transfer blood. It can be seen that the flow path control unit 60 is configured as a pressurized valve to control the flow through the inlet pipe and the outlet pipe of each chamber.
두 개의 챔버(52 및 56)가 압축되고 다른 두 개의 챔버(51 및 55)는 팽창된다. 이때 상기 유로조절부(60)는 유동관 51a, 52b, 55a 및 56b를 통한 유로는 차단하며 유동관 51b, 52a, 55b 및 56a를 통한 유로는 개방한다(도13). 상기 제 1 챔버(51)의 팽창으로 인해 투석용액이 상기 제 1 챔버 유입관(51a)을 통해 챔버로 유입된다. 상기 제 2 챔버(52)의 압축으로 인해, 챔버 내부의 투석용액이 상기 제 2 챔버 유출관(52b)를 통해 배출된다. 상기 제 5 챔버(55)의 팽창으로 인해, 환자의 혈액이 제 5 챔버 유입관(55a)을 통해 챔버로 유입된다. 상기 제 6 챔버(56)의 압축으로 인해, 챔버 내부의 혈액이 환자에게 회송된다. 이때, 혈액처리필터(10)을 통해서는 혈액과 투석용액 모두 유동하지 않는다.Two chambers 52 and 56 are compressed and the other two chambers 51 and 55 are expanded. At this time, the flow path control unit 60 blocks the flow path through the flow pipes 51a, 52b, 55a, and 56b, and opens the flow path through the flow pipes 51b, 52a, 55b, and 56a (FIG. 13). Due to the expansion of the first chamber 51, the dialysis solution is introduced into the chamber through the first chamber inlet pipe 51a. Due to the compression of the second chamber 52, the dialysis solution inside the chamber is discharged through the second chamber outlet pipe 52b. Due to the expansion of the fifth chamber 55, the patient's blood flows into the chamber through the fifth chamber inlet pipe 55a. Due to the compression of the sixth chamber 56, blood inside the chamber is returned to the patient. At this time, neither the blood nor the dialysis solution flows through the blood treatment filter 10.
여기서, 도면의 두꺼운 검은색 선은 그 유동관을 통해서는 유동이 있다는 것을 의미한다. 즉 유로조절부(60)에 의해 그 유동관의 유로는 개방된다. 반면에 얇은 검은색 선은 그 유동관을 통해서는 유동이 없다는 것을 의미한다. 즉 유로조절부(60)에 의해 그 유동관의 유로는 차단된다. 또한 점선은 보조투석용액 유동관(81)과 여기에 설치된 보조투석용액 펌프(82)를 도시한 것이다.Here, the thick black line in the drawing means that there is flow through the flow pipe. That is, the flow path of the flow pipe is opened by the flow path control unit 60. On the other hand, a thin black line means that there is no flow through the flow tube. That is, the flow path of the flow pipe is blocked by the flow path control unit 60. In addition, the dotted line shows the auxiliary dialysis solution flow pipe 81 and the auxiliary dialysis solution pump 82 installed therein.
반면에, 두 개의 챔버 (52 및 56)가 팽창되고 다른 두 개의 챔버(51 및 55)는 압축될 때, 상기 유로조절부(60)는 유동관 51a, 52b, 55a 및 56b를 통한 유로는 개방하며 유동관 51b, 52a, 55b 및 56a를 통한 유로는 차단한다(도13). 상기 제 1 챔버(51)의 압축으로 인해 챔버 내부의 투석용액이 상기 제 1 챔버 유출관(51b)을 통해 혈액처리필터(10)로 공급된다. 상기 제 2 챔버(52)의 팽창으로 인해 혈액처리필터(10)의 투석용액이제 2 챔버 유입관(52a)을 통해 제 2 챔버(52)로 유입된다. 상기 제 5 챔버(55)의 압축으로 인해 챔버 내부의 혈액이 제 5 챔버 유출관(55b)을 통해 상기 혈액처리필터(10)로 공급된다. 상기 제 6 챔버(56)의 팽창으로 인해 상기 혈액처리필터(10)의 혈액이 제 6 챔버 유입관(56a)을 통해 제 6 챔버(56)로 유입된다. 이때 혈액과 투석용액이 혈액처리필터(10)을 통해서 유동한다.On the other hand, when the two chambers 52 and 56 are expanded and the other two chambers 51 and 55 are compressed, the flow path control unit 60 opens the flow path through the flow pipes 51a, 52b, 55a, and 56b. The flow paths through the flow pipes 51b, 52a, 55b and 56a are blocked (Fig. 13). Due to the compression of the first chamber 51, the dialysis solution inside the chamber is supplied to the blood treatment filter 10 through the first chamber outlet pipe 51b. Due to the expansion of the second chamber 52, the dialysis solution of the blood treatment filter 10 is introduced into the second chamber 52 through the second chamber inlet pipe 52a. Due to the compression of the fifth chamber 55, blood inside the chamber is supplied to the blood treatment filter 10 through the fifth chamber outlet pipe 55b. Due to the expansion of the sixth chamber 56, the blood of the blood treatment filter 10 flows into the sixth chamber 56 through the sixth chamber inlet pipe 56a. At this time, the blood and the dialysis solution flow through the blood treatment filter (10).
즉 제 1 챔버(51)는 깨끗한 투석용액을 혈액처리필터(10)로 공급하며 제 2 챔버(52)는 혈액처리필터(10)의 사용된 투석용액을 배출시키는 역할을 수행한다. 제 5 챔버(55)는 환자의 혈액을 혈액처리필터(10)로 공급하며 제 6 챔버(56)는 혈액처리필터(10)의 혈액을 환자에게 회송시킨다. 여기서, 상기 투석용액 처리부(30)가 투석용액을 제조하기 때문에 투석용액 처리부(30)는 상기 제 1 챔버(51)와 연결될 수 있는데 구체적으로 상기 제 1 챔버(51)의 제 1 챔버 유입관(51a)을 통해서 연결될 수 있다.That is, the first chamber 51 supplies a clean dialysis solution to the blood treatment filter 10 and the second chamber 52 discharges the used dialysis solution from the blood treatment filter 10. The fifth chamber 55 supplies the patient's blood to the blood treatment filter 10, and the sixth chamber 56 returns the blood from the blood treatment filter 10 to the patient. Here, since the dialysis solution processing unit 30 prepares the dialysis solution, the dialysis solution processing unit 30 may be connected to the first chamber 51. Specifically, the first chamber inlet pipe ( 51a).
여기서, 각각의 챔버(51, 52, 55 및 56)를 통한 유체의 유동량을 조절하기 위하여 상기 챔버들은 서로 동일한 압축-팽창 스트로크(stroke) 볼륨을 가지거나 혹은 서로 상이한 압축-팽창 스트로크(stroke) 볼륨을 가질 수 있다.도 13에서 챔버가압부재(59)가 좌우로 정해진 길이만큼 움직이고 이로 인해 상기 챔버들이 압축 혹은 팽창되는데, 이때 각 챔버의 압축 및 팽창되는 볼륨을 스트로크 볼륨이라고 정의할 수 있다.Here, in order to control the amount of fluid flow through each of the chambers 51, 52, 55 and 56, the chambers have the same compression-expansion stroke volume or different compression-expansion stroke volumes. In FIG. 13, the chamber pressing member 59 moves to the left and right by a predetermined length, and thereby the chambers are compressed or expanded. At this time, the compressed and expanded volume of each chamber may be defined as a stroke volume.
여기서, 챔버 51 및 52는 서로 동일한 스트로크 볼륨을 가지며, 챔버 55 및 56 역시 서로 동일한 스트로크 볼륨을 가질 수 있다. 여기서 전술한 바와 같이, 동일하다는 의미는 완전히 같다는 의미외에 상당히 비슷하다는 의미를 포함한다. 또한 챔버 51 및 52의 스트로크 볼륨은 챔버 55 및 56의 스트로크 볼륨보다 더 클 수 있다. 일례를 들어, 챔버 51 및 52의 스트로크 볼륨은 챔버 55 및 56의 스트로크 볼륨의 약 두 배가 되도록 설계될 수 있다. 하지만 챔버의 스트로크 볼륨은 혈액처리 요법의 목적에 따라 충분히 다르게 변경될 수 있다. 상기 챔버들이 동일한 스트로크 볼륨을 가지기 위해서는 각 챔버들 내부 공간의 단면적이 같거나 혹은 매우 비슷할 수 있다. 만약 챔버들의 내부공간이 실린더 형상을 가질 경우 이 내부공간 단면적의 내경이 같거나 혹은 비슷할 수 있다.Here, the chambers 51 and 52 may have the same stroke volume, and the chambers 55 and 56 may also have the same stroke volume. As described above, the meaning of the same includes the meaning of fairly similar in addition to the meaning of completely the same. Also, the stroke volumes of chambers 51 and 52 may be larger than those of chambers 55 and 56. For example, the stroke volume of chambers 51 and 52 can be designed to be about twice the stroke volume of chambers 55 and 56. However, the stroke volume of the chamber can be changed sufficiently differently depending on the purpose of the blood treatment therapy. In order for the chambers to have the same stroke volume, the cross-sectional area of the inner space of the chambers may be the same or very similar. If the inner space of the chambers has a cylindrical shape, the inner diameter of the cross-sectional area of the inner space may be the same or similar.
상기 혈액처리장치(1)는 다르게 변경될 수 있는데, 예를 들어 깨끗한 투석용액은 제 2 챔버(52)를 통해 혈액처리필터(10)로 공급하며 혈액처리필터(10)의 사용된 투석용액은 제 1 챔버(51) 통해 배출될 수 있다. 비슷하게 혈액은 제 6 챔버(56) 통해 혈액처리필터(10)로 공급되며 혈액처리필터(10)의 혈액은 제 5 챔버(55)를 통해 환자에게 회송될 수 있다.The blood treatment device 1 may be changed differently. For example, a clean dialysis solution is supplied to the blood treatment filter 10 through the second chamber 52, and the used dialysis solution of the blood treatment filter 10 is It may be discharged through the first chamber 51. Similarly, blood is supplied to the blood treatment filter 10 through the sixth chamber 56 and the blood of the blood treatment filter 10 may be returned to the patient through the fifth chamber 55.
뿐만 아니라, 상기 유로조절부(60)는 챔버 55 및 56과 연결된 유입관 및 유출관의 유로조절을 위하여 가압형 밸브로 구성되는 것으로 한정되지 않고, 도 14에 도시한 것과 같이 상기 유로조절부(60)는 일방행밸브(55c 및 56c)로 구성될 수 있다.In addition, the flow path control unit 60 is not limited to being configured as a pressurized valve to control the flow path of the inlet pipe and the outlet pipe connected to the chambers 55 and 56, and the flow control unit ( 60) may be composed of one-way valves (55c and 56c).
실시예 2Example 2
혈액처리장치(1)는 제 1, 제 2, 및 제 5 등 3개의 유체 챔버(51, 52 및 55)를 포함하여 구성된다(도15). 두 개의 챔버(51 및 52)는 투석용액을 이송시키기 위하여 상기 혈액처리필터(10)의 투석용액 포터와 연결되며 다른 하나의 챔버(55)는 혈액을 이송시키기 위하여 혈액 포터와 연결된다. 상기 유로조절부(60)는 각 챔버(51, 52 및 55)와 연결된 유입관 및 유출관을 통한 유동을 조절할 수 있도록 가압형 밸브로 구성된 것을 알 수 있다. 여기서, 상기 혈액유동관(22)에 추가로 유로조절부(60)가 설치될 수 있는데 이를 통해 상기 제 2 혈액 포터(14)와 연결된 혈액유동관(22)을 통한 유동을 개페할 수 있다.The blood processing apparatus 1 is configured to include three fluid chambers 51, 52 and 55, such as first, second, and fifth (Fig. 15). The two chambers 51 and 52 are connected to the dialysis solution porter of the blood treatment filter 10 to transfer the dialysis solution, and the other chamber 55 is connected to the blood porter to transfer blood. It can be seen that the flow path control unit 60 is configured as a pressurized valve to control the flow through the inlet pipe and outlet pipe connected to each of the chambers 51, 52, and 55. Here, a flow path control unit 60 may be additionally installed in the blood flow pipe 22, thereby opening and closing the flow through the blood flow pipe 22 connected to the second blood porter 14.
제 2 및 제 5챔버(52 및 55)는 압축되고 제 1 챔버(51)는 팽창될 때, 상기 유로조절부(60)는 유동관 51a, 52b, 55b 및 22를 통한 유로는 개방하며 유동관 51b, 52a 및 55a를 통한 유로는 차단한다(도15). 상기 제 1 챔버(51)의 팽창으로 인해, 혈액처리필터(10)의 투석용액이 상기 제 1 챔버 유입관(51a)을 통해 챔버로 유입된다. 상기 제 2 챔버(52)의 압축으로 인해 챔버 내부의 투석용액이 상기 제 2 챔버 유출관(52b)을 통해 혈액처리필터(10)로 공급된다. 상기 제 5 챔버(55)의 압축으로 인해 챔버 내부의 혈액이 제 5 챔버 유입관(55a)을 통해 혈액처리필터(10)로 공급되며 혈액유동관(22)을 통해 횐자에게 회송된다.When the second and fifth chambers 52 and 55 are compressed and the first chamber 51 is expanded, the flow path control unit 60 opens the flow path through the flow pipes 51a, 52b, 55b and 22, and the flow pipe 51b, The flow path through 52a and 55a is blocked (Fig. 15). Due to the expansion of the first chamber 51, the dialysis solution of the blood treatment filter 10 flows into the chamber through the first chamber inlet pipe 51a. Due to the compression of the second chamber 52, the dialysis solution inside the chamber is supplied to the blood treatment filter 10 through the second chamber outlet pipe 52b. Due to the compression of the fifth chamber 55, the blood inside the chamber is supplied to the blood treatment filter 10 through the fifth chamber inlet pipe 55a, and is returned to the white child through the blood flow pipe 22.
반면에, 두 개의 챔버(52 및 55)는 팽창되고 다른 한 개의 챔버(51)는 압축될 때, 상기 유로조절부(60)는 유동관 51a, 52b, 55b 및 22를 통한 유로는 차단하며 유동관 51b, 52a 및 55a을 통한 유로는 개방한다. 상기 제 1 챔버(51)의 압축으로 인해 챔버 내부의 투석용액이 상기 제 1 챔버 유출관(51b)을 통해 배출된다. 상기 제 2 챔버(52)의 팽창으로 인해 투석용액이 상기 제 2 챔버 유입관(52a)을 통해 챔버로 공급된다. 상기 제 5 챔버(55)의 팽창으로 인해 환자의 혈액이 챔버로 공급된다. On the other hand, when the two chambers 52 and 55 are expanded and the other chamber 51 is compressed, the flow path control unit 60 blocks the flow path through the flow pipes 51a, 52b, 55b and 22, and the flow pipe 51b , The flow paths through 52a and 55a are open. Due to the compression of the first chamber 51, the dialysis solution inside the chamber is discharged through the first chamber outlet pipe 51b. Due to the expansion of the second chamber 52, a dialysis solution is supplied to the chamber through the second chamber inlet pipe 52a. Due to the expansion of the fifth chamber 55, blood from the patient is supplied to the chamber.
도면에 도시한 것과 같이, 본 실시예의 경우 환자와 연결된 단일 바늘(혹은 카테타)에 의해 혈액이 유출되거나 회송될 수 있다.As shown in the drawings, in the present embodiment, blood may be leaked or returned by a single needle (or catheter) connected to the patient.
실시예 3Example 3
본 발명의 일실시예에 의한 혈액처리장치(1)는 전술한 구조로 한정되지 않으며 다른 회로 구조로 변경될 수 있다. 일례를 들어, 환자의 혈액은 두 개의 분리된 챔버(55 및 56)에 의해 혈액처리필터(10)로 공급되거나 혹은 환자에게 회송될 수 있다. 이 두 개의 유체 챔버(55 및 56)는 한번에 압축되거나 혹은 한번에 팽창될 수 있다 (도16). 즉 상기 혈액처리장치(1)는 전술한 실시예 1과 같이 4개의 챔버를 포함하여 구성되지만, 한 개의 챔버가 압축될 때 다른 3개의 챔버는 팽창되며 반대로 1개의 챔버가 팽창될 때 다른 3개의 챔버는 압축될 수 있다.The blood processing apparatus 1 according to an embodiment of the present invention is not limited to the above-described structure and may be changed to another circuit structure. For example, the patient's blood may be supplied to the blood treatment filter 10 by two separate chambers 55 and 56 or may be returned to the patient. These two fluid chambers 55 and 56 can be compressed or expanded at once (Figure 16). That is, the blood processing device 1 is configured to include four chambers as in the above-described embodiment 1, but when one chamber is compressed, the other three chambers are expanded. Conversely, when one chamber is expanded, the other three chambers are expanded. The chamber can be compressed.
이때 제 5 및 제 6 챔버(55 및 56)오 연결된 유동관(55a, 55b, 56a 및 56b)으 통한 유동을 조절할 수 있도록 상기 유로조절부(60)는 각 유동관에 설치된 일방향 밸브로 구성될 수 있다. 상기 실시예 2와 유사한 작동이지만, 도 16의 혈액처리장치(1)에서는 챔버 55 및 56이 압축되거나 팽창될 때 모두 혈액이 상기 혈액처리필터(10)를 통해 유동하는 것을 특징으로 한다.At this time, the flow path control unit 60 may be configured as a one-way valve installed in each flow pipe to control the flow through the flow pipes 55a, 55b, 56a and 56b connected to the fifth and sixth chambers 55 and 56. . Although the operation is similar to that of the second embodiment, in the blood processing apparatus 1 of FIG. 16, blood flows through the blood processing filter 10 when both chambers 55 and 56 are compressed or expanded.
실시예 4Example 4
도 17 및 도 18은 5개의 유체 챔버를 포함하여 구성되는 본 발명의 일실시예에 의한 혈액처리장치(1)를 도시한 것이다. 특히 4개의 챔버(51 내지 54)는 투석용액 포터(15 및 16)와 연결되어 투석용액을 유동시키며, 다른 하나의 챔버(55)는 제 1 혈액 포터(13)와 연결되어 혈액을 이송시킨다.17 and 18 illustrate a blood processing apparatus 1 according to an embodiment of the present invention including five fluid chambers. In particular, the four chambers 51 to 54 are connected to the dialysis solution porters 15 and 16 to flow the dialysis solution, and the other chamber 55 is connected to the first blood porter 13 to transfer blood.
상기 챔버가압부재(59)가 도 17에서 우측으로 이동할 경우, 즉 챔버 52 및 54가 압출될 때, 혈액이 혈액처리필터(10)로 이송된다. 여기서 투석용액은 4개의 챔버에 의해 이송되기 때문에, 챔버가 압축되거나 혹은 팽창될 때 모두 투석용액은 혈액처리필터(10)를 통해 유동한다.When the chamber pressing member 59 moves to the right in FIG. 17, that is, when the chambers 52 and 54 are extruded, blood is transferred to the blood treatment filter 10. Here, since the dialysis solution is transferred by the four chambers, the dialysis solution flows through the blood treatment filter 10 when the chamber is compressed or expanded.
투석용액의 유동회로 및 작동은 후술할 실시예 5 및 6과 매우 흡사하기 때문에 뒤에서 보다 상세히 설명한다. 혈액의 유동회로 및 작동은 전술한 실시예 2와 유사하다.Since the flow circuit and operation of the dialysis solution are very similar to those of Examples 5 and 6 to be described later, it will be described in more detail later. The flow circuit and operation of blood are similar to those of the second embodiment described above.
비슷하게, 본 발명의 일실시예에 의한 혈액처리장치(1)는 혈액과 투석용액을 이송시키기 위하여 6개의 유체 챔버(51 내지 56)을 갖도록 변경될 수 있다. 도 17 및 도 18에 도시한 것과 같이, 투석용액은 제 1 내지 제 4 챔버(51내지 54)에 의해서 이송된다. 하지만 혈액은 두 개의 챔버(55 및 56)에 의해서 이송되지만 이 두개의 챔버는, 도 16에 도시한 것과 같이, 동시에 압축되거나 혹은 동시에 팽창되는 것을 특징으로 한다. 이때 챔버 55 및 56과 연결된 유동관 55a, 55b, 56a 및 56b를 통한 유로를 조절하기 위한 유로조절부(60)는 일방향 밸브로 구성될 수 있다. 또한 챔버 51 내지 54와 연결된 유동관을 통한 유로를 조절하는 유로조절부(60)는 일방향 밸브, 솔레노이드 밸브, 가압형 밸브, 회전형 밸브 중 어느 하나, 혹은 이들의 조합으로 이루어질 수 있다.Similarly, the blood processing apparatus 1 according to an embodiment of the present invention may be modified to have six fluid chambers 51 to 56 in order to transfer blood and a dialysis solution. 17 and 18, the dialysis solution is transferred by the first to fourth chambers 51 to 54. However, blood is transported by two chambers 55 and 56, but these two chambers are characterized in that they are compressed or expanded simultaneously, as shown in FIG. 16. At this time, the flow path control unit 60 for adjusting the flow path through the flow pipes 55a, 55b, 56a, and 56b connected to the chambers 55 and 56 may be configured as a one-way valve. In addition, the flow path control unit 60 for adjusting the flow path through the flow pipes connected to the chambers 51 to 54 may be formed of any one of a one-way valve, a solenoid valve, a pressurized valve, and a rotary valve, or a combination thereof.
실시예 5Example 5
도 19 및 도 20은 혈액처리장치(1)의 다른 실시예를 도시한 것이다. 상기 혈액처리장치(1)는 6개의 유체 챔버(51 내지 56)을 포함하여 구성되는데, 투석용액은 챔버 51 내지 54를 통해 이송된다. 특히 투석용액은 제 1 챔버(51) 및 제 4 챔버(54)를 통해 혈액처리필터(10)로 공급되며, 제 2 챔버(52) 및 제 3 챔버(53)을 통해 배출된다. 따라서, 챔버 51 및 54는 제 1 투석용액 포터(15)와 연결되며 챔버 52 및 53 은 제 2 투석용액 포터(16)과 연결되는 게 바람직하다. 이때 투석용액 처리부(30)는 제 1 챔버 유입관(51a) 및 제 4 챔버 유입관(54a)을 통해 각각 제 1 챔버(51) 및 제 4 챔버(54)와 연결될 수 있다.19 and 20 show another embodiment of the blood processing apparatus 1. The blood treatment device 1 includes six fluid chambers 51 to 56, and the dialysis solution is transferred through the chambers 51 to 54. In particular, the dialysis solution is supplied to the blood treatment filter 10 through the first chamber 51 and the fourth chamber 54 and is discharged through the second chamber 52 and the third chamber 53. Accordingly, it is preferable that the chambers 51 and 54 are connected to the first dialysis solution porter 15 and the chambers 52 and 53 are connected to the second dialysis solution porter 16. At this time, the dialysis solution processing unit 30 may be connected to the first chamber 51 and the fourth chamber 54 through the first chamber inlet pipe 51a and the fourth chamber inlet pipe 54a, respectively.
혈액은 챔버 55 및 56을 통해 이송된다. 제 5 챔버(55)를 통해 혈액이 혈액처리필터(10)로 공급되며 제 6 챔버(56)를 통해 혈액이 환자에게 회송된다. 따라서 제 5 챔버(55)는 제 1 혈액 포터(13)에 연결되며 제 6 챔버(56)는 제 2 혈액 포터(14)에 연결될 수 있다.Blood is conveyed through chambers 55 and 56. Blood is supplied to the blood processing filter 10 through the fifth chamber 55 and the blood is returned to the patient through the sixth chamber 56. Accordingly, the fifth chamber 55 may be connected to the first blood porter 13 and the sixth chamber 56 may be connected to the second blood porter 14.
이때 상기 유로조절부(60)는 챔버 51 내지 54와 연결된 유동관을 위해서는 가압혈 밸브, 챔버 55 및 56과 연결된 유동관을 위해서 이들의 유동관에 각각 설치된 일방향 밸브로 구성될 수 있다.At this time, the flow path control unit 60 may be composed of a pressurized blood valve for flow pipes connected to the chambers 51 to 54, and one-way valves installed in the flow pipes of the flow pipes connected to the chambers 55 and 56, respectively.
도 19에 도시한 바와 같이, 상기 챔버가압부재(59)에 의해 제 1, 제 3, 및 제 5 챔버(51, 53, 55)가 팽창되고 제 2, 제 4, 및 제 6 챔버(52, 54, 56)가 압축된다. 이때 유로조절부(60)는 제 1 챔버 유입관(51a), 제 2 챔버 유출관(52b), 제 3 챔버 유입관(53a), 및 제 4 챔버 유출관(54b)을 통한 유동은 개방하며, 제 1 챔버 유출관(51b), 제 2 챔버 유입관(52a), 제 3 챔버 유출관(53b) 및 제 4 챔버 유입관(54a)을 통한 유동은 차단한다.19, the first, third, and fifth chambers 51, 53, and 55 are expanded by the chamber pressing member 59, and the second, fourth, and sixth chambers 52, 54, 56) are compressed. At this time, the flow path control unit 60 opens the flow through the first chamber inlet pipe 51a, the second chamber outlet pipe 52b, the third chamber inlet pipe 53a, and the fourth chamber outlet pipe 54b. , The flow through the first chamber outlet pipe 51b, the second chamber inlet pipe 52a, the third chamber outlet pipe 53b, and the fourth chamber inlet pipe 54a is blocked.
제 1 챔버(51)의 팽창으로 인해 투석용액이 제 1 챔버 유입관(51a)을 통해 챔버 내부로 유입된다. 제 2 챔버(52)의 압축으로 인해 내부의 투석용액이 제 2 챔버 유출관(52b)을 통해 배출된다. 제 3 챔버(53)의 팽창으로 인해 혈액처리필터(10)의 투석용액이 제 3 챔버 유입관(53a)을 통해 챔버 내부로 유입된다. 제 4 챔버(54)의 압축으로 인해 내부의 투석용액이 제 4 챔버 유출관(54b)을 통해 혈액처리필터(10)로 공급된다. 제 5 챔버(55)의 팽창으로 인해 환자의 혈액이 제 5 챔버 유입관(55a)을 통해 챔버 내부로 유입된다. 제 6 챔버(56)의 압축으로 인해 내부의 혈액이 제 6 챔버 유출관(56b)을 통해 혈액처리필터(10)로 공급된다. 이때, 제 5 챔버(55) 및 제 6 챔버(56)의 유입관 및 유출관에 설치된 체크밸브(55c, 56c)의 작동에 의해 제 6 챔버(56)의 혈액이 환자에게 역류하지 않으며 혈액처리필터(10)의 혈액이 제 5 챔버(55)로 역류하지 않는다. 이때, 혈액은 혈액처리필터(10) 통해 유동하지 않는 것을 알 수 있다.Due to the expansion of the first chamber 51, the dialysis solution is introduced into the chamber through the first chamber inlet pipe 51a. Due to the compression of the second chamber 52, the inner dialysis solution is discharged through the second chamber outlet pipe 52b. Due to the expansion of the third chamber 53, the dialysis solution of the blood treatment filter 10 flows into the chamber through the third chamber inlet pipe 53a. Due to the compression of the fourth chamber 54, the inner dialysis solution is supplied to the blood treatment filter 10 through the fourth chamber outlet pipe 54b. Due to the expansion of the fifth chamber 55, the patient's blood flows into the chamber through the fifth chamber inlet pipe 55a. Due to the compression of the sixth chamber 56, internal blood is supplied to the blood treatment filter 10 through the sixth chamber outlet pipe 56b. At this time, the blood in the sixth chamber 56 does not flow back to the patient by the operation of the check valves 55c and 56c installed in the inlet pipe and the outlet pipe of the fifth chamber 55 and the sixth chamber 56, and the blood is processed. Blood from the filter 10 does not flow back into the fifth chamber 55. At this time, it can be seen that blood does not flow through the blood processing filter 10.
반면에, 도 20에 도시한 바와 같이, 상기 챔버가압부재(59)에 의해 제 1, 제 3, 및 제 5 챔버(51, 53, 55)가 압축되고 제 2, 제 4, 및 제 6 챔버(52, 54, 56)가 팽창된다. 이때 유로조절부(60)는 유동관 51a, 52b, 53a 및 54b를 통한 유동은 차단하며, 유동관 51b, 52a, 53b 및 54a을 통한 유동은 개방한다. On the other hand, as shown in Fig. 20, the first, third, and fifth chambers 51, 53, and 55 are compressed by the chamber pressing member 59, and the second, fourth, and sixth chambers (52, 54, 56) expands. At this time, the flow path control unit 60 blocks the flow through the flow pipes 51a, 52b, 53a, and 54b, and opens the flow through the flow pipes 51b, 52a, 53b, and 54a.
제 1 챔버(51)의 압축으로 인해 내부의 투석용액이 제 2 챔버 유출관(52b)을 통해 혈액처리필터(10)로 공급된다. 제 2 챔버(52)의 팽창으로 인해 혈액처리필터(10)의 투석용액이 제 2 챔버 유입관(52a)을 통해 챔버 내부로 유입된다. 제 3 챔버(53)의 압축으로 인해 내부의 투석용액이 제 3 챔버 유출관(53b)을 통해 배출된다. 제 4 챔버(54)의 팽창으로 인해 투석용액이 제 4 챔버 유입관(54a)을 통해 챔버 내부로 유입된다. 제 5 챔버(55)의 압축으로 인해 내부의 혈액이 제 5 챔버 유출관(55b)을 통해 혈액처리필터(10)로 공급된다. 제 6 챔버(56)의 팽창으로 인해 환자의 혈액이 제 6 챔버 유입관(56a)을 통해 챔버 내부로 유입된다. 제 5 챔버(55) 및 제 6 챔버(56)의 유입관 및 유출관에 설치된 일방향 밸브(55c, 56c)에 의해 제 5 챔버(55)의 혈액이 환자에게 역류하지 않으며 혈액처리필터(10)의 혈액이 제 6 챔버(56)로 역류하지 않는다. 이때, 혈액과 투석용액이 모두 혈액처리필터(10) 통해 유동하는 것을 특징으로 한다.Due to the compression of the first chamber 51, the inner dialysis solution is supplied to the blood treatment filter 10 through the second chamber outlet pipe 52b. Due to the expansion of the second chamber 52, the dialysis solution of the blood treatment filter 10 flows into the chamber through the second chamber inlet pipe 52a. Due to the compression of the third chamber 53, the inner dialysis solution is discharged through the third chamber outlet pipe 53b. Due to the expansion of the fourth chamber 54, the dialysis solution is introduced into the chamber through the fourth chamber inlet pipe 54a. Due to the compression of the fifth chamber 55, internal blood is supplied to the blood treatment filter 10 through the fifth chamber outlet pipe 55b. Due to the expansion of the sixth chamber 56, the patient's blood flows into the chamber through the sixth chamber inlet pipe 56a. The blood in the fifth chamber 55 does not flow back to the patient by the one- way valves 55c and 56c installed in the inlet and outlet pipes of the fifth chamber 55 and the sixth chamber 56, and the blood treatment filter 10 Blood does not flow back into the sixth chamber (56). At this time, it is characterized in that both the blood and the dialysis solution flow through the blood treatment filter (10).
전술한 바와 같이, 상기 챔버들(51 내지 56)은 서로 다른 스트로크 볼륨을 가질 수 있다. 예를 들어, 도 21 및 도 22은 제 1 챔버(51) 및 제 3 챔버(53)가 제 2 챔버(52) 및 제 4 챔버(54) 보다 더 큰 스트로크 볼륨을 갖는 본 발명의 일실시예에 의한 혈액처리장치(1)의 유동회로도를 도시한 것이다. 상기 챔버가압부재(59) 좌측으로 이동할 때(도 21), 제 3 챔버(53)가 제 4 챔버(54)에 비해 더 큰 스트로크 볼륨을 갖기 때문에, 혈액중의 수분 및 요독소들이 멤브레인(12)을 가로질러 혈액처리필터(10)의 투석용액 영역(compartment)으로 이동하는 여과(ultrafiltration) 현상이 일어난다.As described above, the chambers 51 to 56 may have different stroke volumes. For example, FIGS. 21 and 22 show an embodiment of the present invention in which the first chamber 51 and the third chamber 53 have a larger stroke volume than the second chamber 52 and the fourth chamber 54. It shows a flow circuit diagram of the blood treatment device 1 by. When moving to the left of the chamber pressing member 59 (FIG. 21), since the third chamber 53 has a larger stroke volume than the fourth chamber 54, moisture and urinary toxins in the blood are removed from the membrane 12 ), an ultrafiltration phenomenon that moves to the dialysis solution compartment of the blood treatment filter 10 occurs.
반대로, 상기 챔버가압부재(59) 우측으로 이동할 때(도 22), 제 1 챔버(51)가 제 2 챔버(52)에 비해 더 큰 스트로크 볼륨을 갖기 때문에, 투석용액이 멤브레인(12)을 가로질러 혈액처리필터(10)의 혈액 영역(compartment)으로 이동하는 역여과(backfiltration) 현상이 일어난다. 따라서, 챔버의 스트로크 볼륨을 조정함으로써 여과량과 역여과량을 조절할 수 있는데, 이는 혈액과 투석용액 사이에 더 적극적인(dynamic) 물질전달이 일어남을 의미한다.Conversely, when the chamber pressurizing member 59 moves to the right (FIG. 22), since the first chamber 51 has a larger stroke volume than the second chamber 52, the dialysis solution crosses the membrane 12. As a result, a backfiltration phenomenon that moves to the blood compartment of the blood treatment filter 10 occurs. Therefore, by adjusting the stroke volume of the chamber, the amount of filtration and the amount of back filtration can be adjusted, which means that a more dynamic mass transfer occurs between the blood and the dialysis solution.
비숫하게 챔버 55 및 56의 스트로크 볼륨을 서로 같거나 혹은 다르게 변경함으로써 여과량과 역여과량의 차이 값으로 계산될 수 있는 순수여과량(netfiltration)을 조절할 수 있다. 또한 상기 6개의 챔버의 스트로크 볼륨이 모두 동일하거나 혹은 모두 다르게 설정도리 수 있다.Similarly, by changing the stroke volumes of chambers 55 and 56 to be the same or different from each other, netfiltration, which can be calculated as the difference between the filtration amount and the back filtration amount, can be adjusted. In addition, the stroke volumes of the six chambers may all be the same, or all may be set differently.
상기 유로조절부(60)는 제 1 내지 제 4 챔버(51 내지 54)와 연결된 유동관에는 가압형 밸브로 구성되며, 상기 제 5 및 제 6 챔버(55 및 56)과 연결된 유동관에는 일방향 밸브로 구성되었다. 하지만 상기 유로조절부(60)는 이러한 구성으로 한정되지 않는다. 예를 들어, 상기 유로조절부(60)는 제 1 내지 제 6 챔버(51내지 56)와 연결된 유동관을 통한 유로를 개폐할 수 있도록 가압형 밸브로 구성될 수 있다. 즉 도 8에 도시한 것과 같이, 가압형 밸브의 형태를 갖는 유로조절부(60)는 제 1 내지 제 6 챔버(51내지 56)와 연결된 유동관(51a, 51b, 52a, 52b, 53a, 53b, 54a, 54b, 55a, 55b, 56a 및 56b)을 통한 유로를 조절하는 것을 특징으로 한다. 혹은 상기 유로조절부(60)는 제 1 내지 제 6 챔버(51내지 56)와 연결된 유동관을 통한 유로를 개폐할 수 있도록 각 유동관에 설치된 일방향 밸브로 구성될 수 있다. 이는 아래에 보다 상세히 기술한다.The flow control unit 60 is composed of a pressurized valve in the flow pipes connected to the first to fourth chambers 51 to 54, and a one-way valve in the flow pipes connected to the fifth and sixth chambers 55 and 56 Became. However, the flow path control unit 60 is not limited to this configuration. For example, the flow path control unit 60 may be configured as a pressurized valve to open and close a flow path through a flow pipe connected to the first to sixth chambers 51 to 56. That is, as shown in Fig. 8, the flow path control unit 60 having the form of a pressurized valve includes flow pipes 51a, 51b, 52a, 52b, 53a, 53b connected to the first to sixth chambers 51 to 56, 54a, 54b, 55a, 55b, 56a and 56b). Alternatively, the flow path control unit 60 may be configured as a one-way valve installed in each flow pipe to open and close a flow path through a flow pipe connected to the first to sixth chambers 51 to 56. This is described in more detail below.
실시예 6Example 6
도 23 및 도 24는 본 발명의 다른 일실시예에 의한 혈액처리장치(1)를 도시한 것이다. 혈액이 제 5 챔버(55) 및 제 6 챔버(56)를 통해 혈액처리필터(10)로 공급된다. 하지만 전술한 실시예 5와 달리, 제 5 및 제 6 챔버(55 및 56) 모두 제 1 혈액 포터(13)와 연결된 것을 알 수 있다.23 and 24 show a blood processing apparatus 1 according to another embodiment of the present invention. Blood is supplied to the blood treatment filter 10 through the fifth chamber 55 and the sixth chamber 56. However, unlike the fifth embodiment described above, it can be seen that both the fifth and sixth chambers 55 and 56 are connected to the first blood porter 13.
상기 챔버가압부재(59)에 의해 제 1, 제 3, 및 제 5 챔버(51, 53, 55)가 팽창되고 제 2, 제 4, 및 제 6 챔버(52, 54, 56)가 압축될 때(도 23), 제 5 챔버(55)의 팽창에 의해 환자의 혈액이 제 5 챔버 유입관(55a)을 통해 챔버로 유입된다. 이때 제 6 챔버(56)의 압축에 의해 챔버 내부의 핼액이 제 6 챔버 유출관(56b)을 통해 혈액처리필터(10)로 공급된다.When the first, third, and fifth chambers 51, 53, 55 are expanded by the chamber pressing member 59 and the second, fourth, and sixth chambers 52, 54, 56 are compressed 23), blood of the patient flows into the chamber through the fifth chamber inlet pipe 55a due to the expansion of the fifth chamber 55. At this time, by compression of the sixth chamber 56, the heal liquid in the chamber is supplied to the blood treatment filter 10 through the sixth chamber outlet pipe 56b.
반면에, 챔버가압부재(59)에 의해 제 1, 제 3, 및 제 5 챔버(51, 53, 55)가 압축되고 제 2, 제 4, 및 제 6 챔버(52, 54, 56)가 팽창될 때(도 24), 제 5 챔버(55)의 압축에 의해, 챔버 내부의 핼액이 제 5 챔버 유출관(55b)을 통해 혈액처리필터(10)로 공급된다. 제 6 챔버(55)의 팽창에 의해 환자의 혈액이 제 6 챔버 유입관(56a)을 통해 챔버로 유입된다. 따라서, 챔버의 압축 및 팽창동안 혈액과 투석용액 모두가 혈액처리필터(10) 통해 유동한다.On the other hand, the first, third, and fifth chambers 51, 53, 55 are compressed by the chamber pressing member 59, and the second, fourth, and sixth chambers 52, 54, 56 are expanded. 24), by the compression of the fifth chamber 55, the heal liquid in the chamber is supplied to the blood treatment filter 10 through the fifth chamber outlet pipe 55b. Due to the expansion of the sixth chamber 55, the patient's blood flows into the chamber through the sixth chamber inlet pipe 56a. Therefore, both the blood and the dialysis solution flow through the blood treatment filter 10 during compression and expansion of the chamber.
상기 제 1 내지 제 4 챔버(51 내지 54)는 상당히 동일한 스트로크 볼륨을 가지되, 챔버 55 및 56의 스트로크 볼륨은 챔버 51 내지 54의 스트로크 볼륨과 서로 상이할 수 있다. 예를 들어, 챔버 55 및 56의 스트로크 볼륨은 챔버 51 내지 54의 스트로크 볼륨의 약 절반 정도를 갖도록 설정될 수 있다.The first to fourth chambers 51 to 54 have substantially the same stroke volume, but the stroke volumes of the chambers 55 and 56 may be different from the stroke volumes of the chambers 51 to 54. For example, the stroke volume of chambers 55 and 56 may be set to have about half the stroke volume of chambers 51 to 54.
여기서, 상기 제 1 내지 제 6 챔버(51 내지 56) 중에서 제 1 유체(이를테면 혈액)가 흐르는 챔버의 개수와 제 2 유체(이를테면 투석용액)가 흐르는 챔버의 개수는 혈액처리 요법의 목적에 맞도록 변경될 수 있는 것은 당업자에게 당연하다.Here, among the first to sixth chambers 51 to 56, the number of chambers through which the first fluid (such as blood) flows and the number of chambers through which the second fluid (such as dialysis solution) flows are suitable for the purpose of blood treatment therapy. It is natural to those skilled in the art that can be changed.
실시예 7Example 7
도 25 및 도 26은 본 발명의 또 다른 일실시예에 의한 혈액처리장치(1)의 유동회로도를 도시한 것이다. 구체적으로 상기 유로조절부(60)가 제 1 내지 제 6 챔버(51내지 56)와 연결된 유동관에 각각 설치된 일방향 밸브(혹은 체크밸브)로 구성되었다. 즉 제 1 챔버 체크밸브(51c)가 상기 제 1 챔버 유입관(51a) 및 제 1 챔버 유출관(51b)에 설치되어 있다. 마찬가지로 제 2 챔버 체크밸브(52c)가 상기 제 2 챔버 유입관(52a) 및 제 2 챔버 유출관(52b)에 설치되어 있다.25 and 26 show a flow circuit diagram of the blood processing apparatus 1 according to another embodiment of the present invention. Specifically, the flow path control unit 60 is composed of a one-way valve (or a check valve) installed in the flow pipes connected to the first to sixth chambers 51 to 56, respectively. That is, the first chamber check valve 51c is installed in the first chamber inlet pipe 51a and the first chamber outlet pipe 51b. Similarly, a second chamber check valve 52c is provided in the second chamber inlet pipe 52a and the second chamber outlet pipe 52b.
도 25에 도시한 바와 같이, 상기 챔버가압부재(59)에 의해 제 1, 제 3, 및 제 5 챔버(51, 53, 55)가 팽창되고 제 2, 제 4, 및 제 6 챔버(52, 54, 56)가 압축된다. 25, the first, third, and fifth chambers 51, 53, and 55 are expanded by the chamber pressing member 59, and the second, fourth, and sixth chambers 52, 54, 56) are compressed.
제 1 챔버(51)의 팽창으로 인해 투석용액이 제 1 챔버 유입관(51a)을 통해 챔버 내부로 유입된다. 이때 제 1 챔버 체크밸브(51c)에 의해 혈액처리필터(10)의 투석용액이 챔버로 역류하지 않는다. 제 2 챔버(52)의 압축으로 인해 내부의 투석용액이 제 2 챔버 유출관(52b)을 통해 배출된다. 이때 제 2 챔버 체크밸브(52c)에 의해 투석용액은 혈액처리필터(10)로 역류하지 않는다. 제 3 챔버(53)의 팽창으로 인해 혈액처리필터(10)의 투석용액이 제 3 챔버 유입관(53a)을 통해 챔버 내부로 유입된다. 이때 제 3 챔버 체크밸브(53c)에 의해 사용된 투석액이 챔버로 역류하지 않는다. 제 4 챔버(54)의 압축으로 인해 내부의 투석용액이 제 4 챔버 유출관(54b)을 통해 혈액처리필터(10)로 공급된다. 이때 제 4 챔버 체크밸브(54c)에 의해 투석용액이 공급 투석용액 저장부(36) 쪽으로 역류하지 않는다. 제 5 챔버(55)의 팽창으로 인해 환자의 혈액이 제 5 챔버 유입관(55a)을 통해 챔버 내부로 유입된다. 제 5 챔버 체크밸브(55c)에 의해 혈액처리필터(10)의 혈액이 제 5 챔버(55)로 역류하지 않는다. 제 6 챔버(56)의 압축으로 인해 내부의 혈액이 제 6 챔버 유출관(56b)을 통해 혈액처리필터(10)로 공급된다. 이때, 제 6 챔버 체크밸브(56c)에 의해 제 6 챔버(56)의 혈액이 환자에게 역류하지 않는다.Due to the expansion of the first chamber 51, the dialysis solution is introduced into the chamber through the first chamber inlet pipe 51a. At this time, the dialysis solution of the blood treatment filter 10 does not flow back into the chamber by the first chamber check valve 51c. Due to the compression of the second chamber 52, the inner dialysis solution is discharged through the second chamber outlet pipe 52b. At this time, the dialysis solution does not flow back to the blood treatment filter 10 by the second chamber check valve 52c. Due to the expansion of the third chamber 53, the dialysis solution of the blood treatment filter 10 flows into the chamber through the third chamber inlet pipe 53a. At this time, the dialysate used by the third chamber check valve 53c does not flow back into the chamber. Due to the compression of the fourth chamber 54, the inner dialysis solution is supplied to the blood treatment filter 10 through the fourth chamber outlet pipe 54b. At this time, the dialysis solution does not flow back toward the supplied dialysis solution storage unit 36 by the fourth chamber check valve 54c. Due to the expansion of the fifth chamber 55, blood of the patient flows into the chamber through the fifth chamber inlet pipe 55a. Blood from the blood processing filter 10 does not flow back to the fifth chamber 55 by the fifth chamber check valve 55c. Due to the compression of the sixth chamber 56, internal blood is supplied to the blood treatment filter 10 through the sixth chamber outlet pipe 56b. At this time, the blood in the sixth chamber 56 does not flow back to the patient by the sixth chamber check valve 56c.
반면에 도 26에 도시한 바와 같이, 상기 챔버가압부재(59)에 의해 제 1, 제 3, 및 제 5 챔버(51, 53, 55)가 압축되고 제 2, 제 4, 및 제 6 챔버(52, 54, 56)가 팽창된다.On the other hand, as shown in Fig. 26, the first, third, and fifth chambers 51, 53, and 55 are compressed by the chamber pressing member 59, and the second, fourth, and sixth chambers ( 52, 54, 56) are inflated.
제 1 챔버(51)의 압축으로 인해 내부의 투석용액이 제 2 챔버 유출관(52b)을 통해 혈액처리필터(10)로 공급된다. 이때 제 1 챔버 체크밸브(51c)에 의해 투석용액이 공급 투석용액 저장부(36) 쪽으로 역류하지 않는다. 제 2 챔버(52)의 팽창으로 인해 혈액처리필터(10)의 투석용액이 제 2 챔버 유입관(52a)을 통해 챔버 내부로 유입된다. 이때 제 2 챔버 체크밸브(52c)에 의해 사용된 투석용액이 제 2 챔버(52)로 역류하지 않는다. 제 3 챔버(53)의 압축으로 인해 내부의 투석용액이 제 3 챔버 유출관(53b)을 통해 배출된다. 이때 제 3 챔버 체크밸브(53c)에 의해 투석용액이 혈액처리필터(10)로 역류하지 않는다. 제 4 챔버(54)의 팽창으로 인해 투석용액이 제 4 챔버 유입관(54a)을 통해 챔버 내부로 유입된다. 이때 제 4 챔버 체크밸브(54c)에 의햇 혈액처리필터(10)의 투석용액이 제 4 챔버(54)로 역류하지 않는다. 제 5 챔버(55)의 압축으로 인해 내부의 혈액이 제 5 챔버 유출관(55b)을 통해 혈액처리필터(10)로 공급된다. 제 5 챔버 체크밸브(55c)에 의해 챔버 내부의 혈액이 환자에게 역류하지 않는다. 제 6 챔버(56)의 팽창으로 인해 환자의 혈액이 제 6 챔버 유입관(56a)을 통해 챔버 내부로 유입된다. 제 6 챔버 체크밸브(56c)에 의해 혈액처리필터(10)의 혈액이 제 6 챔버(56)로 역류하지 않는다.Due to the compression of the first chamber 51, the inner dialysis solution is supplied to the blood treatment filter 10 through the second chamber outlet pipe 52b. At this time, the dialysis solution does not flow back toward the supply dialysis solution storage unit 36 by the first chamber check valve 51c. Due to the expansion of the second chamber 52, the dialysis solution of the blood treatment filter 10 flows into the chamber through the second chamber inlet pipe 52a. At this time, the dialysis solution used by the second chamber check valve 52c does not flow back into the second chamber 52. Due to the compression of the third chamber 53, the inner dialysis solution is discharged through the third chamber outlet pipe 53b. At this time, the dialysis solution does not flow back to the blood treatment filter 10 by the third chamber check valve 53c. Due to the expansion of the fourth chamber 54, the dialysis solution is introduced into the chamber through the fourth chamber inlet pipe 54a. At this time, the dialysis solution of the blood treatment filter 10 does not flow back into the fourth chamber 54 by the fourth chamber check valve 54c. Due to the compression of the fifth chamber 55, internal blood is supplied to the blood treatment filter 10 through the fifth chamber outlet pipe 55b. The blood inside the chamber does not flow back to the patient by the fifth chamber check valve 55c. Due to the expansion of the sixth chamber 56, the patient's blood flows into the chamber through the sixth chamber inlet pipe 56a. Blood from the blood processing filter 10 does not flow back to the sixth chamber 56 by the sixth chamber check valve 56c.
해당 유동관에 설치된 체크밸브는 해당 유동관을 통한 유체의 흐름을 한 방향으로 흐르도록 제한한다. 여기서 상기 체크밸브를 개방할 수 있는 체크밸브 개방압력(cracking pressure)는 정해진 값을 갖지 않으며 혈액처리장치의 구동을 위하여 요구되는 적절한 값으로 설정될 수 있다. 상기 개방압력은 일방향 밸브를 통한 유동을 개방할 수 있는 일방향 밸브 상류와 하류의 압력차를 일컫는다. 예를 들어, 상기 유로조절부(60) 작동하지 않을 때, 일방향 밸브를 통해서는 유동이 발생하지 않을 만큼의 개방압력을 갖는 게 바람직한데, 예를 들어, 본 발명의 일실시예에 의한 일방향 밸브는 10 mmHg에서 180 mmHg의 개방압력을 가질 수 있다. 보다 구체적으로는 12 mmHg에서 60 mmHg의 개방압력을 가질 수 있다A check valve installed in the flow pipe restricts the flow of fluid through the flow pipe in one direction. Here, the check valve cracking pressure capable of opening the check valve does not have a predetermined value and may be set to an appropriate value required for driving the blood treatment device. The opening pressure refers to a pressure difference between upstream and downstream of the one-way valve capable of opening the flow through the one-way valve. For example, when the flow path control unit 60 is not operated, it is preferable to have an opening pressure such that flow does not occur through a one-way valve. For example, a one-way valve according to an embodiment of the present invention May have an opening pressure of 10 mmHg to 180 mmHg. More specifically, it can have an opening pressure of 12 mmHg to 60 mmHg.
실시예 8Example 8
상기 혈액처리장치(1)는 다른 구조로 변경될 수 있는데, 도 27 및 도 28에 도시한 것과 같이 상기 혈액처리장치(1)는 8개의 유체 챔버를 갖도록 변경될 수 있다. 이때 4개의 챔버는 투석용액을 이송시키며 다른 4개의 챔버는 혈액을 이송시킬 수 있다.The blood treatment device 1 may be changed to a different structure, and as shown in FIGS. 27 and 28, the blood treatment device 1 may be changed to have eight fluid chambers. At this time, four chambers transfer the dialysis solution, and the other four chambers can transfer blood.
구체적으로 제 1 내지 제 4 챔버 (51 내지 54)는 투석용액을 이송시키는데, 두 개의 챔버(51 및 54)는 투석용액을 혈액처리필터(10)로 공급하며 다른 두 개의 챔버(52 및 53)는 혈액처리필터(10)의 투석용액을 배출시키는 역할을 한다. 이는 전술한 바와 동일하다.Specifically, the first to fourth chambers 51 to 54 transfer the dialysis solution, the two chambers 51 and 54 supply the dialysis solution to the blood treatment filter 10, and the other two chambers 52 and 53 Serves to discharge the dialysis solution of the blood treatment filter (10). This is the same as described above.
혈액은 제 5 내지 제 8 챔버(55 내지 58)의 작동에 의해 유동한다. 구체적으로 두 개의 챔버는 혈액을 혈액처리필터(10)로 공급하며 다른 두 개의 챔버는 혈액처리필터(10)의 혈액을 환자에게 회송시키는 역할을 한다. 작동은 역시 전술한 바와 동일하며 따라서 중복된 설명은 생략한다.Blood flows by the operation of the fifth to eighth chambers 55 to 58. Specifically, the two chambers supply blood to the blood treatment filter 10 and the other two chambers serve to return blood from the blood treatment filter 10 to the patient. The operation is also the same as described above, and therefore, a duplicate description is omitted.
상기 유로조절부(60)는 제 1 내지 제 8 챔버(51 내지 58)과 연결된 유입관 및 유출관을 통한 유로를 조절하는데, 일방향 밸브, 솔레노이드 밸브, 온오프 밸브, 가압형 밸브, 회전형 밸브 등으로 구성될 수 있다. 여기서 상기 유로조절부(60)는 어느 8개의 유동관을 통한 유로를 차단하며 다른 8개의 유동관을 통한 유로를 개방할 수 있다.The flow path control unit 60 controls a flow path through an inlet pipe and an outlet pipe connected to the first to eighth chambers 51 to 58, a one-way valve, a solenoid valve, an on-off valve, a pressurized valve, and a rotary valve. And the like. Here, the flow path control unit 60 may block the flow path through any of the eight flow pipes and open the flow path through the other eight flow pipes.
또한 본 발명의 일실시예에 의한 혈액처리장치(1)는 상기 혈액유동관(21 혹은 22)에 설치된 혈액펌프(23)를 추가로 포함하여 구성되는 것을 특징으로 한다. 도 29는 혈액유동관(21)에 설치된 혈액펌프(23)를 갖는 혈액처리장치(1)를 도시하였다. 도면에 도시하였듯이, 투석용액은 제 1 내지 제 4 챔버 (51 내지 54)에 의해 유동한다. 구체적으로 두 개의 챔버(51 및 54)는 투석용액을 혈액처리필터(10)로 공급하며 다른 두 개의 챔버(52 및 53)는 혈액처리필터(10)의 투석용액을 배출시키는 역할을 한다.In addition, the blood processing apparatus 1 according to an embodiment of the present invention is characterized in that it is configured to further include a blood pump 23 installed in the blood flow pipe 21 or 22. 29 shows a blood processing apparatus 1 having a blood pump 23 installed in the blood flow pipe 21. As shown in the figure, the dialysis solution flows through the first to fourth chambers 51 to 54. Specifically, the two chambers 51 and 54 supply the dialysis solution to the blood treatment filter 10, and the other two chambers 52 and 53 serve to discharge the dialysis solution from the blood treatment filter 10.
또한 전술한 복수개의 유체 챔버가 좌우로 구성되는 것으로 한정되지 않으며 도 30에 도시한 것과 같이 수직방향으로 설치되도록 변경될 수 있다. 좌측에 위치한 절반의 챔버가 압축될 때 우측에 위치한 절반의 챔버는 팽창된다. 그 반대도 마찬가지이다. 또한 상기 챔버가압부재(59)는 제 1 챔버가압부재(59a) 및 제 2 챔버가압부재(59b)로 분리될 수 있는데, 각각 도면의 좌측 및 우측의 챔버를 압축 혹은 팽창시킬 수 있다. 여기서 챔버 51 내지 54와 연결된 유동관에는 가압형 밸브, 챔버 55 및 56과 연결된 유동관에는 일방향 밸브가 설치된 것을 알 수 있다. 하지만, 상기 유로조절부(60)는 제 1 내지 제 6 챔버(51 내지 56)과 연결된 유동관을 통한 유로를 조절할 수 있도록 일방향 밸브, 솔레노이드 밸브, 온-오프 밸브, 가압형 밸브, 회전형 밸브 등으로 구성될 수 있다.In addition, the plurality of fluid chambers described above are not limited to being configured to be left and right, and may be changed to be installed in a vertical direction as shown in FIG. 30. When the left half of the chamber is compressed, the right half of the chamber expands. The opposite is also true. In addition, the chamber pressing member 59 may be divided into a first chamber pressing member 59a and a second chamber pressing member 59b, and can compress or expand the left and right chambers of the drawing, respectively. Here, it can be seen that a pressurized valve is installed in the flow pipes connected to the chambers 51 to 54, and a one-way valve is installed in the flow pipes connected to the chambers 55 and 56. However, the flow path control unit 60 is a one-way valve, a solenoid valve, an on-off valve, a pressurized valve, a rotary valve, etc. to control a flow path through a flow pipe connected to the first to sixth chambers 51 to 56. It can be composed of.
뿐만 아니라, 혈액처리장치(1)는 보조투석용액 유동관(81) 및 보조투석용액 펌프(82)를 추가로 포함하여 구성될 수 있다. 상기 보조투석용액 펌프(82)는 상기 보조투석용액 유동관(81)에 설치되어 혈액처리필터(10)로부터 추가로 투석용액을 제거할 수 있다. 따라서 상기 보조투석용액 유동관(81)는 제 2 챔버(52) 혹은 제 3 챔버(53)의 유입관(즉 혈액처리필터(10)의 투석용액 유입구)과 상기 배출 투석용액 저장부(38) 혹은 배출관(drain line)을 서로 연결할 수 있다.In addition, the blood treatment device 1 may be configured to further include an auxiliary dialysis solution flow pipe 81 and an auxiliary dialysis solution pump 82. The auxiliary dialysis solution pump 82 may be installed in the auxiliary dialysis solution flow pipe 81 to further remove the dialysis solution from the blood treatment filter 10. Therefore, the auxiliary dialysis solution flow pipe 81 is the inlet pipe of the second chamber 52 or the third chamber 53 (that is, the dialysis solution inlet of the blood treatment filter 10) and the discharged dialysis solution storage unit 38 or Drain lines can be connected to each other.
상기 유체이송장치부(50)에 의해 혈액처리필터(10)로 공급되는 투석용액의 양과 혈액처리필터(10)로 부터 배출되는 투석용액의 양이 상당히 동일하게 유지된 상태에서, 상기 보조투석용액 펌프(82)는 추가로 투석용액을 제거할 수 있다. 따라서, 상기 보조투석용액 펌프(82)는 환자로부터 제거되는 순수 수분량을 결정하며 정확한 양의 수분을 이송할 필요가 있다. 상기 보조투석용액 펌프(82)는 다양한 종류의 정밀 펌프가 사용될 수 있는데 예를 들어 정밀 맥동펌프, 롤러 펌프, 실린더 기반의 박동펌프, 기어펌프 등이 이용될 수 있다. 본 발명에 의하면, 미터렁 로터리 피스톤 펌프(metering rotary piston pump)가 이용될 수 있다.In a state in which the amount of the dialysis solution supplied to the blood treatment filter 10 by the fluid transfer device 50 and the amount of the dialysis solution discharged from the blood treatment filter 10 are kept substantially the same, the auxiliary dialysis solution The pump 82 may additionally remove the dialysis solution. Therefore, the auxiliary dialysis solution pump 82 needs to determine the amount of pure water to be removed from the patient and transfer the correct amount of water. As the auxiliary dialysis solution pump 82, various types of precision pumps may be used. For example, a precision pulsating pump, a roller pump, a cylinder-based pulsating pump, a gear pump, and the like may be used. According to the present invention, a metering rotary piston pump can be used.
도 31은 유로조절부(60)의 유동 조절 방법을 도시한 것이다. 전술한 바와 같이, 유로조절부(60)은 일부 유동관을 통한 유로는 차단하며 동시에 다른 일부 유동관을 통한 유로는 개방하는 것을 특징으로 한다. 그리고 유로조절부(60)는 이러한 차단과 개방을 반복한다. 이를 테면, 전술한 실시예 1의 유로조절부(60)는 유동관(51a, 52b, 55a 및 56b)과 유동관(51b, 52a, 55b 및 56a)을 교번해서 차단한다.31 shows a flow control method of the flow path control unit 60. As described above, the flow path control unit 60 is characterized in that the flow path through some of the flow pipes is blocked and the flow path through the other partial flow pipes is opened. And the flow path control unit 60 repeats such blocking and opening. For example, the flow path control unit 60 of the first embodiment described above alternately blocks the flow pipes 51a, 52b, 55a, and 56b and the flow pipes 51b, 52a, 55b, and 56a.
따라서, 도 7 및 도 8에 도시한 것과 같이, 상기 유로조절부(60)는 제 1 유로조절부(60a) 및 제 2 유로조절부(60b)로 구분될 수 있다. 실시예 1의 경우, 유동관(51a, 52b, 55a 및 56b)는 제 1 유로조절부(60a)에 의해서 조절되며 유동관(51b, 52a, 55b 및 56a)은 제 2 유로조절부(60b)에 의해서 조절될 수 있다. . 상기 제 1 유로조절부(60a)에 의해 유동이 차단되면 제 2 유로조절부(60b)에 의한 유로는 개방될 수 있다.Accordingly, as shown in FIGS. 7 and 8, the flow path control unit 60 may be divided into a first flow path control unit 60a and a second flow path control unit 60b. In the case of the first embodiment, the flow pipes 51a, 52b, 55a and 56b are controlled by the first flow path control part 60a, and the flow pipes 51b, 52a, 55b and 56a are controlled by the second flow path control part 60b. Can be adjusted. . When the flow is blocked by the first flow path control part 60a, the flow path by the second flow path control part 60b may be opened.
상기 제 1 유로조절부(60a) 및 제 2 유로조절부(60b)가 압축과 팽창을 반복한다고 하더라, 본 발명의 일실시예에 의하면 제 1 및 제 2 유로조절부(60a 및 60b)에 의해 동시에 유로가 차단되는 순간이 존재할 수 있다. 즉 상기 유로조절부(60)는 상기 유로조절부(60)에 의해 내부의 유동이 조절되는 유동관을 통한 유로가 순간적으로 모두 차단할 수 있다. 이는 제 1 유로조절부(60a)와 제 2 유로조절부(60b)가 압축 혹은 팽창을 전환할 때 발생할 수 있다.Even though the first flow path control unit 60a and the second flow path control unit 60b repeat compression and expansion, according to an embodiment of the present invention, the first and second flow path control units 60a and 60b At the same time, there may be moments when the flow path is blocked. That is, the flow path control unit 60 may instantly block all of the flow paths through the flow pipe through which the internal flow is controlled by the flow control unit 60. This may occur when the first flow path control unit 60a and the second flow path control unit 60b switch compression or expansion.
따라서 도 31에 도시한 것과 같이, 유로조절부(60)의 유동 조절 방법은 아래의 단계들로 구성될 수 있다.Therefore, as shown in Fig. 31, the flow control method of the flow path control unit 60 may be composed of the following steps.
(S1) 제 1 유로조절부(60a)를 차단,(S1) block the first flow path control unit (60a),
(S2) 제 2 유로조절부(60b)를 개방,(S2) opening the second flow path adjustment unit 60b,
(S3) 챔버가압부재(59) 작동,(S3) operation of the chamber pressing member 59,
(S4) 제 2 유로조절부(60b)를 차단,(S4) blocking the second flow path control unit 60b,
(S5) 제 1 유로조절부(60a)를 개방, 및(S5) opening the first flow path adjustment unit 60a, and
(S6) 챔버가압부재(59) 작동.(S6) Operation of the chamber pressing member 59.
여기서, 챔버가압부재(59)가 챔버들의 압축과 팽창을 반복하기 위해서는, 상기 S3에서 상기 챔버가압부재(59)가 어느 한방향으로 작동하면 상기 S6에서 챔버가압부재(59)는 타방향으로 움직이는 게 바람직하다. 그리고 상기 S1 및 S4에서, 상기 제 1 유로조절부(60a)와 상기 제 2 유로조절부(60b)는 모두 유동을 차단한다는 것을 알 수 있다. 하지만, S2에서는 제 1 유로조절부(60a)에 의해서만 유동이 차단되며 반대로 S5에서는 제 2 유로조절부(60b)에 의해서만 유동이 차단된다.Here, in order for the chamber pressurizing member 59 to repeat compression and expansion of the chambers, when the chamber pressurizing member 59 operates in one direction in S3, the chamber pressurizing member 59 moves in the other direction in S6. desirable. In addition, in S1 and S4, it can be seen that both the first flow path control part 60a and the second flow path control part 60b block the flow. However, in S2, the flow is blocked only by the first flow path control unit 60a, whereas in S5, the flow is blocked only by the second flow channel control unit 60b.
여기서, 본 발명의 일실시예에 의한 유로조절부(60)는 상기 S1 내지 S6의 단계들의 사이에 정해진 시간만큼 시간을 딜레이하는 단계를 추가로 포함하여 구성될 수 있다. 이를 테면, S1과 S2 사이에 제 1 시간 딜레이 단계(D1), S2와 S3 사이에 제 2 시간 딜레이 단계(D2), 및/또는 S3과 S4 사이에 제 3 시간 딜레이 단계(D3)을 추가로 포함하여 구성될 수 있다. D1 내지 D3은 혈액처리요법의 안정성을 위하여 정해진 값을 갖는 게 바람직하다. 예를 들어, D1 및 D2는 0에서 1. 2초로의 비슷한 값을 가지며 D3은 0에서 2. 5초의 값을 가질 수 있다.Here, the flow path control unit 60 according to an embodiment of the present invention may further include a step of delaying a time by a predetermined time between steps S1 to S6. For example, a first time delay step (D1) between S1 and S2, a second time delay step (D2) between S2 and S3, and/or a third time delay step (D3) between S3 and S4. It can be configured to include. It is preferable that D1 to D3 have a set value for the stability of blood treatment therapy. For example, D1 and D2 may have similar values from 0 to 1.2 seconds, and D3 may have values from 0 to 2.5 seconds.
또한 상기 S1 및 S4 단계가 걸리는 시간은 서로 동일하며, 유사하게 S2 및 S5에 소요되는 시간도 동일할 수 있다. 또는 S1, S2, S4 및 S5 단계는 상당히 동일한 시간이 소요되며 그 시간은 약 0. 2초에서 1. 2초 사이에 이른다. 보다 구체적으로는 0. 4초에서 0. 8초가 소요된다. 마찬가지로 S3 및 S6 단계는 상당히 동일한 시간이 소요되며 그 시간은 약 0. 4초에서 2. 4초의 범위에 이른다.In addition, the time taken for the steps S1 and S4 may be the same, and similarly, the time required for the steps S2 and S5 may be the same. Alternatively, steps S1, S2, S4 and S5 take quite the same time, and the time ranges from about 0.2 to 1.2 seconds. More specifically, it takes from 0.4 to 0.8 seconds. Likewise, steps S3 and S6 take quite the same amount of time, ranging from about 0.4 to 2.4 seconds.
본 발명의 일실시예에 의한 혈액처리장치에 의하면, 단일 챔버가압부재를 이용하여 복수개의 유체 챔버를 동시에 압축 혹은 팽창시키며, 이를 통해 혈액과 투석용액을 동시에 이송시킬 수 있다. 상기 복수개의 유체 챔버는 혈액처리필터로 공급되는 투석용액과 혈액처리필터로부터 배출되는 투석용액의 양을 동일하게 유지시킬 수 있다. 따라서 기존의 혈액펌프 및 밸런싱 챔버의 사용을 배제할 수 있으며, 이를 통해 전체 혈액처리장치를 비약적으로 소형화 및 경량화시킬 수 있으며, 설치하기가 용이하고, 혈액처리 비용을 절감할 수 있다. 따라서 본 발명에 의한 혈액처리장치는 병원뿐만 아니라, 병원 외부의 장소에서도 혈액처리를 효율적으로 수행할 수 있다.According to the blood processing apparatus according to an embodiment of the present invention, a plurality of fluid chambers are simultaneously compressed or expanded using a single chamber pressurizing member, thereby simultaneously transferring blood and a dialysis solution. The plurality of fluid chambers may maintain the same amount of the dialysis solution supplied to the blood treatment filter and the dialysis solution discharged from the blood treatment filter. Therefore, the use of the existing blood pump and balancing chamber can be excluded, and through this, the entire blood processing device can be drastically reduced in size and weight, it is easy to install, and the cost of blood processing can be reduced. Therefore, the blood processing apparatus according to the present invention can efficiently perform blood processing not only in a hospital, but also in a place outside the hospital.
앞에서 설명되고 도면에 도시된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안되며, 본 발명의 보호범위는 특허청구범위에 기재된 사항에 의하여만 제한된다. 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량하거나 변경하는 것이 가능하며, 이러한 개량 및 변경은 본 발명의 보호범위에 속하게 될 것이다.The embodiments of the present invention described above and illustrated in the drawings should not be construed as limiting the technical spirit of the present invention, and the protection scope of the present invention is limited only by the matters described in the claims. Those of ordinary skill in the art of the present invention can improve or change the technical idea of the present invention in various forms, and such improvements and changes will fall within the protection scope of the present invention.

Claims (18)

  1. 내부 공간을 갖는 복수개의 유체 챔버;A plurality of fluid chambers having an inner space;
    상기 복수개의 유체 챔버의 내부 공간을 압축 혹은 팽창시키는 챔버 가압부재;A chamber pressurizing member compressing or expanding the inner spaces of the plurality of fluid chambers;
    상기 챔버 가압부재를 구동하는 가압부재 구동기; 및A pressing member driver for driving the chamber pressing member; And
    유로조절부;를 포함하여 구성되며,It is configured to include;
    상기 복수개의 유체 챔버는 n개의 유체 챔버를 포함하여 구성되며 (여기서 n은 2이상의 양의 정수),The plurality of fluid chambers are configured to include n fluid chambers (where n is a positive integer greater than or equal to 2),
    n개의 챔버 각각은 챔버로 유체가 유입되는 제 1 유동관 및 챔버의 유체가 유출되는 제 2 유동관과 연결되어 구성되며,Each of the n chambers is configured by being connected to a first flow pipe through which fluid flows into the chamber and a second flow pipe through which fluid flows out of the chamber,
    상기 유로조절부는 상기 제 n개의 챔버와 연결된 유동관을 통한 유동을 조절하는 것을 특징으로 하는 혈액처리장치.The flow control unit is a blood treatment apparatus, characterized in that for controlling the flow through the flow pipe connected to the n-th chamber.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 n개의 챔버는 상기 챔버 가압부재에 의해 동시에 압축되거나 팽창되는 것을 특징으로 하는 혈액처리장치.The n chambers are compressed or expanded at the same time by the chamber pressing member.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 n이 짝수일 때, n/2개의 챔버는 동시에 압축되며 n/2개의 챔버는 동시에 팽창되며,When n is an even number, n/2 chambers are compressed at the same time and n/2 chambers are expanded at the same time,
    상기 n이 홀수일 때, (n+1)/2개의 챔버는 동시에 압축되며 (n-1)/2개의 챔버는 동시에 팽창되는 것을 특징으로 하는 혈액처리장치.When n is an odd number, (n+1)/2 chambers are compressed at the same time, and (n-1)/2 chambers are expanded at the same time.
  4. 제 3 항에 있어서,The method of claim 3,
    내부에서 혈액을 처리하는 혈액처리필터;를 추가로 포함하여 구성되며, 상기 혈액처리필터는And a blood processing filter for processing blood inside, wherein the blood processing filter
    내부 공간을 갖는 혈액필터 하우징;A blood filter housing having an inner space;
    상기 혈액필터 하우징의 일단에 설치되며 혈액이 상기 혈액처리필터로 유입되는 제 1 혈액 포터;A first blood porter installed at one end of the blood filter housing and through which blood flows into the blood treatment filter;
    상기 혈액필터 하우징의 타단에 설치되며 혈액처리필터로부터 혈액이 배출되는 제 2 혈액 포터; 및A second blood porter installed at the other end of the blood filter housing and through which blood is discharged from the blood treatment filter; And
    상기 혈액필터 하우징에 설치되며 투석용액이 유동할 수 있는 적어도 하나 이상의 투석용액 포터;를 포함하여 구성되는 것을 특징으로 하는 혈액처리장치.And at least one dialysis solution porter installed in the blood filter housing and through which the dialysis solution flows.
  5. 제 4 항에 있어서,The method of claim 4,
    상기 투석용액 포터는 적어도 두 개 이상의 챔버와 연결된 것을 특징으로 하는 혈액처리장치. The dialysis solution porter is a blood treatment apparatus, characterized in that connected to at least two or more chambers.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 제 1 혈액 포터는 적어도 어느 하나의 챔버와 연결된 제 2 유동관과 연결된 것을 특징으로 하는 혈액처리장치. Wherein the first blood porter is connected to a second flow pipe connected to at least one of the chambers.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 제 2 혈액 포터는 적어도 어느 하나의 챔버와 연결된 제 1 유동관과 연결된 것을 특징으로 하는 혈액처리장치. And the second blood porter is connected to a first flow pipe connected to at least one of the chambers.
  8. 제 7 항에 있어서,The method of claim 7,
    상기 유로조절부는 The flow path control unit
    상기 유동관의 일부를 가압하여 내부의 유동을 차단하는 유로차단부재;A flow path blocking member that pressurizes a part of the flow pipe to block internal flow;
    유로차단부재에 의해 가압되는 상기 유동관을 지지하는 유로차단벽; 및A flow path blocking wall supporting the flow pipe pressed by a flow path blocking member; And
    유로차단부재를 구동하는 유로차단부재 구동기;를 포함하여 구성되는 것을 특징으로 하는 혈액처리장치.A blood processing apparatus comprising: a flow path blocking member driver for driving the flow path blocking member.
  9. 제 7 항에 있어서,The method of claim 7,
    상기 유로조절부는The flow path control unit
    실린더 형상의 내부공간을 갖는 유로조절 하우징;A flow path control housing having a cylindrical inner space;
    실린더 형상을 가지며 상기 유로조절 하우징의 내부공간에 설치되는 유로조절 로터;A flow path control rotor having a cylindrical shape and installed in the inner space of the flow path control housing;
    유로조절 하우징을 관통하도록 설치되는 복수개의 유로조절 포터; 및A plurality of flow path control porters installed to pass through the flow path control housing; And
    상기 유로조절 로터를 구동시키는 로터구동부;를 포함하며,Includes; a rotor driving unit for driving the flow path control rotor,
    상기 유로조절 로터에 의해 적어도 한 개 이상의 유로조절 포트를 통한 유동은 차단되며, 상기 유로조절 하우징의 내주면에 위치한 유로조절 포터의 일단은 실린더 형상을 갖는 상기 유로조절 로터의 원주면 내에 위치하는 것을 특징으로 하는 혈액처리장치.The flow through at least one flow control port is blocked by the flow control rotor, and one end of the flow control porter located on the inner circumferential surface of the flow control housing is located within the circumferential surface of the flow control rotor having a cylindrical shape. Blood processing device.
  10. 제 7 항에 있어서,The method of claim 7,
    상기 유로조절부는The flow path control unit
    유로조절부에 의해 내부의 유동이 조절되는 유동관을 가압 혹은 감압할 수 있는 공압 채널; 및A pneumatic channel capable of pressurizing or decompressing the flow pipe through which the flow is controlled by the flow control unit; And
    상기 공압 채널을 가압 혹은 감압할 수 있는 공압 구동기;로 구성된 것을 특징으로 하는 혈액처리장치.A blood processing apparatus comprising: a pneumatic actuator capable of pressurizing or decompressing the pneumatic channel.
  11. 제 7 항에 있어서,The method of claim 7,
    상기 유로조절부는 유로조절부에 의해 내부의 유동이 조절되는 각각의 유동관에 설치되어 내부의 유동을 한 방향으로 제한하는 일방향 밸브;로 구성되는 것을 특징으로 하는 혈액처리장치.And a one-way valve installed in each of the flow pipes in which the flow inside the flow path control unit is controlled by the flow flow control unit to limit the flow in one direction.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 유로조절부는 유로조절부에 의해 내부의 유동이 조절되는 각각의 유동관에 설치되어 내부의 유동을 한 방향으로 제한하는 일방향 밸브;를 추가로 포함하여 구성되는 혈액처리장치.The blood processing apparatus further comprises a one-way valve installed in each of the flow pipes in which the flow inside the flow path control unit is controlled by the flow flow control unit to limit the flow in one direction.
  13. 제 5 항에 있어서,The method of claim 5,
    상기 제 1 혹은 제 2 혈액 포터와 연결된 혈액유동관에 설치되며 상기 혈액처리필터를 통해 혈액을 이송시킬 있는 혈액펌프;를 추가로 포함하여 구성되는 혈액처리장치.A blood processing apparatus further comprising a blood pump installed in a blood flow pipe connected to the first or second blood porter and configured to transfer blood through the blood processing filter.
  14. 제 1 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 13,
    상기 유로조절부는 유로조절부에 의해 내부의 유동이 조절되는 유동관 중 적어도 절반의 유동관을 통한 유동을 차단하는 것을 특징으로 하는 혈액처리장치.The flow control unit is a blood processing apparatus, characterized in that blocking the flow through at least half of the flow pipes of the flow pipes in which the flow is regulated by the flow control unit.
  15. 제 1 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 13,
    상기 챔버는 딱딱한 재질로 만들어지며,The chamber is made of a hard material,
    상기 챔버가압부재는 상기 챔버의 내부 공간을 압축 혹은 팽창시킬 수 있도록 유연한 재질로 이루어진 부분을 포함하여 구성되는 것을 특징으로 하는 혈액처리장치.The chamber pressurizing member is a blood treatment apparatus comprising a portion made of a flexible material so as to compress or expand the inner space of the chamber.
  16. 제 1 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 13,
    상기 챔버는 압축 및 팽창이 용이한 유연한 재질로 만들어지며,The chamber is made of a flexible material that is easy to compress and expand,
    상기 챔버가압부재는 상기 챔버의 내부 공간을 압축 혹은 팽창시킬 수 있도록 딱딱한 재질로 이루어진 부분을 포함하여 구성되는 것을 특징으로 하는 혈액처리장치.The chamber pressurizing member is a blood treatment apparatus comprising a portion made of a hard material so as to compress or expand the inner space of the chamber.
  17. 제 2 항 내지 제 13 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 13,
    동시에 압축되는 챔버 중 적어도 2개의 챔버는 서로 동일한 스트로크 볼륨을 가지며,At least two of the chambers compressed at the same time have the same stroke volume with each other,
    동시에 팽창되는 챔버 중 적어도 2개의 챔버는 서로 동일한 스트로크 볼륨을 가지는 것을 특징으로 하는 혈액처리장치.At least two of the simultaneously expanding chambers have the same stroke volume.
  18. 제 17 항에 있어서,The method of claim 17,
    압축되는 챔버 중 적어도 어느 하나의 챔버의 압축-팽창 스트로크 볼륨은 팽창되는 챔버 중 적어도 어느 하나의 챔버의 스트로크 볼륨보다 더 크거나 혹은 더 작은 것을 특징으로 하는 혈액처리장치.A blood treatment apparatus, wherein the compression-expansion stroke volume of at least one of the chambers to be compressed is larger or smaller than the stroke volume of at least one of the chambers to be expanded.
PCT/KR2020/015354 2019-11-04 2020-11-04 Device, consumable supplies, method and system for processing blood WO2021091237A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021500390A JP7374510B2 (en) 2019-11-04 2020-11-04 Equipment, consumables, methods and systems for blood processing
CN202080077000.5A CN114845751A (en) 2019-11-04 2020-11-04 Device, consumable, method and system for blood treatment

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020190139273A KR102128206B1 (en) 2019-05-08 2019-11-04 Fluid pumping device and blood purifying apparatus having the same
KR10-2019-0139273 2019-11-04
US202063025964P 2020-05-15 2020-05-15
US63/025,964 2020-05-15
US202063065480P 2020-08-13 2020-08-13
US63/065,480 2020-08-13

Publications (1)

Publication Number Publication Date
WO2021091237A1 true WO2021091237A1 (en) 2021-05-14

Family

ID=75848903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015354 WO2021091237A1 (en) 2019-11-04 2020-11-04 Device, consumable supplies, method and system for processing blood

Country Status (3)

Country Link
JP (1) JP7374510B2 (en)
CN (1) CN114845751A (en)
WO (1) WO2021091237A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124039A (en) * 2012-05-04 2013-11-13 주식회사 에이앤씨바이오팜 Dialysate pump and blood dialyzing apparatus having the same
WO2015152236A1 (en) * 2014-03-31 2015-10-08 株式会社メテク Blood purification device and fluid replacement/priming method for blood purification device
KR20150115613A (en) * 2014-04-03 2015-10-14 조태범 Dialysate supply unit and blood dialyzing apparatus having the same
KR20150136257A (en) * 2014-05-27 2015-12-07 조태범 Blood supply unit and hemodialysis apparatus having the same
KR20160068604A (en) * 2014-12-07 2016-06-15 조태범 Blood Dialyzing Apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142382A (en) * 1977-05-17 1978-12-12 Toray Ind Inc Controlling device for ultrafiltrating quantity
DE2838414C2 (en) * 1978-09-02 1984-10-31 Fresenius AG, 6380 Bad Homburg Device for hemodialysis and for withdrawing ultrafiltrate
JPS5766761A (en) * 1980-10-11 1982-04-23 Nikkiso Co Ltd Controller for ultrafiltration
US9925322B2 (en) * 2014-04-03 2018-03-27 Human Biomed, Inc. Dialysate supply device and blood dialyzing apparatus having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124039A (en) * 2012-05-04 2013-11-13 주식회사 에이앤씨바이오팜 Dialysate pump and blood dialyzing apparatus having the same
WO2015152236A1 (en) * 2014-03-31 2015-10-08 株式会社メテク Blood purification device and fluid replacement/priming method for blood purification device
KR20150115613A (en) * 2014-04-03 2015-10-14 조태범 Dialysate supply unit and blood dialyzing apparatus having the same
KR20150136257A (en) * 2014-05-27 2015-12-07 조태범 Blood supply unit and hemodialysis apparatus having the same
KR20160068604A (en) * 2014-12-07 2016-06-15 조태범 Blood Dialyzing Apparatus

Also Published As

Publication number Publication date
JP7374510B2 (en) 2023-11-07
JP2022546140A (en) 2022-11-04
CN114845751A (en) 2022-08-02

Similar Documents

Publication Publication Date Title
JP3831048B2 (en) Dialyzer
WO2021091237A1 (en) Device, consumable supplies, method and system for processing blood
ES8500562A1 (en) Prepackaged fluid processing module having pump and valve elements operable in response to applied pressures.
ES2153978T3 (en) PERITONEAL DIALYSIS SYSTEM WITH VARIABLE PRESSURE TRANSMISSION MECHANISM.
EA026018B1 (en) Dialysis supply system
KR20150115615A (en) Dialysate Supply Unit And Blood Dialyzing Apparatus Having The Same
US20160067398A1 (en) Method of ultrasonic degassing of liquids for dialysis
JP2007222548A (en) Supply/discharge pump device and supply/discharge method of dialysate using the same
KR20150136257A (en) Blood supply unit and hemodialysis apparatus having the same
JPS6125382B2 (en)
JP2023105264A (en) Liquid concentrate processor, and operation method of liquid concentrate processor
WO2021133072A1 (en) Peritoneal dialysis device
KR20160068604A (en) Blood Dialyzing Apparatus
JP2010213851A (en) Blood treatment device
EP3815724B1 (en) Blood processing apparatus
JP2001153050A (en) Suction and exhaust pump
KR102128206B1 (en) Fluid pumping device and blood purifying apparatus having the same
RU2101034C1 (en) Perfusion pump of peristaltic action
US20230270925A1 (en) Blood dialyzing apparatus and method
US20230021211A1 (en) Peritoneal dialysis cassette mounting chamber
WO2015152623A1 (en) Dialysis fluid transfer device and hemodialysis device having same
JPH02164425A (en) Multilayer hollow fiber membrane
JPH0461655B2 (en)
KR20140068343A (en) Dialysate supply unit and blood dialyzing apparatus having the same
EP4180068A1 (en) Blood purification device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021500390

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885849

Country of ref document: EP

Kind code of ref document: A1