WO2021091212A1 - 광학 기기 - Google Patents

광학 기기 Download PDF

Info

Publication number
WO2021091212A1
WO2021091212A1 PCT/KR2020/015282 KR2020015282W WO2021091212A1 WO 2021091212 A1 WO2021091212 A1 WO 2021091212A1 KR 2020015282 W KR2020015282 W KR 2020015282W WO 2021091212 A1 WO2021091212 A1 WO 2021091212A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
function
liquid lens
liquid
driving
Prior art date
Application number
PCT/KR2020/015282
Other languages
English (en)
French (fr)
Inventor
김의준
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US17/774,254 priority Critical patent/US20220390652A1/en
Publication of WO2021091212A1 publication Critical patent/WO2021091212A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Definitions

  • the embodiment relates to an optical instrument.
  • various shooting functions include at least one of an optical zoom function (zoom-in/zoom-out), an auto-focusing (AF) function, or an image stabilization or image stabilization (OIS) function.
  • an optical zoom function zoom-in/zoom-out
  • AF auto-focusing
  • OIS image stabilization or image stabilization
  • the autofocus and image stabilization functions are performed by moving or tilting several lenses fixed to the lens holder and aligned with the optical axis, in the vertical direction of the optical axis or the optical axis.
  • a separate lens driving device to drive is required.
  • the lens driving device consumes high power, and in order to protect it, a cover glass must be added separately from the optical device, and the overall size of the existing optical device is increased.
  • research on a liquid lens unit that performs autofocus and camera shake correction functions by electrically controlling the curvature of the interface between two liquids has been conducted.
  • the interface of the liquid lens is variously deformed according to the temperature, and thus the accuracy needs to be improved.
  • an optical device including a lens capable of adjusting the position of an interface positioned between two liquids according to electrical energy, the deformation of the interface caused by the temperature of a structure capable of housing two liquids included in the lens. It provides an optical device that can provide a desired diopter even with a change in diopter.
  • An optical device includes a lens assembly including a liquid lens including a first liquid and a second liquid forming an interface with each other; A temperature sensor sensing the temperature of the liquid lens; And a controller controlling a driving signal of the liquid lens, wherein the controller uses a first function when the sensed temperature is within a first temperature region, and a second function different from the first function when the detected temperature is within a second temperature region.
  • the drive signal is controlled using a function.
  • the first function may be a function of a lower order than the second function.
  • the first function may be a linear function and the second function may be a quadratic function.
  • the first temperature region may be a region having a higher temperature than the second temperature region, and a value of the driving signal in the first temperature region may be smaller than a value of the driving signal in the second temperature region.
  • a memory unit storing the first function and the second function, and the first function and the second function may be functions of the driving signal with respect to the temperature when the lens assembly is a first diopter.
  • the amount of change of the driving signal may be constant in the first temperature region, and the amount of change of the driving signal may vary in the second temperature region.
  • the controller controls the driving signal using a third function in a third temperature region lower than the second temperature region, and a temperature at the boundary between the second temperature region and the third temperature region is calculated as the second function. It may be the temperature when the value is the maximum value.
  • the third function of the third temperature region may be a quadratic function or a constant.
  • the third function may be the same function as the second function.
  • the temperature of the liquid lens may be a temperature measured by the liquid lens or the lens assembly.
  • the embodiment provides an optical device having a desired focus and resolution even if the interface of a liquid lens changes according to temperature.
  • FIG. 1 is a schematic perspective view of an optical device according to an embodiment
  • FIG. 2 is an exploded perspective view of an optical device according to an embodiment
  • FIG. 3 is a cross-sectional view of an optical device according to an embodiment
  • FIG. 4 is a cross-sectional view of a liquid lens unit according to an embodiment
  • 5A to 5E are views for explaining a driving method of a liquid lens unit
  • FIG. 6 is a diagram for explaining a liquid lens unit whose interface is adjusted in response to a driving voltage
  • FIG. 7A to 7C are views showing the structure of a liquid lens unit
  • FIG. 8A to 8E are views for explaining variable lens curvature of the liquid lens unit
  • FIG. 9 is a block diagram of an optical device according to an embodiment
  • FIG. 10 is a diagram referred to in the description of FIG. 9,
  • 11 to 13 are diagrams for explaining a relationship between a focus signal, a temperature, a diopter, and a delay for explaining the operation of the controller according to the embodiment,
  • FIG. 14 is a diagram illustrating calculation of a driving signal graph according to temperature in a controller according to an embodiment
  • FIG. 15 is a diagram illustrating a relationship between a second section and a third section in FIG. 14,
  • 16 to 19 are diagrams for explaining driving of a controller according to an embodiment.
  • the singular form may include the plural form unless specifically stated in the phrase, and when described as "at least one (or more than one) of A and (and) B and C", it is combined with A, B, and C. It may contain one or more of all possible combinations.
  • first, second, A, B, (a), and (b) may be used.
  • a component when a component is described as being'connected','coupled' or'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also the component and It may also include the case of being'connected','coupled' or'connected' due to another element between the other elements.
  • top (top) or bottom (bottom) when it is described as being formed or disposed on the “top (top) or bottom (bottom)” of each component, the top (top) or bottom (bottom) is not only when the two components are in direct contact with each other, but also one It also includes the case where the above other component is formed or disposed between the two components.
  • upper (upper) or lower (lower) when expressed as "upper (upper) or lower (lower)", the meaning of not only an upward direction but also a downward direction based on one component may be included.
  • The'auto focus function' used below automatically adjusts the distance to the image sensor by moving the lens in the optical axis direction according to the distance of the subject so that a clear image of the subject can be obtained by the image sensor. Defined by function.
  • 'auto focus' may correspond to'AF (auto focus)'.
  • The'image stabilization function' used below is defined as a function of moving a lens and/or an image sensor to cancel vibration (motion) generated in the image sensor by an external force.
  • 'hand shake correction' may correspond to'Optical Image Stabilization (OIS)'.
  • FIG. 1 is a schematic perspective view of an optical device according to an embodiment.
  • the optical device 100 may include a lens assembly 10, a control circuit 20, and an image sensor 30.
  • the optical device may be made of a'camera module'.
  • the lens assembly 10 may include a plurality of lens units and a holder accommodating the plurality of lens units.
  • the plurality of lens units may include a liquid lens and may further include a first lens unit or a second lens unit.
  • the plurality of lens units may include first and second lens units and a liquid lens unit.
  • the control circuit 20 serves to supply a driving voltage (or operating voltage) to the liquid lens unit.
  • control circuit 20 and the image sensor 30 may be disposed on one printed circuit board (PCB), but this is only an example, and embodiments are not limited thereto.
  • PCB printed circuit board
  • the configuration of the control circuit 20 may be designed differently according to specifications required by the optical device.
  • the control circuit 20 since the control circuit 20 is implemented as a single chip, it is possible to reduce the intensity of the driving voltage applied to the lens assembly 10. Through this, the size of the optical device mounted on the portable device can be further reduced. A detailed description of this will be described later.
  • FIG. 2 is an exploded perspective view of an optical device according to an embodiment
  • FIG. 3 is a cross-sectional view of the optical device according to the embodiment
  • FIG. 4 is a cross-sectional view of a liquid lens unit according to the embodiment.
  • the optical device 100 may include a lens assembly, a main substrate 150 and an image sensor 30.
  • the optical device 100 may further include a first cover 170 and a middle base 172.
  • the optical device 100 may further include at least one adhesive member 162 and 164 and a second cover 174. At least one adhesive member serves to couple or fix the liquid lens unit 140 to the holder 120.
  • the at least one adhesive member is illustrated as including all of the first adhesive member 162, the second adhesive member 164, and the third adhesive member 166, but embodiments are not limited thereto. That is, according to another embodiment, the at least one adhesive member may include only some of the first adhesive member 162, the second adhesive member 164, and the third adhesive member 166.
  • At least one of the constituent elements 110 to 190 of the optical device 100 illustrated in FIG. 2 may be omitted.
  • at least one component other than the components 110 to 190 shown in FIG. 2 may be further added to and included in the optical device 100.
  • the lens assembly (see FIGS. 1 and 10) includes a liquid lens unit 140, a holder 120, a first lens unit 110, a second lens unit 130, a first adhesive member 162, and a second adhesive. It may include at least one of the member 164 and the third adhesive member 166. In addition, the lens assembly may be disposed on the main substrate 150.
  • first lens unit 110 and the second lens unit 130 may be referred to as “first solid lens unit” and “second solid lens unit”, respectively. .
  • the first lens unit 110 is disposed above the lens assembly, and may be a region in which light is incident from the outside of the lens assembly. That is, the first lens unit 110 may be disposed on the liquid lens unit 140 in the holder 120.
  • the first lens unit 110 may be implemented as a single lens, or may be implemented as two or more lenses arranged with respect to a central axis to form an optical system.
  • the central axis refers to an optical axis (LX) of the optical system formed by the first lens unit 110, the liquid lens unit 140, and the second lens unit 130 included in the optical device 100. It may mean, it may mean an axis parallel to the optical axis LX.
  • the optical axis LX may be the same as the optical axis f of the image sensor 30.
  • the first lens unit 110, the liquid lens unit 140, the second lens unit 130, and the image sensor 30 are arranged and aligned in the optical axis LX through an active alignment (AA).
  • AA active alignment
  • the active alignment means that the optical axes of the first lens unit 110, the second lens unit 130, and the liquid lens unit 140 are matched for better image acquisition, and the image sensor 30 and the lens units are It may mean an operation of adjusting an axis or distance relationship between (110, 130, 140).
  • the image sensor 30 receives light incident from a specific object through at least one of the first lens unit 110, the second lens unit 130, or the liquid lens unit 140. This may be performed through an operation of analyzing the generated image data. For example, active alignment may be performed in the following order.
  • Active alignment for adjusting a relative position between the liquid lens unit 140 inserted in the holder 120 and the image sensor 30 may be performed.
  • the first alignment may be performed while the gripper is holding the middle base 172 and is variable in various positions
  • the second alignment is performed while the gripper is holding the spacer 143 of the liquid lens unit 140. It can be performed while changing to the position.
  • active alignment may be performed in an order different from the above-described order.
  • the holder 120 may include a holder upper region 120U disposed above the liquid lens unit 140 and a holder lower region 120D disposed below the liquid lens unit 140.
  • each of the first and second adhesive members 162 and 164 may couple the upper region 120U of the holder and the lower region 120D of the holder with the liquid lens unit 140.
  • the liquid lens unit 140 may be stably fixed to and coupled to the holder 120.
  • the first lens unit 110A may include, for example, two lenses L1 and L2, but this is exemplary and the number of lenses included in the first lens unit 110A may be at least one or more. have.
  • an exposure lens may be disposed on the image side of the first lens unit 110.
  • the exposure lens may mean an outermost lens among lenses included in the first lens unit 110. That is, since the lens L1 located on the uppermost side of the first lens unit 110A protrudes upward, it can perform the function of the exposure lens.
  • the exposure lens protrudes out of the holder 120 and has a possibility of damaging the surface. If the surface of the exposure lens is damaged, the image quality of the image captured by the optical device 100 may be deteriorated.
  • a cover glass is disposed on the top of the exposed lens, a coating layer is formed, or in order to prevent damage to the surface of the exposed lens, it is more rigid than the lenses of other lens units.
  • An exposed lens can also be implemented with a strong wear-resistant material.
  • each of the lenses L1 and L2 included in the first lens unit 110A may increase downward (eg, in the -z-axis direction), but the embodiment is not limited thereto.
  • the second lens unit 130 may be implemented as a single lens, or may be implemented as a plurality of lenses that are aligned with respect to a central axis to form an optical system.
  • the second lens unit 130 may include three lenses L3, L4, and L5, but this is exemplary and included in the second lens unit 130.
  • the number of lenses may be 2 or less or 4 or more.
  • each of the lenses L3, L4, and L5 included in the second lens unit 130 may increase downward (eg, in the -z-axis direction), but the embodiment is not limited thereto.
  • each of the first lens unit 110 and the second lens unit 130 is a solid lens, and may be implemented with glass or plastic, but the embodiment is the first lens unit 110 And a specific material of each of the second lens units 130 is not limited thereto.
  • the liquid lens unit 140 may include first to fifth regions A1, A2, A3, A4, and A5.
  • the fourth area A4 and the fifth area A5 are located on the outermost side of the optical device 100, and the first area A1, the second area A2, and the third area A3 are It may be disposed between the fourth area A4 and the fifth area A5.
  • the third area A3 may be disposed between the first area A1 and the second area A2.
  • the first area A1 may be disposed between the fourth area A4 and the third area A3, and the second area A2 is between the third area A3 and the fifth area A5. Can be placed.
  • first area A1 and the second area A2 may be areas disposed inside the openings of each side of the holder 120.
  • the third area A3 may be an area between the first area A1 and the second area A2.
  • the fourth area A4 and the fifth area A5 are areas protruding from the opening of the holder 120 and are areas disposed outside the holder 120 at the opening.
  • first adhesive member 162 and the second adhesive member 164 will be described, and the liquid lens unit 140 will be described later.
  • the first adhesive member 162 includes first and second adhesive portions 162-1 and 162-2, and the second adhesive member 164 includes third and fourth adhesive portions 164-1 and 164-2. It may include.
  • Such an adhesive may include an adhesive, an epoxy, or the like.
  • the first bonding portion 162-1 couples the holder 120 and the upper surface 140TS of the fourth area A4 of the liquid lens unit 140, and the third bonding portion 164-1 is the holder 120 ) And the upper surface of the fifth region A5 of the liquid lens unit 140.
  • the upper surface 140TS of each of the fourth region A4 and the fifth region A5 of the liquid lens unit 140 is 1
  • the embodiment is not limited thereto.
  • the upper surface of the liquid lens unit 140 may be the upper surface of the liquid lens 142.
  • the holder 120 may include an upper portion of the holder disposed on the liquid lens unit 140 (or the liquid lens 142) and a lower portion of the holder disposed under the liquid lens unit 140 (or the liquid lens 142). I can.
  • the holder 120 may include a sidewall facing the side of the liquid lens 142 or the liquid lens unit 140.
  • Each of the first and third bonding portions 162-1 and 164-1 may couple the upper region 120U of the holder and the liquid lens unit 140. In this way, the liquid lens unit 140 is fixed to the holder 120 by coupling the holder 120 and the liquid lens unit 140 to each of the first bonding unit 162-1 and the third bonding unit 164-1. Can be.
  • the second bonding portion 162-2 may couple the holder 120 and the lower surface and side surfaces of the fourth area A4 of the liquid lens unit 140.
  • the lower surface of the liquid lens unit 140 is illustrated as the lower surface of the second connection substrate 144 and the side surface of the liquid lens unit 140 is the side surface of the spacer 143, but embodiments are not limited thereto.
  • the lower surface or the side surface of the liquid lens unit 140 means the liquid lens 142 ) May mean the lower side or the side, respectively.
  • the fourth bonding portion 164-2 may couple the holder 120 and the lower surface and side surfaces of the fifth area A5 of the liquid lens unit 140.
  • a lower surface of the liquid lens unit 140 may be a lower surface of the second connection substrate 144, and a side surface of the liquid lens unit 140 may be a side surface of the spacer 143, but embodiments are not limited thereto.
  • the lower surface or the side surface of the liquid lens unit 140 means the lower surface or the side surface of the liquid lens 142 Can mean each.
  • each of the second bonding portion 162-2 and the fourth bonding portion 164-2 may couple the lower region 120D of the holder and the liquid lens unit 140.
  • each of the second bonding portion 162-2 and the fourth bonding portion 164-4 may seal the opening of the holder 120 by coupling the holder 120 and the liquid lens portion 140.
  • the first bonding portion 162-1 and the second bonding portion 164-1 may be connected to each other, and the third bonding portion 164-1 and the fourth bonding portion 164-2 are connected to each other to achieve the above-described sealing. You can do it.
  • the third adhesive member 166 may be disposed to fill a space (or gap) between the upper surface of the holder 120 and the first cover 170. And in some cases, the third adhesive member 166 may be omitted. In this case, the spaced space between the upper surface of the holder 120 and the first cover 170 may be emptied.
  • the embodiment is not limited to the shapes of the first to third adhesive members 162, 164, and 166 described above. That is, if the inside of the holder 120 can be sealed so that foreign substances do not flow into the holder 120 through the opening of the holder 120 from the outside, the first to third adhesive members 162, 164, 166) may have various shapes. For example, in a state in which the first adhesive member 162 and the second adhesive member 164 are disposed to seal the openings of the holder 120, respectively, the third adhesive member 166 is When arranged to fill the spaced space between the covers 170, the third area A3 of the liquid lens unit 140 disposed in the inner space of the holder 120 may be sealed from the outside. Accordingly, in the optical device 100 according to the embodiment, reliability is improved from foreign matter, optical performance may be prevented from deteriorating, and defective rate may be reduced.
  • each of the first to fourth bonding portions 162-1, 164-1, 162-2, and 164-2 may have various shapes. That is, each of the first bonding portion 162-1, the second bonding portion 162-2, the third bonding portion 164-1, and the fourth bonding portion 164-2 corresponds to the shape of each of the openings of the holder 120. It can have a shape.
  • the adhesive may be disposed in the first and second regions A1 and A2 together with the fourth and fifth regions A4 and A5, but is not limited thereto.
  • the above-described first cover 170 may be disposed to surround the holder 120, the liquid lens unit 140, the middle base 172, and the sensor base 178. Accordingly, the first cover 170 may contact the upper shoulder surface 120S of the holder 120. At this time, when the upper surface 162S of each of the first adhesive portion 162-1 and the third adhesive portion 164-1 is higher than the upper shoulder surface 120S of the holder 120, the first cover 170 is a holder Instead of the shoulder-side upper surface 120S of 120, it may contact the upper surface 162S of each of the first adhesive portion 162-1 and the third adhesive portion 164-1. Due to this, the first cover 170 may be unstablely fixed to the holder 120.
  • the upper surface 120S of the holder 120 may be disposed to have a difference by a predetermined height from the upper surface 162S of the first bonding portion 162-1. Likewise, the upper surface 120S of the holder 120 may be higher by a predetermined height than the upper surface 164S of the third bonding portion 164-1.
  • the height of the upper surface 120S of the holder 120 and the height of the upper surface 162S of the first adhesive portion 162-1 may be the same, and the height of the upper surface 120S of the holder 120 is the third adhesive portion 164 It may be the same as the height of the upper surface 164S of -1).
  • the liquid lens unit 140 mentioned above includes the first and second connection substrates 141 and 144. It was decided. However, the liquid lens unit 140 mentioned when describing the characteristics of the first and second bonding members 162 and 164 described above does not include the first and second connection substrates 141 and 144. It may not.
  • the first cover 170 is disposed to surround the holder 120, the liquid lens unit 140, the third adhesive member 166 and the middle base 172, and these (holder 120, liquid lens unit 140, the third adhesive member 166 and the middle base 172 may be protected from external impact.
  • the first cover 170 since the first cover 170 is disposed, a plurality of lenses forming the optical system can be protected from external impact.
  • the first cover 170 may include an upper opening 170H formed on an upper surface. Accordingly, the first lens unit 110 disposed on the holder 120 may be exposed to external light.
  • the middle base 172 may be disposed surrounding the hole of the holder 120. Accordingly, the middle base 172 may include a receiving hole 172H for receiving a hole of the holder 120.
  • the inner diameter of the middle base 172 (that is, the diameter of the receiving hole 172H) may be greater than or equal to the outer diameter of the hole of the holder 120.
  • the shape of the receiving hole 172H of the middle base 172 and the hole of the holder 120 are shown to be circular, respectively, but the embodiment is not limited thereto and may be changed into various shapes.
  • the middle base 172 may be mounted on the main substrate 150 by being spaced apart from the circuit element 151 on the main substrate 150.
  • the receiving hole 172H is located near the center of the middle base 172, at a position corresponding to the position of the image sensor 30 disposed in the optical device 100. Can be formed.
  • the optical device 100 may further include a sensor base 178 and a filter 176, and may further include a circuit cover 154.
  • the filter 176 may filter light that has passed through the first lens unit 110, the liquid lens unit 140, and the second lens unit 130 in a specific wavelength range.
  • the filter 176 may be an infrared (IR) cutoff filter or an ultraviolet (UV) cutoff filter, but the embodiment is not limited thereto.
  • the filter 176 may be disposed on the image sensor 30.
  • the filter 176 may be disposed inside the sensor base 178.
  • the filter 176 may be disposed or mounted in an inner groove or step of the sensor base 178.
  • the sensor base 178 may be disposed under the middle base 172 and attached to the main substrate 150.
  • the sensor base 178 may surround the image sensor 30 and protect the image sensor 30 from external foreign matter or impact.
  • the main board 150 is disposed under the middle base 172, and the image sensor 30 is mounted, seated, contacted, fixed, temporarily fixed, supported, coupled, or accommodated in grooves and circuit elements.
  • a connector (or FPCB) 152 and may include a connector 153.
  • the main substrate 150 may include a holder region in which the holder 120 is disposed and a device region in which the plurality of circuit elements 151 are disposed.
  • the main substrate 150 may be implemented as a Rigid Flexible Printed Circuit Board (RFPCB) including the FPCB 152.
  • the FPCB 152 may be bent as required by the space in which the optical device 100 is mounted.
  • circuit element 151 of the main substrate 150 may constitute a control module that controls the liquid lens unit 140 and the image sensor 30.
  • control modes will be described later.
  • the circuit element 151 may include at least one of a passive element and an active element, and may have various widths and heights.
  • the number of circuit elements 151 may be plural, and may protrude to the outside while having a height higher than the height of the main substrate 150.
  • the plurality of circuit elements 151 may be disposed so as not to overlap in a direction parallel to the holder 120 and the optical axis LX.
  • the plurality of circuit elements 151 may include a power inductor and a gyro sensor, but the embodiment is not limited to a specific type of the circuit element 151.
  • the circuit cover 154 may be disposed to cover the circuit element 151. Accordingly, the circuit cover 154 may protect the circuit element 151 disposed on the main substrate 150 from external impact. In addition, for this purpose, the circuit cover 154 may include an accommodation space for receiving and covering the circuit element 151 in consideration of the shape and position of the circuit element 151 disposed on the main substrate 150. In addition, the circuit cover 154 may function as an electromagnetic shield.
  • the image sensor 30 images the light that has passed through the first lens unit 110, the liquid lens unit 140, and the second lens unit 130 of the lens assembly 110, 120, 130, 140, 162, 164. It can perform the function of converting to data. More specifically, the image sensor 30 may convert light into an analog signal through a pixel array including a plurality of pixels, and generate image data by synthesizing a digital signal corresponding to the analog signal.
  • the liquid lens unit 140 may include a liquid lens (or liquid lens body) 142 and a connection substrate.
  • the liquid lens unit 140 may further include a spacer 143.
  • the connection substrate may include a first connection substrate (or individual electrode connection substrate) 141 and a second connection substrate (or common electrode connection substrate) 144.
  • the first connection substrate 141 electrically connects a plurality of first electrodes (not shown) included in the liquid lens 142 to the main substrate 150 and may be disposed on the liquid lens 142.
  • the first connection board 141 may be implemented as a flexible printed circuit board (FPCB).
  • the first connection substrate 141 may be electrically connected to the electrode pad 150-1 formed on the main substrate 150 through a connection pad 141-1 electrically connected to each of the plurality of first electrodes. .
  • the first connection substrate 141 is bent toward the main substrate 150 in the -z-axis direction, and then connected.
  • the pad 141-1 and the electrode pad 150-1 may be electrically connected by conductive epoxy.
  • the first connection substrate 141 is a conductive first holder surface electrode disposed on the surface of the holder 120 and connected to the conductive first holder surface electrode disposed, formed, or coated on the surface of the holder 120. Although it may be electrically connected to the main substrate 150 through, the embodiment is not limited thereto.
  • the second connection substrate 144 electrically connects a second electrode (not shown) included in the liquid lens 142 to the main substrate 150 and may be disposed under the liquid lens 142.
  • the second connection substrate 144 may be implemented as an FPCB or a single metal substrate (conductive metal plate).
  • the second connection substrate 144 may be electrically connected to an electrode pad formed on the main substrate 150 through a connection pad electrically connected to the second electrode.
  • the second connection substrate 144 may be bent toward the main substrate 150 in the -z-axis direction.
  • the second connection substrate 144 is connected to a conductive surface electrode disposed, formed, or coated on the surface of the holder 120 and is connected to the main substrate 150 through a conductive surface electrode disposed on the surface of the holder 120. ) May be electrically connected, but the embodiment is not limited thereto.
  • the liquid lens 142 may include a cavity (CA).
  • the opening area in the direction in which light is incident from the cavity CA may be narrower than the opening area in the opposite direction.
  • the liquid lens 142 may be disposed so that the inclination direction of the cavity CA is opposite. That is, the opening area in the direction in which light is incident from the cavity CA may be larger than the opening area in the opposite direction.
  • the entire or part of the arrangement of the components included in the liquid lens 142 is changed according to the inclination direction of the liquid lens 142 Alternatively, only the inclination direction of the cavity CA may be changed and the arrangement of the remaining components may not be changed.
  • the spacer 143 is disposed so as to surround the liquid lens 142 to protect the liquid lens 142 from external impact.
  • the spacer 143 may have a shape in which the liquid lens 142 can be mounted, seated, contacted, fixed, temporarily fixed, supported, coupled, or disposed therein.
  • the spacer 143 may include a hollow 143H accommodating the liquid lens 142 and a frame surrounding the hollow 143H formed in the center.
  • the spacer 143 may have a rectangular planar shape (hereinafter, referred to as a' ⁇ ' shape) with a hole in the center, but the embodiment is not limited thereto.
  • the spacer 143 may be disposed between the first connection substrate 141 and the second connection substrate 144, and may be disposed to protrude from the opening of the holder 120.
  • the liquid lens 142 includes a plurality of different types of liquids LQ1 and LQ2, first to third plates 147, 145 and 146, first and second electrodes E1 and E2, and an insulating layer ( 148).
  • the liquid lens 142 may further include an optical layer 190.
  • the plurality of liquids LQ1 and LQ2 are accommodated in the cavity CA, and may include a first liquid LQ1 having conductivity and a second liquid (or insulating liquid) LQ2 having a non-conductive property. Further, the first liquid LQ1 and the second liquid LQ2 are not mixed with each other, and an interface BO may be formed at a portion in contact between the first and second liquids LQ1 and LQ2. In addition, the second liquid LQ2 may be disposed on the first liquid LQ1, but the embodiment is not limited thereto.
  • edges of the first and second liquids LQ2 and LQ1 may have a thickness thinner than that of the center portion.
  • it is not limited thereto.
  • the inner surface of the first plate 147 may form a sidewall i of the cavity CA.
  • the first plate 147 may include upper and lower openings having a predetermined inclined surface. That is, the cavity CA may be a region surrounded by the inclined surface of the first plate 147, the second plate 145 and the third plate 146.
  • the size (or area, or width) O2 of the opening at the bottom may be larger than the size (or area, or width) O1 of the opening at the top.
  • the size of each of the upper opening and the lower opening may be a cross-sectional area in a horizontal direction (eg, an x-axis direction and a y-axis direction).
  • the size of the opening may mean a radius when the cross section of the opening is circular, and may mean a diagonal length when the cross section of the opening is square.
  • the diameter of the aperture may vary depending on an angle of view (FOV) required by the liquid lens 142 or a role that the liquid lens 142 must perform in the optical device 100.
  • FOV angle of view
  • each of the openings may have a shape of a hole having a circular cross section, and the inclined surface may have an inclination.
  • the interface BO may move along the inclined surface of the cavity CA by the driving voltage.
  • the first liquid LQ1 and the second liquid LQ2 may be filled, accommodated, or disposed in the cavity CA.
  • the cavity CA is a portion through which the light that has passed through the first lens unit 110 is transmitted.
  • the first plate 147 since the first plate 147 is located outside the cavity CA, it may be made of a transparent material.
  • the first plate 147 may contain impurities so that light is not easily transmitted.
  • first plate 147 may have electrodes disposed on one side and the other side, respectively.
  • the plurality of first electrodes E1 may be disposed to be spaced apart from the second electrode E2, and may be disposed on one surface (eg, an upper surface, a side surface, and a lower surface) of the first plate 147.
  • the second electrode E2 is disposed on at least a portion of the other surface (eg, the lower surface) of the first plate 147 and may directly contact the first liquid LQ1.
  • first electrode E1 may be n electrodes (hereinafter referred to as “individual electrode”), and the second electrode E2 may be one electrode (hereinafter referred to as “common electrode”).
  • n may be an integer of 2 or more.
  • both ends electrically connected to the liquid lens 142 may mean any one of the plurality of first electrodes E1 and the second electrode E2.
  • a portion of the second electrode E2 disposed on the other surface of the first plate 147 may be exposed to the first liquid LQ1 having conductivity.
  • Each of the first and second electrodes E1 and E2 may be made of a conductive material.
  • the first electrode E1 and the second electrode E2 may be made of metal.
  • the second plate 145 may be disposed on one surface of the first electrode E1. That is, the second plate 145 may be disposed above the first plate 147. Specifically, the second plate 145 may be disposed on the upper surface of the first electrode E1 and the cavity CA.
  • the third plate 146 may be disposed on one surface of the second electrode E2. That is, the third plate 146 may be disposed under the first plate 147. Specifically, the third plate 146 may be disposed under the lower surface of the second electrode E2 and the cavity CA.
  • the second plate 145 and the third plate 146 may be disposed to face each other with the first plate 147 interposed therebetween. Also, at least one of the second plate 145 and the third plate 146 may be omitted.
  • At least one of the second or third plates 145 and 146 may have a rectangular planar shape.
  • the third plate 146 may abut and adhere to the first plate 147 in a bonding area around an edge.
  • the second plate 145 and the third plate 146 are regions through which light passes, and may be made of a light-transmitting material.
  • each of the second and third plates 145 and 146 may be made of glass, and may be made of the same material for convenience of a process.
  • the edges of each of the second and third plates 145 and 146 may have a rectangular shape, but are not limited thereto.
  • the second plate 145 may allow light incident from the first lens unit 110 to travel into the cavity CA of the first plate 145.
  • the third plate 146 may allow light that has passed through the cavity CA of the first plate 145 to proceed to the second lens unit 130.
  • the third plate 146 may directly contact the first liquid LQ1.
  • the third plate 146 may have a diameter larger than the diameter of the wider opening among the upper opening or the lower opening of the first plate 147.
  • the third plate 146 may include a peripheral region spaced apart from the first plate 147.
  • the actual effective lens area of the liquid lens 142 may be narrower than a diameter (eg, O2) of a wider opening among the four or lower openings of the first plate 147. That is, when a radius of a narrow range with respect to the center of the liquid lens 142 is used as a path for transmitting light (light), the diameter O3 of the center region of the third plate 146 is the first plate ( Among the third and fourth openings of 147), the diameter of the wider opening may be smaller than the diameter (eg, O2).
  • the insulating layer 148 may be disposed in the upper region of the cavity CA while covering a part of the lower surface of the second plate 145. That is, the insulating layer 148 may be disposed between the second liquid LQ2 and the second plate 145.
  • the insulating layer 148 may be disposed while covering a part of the first electrode E1 forming a sidewall of the cavity CA. Further, the insulating layer 148 may be disposed on the lower surface of the first plate 147 to cover a part of the first electrode E1 and the first plate 147 and the second electrode E2. Accordingly, contact between the first electrode E1 and the first liquid LQ1 and contact between the first electrode E1 and the second liquid LQ2 may be blocked by the insulating layer 148.
  • the insulating layer 148 covers one of the first electrode E1 and the second electrode E2 (for example, the first electrode E1), and the other electrode (for example, the second electrode E1). A part of (E2)) may be exposed so that electric energy may be applied to the first liquid LQ1 having conductivity.
  • the optical layer 190 may be disposed on at least one surface of the second plate 145 or the third plate 146.
  • the optical layer 190 may be disposed on at least one of the top or bottom of the second plate 145, may be disposed on at least one of the top or the bottom of the third plate 146, or the second And at least one of the top or bottom of each of the third plates 145 and 146.
  • the liquid lens 142 and the optical layer 190 are shown separately from each other, but the optical layer 190 may be a component of the liquid lens 142. Further, although the optical layer 190 is shown to be a single layer, this is only to indicate the existence of the optical layer 190. That is, the optical layer 190 may be a single layer or multiple layers.
  • the optical layer 190 may include at least one of an ultraviolet blocking layer, an antireflection layer, and an infrared blocking layer.
  • the optical layer 190 may be disposed to overlap the image sensor 30 and the optical axis LX (ie, z-axis) direction or in a direction parallel to the optical axis direction.
  • the optical layer 190 may be disposed in the third area A3 of the liquid lens unit 140.
  • the UV blocking layer may block ultraviolet rays, especially light in the UV-A region.
  • the anti-reflection layer may play a role of preventing light from being reflected from the second plate 1450 or the third plate 146, and decreases the light transmittance due to Fresnel loss in the liquid lens 142 May be reduced and the night visibility of the liquid lens 142 may be prevented from deteriorating.
  • the antireflection layer may be disposed on the inclined surface and the lower surface of the insulating layer 148, and the antireflection layer is It is possible to prevent the quality of light reflected and transmitted to the image sensor 30 from deteriorating.
  • the IR cut-off layer may block light in the infrared region.
  • the infrared ray blocking layer prevents infrared rays from entering the liquid lens 142 from the outside to remove thermal spots in the image, and reduces light reflection from the surface of the liquid lens 142 to prevent deterioration of night visibility. .
  • At least one of an ultraviolet ray blocking layer, an antireflection layer, and an infrared ray blocking layer may be disposed on at least one of the light-incident portion or the light-exit portion of the optical device 100 according to the embodiment.
  • the optical layer 190 may have a coated form or a film form.
  • the antireflection layer of the optical layer 190 may be formed by coating at a low temperature by a spray method or the like.
  • 5A to 5E are diagrams for explaining a driving method of a liquid lens unit.
  • the voltage is applied between the first electrode and the second electrode.
  • the corresponding voltage may be the same as the driving voltage to be described later.
  • a first voltage V1 is applied to the liquid lens unit 140, so that the interface BO1 of the liquid lens may be convex in the traveling direction of light. Accordingly, it is exemplified that the liquid lens unit operates like a concave lens.
  • a second voltage V2 greater than the first voltage V1 is applied to the liquid lens unit 140, so that the interface BO2 of the liquid lens may be perpendicular to a traveling direction of light. Accordingly, it is exemplified that the liquid lens unit does not change the traveling direction of light.
  • FIG. 5A a first voltage V1 is applied to the liquid lens unit 140, so that the interface BO1 of the liquid lens may be convex in the traveling direction of light. Accordingly, it is exemplified that the liquid lens unit operates like a concave lens.
  • a second voltage V2 greater than the first voltage V1 is applied to the liquid lens unit 140, so that the interface BO2 of the liquid lens may be perpendicular to a traveling direction of light. Accordingly, it is
  • a third voltage V3 greater than the second voltage V2 is applied to the liquid lens unit 140, so that the interface BO3 of the liquid lens may be convex in a direction opposite to the propagation direction of light.
  • the liquid lens unit operates like a convex lens.
  • the interfaces BO1, BO2, and BO3 of the liquid lens in the liquid lens unit 140 may all have different curvatures, respectively.
  • the curvature or diopter of the liquid lens of the liquid lens unit changes according to the level of the applied voltage, but is not limited thereto, and the pulse width of the applied pulse Depending on, it is also possible to change the curvature or diopter of the liquid lens.
  • FIG. 5D illustrates that the liquid lens in the liquid lens unit 140 operates like a convex lens as it has the same interface BO3 as in FIG. 5C. Accordingly, according to FIG. 5D, the incident light LPa is concentrated and the corresponding output light LPb is output.
  • 5E shows that as the liquid lens in the liquid lens unit 140 has an asymmetric curved surface (for example, the interface is convex in a direction opposite to the direction of light traveling from the top), the traveling direction of light is changed to one side (for example, the upper side). Illustrate that. That is, according to FIG. 5D, the incident light LPa is concentrated upward, and the corresponding output light LPc is output.
  • FIG. 6 is a diagram for explaining a liquid lens unit whose interface is adjusted in response to a driving voltage.
  • FIG. 6(a) illustrates a liquid lens unit
  • FIG. 6(b) illustrates an equivalent circuit of the liquid lens unit.
  • the lens 28 whose focal length is adjusted in response to the driving voltage has the same angular distance through individual terminals L1, L2, L3, and L4 arranged in four different directions.
  • Voltage can be applied.
  • Individual terminals may be arranged with the same angular distance based on the central axis of the liquid lens, and may include four individual terminals. The four individual terminals can be arranged at each of the four corners of the liquid lens.
  • the applied voltage is deformed by the driving voltage formed by the interaction with the voltage applied to the common terminal (C0), which will be described later. I can.
  • one side of the liquid lens 142 receives an operating voltage from different individual terminals L1, L2, L3, and L4, and the other side is electrically connected to the common terminal C0. Can be connected.
  • the common terminal C0 and the plurality of capacitors 149 may be connected.
  • the plurality of capacitors 149 included in the equivalent circuit may have a small capacitance of about tens to 200 picofarads (pF) or less.
  • the terminal of the liquid lens may be referred to as an electrode sector or a sub electrode.
  • FIG. 7A to 7C are views showing the structure of a liquid lens unit
  • a common electrode (corresponding to a second electrode, hereinafter, a second electrode, mixed with a common terminal, E2) may be disposed on one side of the liquid lens unit 140.
  • the common electrode E2 may be disposed in a tube shape, and the liquid LQ may be disposed in a lower region of the common electrode E2, in particular, in a region corresponding to the hollow.
  • an insulating layer may be disposed between the common electrode E2 and the liquid to insulate the common electrode E2.
  • a plurality of first electrodes (hereinafter corresponding to individual electrodes and mixed with the first electrode and individual terminals, E11 to E14) are disposed under the common electrode, in particular, under the liquid LQ. I can.
  • the plurality of first electrodes E11 to E14 may be arranged to surround the liquid LQ.
  • a plurality of insulating layers 148a to 148d for insulation may be disposed between the plurality of first electrodes E11 to E14 and the liquid LQ, respectively.
  • the liquid lens unit 140 includes a plurality of first electrodes E11, E12, E13, and E14 on the first connection substrate 141 and the first electrodes E11, E12, E13, and E14.
  • a second electrode E and a second connection substrate 144 on the second electrode E may be provided, which are spaced apart from the liquid LQ2 and the first electrodes E11, E12, E13, and E14.
  • the above-described contents may be applied.
  • the second electrode E2 may have a hollow and may be formed in a tube shape.
  • the second liquid LQ2 and the first liquid LQ1 may be disposed in the hollow region.
  • the second liquid LQ2 may be arranged in a circular shape, as shown in FIGS. 7A to 7B.
  • a size of the hollow region may increase from a lower portion to an upper portion thereof, and accordingly, the first electrodes E11, E12, E13, and E14 may decrease in size from the bottom to the top.
  • the 1-1 electrode E11 and the 1-2 electrode E12 among the first electrodes E11, E12, E13, and E14 are formed to be inclined, and the size decreases from the bottom to the top. do.
  • the first electrodes E11, E12, E13, and E14 may be positioned above the second electrode E2.
  • the first electrodes E11, E12, E13, and E14 may be positioned under the second electrode E2, but the present invention is not limited thereto.
  • first electrodes E11, E12, E13, and E14 are not limited to the above-described number, and may be formed in various numbers.
  • the electric signal in the form of a pulse is applied to the second electrode E2
  • the electric signal in the form of a pulse is applied to the first-first electrode E11 and the first-second electrode E12.
  • a potential difference occurs between the second electrode E2, the 1-1 electrode E11, and the 1-2 electrode E12, and accordingly, the shape of the first liquid LQ1 having electrical conductivity is changed.
  • the shape of the second liquid LQ2 inside the second liquid LQ2 may change.
  • the curvature of the second liquid (LQ2) that changes according to the electric signals applied to the first electrode (E11, E12, E13, E14) and the second electrode (E2), respectively, is easily and quickly detected. It suggests a way to do it.
  • the sensor unit in the present invention is the size or area of the area of the boundary area Ac0 between the first insulator 550a on the first electrode 540a in the liquid lens unit 140 and the first liquid LQ1. Can detect the change of.
  • AM0 is illustrated as the area of the boundary area Ac0.
  • the area of the boundary region Ac0 contacting the first liquid LQ1 among the inclined portions of the first insulating layer 148a on the 1-1 electrode E11 is AM0.
  • the second liquid LQ2 is not concave or convex, but is parallel to the first connection substrate 141 and the like. The curvature at this time can be defined as 0, for example.
  • the capacitance C is Can be formed.
  • may represent the dielectric constant of the dielectric 550a
  • A represents the area of the boundary region Ac0
  • d represents the thickness of the first dielectric 550a.
  • This capacitance C may be the capacitance of the capacitor 149 shown in FIG. 6. Accordingly, since the above-described sensor unit senses the capacitance of the capacitor 149, the capacitor 149 may be included.
  • the area of the boundary area Ac0 may have a great influence on the capacitance C. That is, as the area of the boundary region Ac0 increases, the capacitance C formed in the boundary region Ac0 may increase.
  • the curvature of the second liquid LQ2 is varied, the area of the boundary area Ac0 is changed, so the area of the boundary area Ac0 is sensed using a sensor unit or the capacitance formed in the boundary area Ac0 (C) can be detected.
  • the capacitance of FIG. 7C may be defined as CAc0.
  • 8A to 8E are diagrams for explaining variable lens curvature of a liquid lens unit.
  • FIG. 8A to 8E show that a first curvature Boa is formed in the second liquid LQ2 according to the application of electric signals to the first electrodes E11, E12, E13, E14 and the second electrode E2, respectively. Illustrate that.
  • AMa (>AM0) is illustrated as the area of the boundary area Aaa.
  • the area of the boundary region Aaa contacting the electrically conductive aqueous solution 595 among the inclined portions of the first insulating layer 148a on the 1-1 electrode E11 is AMa.
  • the capacitance of the boundary area Aaa becomes larger.
  • the capacitance of FIG. 8A may be defined as CAaa, and has a larger value than CAc0, which is the capacitance of FIG. 7C.
  • the first curvature Boa at this time may be defined as having a value of positive polarity. For example, it may be defined that the first curvature Boa has a level of +2.
  • FIG. 8B illustrates that a second curvature Rib is formed in the second liquid LQ2 according to the application of an electric signal to the first electrode E11, E12, E13, and E14, respectively, and to the second electrode E2. do.
  • AMb (>AMa) is illustrated as the area of the boundary area Aba.
  • the area of the boundary area Aba contacting the first liquid LQ1 among the inclined portions of the first insulating layer 148a on the 1-1 electrode E11 is AMb.
  • the capacitance of the boundary area Aba becomes larger.
  • the capacitance of FIG. 7B may be defined as CAba, and has a larger value than CAaa, which is the capacitance of FIG. 7A.
  • the second curvature Bob may be defined as having a positive polarity value larger than the first curvature Boa.
  • the second curvature Bob may be defined that the second curvature Bob has a level of +4.
  • the liquid lens unit 140 operates as a convex lens, and accordingly, the output light LP1a in which the incident light LP1 is concentrated is output.
  • FIG. 8C shows that a third curvature Boc is formed in the second liquid LQ2 according to the application of electric signals to the first electrodes E11, E12, E13, and E14, respectively, and the second electrode E2. Illustrate that.
  • AMa is illustrated as the area of the left boundary area Aca
  • AMb (>AMa) is illustrated as the area of the right boundary area Acb.
  • the area of the boundary region Aca contacting the first liquid LQ1 among the inclined portions of the first insulating layer 148a on the first-first electrode E11 is AMa, and is formed on the second electrode 540b. It is exemplified that the area of the boundary region Acb in contact with the first liquid LQ1 among the inclined portions of the second insulator 550b is AMb.
  • the capacitance of the left border area Aca may be CAaa
  • the capacitance of the right border area Acb may be CAba.
  • the third curvature Boc at this time may be defined as having a positive value.
  • the liquid lens unit 140 operates as a convex lens, and accordingly, the output light LP1b in which the incident light LP1 is more concentrated toward one side may be output.
  • FIG. 8D shows that a fourth curvature Bod is formed in the second liquid LQ2 according to the application of electric signals to the first electrodes E11, E12, E13, and E14, respectively, and the second electrode E2. Illustrate that.
  • AMd( ⁇ AM0) is illustrated as the area of the boundary area Ada.
  • the area of the boundary area Ada contacting the first liquid LQ1 among the inclined portions of the first insulating layer 148a on the 1-1 electrode E11 is AMd.
  • Equation 1 since the area of the boundary area Ada in FIG. 8D is smaller than that of FIG. 8C, the capacitance of the boundary area Ada becomes smaller. Meanwhile, the capacitance of FIG. 8D may be defined as CAda, and has a smaller value than the capacitance CAc0 of FIG. 6C.
  • the fourth curvature Bod may be defined as having a negative polarity value.
  • the fourth curvature Bod has a level of -2.
  • FIG. 8E shows that a fifth curvature Boe is formed in the second liquid LQ2 according to the application of electric signals to the first electrodes E11, E12, E13, and E14, respectively, and the second electrode E2. Illustrate that.
  • AMe( ⁇ AMd) is illustrated as the area of the boundary area Aea.
  • the area of the boundary area Aea contacting the first liquid LQ1 among the inclined portions of the first insulating layer 148a on the 1-1 electrode E11 is AMe.
  • the capacitance of the boundary area Aea in FIG. 8E since the area of the boundary area Aea in FIG. 8E is smaller than that of FIG. 8D, the capacitance of the boundary area Aea becomes smaller. Meanwhile, the capacitance of FIG. 8E may be defined as CAea, and has a smaller value than the capacitance CAda of FIG. 8D.
  • the fifth curvature Boe may be defined as having a negative polarity value. For example, it may be defined that the fifth curvature Boe has a -4 level.
  • the liquid lens unit 140 operates as a concave lens, and accordingly, the output light LP1c from which the incident light LP1 is emitted may be output.
  • FIG. 9 is a block diagram of an optical device according to an embodiment
  • FIG. 10 is a modified example of FIG. 9, and
  • FIGS. 11 to 13 are views referenced for descriptions of FIGS. 9 and 10.
  • the term' ⁇ unit' used in this embodiment refers to software or hardware components such as field-programmable gate array (FPGA) or ASIC, and' ⁇ unit' performs certain roles.
  • The' ⁇ unit' may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors.
  • ' ⁇ unit' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , Subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, database, data structures, tables, arrays, and variables.
  • components and functions provided in the' ⁇ units' may be combined into a smaller number of elements and' ⁇ units', or may be further separated into additional elements and' ⁇ units'.
  • components and' ⁇ units' may be implemented to play one or more CPUs in a device or a security multimedia card.
  • the optical device 200 may include a control circuit 210, a lens assembly 220 and a gyro sensor 230, a memory unit 290, and a temperature sensor 299.
  • the control circuit 210 corresponds to the control circuit 20 described above
  • the lens assembly 220 corresponds to the lens assembly 10 described above, that is, the lens assemblies 110, 120, 130, 140, 162, 164. can do.
  • the optical device 200 may further include an image sensor 30 and an image processor 31.
  • the gyro sensor 230 may detect the angular velocity of the liquid lens 280 or the optical device, and may also be located in the controller 240. That is, it is not limited to this position.
  • the gyro sensor 230 may sense an angular velocity (or angle) of movement in two directions, for example, a yaw axis and a pitch axis in order to compensate for hand shake of the optical device in the vertical and horizontal directions.
  • the gyro sensor 230 may generate a motion signal having the sensed angular velocity information and provide it to the voltage controller 232.
  • the image sensor 30 may convert light that has passed through the liquid lens 280 into an electric signal.
  • the image processor 31 may perform image processing based on an electrical signal from the image sensor 30. It should be understood that the image processor 31 may be located in the control circuit 210 or in an optical device or an external system (eg, a terminal) according to the embodiment.
  • the external system 40 may be located outside the optical device.
  • the external system 40 may be a terminal, and may provide an electrical signal to the optical device so that the interface of the liquid lens 280 in the optical device has a desired diopter.
  • the external system 40 may provide an electrical signal for focus setting to an optical device (eg, the control circuit 210) through the image processor 31.
  • the external system 40 may transmit a digital coded focus signal to the controller 240.
  • the external system 40 may be located on an optical device or a terminal, and may additionally include a control unit, a control device, a control unit, and a control unit.
  • the external system 40 may be connected to the optical device through the aforementioned I2C (Inter-Integrated Circuit) communication method.
  • I2C Inter-Integrated Circuit
  • the present invention is not limited thereto and may be connected through a communication method other than I2C.
  • the focal length or diopter may be varied as the curvature of the liquid or the plate is varied depending on the temperature. Therefore, the focal length or diopter of the lens assembly may also be changed.
  • the temperature sensor 299 may detect the temperature of the liquid lens 280 or the temperature of the lens assembly. Sensing temperature includes sensing directly or indirectly.
  • the temperature sensor 299 may include a thermistor or the like.
  • a thermistor for example, an NTC inversely proportional to the sensed temperature or a PTC in proportion to the sensed temperature may be provided.
  • the temperature sensor 299 may transmit temperature information including the sensed temperature to the control circuit 210 or the controller 240.
  • the control circuit 210 may output a driving signal in consideration of an interface change of the liquid lens 280 according to the temperature. A detailed description of this will be described later.
  • the temperature information refers to temperature and will be mixed and described below.
  • the control circuit 210 may include the controller 240, the lens driving unit 250, and the power supply unit 260, and may control the operation of the lens assembly 220 including the liquid lens 280.
  • the controller 240 may have a configuration for performing an AF function and an OIS function.
  • the controller 240 may control the liquid lens 280 included in the lens assembly 220 using a user's request or a detection result (eg, a detection signal of the gyro sensor 230 ).
  • the liquid lens 280 may correspond to the liquid lens unit described above.
  • the controller 240 may calculate a driving voltage corresponding to the shape that the liquid lens 280 should have.
  • the controller 240 is an optical device or information for the AF function from the interior of the optical device 200 (eg, the image sensor 30) or an external system (eg, including a distance sensor or an application processor, 40). (In other words, distance information from an object) may be received, and a driving voltage corresponding to a shape that the liquid lens 280 should have may be calculated according to a focal length for focusing on the object through the distance information.
  • the controller 240 obtains a driving voltage code corresponding to the calculated driving voltage with reference to the driving voltage table, and obtains the obtained driving voltage code into the lens assembly 220 (e.g., a driving voltage providing unit (not shown)). ) Can be printed.
  • the controller 240 may have a driving voltage table in which driving voltage codes are mapped to generate a driving voltage.
  • the controller 240 may further include a driving voltage unit (not shown) that generates a driving voltage, and the driving voltage unit may be located in the liquid lens module or in the optical device.
  • information for the AF function is described as'focus information'
  • a driving voltage code corresponding to the driving voltage to which the focus information is applied is described as a'focus signal'. That is, the driving voltage code corresponding to the driving voltage in which the focus information is reflected in the controller 240 is a focus signal, and the driving voltage code corresponding to the driving voltage in which both the focus information and the temperature information are reflected is a driving signal.
  • the lens driver may be driven by a focus signal or a driving signal, but the focus signal is a signal in which the interface change of the liquid lens according to temperature is not compensated, but the driving signal is a signal in which the interface change of the liquid lens according to temperature is compensated.
  • the liquid lens may perform an accurate AF function even if the temperature is variable because the interface change occurs due to the focus signal and the driving signal reflecting the temperature information.
  • an analog driving voltage corresponding to the driving voltage code may be generated and provided to the lens assembly 220. Accordingly, the position of the driving voltage providing unit may be changed.
  • the controller 240 may output a driving signal, which is a voltage code in a data form (eg, digital), and may be applied to the liquid lens 280 in an analog form through PWM control. Accordingly, the controller 240 may finally control the curvature of the liquid lens 280.
  • a driving signal which is a voltage code in a data form (eg, digital)
  • a data form eg, digital
  • the controller 240 may adjust the interface by applying a driving signal to the liquid lens 280 using focus information received through image processing and temperature information from a temperature sensor.
  • the lens driving unit 250 may selectively provide a voltage level supplied from the power supply unit 260 to be described later to each terminal of the liquid lens 280.
  • the lens driving unit 250 may include a switching unit.
  • the switching unit may be formed of a circuit called H Bridge.
  • the high voltage output from the voltage booster may be applied as a power voltage of the switching unit. Accordingly, the switching unit may selectively supply the applied power voltage and ground voltage to both ends of the liquid lens 280.
  • the liquid lens 280 includes four first electrodes including four electrode sectors, a first connection substrate, one second electrode, and a second connection substrate for driving. Both ends of the liquid lens 280 may mean any one of a plurality of first electrodes and a second electrode. In addition, both ends of the liquid lens 280 may mean any one of the four electrode sectors of the four first electrodes and one electrode sector of the second electrode.
  • a voltage in the form of a pulse having a preset width may be applied to each electrode sector of the liquid lens 280.
  • the voltage may be applied to the liquid lens 280 as a difference between the voltage applied to each of the first electrode and the second electrode.
  • the power supply unit 260 may apply separate power to the lens driving unit 250.
  • the power supply 260 may include a voltage booster that increases the voltage level.
  • the lens driver 250 described above may selectively output an increased voltage to each terminal of the liquid lens 280.
  • the controller 240 controls the phase of the driving signal provided to the lens driving unit 250, that is, the pulse voltage applied to the common electrode and the individual electrodes, so that the lens driving unit 250 drives the corresponding analog type. It can generate voltage. In other words, the controller 240 may control a voltage applied to each of the first electrode and the second electrode.
  • the driving signal will be described based on the shape of the voltage.
  • control circuit 210 may further include a connector (not shown) that performs a communication or interface function of the control circuit 210.
  • a connector for communication between the control circuit 210 using the I2C (Inter-Integrated Circuit) communication method and the lens assembly 220 using the MIPI (Mobile Industry Processor Interface) communication method, the connector performs communication protocol conversion. can do.
  • the connector may receive power from an external device (eg, a battery), and may supply power necessary for the operation of the controller 240 and the lens assembly 220.
  • the connector may correspond to the connector 153 shown in FIG. 2.
  • the memory unit 290 may be located inside the control circuit 210 or separated from the control circuit 210.
  • the memory unit 290 may store temperature information according to each diopter, delay information, delay information that is a time difference between a plurality of pulses (voltage signals) applied to the liquid lens 280, gain information, and offset information.
  • the memory unit 290 stores temperature information according to a specific diopter (eg, 0 diopter), delay information, delay information, which is a time difference between a plurality of pulses applied to the liquid lens 280, gain information, and offset information. I can.
  • control circuit 210 may output a changed voltage signal from the lens driver 250 to the liquid lens 280 based on the sensed temperature in order to form a target curvature.
  • control circuit 210 may vary a delay, which is a time difference between a plurality of pulses applied to the liquid lens 280 according to the sensed temperature.
  • the control circuit 210 since the control circuit 210 outputs a driving signal reflecting the sensed temperature, the driving signal may be different according to the temperature even if the same diopter is provided.
  • the delay which is a time difference between the plurality of pulses applied to the liquid lens 280, may vary according to different driving signals. Accordingly, it is possible to quickly and accurately change the curvature of the lens using the sensed temperature information.
  • the control circuit 210 changes a delay, which is a time difference between a plurality of pulses applied to the liquid lens 280, according to the information stored in the memory unit 290 and the sensed temperature, and uses the sensed temperature information to quickly and accurately The curvature of the lens can be varied.
  • FIG. 10 a timing diagram for a common electrode E2, an individual electrode E1, and a switching element SWL in an optical device is illustrated.
  • the switching element SWL is turned on. And for the accuracy and stability of detection by the temperature sensor 299, in the present invention, any one of the common electrode E2 and the plurality of individual electrodes E1 in the liquid lens 280 during the period Dt1 between the time points T1 and T3. It will be described that a pulse is applied to one.
  • a pulse having a pulse width of Dt2 may be applied to the common electrode E2 at a time point T2. Accordingly, after the time point T2, a curvature may be formed in the liquid lens 280.
  • a pulse having a pulse width of Dt3 may be applied to the individual electrode E1 at a time point T4. That is, a high level voltage may be applied to the common electrode E2 at a time point T2, and a high level voltage may be applied to an individual electrode E1 at a time T4.
  • the curvature in the liquid lens 280 may be varied by the time difference DFF1 between the pulse applied to the common electrode E2 and the pulse applied to the individual electrode E1.
  • the size of the area of the boundary region may increase.
  • the curvature can be large.
  • the curvature in the liquid lens 280 may be maintained or changed by varying the time difference DFF2 of the pulse after the time difference DFF1 of the pulse.
  • 11 to 13 are diagrams for explaining a relationship between a focus signal, a temperature, a diopter, and a delay for explaining the operation of the controller according to the embodiment,
  • the time difference (or delay) of the pulse may increase accordingly.
  • the curvature of the liquid lens may change as described above.
  • the capacitance of the liquid lens can be increased.
  • the delay may increase.
  • the optical device may calculate a diopter corresponding to the focus signal from the focus signal received from an external system.
  • the diopter corresponding to the received focus signal will be described later as a set diopter.
  • the optical device may calculate a diopter (here, a set diopter) required by an external system from the focus signal.
  • the driving signal may be calculated by reflecting the temperature information sensed from the temperature sensor in order to accurately provide the desired diopter (set diopter). That is, the liquid lens can provide the setting diopter required by the external system by the driving signal reflecting the temperature information.
  • the focus signal may correspond to a driving voltage (or a driving voltage code corresponding thereto) like the driving signal.
  • driving signals for diopters for each temperature are shown.
  • the drive signal can change according to the diopter change.
  • the driving signal may have a different value for each temperature for the same diopter Dsm.
  • the driving signal may correspond to different driving voltage codes for each temperature for the same diopter.
  • the driving signal is DS1 at 25°C and the driving signal is DS2 at 45°C for diopters (Dsm).
  • Dsm diopters
  • the controller may vary a delay, which is a time difference between a driving signal or a plurality of pulses applied to the liquid lens, so as to output a desired setting diopter (here, Dsm) in response to the sensed temperature.
  • a delay which is a time difference between a driving signal or a plurality of pulses applied to the liquid lens, so as to output a desired setting diopter (here, Dsm) in response to the sensed temperature.
  • the controller may increase or decrease the driving signal according to the sensed temperature and the reference temperature for a set diopter.
  • the controller may increase the delay applied to the liquid lens when the sensed temperature is 45°C and the reference temperature for the set diopter is 25°C. Conversely, when the sensed temperature is 25° C. and the reference temperature for the set diopter is 45° C., the delay applied to the liquid lens may be reduced. With this configuration, even if the temperature varies, the desired diopter can be accurately maintained.
  • the optical device does not measure the interface change of the liquid lens as the capacitance, so that inaccuracy in the capacitance measurement due to temperature change or the like can be easily removed.
  • the reference temperature may be a temperature corresponding to the focus signal.
  • the optical device and the external system may mutually set 20°C as a reference temperature.
  • the memory unit may store driving signals (driving voltage codes, RD1 to RDN) corresponding to diopters (0 diopters to N diopters) for the reference temperature of 20°C. Accordingly, when the driving voltage code of the focus signal is applied as RD1, the controller may calculate that the set diopter is 0 diopters, and when the driving voltage code of the focus signal is applied as RDN, the set diopter may be calculated as N diopters.
  • the optical device has a total temperature and a total temperature only by a function of the driving voltage code (hereinafter, described as a driving signal) for each temperature of two diopters (first and second diopters to be described later).
  • the driving function can be easily calculated for diopters. With this configuration, it is possible to easily secure an operation speed and a data space by not storing the entire focus signal for each temperature. A detailed description of this driving will be described in detail with reference to FIGS. 14 to 19.
  • the optical device may decrease the driving signal corresponding to the temperature in order to maintain the setting diopter corresponding to the focus signal.
  • FIG. 14 is a diagram illustrating calculation of a driving signal graph according to temperature in a controller according to an embodiment
  • FIG. 15 is a diagram illustrating a relationship between a second section and a third section in FIG. 14.
  • the memory unit may store a first driving function consisting of a plurality of first driving signals for each temperature of a first diopter and a second driving function consisting of a plurality of second driving signals for each temperature of a second diopter.
  • the first diopter and the second diopter may be a minimum diopter and a maximum diopter that a liquid lens can provide.
  • the memory unit may have a first driving function and a second driving function having different functions according to a predetermined temperature range.
  • the first driving function may be composed of a first function within a first temperature region and a second function within a second temperature region.
  • the controller may apply a different function according to the sensed temperature received from the temperature sensor in a specific driving function (eg, a driving function for the first diopter). Also, all of the functions in each of these temperature regions may be stored in the memory unit.
  • the controller may use the first function when the sensed temperature is within the first temperature range, and control the driving signal using a second function different from the first function when the sensed temperature is within the second temperature range.
  • the controller may calculate a set diopter from the focus signal, and may calculate a driving signal providing the set diopter using the first driving function, the second driving function, and temperature information. Accordingly, the liquid lens may have a set diopter by applying a driving voltage corresponding to the calculated driving signal.
  • the first driving function and the second driving function may include a first region, a second region, and the like calculated by an arbitrary first point and a second point.
  • the description is based on the first driving function, and the description of the first driving function may be equally applied to the second driving function.
  • the first driving function FF1 may include a plurality of driving signals (mixed with the first driving signal) for each temperature for a predetermined diopter (hereinafter, referred to as first diopter).
  • the first driving function FF1 may include a driving signal for each temperature for a first diopter.
  • the first driving function FF1 may include different driving signals at 1.1° C., 1.2° C., and 1.3° C. that cause the liquid lens to have a first diopter.
  • the first driving function FF1 may have a relationship or configuration described below.
  • the first driving function FF1 may be formed as a relational expression with respect to a specific diopter, that is, a temperature for the first diopter.
  • the first driving function FF1 may include a first region R1 between an arbitrary first point RP1 and an arbitrary second point RP2.
  • the first point RP1 and the second point RP2 may be coordinates of a temperature and a driving signal corresponding to the temperature. That is, the first point RP1 may be composed of the temperature t1 and the driving signal c1, and the second point RP2 may be composed of the temperature t2 and the driving signal c2.
  • the first region R1 may be formed as a linear function between the first point RP1 and the second point RP2.
  • the function of the driving signal with respect to temperature in the first region R1 may be the above-described first function.
  • a first function may be applied in the first region R1, and the first function may have a first slope that is a slope of a linear function.
  • Such a first region may be used interchangeably as a first temperature region, and a region to be described later is divided based on a temperature.
  • the temperature may be -20°C to 70°C. This can be set to a temperature range within which the liquid temperature operates within the optical device.
  • the first temperature range may be 20°C to 70°C.
  • the controller may control the driving signal by applying the first function when the sensed temperature is between 20° C. and 70° C.
  • the first point RP1 has a higher temperature than the second point RP2.
  • the driving signal may be small.
  • the first driving function FF1 further includes a third region R3 spaced apart from the first region R1 and a second region R2 disposed between the third region R3 and the first region R1. can do.
  • the second region R2 and the third region R3 may be calculated by the third point RP3.
  • the controller may control the driving signal by applying the second function. That is, the controller may control the driving signal by determining that the second region R2 is the second temperature region and applying the temperature to the second function.
  • the second function may have a higher order than the above-described first function. In other words, the first function may have a lower order than the second function.
  • the second function may be a quadratic function, and the first function may be a linear function. Accordingly, the second function may have a second slope that changes according to temperature. For example, the second slope may decrease from the second point RP2 to the third point RP3.
  • the controller according to the embodiment compensates for a change in the amount of change in curvature according to temperature, thereby performing more accurate temperature compensation.
  • the optical device uses a first driving function and a second driving function that reflect the characteristics of a liquid lens, it is possible to calculate a driving signal to have an accurate diopter or focal length as well as to provide a fast processing speed.
  • the second slope may be smaller than the first slope. That is, since the first temperature region represents the most used temperature of the actual optical device, it can be made more precisely with respect to the temperature change.
  • the second function in the second region may be a quadratic function using the first point RP1, the second point RP2, and the third point RP3. That is, the relationship between the temperature and the driving function in the second region R2 may be formed as a quadratic function.
  • the second region R2 is located between the second point RP2 and the third point RP3. can do.
  • the third region R3 may be a region having a lower temperature than the third point RP3.
  • the temperature of the first region R1 may be greater than that of the second region R2 and the third region R3.
  • the temperature of the second region R2 may be greater than the temperature of the third region R3.
  • the temperature of the first temperature region may be higher than that of the second temperature region.
  • the driving signal in the first temperature region may be smaller than the driving signal in the second temperature region.
  • the minimum value of the driving signal in the first temperature region may be greater than the maximum value of the driving signal in the second temperature region.
  • the third point RP3 may be a critical point of the first driving function or a critical point of the second driving function.
  • the temperature at the third point RP3 may be a temperature when the maximum or minimum driving signal calculated by the second function is used. That is, the temperature of the third point RP2 may be a boundary point between the second temperature region and the third temperature region.
  • the increase or decrease in the size of the driving signal according to the temperature may be changed according to the setting. In the present specification, it should be understood on the basis that the voltage applied to the electrode of the liquid lens increases as the driving signal increases.
  • the third point RP3 may be a point where the sign of the slope changes in a region lower than the temperature of the second point RP2.
  • the third point RP3 may be a point at which the slope changes from negative to positive.
  • the third point RP3 may be located below 0°C. Further, below the third point RP3, a change in the curvature of the liquid lens according to temperature change may be small, and it may be difficult to drive the liquid lens in the third region R3.
  • the controller may control the driving signal according to the third function.
  • the third function may be a quadratic function or a constant.
  • the optical device may equally apply a weight for a slope in the second region R2 to the third region R3. That is, in the first driving function, the second region R2 and the third region R3 may have symmetrical slopes based on the third point RP3. In other words, only negative/positive signs may be different between the second slope of the second region R2 and the third slope of the third region R3. Accordingly, the third function may be the same quadratic function as the second function. With this configuration, it is possible to quickly perform temperature compensation in the third region R3.
  • the third function may be a constant. Accordingly, the controller can more easily control the driving function in the third temperature region. This reflects a temperature environment in which it is difficult to use an actual optical device, such as an optical device, and the processing speed of the controller can be improved by minimizing processing at a temperature that is difficult to use.
  • first diopter and the second diopter described above may be different.
  • the first diopter and the second diopter may be values corresponding to infinity and macro, respectively.
  • the first driving function of the first diopter and the second driving function of the second diopter may be a function of a driving signal for a minimum focal length or a maximum focal length.
  • the setting diopter may be the same as the first diopter or the second diopter, and may be different from the first diopter and the second diopter.
  • 16 to 19 are diagrams for explaining driving of a controller according to an embodiment.
  • the controller according to the embodiment may calculate a driving signal by compensating temperature information to a focus signal corresponding to the focus information.
  • the controller according to the embodiment includes a first driving function FF1 and a second driving function from a plurality of first driving signals SG3a and SG3b and a plurality of second driving signals SG4a and SG4b of a memory unit. (FF2) can be created.
  • FF1 first driving function
  • FF2 a memory unit.
  • a, b, d, e, x, y, h, i, f, and g may be driving signals (or driving voltage codes).
  • the first driving signals SG3a and SG3b are driving signals at different temperatures K1 and K2 for the first diopter D1, and the first driving function FF1 is driven for the temperature at the first diopter D1. It is a function of the signal.
  • the second driving signals SG4a and SG4b are driving signals at different temperatures K1 and K2 for the second diopter D2, and the second driving function FF2 is at the second diopter D2. Is a function of the drive signal for.
  • a temperature corresponding to the first driving signals SG3a and SG3b and a temperature corresponding to the second driving signals SG4a and SG4b may be different, or at least some of them may be the same.
  • the first driving function FF1 and the second driving function FF2 control a driving signal with a first function or a second function according to the first temperature region and the second temperature region, respectively, as described above.
  • the first driving function FF1 and the second driving function FF2 control a driving signal in a third temperature region by a third function. 17 and 18, the controller may calculate the driving signal P1 using the second driving function FF2.
  • the driving signal P1 is located on the second driving function FF2, and the second driving function FF2 may be calculated as a function of the second driving signals SG4a and SG4b as described above. .
  • the controller when the set diopter calculated from the focus signal is the same as the second diopter D2, the controller will calculate the driving signal P1 corresponding to the temperature detected from the temperature sensor (referring to FIG. 17, a temperature smaller than K1). I can. Accordingly, the liquid lens may operate with the second diopter D2 at the corresponding temperature (a temperature smaller than K1) at the interface.
  • the controller may calculate a plurality of third driving functions FF3 for each temperature from the first driving function FF1 and the second driving function FF2.
  • the controller uses the first driving signal and the second driving signal when the first driving signals SG3a and SG3b and the second driving signals SG4a and SG4b are driving signals for the same temperature as shown in FIG. 16.
  • the third driving function can be calculated.
  • the controller uses the first driving signal (a,b), the first and second diopters (D1, D2), and the second driving signal (d,e) and the first and second diopters (D1, D2).
  • the controller calculates the third driving function of the driving signal for each diopter at a specific temperature (K1) using the first driving signal (a,b) and diopters (first diopter (D1), second diopter (D2)). can do.
  • the controller may calculate the driving signal P2 using the third driving function.
  • the driving signal P2 may be located on the third driving function.
  • the controller may calculate and output a driving signal P2 corresponding to the calculated set diopter and the temperature sensed from the temperature sensor (referring to FIG. 17, K1). Accordingly, the interface of the liquid lens may operate as the fourth diopter D4.
  • the third driving function may be calculated using a driving signal at a specific temperature calculated from the first driving function FF1 and a driving signal at a specific temperature calculated from the second driving function FF2. have.
  • the controller calculates the driving signal x for the first diopter D1 at the temperature K3 from the first driving function FF1, and the driving signal for the second diopter D2 at the temperature K3 ( y) can be calculated from the second driving function FF2.
  • the controller drives the third by a linear function of the drive signal for the set diopter at the temperature K3 sensed using the drive signal (x,y) and the diopter (first diopter (D1), second diopter (D2)). You can calculate a function.
  • the controller may calculate a plurality of third driving functions for each temperature.
  • the plurality of third driving functions may be functions of driving signals for diopters at various temperatures.
  • the controller may apply a set diopter and temperature to the third driving function to calculate and output a driving signal so that the liquid lens has a set diopter.
  • the controller provides driving signals (h, i, f, g or d, I, g, e) for the fourth diopter D4 and the fifth diopter D5 through a plurality of third driving functions. Can be calculated.
  • the controller calculates the driving signal (h,i,f,g or d,I,g,e) through the third driving function, and the calculated driving signal (h,I,f,g or d,I,g, Using e), the fourth driving functions FF4a and FF4b may be calculated as a function of the driving signal for temperature at the same diopter (the fourth diopter D4 or the fifth diopter D5).
  • the controller uses a driving signal (h, f, i, g) and a diopter (4th diopter (D4), 5th diopter (D5)) to generate a driving signal from K3 to the 5th diopter (D5). It can be calculated with (P3).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

실시예는 서로 계면을 형성하는 제1 액체와 제2 액체를 포함하는 액체 렌즈를 포함하는 렌즈 어셈블리; 상기 액체 렌즈의 온도를 감지하는 온도 센서;및 상기 액체 렌즈의 구동 신호를 제어하는 컨트롤러를 포함하고, 상기 컨트롤러는 상기 감지된 온도가, 제1 온도 영역 내인 경우 제1 함수를 이용하고 제2 온도 영역 내인 경우 상기 제1 함수와 다른 제2 함수를 이용하여 상기 구동 신호를 제어하는 광학 기기를 개시한다.

Description

광학 기기
실시예는 광학 기기에 관한 것이다.
휴대용 장치의 사용자는 고해상도를 가지며 크기가 작고 다양한 촬영 기능을 갖는 광학 기기를 원하고 있다. 예를 들어, 다양한 촬영 기능이란, 광학 줌 기능(zoom-in/zoom-out), 오토 포커싱(AF:Auto-Focusing) 기능 또는 손떨림 보정 내지 영상 흔들림 방지(OIS:Optical Image Stabilizer) 기능 중 적어도 하나를 의미할 수 있다.
기존의 경우, 전술한 다양한 촬영 기능을 구현하기 위해, 여러 개의 렌즈를 조합하고, 조합된 렌즈를 직접 움직이는 방법을 이용하였다. 그러나, 이와 같이 렌즈의 수를 증가시킬 경우 광학 기기의 크기가 커질 수 있다.
오토 포커스와 손떨림 보정 기능은, 렌즈 홀더에 고정되며 광축으로 정렬된 여러 개의 렌즈가, 광축 또는 광축의 수직 방향으로 이동하거나 틸팅(Tilting)하여 수행되며, 이를 위해, 복수의 렌즈로 구성된 렌즈 어셈블리를 구동시키는 별도의 렌즈 구동 장치가 요구된다. 그러나 렌즈 구동 장치는 전력 소모가 높으며, 이를 보호하기 위해서 광학 기기와 별도로 커버 글라스를 추가하여야 하는 등, 기존의 광학 기기의 전체 크기가 커지는 문제가 있다. 이를 해소하기 위해, 두 가지 액체의 계면의 곡률을 전기적으로 조절하여 오토 포커스와 손떨림 보정 기능을 수행하는 액체 렌즈부에 대한 연구가 이루어지고 있다.
다만, 액체 렌즈는 온도에 따라 계면이 다양하게 변형되어 정확도의 개선이 필요하다.
실시예는 전기 에너지에 따라 두 액체 사이에 위치하는 계면의 위치를 조정할 수 있는 렌즈를 포함하는 광학 기기에서 렌즈에 포함된 두 액체를 하우징할 수 있는 구조물의 온도에 따라 발생하는 계면의 변형에 의한 디옵터(diopter)의 변화에도 원하는 디옵터를 제공할 수 있는 광학 기기를 제공한다.
실시예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
실시예에 따른 광학 기기는 서로 계면을 형성하는 제1 액체와 제2 액체를 포함하는 액체 렌즈를 포함하는 렌즈 어셈블리; 상기 액체 렌즈의 온도를 감지하는 온도 센서; 및 상기 액체 렌즈의 구동 신호를 제어하는 컨트롤러를 포함하고, 상기 컨트롤러는 상기 감지된 온도가, 제1 온도 영역 내인 경우 제1 함수를 이용하고 제2 온도 영역 내인 경우 상기 제1 함수와 다른 제2 함수를 이용하여 상기 구동 신호를 제어한다.
상기 제1 함수는 상기 제2 함수보다 낮은 차수의 함수일 수 있다.
상기 제1 함수는 1차 함수이고 상기 제2 함수는 2차 함수일 수 있다.
상기 제1 온도 영역은 상기 제2 온도 영역보다 온도가 높은 영역이고, 상기 제1 온도 영역에서의 상기 구동 신호의 값은 상기 제2 온도 영역에서의 상기 구동 신호의 값보다 작을 수 있다.
상기 제1 함수와 상기 제2 함수를 저장하는 메모리부를 포함하고, 상기 제1 함수와 상기 제2 함수는 상기 렌즈 어셈블리가 제1 디옵터일 때 상기 온도에 대한 상기 구동 신호의 함수일 수 있다.
온도에 따라, 상기 제1 온도 영역에서 상기 구동 신호의 변화량은 일정하고 상기 제2 온도 영역에서 상기 구동 신호의 변화량은 변할 수 있다.
상기 컨트롤러는 제2 온도 영역보다 낮은 제3 온도 영역에서 제3 함수를 이용하여 상기 구동 신호를 제어하고, 상기 제2 온도 영역과 상기 제3 온도 영역의 경계에서 온도는 상기 제2 함수로 계산된 값이 최대값일 때의 온도일 수 있다.
상기 제3 온도 영역의 제3 함수는 2차 함수 또는 상수일 수 있다.
상기 제3 함수는 상기 제2 함수와 동일한 함수일 수 있다.
상기 액체 렌즈의 온도는 상기 액체 렌즈 또는 상기 렌즈 어셈블리에서 측정한 온도일 수 있다.
실시예는 온도에 따라 액체 렌즈의 계면이 변화하더라도 원하는 초점, 해상력를 갖는 광학 기기를 제공한다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 실시예에 따른 광학 기기의 개략적인 사시도이고,
도 2는 실시예에 따른 광학 기기의 분해 사시도이고,
도 3은 실시예에 따른 광학 기기의 단면도이고,
도 4는 실시예에 따른 액체 렌즈부의 단면도이고,
도 5a 내지 5e는 액체 렌즈부의 구동 방식을 설명하는 도면이고,
도 6은 구동 전압에 대응하여 계면이 조정되는 액체 렌즈부를 설명하기 위한 도면이고,
도 7a 내지 7c는 액체 렌즈부의 구조를 도시하는 도면이고,
도 8a 내지 도 8e는 액체 렌즈부의 렌즈 곡률 가변을 설명하는 도면이고,
도 9는 실시예에 따른 광학 기기의 블록도이고,
도 10은 도 9의 설명에 참조되는 도면이고,
도 11 내지 도 13은 실시예에 따른 컨트롤러의 동작을 설명하기 위한 초점 신호, 온도, 디옵터 및 딜레이의 관계를 설명하는 도면이고,
도 14는 실시예에 따른 컨트롤러에서 온도에 따른 구동 신호 그래프의 산출을 설명하는 도면이고,
도 15는 도 14에서 제2 구간 및 제3 구간 간의 관계를 설명하는 도면이고,
도 16 내지 도 19은 실시예에 따른 컨트롤러의 구동을 설명하는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결’, '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서 사용되는 '오토 포커스 기능'는 이미지 센서에 피사체의 선명한 영상이 얻어질 수 있도록 피사체의 거리에 따라 렌즈를 광축 방향으로 이동시켜 이미지 센서와의 거리를 조절함으로써 피사체에 대한 초점을 자동으로 맞추는 기능으로 정의한다. 한편, '오토 포커스'는 'AF(Auto Focus)'와 대응할 수 있다.
이하에서 사용되는 '손떨림 보정 기능'은 외력에 의해 이미지 센서에 발생되는 진동(움직임)을 상쇄하도록 렌즈 및/또는 이미지 센서를 이동시키는 기능으로 정의한다. 한편, '손떨림 보정'은 'OIS(Optical Image Stabilization)'와 대응할 수 있다.
도 1은 실시예에 따른 광학 기기의 개략적인 사시도이다.
도 1을 참조하면, 광학 기기(100)는 렌즈 어셈블리(10), 제어 회로(20) 및 이미지 센서(30)를 포함할 수 있다. 이하에서 광학 기기는 '카메라 모듈'로 이루어질 수 있다.
먼저, 렌즈 어셈블리(10)는 복수의 렌즈부 및 복수의 렌즈부를 수용하는 홀더를 포함할 수 있다. 후술되는 바와 같이, 복수의 렌즈부는 액체 렌즈를 포함할 수 있고 제1 렌즈부 또는 제2 렌즈부를 더 포함할 수 있다. 복수의 렌즈부는 제1 및 제2 렌즈부 및 액체 렌즈부를 포함할 수 있다.
제어 회로(20)는 액체 렌즈부에 구동 전압(또는 동작 전압)을 공급하는 역할을 수행한다.
전술한 제어 회로(20)와 이미지 센서(30)는 하나의 인쇄회로기판(PCB:Printed Circuit Board) 상에 배치될 수 있으나, 이는 하나의 예에 불과할 뿐 실시예는 이에 국한되지 않는다.
실시예에 의한 광학 기기 (100)가 광학 기기(Optical Device, Optical Instrument)에 적용될 경우, 제어 회로(20)의 구성은 광학 기기에서 요구하는 사양에 따라 다르게 설계될 수 있다. 특히, 제어 회로(20)는 하나의 칩(single chip)으로 구현되어, 렌즈 어셈블리(10)로 인가되는 구동 전압의 세기를 줄일 수 있다. 이를 통해, 휴대용 장치에 탑재되는 광학 기기의 크기가 더욱 작아질 수 있다. 이에 대한 자세한 설명은 후술한다.
도 2는 실시예에 따른 광학 기기의 분해 사시도이고, 도 3은 실시예에 따른 광학 기기의 단면도이고, 도 4는 실시예에 따른 액체 렌즈부의 단면도이다.
도 2 내지 도 3을 참조하면, 광학 기기 (100)은 렌즈 어셈블리, 메인 기판(150) 및 이미지 센서(30)를 포함할 수 있다. 또한, 광학 기기(100)는 제1 커버(170) 및 미들 베이스(middle base)(172)를 더 포함할 수 있다. 또한, 광학 기기(100)는 적어도 하나의 접착 부재(162, 164) 및 제2 커버(174)를 더 포함할 수 있다. 적어도 하나의 접착 부재는 홀더(120)에 액체 렌즈부(140)를 결합시키거나 고정시키는 역할을 한다.
여기서, 적어도 하나의 접착 부재는 제1 접착 부재(162), 제2 접착 부재(164) 및 제3 접착 부재(166)를 모두 포함하는 것으로 예시되어 있으나, 실시예는 이에 국한되지 않는다. 즉, 다른 실시예에 의하면, 적어도 하나의 접착 부재는 제1 접착 부재(162), 제2 접착 부재(164) 및 제3 접착 부재(166) 중 일부만을 포함할 수도 있다.
또한, 실시예에 의하면, 도 2에 도시된 광학 기기(100)의 구성 요소(110 내지 190) 중 적어도 하나는 생략될 수 있다. 또는 도 2에 도시된 구성 요소(110 내지 190)와 다른 적어도 하나의 구성 요소가 광학 기기(100)에 더 추가되어 포함될 수도 있다.
설명의 편의상 도 3에서 도 2에 도시된 제3 접착 부재(166), 제1 커버(170), 제2 커버(174) 및 광학층(190)의 도시는 생략되었다.
또한, 렌즈 어셈블리(도 1 참조, 10)는 액체 렌즈부(140), 홀더(120), 제1 렌즈부(110), 제2 렌즈부(130) 제1 접착 부재(162), 제2 접착 부재(164) 또는 제3 접착 부재(166) 중 적어도 하나를 포함할 수 있다. 그리고 렌즈 어셈블리는 메인 기판(150)의 위에 배치될 수 있다.
그리고 렌즈 어셈블리에서 액체 렌즈부(140)와 구별하기 위하여 제1 렌즈부(110) 및 제2 렌즈부(130)를 '제1 고체 렌즈부' 및 '제2 고체 렌즈부'라고 각각 칭할 수도 있다.
제1 렌즈부(110)는 렌즈 어셈블리의 상측에 배치되며, 렌즈 어셈블리의 외부로부터 광이 입사되는 영역일 수 있다. 즉, 제1 렌즈부(110)는 홀더(120) 내에서 액체 렌즈부(140) 위에 배치될 수 있다. 제1 렌즈부(110)는 하나의 렌즈로 구현될 수도 있고, 중심축을 기준으로 정렬되어 광학계를 형성하는 2개 이상의 복수의 렌즈로 구현될 수도 있다. 여기서, 중심축이란, 광학 기기(100)에 포함된 제1 렌즈부(110), 액체 렌즈부(140) 및 제2 렌즈부(130)가 형성하는 광학계의 광축(Optical axis)(LX)을 의미할 수도 있고, 광축(LX)과 나란한 축을 의미할 수도 있다. 광축(LX)은 이미지 센서(30)의 광축과f 동일할 수 있다.
즉, 제1 렌즈부(110), 액체 렌즈부(140), 제2 렌즈부(130) 및 이미지 센서(30)는 액티브 얼라인(AA:Active Align)을 통해 광축(LX)으로 정렬되어 배치될 수 있다. 여기서, 액티브 얼라인이란, 보다 나은 이미지 획득을 위해 제1 렌즈부(110), 제2 렌즈부(130) 및 액체 렌즈부(140) 각각의 광축을 일치시키고, 이미지 센서(30)와 렌즈부들((110), (130), (140)) 간의 축 또는 거리 관계를 조절하는 동작을 의미할 수 있다.
일 실시예로, 액티브 얼라인은 특정 객체로부터 입사되는 광을 제1 렌즈부(110), 제2 렌즈부(130) 또는 액체 렌즈부(140) 중 적어도 하나를 통해 이미지 센서(30)가 수신하여 생성한 이미지 데이터를 분석하는 동작을 통해 수행될 수 있다. 예를 들어, 액티브 얼라인은 다음과 같은 순서로 수행될 수 있다.
일예로, 홀더(120)에 고정되어 장착된 제1 렌즈부(110)와 제2 렌즈부(130) 및 이미지 센서(30) 간의 상대적 위치를 조절하는 액티브 얼라인(제1 정렬)이 완료된 뒤, 홀더(120)에 삽입된 액체 렌즈부(140)와 이미지 센서(30) 간 상대적 위치를 조절하는 액티브 얼라인(제2 정렬)이 수행될 수 있다. 제1 정렬은 그리퍼(gripper)가 미들 베이스(172)를 잡은 상태로 다양한 위치로 가변시키면서 수행될 수 있고, 제2 정렬은 그리퍼가 액체 렌즈부(140)의 스페이서(143)를 잡은 상태로 다양한 위치로 가변시키면서 수행될 수 있다. 다만 액티브 얼라인은 전술한 순서와 다른 순서로 수행될 수도 있다.
그리고 홀더(120)는 액체 렌즈부(140) 위에 배치된 홀더 상부 영역(120U) 및 액체 렌즈부(140) 아래에 배치된 홀더 하부 영역(120D)을 포함할 수 있다. 이때, 제1 및 제2 접착 부재(162, 164) 각각은 홀더 상부 영역(120U)과 홀더 하부 영역(120D) 각각과 액체 렌즈부(140)를 결합시킬 수 있다.
그리고 제1 및 제2 접착 부재(162, 164)가 배치될 때, 액체 렌즈부(140)는 홀더(120)에 안정적으로 고정되어 결합될 수 있다.
또한, 제1 렌즈부(110A)는 예를 들어, 2개의 렌즈(L1, L2)를 포함할 수 있으나, 이는 예시적인 것이며 제1 렌즈부(110A)에 포함된 렌즈의 개수는 적어도 하나 이상일 수 있다.
그리고 제1 렌즈부(110)의 상측에 노출렌즈가 배치될 수 있다. 여기서, 노출 렌즈란, 제1 렌즈부(110)에 포함된 렌즈 중에서 최외곽 렌즈를 의미할 수 있다. 즉, 제1 렌즈부(110A)의 최상측에 위치한 렌즈(L1)가 상부로 돌출되므로, 노출 렌즈의 기능을 수행할 수 있다. 노출 렌즈는 홀더(120) 외부로 돌출되어 표면이 손상될 가능성을 갖는다. 만일, 노출 렌즈의 표면이 손상될 경우, 광학 기기(100)에서 촬영되는 이미지의 화질이 저하될 수 있다. 따라서, 노출 렌즈의 표면 손상을 방지 및 억제하기 위해, 노출 렌즈의 상부에 커버 글래스(cover glass)를 배치하거나, 코팅층을 형성하거나, 노출 렌즈의 표면 손상을 방지하기 위해 다른 렌즈부의 렌즈보다 강성이 강한 내마모성 재질로 노출 렌즈를 구현할 수도 있다.
또한, 제1 렌즈부(110A)에 포함된 렌즈(L1, L2) 각각의 외경은 하부(예를 들어, -z축 방향)로 갈수록 증가할 수 있으나, 실시예는 이에 한정되지 않는다.
광학 기기(100)의 외부로부터 제1 렌즈부(110)로 입사된 광은 액체 렌즈부(140)를 통과하여 제2 렌즈부(130)로 입사될 수 있다. 제2 렌즈부(130)는 하나의 렌즈로 구현될 수도 있고, 중심축을 기준으로 정렬되어 광학계를 형성하는 2개 이상의 복수의 렌즈로 구현될 수도 있다. 예를 들어, 도 3a에 예시된 바와 같이, 제2 렌즈부(130)는 3개의 렌즈(L3, L4, L5)를 포함할 수 있으나, 이는 예시적인 것이며 제2 렌즈부(130)에 포함된 렌즈의 개수는 2개 이하 또는 4개 이상일 수 있다.
또한, 제2 렌즈부(130)에 포함된 렌즈(L3, L4, L5) 각각의 외경은 하부(예를 들어, -z축 방향)로 갈수록 증가할 수 있으나, 실시예는 이에 한정되지 않는다.
그리고 액체 렌즈부(140)와 달리, 제1 렌즈부(110) 및 제2 렌즈부(130) 각각은 고체 렌즈로서, 유리 또는 플라스틱으로 구현될 수 있으나, 실시예는 제1 렌즈부(110) 및 제2 렌즈부(130) 각각의 특정한 재질에 국한되지 않는다.
또한, 액체 렌즈부(140)는 제1 영역 내지 제5 영역(A1, A2, A3, A4, A5)을 포함할 수 있다. 구체적으로, 제4 영역(A4) 및 제5 영역(A5)은 광학 기기(100)의 최외측에 위치하고, 제1 영역(A1), 제2 영역(A2) 및 제3 영역(A3)은 제4 영역(A4)과 제5 영역(A5) 사이에 배치될 수 있다. 그리고 제3 영역(A3)은 제1 영역(A1)과 제2 영역(A2) 사이에 배치될 수 있다. 그리고 제1 영역(A1)은 제4 영역(A4)과 제3 영역(A3) 사이에 배치될 수 있으며, 제2 영역(A2)은 제3 영역(A3)과 제5 영역(A5) 사이에 배치될 수 있다.
다시 말해, 제1 영역(A1) 및 제2 영역(A2)은 홀더(120)의 측면 각각의 개구의 내부에 배치된 영역일 수 있다. 제3 영역(A3)은 제1 영역(A1)과 제2 영역(A2) 사이의 영역일 수 있다. 그리고 제4 영역(A4) 및 제5 영역(A5)은 홀더(120)의 개구로부터 돌출되는 영역으로서 개구에서 홀더(120)의 외부에 배치된 영역이다.
이하에서 제1 접착 부재(162) 및 제2 접착 부재(164)에 대해 설명하고, 액체 렌즈부(140)는 후술한다.
제1 접착 부재(162)는 제1 및 제2 접착부(162-1, 162-2)를 포함하고, 제2 접착 부재(164)는 제3 및 제4 접착부(164-1, 164-2)를 포함할 수 있다. 이러한 접착부는 접착제, 에폭시 등을 포함할 수 있다.
먼저, 제1 접착부(162-1)는 홀더(120)와 액체 렌즈부(140)의 제4 영역(A4)의 상면(140TS)을 결합시키고, 제3 접착부(164-1)는 홀더(120)와 액체 렌즈부(140)의 제5 영역(A5)의 상면을 결합시킨다 여기서, 액체 렌즈부(140)의 제4 영역(A4) 및 제5 영역(A5) 각각의 상면(140TS)은 제1 연결 기판(141)의 상면인 것으로 예시되어 있으나, 실시예는 이에 국한되지 않는다. 예를 들어, 액체 렌즈부(140)가 연결 기판(141, 144) 또는 스페이서(143)를 포함하지 않는 경우, 액체 렌즈부(140)의 상면이란, 액체 렌즈(142)의 상면일 수 있다.
또한, 홀더(120)는 액체 렌즈부(140)(또는 액체 렌즈(142)) 위에 배치되는 홀더 상부와 액체 렌즈부(140)(또는 액체 렌즈(142)) 아래에 배치되는 홀더 하부를 포함할 수 있다. 또한, 홀더(120)는 액체 렌즈(142) 또는 액체 렌즈부(140) 측면과 대면하는 측벽을 포함할 수 있다. 제1 접착부(162-1) 및 제3 접착부(164-1) 각각은 홀더 상부 영역(120U)과 액체 렌즈부(140)를 결합시킬 수 있다. 이와 같이, 제1 접착부(162-1) 및 제3 접착부(164-1) 각각이 홀더(120)와 액체 렌즈부(140)를 결합시킴으로써, 홀더(120)에 액체 렌즈부(140)가 고정될 수 있다.
또한, 제2 접착부(162-2)는 홀더(120)와 액체 렌즈부(140)의 제4 영역(A4)의 하면 및 측면을 결합시킬 수 있다. 여기서, 액체 렌즈부(140)의 하면은 제2 연결 기판(144)의 하면이고, 액체 렌즈부(140)의 측면은 스페이서(143)의 측면인 것으로 예시되어 있으나, 실시예는 이에 국한되지 않는다. 예를 들어, 액체 렌즈부(140)가 제1 및 제2 연결 기판(141, 144) 또는 스페이서(143)를 포함하지 않는 경우, 액체 렌즈부(140)의 하면 또는 측면이란, 액체 렌즈(142)의 하면 또는 측면을 각각 의미할 수 있다. 이와 동일하게, 제4 접착부(164-2)는 홀더(120)와 액체 렌즈부(140)의 제5 영역(A5)의 하면 및 측면을 결합시킬 수 있다. 여기서, 액체 렌즈부(140)의 하면은 제2 연결 기판(144)의 하면이고, 액체 렌즈부(140)의 측면은 스페이서(143)의 측면일 수 있으나, 실시예는 이에 국한되지 않는다. 예를 들어, 액체 렌즈부(140)가 연결 기판(141, 144) 또는 스페이서(143)를 포함하지 않는 경우, 액체 렌즈부(140)의 하면 또는 측면이란, 액체 렌즈(142)의 하면 또는 측면을 각각 의미할 수 있다.
또한, 제2 접착부(162-2) 및 제4 접착부(164-2) 각각은 홀더 하부 영역(120D)과 액체 렌즈부(140)를 결합시킬 수 있다. 이와 같이, 제2 접착부(162-2) 및 제4 접착부(164-4) 각각은 홀더(120)와 액체 렌즈부(140)를 결합시킴으로써, 홀더(120)의 개구를 밀폐할 수 있다. 예컨대, 제1 접착부(162-1)와 제2 접착부(164-1)는 서로 연결될 수 있고, 제3 접착부(164-1)와 제4 접착부(164-2)는 서로 연결되어 상술한 밀폐를 수행할 수 있다.
도시되지 않았지만, 제3 접착 부재(166)는 홀더(120)의 상면과 제1 커버(170) 사이의 이격 공간(또는 갭)을 메우도록 배치될 수 있다. 그리고 경우에 따라, 제3 접착 부재(166)는 생략될 수도 있다. 이 경우, 홀더(120)의 상면과 제1 커버(170) 사이의 이격 공간은 비워질 수 있다.
실시예는 전술한 제1 내지 제3 접착 부재(162, 164, 166)의 형상에 국한되지 않는다. 즉, 외부로부터 홀더(120)의 개구를 통해 홀더(120)의 내부로 이물질이 유입되지 않도록 홀더(120)의 내부를 밀봉할 수 있다면, 제1 접착 부재 내지 제3 접착 부재(162, 164, 166)는 다양한 형상을 가질 수 있다. 예컨대, 제1 접착 부재(162) 및 제2 접착 부재(164)가 홀더(120)의 개구를 각각 밀폐시키도록 배치된 상태에서 제3 접착 부재(166)가 홀더(120)의 상면과 제1 커버(170) 사이의 이격 공간을 메우도록 배치될 경우, 홀더(120)의 내부 공간에 배치된 액체 렌즈부(140)의 제3 영역(A3)은 외부로부터 밀봉될 수 있다. 이에, 실시예에 따른 광학 기기(100)가 이물질로부터 신뢰성이 개선되고 광학 성능이 저하를 방지하고 불량률을 감소시킬 수 있다.
또한, 제1 접착부 내지 제4 접착부(162-1, 164-1, 162-2, 164-2) 각각은 다양한 형상을 가질 수 있다. 즉, 제1 접착부(162-1), 제2 접착부(162-2), 제3 접착부(164-1) 및 제4 접착부(164-2) 각각은 홀더(120)의 개구 각각의 형상에 대응하는 형상을 가질 수 있다.
그리고 제4 영역(A4) 및 제5 영역(A5)과 함께 제1 및 제2 영역(A1, A2)에도 접착제가 배치될 수도 있으나, 이에 한정되는 것은 아니다.
또한, 상술한 제1 커버(170)는 홀더(120), 액체 렌즈부(140), 미들 베이스(172) 및 센서 베이스(178)를 둘러싸도록 배치될 수 있다. 이에, 제1 커버(170)는 홀더(120)의 어깨측 상면(120S)과 접촉할 수 있다. 이때, 제1 접착부(162-1) 및 제3 접착부(164-1) 각각의 상면(162S)이 홀더(120)의 어깨측 상면(120S)보다 더 높을 경우, 제1 커버(170)는 홀더(120)의 어깨측 상면(120S) 대신에 제1 접착부(162-1) 및 제3 접착부(164-1) 각각의 상면(162S)에 접할 수 있다. 이로 인해, 제1 커버(170)가 홀더(120)에 불안정하게 고착될 수 있다. 이를 방지하기 위해, 홀더(120)의 상면(120S)은 제1 접착부(162-1)의 상면(162S)보다 소정의 높이만큼 차이를 갖도록 배치될 수 있다. 이와 마찬가지로, 홀더(120)의 상면(120S)은 제3 접착부(164-1)의 상면(164S)보다 소정의 높이만큼 더 높을 수 있다.
또한, 홀더(120)의 상면(120S)의 높이와 제1 접착부(162-1)의 상면(162S)의 높이는 동일할 수도 있고, 홀더(120)의 상면(120S)의 높이는 제3 접착부(164-1)의 상면(164S)의 높이와 동일할 수도 있다.
그리고 이상에서, 제1 접착 부재(162) 및 제2 접착 부재(164)에 대한 특징을 설명할 때 언급된 액체 렌즈부(140)는 제1 및 제2 연결 기판(141, 144)을 포함하는 것으로 하였다. 그러나, 전술한 제1 접착 부재(162) 및 제2 접착 부재(164)에 대한 특징을 설명할 때 언급되는 액체 렌즈부(140)는 제1 및 제2 연결 기판(141, 144)을 포함하지 않을 수도 있다.
또한, 제1 커버(170)는 홀더(120), 액체 렌즈부(140), 제3 접착 부재(166) 및 미들 베이스(172)를 둘러싸도록 배치되어, 이들(홀더(120), 액체 렌즈부(140), 제3 접착 부재(166) 및 미들 베이스(172))을 외부의 충격으로부터 보호할 수 있다. 특히, 제1 커버(170)가 배치됨으로써, 광학계를 형성하는 복수의 렌즈들을 외부 충격으로부터 보호할 수 있다.
또한, 제1 커버(170)는 상부면에 형성된 상측 개구(170H)를 포함할 수 있다. 이에, 홀더(120)에 배치되는 제1 렌즈부(110)가 외부광에 노출될 수 있다.
그리고 미들 베이스(172)는 홀더(120)의 홀을 둘러싸면서 배치될 수 있다. 이에 따라, 미들 베이스(172)는 홀더(120)의 홀을 수용하기 위한 수용홀(172H)을 포함할 수 있다. 미들 베이스(172)의 내경(즉, 수용홀(172H)의 직경)은 홀더(120)의 홀의 외경 이상일 수 있다. 그리고 미들 베이스(172)의 수용홀(172H)과 홀더(120)의 홀의 형상은 각각 원형인 것으로 도시되어 있으나, 실시예는 이에 한정되지 않고 다양한 형상으로 변경될 수도 있다. 또한, 미들 베이스(172)는 메인 기판(150) 상에서 회로 소자(151)와 이격되어 메인 기판(150)에 장착될 수 있다.
제1 커버(170)의 상측 개구(170H)와 마찬가지로 수용홀(172H)은 미들 베이스(172)의 중앙 부근에서, 광학 기기(100)에 배치된 이미지 센서(30)의 위치에 대응되는 위치에 형성될 수 있다.
또한, 광학 기기(100)는 센서 베이스(178) 및 필터(176)를 더 포함할 수도 있으며, 회로 커버(154)를 더 포함할 수 있다.
필터(176)는 제1 렌즈부(110), 액체 렌즈부(140) 및 제2 렌즈부(130)를 통과한 광을 특정 파장 범위로 필터링할 수 있다. 필터(176)는 적외선(IR) 차단 필터 또는 자외선(UV) 차단 필터일 수 있으나, 실시예는 이에 한정되지 않는다.
또한, 필터(176)는 이미지 센서(30) 위에 배치될 수 있다. 필터(176)는 센서 베이스(178)의 내부에 배치될 수 있다. 예를 들어, 필터(176)는 센서 베이스(178)의 내부 홈 또는 단차에 배치되거나 장착될 수 있다.
센서 베이스(178)는 미들 베이스(172)의 하부에 배치되고 메인 기판(150)에 부착될 수 있다. 센서 베이스(178)는 이미지 센서(30)를 둘러싸고 이미지 센서(30)를 외부의 이물질 또는 충격으로부터 보호할 수 있다.
다음으로, 메인 기판(150)은 미들 베이스(172)의 하부에 배치되고, 이미지 센서(30)가 장착, 안착, 접촉, 고정, 가고정, 지지, 결합, 또는 수용될 수 있는 홈, 회로 소자(151), 연결부(또는 FPCB)(152) 및 커넥터(153)를 포함할 수 있다.
구체적으로, 메인 기판(150)은 홀더(120)가 배치되는 홀더 영역과 복수의 회로 소자(151)가 배치되는 소자 영역을 포함할 수 있다.
메인 기판(150)은 FPCB(152)를 포함하는 RFPCB(Rigid Flexible Printed Circuit Board)로 구현될 수 있다. FPCB(152)는 광학 기기(100)가 장착되는 공간이 요구하는 바에 따라 벤딩될 수 있다.
그리고 메인 기판(150)의 회로 소자(151)는 액체 렌즈부(140) 및 이미지 센서(30)를 제어하는 제어 모듈을 구성할 수 있다. 여기서, 제어 모들에 대해서는 후술한다.
그리고 회로 소자(151)는 수동 소자 및 능동 소자 중 적어도 하나를 포함할 수 있으며, 다양한 넓이 및 높이를 가질 수 있다. 회로 소자(151)는 복수 개일 수 있으며, 메인 기판(150)의 높이보다 높은 높이를 가지면서 외부로 돌출될 수 있다. 복수의 회로 소자(151)는 홀더(120)와 광축(LX)에 평행한 방향상에서 오버랩 되지 않도록 배치될 수 있다. 예를 들어, 복수의 회로 소자(151)는 파워 인덕터(power inductor) 및 자이로 센서 등을 포함할 수 있으나, 실시예는 회로 소자(151)의 특정한 종류에 국한되지 않는다.
회로 커버(154)는 회로 소자(151)를 덮도록 배치될 수 있다. 이에 따라, 회로 커버(154)는 메인 기판(150)의 상부에 배치된 회로 소자(151)가 외부 충격으로부터 보호될 수 있다. 또한, 이를 위하여 회로 커버(154)는 메인 기판(150)에 배치된 회로 소자(151)의 형상 및 위치를 고려하여 회로 소자(151)를 수용하여 덮기 위한 수용 공간을 포함할 수 있다. 그리고 회로 커버(154)는 전자기 차폐기능을 할 수 있다.
이미지 센서(30)는 렌즈 어셈블리(110, 120, 130, 140, 162, 164)의 제1 렌즈부(110), 액체 렌즈부(140) 및 제2 렌즈부(130)를 통과한 광을 이미지 데이터로 변환하는 기능을 수행할 수 있다. 보다 구체적으로, 이미지 센서(30)는 복수의 픽셀을 포함하는 픽셀 어레이를 통해 광을 아날로그 신호로 변환하고, 아날로그 신호에 상응하는 디지털 신호를 합성하여 이미지 데이터를 생성할 수 있다.
도 3 및 도 4를 참조할 때, 액체 렌즈부(140)는 액체 렌즈(또는 액체 렌즈 본체)(142)와 연결 기판을 포함할 수 있다. 또한 액체 렌즈부(140)는 스페이서(143)를 더 포함할 수 있다. 연결 기판은 제1 연결 기판(또는 개별 전극 연결 기판)(141)과 제2 연결 기판(또는 공통 전극 연결 기판)(144)을 포함할 수 있다.
제1 연결 기판(141)은 액체 렌즈(142)에 포함된 복수의 제1 전극(미도시)을 메인 기판(150)에 전기적으로 연결하며, 액체 렌즈(142) 위에 배치될 수 있다. 제1 연결 기판(141)은 연성회로기판(FPCB: Flexible Printed Circuit Board)로 구현될 수 있다.
또한, 제1 연결 기판(141)은 복수의 제1 전극 각각과 전기적으로 연결된 연결 패드(141-1)를 통해 메인 기판(150) 상에 형성된 전극 패드(150-1)와 전기적으로 연결될 수 있다. 이를 위해, 액체 렌즈부(140)가 홀더(120)의 내부 공간에 삽입된 후, 제1 연결 기판(141)은 메인 기판(150)을 향해 -z축 방향으로 벤딩(bending)된 후, 연결 패드(141-1)와 전극 패드(150-1)는 전도성 에폭시(conductive epoxy)에 의해 전기적으로 연결될 수 있다. 다른 실시예로 제1 연결 기판(141)은 홀더(120)의 표면에 배치, 형성, 또는 코팅된 도전성 제1 홀더 표면 전극과 연결되어 홀더(120)의 표면에 배치된 도전성 제1 홀더 표면 전극을 통해 메인 기판(150)과 전기적으로 연결될 수 있으나, 실시예는 이에 한정되지 않는다.
제2 연결 기판(144)은 액체 렌즈(142)에 포함된 제2 전극(미도시)을 메인 기판(150)에 전기적으로 연결하며, 액체 렌즈(142) 아래에 배치될 수 있다. 제2 연결 기판(144)은 FPCB 또는 단일 메탈 기판(전도성 메탈 플레이트)으로 구현될 수 있다.
또한, 제2 연결 기판(144)은 제2 전극과 전기적으로 연결된 연결 패드를 통해 메인 기판(150) 상에 형성된 전극 패드와 전기적으로 연결될 수 있다. 이를 위해, 액체 렌즈부(140)가 홀더(120)의 내부 공간에 삽입된 후, 제2 연결 기판(144)은 메인 기판(150)을 향해 -z축 방향으로 벤딩될 수 있다. 다른 실시예로 제2 연결 기판(144)은 홀더(120)의 표면에 배치, 형성, 또는 코팅된 도전성 표면 전극과 연결되어 홀더(120)의 표면에 배치된 도전성 표면 전극을 통해 메인 기판(150)과 전기적으로 연결될 수 있으나, 실시예는 이에 한정되지 않는다.
액체 렌즈(142)는 캐비티(cavity, CA)를 포함할 수 있다. 그리고 캐비티(CA)에서 광이 입사되는 방향의 개구 면적은 반대 방향의 개구 면적보다 좁을 수 있다. 또는 캐비티(CA)의 경사 방향이 반대가 되도록 액체 렌즈(142)가 배치될 수도 있다. 즉, 캐비티(CA)에서 광이 입사되는 방향의 개구 면적은 반대 방향의 개구 면적보다 클 수도 있다. 또한, 캐비티(CA)의 경사 방향이 반대가 되도록 액체 렌즈(142)가 배치될 때, 액체 렌즈(142)의 경사 방향에 따라서 액체 렌즈(142)에 포함된 구성의 배치 전체 또는 일부가 함께 바뀌거나, 캐비티(CA)의 경사 방향만 변경되고 나머지 구성의 배치는 바뀌지 않을 수도 있다.
스페이서(143)는 액체 렌즈(142)를 둘러싸도록 배치되어, 액체 렌즈(142)를 외부 충격으로부터 보호할 수 있다. 이를 위해, 스페이서(143)는 액체 렌즈(142)가 그의 내부에 장착, 안착, 접촉, 고정, 가고정, 지지, 결합, 또는 배치될 수 있는 형상을 가질 수 있다.
예를 들어, 스페이서(143)는 액체 렌즈(142)를 수용되는 중공(143H) 및 가운데에 형성된 중공(143H)을 에워싸는 프레임을 포함할 수 있다. 이와 같이, 스페이서(143)는 가운데가 뚫린 사각형 평면 형상(이하, 'ㅁ' 자 형성이라 함)을 가질 수 있으나, 실시예는 이에 국한되지 않는다.
또한, 스페이서(143)는 제1 연결 기판(141)과 제2 연결 기판(144) 사이에 배치될 수 있으며, 홀더(120)의 개구로부터 돌출되어 배치될 수 있다
또한, 액체 렌즈(142)는 서로 다른 종류의 복수의 액체(LQ1, LQ2), 제1 내지 제3 플레이트(147, 145, 146), 제1 및 제2 전극(E1, E2) 및 절연층(148)을 포함할 수 있다. 액체 렌즈(142)는 광학층(190)을 더 포함할 수 있다.
그리고 복수의 액체(LQ1, LQ2)는 캐비티(CA)에 수용되며, 전도성을 갖는 제1 액체(LQ1)와 비전도성을 갖는 제2 액체(또는 절연 액체)(LQ2)를 포함할 수 있다. 또한, 제1 액체(LQ1)와 제2 액체(LQ2)는 서로 섞이지 않으며, 제1 및 제2 액체(LQ1, LQ2) 사이의 접하는 부분에 계면(BO)이 형성될 수 있다. 그리고 제2 액체(LQ2)는 제1 액체(LQ1) 상에 배치될 수 있으나, 실시예는 이에 국한되지 않는다.
또한, 액체 렌즈(142)의 단면 형상에서 제1 및 제2 액체(LQ2, LQ1)의 가장 자리는 중심부보다 두께가 얇을 수 있다. 다만, 이에 한정되는 것은 아니다.
제1 플레이트(147)는 내측면이 캐비티(CA)의 측벽(i)을 이룰 수 있다. 제1 플레이트(147)는 기 설정된 경사면을 갖는 상하의 개구부를 포함할 수 있다. 즉, 캐비티(CA)는 제1 플레이트(147)의 경사면, 제2 플레이트(145) 및 제3 플레이트(146)로 둘러싸인 영역일 수 있다.
또한, 실시예에 따르면 상부에서 개구의 크기(또는 면적, 또는 폭)(O1)보다 하부에서 개구의 크기(또는 면적, 또는 폭)(O2)가 더 클 수 있다. 여기서, 상부 개구 및 하부 개구 각각의 크기는 수평 방향(예를 들어, x축 방향 및 y축 방항)의 단면적일 수 있다. 예를 들어, 그리고 개구의 크기란, 개구의 단면이 원형이면 반지름을 의미하고, 개구의 단면이 정사각형이면 대각선의 길이를 의미할 수 있다. 그리고 개구의 직경은 액체 렌즈(142)에서 요구하는 화각(FOV) 또는 액체 렌즈(142)가 광학 기기(100)에서 수행해야 할 역할에 따라 달라질 수 있다.
또한, 개구 각각은 원형의 단면을 가지는 홀(hole)의 형상일 수 있으며, 경사면은 경사도를 가질 수 있다. 계면(BO)은 구동 전압에 의해 캐비티(CA)의 경사면을 따라 움직일 수 있다.
그리고 상술한 바와 같이 제1 액체(LQ1) 및 제2 액체(LQ2)는 캐비티(CA)에 충진, 수용 또는 배치될 수 있다. 그리고 캐비티(CA)는 제1 렌즈부(110)를 통과한 광이 투과하는 부위이다. 또한, 제1 플레이트(147)는 캐비티(CA)의 외측에 위치하므로 투명한 재료로 이루어질 수도 있다. 뿐만 아니라, 제1 플레이트(147)는 광의 투과가 용이하지 않도록 불순물을 포함할 수도 있다.
또한, 제1 플레이트(147)는 일면과 타면에 전극이 각각 배치될 수 있다. 복수의 제1 전극(E1)은 제2 전극(E2)과 이격되어 배치되고, 제1 플레이트(147)의 일면(예를 들어, 상부면과 측면 및 하부면)에 배치될 수 있다. 제2 전극(E2)은 제1 플레이트(147)의 타면(예를 들어, 하부면)의 적어도 일부 영역에 배치되고, 제1 액체(LQ1)와 직접 접촉할 수 있다.
또한, 제1 전극(E1)은 n개의 전극(이하, '개별 전극'이라 함)일 수 있고, 제2 전극(E2)은 한 개의 전극(이하, '공통 전극'이라 함)일 수 있다. 여기서, n은 2 이상의 정수일 수 있다. 여기서, 제1 전극(E1)이 4개, 제2 전극(E2)인 경우로 이하 설명한다. 즉, 액체 렌즈(142)에 전기적으로 연결된 양단은 복수의 제1 전극(E1) 중 어느 하나와 제2 전극(E2)을 의미할 수 있다.
또한, 제1 플레이트(147)의 타면에 배치된 제2 전극(E2)의 일부(즉, 제2 전극(E2)의 전극 섹터)가 전도성을 갖는 제1 액체(LQ1)에 노출될 수 있다.
이러한 제1 및 제2 전극(E1, E2)은 각각이 도전성 재료로 이루어질 수 있다. 예컨대, 제1 전극(E1) 및 제2 전극(E2)은 금속으로 이루어질 수 있다.
또한, 제2 플레이트(145)는 제1 전극(E1)의 일면에 배치될 수 있다. 즉, 제2 플레이트(145)는 제1 플레이트(147)의 상부에 배치될 수 있다. 구체적으로, 제2 플레이트(145)는 제1 전극(E1)의 상면과 캐비티(CA) 위에 배치될 수 있다.
제3 플레이트(146)는 제2 전극(E2)의 일면에 배치될 수 있다. 즉, 제3 플레이트(146)는 제1 플레이트(147)의 하부에 배치될 수 있다. 구체적으로, 제3 플레이트(146)는 제2 전극(E2)의 하면과 캐비티(CA) 아래에 배치될 수 있다.
제2 플레이트(145)와 제3 플레이트(146)는 제1 플레이트(147)를 사이에 두고 서로 대향하여 배치될 수 있다. 또한, 제2 플레이트(145) 또는 제3 플레이트(146) 중 적어도 하나는 생략될 수도 있다.
제2 또는 제3 플레이트(145, 146) 중 적어도 하나는 사각형 평면 형상을 가질 수 있다. 제3 플레이트(146)는 제1 플레이트(147)와 에지(edge) 주변의 접합 영역에서 맞닿아 접착될 수 있다.
제2 플레이트(145) 및 제3 플레이트(146)는 광이 통과하는 영역으로서, 투광성 재료로 이루어질 수 있다. 예를 들면, 제2 및 제3 플레이트(145, 146) 각각은 유리(glass)로 이루어질 수 있으며, 공정의 편의상 동일한 재료로 형성될 수 있다. 또한, 제2 및 제3 플레이트(145, 146) 각각의 가장 자리는 사각형 형상일 수 있으나, 반드시 이에 한정하지는 않는다.
그리고 제2 플레이트(145)는 제1 렌즈부(110)로부터 입사되는 광이 제1 플레이트(145)의 캐비티(CA) 내부로 진행하도록 허용할 수 있다.
또한, 제3 플레이트(146)는 제1 플레이트(145)의 캐비티(CA)를 통과한 광이 제2 렌즈부(130)로 진행하도록 허용할 수 있다. 제3 플레이트(146)는 제1 액체(LQ1)와 직접 접촉할 수 있다.
실시예에 의하면, 제3 플레이트(146)는 제1 플레이트(147)의 상부 개구 또는 하부 개구 중에서 넓은 개구의 직경보다 큰 직경을 가질 수 있다. 또한, 제3 플레이트(146)는 제1 플레이트(147)와 이격된 주변 영역을 포함할 수 있다.
예컨대, 액체 렌즈(142)의 실제 유효 렌즈영역은 제1 플레이트(147)의 사부 개구 또는 하부 개구 중에서 넓은 개구의 직경(예를 들어, O2)보다 좁을 수 있다. 즉, 액체 렌즈(142)의 중심부를 기준으로 좁은 범위의 반경이 실제 광(빛)을 전달하는 경로로 사용되는 경우, 제3 플레이트(146)의 중심영역의 직경(O3)은 제1 플레이트(147)의 제3 및 제4 개구 중에서 넓은 개구의 직경(예를 들어, O2)보다 작을 수도 있다.
절연층(148)은 캐비티(CA)의 상부 영역에서 제2 플레이트(145)의 하부면의 일부를 덮으면서 배치될 수 있다. 즉, 절연층(148)은 제2 액체(LQ2)와 제2 플레이트(145)의 사이에 배치될 수 있다.
또한, 절연층(148)은 캐비티(CA)의 측벽을 이루는 제1 전극(E1)의 일부를 덮으면서 배치될 수 있다. 또한, 절연층(148)은 제1 플레이트(147)의 하부면에서, 제1 전극(E1)의 일부와 제1 플레이트(147) 및 제2 전극(E2)을 덮으며 배치될 수 있다. 이로 인해, 제1 전극(E1)과 제1 액체(LQ1) 간의 접촉 및 제1 전극(E1)과 제2 액체(LQ2) 간의 접촉이 절연층(148)에 의해 차단될 수 있다.
절연층(148)은 제1 전극(E1) 및 제2 전극(E2) 중 하나의 전극(예를 들어, 제1 전극(E1))을 덮고, 다른 하나의 전극(예를 들어, 제2 전극(E2))의 일부를 노출시켜 전도성을 갖는 제1 액체(LQ1)에 전기 에너지가 인가되도록 할 수 있다.
한편, 광학층(190)은 제2 플레이트(145) 또는 제3 플레이트(146)의 중 적어도 하나의 일면에 배치될 수 있다. 예를 들어, 광학층(190)은 제2 플레이트(145)의 위 또는 아래 중 적어도 한 곳에 배치될 수도 있고, 제3 플레이트(146)의 위 또는 아래 중 적어도 한 곳에 배치될 수도 있고, 제2 및 제3 플레이트(145, 146) 각각의 위 또는 아래 중 적어도 한 곳에 배치될 수도 있다.
그리고 액체 렌즈(142)와 광학층(190)은 서로 별개로 도시되어 있지만, 광학층(190)은 액체 렌즈(142)의 구성 요소일 수도 있다. 또한, 광학층(190)이 단일층인 것으로 도시되어 있지만, 이는 광학층(190)의 존재를 표시하기 위함일 뿐이다. 즉, 광학층(190)은 단일층 또는 다층일 수도 있다.
그리고 광학층(190)은 자외선 차단층, 반사 방지층 또는 적외선 차단층 중 적어도 하나를 포함할 수 있다. 광학층(190)은 이미지 센서(30)와 광축(LX)(즉, z축) 방향 또는 광축 방향과 나란한 방향으로 중첩되어 배치될 수 있다. 또한, 광학층(190)은 액체 렌즈부(140)의 제3 영역(A3)에 배치될 수 있다. 예컨대, 자외선 차단층은 자외선 특히 UV-A 영역의 광을 차단할 수 있다. 또한, 반사 방지층은 제2 플레이트(1450 또는 제3 플레이트(146)에서 광이 반사됨을 방지하는 역할을 수행할 수 있으며, 액체 렌즈(142)에서의 프레넬 손실(Fresnel loss)에 의한 광투과율 저하를 줄이고 액체 렌즈(142)의 야간 시인성이 저하되는 것을 방지할 수도 있다. 특히, 비록 도시되지는 않았지만, 반사 방지층은 절연층(148)의 경사면과 하부면에 배치될 수도 있으며, 반사 방지층은 광이 반사되어 이미지 센서(30)로 전달되는 광의 품질이 저하되는 것을 방지할 수 있다.
또한, 적외선 차단(IR cut-off)층은 적외선 영역의 광을 차단할 수 있다. 적외선 차단층은, 적외선이 외부로부터 액체 렌즈(142)로 입사되는 것을 방지하여 영상의 열 얼룩을 제거하고, 액체 렌즈(142)의 표면에서의 광 반사를 줄여서 야간 시인성 저하를 방지할 수 있도록 한다.
그리고 실시예에 따른 광학 기기(100)의 입광부 또는 출광부 중 적어도 한 곳에 자외선 차단층, 반사 방지층 또는 적외선 차단층 중 적어도 하나가 배치될 수 있다.
또한, 실시예에 의하면 광학층(190)은 코팅된 형태나 필름 형태를 가질 수 있다. 예를 들어, 광학층(190)의 반사 방지층은 저온에서 스프레이 방법 등에 의하여 코팅하여 형성될 수 있다.
도 5a 내지 5e는 액체 렌즈부의 구동 방식을 설명하는 도면이다. 이하에서 전압은 제1 전극과 제2 전극 사이에 인가되는 것으로 설명한다. 그리고 해당 전압은 후술하는 구동 전압과 동일할 수 있다.
먼저, 도 5a는 액체 렌즈부(140)에 제1 전압(V1)이 인가되어, 액체 렌즈의 계면(BO1)이 광의 진행 방향으로 볼록할 수 있다. 이에, 액체 렌즈부가 오목 렌즈와 같이 동작하는 것을 예시한다. 그리고 도 5b는 액체 렌즈부(140)에 제1 전압(V1) 보다 큰 제2 전압(V2)이 인가되어, 액체 렌즈의 계면(BO2)이 광의 진행 방향과 수직할 수 있다. 이에, 액체 렌즈부가 광의 진행 방향을 변경하지 않는 것을 예시한다. 그리고 도 5c는 액체 렌즈부(140)에 제2 전압(V2) 보다 큰 제3 전압(V3)이 인가되어, 액체 렌즈의 계면(BO3)이 광의 진행 방향에 반대 방향으로 볼록할 수 있다. 이에, 액체 렌즈부가 볼록 렌즈와 같이 동작하는 것을 예시한다. 이 때, 제1 전압(V1) 내지 제3 전압(V3)이 인가되는 경우에, 액체 렌즈부(140) 내의 액체 렌즈의 계면(BO1, BO2, BO3)은 모두 상이한 곡률을 각각 가질 수 있다.
즉, 실시예에 따른 액체 렌즈부(140)에서는 인가되는 전압의 레벨에 따라, 액체 렌즈부의 액체 렌즈의 곡률 또는 디옵터(diopter)가 변하는 것을 예시하나, 이에 한정되지 않으며, 인가되는 펄스의 펄스 폭에 따라, 액체 렌즈의 곡률 또는 디옵터가 변하는 것도 가능하다.
그리고 도 5d는 액체 렌즈부(140) 내의 액체 렌즈가 도 5c와 동일한 계면(BO3)을 가짐에 따라, 볼록 렌즈와 같이 동작하는 것을 예시한다. 이에, 도 5d에 따르면, 입사광(LPa)이 집중되어, 해당하는 출력광(LPb)이 출력되게 된다.
그리고 도 5e는 액체 렌즈부(140) 내의 액체 렌즈가 비대칭 곡면(예컨대, 계면이 상부에서 광의 진행 방향에 반대 방향으로 볼록)을 가짐에 따라, 광의 진행 방향이 일측(예컨대, 상측)으로 변경되는 것을 예시한다. 즉, 도 5d에 따르면, 입사광(LPa)이 상측으로 집중되어, 해당하는 출력광(LPc)이 출력되게 된다.
도 6은 구동 전압에 대응하여 계면이 조정되는 액체 렌즈부를 설명하기 위한 도면이다.
도 6을 참조하면, 도 6(a)는 액체 렌즈부를 설명하고, 도 6(b)는 액체 렌즈부의 등가회로를 설명한다.
도 6(a)를 참조하면, 구동 전압에 대응하여 초점 거리가 조정되는 렌즈(28)는 동일한 각 거리를 가지고 4개의 서로 다른 방향에 배치된 개별 단자(L1, L2, L3, L4)를 통해서 전압을 인가 받을 수 있다. 개별 단자는 액체 렌즈의 중심축을 기준으로 동일한 각 거리를 가지고 배치될 수 있고, 4개의 개별단자를 포함할 수 있다. 4개의 개별단자는 액체렌즈의 4개 코너에 각각 배치될 수 있다. 개별 단자(L1, L2, L3, L4)를 통해서 전압이 인가되면 인가된 전압은 후술할 공통 단자(C0)에 인가되는 전압과의 상호작용으로 형성되는 구동 전압에 의해 액체 렌즈의 계면이 변형될 수 있다.
또한, 도 6(b)를 참조하면, 액체 렌즈(142)는 일측은 서로 다른 개별 단자(L1, L2, L3, L4)로부터 동작 전압을 인가 받고, 다른 일측은 공통 단자(C0)와 전기적으로 연결될 수 있다. 그리고 공통 단자(C0)와 복수의 커패시터(149)가 연결될 수 있다. 그리고 등가회로에 포함된 복수의 커패시터(149)는 약 수십 내지 200 피코패럿(pF) 이하의 작은 캐패시턴스를 가질 수 있다. 액체 렌즈의 단자는 전극 섹터 또는 서브 전극으로 불릴 수도 있다.
도 7a 내지 7c는 액체 렌즈부의 구조를 도시하는 도면이고,
도 7a를 참조하면, 액체 렌즈부(140)는 일측에 공통 전극(제2 전극에 대응하며 이하 제2 전극, 공통 단자와 혼용함, E2)이 배치될 수 있다. 이때, 공통 전극(E2)은, 튜브 형태로 배치될 수 있으며, 공통 전극(E2)의 하부 영역에, 특히, 중공에 대응하는 영역에, 액체(LQ)가 배치될 수 있다.
한편, 도면에서는 도시하지 않았지만, 공통 전극(E2)의 절연을 위해, 공통 전극(E2)과 리퀴드 사이에, 절연층이 배치될 수도 있다.
그리고 도 7b와 같이, 공통 전극의 하부, 특히, 액체(LQ)의 하부에, 복수의 제1 전극(이하 개별 전극에 대응하며 제1 전극, 개별 단자와 혼용함, E11 내지 E14)이 배치될 수 있다. 복수의 제1 전극(E11 내지 E14)은, 특히, 액체(LQ)를 둘러싸는 형태로 배치될 수 있다.
그리고, 복수의 제1 전극(E11 내지 E14)과 액체(LQ) 사이에, 절연을 위한 복수의 절연층(148a 내지 148d)가 각각 배치될 수 있다.
도 7c를 참조하면, 액체 렌즈부(140)는 제1 연결 기판(141) 상의 복수의 제1 전극(E11, E12, E13, E14)과, 제1 전극(E11, E12, E13, E14)의 절연을 위한 복수의 절연층(148a 내지 148d), 제1 전극(E11, E12, E13, E14) 상의 제2 액체(LQ2)와, 제2 액체(LQ2) 상의 제1 액체(LQ1)와, 제2 액체(LQ2) 및 제1 전극(E11, E12, E13, E14)과 이격 배치되는 제2 전극(E), 제2 전극(E) 상의 제2 연결 기판(144)을 구비할 수 있다. 이외의 구성은 상술한 내용이 적용될 수 있다.
또한, 제2 전극(E2)은 중공을 가지고 튜브 형태로 형성될 수 있다. 그리고 중공 영역에, 제2 액체(LQ2) 및 제1 액체(LQ1)가 배치될 수 있다. 제2 액체(LQ2)는 도 7a 내지 도 7b와 같이, 원형으로 배치될 수 있다.
한편, 중공 영역의 하부에서 상부로 갈수록 크기가 커질 수 있으며, 이에 따라, 제1 전극(E11, E12, E13, E14)은 하부에서 상부로 갈수록 크기가 작아질 수 있다.
도 7c에서는 제1 전극(E11, E12, E13, E14) 중 제1-1 전극(E11)과, 제1-2 전극(E12)이 경사지게 형성되며, 하부에서 상부로 갈수록 크기가 작아지는 것을 예시한다. 한편, 도 7a 내지 도 7c와 달리, 제1 전극(E11, E12, E13, E14)이 제2 전극(E2)에 상부에 위치할 수 있다. 다시 말해, 제1 전극(E11, E12, E13, E14)이 제2 전극(E2)이 하부에 위치할 수도 있으나 이에 한정되지 않는다.
또한, 제1 전극(E11, E12, E13, E14)은 상술한 개수에 한정되는 것은 아니며, 다양한 개수로 이루어질 수 있다.
또한, 제2 전극(E2)에 펄스 형태의 전기 신호가 인가된 이후, 소정 시간 후에, 제1-1 전극(E11)과 제1-2 전극(E12)에 펄스 형태의 전기 신호가 인가되는 경우, 제2 전극(E2)과, 제1-1 전극(E11), 제1-2 전극(E12) 사이의 전위차가 발생하며, 이에 따라, 전기 전도성을 가지는 제1 액체(LQ1)의 형상이 변하고, 제1 액체(LQ1)의 형상 변화에 대응하여, 제2 액체(LQ2)의 내부의 제2 액체(LQ2)의 형상이 변할 수 있다.
한편, 본 발명에서는 제1 전극(E11, E12, E13, E14)과, 제2 전극(E2)에 각각 인가되는 전기 신호에 따라, 변하는 제2 액체(LQ2)의 곡률을 간편하고, 신속하게 감지하는 방안을 제시한다. 이를 위해, 본 발명에서의 센서부는 액체 렌즈부(140) 내의 제1 전극(540a) 상의 제1 절연체(550a)와, 제1 액체(LQ1) 사이의 경계 영역(Ac0)의 면적의 크기 또는 면적의 변화를 감지할 수 있다.
도 7c에서는 경계 영역(Ac0)의 면적으로 AM0를 예시한다. 특히, 제1-1 전극(E11) 상의 제1 절연층(148a)의 경사 부분 중 제1 액체(LQ1)와 접촉하는 경계 영역(Ac0)의 면적이, AM0인 것을 예시한다. 또한, 제2 액체(LQ2)가 오목하거나 볼록하지 않고, 제1 연결 기판(141) 등과 평행한 것을 예시한다. 이 때의 곡률은, 예를 들어, 0으로 정의할 수 있다.
제1-1 전극(E11) 상의 제1 절연층(148a)의 경사 부분 중 제1 액체(LQ1)와 접촉하는 경계 영역(Ac0)에 대해, 다음의 수학식 1에 의해, 커패시턴스(C)가 형성될 수 있다.
Figure PCTKR2020015282-appb-img-000001
이 때의 ε는 유전체(550a)의 유전율, A는 경계 영역(Ac0)의 면적, d는 제1 유전체(550a)의 두께를 나타낼 수 있다. 이러한 커패시턴스(C)는 도 6에 도시한 커패시터(149)의 커패시턴스일 수 있다. 이에 따라, 상술한 센서부는 커패시터(149)의 커패시턴스를 감지하므로 커패시터(149)를 포함할 수 있다.
그리고 여기서, ε, d는 고정값이라 가정하면, 커패시턴스(C)에 큰 영향을 미치는 것은, 경계 영역(Ac0)의 면적일 수 있다. 즉, 경계 영역(Ac0)의 면적이 클수록, 경계 영역(Ac0)에 형성되는 커패시턴스(C)가 커질 수 있다. 한편, 제2 액체(LQ2)의 곡률이 가변될수록, 경계 영역(Ac0)의 면적이 가변되므로, 센서부를 이용하여 경계 영역(Ac0)의 면적을 감지하거나, 또는 경계 영역(Ac0)에 형성되는 커패시턴스(C)를 감지할 수 있다.
한편, 본 명세서에서 도 7c의 커패시턴스는 CAc0라 정의할 수 있다.
도 8a 내지 도 8e는 액체 렌즈부의 렌즈 곡률 가변을 설명하는 도면이다.
도 8a 내지 도 8e는 제1 전극(E11, E12, E13, E14)과 제2 전극(E2)에 각각 전기 신호의 인가에 따라, 제2 액체(LQ2)에 제1 곡률(Boa)이 형성되는 것을 예시한다.
도 8a에서는 제2 액체(LQ2)에 제1 곡률(Boa)이 형성됨에 따라, 경계 영역(Aaa)의 면적으로 AMa(>AM0)를 예시한다. 특히, 제1-1 전극(E11) 상의 제1 절연층(148a)의 경사 부분 중 전기 전도성 수용액(595)과 접촉하는 경계 영역(Aaa)의 면적이, AMa인 것을 예시한다.
수학식 1에 따르면, 도 7c에 비해, 도 8a에서의 경계 영역(Aaa)의 면적이 더 커지므로, 경계 영역(Aaa)의 커패시턴스가 더 커지게 된다. 한편, 도 8a의 커패시턴스는 CAaa 라 정의할 수 있으며, 도 7c의 커패시턴스인 CAc0 보다 큰 값을 가지게 된다. 그리고 이 때의 제1 곡률(Boa)은 정극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제1 곡률(Boa)이 +2 레벨을 가지는 것으로 정의할 수 있다.
도 8b는 제1 전극(E11, E12, E13, E14)과, 제2 전극(E2)에 각각 전기 신호의 인가에 따라, 제2 액체(LQ2)에 제2 곡률(Rib)이 형성되는 것을 예시한다.
도 8를 참조하면, 제2 액체(LQ2)에 제2 곡률(Rib)이 형성됨에 따라, 경계 영역(Aba)의 면적으로 AMb(>AMa)를 예시한다. 특히, 제1-1 전극(E11) 상의 제1 절연층(148a)의 경사 부분 중 제1 액체(LQ1)와 접촉하는 경계 영역(Aba)의 면적이, AMb인 것을 예시한다.
수학식 1에 따르면, 도 8a에 비해, 도 8b에서의 경계 영역(Aba)의 면적이 더 커지므로, 경계 영역(Aba)의 커패시턴스가 더 커지게 된다. 한편, 도 7b의 커패시턴스는 CAba 라 정의할 수 있으며, 도 7a의 커패시턴스인 CAaa 보다 큰 값을 가지게 된다.
이 때의 제2 곡률(Bob)은, 제1 곡률(Boa) 보다 크기가 큰 정극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제2 곡률(Bob)이 +4 레벨을 가지는 것으로 정의할 수 있다.
한편, 도 8a, 도 8b에 따르면, 액체 렌즈부(140)는 볼록 렌즈로서 동작하며, 이에 따라, 입사광(LP1)이 집중된 출력광(LP1a)이 출력된다.
다음, 도 8c는 제1 전극(E11, E12, E13, E14)과, 제2 전극(E2)에 각각 전기 신호의 인가에 따라, 제2 액체(LQ2)에 제3 곡률(Boc)이 형성되는 것을 예시한다.
특히, 도 7c에서는 좌측 경계 영역(Aca)의 면적으로 AMa를 예시하며, 우측 경계 영역(Acb)의 면적으로 AMb(>AMa)를 예시한다.
특히, 제1-1 전극(E11) 상의 제1 절연층(148a)의 경사 부분 중 제1 액체(LQ1)와 접촉하는 경계 영역(Aca)의 면적이, AMa이고, 제2 전극(540b) 상의 제2 절연체(550b)의 경사 부분 중 제1 액체(LQ1)와 접촉하는 경계 영역(Acb)의 면적이, AMb인 것을 예시한다.
이에 따라, 좌측 경계 영역(Aca)의 커패시턴스는 CAaa 일 수 있으며, 우측 경계 영역(Acb)의 커패시턴스는 CAba 일 수 있다. 이 때의 제3 곡률(Boc)은 정극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제3 곡률(Boc)이 +3 레벨을 가지는 것으로 정의할 수 있다. 한편, 도 8c에 따르면, 액체 렌즈부(140)는 볼록 렌즈로서 동작하며, 이에 따라, 입사광(LP1)이 일측으로 더 집중된 출력광(LP1b)이 출력될 수 있다.
다음, 도 8d는 제1 전극(E11, E12, E13, E14)과, 제2 전극(E2)에 각각 전기 신호의 인가에 따라, 제2 액체(LQ2)에 제4 곡률(Bod)이 형성되는 것을 예시한다.
도 8d에서는 제2 액체(LQ2)에 제4 곡률(Bod)이 형성됨에 따라, 경계 영역(Ada)의 면적으로 AMd(<AM0)를 예시한다. 특히, 제1-1 전극(E11) 상의 제1 절연층(148a)의 경사 부분 중 제1 액체(LQ1)와 접촉하는 경계 영역(Ada)의 면적이, AMd인 것을 예시한다.
수학식 1에 따르면, 도 8c에 비해, 도 8d에서의 경계 영역(Ada)의 면적이 더 작아지므로, 경계 영역(Ada)의 커패시턴스가 더 작아지게 된다. 한편, 도 8d의 커패시턴스는 CAda 라 정의할 수 있으며, 도 6c의 커패시턴스인 CAc0 보다 작은 값을 가지게 된다.
이 때의 제4 곡률(Bod)은 부극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제4 곡률(Bod)이 -2 레벨을 가지는 것으로 정의할 수 있다.
다음, 도 8e는 제1 전극(E11, E12, E13, E14)과, 제2 전극(E2)에 각각 전기 신호의 인가에 따라, 제2 액체(LQ2)에 제5 곡률(Boe)이 형성되는 것을 예시한다.
도 8e에서는 제2 액체(LQ2)에 제5 곡률(Boe)이 형성됨에 따라, 경계 영역(Aea)의 면적으로 AMe(<AMd)를 예시한다. 특히, 제1-1 전극(E11) 상의 제1 절연층(148a)의 경사 부분 중 제1 액체(LQ1)와 접촉하는 경계 영역(Aea)의 면적이, AMe인 것을 예시한다.
수학식 1에 따르면, 도 8d에 비해, 도 8e에서의 경계 영역(Aea)의 면적이 더 작아지므로, 경계 영역(Aea)의 커패시턴스가 더 작아지게 된다. 한편, 도 8e의 커패시턴스는 CAea 라 정의할 수 있으며, 도 8d의 커패시턴스인 CAda 보다 작은 값을 가지게 된다. 이 때의 제5 곡률(Boe)은 부극성의 값을 가지는 것으로 정의할 수 있다. 예를 들어, 제5 곡률(Boe)이 -4 레벨을 가지는 것으로 정의할 수 있다.
한편, 도 8d 및 도 8e에 따르면, 액체 렌즈부(140)는 오목 렌즈로서 동작하며, 이에 따라, 입사광(LP1)이 발산된 출력광(LP1c)이 출력될 수 있다.
도 9는 실시예에 따른 광학 기기의 블록도이고, 도 10은 도 9의 변형예이고, 도 11 내지 도 13은 도 9 및 도 10의 설명에 참조되는 도면이다.
먼저, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field-programmable gate array) 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
도 9를 참조하면, 광학 기기(200)는 제어 회로(210), 렌즈 어셈블리(220) 및 자이로 센서(230), 메모리부(290) 및 온도 센서(299)를 포함할 수 있다. 제어 회로(210)는 전술한 제어 회로(20)에 해당하고, 렌즈 어셈블리(220)는 전술한 렌즈 어셈블리(10)로, 즉 렌즈 어셈블리(110, 120, 130, 140, 162, 164)에 해당할 수 있다. 또한, 광학 기기(200)는 이미지 센서(30)와 이미지 프로세서(31)를 더 포함할 수 있다.
먼저, 자이로 센서(230)는 액체 렌즈(280) 또는 광학 기기의 각속도를 감지할 수 있으며, 컨트롤러(240) 내에도 위치할 수도 있다. 즉, 이러한 위치에 한정되는 것은 아니다. 또한, 자이로 센서(230)는 광학 기기의 상하 및 좌우에 대한 손떨림을 보상하기 위해 예컨대 요(Yaw)축과 피치(Pitch)축 두 방향의 움직임의 각속도(또는 각도)를 감지할 수 있다. 자이로 센서(230)는 감지된 각속도 정보를 갖는 모션 신호를 생성하여 전압 컨트롤러(232)에 제공할 수 있다.
그리고 이미지 센서(30)는 액체 렌즈(280)를 통과한 광을 전기 신호로 변환할 수 있다. 또한, 이미지 프로세서(31)는 이미지 센서(30)로부터의 전기 신호에 기초하여 이미지 처리를 수행할 수 있다. 이미지 프로세서(31)는 실시예에 따른 제어 회로(210) 또는 광학 기기 또는 외부 시스템(예컨대, 단말기)에 위치할 수 있음을 이해해야 한다.
외부 시스템(40)은 광학 기기 외부에 위치할 수 있다. 예컨대, 외부 시스템(40)은 단말기일 수 있으며, 광학 기기 내의 액체 렌즈(280)의 계면을 원하는 디옵터를 갖도록 광학 기기로 전기 신호를 제공할 수 있다. 실시예로 외부 시스템(40)은 이미지 프로세서(31)를 통해 초점 설정을 위한 전기 신호를 광학 기기(예컨대, 제어 회로(210))로 제공할 수 있다. 외부 시스템(40)은 컨트롤러(240)로 디지털 코드인 초점 신호를 전송할 수 있다.
또한, 외부 시스템(40)은 광학 기기 또는 단말 상에 위치할 수 있으며 제어부, 제어 장치, 컨트롤부, 조절부 등을 추가로 포함할 수 있다. 그리고 외부 시스템(40)은 광학 기기와 상술한 I2C(Inter-Integrated Circuit) 통신 방식으로 연결될 수 있다. 다만, 이에 한정되는 것은 아니며 I2C 이외의 다른 통신 방식으로 연결될 수도 있다.
액체 렌즈(280)는 온도에 의해 액체 또는 플레이트의 곡률이 가변됨에 따라 초점거리 또는 디옵터가 가변될 수 있다. 따라서 렌즈 어셈블리의 초점거리 또는 디옵터도 변경될 수 있다. 온도 센서(299)는 액체 렌즈(280)의 온도를 감지하거나 렌즈 어셈블리의 온도를 감지할 수 있다. 온도를 감지하는 것은 직접적 또는 간접적으로 감지하는 것을 포함한다.
그리고 온도 센서(299)는 써미스터(thermistor) 등을 구비할 수 있다. 예를 들어, 감지된 온도에 반비례하는 NTC 또는 감지된 온도에 비례하는 PTC 등을 구비할 수 있다.
또한, 온도 센서(299)는 감지된 온도를 포함하는 온도 정보를 제어 회로(210) 또는 컨트롤러(240)로 전달할 수 있다. 제어 회로(210)는 온도 센서(299)로부터 수신된 온도 정보를 통해 온도가 높아지는 경우 온도에 따른 액체 렌즈(280)의 계면 변화를 고려하여 구동 신호를 출력할 수 있다. 이에 대한 자세한 설명은 후술한다. 그리고 온도 정보는 온도를 지칭하는 것으로 이하 혼용하여 상술한다.
제어 회로(210)는 컨트롤러(240), 렌즈 구동부(250), 전원 공급부(260)를 포함할 수 있으며, 액체 렌즈(280)를 포함하는 렌즈 어셈블리(220)의 동작을 제어할 수 있다.
컨트롤러(240)는 AF 기능 및 OIS 기능을 수행하기 위한 구성을 가질 수 있다. 컨트롤러(240)는 사용자의 요청 또는 감지 결과(예컨대, 자이로 센서(230)의 감지 신호)를 이용하여 렌즈 어셈블리(220)에 포함된 액체 렌즈(280)를 제어할 수 있다. 여기서, 액체 렌즈(280)는 전술한 액체 렌즈부에 해당할 수 있다.
컨트롤러(240)는 액체 렌즈(280)가 가져야 할 형상에 대응하는 구동 전압을 계산할 수 있다. 구체적으로, 컨트롤러(240)는 광학 기기 또는 광학 기기 (200)의 내부(예컨대, 이미지 센서(30)) 또는 외부 시스템(예컨대, 거리 센서 또는 애플리케이션 프로세서를 포함함, 40)로부터 AF 기능을 위한 정보(즉, 객체와의 거리 정보)를 수신할 수 있고, 거리 정보를 통해 객체에 초점을 맞추기 위한 초점 거리에 따라 액체 렌즈(280)가 가져야 할 형상에 대응하는 구동 전압을 계산할 수 있다.
또한, 컨트롤러(240)는 계산된 구동 전압에 대응하는 구동전압코드를 구동 전압 테이블을 참조하여 획득하고, 획득된 구동전압코드를 렌즈 어셈블리(220)(예컨대, 구동 전압 제공부(미도시됨))로 출력할 수 있다. 이 때, 컨트롤러(240)는 구동 전압을 생성하도록 구동전압코드를 맵핑한 구동 전압 테이블을 가질 수 있다. 또는 컨트롤러(240)는 구동 전압을 생성하는 구동 전압부(미도시됨)를 더 포함할 수 있으며, 구동 전압부는 액체 렌즈 모듈 내 또는 광학 기기 내에 위치할 수 있다.
그리고 본 명세서에서는 AF 기능을 위한 정보를 '초점 정보'로 설명하며, 초점 정보가 적용된 구동 전압에 대응하는 구동전압코드를 '초점 신호'로 설명한다. 즉, 컨트롤러(240)에서 초점 정보가 반영된 구동 전압에 대응하는 구동전압코드는 초점 신호이고, 초점 정보와 온도 정보가 모두 반영된 구동 전압에 대응하는 구동전압코드는 구동 신호이다.
그리고 렌즈 구동부는 초점 신호 또는 구동 신호에 의하여 구동될 수 있으나, 초점 신호는 온도에 따른 액체 렌즈의 계면 변화가 보상되지 않은 신호이나, 구동 신호는 온도에 따른 액체 렌즈의 계면 변화가 보상된 신호이다. 이에, 실시예에 따른 광학 기기에서 액체 렌즈는 초점 신호와 온도 정보가 반영된 구동 신호에 의해 계면 변화가 발생하므로 온도가 가변하더라도 정확한 AF 기능을 수행할 수 있다.
또는, 컨트롤러(240)가 제공된 디지털 형태의 구동전압코드를 기초로, 구동전압코드에 상응하는 아날로그 형태의 구동 전압을 생성하여, 렌즈 어셈블리(220)에 제공할 수 있다. 이에, 구동 전압 제공부의 위치는 변경될 수 있다.
또한, 실시예로 컨트롤러(240)는 데이터 형태(예컨대, 디지털)의 전압 코드인 구동 신호를 출력하고 PWM제어를 통해 아날로그 형태로 액체 렌즈(280)에 인가될 수 있다. 이에, 컨트롤러(240)는 최종적으로 액체 렌즈(280)의 곡률을 제어할 수 있다.
컨트롤러(240)는 이미지 처리를 통해 수신된 초점 정보 및 온도 센서로부터의 온도 정보를 이용하여 상기 액체 렌즈(280)에 구동 신호를 인가하여 상기 계면을 조절할 수 있다.
렌즈 구동부(250)는 후술하는 전원 공급부(260)로부터 공급된 전압 레벨을 액체 렌즈(280)의 각 단자로 선택적으로 제공할 수 있다. 실시예로, 렌즈 구동부(250)는 스위칭부를 포함할 수 있다. 여기서, 스위칭부는 에이치브릿지(H Bridge)로 불리는 회로의 구성으로 이루어질 수 있다.
그리고 전압 부스터에서 출력된 고전압이 스위칭부의 전원 전압으로 인가될 수 있다. 이에 따라, 스위칭부는 인가되는 전원 전압과 그라운드 전압(ground voltage)을 선택적으로 액체 렌즈(280)의 양단에 공급할 수 있다.
또한, 액체 렌즈(280)는 구동을 위해 4개의 전극 섹터를 포함하는 4개의 제1 전극, 제1 연결 기판, 1개의 제2 전극 및 제2 연결 기판을 포함함은 전술한 바와 같다. 액체 렌즈(280)의 양단은 복수의 제1 전극 중 어느 하나와 제2 전극을 의미할 수 있다. 또한, 액체 렌즈(280)의 양단은 4개의 제1 전극의 4개의 전극 섹터 중 어느 하나와 제2 전극의 1개의 전극 섹터를 의미할 수 있다.
이에, 액체 렌즈(280)의 각 전극 섹터에 기 설정된 폭을 가지는 펄스 형태의 전압이 인가될 수 있다. 그리고 전압은 제1 전극과 제2 전극 각각에 인가되는 전압의 차이로서 액체 렌즈(280)에 인가될 수 있다.
전원 공급부(260)는 별도의 전원을 렌즈 구동부(250)로 인가할 수 있다. 전원 공급부(260)는 전압 레벨을 증가시키는 전압 부스터를 포함할 수 있다. 그리고 전술한 렌즈 구동부(250)는 액체 렌즈(280)의 각 단자에 증가된 전압을 선택적으로 출력할 수 있다.
컨트롤러(240)가 상술한 바와 같이 렌즈 구동부(250)로 제공되는 구동 신호, 즉 공통 전극과 개별 전극에 인가되는 펄스 전압의 위상을 제어함으로써, 렌즈 구동부(250)는 이에 상응하는 아날로그 형태의 구동 전압을 생성할 수 있다. 다시 말해, 컨트롤러(240)는 제1 전극과 제2 전극 각각에 인가되는 전압을 제어할 수 있다. 이하에서는 구동 신호를 전압의 형태를 기준으로 설명한다.
그리고 제어 회로(210)는 제어 회로(210)의 통신 또는 인터페이스의 기능을 수행하는 커넥터(미도시)를 더 포함할 수 있다. 예를 들어, I2C(Inter-Integrated Circuit) 통신 방식을 사용하는 제어 회로(210)와 MIPI(Mobile Industry Processor Interface) 통신 방식을 사용하는 렌즈 어셈블리(220) 간의 통신을 위해 커넥터는 통신 프로토콜 변환을 수행할 수 있다. 또한, 커넥터는 외부(예컨대, 배터리)로부터 전원을 공급받아, 컨트롤러(240) 및 렌즈 어셈블리(220)의 동작에 필요한 전원을 공급할 수 있다. 이 경우 커넥터는 도 2에 도시된 커넥터(153)에 해당할 수 있다.
또한, 메모리부(290)는 제어 회로(210) 내부 또는 제어 회로(210)와 분리되어 위치할 수 있다. 메모리부(290)는 각 디옵터에 따른 온도 정보, 딜레이 정보, 액체 렌즈(280)에 인가되는 복수의 펄스(전압 신호)의 시간차인 딜레이 정보, 게인(gain) 정보, 오프셋 정보를 저장할 수 있다. 예컨대, 메모리부(290)는 특정 디옵터(예를 들어, 0 디옵터)에 따른 온도 정보, 딜레이 정보, 액체 렌즈(280)에 인가되는 복수의 펄스의 시간차인 딜레이 정보, 게인 정보, 오프셋 정보를 저장할 수 있다.
그리고 상술한 바와 같이 제어 회로(210)는 목표 곡률 형성을 위해, 감지된 온도에 기초하여, 변경된 전압 신호를 렌즈 구동부(250)에서 액체 렌즈(280)로 출력할 수 있다. 또한, 제어 회로(210)는 감지된 온도에 따라, 액체 렌즈(280)에 인가되는 복수의 펄스의 시간차인 딜레이를 가변할 수 있다.
또한, 제어 회로(210)는 감지된 온도를 반영한 구동 신호를 출력하므로, 동일한 디옵터를 제공하더라도 온도에 따라 구동 신호는 상이할 수 있다. 액체 렌즈(280)에 인가되는 복수의 펄스의 시간차인 딜레이는 상이한 구동 신호에 따라 변할 수 있다. 이로써, 감지된 온도 정보를 이용하여 신속하고 정확하게 렌즈의 곡률을 가변할 수 있다.
제어 회로(210)는 메모리부(290)에 저장된 정보 및 감지된 온도에 따라, 액체 렌즈(280)에 인가되는 복수의 펄스의 시간차인 딜레이를 가변함으로써, 감지된 온도 정보를 이용하여 신속하고 정확하게 렌즈의 곡률을 가변할 수 있다.
도 10을 참조하면, 광학 기기에서 공통 전극(E2), 개별 전극(E1), 스위칭 소자(SWL)에 대한 타이밍 도를 예시한다.
구체적으로, T1과 T3 시점 사이의 기간(Dt1) 동안, 스위칭 소자(SWL)가 온 된다. 그리고 온도 센서(299)에서의 감지의 정확성, 안정성을 위하여 본 발명에서는 T1과 T3 시점 사이의 기간(Dt1) 중 액체 렌즈(280) 내의 공통 전극(E2)과 복수의 개별 전극(E1) 중 어느 하나에 펄스가 인가되는 것으로 설명한다.
실시예로, T2 시점에서 공통 전극(E2)에 Dt2의 펄스 폭을 가지는 펄스가 인가될 수 있다. 이에 따라, T2 시점 이후에, 액체 렌즈(280)에 곡률이 형성될 수 있다.
그리고 T4 시점에 개별 전극(E1)에 Dt3의 펄스 폭을 가지는 펄스가 인가될 수 있다. 즉, T2 시점에 공통 전극(E2)에 하이 레벨의 전압이 인가되고, T4 시점에 개별 전극(E1)에 하이 레벨의 전압이 인가될 수 있다.
이에 따라, 공통 전극(E2)에 인가되는 펄스와, 개별 전극(E1)에 인가되는 펄스의 시간 차(DFF1)에 의하여 액체 렌즈(280) 내의 곡률이 가변될 수 있다.
예를 들어, 펄스의 시간 차(DFF1)가 커질수록, 경계 영역의 면적의 크기가 증가할 수 있다. 다시 말해, 곡률이 커질 수 있다.
그리고 펄스의 시간 차(DFF1) 이후에 펄스의 시간 차(DFF2)를 가변하여 액체 렌즈(280) 내의 곡률을 유지 또는 변경할 수 있다.
도 11 내지 도 13은 실시예에 따른 컨트롤러의 동작을 설명하기 위한 초점 신호, 온도, 디옵터 및 딜레이의 관계를 설명하는 도면이고,
먼저, 도 11을 참조하면, 초점 신호가 증가하면 그에 따라 펄스의 시간차(또는 딜레이(delay))가 증가할 수 있다. 그리고 초점 신호가 증가하여 딜레이가 증가하면 상술한 바와 같이 액체 렌즈의 곡률이 변할 수 있다. 또한, 액체 렌즈의 커패시턴스가 증가할 수 있다. 초점 신호와 마찬가지로 구동 신호도 증가하면 딜레이가 증가할 수 있다.
그리고 실시예에 따른 광학 기기은 외부 시스템으로부터 수신한 초점 신호로부터 초점 신호에 대응하는 디옵터를 산출할 수 있다. 수신한 초점 신호에 대응하는 디옵터는 이후에 설정 디옵터로 설명한다.
다시 말해, 광학 기기은 초점 신호로부터 외부 시스템에서 요구하는 디옵터(여기서, 설정 디옵터)를 산출할 수 있다. 다만, 상술한 바와 같이 온도에 따라 액체 렌즈의 계면이 변하므로 원하는 디옵터(설정 디옵터)를 정확하게 제공하기 위하여 온도 센서로부터 감지된 온도 정보를 반영하여 구동 신호를 산출할 수 있다. 즉, 온도 정보가 반영된 구동 신호에 의해, 액체 렌즈는 외부 시스템에서 요구한 설정 디옵터를 제공할 수 있다. 여기서, 초점 신호는 구동 신호와 마찬가지로 구동 전압(또는 이에 대응하는 구동전압코드)에 대응할 수 있다.
도 12 및 도 13을 참조하면, 온도 별 디옵터에 대한 구동 신호를 도시한다. 구동 신호는 디옵터의 변화에 따라 변할 수 있다. 또한, 구동 신호는 동일한 디옵터(Dsm)에 대해 온도별 상이한 값을 가질 수 있다. 예컨대, 구동 신호는 동일한 디옵터에 대해서 온도 별로 상이한 구동전압코드에 대응할 수 있다. 예를 들어, 디옵터(Dsm)에 대해 25℃에서 구동 신호가 DS1이고, 45℃에서 구동 신호가 DS2이다. 다시 말해, 온도가, 25℃인 경우, 구동 신호인 DS1에 의해 제1 펄스와 제2 펄스의 시간차인 딜레이(delay)를 DD1으로 설정하면, Dsm의 디옵터를 구현할 수 있으나, 온도가 45℃인 경우 딜레이(delay)를 DD1으로 설정하면, 액체 렌즈는 Dsm 보다 작은 디옵터를 제공한다.
이에 따라, 컨트롤러는 감지된 온도에 대응하여 원하는 설정 디옵터(여기서, Dsm)를 출력하도록 구동 신호 또는 액체 렌즈에 인가되는 복수의 펄스의 시간차인 딜레이를 가변할 수 있다.
또한, 컨트롤러는 감지된 온도와 설정 디옵터에 대한 기준 온도에 따라 구동 신호를 증감할 수 있다. 실시예로, 컨트롤러는 감지된 온도가 45℃이고, 설정 디옵터에 대한 기준 온도가 25℃인 경우, 액체 렌즈로 인가되는 딜레이를 증가할 수 있다. 반대로, 컨트롤러는 감지된 온도가 25℃이고, 설정 디옵터에 대한 기준 온도가 45℃인 경우, 액체 렌즈로 인가되는 딜레이를 감소할 수 있다. 이러한 구성에 의하여, 온도가 가변하더라도 원하는 디옵터를 정확하게 유지할 수 있다. 그리고 커패시턴스로부터 액체 렌즈의 곡률 또는 원하는 곡률 정보를 인지하여 온도 보상을 수행하는 경우와 달리, 커패시턴스의 감쇠율, 온도에 따른 커패시턴스 변화로 인해 부정확성이 발생하는 것을 차단할 수 있다. 다시 말해, 실시예에 따른 광학 기기은 액체 렌즈의 계면 변화를 커패시턴스로 측정하지 않음으로써 온도 변화 등에 의한 커패시턴스 측정의 부정확성을 용이하게 제거할 수 있다.
또한, 여기서, 기준 온도는 초점 신호에 대응하는 온도일 수 있다. 예컨대, 광학 기기 및 외부 시스템은 상호 간에 20℃를 기준 온도로 설정할 수 있다. 그리고 메모리부는 기준 온도인 20℃에 대해 디옵터별(0 디옵터 내지 N 디옵터)에 대응하는 구동 신호(구동전압코드, RD1 내지 RDN)을 저장할 수 있다. 이로써, 컨트롤러는 초점 신호의 구동전압코드가 RD1으로 인가된 경우 설정 디옵터가 0디옵터로, 초점 신호의 구동전압코드가 RDN으로 인가된 경우 설정 디옵터가 N 디옵터인 것으로 산출할 수 있다.
특히, 실시예에 따른 광학 기기은 2개의 디옵터(후술하는 제1,2 디옵터) 별 온도에 대한 구동전압코드(이하 구동 신호로 설명)의 함수(이하 제1,2 구동 함수)만으로 전체 온도 및 전체 디옵터에 대해 용이하게 구동 함수를 산출할 수 있다. 이러한 구성에 의하여, 온도 별 전체 초점 신호를 저장하지 않음으로써, 연산 속도 및 데이터 공간을 용이하게 확보할 수 있다. 이러한 구동에 대한 자세한 설명은 도 14 내지 도 19에서 자세히 설명한다.
또한, 온도에 대해 구동전압코드가 변하므로 이에 대응하는 디옵터가 변함을 알 수 있다. 온도가 증가하면 디옵터가 증가하며, 반대로 온도가 감소하면 디옵터가 감소됨을 알 수 있다. 예컨대, 광학 기기은 온도가 증가하면 초점 신호에 대응하는 설정 디옵터로 유지하기 위해 구동 신호를 온도에 대응하여 감소할 수 있다.
도 14는 실시예에 따른 컨트롤러에서 온도에 따른 구동 신호 그래프의 산출을 설명하는 도면이고, 도 15는 도 14에서 제2 구간 및 제3 구간 간의 관계를 설명하는 도면이다.
도 14를 참조하면, 메모리부는 제1 디옵터에 대한 온도 별 복수의 제1 구동 신호로 이루어진 제1 구동 함수 및 제2 디옵터에 대한 온도 별 복수의 제2 구동 신호로 이루어진 제2 구동 함수를 저장할 수 있다. 제1 디옵터와 제2 디옵터는 액체 렌즈가 제공 가능한 최소 디옵터와 최대 디옵터일 수 있다.
또한, 메모리부는 제1 구동 함수, 제2 구동 함수는 소정의 온도 영역에 따라 상이한 함수로 이루어질 수 있다. 예컨대, 제1 구동 함수는 제1 온도 영역 내에서 제1 함수로 이루어지고, 제2 온도 영역 내에서 제2 함수로 이루어질 수 있다. 다시 말해, 컨트롤러는 특정 구동 함수(예컨대, 제1 디옵터에 대한 구동 함수)에서 온도 센서로부터 수신한 감지된 온도에 따라 상이한 함수가 적용될 수 있다. 또한, 이러한 각 온도 영역에서의 함수도 모두 메모리부에 저장될 수 있다.
그리고 실시예로 컨트롤러는 감지된 온도가 제1 온도 영역 내인 경우 제1 함수를 이용하고, 감지된 온도가 제2 온도 영역 내인 경우 제1 함수와 상이한 제2 함수를 이용하여 구동 신호를 제어할 수 있다.
실시예에 따른 컨트롤러는 초점 신호로부터 설정 디옵터를 산출하고, 제1 구동 함수, 제2 구동 함수 및 온도 정보를 이용하여 설정 디옵터를 제공하는 구동 신호를 산출할 수 있다. 이에 따라, 액체 렌즈는 산출된 구동 신호에 대응하는 구동 전압이 인가되어 설정 디옵터를 가질 수 있다.
구체적으로, 제1 구동 함수 및 제2 구동 함수는 임의의 제1 지점 및 제2 지점에 의해 산출되는 제1 영역, 제2 영역 등을 포함할 수 있다. 도면을 참조할 때, 제1 구동 함수를 기준으로 설명하며, 제2 구동 함수에 대해서도 동일하게 제1 구동 함수의 설명이 동일하게 적용될 수 있다.
제1 구동 함수(FF1)는 상술한 바와 같이 소정의 디옵터(이하 제1 디옵터)에 대한 온도 별 복수의 구동 신호(제1 구동 신호와 혼용함)로 이루어질 수 있다. 제1 구동 함수(FF1)는 제1 디옵터에 대한 각 온도 별 구동 신호를 포함할 수 있다. 예컨대, 제1 구동 함수(FF1)는 액체 렌즈가 제1 디옵터를 가지게 하는 1.1℃, 1.2℃, 1.3℃에서의 상이한 구동 신호를 포함할 수 있다. 특히, 제1 구동 함수(FF1)는 이하 설명하는 관계 또는 구성으로 이루어질 수 있다.
제1 구동 함수(FF1)는 특정 디옵터, 즉 제1 디옵터에 대한 온도에 관한 관계식으로 이루어질 수 있다. 제1 구동 함수(FF1)는 임의의 제1 지점(RP1), 임의의 제2 지점(RP2) 사이의 제1 영역(R1)을 포함할 수 있다. 여기서, 제1 지점(RP1)과 제2 지점(RP2)은 온도와 온도에 대응하는 구동 신호의 좌표일 수 있다. 즉, 제1 지점(RP1)은 온도(t1)와 구동 신호(c1)로 이루어지고, 제2 지점(RP2)은 온도(t2)와 구동 신호(c2)로 이루어질 수 있다. 실시예로, 제1 영역(R1)은 제1 지점(RP1)과 제2 지점(RP2) 사이의 1차 함수로 이루어질 수 있다. 실시예로, 제1 영역(R1)에서 온도에 대한 구동 신호의 함수는 상술한 제1 함수일 수 있다. 또한, 제1 영역(R1)에서는 제1 함수가 적용될 수 있다.그리고 제1 함수는 1차 함수의 기울기인 제1 기울기를 가질 수 있다. 이러한 제1 영역은 제1 온도 영역으로 혼용될 수 있으며 후술하는 영역은 온도를 기준으로 구획된다.
제1 구동 함수에서 온도는 -20℃ 내지 70℃일 수 있다. 이는 광학 기기 내에서 액체 온도가 동작하는 온도 범위로 설정될 수 있다. 실시예로, 제1 온도 영역은 20℃ 내지 70℃일 수 있다. 다시 말해, 컨트롤러는 감지된 온도가 20℃ 내지 70℃인 경우에 제1 함수가 적용하여 구동 신호를 제어할 수 있다.또한, 제1 지점(RP1)은 제2 지점(RP2)보다 온도가 크고, 구동 신호가 작을 수 있다.
제1 구동 함수(FF1)는 제1 영역(R1)에 이격된 제3 영역(R3) 및 제3 영역(R3)과 제1 영역(R1) 사이에 배치되는 제2 영역(R2)을 더 포함할 수 있다. 제2 영역(R2)과 제3 영역(R3)은 제3 지점(RP3)에 의해 산출될 수 있다.
실시예로, 감지된 온도가 제2 영역(R2) 또는 제3 영역(R3) 내에 존재하면, 컨트롤러는 제2 함수를 적용하여 구동 신호를 제어할 수 있다. 즉, 컨트롤러는 제2 영역(R2)은 제2 온도 영역으로 판단하여 제2 함수에 온도를 적용하여 구동 신호를 제어할 수 있다. 제2 함수는 상술한 제1 함수보다 차수가 높을 수 있다. 다시 말해, 제1 함수는 제2 함수보다 차수가 낮을 수 있다. 실시예로, 제2 함수는 2차 함수이고, 제1 함수는 1차 함수일 수 있다. 이에 따라, 제2 함수는 온도에 따라 변하는 제2 기울기를 가질 수 있다. 예컨대, 제2 기울기는 제2 지점(RP2)에서 제3 지점(RP3)을 향해 감소할 수 있다.
이와 같이, 실시예에 따르면 제1 온도 영역에서 제1 함수의 제1 기울기는 동일하므로 구동 신호의 온도에 따른 변화량을 일정할 수 있다. 이와 달리, 제2 온도 영역에서 제2 함수의 제2 기울기는 변하므로 구동 신호의 온도에 따른 변화량도 변할 수 있다. 이는 액체 렌즈가 온도에 의해 곡률이 가변함과 동시에 온도에 따라 곡률의 변화량도 상이하기 때문이다. 즉, 실시예에 따른 컨트롤러는 온도에 따라 곡률의 변화량이 변화하는 것을 보상하여, 보다 정확한 온도 보상을 수행할 수 있다. 또한, 실시예에 따른 광학 기기은 액체 렌즈의 특성을 반영한 제1 구동 함수와 제2 구동 함수를 이용하므로 빠른 처리 속도를 제공할 뿐만 아니라, 정확한 디옵터 또는 초점 거리를 갖도록 구동 신호를 산출할 수 있다. 또한, 제2 기울기는 제1 기울기보다 작을 수 있다. 즉, 제1 온도 영역은 실제 광학 기기의 대부분의 사용 온도를 나타내므로, 온도 변화에 대해 보다 정밀하게 이루어질 수 있다.
실시예로, 제2 영역(제2 온도 영역)에서 제2 함수는 제1 지점(RP1), 제2 지점(RP2) 및 제3 지점(RP3)을 이용한 2차 함수로 이루어질 수 있다. 즉, 제2 영역(R2)에서 온도와 구동 함수와의 관계는 2차 함수로 이루어질 수 있다.또한, 제2 영역(R2)은 제2 지점(RP2)과 제3 지점(RP3) 사이에 위치할 수 있다. 그리고 제3 영역(R3)은 제3 지점(RP3)보다 온도가 낮은 영역일 수 있다.
제1 영역(R1)은 온도가 제2 영역(R2) 및 제3 영역(R3)의 온도보다 클 수 있다. 그리고 제2 영역(R2)의 온도는 제3 영역(R3)의 온도보다 클 수 있다. 이에 따라, 실시예에서, 제1 온도 영역은 제2 온도 영역보다 온도가 높을 수 있다. 그리고 제1 온도 영역에서의 구동 신호는 제2 온도 영역에서의 구동 신호보다 작을 수 있다. 예를 들어, 제1 온도 영역에서의 구동 신호의 최소값은 제2 온도 영역에서의 구동 신호의 최대값보다 클 수 있다.
그리고 제3 지점(RP3)은 제1 구동 함수의 임계점 또는 제2 구동 함수의 임계점일 수 있다. 다시 말해, 제3 지점(RP3)에서 온도는 제2 함수로 계산된 최대 또는 최소 구동 신호일 때의 온도일 수 있다. 즉, 제3 지점(RP2)의 온도는 제2 온도 영역과 제3 온도 영역의 경계점일 수 있다. 온도에 따라 구동 신호의 크기 증감은 설정에 따라 변경될 수 있다. 본 명세서에서는 구동 신호가 증가할수록 액체 렌즈의 전극에 가해지는 전압이 증가하는 것을 기준으로 이해해야 한다.
또한, 제3 지점(RP3)은 제2 지점(RP2)의 온도보다 낮은 영역에서 기울기의 부호가 변하는 지점일 수 있다. 예컨대, 제3 지점(RP3)은 기울기가 음에서 양으로 변하는 지점일 수 있다. 실시예로, 제3 지점(RP3)은 0℃이하에 위치할 수 있다. 그리고 제3 지점(RP3) 이하에서는 온도 변화에 따른 액체 렌즈의 곡률 변화가 적으며, 제3 영역(R3)에서 액체 렌즈의 구동이 존재하기 어려울 수 있다.
그리고 제3 지점(RP3) 이하의 온도 즉, 제3 영역(R3, 제3 온도 영역에 대응)에서 컨트롤러는 제3 함수에 따라 구동 신호를 제어할 수 있다. 실시예로, 제3 함수는 2차 함수 또는 상수일 수 있다.
도 15를 참조하면, 실시예에 따른 광학 기기은 제2 영역(R2)에서의 기울기에 대한 가중치를 제3 영역(R3)에 동일하게 적용할 수 있다. 즉, 제1 구동 함수에서 제3 지점(RP3)을 기준으로 제2 영역(R2)과 제3 영역(R3)은 서로 대칭하는 기울기를 가질 수 있다. 다시 말해, 제2 영역(R2)의 제2 기울기와 제3 영역(R3)의 제3 기울기는 음/양의 부호만 다를 수 있다. 이에 따라, 제3 함수는 제2 함수와 동일한 2차 함수일 수 있다. 이러한 구성에 의하여, 제3 영역(R3)에서의 온도 보상을 신속하게 수행할 수 있다.
또한, 변형예로, 제3 함수는 상수일 수 있다. 이에 따라, 컨트롤러는 제3 온도 영역에서의 구동 함수의 제어를 더욱 용이하게 수행할 수 있다. 이는 실제 광학기기 예컨대, 광학 기기가 사용되기 어려운 온도 환경을 반영한 것으로, 사용 어려운 온도에서의 처리를 최소화함으로써 컨트롤러의 처리 속도가 개선될 수 있다.
그리고 상술한 제1 디옵터와 제2 디옵터는 상이할 수 있다. 제1 디옵터와 제2 디옵터는 각각 인피니티와 매크로에 대응하는 값일 수 있다. 다시 말해, 전술한 바와 같이 제1 디옵터의 제1 구동 함수와 제2 디옵터의 제2 구동 함수는 최소 초점 거리 또는 최대 초점 거리에 대한 구동 신호의 함수 일 수 있다.
또한, 설정 디옵터는 제1 디옵터 또는 제2 디옵터와 동일할 수도 있고, 제1 디옵터 및 제2 디옵터와 상이할 수도 있다.
도 16 내지 도 19은 실시예에 따른 컨트롤러의 구동을 설명하는 도면이다.
먼저, 실시예에 따른 상기 컨트롤러는 초점 정보에 대응한 초점 신호에 온도 정보를 보상하여 구동 신호를 산출할 수 있다. 이하에서는 구동 신호의 산출에 대해 구체적으로 설명한다. 도 16을 참조하면, 실시예에 따른 컨트롤러는 메모리부의 복수의 제1 구동 신호(SG3a, SG3b) 및 복수의 제2 구동 신호(SG4a, SG4b)로부터 제1 구동 함수(FF1) 및 제2 구동 함수(FF2)를 생성할 수 있다. 이에 대한 설명은 상기 도 14 및 도 15에서 설명한 내용이 동일하게 적용될 수 있다. 그리고 이하에서 a, b, d, e, x, y, h, i, f, g는 구동 신호(또는 구동전압코드)일 수 있다.
제1 구동 신호(SG3a, SG3b)는 제1 디옵터(D1)에 대한 상이한 온도(K1, K2)에서의 구동 신호이며, 제1 구동 함수(FF1)는 제1 디옵터(D1)에서 온도에 대한 구동 신호의 함수이다.
또한, 제2 구동 신호(SG4a, SG4b)는 제2 디옵터(D2)에 대한 상이한 온도(K1, K2)에서의 구동 신호이며, 제2 구동 함수(FF2)는 제2 디옵터(D2)에서 온도에 대한 구동 신호의 함수이다. 이 때, 제1 구동 신호(SG3a, SG3b)에 대응하는 온도와 제2 구동 신호(SG4a, SG4b)에 대응하는 온도는 상이하거나, 적어도 일부가 동일할 수 있다.
또한, 제1 구동 함수(FF1)와 제2 구동 함수(FF2)는 상술한 바와 같이 각각 제1 온도 영역과 제2 온도 영역에 따라 제1 함수 또는 제2 함수로 구동 신호를 제어함을 이해해야 한다. 나아가, 제1 구동 함수(FF1)와 제2 구동 함수(FF2)는 제3 온도 영역에서 제3 함수로 구동 신호를 제어함을 이해해야 한다. 도 17 및 도 18을 참조하면, 컨트롤러는 구동 신호(P1)를 제2 구동 함수(FF2)를 이용하여 산출할 수 있다. 일예로, 구동 신호(P1)는 제2 구동 함수(FF2) 상에 위치하며, 제2 구동 함수(FF2)는 상술한 바와 같이 제2 구동 신호(SG4a, SG4b)에 대한 함수로 산출될 수 있다. 즉, 초점 신호로부터 산출된 설정 디옵터가 제2 디옵터(D2)와 동일한 경우에 컨트롤러는 온도 센서로부터 감지된 온도(도 17을 살펴보면, K1보다 작은 온도)에 대응한 구동 신호(P1)를 산출할 수 있다. 이에 따라, 액체 렌즈는 계면이 해당 온도(K1보다 작은 온도)에서 제2 디옵터(D2)로 동작할 수 있다.
그리고 컨트롤러는 제1 구동 함수(FF1) 및 제2 구동 함수(FF2)로부터 온도 별 복수의 제3 구동 함수(FF3)를 산출할 수 있다.
실시예로, 컨트롤러는 도 16과 같이 제1 구동 신호(SG3a, SG3b)와 제2 구동 신호(SG4a, SG4b)가 동일 온도에 대한 구동 신호인 경우에 제1 구동 신호와 제2 구동 신호를 이용하여 제3 구동 함수를 산출할 수 있다.
즉, 컨트롤러는 제1 구동 신호(a,b) 및 제1,2 디옵터(D1, D2) 그리고 제2 구동 신호(d,e) 및 제1,2 디옵터(D1, D2)를 이용하여 제3 구동 함수를 산출할 수 있다. 예컨대, 컨트롤러는 제1 구동 신호(a,b) 및 디옵터(제1 디옵터(D1), 제2 디옵터(D2))를 이용하여 특정 온도(K1)에서 디옵터 별 구동 신호의 제3 구동 함수를 산출할 수 있다.
실시예로, 컨트롤러는 구동 신호(P2)를 제3 구동 함수를 이용하여 산출할 수 있다. 일예로, 구동 신호(P2)는 제3 구동 함수 상에 위치할 수 있다. 이 경우, 컨트롤러는 산출된 설정 디옵터와 온도 센서로부터 감지된 온도(도 17을 살펴보면, K1)에 대응하는 구동 신호(P2)를 산출하여 출력할 수 있다. 이에 따라, 액체 렌즈는 계면이 제4 디옵터(D4)로 동작할 수 있다.
도 18을 참조하면, 제3 구동 함수는 제1 구동 함수(FF1)로부터 산출된 특정 온도에서의 구동 신호와 제2 구동 함수(FF2)로부터 산출된 특정 온도에서의 구동 신호를 이용하여 산출될 수 있다.
즉, 컨트롤러는 온도(K3)에서 제1 디옵터(D1)에 대한 구동 신호(x)를 제1 구동 함수(FF1)로부터 산출하고, 온도(K3)에서 제2 디옵터(D2)에 대한 구동 신호(y)를 제2 구동 함수(FF2)로부터 산출할 수 있다.
그리고 컨트롤러는 구동 신호(x,y) 및 디옵터(제1 디옵터(D1), 제2 디옵터(D2))를 이용하여 감지된 온도(K3)에서 설정 디옵터에 대한 구동 신호의 선형 함수로 제3 구동 함수를 산출할 수 있다. 이와 같은 방식으로, 컨트롤러는 온도 별 복수 개의 제3 구동 함수를 산출할 수도 있다. 그리고 상술한 바와 같이 복수의 제3 구동 함수는 다양한 온도에서 디옵터에 대한 구동 신호의 함수일 수 있다. 그리고 컨트롤러는 제3 구동 함수에 설정 디옵터와 온도를 적용하여 구동 신호를 산출하고 출력하여 액체 렌즈가 설정 디옵터를 가지도록 할 수 있다.
도 19를 참조하면, 컨트롤러는 복수 개의 제3 구동 함수를 통해 제4 디옵터(D4) 및 제5 디옵터(D5)에 대한 구동 신호(h,i,f,g 또는 d,I,g,e)을 산출할 수 있다.
컨트롤러는 제3 구동 함수를 통해 구동 신호(h,i,f,g 또는 d,I,g,e)를 산출하고, 산출된 구동 신호(h,I,f,g 또는 d,I,g,e)를 이용하여 동일 디옵터(제4 디옵터(D4) 또는 제5 디옵터(D5)에서 온도에 대한 구동 신호의 함수로서 제4 구동 함수(FF4a, FF4b)를 산출할 수 있다.
이에, 컨트롤러는 구동 신호(h,f,i,g) 및 디옵터(제4 디옵터(D4), 제5 디옵터(D5))를 이용하여 K3에서 제5 디옵터(D5)에 대한 구동 신호를 구동 신호(P3)로 산출할 수 있다.

Claims (10)

  1. 서로 계면을 형성하는 제1 액체와 제2 액체를 포함하는 액체 렌즈를 포함하는 렌즈 어셈블리;
    상기 액체 렌즈의 온도를 감지하는 온도 센서;및
    상기 액체 렌즈의 구동 신호를 제어하는 컨트롤러를 포함하고,
    상기 컨트롤러는 상기 감지된 온도가, 제1 온도 영역 내인 경우 제1 함수를 이용하고 제2 온도 영역 내인 경우 상기 제1 함수와 다른 제2 함수를 이용하여 상기 구동 신호를 제어하는 광학 기기.
  2. 제1 항에 있어서,
    상기 제1 함수는 상기 제2 함수보다 낮은 차수의 함수인 광학 기기.
  3. 제2 항에 있어서,
    상기 제1 함수는 1차 함수이고 상기 제2 함수는 2차 함수인 광학 기기.
  4. 제1 항에 있어서,
    상기 제1 온도 영역은 상기 제2 온도 영역보다 온도가 높은 영역이고,
    상기 제1 온도 영역에서의 상기 구동 신호의 값은 상기 제2 온도 영역에서의 상기 구동 신호의 값보다 작은 광학 기기.
  5. 제1항에 있어서,
    상기 제1 함수와 상기 제2 함수를 저장하는 메모리부를 포함하고,
    상기 제1 함수와 상기 제2 함수는 상기 렌즈 어셈블리가 제1 디옵터일 때 상기 온도에 대한 상기 구동 신호의 함수인 광학 기기.
  6. 제1 항에 있어서,
    온도에 따라, 상기 제1 온도 영역에서 상기 구동 신호의 변화량은 일정하고 상기 제2 온도 영역에서 상기 구동 신호의 변화량은 변하는 광학 기기.
  7. 제3 항에 있어서,
    상기 컨트롤러는 제2 온도 영역보다 낮은 제3 온도 영역에서 제3 함수를 이용하여 상기 구동 신호를 제어하고,
    상기 제2 온도 영역과 상기 제3 온도 영역의 경계에서 온도는 상기 제2 함수로 계산된 값이 최대값일 때의 온도인 광학 기기.
  8. 제7 항에 있어서,
    상기 제3 온도 영역의 제3 함수는 2차 함수 또는 상수인 광학 기기.
  9. 제8 항에 있어서,
    상기 제3 함수는 상기 제2 함수와 동일한 함수인 광학 기기.
  10. 제1 항에 있어서,
    상기 액체 렌즈의 온도는 상기 액체 렌즈 또는 상기 렌즈 어셈블리에서 측정한 온도인 광학 기기.
PCT/KR2020/015282 2019-11-04 2020-11-04 광학 기기 WO2021091212A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/774,254 US20220390652A1 (en) 2019-11-04 2020-11-04 Optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0139571 2019-11-04
KR1020190139571A KR20210053670A (ko) 2019-11-04 2019-11-04 광학 기기

Publications (1)

Publication Number Publication Date
WO2021091212A1 true WO2021091212A1 (ko) 2021-05-14

Family

ID=75848541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015282 WO2021091212A1 (ko) 2019-11-04 2020-11-04 광학 기기

Country Status (3)

Country Link
US (1) US20220390652A1 (ko)
KR (1) KR20210053670A (ko)
WO (1) WO2021091212A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515021A (ja) * 2004-09-30 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 制御可能な光学レンズ
US20080277480A1 (en) * 2007-05-10 2008-11-13 Serge Thuries Temperature compensated auto focus control for a microfluidic lens, such as auto focus control for a microfluidic lens of a bar code scanner
JP2011530722A (ja) * 2008-08-12 2011-12-22 株式会社オプトエレクトロニクス 温度補償された合焦時間を有する液体レンズ
US20180136372A1 (en) * 2015-06-17 2018-05-17 Optotune Consumer Ag Temperature drift compensation for liquid lenses
KR20180087082A (ko) * 2017-01-24 2018-08-01 엘지이노텍 주식회사 액체 렌즈 및 이를 포함하는 카메라 모듈 및 광학기기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515021A (ja) * 2004-09-30 2008-05-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 制御可能な光学レンズ
US20080277480A1 (en) * 2007-05-10 2008-11-13 Serge Thuries Temperature compensated auto focus control for a microfluidic lens, such as auto focus control for a microfluidic lens of a bar code scanner
JP2011530722A (ja) * 2008-08-12 2011-12-22 株式会社オプトエレクトロニクス 温度補償された合焦時間を有する液体レンズ
US20180136372A1 (en) * 2015-06-17 2018-05-17 Optotune Consumer Ag Temperature drift compensation for liquid lenses
KR20180087082A (ko) * 2017-01-24 2018-08-01 엘지이노텍 주식회사 액체 렌즈 및 이를 포함하는 카메라 모듈 및 광학기기

Also Published As

Publication number Publication date
US20220390652A1 (en) 2022-12-08
KR20210053670A (ko) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2019146974A1 (ko) 카메라 모듈
WO2018190506A1 (ko) 액체 렌즈 제어 회로, 카메라 모듈 및 액체 렌즈 제어 방법
WO2019221541A1 (ko) 카메라 모듈
WO2019088353A1 (ko) 액체 렌즈를 포함하는 카메라 모듈 및 광학 기기
WO2019212259A1 (ko) 액체 렌즈 및 이를 포함하는 카메라 모듈
WO2019212260A1 (ko) 카메라 모듈
WO2019146993A1 (ko) 액체 렌즈 제어 회로, 카메라 모듈 및 액체 렌즈 제어 방법
WO2019225984A1 (ko) 액체 렌즈, 이를 포함하는 카메라 모듈 및 광학 기기
WO2021242079A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 장치
WO2018106073A1 (ko) 카메라 모듈
WO2019147004A1 (ko) 카메라 모듈
WO2020145687A1 (ko) 카메라 모듈
WO2019112119A1 (ko) 렌즈 어셈블리 및 이를 포함하는 카메라 모듈
WO2020242039A1 (ko) 액체렌즈
WO2019146980A1 (ko) 액체 렌즈 모듈, 이를 포함하는 렌즈 어셈블리 및 이 어셈블리를 포함하는 카메라 모듈
WO2021054760A1 (ko) 카메라 모듈
WO2020251243A1 (ko) 쉐이퍼 유닛 및 흔들림 보정 장치
WO2018131925A1 (ko) 액체 렌즈의 구동 전압 인가 방법, 액체 렌즈, 카메라 모듈 및 광학 기기
WO2021054740A1 (ko) 카메라 모듈
WO2018182204A1 (ko) 듀얼 렌즈 구동 장치 및 카메라 모듈
WO2021091212A1 (ko) 광학 기기
WO2020242149A1 (ko) 액체렌즈 및 이를 포함하는 카메라 모듈
WO2019225975A1 (ko) 액체 렌즈 및 이를 포함하는 카메라 모듈 및 광학기기
WO2021118264A1 (ko) 카메라 모듈
WO2019225973A1 (ko) 액체 렌즈 및 이를 포함하는 렌즈 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883744

Country of ref document: EP

Kind code of ref document: A1