WO2021091158A1 - Cooling structure for rotor of drive motor - Google Patents

Cooling structure for rotor of drive motor Download PDF

Info

Publication number
WO2021091158A1
WO2021091158A1 PCT/KR2020/014862 KR2020014862W WO2021091158A1 WO 2021091158 A1 WO2021091158 A1 WO 2021091158A1 KR 2020014862 W KR2020014862 W KR 2020014862W WO 2021091158 A1 WO2021091158 A1 WO 2021091158A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
rotor
rotary shaft
cooling fluid
supply pipe
Prior art date
Application number
PCT/KR2020/014862
Other languages
French (fr)
Korean (ko)
Inventor
류영현
Original Assignee
송과모터스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 송과모터스 주식회사 filed Critical 송과모터스 주식회사
Priority to CN202080074064.XA priority Critical patent/CN114631248B/en
Publication of WO2021091158A1 publication Critical patent/WO2021091158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention forms an integral cooling fluid supply pipe in a form that can be installed across the inside and outside of the hollow rotary shaft of the drive motor and installs it inside the rotary shaft and outside the coolant cover, so that the cooling fluid supply pipe uses fastening means such as bolts.
  • the present invention relates to a rotor cooling structure of a driving motor that requires only an assembly process and can be installed on a rotating shaft and a coolant cover through a relatively easy and simple process, thereby improving assembly performance.
  • Electric vehicles generally referred to as eco-friendly vehicles, generate driving power by a driving motor that obtains rotational power through electric energy.
  • a permanent magnet synchronous motor (PMSM) is widely used as a driving motor used as a power source for an eco-friendly vehicle such as an electric vehicle or a hybrid vehicle.
  • Permanent magnet type synchronous motors need to maximize the performance of permanent magnets in order to achieve maximum performance under constrained layout conditions.
  • Neodymium (Nd) components in permanent magnets improve the strength of permanent magnets, and dysprosium (Dy) Ingredients improve high temperature demagnetization resistance.
  • rare earth (Nd, Dy) metal components of these permanent magnets are limitedly buried in some countries such as China, are very expensive, and fluctuate in price.
  • the field winding type synchronous motor replaces the permanent magnet of the permanent magnet type synchronous motor (PMSM) by winding a coil to the rotor as well as the stator to electromagnetize the rotor when current is applied.
  • PMSM permanent magnet type synchronous motor
  • the rotor is arranged with a certain gap inside the stator, and when power is applied to the stator and the coil of the rotor, a magnetic field is formed, and the rotation of the rotor is prevented by the magnetic action generated between them. Done.
  • driving motors such as the above-described permanent magnet type synchronous motor or field winding type synchronous motor generate high-temperature heat around the rotor and coils while rotating at high speed.
  • FIG. 1 is a configuration diagram illustrating a rotor cooling structure of an existing drive motor, and the rotation shaft 11 of the rotor 10 has a hollow structure in which one end in the longitudinal direction is closed. This is a method of providing a cooling function to the rotor 10 by installing a coolant tube (20) deep inside the interior of (11).
  • the outer diameter of the supply pipe 20 and the inner diameter of the coolant cover 30 are adjusted to press-fit the supply pipe 20 of the cooling fluid into the coolant cover 30.
  • a process of hot/cold press-fitting of the precisely processed supply pipe 20 into the coolant cover 30 was required.
  • a separate inlet pipe (40: inlet pipe) was required.
  • the rotor cooling structure of the existing drive motor is a structure for installing the cooling fluid supply pipe 20 and the installation process thereof is relatively complicated and cumbersome.
  • an integral cooling fluid supply pipe is formed in a form that can be installed across the inside and outside of the hollow rotary shaft of the drive motor, and the cooling fluid supply pipe is fastened with bolts, etc. by installing it inside the rotary shaft and outside the coolant cover. It provides a rotor cooling structure of a driving motor that requires only an assembly process using means and can be installed on a rotating shaft and a coolant cover through a relatively easy and simple process, thereby improving assembly performance.
  • a through hole for communicating with the inside is formed to connect the through hole to the inside of the rotation shaft, and a coolant cover coupled to the rotation shaft, through the through hole, across the inside of the rotation shaft and the outside of the coolant cover.
  • Means may be included.
  • the cooling fluid supply pipe includes a first conduit extending from an inlet of the through hole to a predetermined position in the rotation shaft, a second conduit extending in a round shape from one end of the first conduit toward the inlet of the through-hole, and the second conduit It may have a shape including a third conduit extending in a direction perpendicular to the first conduit from one end of.
  • a predetermined portion of a single pipe is bent to form the second pipe, and at the same time, both sides form the first pipe and the second pipe around the bent second pipe.
  • a predetermined portion of is bent to form the first pipe and the second pipe, and the third pipe may be coupled to one end of the bent second pipe.
  • a cooling fluid supply pipe in a form that can be installed across the inside and outside of the hollow rotary shaft of the drive motor is installed across the inside of the rotation shaft and outside of the coolant cover while only requiring an assembly process using fastening means such as bolts.
  • 1 is a configuration diagram illustrating a rotor cooling structure of an existing drive motor
  • FIG. 2 is a block diagram illustrating a rotor cooling structure of a drive motor according to an embodiment of the present invention
  • module refers to a unit that processes at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
  • a rotor cooling structure of a drive motor according to an embodiment of the present invention will be described with reference to FIG. 2.
  • FIG. 2 is a block diagram illustrating a rotor cooling structure of a drive motor according to an embodiment of the present invention.
  • the rotor cooling structure of the driving motor includes a coolant cover 200, a cooling fluid supply pipe 300, and a fastening means 400.
  • the rotor 100 is a rotor of a driving motor, and the rotor 100 includes a hollow rotary shaft 110 and a rotor core (not shown) coupled to the rotary shaft 110,
  • the cooling structure of this embodiment is a configuration for the rotor 100 of such a drive motor.
  • the rotary shaft 110 has a hollow structure in which one end in the longitudinal direction is closed, but the present invention is not limited thereto.
  • the coolant cover 200 has a through hole 210 for communicating with the inside of the rotation shaft 110, and is coupled to the rotation shaft 110 in a state that connects the through hole 210 with the inside of the rotation shaft 110. .
  • the cooling fluid supply pipe 300 is an integrated pipe structure installed over the inside of the rotation shaft 110 and the outside of the coolant cover 200 through the through hole 210 of the coolant cover 100, and such a cooling fluid supply pipe 300 serves to discharge the cooling fluid supplied from one end of the outer side of the coolant cover 100 into the rotation shaft 110 through the other end of the rotation shaft 110.
  • the supply of the cooling fluid to the inside of the rotation shaft 110 and a moving path in which the cooling fluid supplied into the rotation shaft 110 is recovered to the outside of the rotation shaft 110 together with a cooling action are illustrated by arrows.
  • the cooling fluid supply pipe 300 includes a first pipe 310 extending from an entrance of the through hole 210 of the coolant cover 200 to a predetermined position in the rotation shaft 110, and a through hole 110 of the first pipe 310.
  • a form including a second conduit 320 extending in a round shape from one end of the inlet and a third conduit 330 extending in a direction perpendicular to the first conduit 310 from one end of the second conduit 320 Can be
  • the cooling fluid supply pipe 300 is formed by bending a predetermined portion of a single pipe to form the second pipe line 320, and at the same time, the first pipe line 310 and the second pipe were bent at both sides of the second pipe line 320. It may be in the form of forming a pipe (320).
  • the cooling fluid supply pipe 300 a predetermined portion of the pipe is bent to form the first pipe 310 and the second pipe 320, and the first pipe line 310 and the second pipe line 320 are formed at one end of the bent second pipe line 320.
  • the conduit 330 may be coupled through a method such as welding.
  • the fastening means 400 functions to fasten the cooling fluid supply pipe 300 to the coolant cover 200, and these fastening means may be implemented in various forms through known techniques such as a configuration using bolts, Therefore, in the present embodiment, a detailed description and illustration thereof have been omitted and briefly illustrated.
  • reference numeral 500 which is not described, exemplifies a sealing member for preventing leakage of the cooling fluid flowing into the coolant cover 200 for recovery after the cooling action in the rotation shaft 110.
  • an integral cooling fluid supply pipe 300 is formed in a form that can be installed across the inside and outside of the hollow rotary shaft 110, and it is spread over the inside of the rotary shaft 110 and the outside of the coolant cover 200.
  • the cooling fluid supply pipe 300 can be installed through a relatively easy and simple process on the rotating shaft 110 and the coolant cover 200 while only requiring an assembly process using fastening means such as bolts.
  • the installation configuration of the cooling structure for the rotor 100 of the driving motor is simplified, and through this, the installation work for the rotor 100 of the cooling structure can be easily proceeded.
  • cold/hot press-in is required to insert one end of the supply pipe of the cooling fluid in close contact with the coolant cover.
  • the process of precisely processing the inner diameter of the runt cover may be omitted.
  • a process of coupling a separate inlet pipe to the coolant cover while being connected to one end of the supply pipe may be omitted to supply the cooling fluid to one end of the supply pipe of the cooling fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The present invention relates to a cooling structure for a rotor of a drive motor, the cooling structure having an improved assembling property because the cooling structure can be installed on a rotary shaft and a coolant cover through relatively easy and simple processes while a cooling fluid supply pipe only requires an assembling process using a coupling means such as a bolt, etc. by forming the cooling fluid supply pipe of an integrated type that can be installed throughout the inside and outside of a hollow type rotary shaft of the drive motor and installing same throughout inside the rotary shaft and outside of the coolant cover. The cooling structure for the rotor of the drive motor according to the present invention, the rotor of the drive motor including a hollow type rotary shaft and a rotor core coupled to the rotary shaft, comprises: a coolant cover having a through hole for communicating with the inside of the rotary shaft and being coupled to the rotary shaft in a state in which the through hole is connected to the inside of the rotary shaft; the cooling fluid supply pipe having an integrated tubular structure installed throughout the inside of the rotary shaft and the outside of the coolant cover via the through hole, and discharging a cooling fluid supplied from an end at the outside of the coolant cover into the rotary shaft via an opposite end in the rotary shaft; and a coupling means for coupling the cooling fluid supply pipe to the coolant cover.

Description

구동모터의 회전자 냉각 구조Rotor cooling structure of drive motor
본 발명은 구동모터의 중공형 회전축 내외부에 걸쳐 설치될 수 있는 형태로 일체형의 냉각 유체 공급관을 형성하여 이를 회전축 내부 및 쿨런트커버의 외부에 걸쳐 설치함으로써, 냉각 유체 공급관이 볼트 등 체결수단을 이용한 조립 과정만을 필요로 하면서 회전축 및 쿨런트커버에 비교적 용이하고 단순한 공정을 통해 설치될 수 있어 조립성이 개선되는 구동모터의 회전자 냉각 구조에 관한 것이다.The present invention forms an integral cooling fluid supply pipe in a form that can be installed across the inside and outside of the hollow rotary shaft of the drive motor and installs it inside the rotary shaft and outside the coolant cover, so that the cooling fluid supply pipe uses fastening means such as bolts. The present invention relates to a rotor cooling structure of a driving motor that requires only an assembly process and can be installed on a rotating shaft and a coolant cover through a relatively easy and simple process, thereby improving assembly performance.
일반적으로 친환경 자동차로 불리는 전기 자동차는 전기 에너지를 통해 회전력을 얻는 구동모터에 의해 구동력이 발생된다.Electric vehicles, generally referred to as eco-friendly vehicles, generate driving power by a driving motor that obtains rotational power through electric energy.
이와 같이 전기 자동차 내지 하이브리드 자동차 등 친환경 자동차의 동력원으로 이용되는 구동모터에는 영구자석형 동기모터(Permanent Magnet Synchronous Motor: PMSM)가 널리 사용되고 있다.As such, a permanent magnet synchronous motor (PMSM) is widely used as a driving motor used as a power source for an eco-friendly vehicle such as an electric vehicle or a hybrid vehicle.
영구자석형 동기모터는 제약된 레이아웃 조건에서 최대의 성능을 발휘하기 위해 영구자석의 성능을 극대화시킬 필요가 있으며, 영구자석에서 네오디뮴(Nd) 성분은 영구자석의 세기를 개선하고, 디스프로슘(Dy) 성분은 고온 감자(Demagnetization) 내성을 개선한다.Permanent magnet type synchronous motors need to maximize the performance of permanent magnets in order to achieve maximum performance under constrained layout conditions. Neodymium (Nd) components in permanent magnets improve the strength of permanent magnets, and dysprosium (Dy) Ingredients improve high temperature demagnetization resistance.
그러나 이러한 영구자석의 희토류(Nd, Dy) 금속 성분은 중국 등 일부 국가에 제한적으로 매장되어 있고, 매우 고가이며 가격 변동이 심하다.However, rare earth (Nd, Dy) metal components of these permanent magnets are limitedly buried in some countries such as China, are very expensive, and fluctuate in price.
이러한 이유 등으로, 최근에는 친환경 자동차의 동력원으로 이용되는 구동모터로서 영구자석형 동기모터(PMSM)를 대체할 수 있는 계자권선형 동기모터(Wound Rotor Synchronous Motor: WRSM)의 개발이 진행되고 있다.For this reason, in recent years, development of a field winding synchronous motor (WRSM) that can replace a permanent magnet type synchronous motor (PMSM) as a driving motor used as a power source of an eco-friendly vehicle is in progress.
계자권선형 동기모터는 고정자 뿐만 아니라 회전자에도 코일을 권선하여 전류인가 시 회전자를 전자석화시킴으로써 영구자석형 동기모터(PMSM)의 영구자석을 대체하고 있다.The field winding type synchronous motor replaces the permanent magnet of the permanent magnet type synchronous motor (PMSM) by winding a coil to the rotor as well as the stator to electromagnetize the rotor when current is applied.
이러한 계자권선형 동기모터는 회전자가 고정자 내측에 일정 공극을 두고 배치되며, 고정자와 회전자의 코일에 전원이 인가되면 자계가 형성되고, 이들 사이에 발생되는 자기적 작용에 의해 회전자의 회전이 이루어진다.In such a field winding type synchronous motor, the rotor is arranged with a certain gap inside the stator, and when power is applied to the stator and the coil of the rotor, a magnetic field is formed, and the rotation of the rotor is prevented by the magnetic action generated between them. Done.
한편, 상술한 영구자석형 동기모터 내지 계자권선형 동기모터 등 구동모터는 고속으로 회전되는 과정에서 회전자 및 코일 주변에 고온의 열이 발생하게 된다.On the other hand, driving motors such as the above-described permanent magnet type synchronous motor or field winding type synchronous motor generate high-temperature heat around the rotor and coils while rotating at high speed.
그리고 이와 같이 회전자 및 코일 부분에 발생되는 열로 인하여 구동모터는 동력 손실에 따른 효율 저하 및 내부 부품들의 손상이 발생될 수 있고, 따라서 이의 방지를 위한 기술로써 여러 형태의 냉각 기술들이 연구 및 제안되고 있다.In addition, due to the heat generated in the rotor and coil as described above, the efficiency of the driving motor may decrease due to power loss and damage to internal parts may occur. Therefore, various types of cooling technologies have been researched and proposed as a technology to prevent this. have.
도 1을 참조하면, 도 1은 기존 구동모터의 회전자 냉각 구조를 예시한 구성도로써, 회전자(10)의 회전축(11)이 길이 방향의 일단이 폐쇄된 중공형 구조를 가지며, 이러한 회전축(11)의 내부에 냉각 유체를 공급하는 공급관(20: coolant tube)을 깊숙이 설치하여 회전자(10)에 냉각 기능을 제공하는 방식이다.Referring to FIG. 1, FIG. 1 is a configuration diagram illustrating a rotor cooling structure of an existing drive motor, and the rotation shaft 11 of the rotor 10 has a hollow structure in which one end in the longitudinal direction is closed. This is a method of providing a cooling function to the rotor 10 by installing a coolant tube (20) deep inside the interior of (11).
그러나 이러한 기존 구동모터의 회전자 냉각 구조의 경우, 냉각 유체의 공급관(20)을 쿨런트커버(30: coolant cover)에 압입하기 위해 공급관(20)의 외경 및 쿨런트커버(30)의 내경을 정밀하게 가공해야 하는 동시에 이렇게 정밀 가공된 공급관(20)을 쿨런트커버(30)에 열간/냉간 압입하는 공정이 필요했다. 또한, 별도의 인렛파이프(40: inlet pipe)를 필요로 하였다.However, in the case of the rotor cooling structure of such an existing drive motor, the outer diameter of the supply pipe 20 and the inner diameter of the coolant cover 30 are adjusted to press-fit the supply pipe 20 of the cooling fluid into the coolant cover 30. At the same time, a process of hot/cold press-fitting of the precisely processed supply pipe 20 into the coolant cover 30 was required. In addition, a separate inlet pipe (40: inlet pipe) was required.
부연 설명하면, 기존 구동모터의 회전자 냉각 구조는 냉각 유체의 공급관(20)을 설치하기 위한 구조 및 그 설치 공정이 비교적 복잡하고 번거로운 것이었다.To further explain, the rotor cooling structure of the existing drive motor is a structure for installing the cooling fluid supply pipe 20 and the installation process thereof is relatively complicated and cumbersome.
본 발명의 실시 예는 구동모터의 중공형 회전축 내외부에 걸쳐 설치될 수 있는 형태로 일체형의 냉각 유체 공급관을 형성하여 이를 회전축 내부 및 쿨런트커버의 외부에 걸쳐 설치함으로써, 냉각 유체 공급관이 볼트 등 체결수단을 이용한 조립 과정만을 필요로 하면서 회전축 및 쿨런트커버에 비교적 용이하고 단순한 공정을 통해 설치될 수 있어 조립성이 개선되는 구동모터의 회전자 냉각 구조를 제공한다.In an embodiment of the present invention, an integral cooling fluid supply pipe is formed in a form that can be installed across the inside and outside of the hollow rotary shaft of the drive motor, and the cooling fluid supply pipe is fastened with bolts, etc. by installing it inside the rotary shaft and outside the coolant cover. It provides a rotor cooling structure of a driving motor that requires only an assembly process using means and can be installed on a rotating shaft and a coolant cover through a relatively easy and simple process, thereby improving assembly performance.
본 발명의 실시 예에 따른 구동모터의 회전자 냉각 구조는, 구동모터의 회전자로서, 중공형의 회전축 및 상기 회전축에 결합되는 회전자 코어를 포함하는 회전자의 냉각 구조에 있어서, 상기 회전축의 내부와 통하기 위한 관통홀이 형성되어 상기 관통홀을 상기 회전축의 내부와 연결하는 상태로 상기 회전축에 결합되는 쿨런트커버와, 상기 관통홀을 통해 상기 회전축의 내부 및 상기 쿨런트커버의 외부에 걸쳐 설치되는 일체형의 관 구조이며, 상기 쿨런트커버 외부의 일단으로부터 공급되는 냉각 유체를 상기 회전축 내부의 타단을 통해 회전축 내로 배출하는 냉각 유체 공급관과, 상기 냉각 유체 공급관을 상기 쿨런트커버에 체결하는 체결수단을 포함할 수 있다.In the rotor cooling structure of the drive motor according to an embodiment of the present invention, as a rotor of the drive motor, in the cooling structure of a rotor including a hollow rotary shaft and a rotor core coupled to the rotary shaft, A through hole for communicating with the inside is formed to connect the through hole to the inside of the rotation shaft, and a coolant cover coupled to the rotation shaft, through the through hole, across the inside of the rotation shaft and the outside of the coolant cover. A connection for fastening the cooling fluid supply pipe and the cooling fluid supply pipe to the coolant cover, and a cooling fluid supply pipe that discharges the cooling fluid supplied from one end outside the coolant cover into the rotation shaft through the other end inside the rotation shaft. Means may be included.
또한, 상기 냉각 유체 공급관은, 상기 관통홀의 입구로부터 상기 회전축 내의 소정 위치까지 연장되는 제1 관로 및 상기 제1 관로의 상기 관통홀 입구쪽 일단으로부터 라운드형으로 연장되는 제2 관로 그리고 상기 제2 관로의 일단으로부터 상기 제1 관로와 수직을 이루는 방향으로 연장되는 제3 관로를 포함하는 형태일 수 있다.In addition, the cooling fluid supply pipe includes a first conduit extending from an inlet of the through hole to a predetermined position in the rotation shaft, a second conduit extending in a round shape from one end of the first conduit toward the inlet of the through-hole, and the second conduit It may have a shape including a third conduit extending in a direction perpendicular to the first conduit from one end of.
또한, 상기 냉각 유체 공급관은 단일 관의 소정 부분이 벤딩 가공되어 상기 제2 관로가 형성되는 동시에 벤딩된 상기 제2 관로를 중심으로 양쪽이 상기 제1 관로 및 제2 관로를 형성하는 형태이거나, 관의 소정 부분이 벤딩 가공되어 상기 제1 관로 및 제2 관로가 형성되고 벤딩된 상기 제2 관로의 일단에 상기 제3 관로가 결합되는 형태일 수 있다.In addition, in the cooling fluid supply pipe, a predetermined portion of a single pipe is bent to form the second pipe, and at the same time, both sides form the first pipe and the second pipe around the bent second pipe. A predetermined portion of is bent to form the first pipe and the second pipe, and the third pipe may be coupled to one end of the bent second pipe.
본 발명의 실시 예에 따르면, 구동모터의 중공형 회전축 내외부에 걸쳐 설치될 수 있는 형태의 냉각 유체 공급관이 볼트 등 체결수단을 이용한 조립 과정만을 필요로 하면서 회전축 내부 및 쿨런트커버의 외부에 걸쳐 설치될 수 있어, 구동모터의 회전자에 대한 냉각 구조의 설치가 비교적 용이하고 단순한 공정을 통해 이루어지면서 조립성이 현저히 개선될 수 있게 된다.According to an embodiment of the present invention, a cooling fluid supply pipe in a form that can be installed across the inside and outside of the hollow rotary shaft of the drive motor is installed across the inside of the rotation shaft and outside of the coolant cover while only requiring an assembly process using fastening means such as bolts. As a result, the installation of the cooling structure for the rotor of the drive motor is made through a relatively easy and simple process, and assembling property can be remarkably improved.
도 1은 기존 구동모터의 회전자 냉각 구조를 예시한 구성도1 is a configuration diagram illustrating a rotor cooling structure of an existing drive motor
도 2는 본 발명의 일 실시 예에 따른 구동모터의 회전자 냉각 구조를 예시한 구성도2 is a block diagram illustrating a rotor cooling structure of a drive motor according to an embodiment of the present invention
이하의 본 발명에 관한 상세한 설명들은 본 발명이 실시될 수 있는 실시 예이고 해당 실시 예의 예시로써 도시된 첨부 도면을 참조한다. 이들 실시 예는 당업자가 본 발명의 실시에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시 예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시 예에 관련하여 본 발명의 사상 및 범위를 벗어나지 않으면서 다른 실시 예로 구현될 수 있다. 또한, 각각의 기재된 실시 예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 사상 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다.The following detailed descriptions of the present invention are embodiments in which the present invention may be practiced and refer to the accompanying drawings, which are illustrated as examples of the embodiments. These embodiments will be described in detail sufficient for those skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different from each other, but need not be mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be implemented in other embodiments without departing from the spirit and scope of the present invention in relation to one embodiment. In addition, it should be understood that the location or arrangement of individual components in each described embodiment may be changed without departing from the spirit and scope of the present invention.
따라서 후술되는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는 적절하게 설명된다면 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.Accordingly, the detailed description to be described below is not intended to be taken in a limiting sense, and the scope of the present invention is limited only by the appended claims, along with all scopes equivalent to those claimed by the claims, if appropriately described. Like reference numerals in the drawings refer to the same or similar functions over several aspects.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present invention have been selected from general terms that are currently widely used while considering functions in the present invention, but this may vary according to the intention or precedent of a technician working in the field, the emergence of new technologies, and the like. In addition, in certain cases, there are terms arbitrarily selected by the applicant, and in this case, the meaning of the terms will be described in detail in the description of the corresponding invention. Therefore, the terms used in the present invention should be defined based on the meaning of the term and the overall contents of the present invention, not a simple name of the term.
발명에서 전체에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 “…부”, "…모듈“ 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.In the present invention, when a part "includes" a certain component in the whole, it means that other components may be further included rather than excluding other components unless otherwise stated. In addition, “… Wealth”,  "… The term “module” refers to a unit that processes at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
도 2를 참조하여 본 발명의 실시 예에 따른 구동모터의 회전자 냉각 구조에 대해 설명한다.A rotor cooling structure of a drive motor according to an embodiment of the present invention will be described with reference to FIG. 2.
도 2는 본 발명의 일 실시 예에 따른 구동모터의 회전자 냉각 구조를 예시한 구성도이다.2 is a block diagram illustrating a rotor cooling structure of a drive motor according to an embodiment of the present invention.
도시된 바와 같이, 본 발명의 일 실시 예에 따른 구동모터의 회전자 냉각 구조는 쿨런트커버(200), 냉각 유체 공급관(300) 및 체결수단(400)을 포함하여 구성된다.As shown, the rotor cooling structure of the driving motor according to an embodiment of the present invention includes a coolant cover 200, a cooling fluid supply pipe 300, and a fastening means 400.
즉, 회전자(100)는 구동모터의 회전자로서, 이러한 회전자(100)는 중공형의 회전축(110) 및 회전축(110)에 결합되는 회전자 코어(미도시)를 포함하여 구성되고, 본 실시 예의 냉각 구조는 이러한 구동모터의 회전자(100)에 대한 구성이다. 또한, 본 실시 예에서는 회전축(110)이 길이 방향의 일단이 폐쇄된 중공형 구조인 것을 예로 하였으나, 본 발명이 이에 한정되는 것은 아니다.That is, the rotor 100 is a rotor of a driving motor, and the rotor 100 includes a hollow rotary shaft 110 and a rotor core (not shown) coupled to the rotary shaft 110, The cooling structure of this embodiment is a configuration for the rotor 100 of such a drive motor. In addition, in the present embodiment, it is exemplified that the rotary shaft 110 has a hollow structure in which one end in the longitudinal direction is closed, but the present invention is not limited thereto.
쿨런트커버(200)는 회전축(110)의 내부와 통하기 위한 관통홀(210)이 형성되며, 이러한 관통홀(210)을 회전축(110)의 내부와 연결하는 상태로 회전축(110)에 결합된다.The coolant cover 200 has a through hole 210 for communicating with the inside of the rotation shaft 110, and is coupled to the rotation shaft 110 in a state that connects the through hole 210 with the inside of the rotation shaft 110. .
냉각 유체 공급관(300)은 쿨런트커버(100)의 관통홀(210)을 통해 회전축(110)의 내부 및 쿨런트커버(200)의 외부에 걸쳐 설치되는 일체형의 관 구조로써, 이러한 냉각 유체 공급관(300)은 쿨런트커버(100) 외부의 일단으로부터 공급되는 냉각 유체를 회전축(110) 내부의 타단을 통해 회전축(110) 내로 배출하는 기능을 한다. 도면에서 냉각 유체의 회전축(110) 내부에 대한 공급 및 이렇게 회전축(110) 내로 공급된 냉각 유체가 냉각 작용과 함께 회전축(110) 외부로 회수되는 이동 경로를 화살표로 예시하였다.The cooling fluid supply pipe 300 is an integrated pipe structure installed over the inside of the rotation shaft 110 and the outside of the coolant cover 200 through the through hole 210 of the coolant cover 100, and such a cooling fluid supply pipe 300 serves to discharge the cooling fluid supplied from one end of the outer side of the coolant cover 100 into the rotation shaft 110 through the other end of the rotation shaft 110. In the drawing, the supply of the cooling fluid to the inside of the rotation shaft 110 and a moving path in which the cooling fluid supplied into the rotation shaft 110 is recovered to the outside of the rotation shaft 110 together with a cooling action are illustrated by arrows.
그리고 냉각 유체 공급관(300)은 쿨런트커버(200)의 관통홀(210) 입구로부터 회전축(110) 내의 소정 위치까지 연장되는 제1 관로(310), 제1 관로(310)의 관통홀(110) 입구쪽 일단으로부터 라운드형으로 연장되는 제2 관로(320) 및 제2 관로(320)의 일단으로부터 제1 관로(310)와 수직을 이루는 방향으로 연장되는 제3 관로(330)를 포함하는 형태일 수 있다.In addition, the cooling fluid supply pipe 300 includes a first pipe 310 extending from an entrance of the through hole 210 of the coolant cover 200 to a predetermined position in the rotation shaft 110, and a through hole 110 of the first pipe 310. ) A form including a second conduit 320 extending in a round shape from one end of the inlet and a third conduit 330 extending in a direction perpendicular to the first conduit 310 from one end of the second conduit 320 Can be
또한, 냉각 유체 공급관(300)은 단일 관의 소정 부분이 벤딩 가공되어 제2 관로(320)가 형성되는 동시에 벤딩된 제2 관로(320)를 중심으로 양쪽이 제1 관로(310) 및 제2 관로(320)를 형성하는 형태일 수 있다. In addition, the cooling fluid supply pipe 300 is formed by bending a predetermined portion of a single pipe to form the second pipe line 320, and at the same time, the first pipe line 310 and the second pipe were bent at both sides of the second pipe line 320. It may be in the form of forming a pipe (320).
또한, 이와 다른 형태로써, 냉각 유체 공급관(300)은 관의 소정 부분이 벤딩 가공되어 제1 관로(310) 및 제2 관로(320)가 형성되고 벤딩된 제2 관로(320)의 일단에 제3 관로(330)가 용접 등의 방식을 통해 결합된 형태일 수 있다.In addition, as a different form, in the cooling fluid supply pipe 300, a predetermined portion of the pipe is bent to form the first pipe 310 and the second pipe 320, and the first pipe line 310 and the second pipe line 320 are formed at one end of the bent second pipe line 320. 3 The conduit 330 may be coupled through a method such as welding.
체결수단(400)은 냉각 유체 공급관(300)을 쿨런트커버(200)에 체결하는 기능을 하는 것으로서, 이러한 체결수단으로는 볼트를 이용하는 구성 등 공지된 기술을 통해 다양한 형태로 구현될 수 있고, 따라서 본 실시 예에서는 이에 대한 구체적인 설명 및 도시는 생략한체 간략적으로 예시하였다.The fastening means 400 functions to fasten the cooling fluid supply pipe 300 to the coolant cover 200, and these fastening means may be implemented in various forms through known techniques such as a configuration using bolts, Therefore, in the present embodiment, a detailed description and illustration thereof have been omitted and briefly illustrated.
그리고 미설명 부호 500은 회전축(110) 내에서의 냉각 작용 후 그 회수를 위해 쿨런트커버(200) 내부로 유입되는 냉각 유체의 누설을 방지하기 위한 실링부재를 예시한 것이다.Further, reference numeral 500, which is not described, exemplifies a sealing member for preventing leakage of the cooling fluid flowing into the coolant cover 200 for recovery after the cooling action in the rotation shaft 110.
상술한 구성에 의해서, 중공형 회전축(110)의 내외부에 걸쳐 설치될 수 있는 형태로 일체형의 냉각 유체 공급관(300)을 형성하여 이를 회전축(110) 내부 및 쿨런트커버(200)의 외부에 걸쳐 설치함으로써, 냉각 유체 공급관(300)이 볼트 등 체결수단을 이용한 조립 과정만을 필요로 하면서 회전축(110) 및 쿨런트커버(200)에 비교적 용이하고 단순한 공정을 통해 설치될 수 있게 된다.By the above-described configuration, an integral cooling fluid supply pipe 300 is formed in a form that can be installed across the inside and outside of the hollow rotary shaft 110, and it is spread over the inside of the rotary shaft 110 and the outside of the coolant cover 200. By installation, the cooling fluid supply pipe 300 can be installed through a relatively easy and simple process on the rotating shaft 110 and the coolant cover 200 while only requiring an assembly process using fastening means such as bolts.
다시 말해 구동모터의 회전자(100)에 대한 냉각 구조의 설치 구성이 단순화되는 동시에 이를 통해 해당 냉각 구조의 회전자(100)에 대한 설치 작업이 용이하게 진행될 수 있게 된다.In other words, the installation configuration of the cooling structure for the rotor 100 of the driving motor is simplified, and through this, the installation work for the rotor 100 of the cooling structure can be easily proceeded.
부연 설명하면, 본 실시 예에 따라서 기존 구동모터의 회전자 냉각 구조에서 처럼 냉각 유체의 공급관 일단을 쿨런트커버에 밀착된 상태로 삽입하기 위해 냉간/열간 압입해야 하는 동시에 이를 위해 공급관의 외경 및 쿨런트커버의 내경을 정밀하게 가공해야 하는 공정이 생략될 수 있다.To further explain, according to this embodiment, as in the rotor cooling structure of the existing drive motor, cold/hot press-in is required to insert one end of the supply pipe of the cooling fluid in close contact with the coolant cover. The process of precisely processing the inner diameter of the runt cover may be omitted.
이에 더하여 냉각 유체의 공급관 일단에 대한 냉각 유체 공급을 위해 별도의 인렛파이프(inlet pipe)를 공급관 일단과 연결되는 상태로 쿨런트커버에 결합시키는 공정이 생략될 수 있다. In addition, a process of coupling a separate inlet pipe to the coolant cover while being connected to one end of the supply pipe may be omitted to supply the cooling fluid to one end of the supply pipe of the cooling fluid.
이상과 같이 본 설명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시 예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, in the present description, specific matters such as specific components, etc., and limited embodiments and drawings have been described, but this is provided only to help a more general understanding of the present invention, and the present invention is limited to the above embodiments. No, various modifications and variations are possible from these descriptions by those of ordinary skill in the field to which the present invention belongs.
따라서 본 발명의 사상은 설명된 실시 예에 국한되어 정하여 저서는 안되며, 후술되는 청구범위뿐만 아니라 이 청구범위와 균등하거나 등가적인 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention is limited to the described embodiments and should not be written, and all things having equivalent or equivalent modifications to the claims as well as the claims to be described later belong to the scope of the inventive concept.

Claims (3)

  1. 구동모터의 회전자로서, 중공형의 회전축 및 상기 회전축에 결합되는 회전자 코어를 포함하는 회전자의 냉각 구조에 있어서,In the cooling structure of the rotor comprising a rotor of the drive motor, a hollow rotary shaft and a rotor core coupled to the rotary shaft,
    상기 회전축의 내부와 통하기 위한 관통홀이 형성되어 상기 관통홀을 상기 회전축의 내부와 연결하는 상태로 상기 회전축에 결합되는 쿨런트커버;A coolant cover coupled to the rotation shaft in a state in which a through hole for communicating with the inside of the rotation shaft is formed to connect the through hole to the inside of the rotation shaft;
    상기 관통홀을 통해 상기 회전축의 내부 및 상기 쿨런트커버의 외부에 걸쳐 설치되는 일체형의 관 구조이며, 상기 쿨런트커버 외부의 일단으로부터 공급되는 냉각 유체를 상기 회전축 내부의 타단을 통해 회전축 내로 배출하는 냉각 유체 공급관; 및It is an integral tubular structure installed over the inside of the rotation shaft and the outside of the coolant cover through the through hole, and discharges the cooling fluid supplied from one end outside the coolant cover into the rotation shaft through the other end inside the rotation shaft. Cooling fluid supply pipe; And
    상기 냉각 유체 공급관을 상기 쿨런트커버에 체결하는 체결수단을 포함하는 구동모터의 회전자 냉각 구조.Rotor cooling structure of a drive motor comprising a fastening means for fastening the cooling fluid supply pipe to the coolant cover.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 냉각 유체 공급관은, 상기 관통홀의 입구로부터 상기 회전축 내의 소정 위치까지 연장되는 제1 관로 및 상기 제1 관로의 상기 관통홀 입구쪽 일단으로부터 라운드형으로 연장되는 제2 관로 그리고 상기 제2 관로의 일단으로부터 상기 제1 관로와 수직을 이루는 방향으로 연장되는 제3 관로를 포함하는 형태인 것을 특징으로 하는 구동모터의 회전자 냉각 구조.The cooling fluid supply pipe includes a first pipe extending from an inlet of the through hole to a predetermined position in the rotation shaft, a second pipe extending in a round shape from one end of the first pipe at an inlet of the through hole, and one end of the second pipe And a third conduit extending in a direction perpendicular to the first conduit.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 냉각 유체 공급관은 단일 관의 소정 부분이 벤딩 가공되어 상기 제2 관로가 형성되는 동시에 벤딩된 상기 제2 관로를 중심으로 양쪽이 상기 제1 관로 및 제2 관로를 형성하는 형태이거나, 관의 소정 부분이 벤딩 가공되어 상기 제1 관로 및 제2 관로가 형성되고 벤딩된 상기 제2 관로의 일단에 상기 제3 관로가 결합되는 형태인 것을 특징으로 하는 구동모터의 회전자 냉각 구조.In the cooling fluid supply pipe, a predetermined portion of a single pipe is bent to form the second pipe, and at the same time, both sides of the bent second pipe form the first pipe and the second pipe. A rotor cooling structure of a driving motor, characterized in that a portion is bent to form the first and second pipes, and the third pipe is coupled to one end of the bent second pipe.
PCT/KR2020/014862 2019-11-06 2020-10-29 Cooling structure for rotor of drive motor WO2021091158A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080074064.XA CN114631248B (en) 2019-11-06 2020-10-29 Cooling structure of driving motor rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190140796A KR102238301B1 (en) 2019-11-06 2019-11-06 Cooling structure of Rotor for driven motor
KR10-2019-0140796 2019-11-06

Publications (1)

Publication Number Publication Date
WO2021091158A1 true WO2021091158A1 (en) 2021-05-14

Family

ID=75444085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014862 WO2021091158A1 (en) 2019-11-06 2020-10-29 Cooling structure for rotor of drive motor

Country Status (3)

Country Link
KR (1) KR102238301B1 (en)
CN (1) CN114631248B (en)
WO (1) WO2021091158A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946973A (en) * 1995-07-28 1997-02-14 Nikkiso Co Ltd Rotor cooling construction for motor
JP2009148047A (en) * 2007-12-12 2009-07-02 Sugai Sogyo:Kk Motor cooling system
US20160134177A1 (en) * 2013-07-19 2016-05-12 Kabushiki Kaisha Toshiba Liquid cooled electric motor
KR101913597B1 (en) * 2017-04-14 2018-10-31 주식회사 맥시스 Motor for electric vehicles
KR20190015509A (en) * 2016-06-07 2019-02-13 테슬라, 인크. Electric motor waste heat mode to heat the battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140004313A (en) 2012-07-02 2014-01-13 현대모비스 주식회사 Cooling structure for motor rotator
ES2889975T3 (en) * 2015-09-30 2022-01-14 Flender Gmbh Generator preferably from a wind turbine
CN207311074U (en) * 2017-08-14 2018-05-04 中能绿驰成都汽车科技有限公司 A kind of integral type drive system for electric automobile
CN109067092B (en) * 2018-08-28 2019-12-17 华中科技大学 Motor rotor cooling structure
CN110022034B (en) * 2019-03-11 2020-05-19 华中科技大学 Cooling oil circuit system integrating motor and drive controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946973A (en) * 1995-07-28 1997-02-14 Nikkiso Co Ltd Rotor cooling construction for motor
JP2009148047A (en) * 2007-12-12 2009-07-02 Sugai Sogyo:Kk Motor cooling system
US20160134177A1 (en) * 2013-07-19 2016-05-12 Kabushiki Kaisha Toshiba Liquid cooled electric motor
KR20190015509A (en) * 2016-06-07 2019-02-13 테슬라, 인크. Electric motor waste heat mode to heat the battery
KR101913597B1 (en) * 2017-04-14 2018-10-31 주식회사 맥시스 Motor for electric vehicles

Also Published As

Publication number Publication date
CN114631248A (en) 2022-06-14
CN114631248B (en) 2024-04-05
KR102238301B1 (en) 2021-04-09

Similar Documents

Publication Publication Date Title
US7569968B2 (en) Rotor for vehicular electric rotary machine, vehicular electric rotary machine using such rotor and related manufacturing methods
US8242646B2 (en) Rotating electric machine and drive device
CN109667626A (en) Turbine with turbine rotor blade alternately spaced apart
CN102160257A (en) Axial flux machine
EP2882079A2 (en) Permanent magnet rotor in a rotating electrical machine
CN109075636B (en) Cooling of hybrid rotor modules
KR20160066843A (en) Rotor structure of wrsm motor
KR20160066841A (en) Rotor structure of wrsm motor
CN109139141B (en) Bearing housing segment joining method for turbocharger incorporating electric motor
CN106329813B (en) Shaft, motor and air conditioner
CN109962547B (en) Rotating electrical machine
MX2007014992A (en) Rotational electromagnetic coupling device.
CN105449920B (en) A kind of magneto shaft and its installation method
US20200358332A1 (en) Integrated starter generator and hybrid power system
CN108462272A (en) Rotor structure and motor with it
MX2007014993A (en) Rotational electromagnetic coupling device.
EA036804B1 (en) Modular permanent magnet motor and pump assembly
MX2007014996A (en) Rotational coupling device.
WO2013100667A1 (en) Rotor structure for spoke-type motor
CN114696541A (en) Structure for injecting cooling oil
WO2021091158A1 (en) Cooling structure for rotor of drive motor
CN103117633A (en) High-speed permanent magnet synchronous motor and assembly method thereof
CN101603542A (en) Axial-flow pump machine with suspended propeller
WO2021091157A1 (en) Rotor structure for improving cooling function of drive motor
JP4337837B2 (en) Manufacturing method of rotor of rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884506

Country of ref document: EP

Kind code of ref document: A1