WO2021091157A1 - Rotor structure for improving cooling function of drive motor - Google Patents

Rotor structure for improving cooling function of drive motor Download PDF

Info

Publication number
WO2021091157A1
WO2021091157A1 PCT/KR2020/014860 KR2020014860W WO2021091157A1 WO 2021091157 A1 WO2021091157 A1 WO 2021091157A1 KR 2020014860 W KR2020014860 W KR 2020014860W WO 2021091157 A1 WO2021091157 A1 WO 2021091157A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
rotor
cooling
cooling function
diameter
Prior art date
Application number
PCT/KR2020/014860
Other languages
French (fr)
Korean (ko)
Inventor
류영현
Original Assignee
송과모터스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 송과모터스 주식회사 filed Critical 송과모터스 주식회사
Priority to CN202080074024.5A priority Critical patent/CN114616748B/en
Publication of WO2021091157A1 publication Critical patent/WO2021091157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means

Definitions

  • the rotating shaft of the rotor for a drive motor is divided into two sections with different outer and inner diameters based on the longitudinal direction, and the rotor core is installed in a section with a relatively large outer and inner diameter, thereby exhibiting a large cooling effect.
  • the cooling flow path in the region is expanded and the cooling flow path in the region where the cooling action is exerted relatively small is further reduced to improve the overall cooling function and efficiency of the rotor, and at the same time, supply and discharge of the cooling fluid in the rotating shaft are stagnated and discharged for this purpose.
  • the present invention relates to a rotor structure for improving the cooling function of a drive motor so that it can proceed smoothly without clogging.
  • Electric vehicles generally referred to as eco-friendly vehicles, generate driving power by a driving motor that obtains rotational power through electric energy.
  • a permanent magnet synchronous motor (PMSM) is widely used as a driving motor used as a power source for an eco-friendly vehicle such as an electric vehicle or a hybrid vehicle.
  • Permanent magnet type synchronous motors need to maximize the performance of permanent magnets in order to achieve maximum performance under constrained layout conditions.
  • Neodymium (Nd) components in permanent magnets improve the strength of permanent magnets, and dysprosium (Dy) Ingredients improve high temperature demagnetization resistance.
  • rare earth (Nd, Dy) metal components of these permanent magnets are limitedly buried in some countries such as China, are very expensive, and fluctuate in price.
  • the field winding type synchronous motor replaces the permanent magnet of the permanent magnet type synchronous motor (PMSM) by winding a coil to the rotor as well as the stator to electromagnetize the rotor when current is applied.
  • PMSM permanent magnet type synchronous motor
  • the rotor is arranged with a certain gap inside the stator, and when power is applied to the stator and the coil of the rotor, a magnetic field is formed, and the rotation of the rotor is prevented by the magnetic action generated between them. Done.
  • driving motors such as the above-described permanent magnet type synchronous motor or field winding type synchronous motor generate high-temperature heat around the rotor and coils while rotating at high speed.
  • FIG. 1 is a configuration diagram illustrating a rotor structure of an existing driving motor, and the rotation shaft 11 of the rotor 10 has a hollow structure in which one end in the longitudinal direction is closed, and such a rotation shaft ( 11) is a method of providing a cooling function to the rotor 10 by installing a supply pipe 12 for supplying a cooling fluid.
  • Unexplained reference numeral 13 exemplifies the rotor core.
  • the rotating shaft of the rotor for a driving motor is divided into two sections of different outer and inner diameters based on the longitudinal direction, and the rotor core is installed in a section having a relatively large outer and inner diameter, thereby reducing the cooling effect.
  • the cooling flow path in the largely exerted area is expanded, and the cooling channel in the area where the cooling action is relatively small is further reduced to improve the overall cooling function and efficiency of the rotor, while supplying and discharging the cooling fluid in the rotating shaft for this purpose. It provides a rotor structure for improving the cooling function of the drive motor so that it can proceed smoothly without such congestion and clogging.
  • the rotor structure for improving the cooling function of the driving motor is a hollow type with one end closed and the other open open in the longitudinal direction, and the inner space has a relatively large diameter and at the same time closed one end.
  • a rotation shaft formed in the form of a connection of a first space portion adjacent to and a second space portion adjacent to the other open end at the same time having a relatively small diameter, and a rotor core coupled to an outer surface corresponding to the first space portion of the rotation shaft.
  • the leading end of the cooling fluid supply pipe drawn into the inner space of the rotation shaft through the open other end of the rotation shaft may be introduced to a position beyond the middle of the first space.
  • the rotation shaft may be formed to have a difference equivalent to a difference between the diameter of the first space and the diameter of the second space between an outer diameter of one side where the first space is formed and an outer diameter of the other side where the second space is formed. have.
  • the connecting portion of the first space part and the second space part may have a shape of an inclined surface extending in a form in which a diameter gradually decreases based on a diameter of the first space part.
  • the rotation shaft has one end in the longitudinal direction closed and the other end in the longitudinal direction open so that the inner side forms the first space part and both ends in the longitudinal direction are open, and the inner side forms the second space part.
  • the second unit axis may include a second unit axis coupled to the first unit axis while connecting the second space unit to the first space unit.
  • first unit axis and the second unit axis may be formed of a metal material, respectively, and may be coupled to each other through welding.
  • the rotation shaft may be formed in a round shape in which the inner surface of one closed end is convex outward.
  • the rotation axis of the rotor for a drive motor is divided into two sections of different outer and inner diameters based on the longitudinal direction, and the rotor core is installed in a section of relatively large outer and inner diameters
  • the cooling flow path in the area where the cooling action is largely exerted is expanded, and the cooling channel in the area where the cooling action is exhibited relatively small is further reduced to improve the overall cooling function and efficiency of the rotor.
  • Supply and discharge can proceed smoothly without stagnation and clogging.
  • FIG. 1 is a configuration diagram illustrating a rotor structure of an existing drive motor of an electric vehicle
  • FIG. 2 is a block diagram illustrating a rotor structure for improving the cooling function of a driving motor according to an embodiment of the present invention.
  • module refers to a unit that processes at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
  • a rotor structure for improving the cooling function of a driving motor according to an embodiment of the present invention will be described with reference to FIG. 2.
  • FIG. 2 is a block diagram illustrating a structure of a rotor for improving a cooling function of a driving motor according to an embodiment of the present invention.
  • the rotor structure for improving the cooling function of the driving motor includes a rotating shaft 100 and a rotor core 200.
  • the rotation shaft 100 is a hollow type with one end closed and the other end open based on its longitudinal direction, and the inner space of this rotation shaft 100 has a relatively large diameter and is adjacent to the closed end of the rotation shaft 100.
  • One space part 110 and a second space part 120 having a relatively small diameter and adjacent to the open other end of the rotation shaft 100 are connected to each other.
  • the rotor core 200 is coupled to an outer surface corresponding to the first space 110 of the rotation shaft 100.
  • the cooling fluid supply pipe 300 is introduced into the inner space of the rotation shaft 100 through the open other end of the rotation shaft 100, and the tip of the cooling fluid supply pipe 300 in the direction in which the rotation shaft 100 is drawn is first It is introduced to a position beyond the middle of the space part 110.
  • the rotation shaft 100 may be formed in a round shape in which the inner surface of the closed end is convex outward.
  • the first space part 110 forming a part of the cooling flow path in the rotation shaft 100 is formed in a shape having a larger diameter, a larger amount of cooling water in the cooling flow path in the rotation shaft 100 Can be supplied, and thus the cooling function and efficiency for the rotor can be greatly improved.
  • the rotor core 200 is coupled to the outer diameter of the side where the first space portion 110 of the rotation shaft 100 is formed, a cooling function and efficiency for the rotor may be further improved.
  • one end of the first space portion 110 forming a part of the cooling passage in the rotation shaft is formed in a round shape, and thus The cooling fluid discharged into the first space part 110 through the cooling fluid supply pipe 300 collides with the closed end of the first space part 110 and at the same time prevents the first space part from being blocked and stagnant as much as possible. It flows naturally along the round surface of (110) and is discharged by changing the direction.
  • the supply and discharge of the cooling fluid in the first space 110 is smoothly performed, and this leads to the effect of rapidly discharging the newly supplied cooling fluid after the cooling action, and at the same time continuously supplying the cooling fluid.
  • the cooling function and efficiency for the rotor are greatly increased.
  • the rotation shaft 100 has an inner diameter of the first space portion 110 and a second space portion between the outer diameter of one side where the first space portion 110 is formed and the outer diameter of the other side where the second space portion 120 is formed. 120) can be formed to have a difference equivalent to the difference between the inner diameters.
  • the outer diameter of one side of the rotation shaft 100 forming the first space portion 110 is larger than the outer diameter of the other side of the second space portion 120.
  • the rotation shaft 100 has a combined form of the first unit shaft 140 and the second unit shaft 150, and the first unit shaft 140 has one end in the longitudinal direction closed and the longitudinal direction The other end of the is open to form a first space part 110 inside.
  • the second unit shaft 150 is in a state in which both ends in the longitudinal direction are open and the inner side forms a second space part 120 to connect the second space part 120 to the first space part 110. It is combined with the first unit shaft 140.
  • first unit shaft 140 and the second unit shaft 150 are each formed of a metal material and are coupled to each other through welding, but the present invention is not limited thereto.
  • the rotation shaft 100 leads to a reduction in the overall outer diameter of the rotation shaft 100.
  • the former cooling function can be further improved.
  • the rotation shaft 100 is an inclined surface 130 in which the connecting portion of the first space part 110 and the second space part 120 extends in a form in which the inner diameter gradually decreases based on the inner diameter of the first space part 110. ) May be in the form of.
  • the rotor structure for improving the cooling function of the drive motor according to the present invention is provided in two sections of an outer diameter and an inner diameter in which the rotation axis of the rotor for the drive motor is different from the length direction.
  • the rotor core is installed in sections of relatively large outer and inner diameters, and accordingly, the cooling channel in the area where the cooling action is exhibited is more expanded, and the cooling channel in the area where the cooling action is exhibited relatively small is further reduced. As a result, the overall cooling function and efficiency for the rotor are improved.
  • the supply and discharge of the cooling fluid in the rotating shaft for this purpose can be smoothly performed without stagnation and clogging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The present invention relates to a rotor structure for improving the cooling function of a drive motor, in which a rotating shaft of a rotor for the drive motor is divided into two sections having different outer and inner diameters on the basis of the longitudinal direction thereof, and a rotor core in a section having relatively large outer and inner diameters is installed such that a cooling flow path in an area where a cooling action is largely exhibited is further expanded, and a cooling flow path in an area where the cooling action is exhibited in a relatively small manner is further reduced so as to improve the overall cooling function and efficiency of the rotor, and at the same time, to this end, a cooling fluid in the rotating shaft is able to be supplied and discharged smoothly without stagnation and clogging. The rotor structure for improving the cooling function of the drive motor according to the present invention comprises: a rotating shaft which is hollow and has one end that is closed and the other end that is open in the longitudinal direction thereof, and comprises a first space portion which is adjacent to the closed one end and, at the same time, has an inner space having a relatively large diameter, and a second space portion which has a relatively small diameter and, at the same time, is adjacent to the open other end; and a rotor core which is joined to an outer surface corresponding to the first space portion of the rotating shaft. The rotor structure is composed in a manner such that a leading-in end of a cooling fluid supply pipe, which is led into the inner space of the rotating shaft through the open other end of the rotating shaft, is led into a position beyond the middle of the first space portion.

Description

구동모터의 냉각기능 향상을 위한 회전자 구조Rotor structure to improve the cooling function of the drive motor
본 발명은 구동모터용 회전자의 회전축이 그 길이 방향을 기준으로 서로 다른 외경 및 내경의 두 구간으로 구분되어 상대적으로 큰 외경 및 내경의 구간에 회전자 코어가 설치됨으로써, 냉각 작용이 크게 발휘되는 영역의 냉각 유로는 보다 확장되고 냉각 작용이 상대적으로 작게 발휘되는 영역의 냉각 유로는 보다 축소되어 회전자에 대한 전체적인 냉각 기능 및 효율이 향상되는 동시에 이를 위한 회전축 내 냉각 유체의 공급 및 배출이 정체 및 막힘 현상 없이 원활하게 진행될 수 있도록 한 구동모터의 냉각기능 향상을 위한 회전자 구조에 관한 것이다.In the present invention, the rotating shaft of the rotor for a drive motor is divided into two sections with different outer and inner diameters based on the longitudinal direction, and the rotor core is installed in a section with a relatively large outer and inner diameter, thereby exhibiting a large cooling effect. The cooling flow path in the region is expanded and the cooling flow path in the region where the cooling action is exerted relatively small is further reduced to improve the overall cooling function and efficiency of the rotor, and at the same time, supply and discharge of the cooling fluid in the rotating shaft are stagnated and discharged for this purpose. The present invention relates to a rotor structure for improving the cooling function of a drive motor so that it can proceed smoothly without clogging.
일반적으로 친환경 자동차로 불리는 전기 자동차는 전기 에너지를 통해 회전력을 얻는 구동모터에 의해 구동력이 발생된다.Electric vehicles, generally referred to as eco-friendly vehicles, generate driving power by a driving motor that obtains rotational power through electric energy.
이와 같이 전기 자동차 내지 하이브리드 자동차 등 친환경 자동차의 동력원으로 이용되는 구동모터에는 영구자석형 동기모터(Permanent Magnet Synchronous Motor: PMSM)가 널리 사용되고 있다.As such, a permanent magnet synchronous motor (PMSM) is widely used as a driving motor used as a power source for an eco-friendly vehicle such as an electric vehicle or a hybrid vehicle.
영구자석형 동기모터는 제약된 레이아웃 조건에서 최대의 성능을 발휘하기 위해 영구자석의 성능을 극대화시킬 필요가 있으며, 영구자석에서 네오디뮴(Nd) 성분은 영구자석의 세기를 개선하고, 디스프로슘(Dy) 성분은 고온 감자(Demagnetization) 내성을 개선한다.Permanent magnet type synchronous motors need to maximize the performance of permanent magnets in order to achieve maximum performance under constrained layout conditions. Neodymium (Nd) components in permanent magnets improve the strength of permanent magnets, and dysprosium (Dy) Ingredients improve high temperature demagnetization resistance.
그러나 이러한 영구자석의 희토류(Nd, Dy) 금속 성분은 중국 등 일부 국가에 제한적으로 매장되어 있고, 매우 고가이며 가격 변동이 심하다.However, rare earth (Nd, Dy) metal components of these permanent magnets are limitedly buried in some countries such as China, are very expensive, and fluctuate in price.
이러한 이유 등으로, 최근에는 친환경 자동차의 동력원으로 이용되는 구동모터로서 영구자석형 동기모터(PMSM)를 대체할 수 있는 계자권선형 동기모터(Wound Rotor Synchronous Motor: WRSM)의 개발이 진행되고 있다.For this reason, in recent years, development of a field winding synchronous motor (WRSM) that can replace a permanent magnet type synchronous motor (PMSM) as a driving motor used as a power source of an eco-friendly vehicle is in progress.
계자권선형 동기모터는 고정자 뿐만 아니라 회전자에도 코일을 권선하여 전류인가 시 회전자를 전자석화시킴으로써 영구자석형 동기모터(PMSM)의 영구자석을 대체하고 있다.The field winding type synchronous motor replaces the permanent magnet of the permanent magnet type synchronous motor (PMSM) by winding a coil to the rotor as well as the stator to electromagnetize the rotor when current is applied.
이러한 계자권선형 동기모터는 회전자가 고정자 내측에 일정 공극을 두고 배치되며, 고정자와 회전자의 코일에 전원이 인가되면 자계가 형성되고, 이들 사이에 발생되는 자기적 작용에 의해 회전자의 회전이 이루어진다.In such a field winding type synchronous motor, the rotor is arranged with a certain gap inside the stator, and when power is applied to the stator and the coil of the rotor, a magnetic field is formed, and the rotation of the rotor is prevented by the magnetic action generated between them. Done.
한편, 상술한 영구자석형 동기모터 내지 계자권선형 동기모터 등 구동모터는 고속으로 회전되는 과정에서 회전자 및 코일 주변에 고온의 열이 발생하게 된다.On the other hand, driving motors such as the above-described permanent magnet type synchronous motor or field winding type synchronous motor generate high-temperature heat around the rotor and coils while rotating at high speed.
그리고 이와 같이 회전자 및 코일 부분에 발생되는 열로 인하여 구동모터는 동력 손실에 따른 효율 저하 및 내부 부품들의 손상이 발생될 수 있고, 따라서 이의 방지를 위한 기술로써 여러 형태의 냉각 기술들이 연구 및 제안되고 있다.In addition, due to the heat generated in the rotor and coil as described above, the efficiency of the driving motor may decrease due to power loss and damage to internal parts may occur. Therefore, various types of cooling technologies have been researched and proposed as a technology to prevent this. have.
도 1을 참조하면, 도 1은 기존 구동모터의 회전자 구조를 예시한 구성도로써, 회전자(10)의 회전축(11)이 길이 방향의 일단이 폐쇄된 중공형 구조를 가지며, 이러한 회전축(11)의 내부에 냉각 유체를 공급하는 공급관(12)을 설치하여 회전자(10)에 냉각 기능을 제공하는 방식이다. 미설명 부호 13은 회전자 코어를 예시한 것이다.Referring to FIG. 1, FIG. 1 is a configuration diagram illustrating a rotor structure of an existing driving motor, and the rotation shaft 11 of the rotor 10 has a hollow structure in which one end in the longitudinal direction is closed, and such a rotation shaft ( 11) is a method of providing a cooling function to the rotor 10 by installing a supply pipe 12 for supplying a cooling fluid. Unexplained reference numeral 13 exemplifies the rotor core.
그러나 상술한 기존 방식의 경우, 회전자(10)의 회전축(11)이 동일한 외경 및 내경으로 연장되는 일자형의 관 구조를 가짐에 따라, 회전축(11) 내에서의 냉각 유체의 냉각 작용이 회전축(11) 전체에 대해 일정하게 작용하면서 비효율적으로 진행되는 측면이 있었고, 이는 회전자(10)에 대한 냉각 효율이 저하되는 결과로 나타나게 된다.However, in the case of the above-described conventional method, as the rotation shaft 11 of the rotor 10 has a straight tube structure extending with the same outer diameter and inner diameter, the cooling action of the cooling fluid in the rotation shaft 11 is reduced to the rotation shaft ( 11) There was a side that was constantly acting on the whole and proceeded inefficiently, and this appears as a result of lowering the cooling efficiency for the rotor 10.
본 발명의 실시 예는 구동모터용 회전자의 회전축이 그 길이 방향을 기준으로 서로 다른 외경 및 내경의 두 구간으로 구분되어 상대적으로 큰 외경 및 내경의 구간에 회전자 코어가 설치됨으로써, 냉각 작용이 크게 발휘되는 영역의 냉각 유로는 보다 확장되고 냉각 작용이 상대적으로 작게 발휘되는 영역의 냉각 유로는 보다 축소되어 회전자에 대한 전체적인 냉각 기능 및 효율이 향상되는 동시에 이를 위한 회전축 내 냉각 유체의 공급 및 배출이 정체 및 막힘 현상 없이 원활하게 진행될 수 있도록 하는 구동모터의 냉각기능 향상을 위한 회전자 구조를 제공한다.In an embodiment of the present invention, the rotating shaft of the rotor for a driving motor is divided into two sections of different outer and inner diameters based on the longitudinal direction, and the rotor core is installed in a section having a relatively large outer and inner diameter, thereby reducing the cooling effect. The cooling flow path in the largely exerted area is expanded, and the cooling channel in the area where the cooling action is relatively small is further reduced to improve the overall cooling function and efficiency of the rotor, while supplying and discharging the cooling fluid in the rotating shaft for this purpose. It provides a rotor structure for improving the cooling function of the drive motor so that it can proceed smoothly without such congestion and clogging.
본 발명의 실시 예에 따른 구동모터의 냉각기능 향상을 위한 회전자 구조는, 길이 방향을 기준으로 일단은 폐쇄되고 타단은 개방된 중공형이며, 내부 공간이 상대적으로 큰 직경을 갖는 동시에 폐쇄된 일단에 인접한 제1 공간부 및 상대적으로 작은 직경을 갖는 동시에 개방된 타단에 인접한 제2 공간부의 연결 형태로 이루어지는 회전축과, 상기 회전축의 상기 제1 공간부와 대응되는 외면에 결합되는 회전자 코어를 포함하며, 상기 회전축의 개방된 타단을 통해 상기 회전축의 내부 공간으로 인인되는 냉각 유체 공급관의 인입 선단이 상기 제1 공간부의 중간을 넘는 위치까지 인입되는 것일 수 있다.The rotor structure for improving the cooling function of the driving motor according to the embodiment of the present invention is a hollow type with one end closed and the other open open in the longitudinal direction, and the inner space has a relatively large diameter and at the same time closed one end. A rotation shaft formed in the form of a connection of a first space portion adjacent to and a second space portion adjacent to the other open end at the same time having a relatively small diameter, and a rotor core coupled to an outer surface corresponding to the first space portion of the rotation shaft. In addition, the leading end of the cooling fluid supply pipe drawn into the inner space of the rotation shaft through the open other end of the rotation shaft may be introduced to a position beyond the middle of the first space.
또한, 상기 회전축은 상기 제1 공간부가 형성되는 일측의 외경 및 상기 제2 공간부가 형성되는 타측의 외경 간에 상기 제1 공간부의 직경 및 제2 공간부의 직경 간 차이에 준하는 차이를 갖도록 형성되는 것일 수 있다.In addition, the rotation shaft may be formed to have a difference equivalent to a difference between the diameter of the first space and the diameter of the second space between an outer diameter of one side where the first space is formed and an outer diameter of the other side where the second space is formed. have.
또한, 상기 제1 공간부 및 제2 공간부의 연결 부분은 상기 제1 공간부의 직경을 기준으로 직경이 점차 축소되는 형태로 연장되는 경사면의 형태를 갖는 것일 수 있다.In addition, the connecting portion of the first space part and the second space part may have a shape of an inclined surface extending in a form in which a diameter gradually decreases based on a diameter of the first space part.
또한, 상기 회전축은, 길이 방향의 일단은 폐쇄되고 길이 방향의 타단은 개방되어 내측이 상기 제1 공간부를 형성하는 제1 단위축 및 길이 방향의 양단이 개방되며 내측이 상기 제2 공간부를 형성하여 상기 제2 공간부를 상기 제1 공간부와 연결하는 상태로 상기 제1 단위축과 결합되는 제2 단위축을 포함할 수 있다.In addition, the rotation shaft has one end in the longitudinal direction closed and the other end in the longitudinal direction open so that the inner side forms the first space part and both ends in the longitudinal direction are open, and the inner side forms the second space part. The second unit axis may include a second unit axis coupled to the first unit axis while connecting the second space unit to the first space unit.
또한, 상기 제1 단위축 및 제2 단위축은 각각 금속 소재로 형성되어 용접을 통해 상호 결합되는 것일 수 있다.In addition, the first unit axis and the second unit axis may be formed of a metal material, respectively, and may be coupled to each other through welding.
또한, 상기 회전축은 폐쇄된 일단의 내면이 바깥쪽으로 볼록한 라운드형으로 형성되는 것일 수 있다.In addition, the rotation shaft may be formed in a round shape in which the inner surface of one closed end is convex outward.
본 발명의 실시 예에 따르면, 구동모터용 회전자의 회전축이 그 길이 방향을 기준으로 서로 다른 외경 및 내경의 두 구간으로 구분되어 상대적으로 큰 외경 및 내경의 구간에 회전자 코어가 설치됨에 따라, 냉각 작용이 크게 발휘되는 영역의 냉각 유로는 보다 확장되고 냉각 작용이 상대적으로 작게 발휘되는 영역의 냉각 유로는 보다 축소되어 회전자에 대한 전체적인 냉각 기능 및 효율이 향상되고, 이를 위한 회전축 내 냉각 유체의 공급 및 배출이 정체 및 막힘 현상 없이 원활하게 진행될 수 있게 된다.According to an embodiment of the present invention, as the rotation axis of the rotor for a drive motor is divided into two sections of different outer and inner diameters based on the longitudinal direction, and the rotor core is installed in a section of relatively large outer and inner diameters, The cooling flow path in the area where the cooling action is largely exerted is expanded, and the cooling channel in the area where the cooling action is exhibited relatively small is further reduced to improve the overall cooling function and efficiency of the rotor. Supply and discharge can proceed smoothly without stagnation and clogging.
도 1은 전기 자동차의 기존 구동모터의 회전자 구조를 예시한 구성도1 is a configuration diagram illustrating a rotor structure of an existing drive motor of an electric vehicle
도 2는 본 발명의 일 실시 예에 따른 구동모터의 냉각기능 향상을 위한 회전자 구조를 예시한 구성도2 is a block diagram illustrating a rotor structure for improving the cooling function of a driving motor according to an embodiment of the present invention.
이하의 본 발명에 관한 상세한 설명들은 본 발명이 실시될 수 있는 실시 예이고 해당 실시 예의 예시로써 도시된 첨부 도면을 참조한다. 이들 실시 예는 당업자가 본 발명의 실시에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시 예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시 예에 관련하여 본 발명의 사상 및 범위를 벗어나지 않으면서 다른 실시 예로 구현될 수 있다. 또한, 각각의 기재된 실시 예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 사상 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다.The following detailed descriptions of the present invention are embodiments in which the present invention may be practiced and refer to the accompanying drawings, which are illustrated as examples of the embodiments. These embodiments will be described in detail sufficient for those skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different from each other, but need not be mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be implemented in other embodiments without departing from the spirit and scope of the present invention in relation to one embodiment. In addition, it should be understood that the location or arrangement of individual components in each described embodiment may be changed without departing from the spirit and scope of the present invention.
따라서 후술되는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는 적절하게 설명된다면 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.Accordingly, the detailed description to be described below is not intended to be taken in a limiting sense, and the scope of the present invention is limited only by the appended claims, along with all scopes equivalent to those claimed by the claims, if appropriately described. Like reference numerals in the drawings refer to the same or similar functions over several aspects.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present invention have been selected from general terms that are currently widely used while considering functions in the present invention, but this may vary according to the intention or precedent of a technician working in the field, the emergence of new technologies, and the like. In addition, in certain cases, there are terms arbitrarily selected by the applicant, and in this case, the meaning of the terms will be described in detail in the description of the corresponding invention. Therefore, the terms used in the present invention should be defined based on the meaning of the term and the overall contents of the present invention, not a simple name of the term.
발명에서 전체에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 “…부”, "…모듈“ 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.In the present invention, when a part "includes" a certain component in the whole, it means that other components may be further included rather than excluding other components unless otherwise stated. In addition, “… Wealth”,  "… The term “module” refers to a unit that processes at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
도 2를 참조하여 본 발명의 실시 예에 따른 구동모터의 냉각기능 향상을 위한 회전자 구조에 대해 설명한다.A rotor structure for improving the cooling function of a driving motor according to an embodiment of the present invention will be described with reference to FIG. 2.
도 2는 본 발명의 일 실시 예에 따른 구동모터의 냉각기능 향상을 위한 회전자 구조를 예시한 구성도이다.2 is a block diagram illustrating a structure of a rotor for improving a cooling function of a driving motor according to an embodiment of the present invention.
도시된 바와 같이, 본 발명의 일 실시 예에 따른 구동모터의 냉각기능 향상을 위한 회전자 구조는 회전축(100) 및 회전자 코어(200)를 포함하여 구성된다.As shown, the rotor structure for improving the cooling function of the driving motor according to an embodiment of the present invention includes a rotating shaft 100 and a rotor core 200.
회전축(100)은 그 길이 방향을 기준으로 일단은 폐쇄되고 타단은 개방된 중공형이며, 이러한 회전축(100)의 내부 공간은 상대적으로 큰 직경을 갖는 동시에 회전축(100)의 폐쇄된 일단에 인접한 제1 공간부(110) 및 상대적으로 작은 직경을 갖는 동시에 회전축(100)의 개방된 타단에 인접한 제2 공간부(120)의 연결 형태로 이루어진다.The rotation shaft 100 is a hollow type with one end closed and the other end open based on its longitudinal direction, and the inner space of this rotation shaft 100 has a relatively large diameter and is adjacent to the closed end of the rotation shaft 100. One space part 110 and a second space part 120 having a relatively small diameter and adjacent to the open other end of the rotation shaft 100 are connected to each other.
회전자 코어(200)는 회전축(100)의 제1 공간부(110)와 대응되는 외면에 결합된다.The rotor core 200 is coupled to an outer surface corresponding to the first space 110 of the rotation shaft 100.
그리고 회전축(100)의 개방된 타단을 통해 회전축(100)의 내부 공간으로 냉각 유체 공급관(300)이 인입되며, 이러한 냉각 유체 공급관(300)은 회전축(100)에 대한 인입 방향의 선단이 제1 공간부(110)의 중간을 넘는 위치까지 인입된다. 여기서, 회전축(100)은 폐쇄된 일단의 내면이 바깥쪽으로 볼록한 라운드형으로 형성되는 것일 수 있다.In addition, the cooling fluid supply pipe 300 is introduced into the inner space of the rotation shaft 100 through the open other end of the rotation shaft 100, and the tip of the cooling fluid supply pipe 300 in the direction in which the rotation shaft 100 is drawn is first It is introduced to a position beyond the middle of the space part 110. Here, the rotation shaft 100 may be formed in a round shape in which the inner surface of the closed end is convex outward.
상술한 구성에 의해서, 회전축(100) 내 냉각 유로의 일부를 형성하는 제1 공간부(110)가 보다 큰 직경을 갖는 형태로 형성됨에 따라, 회전축(100) 내 냉각 유로에 보다 많은 양의 냉각수를 공급할 수 있게 되고, 따라서 회전자에 대한 냉각 기능 및 효율이 크게 향상될 수 있게 된다. 또한, 회전축(100)의 제1 공간부(110)가 형성된 쪽 외경에 회전자 코어(200)를 결합함에 따라, 회전자에 대한 냉각 기능 및 효율이 보다 향상될 수 있다.By the above-described configuration, as the first space part 110 forming a part of the cooling flow path in the rotation shaft 100 is formed in a shape having a larger diameter, a larger amount of cooling water in the cooling flow path in the rotation shaft 100 Can be supplied, and thus the cooling function and efficiency for the rotor can be greatly improved. In addition, as the rotor core 200 is coupled to the outer diameter of the side where the first space portion 110 of the rotation shaft 100 is formed, a cooling function and efficiency for the rotor may be further improved.
또한, 회전축(100)은 폐쇄된 일단의 내면이 바깥쪽으로 볼록한 라운드형으로 형성됨에 따라, 회전축 내 냉각 유로의 일부를 형성하는 제1 공간부(110)의 일측 단부가 라운드형을 이루게 되고, 따라서 냉각 유체 공급관(300)을 통해 제1 공간부(110) 내로 배출되는 냉각 유체가 제1 공간부(110)의 폐쇄된 일단에 충돌함과 동시에 막히어 정체되는 현상이 최대한 방지되면서 제1 공간부(110)의 라운드형 면을 자연스럽게 타고 흐르며 방향을 바꾸어 배출되게 된다.In addition, as the inner surface of the rotation shaft 100 is formed in an outwardly convex round shape, one end of the first space portion 110 forming a part of the cooling passage in the rotation shaft is formed in a round shape, and thus The cooling fluid discharged into the first space part 110 through the cooling fluid supply pipe 300 collides with the closed end of the first space part 110 and at the same time prevents the first space part from being blocked and stagnant as much as possible. It flows naturally along the round surface of (110) and is discharged by changing the direction.
다시 말해 제1 공간부(110) 내 냉각 유체의 공급 및 배출이 원활하게 이루어지게 되고, 이는 새로 공급되는 냉각 유체가 냉각 작용 후 신속하게 배출되는 동시에 연이어 냉각 유체가 새로 공급되는 작용으로 이어짐에 따라, 회전자에 대한 냉각 기능 및 효율이 크게 높아지는 결과로 나타난다.In other words, the supply and discharge of the cooling fluid in the first space 110 is smoothly performed, and this leads to the effect of rapidly discharging the newly supplied cooling fluid after the cooling action, and at the same time continuously supplying the cooling fluid. As a result, the cooling function and efficiency for the rotor are greatly increased.
또한, 회전축(100)은 제1 공간부(110)가 형성되는 일측의 외경 및 제2 공간부(120)가 형성되는 타측의 외경 간에 제1 공간부(110)의 내경 및 제2 공간부(120)의 내경 간 차이에 준하는 차이가 나도록 형성될 수 있다. 다시 말해 회전축(100)은 제1 공간부(110)를 형성한 일측의 외경이 제2 공간부(120)를 형성한 타측의 외경보다 크다.In addition, the rotation shaft 100 has an inner diameter of the first space portion 110 and a second space portion between the outer diameter of one side where the first space portion 110 is formed and the outer diameter of the other side where the second space portion 120 is formed. 120) can be formed to have a difference equivalent to the difference between the inner diameters. In other words, the outer diameter of one side of the rotation shaft 100 forming the first space portion 110 is larger than the outer diameter of the other side of the second space portion 120.
본 실시 예에 따르면, 회전축(100)은 제1 단위축(140) 및 제2 단위축(150)의 결합 형태를 갖는 것으로서, 제1 단위축(140)은 길이 방향의 일단은 폐쇄되고 길이 방향의 타단은 개방되어 내측이 제1 공간부(110)를 형성하는 형태이다. 또한, 제2 단위축(150)은 길이 방향의 양단이 개방되며 내측이 제2 공간부(120)를 형성하여 이러한 제2 공간부(120)를 제1 공간부(110)와 연결하는 상태로 제1 단위축(140)과 결합된다.According to this embodiment, the rotation shaft 100 has a combined form of the first unit shaft 140 and the second unit shaft 150, and the first unit shaft 140 has one end in the longitudinal direction closed and the longitudinal direction The other end of the is open to form a first space part 110 inside. In addition, the second unit shaft 150 is in a state in which both ends in the longitudinal direction are open and the inner side forms a second space part 120 to connect the second space part 120 to the first space part 110. It is combined with the first unit shaft 140.
그리고 본 실시 예에서는 제1 단위축(140) 및 제2 단위축(150)이 각각 금속 소재로 형성되어 용접을 통해 상호 결합되는 것을 예로 하였으나, 본 발명이 이에 한정되는 것은 아니다.In addition, in the present embodiment, the first unit shaft 140 and the second unit shaft 150 are each formed of a metal material and are coupled to each other through welding, but the present invention is not limited thereto.
상술한 구성에 의해서, 회전축(100) 내 냉각 유로의 일부를 형성하는 제2 공간부(120)가 비교적 작은 직경을 갖도록 형성됨에 따라, 회전축(100)의 전체 외경이 축소되는 결과로 이어지면서 회전자의 냉각 기능이 보다 향상될 수 있게 된다.By the above-described configuration, as the second space portion 120 forming a part of the cooling passage in the rotation shaft 100 is formed to have a relatively small diameter, the rotation shaft 100 leads to a reduction in the overall outer diameter of the rotation shaft 100. The former cooling function can be further improved.
또한, 회전축(100)은 제1 공간부(110) 및 제2 공간부(120)의 연결 부분이 제1 공간부(110)의 내경을 기준으로 내경이 점차 축소되는 형태로 연장되는 경사면(130)의 형태인 것일 수 있다. In addition, the rotation shaft 100 is an inclined surface 130 in which the connecting portion of the first space part 110 and the second space part 120 extends in a form in which the inner diameter gradually decreases based on the inner diameter of the first space part 110. ) May be in the form of.
상술한 구성에 의해서, 회전축의 제1 공간부에서 냉각 작용을 한 냉각 유체가 제2 공간부의 방향으로 배출 시 경사면을 따라 유도되면서 제1 공간부보다 축소된 직경의 제2 공간부로 원활하게 유입 및 배출될 수 있다. 부연 설명하면, 제1 공간부에서 냉각 작용 후 제2 공간부 방향으로 이동하는 냉각 유체가 제1 공간부 및 제2 공간부 간 직경 차이에 의한 단차 면에 충돌과 동시에 막히어 정체되는 현상을 최대한 발생하지 않으면서 제2 공간부로 원활하게 유입되게 된다. 그리고 이는 회전축 내 냉각 유체의 공급 및 배출이 막힘 내지 정체 현상 없이 원활하게 진행되는 결과로 이어져, 회전자에 대한 냉각 기능 및 효율이 크게 향상될 수 있게 된다.By the above-described configuration, when the cooling fluid having a cooling action in the first space part of the rotation shaft is discharged in the direction of the second space part, it is guided along the inclined surface, and smoothly flows into the second space part having a smaller diameter than the first space part, and Can be discharged. To further explain, the phenomenon that the cooling fluid moving in the direction of the second space part after the cooling action in the first space part collides with the step surface due to the difference in diameter between the first space part and the second space part and is blocked at the same time, thereby preventing the phenomenon of stagnation. It does not occur and smoothly flows into the second space. And this leads to a result that the supply and discharge of the cooling fluid in the rotation shaft proceeds smoothly without clogging or stagnation, so that the cooling function and efficiency of the rotor can be greatly improved.
상술한 실시 예를 통하여 알 수 있는 바와 같이 본 발명에 따른 구동모터의 냉각기능 향상을 위한 회전자 구조는, 구동모터용 회전자의 회전축이 그 길이 방향을 기준으로 서로 다른 외경 및 내경의 두 구간으로 구분되어 상대적으로 큰 외경 및 내경의 구간에 회전자 코어가 설치되고, 이에 따라 냉각 작용이 크게 발휘되는 영역의 냉각 유로는 보다 확장되고 냉각 작용이 상대적으로 작게 발휘되는 영역의 냉각 유로는 보다 축소되는 결과로 이어져, 회전자에 대한 전체적인 냉각 기능 및 효율이 향상되게 한다.As can be seen from the above-described embodiment, the rotor structure for improving the cooling function of the drive motor according to the present invention is provided in two sections of an outer diameter and an inner diameter in which the rotation axis of the rotor for the drive motor is different from the length direction. The rotor core is installed in sections of relatively large outer and inner diameters, and accordingly, the cooling channel in the area where the cooling action is exhibited is more expanded, and the cooling channel in the area where the cooling action is exhibited relatively small is further reduced. As a result, the overall cooling function and efficiency for the rotor are improved.
또한, 이를 위한 회전축 내 냉각 유체의 공급 및 배출이 정체 및 막힘 현상 없이 원활하게 진행될 수 있게 한다.In addition, the supply and discharge of the cooling fluid in the rotating shaft for this purpose can be smoothly performed without stagnation and clogging.
이상과 같이 본 설명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시 예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, in the present description, specific matters such as specific components, etc., and limited embodiments and drawings have been described, but this is provided only to help a more general understanding of the present invention, and the present invention is limited to the above embodiments. No, various modifications and variations are possible from these descriptions by those of ordinary skill in the field to which the present invention belongs.
따라서 본 발명의 사상은 설명된 실시 예에 국한되어 정하여 저서는 안되며, 후술되는 청구범위뿐만 아니라 이 청구범위와 균등하거나 등가적인 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention is limited to the described embodiments and should not be written, and all things having equivalent or equivalent modifications to the claims as well as the claims to be described later belong to the scope of the inventive concept.

Claims (6)

  1. 길이 방향을 기준으로 일단은 폐쇄되고 타단은 개방된 중공형이며, 내부 공간이 상대적으로 큰 직경을 갖는 동시에 폐쇄된 일단에 인접한 제1 공간부 및 상대적으로 작은 직경을 갖는 동시에 개방된 타단에 인접한 제2 공간부의 연결 형태로 이루어지는 회전축; 및In the longitudinal direction, one end is closed and the other end is hollow, and the inner space has a relatively large diameter, and a first space portion adjacent to the closed end and a first space portion adjacent to the closed end and a first space adjacent to the open other end at the same time. A rotating shaft made in the form of a connection of two spaces; And
    상기 회전축의 상기 제1 공간부와 대응되는 외면에 결합되는 회전자 코어를 포함하며,And a rotor core coupled to an outer surface corresponding to the first space portion of the rotation shaft,
    상기 회전축의 개방된 타단을 통해 상기 회전축의 내부 공간으로 인인되는 냉각 유체 공급관의 인입 선단이 상기 제1 공간부의 중간을 넘는 위치까지 인입되는 구동모터의 냉각기능 향상을 위한 회전자 구조.A rotor structure for improving the cooling function of a driving motor in which the leading end of the cooling fluid supply pipe drawn into the inner space of the rotary shaft through the open other end of the rotary shaft is drawn to a position beyond the middle of the first space.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 회전축은 상기 제1 공간부가 형성되는 일측의 외경 및 상기 제2 공간부가 형성되는 타측의 외경 간에 상기 제1 공간부의 직경 및 제2 공간부의 직경 간 차이에 준하는 차이를 갖도록 형성되는 것을 특징으로 하는 구동모터의 냉각기능 향상을 위한 회전자 구조.The rotation shaft is formed to have a difference equivalent to a difference between the diameter of the first space and the diameter of the second space between an outer diameter of one side where the first space is formed and an outer diameter of the other side where the second space is formed. Rotor structure to improve the cooling function of the drive motor.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 제1 공간부 및 제2 공간부의 연결 부분은 상기 제1 공간부의 직경을 기준으로 직경이 점차 축소되는 형태로 연장되는 경사면의 형태를 갖는 것을 특징으로 하는 구동모터의 냉각기능 향상을 위한 회전자 구조.A rotor for improving the cooling function of a driving motor, characterized in that the connecting portion of the first space part and the second space part has a shape of an inclined surface extending in a form in which the diameter of the first space part is gradually reduced based on the diameter of the first space part rescue.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 회전축은, 길이 방향의 일단은 폐쇄되고 길이 방향의 타단은 개방되어 내측이 상기 제1 공간부를 형성하는 제1 단위축 및 길이 방향의 양단이 개방되며 내측이 상기 제2 공간부를 형성하여 상기 제2 공간부를 상기 제1 공간부와 연결하는 상태로 상기 제1 단위축과 결합되는 제2 단위축을 포함하는 것을 특징으로 하는 구동모터의 냉각기능 향상을 위한 회전자 구조.The rotation shaft has one end in the longitudinal direction closed and the other end in the longitudinal direction open to open the first unit shaft and both ends in the longitudinal direction to form the first space, and to form the second space at the inside. 2 A rotor structure for improving a cooling function of a driving motor, comprising: a second unit shaft coupled to the first unit shaft while connecting the space unit to the first space unit.
  5. 제 4 항에 있어서,The method of claim 4,
    상기 제1 단위축 및 제2 단위축은 각각 금속 소재로 형성되어 용접을 통해 상호 결합되는 것을 특징으로 하는 구동모터의 냉각기능 향상을 위한 회전자 구조.The first unit shaft and the second unit shaft are each formed of a metal material and are coupled to each other through welding.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 회전축은 폐쇄된 일단의 내면이 바깥쪽으로 볼록한 라운드형으로 형성되는것을 특징으로 하는 구동모터의 냉각기능 향상을 위한 회전자 구조.The rotating shaft is a rotor structure for improving the cooling function of the driving motor, characterized in that the inner surface of the closed end is formed in a round shape convex outward.
PCT/KR2020/014860 2019-11-06 2020-10-29 Rotor structure for improving cooling function of drive motor WO2021091157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080074024.5A CN114616748B (en) 2019-11-06 2020-10-29 Rotor structure for improving cooling function of driving motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190140795A KR102275325B1 (en) 2019-11-06 2019-11-06 Rotor structure for improving cooling function of driven motor
KR10-2019-0140795 2019-11-06

Publications (1)

Publication Number Publication Date
WO2021091157A1 true WO2021091157A1 (en) 2021-05-14

Family

ID=75848396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014860 WO2021091157A1 (en) 2019-11-06 2020-10-29 Rotor structure for improving cooling function of drive motor

Country Status (3)

Country Link
KR (1) KR102275325B1 (en)
CN (1) CN114616748B (en)
WO (1) WO2021091157A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235210A (en) * 2002-02-06 2003-08-22 Nissan Motor Co Ltd Cooling structure of rotating body
JP2012524514A (en) * 2009-04-20 2012-10-11 ゼネラル・エレクトリック・カンパニイ Integrated brushless starter / generator system
JP2015091198A (en) * 2013-11-06 2015-05-11 日産自動車株式会社 Rotor shaft core cooling structure
KR20180088444A (en) * 2015-11-30 2018-08-03 티센크룹 프레스타 텍센터 아게 An assembled hollow rotor shaft having a cooling medium distribution element
KR20190015509A (en) * 2016-06-07 2019-02-13 테슬라, 인크. Electric motor waste heat mode to heat the battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7489057B2 (en) 2007-05-01 2009-02-10 Tesla Motors, Inc. Liquid cooled rotor assembly
KR100907937B1 (en) 2007-06-29 2009-07-16 한국산업기술대학교산학협력단 Electric motor cooling device
KR20140004313A (en) 2012-07-02 2014-01-13 현대모비스 주식회사 Cooling structure for motor rotator
KR102617452B1 (en) * 2016-09-02 2023-12-26 현대모비스 주식회사 Motor rotor with cooling
CN206268235U (en) * 2016-12-20 2017-06-20 北京新能源汽车股份有限公司 A kind of machine shaft structure, motor and automobile
KR102463423B1 (en) * 2017-10-13 2022-11-03 현대자동차주식회사 Wound Rotor Motor of vehicle
KR102474377B1 (en) * 2017-11-27 2022-12-05 현대자동차 주식회사 Rotor of wrsm motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235210A (en) * 2002-02-06 2003-08-22 Nissan Motor Co Ltd Cooling structure of rotating body
JP2012524514A (en) * 2009-04-20 2012-10-11 ゼネラル・エレクトリック・カンパニイ Integrated brushless starter / generator system
JP2015091198A (en) * 2013-11-06 2015-05-11 日産自動車株式会社 Rotor shaft core cooling structure
KR20180088444A (en) * 2015-11-30 2018-08-03 티센크룹 프레스타 텍센터 아게 An assembled hollow rotor shaft having a cooling medium distribution element
KR20190015509A (en) * 2016-06-07 2019-02-13 테슬라, 인크. Electric motor waste heat mode to heat the battery

Also Published As

Publication number Publication date
KR102275325B1 (en) 2021-07-09
CN114616748B (en) 2024-04-05
CN114616748A (en) 2022-06-10
KR20210054755A (en) 2021-05-14

Similar Documents

Publication Publication Date Title
CN106340985B (en) The rotor of rotating electric machine
US8106557B2 (en) Permanent magnet synchronous motor and hermetic compressor
CN100576691C (en) Permanent magnet rotary electric machine and wind generator system
CN101056028B (en) Vehicle alternator
CN101842967A (en) Rotator for induction electric motor, induction electric motor, compressor, blower, and air-conditioning device
CN108110956A (en) Electric rotating machine
CN105637732A (en) Permanent magnet embedded electric motor, compressor, and refrigerating and air-conditioning device
CN101933217A (en) Electric motor
CN110875655B (en) Motor rotor, motor and electric automobile
WO2021091157A1 (en) Rotor structure for improving cooling function of drive motor
CN109742883A (en) A kind of cooling oil path of oil-cooled motor rotor
CN108711969A (en) Rotor assembly and motor
CN108768017A (en) Rotor and Consequent pole permanent magnet motor
CN110875656B (en) Motor rotor, motor and electric automobile
WO2021091158A1 (en) Cooling structure for rotor of drive motor
WO2021034808A1 (en) Electric machine with integrated dam assembly
CN107681811A (en) A kind of cage type asynchronous induction machine of new-energy automobile
CN113364179B (en) Rotor capable of reducing eddy current loss
CN101282067A (en) Brushless double-mechanical-port motor
EP2230751A1 (en) An arrangement and method for cooling an electrical machine
KR102474377B1 (en) Rotor of wrsm motor
CN107516955A (en) Split type rotor axis of electric
CN211744173U (en) Motor cooling structure, motor and car
CN105934869A (en) Rotor of a rotating electric machine
CN210431058U (en) Rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884298

Country of ref document: EP

Kind code of ref document: A1