WO2021090767A1 - 細胞培養装置 - Google Patents

細胞培養装置 Download PDF

Info

Publication number
WO2021090767A1
WO2021090767A1 PCT/JP2020/040785 JP2020040785W WO2021090767A1 WO 2021090767 A1 WO2021090767 A1 WO 2021090767A1 JP 2020040785 W JP2020040785 W JP 2020040785W WO 2021090767 A1 WO2021090767 A1 WO 2021090767A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
flow path
cell
factor
cells
Prior art date
Application number
PCT/JP2020/040785
Other languages
English (en)
French (fr)
Inventor
剛士 田邊
亮二 平出
伴 一訓
木下 聡
Original Assignee
アイ ピース, インコーポレイテッド
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイ ピース, インコーポレイテッド, ファナック株式会社 filed Critical アイ ピース, インコーポレイテッド
Priority to EP20884915.8A priority Critical patent/EP4056673A4/en
Priority to US17/775,205 priority patent/US20220403307A1/en
Priority to CN202080063927.3A priority patent/CN114375324A/zh
Priority to JP2021554919A priority patent/JPWO2021090767A1/ja
Publication of WO2021090767A1 publication Critical patent/WO2021090767A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/24Draft tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/08Chemical, biochemical or biological means, e.g. plasma jet, co-culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level

Definitions

  • the inside of the cell incubator, the inside of the factor container, the inside of the reagent container, and the inside of the flow path may be closed from the outside air.
  • the factor may be at least one selected from DNA, RNA, protein, and compound.
  • FIG. 1 It is a schematic front view of the cell culture system which concerns on embodiment. It is a schematic perspective view of the cell culture system which concerns on embodiment. It is a schematic diagram of the monocyte collector according to the embodiment. It is a schematic cross-sectional view of the cell incubator which concerns on embodiment. It is a schematic cross-sectional view of the cell incubator which concerns on embodiment. It is a schematic cross-sectional view of the cell incubator which concerns on embodiment. It is a schematic cross-sectional view of the cell incubator which concerns on embodiment. It is a schematic front view of the cell culture system which concerns on embodiment. It is a schematic perspective view of the cell culture system which concerns on embodiment. It is a micrograph of the cell mass which concerns on Example 1. FIG.
  • the blood container 50 includes a syringe for accommodating a fluid and a plunger which is inserted into the syringe and can move in the syringe, and a volume capable of accommodating the fluid in the syringe by moving the plunger. Can be changed.
  • the blood container 50 may be a flexible bellows or bag.
  • the fluid includes a gas and a liquid.
  • the erythrocyte treatment agent container 53 contains an erythrocyte sedimentation agent or an erythrocyte remover.
  • the erythrocyte treatment agent container 53 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the erythrocyte treatment agent container 53 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the erythrocyte treatment agent container 53 may be embedded and embedded in a gas impermeable substance.
  • At least a part of the red blood cell treatment agent container 53 may be provided on a member such as a plate.
  • At least a part of the red blood cell treatment agent container 53 may be formed by being carved into a member.
  • the red blood cell removing device 100 further includes, for example, a mixer 57 that mixes blood with a red blood cell sedimenting agent or a red blood cell removing agent.
  • the mixer 57 includes, for example, a bent flow path through which a mixture of blood and an erythrocyte sedimentation agent or erythrocyte remover flows.
  • the bent flow path may be bent in a spiral shape.
  • the flow path may meander in the bent flow path.
  • the cross-sectional area may repeatedly increase and decrease in the bent flow path.
  • the mixer 57 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the mixer 57 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the mixer 57 may be embedded and embedded in a gas impermeable material. At least a part of the mixer 57 may be provided on a member such as a plate. At least a part of the mixer 57 may be formed by carving into a member. At least a part of the mixer 57 may be carved into a member and formed by overlapping recesses.
  • the flow path 51 may be provided with a fluid machine 52 such as a pump for moving the fluid in the flow path 51.
  • the flow path 54 may be provided with a fluid machine 55 such as a pump for moving the fluid in the flow path 54.
  • a fluid machine When a fluid machine is provided in the flow path, valves other than the fluid machine may not be provided in the flow paths 51 and 54.
  • the erythrocytes When blood is mixed with the erythrocyte sedimentation agent in the mixer 57, the erythrocytes are settled in the erythrocyte remover 11 and the erythrocytes are at least partially removed from the blood.
  • the red blood cell remover in the mixer 57 When the blood is mixed with the red blood cell remover in the mixer 57, the red blood cells are hemolyzed in the red blood cell remover 11 and the red blood cells are at least partially removed from the blood.
  • a storage tank 130 is connected to the red blood cell remover 11 via, for example, a flow path 131.
  • the storage tank 130 and the flow path 131 may be connected by a connector.
  • the flow path 131 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 131 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 131 may be embedded and embedded in a gas impermeable substance.
  • At least a part of the flow path 131 may be provided on a member such as a plate.
  • At least a part of the flow path 131 may be formed by being carved into a member.
  • At least a part of the flow path 131 may be formed by being carved into a member and overlapping recesses.
  • the flow path 131 may be provided with a fluid machine such as a pump for moving the fluid in the flow path 131.
  • the storage tank 130 includes a syringe for accommodating the fluid and a plunger inserted into the syringe and movable in the syringe, and a volume capable of accommodating the fluid in the syringe by moving the plunger. Can be changed.
  • the storage tank 130 may be a flexible bellows or bag.
  • the red blood cell removing device 100 may further include a mononuclear cell collecting device 15 that receives treated blood from which red blood cells are at least partially removed from the red blood cell removing device 11 and collects mononuclear cells from the treated blood.
  • the monocyte collector 15 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the monocyte recovery device 15 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the monocyte collector 15 may be embedded and embedded in a gas impermeable material.
  • At least a part of the monocyte collector 15 may be provided on a member such as a plate.
  • At least a part of the monocyte collector 15 may be formed by carving into a member.
  • At least a part of the monocyte collector 15 may be carved into a member and formed by superimposing recesses.
  • the monocyte collector 15 may be capable of changing the volume of the monocyte collector 15.
  • a flow path 19 is connected to the first opening 115 of the monocyte collector 15.
  • the flow path 19 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 19 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 19 may be embedded and embedded in a gas impermeable substance.
  • At least a part of the flow path 19 may be provided on a member such as a plate.
  • At least a part of the flow path 19 may be formed by being carved into a member.
  • At least a part of the flow path 19 may be carved into a member and formed by overlapping recesses.
  • the fluid machine 62 may include a pump head and a drive unit for driving the pump head.
  • the flow path 60 may be provided on the substrate, the pump head of the fluid machine 62 may be in contact with the flow path 60, and the drive unit of the fluid machine 62 may be removable from the substrate.
  • a flow path 17 for sending is provided.
  • the flow path 17 is provided with a fluid machine 18 such as a pump for moving the fluid in the flow path 17.
  • the flow path 17 may not be provided with a valve other than a fluid machine.
  • the flow path 17 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 17 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 17 may be embedded and embedded in a gas impermeable substance.
  • the fluid machine 18 sucks the treated blood in which the red blood cells in the red blood cell remover 11 are at least partially removed through the flow path 17, and the treated blood from which the sucked red blood cells are at least partially removed is a mononuclear cell collector. Supply within 15. When red blood cells are precipitated in the red blood cell remover 11, the supernatant in the red blood cell remover 11 is sent to the mononuclear cell collector 15 as treated blood from which the red blood cells have been at least partially removed.
  • the settled monocytes accumulate at the tip of the funnel-shaped bottom of the monocyte collector 15.
  • FIG. 1 provided in the flow path 117 connected to the second opening 116 of the monocyte collector 15.
  • the fluid machine 21 shown in the above sucks the diluted treated blood solution which is the supernatant.
  • the suction force for sucking the supernatant is set so that it is difficult to suck the settled mononuclear cells.
  • the supernatant contains platelets and hemolyzed red blood cells.
  • the monocyte suction device 20 may include a pump head and a drive unit for driving the pump head.
  • the flow path 19 may be provided on the substrate, the pump head of the monocyte suction device 20 may be in contact with the flow path 19, and the drive unit of the mononuclear ball suction device 20 may be removable from the substrate.
  • the monocytes in the monocyte collector 15 may be moved to the flow path 19 by pressurizing the inside of the monocyte collector 15.
  • the mononuclear ball suction device 20 may or may not be provided in the flow path 19.
  • the flow path 19 is connected to the cell incubator 22.
  • Mononuclear cells are sent from the mononuclear cell collector 15 to the cell incubator 22 via the flow path 19.
  • the cell incubator 22 does not have to be connected to the mononuclear cell collector 15, and the cells that can be put into the cell incubator 22 are not limited to mononuclear cells.
  • the medium is poly (glycerol monomethacrylate) (PGMA), poly (2-hydroxypropylmethacrylate) (PHPMA), Poly (N-isopropylacrylamide) (PNIPAM), amine terminated, carboxylic acid terminated, maleimide terminated, N-hydroxysuccinimide (NHS).
  • PGMA poly (glycerol monomethacrylate)
  • PPMA poly (2-hydroxypropylmethacrylate)
  • PNIPAM Poly (N-isopropylacrylamide)
  • NHS N-hydroxysuccinimide
  • the medium container 25 may be provided with a temperature control device for adjusting the temperature of the medium in the medium container 25.
  • induction refers to reprogramming, reprogramming, transformation, transdifferentiation or lineage reprogramming, induction of differentiation, cell fate reprogramming, and the like.
  • Factors that induce cells other than pluripotent stem cells into pluripotent stem cells are called reprogramming factors.
  • Reprogramming factors include, for example, OCT3 / 4, SOX2, KLF4, c-MYC.
  • Factors that induce stem cells into differentiated cells are called differentiation-inducing factors.
  • the cell culture apparatus 200 further includes a diluent container 83 containing a diluent for diluting each of the factors and reagents.
  • diluents include phosphate buffered saline (PBS).
  • the diluent container 83 may have a structure in which the inside can be closed from the outside air.
  • the closed space including the inside of the diluent container 83 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the diluent container 83 may be embedded and embedded in a gas impermeable substance. At least a part of the diluent container 83 may be provided on a member such as a plate. At least a part of the diluent container 83 may be formed by being carved into the member. At least a part of the diluent container 83 may be formed by being carved into a member and overlapping recesses.
  • the cell culture apparatus 200 further includes a factor diluting container 84 for mixing the factor and the diluent provided in the flow path between the factor container 81, the diluent container 83, and the cell incubator 22.
  • a factor diluting container 84 for mixing the factor and the diluent provided in the flow path between the factor container 81, the diluent container 83, and the cell incubator 22.
  • the factor dilution container 84 may be a mixer provided with a bent flow path through which the factor dilution solution flows.
  • the bent flow path may be bent in a spiral shape.
  • the flow path may meander in the bent flow path.
  • the cross-sectional area may repeatedly increase and decrease in the bent flow path.
  • the factor dilution container 84 may be capable of changing the volume of the factor dilution container 84.
  • the factor dilution container 84 includes a syringe for accommodating the fluid and a plunger which is inserted into the syringe and can move in the syringe, and the fluid in the syringe can be accommodated by moving the plunger.
  • the volume can be changed.
  • the factor dilution vessel 84 may be a flexible bellows or bag.
  • the factor dilution container 84 is connected to the storage tank 130 via, for example, the flow paths 135, 136, 137 and the flow path 131.
  • the flow paths 135, 136, and 137 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow paths 135, 136, and 137 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • Channels 135, 136 and 137 may be embedded and embedded in a gas impermeable material.
  • At least a part of the flow paths 135, 136, and 137 may be provided on a member such as a plate.
  • At least a part of the flow paths 135, 136, and 137 may be formed by being carved into the member.
  • At least a part of the flow paths 135, 136, and 137 may be carved into the member and formed by overlapping the recesses.
  • the reagent container 82 is connected to at least a flow path 90 for sending the reagent from the reagent container 82 to the reagent dilution container 89.
  • the reagent container 82 and the flow path 90 may be connected by a connector.
  • the diluent container 83 is connected to a flow path 91 for sending at least the diluent from the diluent container 83 to the reagent dilution container 89.
  • the diluent container 83 and the flow path 91 may be connected by a connector.
  • the flow path 90 and the flow path 91 merge with the flow path 92.
  • the flow path 92 is connected to the reagent dilution container 89.
  • the fluid machines 93 and 94 may include a pump head and a drive unit for driving the pump head.
  • the flow path 90 may be provided on the substrate, the pump head of the fluid machine 93 may be in contact with the flow path 90, and the drive unit of the fluid machine 93 may be removable from the substrate.
  • the flow path 91 may be provided on the substrate, the pump head of the fluid machine 94 may be in contact with the flow path 91, and the drive unit of the fluid machine 94 may be removable from the substrate.
  • the flow paths 90, 91, 92 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow paths 90, 91, 92 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow paths 90, 91, 92 may be embedded and embedded in a gas impermeable substance. At least a part of the flow paths 90, 91, 92 may be provided on a member such as a plate. At least a part of the flow paths 90, 91, 92 may be formed by being carved into a member. At least a part of the flow paths 90, 91, 92 may be carved into the member and formed by overlapping the recesses.
  • the fluid machine 93 moves the reagent in the reagent container 82 into the reagent dilution container 89 via the flow paths 90 and 92. Further, the fluid machine 94 moves the diluent in the diluent container 83 into the reagent dilution container 89 via the flow paths 91 and 92.
  • the fluid machine 93 may quantitatively move the reagent in the reagent container 82 into the reagent dilution container 89.
  • the fluid machine 94 may quantitatively move the diluent in the diluent container 83 into the reagent dilution container 89.
  • the reagent dilution container 89 is connected to the storage tank 130 via, for example, the flow paths 135, 136, 137 and the flow path 131.
  • a fluid such as a gas such as air in the reagent dilution container 89 moves into the storage tank 130, for example, and the storage tank 130 expands the volume of the reagent.
  • the fluid transferred from the dilution container 89 may be accepted.
  • the cell culture apparatus 200 further includes a mixing tank 95 for mixing the factor and the reagent, which is provided in the flow path between the factor dilution container 84, the reagent dilution container 89, and the cell incubator 22.
  • a mixing tank 95 for mixing the factor and the reagent, which is provided in the flow path between the factor dilution container 84, the reagent dilution container 89, and the cell incubator 22.
  • the mixing tank 95 may be a mixer provided with a bent flow path through which a mixture of factors and reagents flows.
  • the bent flow path may be bent in a spiral shape.
  • the flow path may meander in the bent flow path.
  • the cross-sectional area may repeatedly increase and decrease in the bent flow path.
  • the mixing tank 95 may have a structure in which the inside can be closed from the outside air.
  • the closed space including the inside of the mixing tank 95 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the mixing tank 95 may be embedded and embedded in a gas impermeable substance. At least a part of the mixing tank 95 may be provided on a member such as a plate. At least a part of the mixing tank 95 may be formed by being carved into a member. At least a part of the mixing tank 95 may be formed by being carved into a member and overlapping recesses.
  • the mixing tank 95 may be capable of changing the volume of the mixing tank 95.
  • the mixing tank 95 includes a syringe for accommodating the fluid and a plunger which is inserted into the syringe and can move in the syringe, and a volume capable of accommodating the fluid in the syringe by moving the plunger. Can be changed.
  • the mixing tank 95 may be a flexible bellows or bag.
  • the fluid machine 99 may include a pump head and a drive unit for driving the pump head.
  • the flow path 98 may be provided on the substrate, the pump head of the fluid machine 99 may be in contact with the flow path 98, and the drive unit of the fluid machine 99 may be removable from the substrate.
  • the flow paths 96, 97, 98 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow paths 96, 97, 98 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • Channels 96, 97, 98 may be embedded and embedded in a gas impermeable material.
  • At least a part of the flow paths 96, 97, 98 may be provided on a member such as a plate.
  • At least a part of the flow paths 96, 97, 98 may be formed by being carved into a member.
  • At least a part of the flow paths 96, 97, 98 may be carved into the member and formed by overlapping the recesses.
  • the fluid machine 99 moves the diluting liquid of the factor in the factor diluting container 84 into the mixing tank 95 via the flow paths 96 and 98. Further, the fluid machine 99 moves the diluted solution of the reagent in the reagent diluting container 89 into the mixing tank 95 via the flow paths 97 and 98. The fluid machine 99 may quantitatively move the diluted solution of the factor in the factor diluting container 84 into the mixing tank 95. The fluid machine 99 may quantitatively move the diluted solution of the reagent in the reagent diluting container 89 into the mixing tank 95.
  • the factor diluting container 84 may shrink in volume when delivering the diluting solution of the factor.
  • the mixing tank 95 is connected to the storage tank 130 via, for example, the flow path 137 and the flow path 131.
  • a fluid such as a gas such as air in the mixing tank 95 moves into the storage tank 130, for example, and the storage tank 130 expands its volume. The fluid that has moved from the mixing tank 95 may be received.
  • a plurality of medium containers 101 and 102 containing the medium supplied to the mixing tank 95 may be connected to the mixing tank 95, respectively.
  • the medium containers 101 and 102 may have a structure in which the inside can be closed from the outside air.
  • the closed space including the inside of the medium containers 101 and 102 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the medium containers 101 and 102 may be embedded and embedded in a gas impermeable substance.
  • At least a part of the medium containers 101 and 102 may be provided on a member such as a plate.
  • At least a part of the medium containers 101 and 102 may be formed by being carved into a member.
  • At least a part of the medium containers 101 and 102 may be carved into the member and formed by overlapping the recesses.
  • the volume of the medium container 101 may be changed.
  • the flow paths 103, 104, 105 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow paths 103, 104, 105 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow paths 103, 104, and 105 may be embedded and embedded in a gas impermeable substance.
  • At least a part of the flow paths 103, 104, 105 may be provided on a member such as a plate.
  • At least a part of the flow paths 103, 104, 105 may be formed by being carved into a member.
  • At least a part of the flow paths 103, 104, and 105 may be carved into the member and formed by overlapping the recesses.
  • the fluid machine 106 moves the medium in the medium container 101 into the mixing tank 95 via the flow paths 103 and 105. Further, the fluid machine 107 moves the medium in the medium container 102 into the mixing tank 95 via the flow paths 104 and 105.
  • the fluid machine 106 may quantitatively move the medium in the medium container 101 into the mixing tank 95.
  • the fluid machine 107 may quantitatively move the diluent of the reagent in the medium container 102 into the mixing tank 95.
  • Each of the medium containers 101 and 102 may be reduced in volume when the medium is delivered.
  • Each of the medium containers 101 and 102 may actively contract the volume, or may passively contract the volume by the suction force from the flow paths 103 and 104.
  • the factor, the reagent and the medium are mixed.
  • Factors and reagents may be in trace amounts, but mixing the medium may increase the volume and facilitate supply to the cell incubator 22.
  • the fluid machine 109 may include a pump head and a drive unit for driving the pump head.
  • the flow path 108 may be provided on the substrate, the pump head of the fluid machine 109 may be in contact with the flow path 108, and the drive unit of the fluid machine 109 may be removable from the substrate.
  • the flow path 108 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 108 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 108 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 108 may be provided on a member such as a plate. At least a part of the flow path 108 may be formed by being carved into a member. At least a part of the flow path 108 may be formed by being carved into a member and overlapping recesses.
  • the fluid machine 109 moves the factors and reagents in the mixing tank 95 into the cell incubator 22 via the flow path 108.
  • the fluid machine 109 may quantitatively move the factors and reagents in the mixing tank 95 into the cell incubator 22.
  • the fluid machine 109 may send reagents and factors from the mixing tank 95 to the cell incubator 22 a predetermined number of times. Further, the fluid machine 109 may send reagents and factors from the mixing tank 95 to the cell incubator 22 at a predetermined timing.
  • the mixing tank 95 may shrink in volume as it delivers the factors and reagents.
  • the mixing tank 95 may actively contract the volume, or may passively contract the volume by the suction force from the flow path 108.
  • the medium container 32 may have a structure in which the inside can be closed from the outside air.
  • the closed space including the inside of the medium container 32 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the medium container 32 may be embedded and embedded in a gas impermeable substance.
  • At least a part of the medium container 32 may be provided on a member such as a plate.
  • At least a part of the medium container 32 may be formed by being carved into a member.
  • At least a part of the medium container 32 may be carved into the member and formed by overlapping the recesses.
  • the culture medium container 32 may be capable of changing the volume of the culture medium container 32.
  • the medium container 32 may be provided with a temperature control device for adjusting the temperature of the medium in the medium container 32.
  • the surplus fluid in the cell incubator 22 moves into, for example, the storage tank 130, and the storage tank 130
  • the volume may be expanded to accept the fluid moving from the inside of the cell incubator 22 through the flow path 132 or the flow path 134.
  • the flow path 132 or the flow path 134 may be connected to a section in the cell incubator 22 separated by a medium component permeation member, in which no cells are present.
  • the cell incubator 22 may be connected to a cryopreservation solution container 123 containing a cryopreservation solution for cryopreserving the cells cultured in the cell incubator 22.
  • the cryopreservation liquid container 123 may have a structure in which the inside can be closed from the outside air.
  • the closed space including the inside of the cryopreservation liquid container 123 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the cryopreservation liquid container 123 may be embedded and embedded in a gas impermeable substance. At least a part of the cryopreservation liquid container 123 may be provided on a member such as a plate. At least a part of the cryopreservation liquid container 123 may be formed by being carved into a member. At least a part of the cryopreservation liquid container 123 may be formed by being carved into a member and overlapping recesses.
  • the cryopreservation liquid container 123 may be capable of changing the volume of the cryopreservation liquid container 123.
  • the cryopreservation liquid container 123 includes a syringe for accommodating the fluid and a plunger which is inserted into the syringe and can move in the syringe, and the fluid in the syringe can be accommodated by moving the plunger. Volume can be changed.
  • the cryopreservation liquid container 123 may be a flexible bellows or bag.
  • the flow path 124 may have a structure capable of closing the inside from the outside air.
  • the closed space including the inside of the flow path 124 may be configured so as not to exchange gas, virus, microorganism, impurities, etc. with the outside.
  • the flow path 124 may be embedded and embedded in a gas impermeable substance. At least a part of the flow path 124 may be provided on a member such as a plate. At least a part of the flow path 124 may be formed by being carved into a member. At least a part of the flow path 124 may be formed by being carved into a member and overlapping recesses.
  • a cell freezing container 126 for cryopreserving cells may be connected to the cell incubator 22.
  • the cell freezing container 126 is connected to a flow path 127 for sending at least cells and a cryopreservation solution from the cell incubator 22 to the cell freezing container 126.
  • the flow path 127 may be provided with a structure for dividing the cell mass.
  • the cell freezing container 126 and the flow path 127 may be connected by a connector.
  • the flow path 127 may be provided with a fluid machine 128 for moving the fluid in the flow path 127.
  • the flow path 127 may not be provided with a valve other than the fluid machine.
  • the red blood cell removing device 100 since blood is processed in a completely closed system, it is possible to reduce the risk of infection due to blood leakage from the device.
  • the cell culture device 200 since cells are cultured in a completely closed system, it is possible to reduce the risk of cross-contamination due to leakage of cells or factors from the culture device. Further, for example, even when cells are infected with a virus such as HIV hepatitis virus, it is possible to reduce the risk of infection to the operator due to cell leakage. Further, it is possible to reduce the risk that the medium in the cell incubator contaminates bacteria, viruses, molds and the like in the air outside the cell incubator.
  • Example 1 In this example, an example is shown in which cells can be cultured in a completely closed environment without exchanging medium and gas. Growth factors were added to the medium (StemSpan H3000, registered trademark, STEMCELL Technologies Inc.), and deacylated gellan gum was further added to the medium to prepare a gel medium.
  • Selection factors were added to the medium (StemSpan H3000, registered trademark, STEMCELL Technologies Inc.), and deacylated gellan gum was further added to the medium to prepare a gel medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physiology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

細胞を培養するための細胞培養器22と、因子を収容する因子容器81と、因子を細胞に導入するための試薬を収容する試薬容器82と、因子容器81及び試薬容器82から細胞培養器22に因子及び試薬を送るための流路と、を備える細胞培養装置200。

Description

細胞培養装置
 本発明は細胞技術に関し、細胞培養装置に関する。
 胚性幹細胞(ES細胞)は、ヒトやマウスの初期胚から樹立された幹細胞である。ES細胞は、生体に存在する全ての細胞へと分化できる多能性を有する。現在、ヒトES細胞は、パーキンソン病、若年性糖尿病、及び白血病等、多くの疾患に対する細胞移植療法に利用可能である。しかし、ES細胞の移植には障害もある。特に、ES細胞の移植は、不成功な臓器移植に続いて起こる拒絶反応と同様の免疫拒絶反応を惹起しうる。また、ヒト胚を破壊して樹立されるES細胞の利用に対しては、倫理的見地から批判や反対意見が多い。
 このような背景の状況の下、京都大学の山中伸弥教授は、4種の遺伝子:OCT3/4、KLF4、c-MYC、及びSOX2を体細胞に導入することにより、誘導多能性幹細胞(iPS細胞)を樹立することに成功した。これにより、山中教授は、2012年のノーベル生理学・医学賞を受賞した(例えば、特許文献1、2参照。)。iPS細胞は、拒絶反応や倫理的問題のない理想的な多能性細胞である。したがって、iPS細胞は、細胞移植療法への利用が期待されている。
特許第4183742号公報 特開2014-114997号公報
 iPS細胞は、体細胞にリプログラミング因子を導入することにより作製される。iPS細胞の作製に限らず、細胞に因子を導入する技術は、様々な用途に利用されている。例えば、分化細胞を作製する際には、iPS細胞等の幹細胞に分化因子を導入する。遺伝子編集を行う際には、細胞にCas9タンパク質を導入する。レンチウイルスを産生する際には、レンチウイルスベクターを細胞に導入する。そこで、本発明は、細胞に因子を導入することが容易な細胞培養装置を提供することを目的の一つとする。
 本発明の態様によれば、細胞を培養するための細胞培養器と、因子を収容する因子容器と、因子を細胞に導入するための試薬を収容する試薬容器と、因子容器及び試薬容器から細胞培養器に因子及び試薬を送るための流路と、を備える、細胞培養装置が提供される。
 上記の細胞培養装置が、流路に設けられた、因子と試薬を混合するための混合槽をさらに備えていてもよい。
 上記の細胞培養装置が、因子容器から混合槽に因子を送るための第1の流体機械をさらに備えていてもよい。
 上記の細胞培養装置において、第1の流体機械が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備え、基板に前記流路が設けられており、ポンプヘッドが流路に接し、駆動部が基板から取り外し可能であってもよい。
 上記の細胞培養装置において、第1の流体機械が、因子容器から混合槽に因子を定量的に送ってもよい。
 上記の細胞培養装置が、試薬容器から混合槽に試薬を送るための第2の流体機械をさらに備えていてもよい。
 上記の細胞培養装置において、第2の流体機械が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備え、基板に前記流路が設けられており、ポンプヘッドが流路に接し、駆動部が基板から取り外し可能であってもよい。
 上記の細胞培養装置において、第2の流体機械が、試薬容器から混合槽に試薬を定量的に送ってもよい。
 上記の細胞培養装置が、混合槽から細胞培養器に試薬及び因子を送るための第3の流体機械をさらに備えていてもよい。
 上記の細胞培養装置において、第3の流体機械が、混合槽から細胞培養器に試薬及び因子を定量的に送ってもよい。
 上記の細胞培養装置において、第3の流体機械が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備え、基板に前記流路が設けられており、ポンプヘッドが流路に接し、駆動部が基板から取り外し可能であってもよい。
 上記の細胞培養装置において、第3の流体機械が、混合槽から細胞培養器に試薬及び因子を所定の回数送ってもよい。
 上記の細胞培養装置において、第3の流体機械が、混合槽から細胞培養器に試薬及び因子を所定のタイミングで送ってもよい。
 上記の細胞培養装置が、希釈液を収容する希釈液容器と、流路に設けられた、因子を希釈液で希釈するための因子希釈容器と、をさらに備えていてもよい。
 上記の細胞培養装置が、希釈液容器から因子希釈容器に希釈液を送るための第4の流体機械をさらに備えていてもよい。
 上記の細胞培養装置において、第4の流体機械が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備え、基板に前記流路が設けられており、ポンプヘッドが流路に接し、駆動部が基板から取り外し可能であってもよい。
 上記の細胞培養装置において、第4の流体機械が、希釈液容器から因子希釈容器に希釈液を定量的に送ってもよい。
 上記の細胞培養装置が、希釈液を収容する希釈液容器と、流路に設けられた、試薬を希釈液で希釈するための試薬希釈容器と、をさらに備えていてもよい。
 上記の細胞培養装置が、希釈液を収容する希釈液容器と、流路に設けられた、因子を希釈液で希釈するための因子希釈容器と、流路に設けられた、試薬を希釈液で希釈するための試薬希釈容器と、をさらに備え、混合槽において、希釈された因子と希釈された試薬が混合されてもよい。
 上記の細胞培養装置が、希釈液容器から試薬希釈容器に希釈液を送るための第5の流体機械をさらに備えていてもよい。
 上記の細胞培養装置において、第5の流体機械が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備え、基板に前記流路が設けられており、ポンプヘッドが流路に接し、駆動部が基板から取り外し可能であってもよい。
 上記の細胞培養装置において、第5の流体機械が、希釈液容器から試薬希釈容器に希釈液を定量的に送ってもよい。
 上記の細胞培養装置が、混合槽に接続された、混合槽に供給される培地を収容する培地容器をさらに備えていてもよい。
 上記の細胞培養装置が、培地容器から混合槽に培地を送るための第6の流体機械をさらに備えていてもよい。
 上記の細胞培養装置において、第6の流体機械が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備え、基板に前記流路が設けられており、ポンプヘッドが流路に接し、駆動部が基板から取り外し可能であってもよい。
 上記の細胞培養装置において、第6の流体機械が、培地容器から混合槽に培地を定量的に送ってもよい。
 上記の細胞培養装置が、混合槽に接続された、混合槽に供給される培地をそれぞれ収容する複数の培地容器をさらに備えていてもよい。
 上記の細胞培養装置において、複数の培地容器が、異なる培地を収容してもよい。
 上記の細胞培養装置において、混合槽から細胞培養器に試薬及び因子を送る回数に応じて、複数の培地容器のいずれかから混合槽に異なる培地が送られてもよい。
 上記の細胞培養装置において、混合槽から細胞培養器に試薬及び因子を送るタイミングに応じて、複数の培地容器のいずれかから混合槽に異なる培地が送られてもよい。
 上記の細胞培養装置において、細胞培養器の内部、因子容器の内部、試薬容器の内部、及び流路の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養装置において、混合槽の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養装置において、希釈液容器の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養装置において、培地容器の内部が、外気から閉鎖可能であってもよい。
 上記の細胞培養装置において、因子容器及び試薬容器の少なくとも一方の容積が可変であってもよい。
 上記の細胞培養装置において、混合槽の容積が可変であってもよい。
 上記の細胞培養装置において、希釈液容器の容積が可変であってもよい。
 上記の細胞培養装置において、培地容器の容積が可変であってもよい。
 上記の細胞培養装置において、因子がDNA、RNA、タンパク質、及び化合物から選択される少なくとも一つであってもよい。
 上記の細胞培養装置において、細胞培養器、因子容器、試薬容器、及び流路がプレートに設けられていてもよい。
 本発明によれば、細胞に因子を導入することが容易な細胞培養装置を提供可能である。
実施形態に係る細胞培養システムの模式的正面図である。 実施形態に係る細胞培養システムの模式的斜視図である。 実施形態に係る単核球回収器の模式図である。 実施形態に係る細胞培養器の模式的断面図である。 実施形態に係る細胞培養器の模式的断面図である。 実施形態に係る細胞培養器の模式的断面図である。 実施形態に係る細胞培養器の模式的断面図である。 実施形態に係る細胞培養システムの模式的正面図である。 実施形態に係る細胞培養システムの模式的斜視図である。 実施例1に係る細胞塊の顕微鏡写真である。 実施例1に係るiPS細胞のフローサイトメトリーの結果を示すヒストグラムである。 実施例2に係る蛍光活性化セルソーティングの分析結果である。 実施例2に係る単核球回収器に入れる前の処理血液の顕微鏡写真(a)と、単核球回収器から回収された単核球を含む溶液の顕微鏡写真(b)である。 実施例2に係る単核球回収器に入れる前の処理血液における血小板の数と、単核球回収器から回収された単核球を含む溶液における血小板の数と、を示すグラフである。 実施例2に係る単核球回収器に入れる前の血小板を含む処理血液入れた培養液の写真(a)と、血小板を除去された単核球を含む溶液を入れた培養液の写真(b)である。
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 図1及び図2に示すように、実施形態に係る細胞培養装置200は、細胞を培養するための細胞培養器22と、因子を収容する因子容器81と、因子を細胞に導入するための試薬を収容する試薬容器82と、因子容器81及び試薬容器82から細胞培養器22に因子及び試薬を送るための流路と、を備える。
 細胞培養装置200は、例えば、赤血球除去装置100に接続されていてもよい。赤血球除去装置100は、血液を収容する血液容器50と、赤血球沈降剤又は赤血球除去剤を収容する赤血球処理剤容器53と、を備える。
 血液容器50は、内部に血液を収容する。血液容器50は、内部を外気から閉鎖可能な構造を有し得る。血液容器50の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。血液容器50は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。血液容器50の少なくとも一部は、プレート等の部材に設けられていてもよい。血液容器50の少なくとも一部は、部材に彫り込まれて形成されていてもよい。血液容器50の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。血液容器50は、当該血液容器50の容積を変更可能であってもよい。この場合、例えば、血液容器50は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、血液容器50は、可撓性を有する蛇腹やバッグであってもよい。なお、本開示において、流体とは気体と液体を含む。
 赤血球処理剤容器53は、内部に赤血球沈降剤又は赤血球除去剤を収容する。赤血球処理剤容器53は、内部を外気から閉鎖可能な構造を有し得る。赤血球処理剤容器53の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。赤血球処理剤容器53は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。赤血球処理剤容器53の少なくとも一部は、プレート等の部材に設けられていてもよい。赤血球処理剤容器53の少なくとも一部は、部材に彫り込まれて形成されていてもよい。赤血球処理剤容器53の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。赤血球処理剤容器53は、当該赤血球処理剤容器53の容積を変更可能であってもよい。この場合、例えば、赤血球処理剤容器53は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、赤血球処理剤容器53は、可撓性を有する蛇腹やバッグであってもよい。
 赤血球除去装置100は、例えば、血液と、赤血球沈降剤又は赤血球除去剤と、を混合する混合器57をさらに備える。混合器57は、例えば、血液と赤血球沈降剤又は赤血球除去剤との混合液が流れる、折れ曲がり流路を備える。折れ曲がり流路は、らせん状に折れ曲がっていてもよい。折れ曲がり流路において流路が蛇行していてもよい。折れ曲がり流路において、断面積が増減を繰り返していてもよい。混合器57は、内部を外気から閉鎖可能な構造を有し得る。混合器57の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。混合器57は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。混合器57の少なくとも一部は、プレート等の部材に設けられていてもよい。混合器57の少なくとも一部は、部材に彫り込まれて形成されていてもよい。混合器57の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 血液容器50には、少なくとも血液を血液容器50から混合器57に送るための流路51が接続されている。血液容器50と、流路51と、は、コネクターで接続されてもよい。コネクターは、内部を閉鎖可能な閉鎖式コネクターであってもよい。コネクターは無菌コネクターであってもよい。コネクターは、ニードルレスコネクターであってもよい。ニードルレスコネクターは、スプリットセプタム型であってもよいし、メカニカルバルブ型であってもよい。本開示における他のコネクターについても同様である。赤血球処理剤容器53には、少なくとも赤血球沈降剤又は赤血球除去剤を赤血球処理剤容器53から混合器57に送るための流路54が接続されている。赤血球処理剤容器53と、流路54と、は、コネクターで接続されてもよい。流路51と流路54は流路56に合流する。流路56は混合器57に接続されている。
 流路51には、流路51内の流体を移動させるためのポンプ等の流体機械52が設けられていてもよい。流路54には、流路54内の流体を移動させるためのポンプ等の流体機械55が設けられていてもよい。流路に流体機械が設けられている場合、流路51、54には流体機械以外の弁が設けられていなくてもよい。
 流体機械52、55としては、容積式ポンプが使用可能である。容積式ポンプの例としては、ピストンポンプ、プランジャーポンプ、及びダイヤフラムポンプを含む往復ポンプ、あるいは、ギアポンプ、ベーンポンプ、及びネジポンプを含む回転ポンプが挙げられる。ダイヤフラムポンプの例としては、チュービングポンプ及び圧電(ピエゾ)ポンプが挙げられる。チュービングポンプは、ペリスタルティックポンプと呼ばれる場合もある。また、様々な種類のポンプを組み合わせたマイクロ流体チップモジュールを用いてもよい。本開示における他の流体機械についても同様である。ペリスタルティックポンプ、チュービングポンプ、及びダイヤフラムポンプ等の密閉型ポンプを用いると、流路内部の流体にポンプの機構が直接接触することなく、流体を送ることが可能である。
 流体機械52、55が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路51が設けられており、流体機械52のポンプヘッドが流路51に接し、流体機械52の駆動部が基板から取り外し可能であってもよい。また、基板に流路54が設けられており、流体機械55のポンプヘッドが流路に接し、流体機械55の駆動部が基板から取り外し可能であってもよい。
 流路51、54、56は、内部を外気から閉鎖可能な構造を有し得る。流路51、54、56の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路51、54、56は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路51、54、56の少なくとも一部は、プレート等の部材に設けられていてもよい。流路51、54、56の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路51、54、56の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 赤血球除去器11に血液と赤血球沈降剤又は赤血球除去剤との混合液を送る際、流体機械52が、血液容器50内の血液を、流路51、56を介して混合器57内に移動させる。また、流体機械55が、赤血球処理剤容器53内の赤血球沈降剤又は赤血球除去剤を、流路54、56を介して混合器57内に移動させる。なお、流路51、54に流体機械を設けず、流路56に流体機械を設け、流路56に設けられた流体機械が、血液容器50内の血液と、赤血球処理剤容器53内の赤血球沈降剤又は赤血球除去剤と、を、混合器57内に移動させてもよい。混合器57内で、血液と、赤血球沈降剤又は赤血球除去剤と、が混合する。
 赤血球除去装置100は、血液から赤血球を少なくとも部分的に除去する赤血球除去器11をさらに備える。混合器57には、混合器57内で混合された血液と赤血球沈降剤又は赤血球除去剤との混合液を赤血球除去器11内に送るための流路58が接続されている。混合器57内で混合された血液と赤血球沈降剤又は赤血球除去剤との混合液は、流路58を介して赤血球除去器11に送られる。
 流路58は、内部を外気から閉鎖可能な構造を有し得る。流路58の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路58は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路58の少なくとも一部は、プレート等の部材に設けられていてもよい。流路58の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路58の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 赤血球除去器11は、内部を外気から閉鎖可能な構造を有し得る。赤血球除去器11の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。赤血球除去器11は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。赤血球除去器11の少なくとも一部は、プレート等の部材に設けられていてもよい。赤血球除去器11の少なくとも一部は、部材に彫り込まれて形成されていてもよい。赤血球除去器11の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。赤血球除去器11は、当該赤血球除去器11の容積を変更可能であってもよい。
 混合器57内で血液が赤血球沈降剤と混合された場合、赤血球除去器11内で赤血球が沈降し、血液から、赤血球が少なくとも部分的に除去される。混合器57内で血液が赤血球除去剤と混合された場合、赤血球除去器11内で赤血球が溶血し、血液から、赤血球が少なくとも部分的に除去される。
 赤血球除去器11には、例えば、流路131を介して貯留槽130が接続されている。貯留槽130と、流路131と、は、コネクターで接続されてもよい。流路131は、内部を外気から閉鎖可能な構造を有し得る。流路131の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路131は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路131の少なくとも一部は、プレート等の部材に設けられていてもよい。流路131の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路131の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路131には、流路131内の流体を移動させるためのポンプ等の流体機械が設けられていてもよい。
 貯留槽130は、内部を外気から閉鎖可能な構造を有し得る。貯留槽130の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。貯留槽130は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。貯留槽130の少なくとも一部は、プレート等の部材に設けられていてもよい。貯留槽130の少なくとも一部は、部材に彫り込まれて形成されていてもよい。貯留槽130の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。貯留槽130は、当該貯留槽130の容積を変更可能であってもよい。この場合、例えば、貯留槽130は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、貯留槽130は、可撓性を有する蛇腹やバッグであってもよい。
 流路58から赤血球除去器11内に血液と赤血球沈降剤又は赤血球除去剤との混合液が送り込まれると、赤血球除去器11内の空気等の流体は、例えば、貯留槽130内に移動し、貯留槽130は容積を膨張させて、赤血球除去器11内から移動してきた流体を受け入れてもよい。なお、貯留槽130は、能動的に容積を膨張させてもよいし、圧力を受けて受動的に容積を膨張させてもよい。
 赤血球除去装置100は、赤血球除去器11から、赤血球を少なくとも部分的に除去された処理血液を受け、処理血液から単核球を回収する単核球回収器15をさらに備えていてもよい。単核球回収器15は、内部を外気から閉鎖可能な構造を有し得る。単核球回収器15の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。単核球回収器15は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。単核球回収器15の少なくとも一部は、プレート等の部材に設けられていてもよい。単核球回収器15の少なくとも一部は、部材に彫り込まれて形成されていてもよい。単核球回収器15の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。単核球回収器15は、当該単核球回収器15の容積を変更可能であってもよい。
 図3に示すように、例えば、単核球回収器15の底部には第1開口115が設けられており、単核球回収器15の側面には第2開口116が設けられている。第1開口115の位置は、重力方向において第2開口116より下である。
 単核球回収器15の第1開口115には流路19が接続されている。流路19は、内部を外気から閉鎖可能な構造を有し得る。流路19の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路19は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路19の少なくとも一部は、プレート等の部材に設けられていてもよい。流路19の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路19の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 単核球回収器15の第2開口116には流路117が接続されている。流路117は、内部を外気から閉鎖可能な構造を有し得る。流路117の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路117は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路117の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路117の少なくとも一部は、プレート等の部材に設けられていてもよい。流路117の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。図1に示すように、流路117には、流路117内の流体を移動させるためのポンプ等の流体機械21が設けられている。流路117には流体機械以外の弁が設けられていなくてもよい。
 流体機械21が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路117が設けられており、流体機械21のポンプヘッドが流路117に接し、流体機械21の駆動部が基板から取り外し可能であってもよい。
 図3に示すように、単核球回収器15の底部が漏斗状であってもよい。この場合、例えば、単核球回収器15の漏斗状の底部の先端に第1開口115が設けられ、漏斗状の底部の側面に第2開口116が設けられる。第2開口116には、単核球が通過することができないフィルターが設けられていてもよい。
 単核球回収器15は、内部に、緩衝液等の希釈液を収容可能である。図1に示すように、希釈液は、希釈用液を収容する希釈用液容器61から流路60を介して、単核球回収器15内に導入されてもよい。希釈用液容器61と、流路60と、は、コネクターで接続されてもよい。流路60には、流路60内の流体を移動させるためのポンプ等の流体機械62が設けられていてもよい。流路60には流体機械以外の弁が設けられていなくてもよい。希釈用液容器61は、当該希釈用液容器の容積を変更可能であってもよい。また、例えば、流路19及び流路117内部は、希釈液で充填される。
 流体機械62が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路60が設けられており、流体機械62のポンプヘッドが流路60に接し、流体機械62の駆動部が基板から取り外し可能であってもよい。
 希釈用液容器61及び流路60の少なくともいずれかは、内部を外気から閉鎖可能な構造を有していてもよい。希釈用液容器61及び流路60の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。希釈用液容器61及び流路60は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。希釈用液容器61及び流路60の少なくとも一部は、プレート等の部材に設けられていてもよい。希釈用液容器61及び流路60の少なくとも一部は、部材に彫り込まれて形成されていてもよい。希釈用液容器61及び流路60の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 図1に示すように、赤血球除去器11と、単核球回収器15と、の間には、赤血球除去器11から単核球回収器15に赤血球を少なくとも部分的に除去された処理血液を送るための流路17設けられている。流路17には、流路17内の流体を移動させるためのポンプ等の流体機械18が設けられている。流路17には流体機械以外の弁が設けられていなくてもよい。流路17は、内部を外気から閉鎖可能な構造を有し得る。流路17の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路17は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路17の少なくとも一部は、プレート等の部材に設けられていてもよい。流路17の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路17の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械18が流路17を介して赤血球除去器11内の赤血球を少なくとも部分的に除去された処理血液を吸引し、吸引した赤血球を少なくとも部分的に除去された処理血液を単核球回収器15内に供給する。赤血球除去器11内で、赤血球を沈降させた場合、赤血球除去器11内の上澄みが赤血球を少なくとも部分的に除去された処理血液として単核球回収器15に送られる。
 流体機械18が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路17が設けられており、流体機械18のポンプヘッドが流路17に接し、流体機械18の駆動部が基板から取り外し可能であってもよい。
 単核球回収器15に送り込まれた、赤血球を少なくとも部分的に除去された処理血液は、図3(a)に示すように、希釈液で希釈される。希釈された処理血液溶液中において、血小板は浮遊し、単核球は、単核球回収器15の底に向かって沈降する。なお、希釈液が赤血球除去剤を含んでいてもよい。この場合、処理血液溶液中に残存する赤血球が溶血する。
 図3(b)に示すように、沈降した単核球は、単核球回収器15の漏斗状の底部の先端に蓄積する。希釈された処理血液溶液中において単核球が沈降した後、図3(c)に示すように、単核球回収器15の第2開口116に接続された流路117に設けられた図1に示す流体機械21が、上澄みである希釈された処理血液溶液を吸引する。上澄みを吸引する吸引力は、沈降した単核球を吸引しにくいように設定される。上澄みは、血小板及び溶血した赤血球を含んでいる。したがって、上澄みを単核球回収器15内から吸引除去することにより、血小板及び赤血球から単核球を分離することが可能である。吸引された上澄みは、赤血球除去器11に送られてもよい。また、吸引された上澄みは、赤血球除去器11及び流路131を介して、貯留槽130に送られてもよい。また、単核球回収器15内から吸引された上澄みと同程度の容積の気体を、赤血球除去器11内から単核球回収器15内に送ってもよい。あるいは、単核球回収器15内から吸引された上澄みと同程度の容積の希釈液を、希釈用液容器61内から単核球回収器15内に送ってもよい。
 単核球を沈降させた後、単核球回収器15内に希釈液を供給し、上澄みを単核球回収器15内から吸引除去することを繰り返してもよい。
 流路19には、単核球回収器15の底部に蓄積した単核球を吸引する単核球吸引装置20が設けられている。単核球吸引装置20としては、ポンプ等の流体機械が使用可能である。流路19には流体機械以外の弁が設けられていなくてもよい。図3に示す第1開口115の大きさは、例えば、単核球吸引装置20が単核球を吸引していない場合に単核球が第1開口115に詰まり、単核球吸引装置20が単核球を吸引している場合に単核球が第1開口115を通過できるよう設定されている。単核球吸引装置20が単核球を吸引すると、単核球は、単核球回収器15内から流路19に移動する。
 単核球吸引装置20が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路19が設けられており、単核球吸引装置20のポンプヘッドが流路19に接し、単核球吸引装置20の駆動部が基板から取り外し可能であってもよい。
 なお、単核球回収器15内を加圧することにより、単核球回収器15内の単核球を流路19に移動させてもよい。この場合、流路19に単核球吸引装置20が設けられていてもよいし、設けられていなくてもよい。
 図1及び図2に示すように、流路19は、細胞培養器22に接続されている。流路19を介して、単核球回収器15から細胞培養器22に単核球が送られる。なお、細胞培養器22が単核球回収器15に接続されていなくともよく、細胞培養器22に入れられる細胞は、単核球に限定されない。細胞培養器22に送られる細胞は、幹細胞、線維芽細胞、神経細胞、網膜上皮細胞、肝細胞、β細胞、腎細胞、間葉系幹細胞、血液細胞、メガカリオサイト、T細胞、軟骨細胞、心筋細胞、筋細胞、血管細胞、上皮細胞、多能性幹細胞、ES細胞、iPS細胞、あるいは他の体細胞であってもよい。細胞培養器22に送られる細胞は、任意である。
 図4に示すように、細胞培養器22は、内部を外気から閉鎖可能な構造を有し得る。細胞培養器22の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。細胞培養器22は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。細胞培養器22の少なくとも一部は、プレート等の部材に設けられていてもよい。細胞培養器22の少なくとも一部は、部材に彫り込まれて形成されていてもよい。細胞培養器22の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。細胞培養器22の形状は特に限定されない。細胞培養器22は、水平面に対して横に長い形状であってもよいし、縦に長い形状であってもよい。
 細胞培養器22内で、細胞を接着培養してもよいし、細胞を浮遊培養してもよい。細胞を接着培養する場合、細胞培養器22内を、マトリゲル、コラーゲン、ポリリジン、フィブロネクチン、ヴィトロネクチン、及びラミニン等の細胞接着用コーティング剤でコーティングしてもよい。
 図1及び図2に示すように、細胞培養器22には、例えば、流路34を介してコーティング剤容器35が接続されていてもよい。コーティング剤容器35は、細胞接着用コーティング剤を収容する。コーティング剤容器35は、内部を外気から閉鎖可能な構造を有し得る。コーティング剤容器35の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。コーティング剤容器35は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。コーティング剤容器35の少なくとも一部は、プレート等の部材に設けられていてもよい。コーティング剤容器35の少なくとも一部は、部材に彫り込まれて形成されていてもよい。コーティング剤容器35の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。コーティング剤容器35は、当該コーティング剤容器35の容積を変更可能であってもよい。この場合、例えば、コーティング剤容器35は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、コーティング剤容器35は、可撓性を有する蛇腹やバッグであってもよい。
 コーティング剤容器35と、流路34と、は、コネクターで接続されてもよい。流路34は、内部を外気から閉鎖可能な構造を有し得る。流路34の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路34は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路34の少なくとも一部は、プレート等の部材に設けられていてもよい。流路34の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路34の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路34には、流路34内の流体を移動させるためのポンプ等の流体機械36が設けられていてもよい。流路34には流体機械以外の弁が設けられていなくてもよい。
 流体機械36が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路34が設けられており、流体機械36のポンプヘッドが流路34に接し、流体機械36の駆動部が基板から取り外し可能であってもよい。
 細胞培養器22内を細胞接着用コーティング剤でコーティングする際には、流体機械36が、コーティング剤容器35内の細胞接着用コーティング剤を、流路34を介して、細胞培養器22内に移動させる。流体機械36は、コーティング剤容器35内の細胞接着用コーティング剤を、細胞培養器22内に定量的に移動させてもよい。細胞接着用コーティング剤を細胞培養器22に供給する際に、コーティング剤容器35は容積を収縮させてもよい。
 細胞培養器22には、例えば、流路132又は流路134を介して貯留槽130が接続されている。流路132、134は、内部を外気から閉鎖可能な構造を有し得る。流路132、134の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路132、134は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路132、134の少なくとも一部は、プレート等の部材に設けられていてもよい。流路132、134の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路132、134の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路132には、流路132内の流体を移動させるためのポンプ等の流体機械133が設けられていてもよい。流路132には流体機械以外の弁が設けられていなくてもよい。流路134についても同様である。
 流体機械133が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路132が設けられており、流体機械133のポンプヘッドが流路132に接し、流体機械133の駆動部が基板から取り外し可能であってもよい。
 流路34から細胞培養器22に細胞接着用コーティング剤が送り込まれると、細胞培養器22内の空気等の気体等の流体は、例えば、貯留槽130内に移動し、貯留槽130は容積を膨張させて、細胞培養器22内から移動してきた流体を受け入れてもよい。
 細胞培養器22内部は、細胞は透過できないが、培地成分及び老廃物は透過可能な培地成分透過部材で区切られていてもよい。細胞を浮遊培養する場合、細胞培養器22の内壁には、細胞が接着しないよう、poly-HEMA(poly 2-hydroxyethyl methacrylate)等の細胞非接着性物質をコーティングして、細胞培養器22の内壁を細胞非接着性にしてもよい。図4に示すように、細胞培養器22には、内部を観察可能な窓が設けられていてもよい。窓の材料としては、例えば、ガラス及び樹脂が使用可能である。
 細胞培養器22には、窓を加熱及び冷却するための、温度調節部が設けられていてもよい。温度調節部は、窓に配置され、窓を加熱する透明導電膜等の透明ヒーターであってもよい。あるいは、細胞培養器22には、筐体を加熱及び冷却するための温度調節部を備えていてもよい。筐体を温度調節部で温度調節することにより、細胞培養器22内の培地を温度調節することが可能である。細胞培養器22には、細胞培養器22内の培地の温度を測る温度計をさらに備えていてもよい。温度計は、培地に接触することなく細胞培養器22の温度に基づいて培地の温度を測ってもよいし、培地に接触して培地の温度を直接測ってもよい。この場合、培地の温度が所定の温度となるよう、温度調節部がフィードバック制御されてもよい。培地の温度は、例えば、20℃から45℃に調節される。
 細胞培養器22は一体成型されていてもよい。細胞培養器22は、3Dプリンター法により製造されてもよい。3Dプリンター法としては、材料押出堆積法、マテリアルジェッティング法、バインダージェッティング法、及び光造形法が挙げられる。あるいは、図5に示すように、細胞培養器22は、底面を有する第1筐体222と、第1筐体222上に配置され、底面と対向する上面を有する第2筐体223と、を備え、第1筐体222と第2筐体223とが組み合わされ、内部が形成されてもよい。細胞培養器22に接続される流路は、第1筐体222及び第2筐体223の少なくとも一方に設けられていてもよい。細胞培養器22の内部に内部培養容器としてシャーレ等を配置可能であってもよい。この場合、流路が、内部培養容器内に流体を供給するよう構成される。
 図1及び図2に示すように、細胞培養器22に接続された流路19には、流路23が接続されている。流路23は、内部を外気から閉鎖可能な構造を有し得る。流路23の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路23は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路23の少なくとも一部は、プレート等の部材に設けられていてもよい。流路23の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路23の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路23には、流路23内の流体を移動させるためのポンプ等の流体機械24が設けられている。流路23には流体機械以外の弁が設けられていなくてもよい。
 流体機械24が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路23が設けられており、流体機械24のポンプヘッドが流路23に接し、流体機械24の駆動部が基板から取り外し可能であってもよい。
 流路23には、例えば、因子を導入される前の状態の細胞に適した培地を収容する流体容器である培地容器25が接続されている。培地容器25と、流路23と、は、コネクターで接続されてもよい。例えば、因子を導入される前の状態の細胞が分化細胞等の体細胞である場合、培地容器25が収容する培地は、体細胞培地である。例えば、因子を導入される前の状態の細胞が単核球である場合、培地容器25が収容する培地は、血液細胞培地である。例えば、因子を導入される前の状態の細胞が幹細胞である場合、培地容器25が収容する培地は、幹細胞培地である。幹細胞は、iPS細胞、胚性幹細胞(ES細胞)、体性幹細胞あるいは他の人工的に誘導された幹細胞等であってもよい。幹細胞培地の例としては、誘導培養培地、拡大培養培地、及び維持培養培地が挙げられる。培地容器25が収容する培地は、ゲルであってもよいし、液体であってもよい。ゲル培地又は液体培地中で細胞を接着培養(二次元培養)してもよいし、ゲル培地又は液体培地中で細胞を浮遊培養(三次元培養)してもよい。
 培地がゲル状である場合、培地は、高分子化合物を含んでいてもよい。高分子化合物は、例えば、ジェランガム、脱アシル化ジェランガム、ヒアルロン酸、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルタマン硫酸、ラムナン硫酸、及びそれらの塩からなる群から選択される少なくとも1種であってもよい。また、培地は、メチルセルロースを含んでいてもよい。メチルセルロースを含むことにより、細胞同士の凝集がより抑制される。
 あるいは、培地は、poly(glycerol monomethacrylate) (PGMA)、poly(2-hydroxypropyl methacrylate) (PHPMA)、Poly (N-isopropylacrylamide) (PNIPAM)、amine terminated、carboxylic acid terminated、maleimide terminated、N-hydroxysuccinimide (NHS) ester terminated、triethoxysilane terminated、Poly (N-isopropylacrylamide-co-acrylamide)、Poly (N-isopropylacrylamide-co-acrylic acid)、Poly (N-isopropylacrylamide-co-butylacrylate)、Poly (N-isopropylacrylamide-co-methacrylic acid)、Poly (N-isopropylacrylamide-co-methacrylic acid-co-octadecyl acrylate)、及びN-Isopropylacrylamideから選択される少なくの温度感受性ゲルを含んでいてもよい。
 なお、本開示において、ゲル状の培地あるいはゲル培地とは、ポリマー培地を包含する。
 培地容器25は、内部を外気から閉鎖可能な構造を有し得る。培地容器25の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。培地容器25は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。培地容器25の少なくとも一部は、プレート等の部材に設けられていてもよい。培地容器25の少なくとも一部は、部材に彫り込まれて形成されていてもよい。培地容器25の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。培地容器25は、当該培地容器25の容積を変更可能であってもよい。この場合、例えば、培地容器25は、体細胞培地を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の体細胞培地を収容可能な容積を変更可能である。あるいは、培地容器25は、可撓性を有する蛇腹やバッグであってもよい。
 単核球回収器15から流路19に単核球が送られると、流体機械24は、培地容器25から流路19に、流路23を介して培地を送る。培地容器25は、培地を収容可能な容積を減少させる。なお、培地容器25は、能動的に容積を収縮させてもよいし、流路23内部からの吸引力により、受動的に容積を収縮させてもよい。流路23を介して流路19に送られてきた体細胞培地と、流路19内の単核球と、が混合し、細胞培養器22内に送られる。
 培地容器25には、培地容器25内の培地の温度を調節する温度調節装置が設けられていてもよい。
 流路19から細胞培養器22に細胞と培地が送り込まれると、細胞培養器22内の過剰な流体は、例えば、貯留槽130内に移動し、貯留槽130は容積を膨張させて、細胞培養器22内から移動してきた流体を受け入れてもよい。
 細胞培養器22には、流路を介して、因子を収容する因子容器81と、因子を細胞に導入するための試薬を収容する試薬容器82と、が接続されている。
 因子容器81は、内部に、細胞に導入される因子を収容する。因子を細胞に導入する試薬に対して、因子をペイロードと呼ぶ場合がある。因子はDNA、RNA、及びオリゴヌクレオチド等の核酸であってもよいし、タンパク質であってもよいし、化合物であってもよいし、ウイルスであってもよい。DNAはプラスミドDNAであってもよい。RNAはmRNA、siRNA、及びmiRNAであってもよい。RNAは、修飾RNAであってもよいし、非修飾RNAであってもよい。タンパク質はCas9タンパク質等のヌクレアーゼタンパク質であってもよい。ウイルスはレンチウイルスであってもよい。因子は、第1の状態の細胞を第2の状態の細胞に誘導する誘導因子であってもよい。
 本開示において、誘導とは、リプログラミング、初期化、形質転換、分化転換(Transdifferentiation or Lineage reprogramming)、分化誘導及び細胞の運命変更(Cell fate reprogramming)等を指す。多能性幹細胞以外の細胞を多能性幹細胞に誘導する因子を、リプログラミング因子という。リプログラミング因子は、例えば、OCT3/4、SOX2、KLF4、c-MYCを含む。幹細胞を分化細胞に誘導する因子を、分化誘導因子という。分化細胞の例としては、線維芽細胞、神経細胞、網膜上皮細胞、肝細胞、β細胞、腎細胞、間葉系幹細胞、血液細胞、メガカリオサイト、T細胞、軟骨細胞、心筋細胞、筋細胞、血管細胞、上皮細胞、多能性幹細胞、ES細胞、iPS細胞、あるいは他の体細胞が挙げられる。
 因子容器81は、内部を外気から閉鎖可能な構造を有し得る。因子容器81の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。因子容器81は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。因子容器81の少なくとも一部は、プレート等の部材に設けられていてもよい。因子容器81の少なくとも一部は、部材に彫り込まれて形成されていてもよい。因子容器81の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。因子容器81は、当該因子容器81の容積を変更可能であってもよい。この場合、例えば、因子容器81は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、因子容器81は、可撓性を有する蛇腹やバッグであってもよい。
 試薬容器82は、因子容器81に収容されている因子を細胞に導入するための試薬を収容する。試薬の例としては、人工リポソーム、カチオン性脂質、塩化カルシウム、カチオン性ジエチルアミノエチルデキストラン分子、カチオン性ペプチド及びその誘導体、直鎖又は分岐鎖の合成ポリマー、多糖ベースの導入分子、天然ポリマー、並びに活性型及び非活性型デンドリマーが挙げられる。試薬は、例えば、トランスフェクション試薬である。本開示では、核酸のみならず、タンパク質、化合物、及びウイルスを細胞に導入することもトランスフェクションという。
 試薬容器82は、内部を外気から閉鎖可能な構造を有し得る。試薬容器82の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。試薬容器82は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。試薬容器82の少なくとも一部は、プレート等の部材に設けられていてもよい。試薬容器82の少なくとも一部は、部材に彫り込まれて形成されていてもよい。試薬容器82の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。試薬容器82は、当該試薬容器82の容積を変更可能であってもよい。この場合、例えば、試薬容器82は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、試薬容器82は、可撓性を有する蛇腹やバッグであってもよい。
 細胞培養装置200は、因子及び試薬のそれぞれを希釈するための希釈液を収容する希釈液容器83をさらに備える。希釈液の例としては、リン酸緩衝生理食塩水(PBS)が挙げられる。
 希釈液容器83は、内部を外気から閉鎖可能な構造を有し得る。希釈液容器83の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。希釈液容器83は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。希釈液容器83の少なくとも一部は、プレート等の部材に設けられていてもよい。希釈液容器83の少なくとも一部は、部材に彫り込まれて形成されていてもよい。希釈液容器83の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。希釈液容器83は、当該希釈液容器83の容積を変更可能であってもよい。この場合、例えば、希釈液容器83は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、希釈液容器83は、可撓性を有する蛇腹やバッグであってもよい。
 細胞培養装置200は、因子容器81及び希釈液容器83と、細胞培養器22と、の間の流路に設けられた、因子と希釈液を混合するための因子希釈容器84をさらに備える。因子希釈容器84において、因子容器81から来た因子と、希釈液容器83から来た希釈液と、が混合し、因子の希釈液が作製される。因子希釈容器84は、因子の希釈液が流れる折れ曲がり流路を備える混合器であってもよい。折れ曲がり流路は、らせん状に折れ曲がっていてもよい。折れ曲がり流路において流路が蛇行していてもよい。折れ曲がり流路において、断面積が増減を繰り返していてもよい。
 因子希釈容器84は、内部を外気から閉鎖可能な構造を有し得る。因子希釈容器84の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。因子希釈容器84は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。因子希釈容器84の少なくとも一部は、プレート等の部材に設けられていてもよい。因子希釈容器84の少なくとも一部は、部材に彫り込まれて形成されていてもよい。因子希釈容器84の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。因子希釈容器84は、当該因子希釈容器84の容積を変更可能であってもよい。この場合、例えば、因子希釈容器84は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、因子希釈容器84は、可撓性を有する蛇腹やバッグであってもよい。
 因子容器81には、少なくとも因子を因子容器81から因子希釈容器84に送るための流路85が接続されている。因子容器81と、流路85と、は、コネクターで接続されてもよい。希釈液容器83には、少なくとも希釈液を希釈液容器83から因子希釈容器84に送るための流路86が接続されている。希釈液容器83と、流路86と、は、コネクターで接続されてもよい。流路85と流路86は流路87に合流する。流路87は因子希釈容器84に接続されている。流路85には、流路85内の流体を移動させるための流体機械187が設けられていてもよい。流路85には流体機械以外の弁が設けられていなくてもよい。流路86には、流路86内の流体を移動させるための流体機械88が設けられていてもよい。流路86には流体機械以外の弁が設けられていなくてもよい。
 流体機械88、187が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路85が設けられており、流体機械187のポンプヘッドが流路85に接し、流体機械187の駆動部が基板から取り外し可能であってもよい。また、基板に流路86が設けられており、流体機械88のポンプヘッドが流路86に接し、流体機械88の駆動部が基板から取り外し可能であってもよい。
 流路85、86、87は、内部を外気から閉鎖可能な構造を有し得る。流路85、86、87の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路85、86、87は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路85、86、87の少なくとも一部は、プレート等の部材に設けられていてもよい。流路85、86、87の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路85、86、87の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械187が、因子容器81内の因子を、流路85、87を介して因子希釈容器84内に移動させる。また、流体機械88が、希釈液容器83内の希釈液を、流路86、87を介して因子希釈容器84内に移動させる。流体機械187は、因子容器81内の因子を、因子希釈容器84内に定量的に移動させてもよい。流体機械88は、希釈液容器83内の希釈液を、因子希釈容器84内に定量的に移動させてもよい。なお、流路85、86に流体機械を設けず、流路87に流体機械を設け、流路87に設けられた流体機械が、因子容器81内の因子と、希釈液容器83内の希釈液と、を、因子希釈容器84内に移動させてもよい。
 因子容器81は、因子を送り出す際に、容積を収縮させてもよい。因子容器81は、能動的に容積を収縮させてもよいし、流路85からの吸引力により受動的に容積を収縮させてもよい。希釈液容器83は、希釈液を送り出す際に、容積を収縮させてもよい。希釈液容器83は、能動的に容積を収縮させてもよいし、流路86からの吸引力により受動的に容積を収縮させてもよい。因子希釈容器84は、因子及び希釈液を供給される際に、容積を膨張させてもよい。因子希釈容器84は、能動的に容積を膨張させてもよいし、流路87からの圧力により受動的に容積を膨張させてもよい。
 因子希釈容器84は、例えば、流路135、136、137及び流路131を介して、貯留槽130に接続されている。流路135、136、137は、内部を外気から閉鎖可能な構造を有し得る。流路135、136、137の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路135、136、137は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路135、136、137の少なくとも一部は、プレート等の部材に設けられていてもよい。流路135、136、137の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路135、136、137の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 因子希釈容器84に因子と希釈液が送り込まれると、因子希釈容器84内の空気等の気体等の流体は、例えば、貯留槽130内に移動し、貯留槽130は容積を膨張させて、因子希釈容器84内から移動してきた流体を受け入れてもよい。
 細胞培養装置200は、試薬容器82及び希釈液容器83と、細胞培養器22と、の間の流路に設けられた、試薬と希釈液を混合するための試薬希釈容器89をさらに備える。試薬希釈容器89において、試薬容器82から来た試薬と、希釈液容器83から来た希釈液と、が混合し、試薬の希釈液が作製される。試薬希釈容器89は、試薬の希釈液が流れる折れ曲がり流路を備える混合器であってもよい。折れ曲がり流路は、らせん状に折れ曲がっていてもよい。折れ曲がり流路において流路が蛇行していてもよい。折れ曲がり流路において、断面積が増減を繰り返していてもよい。
 試薬希釈容器89は、内部を外気から閉鎖可能な構造を有し得る。試薬希釈容器89の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。試薬希釈容器89は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。試薬希釈容器89の少なくとも一部は、プレート等の部材に設けられていてもよい。試薬希釈容器89の少なくとも一部は、部材に彫り込まれて形成されていてもよい。試薬希釈容器89の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。試薬希釈容器89は、当該試薬希釈容器89の容積を変更可能であってもよい。この場合、例えば、試薬希釈容器89は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、試薬希釈容器89は、可撓性を有する蛇腹やバッグであってもよい。
 試薬容器82には、少なくとも試薬を試薬容器82から試薬希釈容器89に送るための流路90が接続されている。試薬容器82と、流路90と、は、コネクターで接続されてもよい。希釈液容器83には、少なくとも希釈液を希釈液容器83から試薬希釈容器89に送るための流路91が接続されている。希釈液容器83と、流路91と、は、コネクターで接続されてもよい。流路90と流路91は流路92に合流する。流路92は試薬希釈容器89に接続されている。流路90には、流路90内の流体を移動させるための流体機械93が設けられていてもよい。流路90には流体機械以外の弁が設けられていなくてもよい。流路91には、流路91内の流体を移動させるための流体機械94が設けられていてもよい。流路91には流体機械以外の弁が設けられていなくてもよい。
 流体機械93、94が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路90が設けられており、流体機械93のポンプヘッドが流路90に接し、流体機械93の駆動部が基板から取り外し可能であってもよい。また、基板に流路91が設けられており、流体機械94のポンプヘッドが流路91に接し、流体機械94の駆動部が基板から取り外し可能であってもよい。
 流路90、91、92は、内部を外気から閉鎖可能な構造を有し得る。流路90、91、92の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路90、91、92は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路90、91、92の少なくとも一部は、プレート等の部材に設けられていてもよい。流路90、91、92の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路90、91、92の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械93が、試薬容器82内の試薬を、流路90、92を介して試薬希釈容器89内に移動させる。また、流体機械94が、希釈液容器83内の希釈液を、流路91、92を介して試薬希釈容器89内に移動させる。流体機械93は、試薬容器82内の試薬を、試薬希釈容器89内に定量的に移動させてもよい。流体機械94は、希釈液容器83内の希釈液を、試薬希釈容器89内に定量的に移動させてもよい。なお、流路90、91に流体機械を設けず、流路92に流体機械を設け、流路92に設けられた流体機械が、試薬容器82内の試薬と、希釈液容器83内の希釈液と、を、試薬希釈容器89内に移動させてもよい。
 試薬容器82は、試薬を送り出す際に、容積を収縮させてもよい。試薬容器82は、能動的に容積を収縮させてもよいし、流路90からの吸引力により受動的に容積を収縮させてもよい。希釈液容器83は、希釈液を送り出す際に、容積を収縮させてもよい。希釈液容器83は、能動的に容積を収縮させてもよいし、流路91からの吸引力により受動的に容積を収縮させてもよい。試薬希釈容器89は、試薬及び希釈液を供給される際に、容積を膨張させてもよい。試薬希釈容器89は、能動的に容積を膨張させてもよいし、流路92からの圧力により受動的に容積を膨張させてもよい。
 試薬希釈容器89は、例えば、流路135、136、137及び流路131を介して、貯留槽130に接続されている。試薬希釈容器89に試薬と希釈液が送り込まれると、試薬希釈容器89内の空気等の気体等の流体は、例えば、貯留槽130内に移動し、貯留槽130は容積を膨張させて、試薬希釈容器89内から移動してきた流体を受け入れてもよい。
 細胞培養装置200は、因子希釈容器84及び試薬希釈容器89と、細胞培養器22と、の間の流路に設けられた、因子と試薬を混合するための混合槽95をさらに備える。混合槽95において、因子希釈容器84から来た因子の希釈液と、試薬希釈容器89から来た試薬の希釈液と、が混合し、因子と試薬の混合液が作製される。混合槽95は、因子と試薬の混合液が流れる折れ曲がり流路を備える混合器であってもよい。折れ曲がり流路は、らせん状に折れ曲がっていてもよい。折れ曲がり流路において流路が蛇行していてもよい。折れ曲がり流路において、断面積が増減を繰り返していてもよい。
 混合槽95は、内部を外気から閉鎖可能な構造を有し得る。混合槽95の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。混合槽95は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。混合槽95の少なくとも一部は、プレート等の部材に設けられていてもよい。混合槽95の少なくとも一部は、部材に彫り込まれて形成されていてもよい。混合槽95の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。混合槽95は、当該混合槽95の容積を変更可能であってもよい。この場合、例えば、混合槽95は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、混合槽95は、可撓性を有する蛇腹やバッグであってもよい。
 因子希釈容器84には、少なくとも因子の希釈液を因子希釈容器84から混合槽95に送るための流路96が接続されている。試薬希釈容器89には、少なくとも試薬の希釈液を試薬希釈容器89から混合槽95に送るための流路97が接続されている。流路96と流路97は流路98に合流する。流路98は混合槽95に接続されている。流路98には、流路98内の流体を移動させるための流体機械99が設けられていてもよい。流路98には流体機械以外の弁が設けられていなくてもよい。
 流体機械99が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路98が設けられており、流体機械99のポンプヘッドが流路98に接し、流体機械99の駆動部が基板から取り外し可能であってもよい。
 流路96、97、98は、内部を外気から閉鎖可能な構造を有し得る。流路96、97、98の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路96、97、98は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路96、97、98の少なくとも一部は、プレート等の部材に設けられていてもよい。流路96、97、98の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路96、97、98の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械99が、因子希釈容器84内の因子の希釈液を、流路96、98を介して混合槽95内に移動させる。また、流体機械99が、試薬希釈容器89内の試薬の希釈液を、流路97、98を介して混合槽95内に移動させる。流体機械99は、因子希釈容器84内の因子の希釈液を、混合槽95内に定量的に移動させてもよい。流体機械99は、試薬希釈容器89内の試薬の希釈液を、混合槽95内に定量的に移動させてもよい。因子希釈容器84は、因子の希釈液を送り出す際に、容積を収縮させてもよい。因子希釈容器84は、能動的に容積を収縮させてもよいし、流路96からの吸引力により受動的に容積を収縮させてもよい。試薬希釈容器89は、試薬の希釈液を送り出す際に、容積を収縮させてもよい。試薬希釈容器89は、能動的に容積を収縮させてもよいし、流路97からの吸引力により受動的に容積を収縮させてもよい。混合槽95は、因子及び試薬を供給される際に、容積を膨張させてもよい。混合槽95は、能動的に容積を膨張させてもよいし、流路98からの圧力により受動的に容積を膨張させてもよい。
 混合槽95は、例えば、流路137及び流路131を介して、貯留槽130に接続されている。混合槽95に因子の希釈液と試薬の希釈液が送り込まれると、混合槽95内の空気等の気体等の流体は、例えば、貯留槽130内に移動し、貯留槽130は容積を膨張させて、混合槽95内から移動してきた流体を受け入れてもよい。
 図8及び図9に示すように、混合槽95には、混合槽95に供給される培地をそれぞれ収容する複数の培地容器101、102が接続されていてもよい。
 培地容器101、102は、内部を外気から閉鎖可能な構造を有し得る。培地容器101、102の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。培地容器101、102は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。培地容器101、102の少なくとも一部は、プレート等の部材に設けられていてもよい。培地容器101、102の少なくとも一部は、部材に彫り込まれて形成されていてもよい。培地容器101、102の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。培地容器101は、当該培地容器101の容積を変更可能であってもよい。この場合、例えば、培地容器101は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、培地容器101は、可撓性を有する蛇腹やバッグであってもよい。培地容器101についても同様である。
 培地容器101には、少なくとも培地を培地容器101から混合槽95に送るための流路103が接続されている。培地容器101と、流路103と、は、コネクターで接続されてもよい。培地容器102には、少なくとも培地を培地容器102から混合槽95に送るための流路104が接続されている。培地容器102と、流路104と、は、コネクターで接続されてもよい。流路103と流路104は流路105に合流する。流路105は混合槽95に接続されている。流路103には、流路103内の流体を移動させるための流体機械106が設けられていてもよい。流路103には流体機械以外の弁が設けられていなくてもよい。流路104には、流路104内の流体を移動させるための流体機械107が設けられていてもよい。流路104には流体機械以外の弁が設けられていなくてもよい。
 流体機械106、107が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路103が設けられており、流体機械106のポンプヘッドが流路103に接し、流体機械106の駆動部が基板から取り外し可能であってもよい。また、基板に流路104が設けられており、流体機械107のポンプヘッドが流路104に接し、流体機械107の駆動部が基板から取り外し可能であってもよい。
 流路103、104、105は、内部を外気から閉鎖可能な構造を有し得る。流路103、104、105の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路103、104、105は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路103、104、105の少なくとも一部は、プレート等の部材に設けられていてもよい。流路103、104、105の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路103、104、105の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械106が、培地容器101内の培地を、流路103、105を介して混合槽95内に移動させる。また、流体機械107が、培地容器102内の培地を、流路104、105を介して混合槽95内に移動させる。流体機械106は、培地容器101内の培地を、混合槽95内に定量的に移動させてもよい。流体機械107は、培地容器102内の試薬の希釈液を、混合槽95内に定量的に移動させてもよい。培地容器101、102のそれぞれは、培地を送り出す際に、容積を収縮させてもよい。培地容器101、102のそれぞれは、能動的に容積を収縮させてもよいし、流路103、104からの吸引力により受動的に容積を収縮させてもよい。
 混合槽95において、因子と試薬と培地が混合する。因子と試薬は微量である場合があるが、培地を混合することにより体積が増えて、細胞培養器22への供給が容易になる場合がある。
 複数の培地容器101、102は、異なる培地を収容していてもよい。例えば、混合槽95から細胞培養器22に試薬及び因子を送る回数に応じて、複数の培地容器101、102のいずれかから混合槽95に異なる培地を送ってもよい。また、例えば、混合槽95から細胞培養器22に試薬及び因子を送るタイミングに応じて、複数の培地容器101、102のいずれかから混合槽95に異なる培地を送ってもよい。例えば、細胞培養器22内の細胞に因子を導入して、細胞を第1の状態から第2の状態に変化させる場合、因子を導入する初期の段階では、培地容器101から第1の状態の細胞に適した培地を混合槽95に供給し、因子を導入する後期の段階では、培地容器102から第2の状態の細胞に適した培地を混合槽95に供給してもよい。
 図1及び図2に示すように、混合槽95には、混合槽95から細胞培養器22に因子と試薬を送るための流路108が接続されている。流路108には、流路108内の流体を移動させるための流体機械109が設けられていてもよい。
 流体機械109が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路108が設けられており、流体機械109のポンプヘッドが流路108に接し、流体機械109の駆動部が基板から取り外し可能であってもよい。
 流路108は、内部を外気から閉鎖可能な構造を有し得る。流路108の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路108は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路108の少なくとも一部は、プレート等の部材に設けられていてもよい。流路108の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路108の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械109が、混合槽95内の因子と試薬を、流路108を介して細胞培養器22内に移動させる。流体機械109は、混合槽95内の因子と試薬を、細胞培養器22内に定量的に移動させてもよい。流体機械109は、混合槽95から細胞培養器22に試薬及び因子を所定の回数送ってもよい。また、流体機械109は、混合槽95から細胞培養器22に試薬及び因子を所定のタイミングで送ってもよい。混合槽95は、因子と試薬を送り出す際に、容積を収縮させてもよい。混合槽95は、能動的に容積を収縮させてもよいし、流路108からの吸引力により受動的に容積を収縮させてもよい。
 細胞培養器22内の細胞は、因子と試薬に接触し、細胞に因子が導入される。混合槽95内の因子と試薬を、細胞培養器22内に定量的に移動させることにより、細胞に因子が定量的に導入される。混合槽95内の因子と試薬を、細胞培養器22内に所定の回数移動させることにより、細胞に因子が所定の回数導入される。混合槽95内の因子と試薬を、細胞培養器22内に所定のタイミングで移動させることにより、細胞に因子が所定のタイミングで導入される。
 細胞培養器22には、例えば、流路31を介して、因子を導入された細胞に適した培地を収容する流体容器である培地容器32が接続されている。因子を導入された細胞が幹細胞に誘導される場合、培地容器32は幹細胞培地を収容する。因子を導入された細胞が分化細胞等の体細胞に誘導される場合、培地容器32は体細胞培地を収容する。培地容器32が収容する培地は、ゲルであってもよいし、液体であってもよい。
 培地容器32は、内部を外気から閉鎖可能な構造を有し得る。培地容器32の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。培地容器32は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。培地容器32の少なくとも一部は、プレート等の部材に設けられていてもよい。培地容器32の少なくとも一部は、部材に彫り込まれて形成されていてもよい。培地容器32の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。培地容器32は、当該培地容器32の容積を変更可能であってもよい。この場合、例えば、培地容器32は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、培地容器32は、可撓性を有する蛇腹やバッグであってもよい。
 培地容器32と、流路31と、は、コネクターで接続されてもよい。流路31は、内部を外気から閉鎖可能な構造を有し得る。流路31の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路31は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路31の少なくとも一部は、プレート等の部材に設けられていてもよい。流路31の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路31の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。流路31には、流路31内の流体を移動させるためのポンプ等の流体機械33が設けられていてもよい。流路31には流体機械以外の弁が設けられていなくてもよい。
 流体機械33が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路31が設けられており、流体機械33のポンプヘッドが流路31に接し、流体機械33の駆動部が基板から取り外し可能であってもよい。
 培地容器32には、培地容器32内の培地の温度を調節する温度調節装置が設けられていてもよい。
 細胞に因子が導入されてから所定の期間経過後、流体機械33が、培地容器32内の培地を、流路31を介して、細胞培養器22内に移動させる。培地容器32から供給された培地は、図6に示すように、細胞培養器22内の培地成分透過部材322で区切られた区画のうち、細胞が存在する区画323に接し、細胞が存在しない区画324に入れられてもよい。あるいは、幹細胞培地は、図7に示すように、細胞培養器22内の培地成分透過部材322で区切られた区画のうち、重力方向下側の細胞が存在しない区画323に入れられてもよい。この場合、重力方向上側の区画324に細胞が存在する。内部から培地を吸引された培地容器32は、容積を収縮させてもよい。なお、培地容器32は、能動的に容積を収縮させてもよいし、受動的に容積を収縮させてもよい。
 図1及び図2に示す培地容器32から細胞培養器22内に培地が送り込まれると、細胞培養器22内の余剰となった流体は、例えば、貯留槽130内に移動し、貯留槽130は容積を膨張させて、細胞培養器22内から移動してきた流体を流路132又は流路134を介して受け入れてもよい。流路132又は流路134は、細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在しない区画に接続していてもよい。
 あるいは、流路132又は流路134は、細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在する区画に接していてもよい。この場合、細胞培養器22内の余剰な細胞を、流路132又は流路134を介して貯留槽130に送り出してもよい。
 細胞培養器22内の培地成分透過部材で区切られた区画のうち、細胞が存在する区画の培地と、細胞が存在しない区画の培地と、は、例えば浸透圧により、培地成分や老廃物を交換する。培養成分透過部材としては、例えば、半透膜、メッシュ、及び中空糸膜が使用可能である。半透膜は、透析膜を含む。
 培養成分透過部材が半透膜である場合、半透膜の分画分子量は、例えば、0.1KDa以上、10KDa以上、あるいは50KDa以上である。半透膜は、例えば、セルロースエステル、エチルセルロース、セルロースエステル類、再生セルロース、ポリスルホン、ポリアクリルニトリル、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、ポリエステル系ポリマーアロイ、ポリカーボネート、ポリアミド、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、銅アンモニウムレーヨン、鹸化セルロース、ヘモファン膜、フォスファチジルコリン膜、及びビタミンEコーティング膜等からなる。
 培養成分透過部材がメッシュである場合、メッシュは、細胞培養器22内で培養される細胞よりも小さい孔を有する。メッシュの材料は、例えば樹脂及び金属であるが、特に限定されない。培養成分透過部材の表面は、細胞非接着性であってもよい。
 培養成分透過部材が中空糸膜である場合、中空糸膜は、細胞培養器22内で培養される細胞よりも小さい孔を有する。例えば、中空糸膜の内側で細胞が培養されてもよい。
 細胞培養器22内で細胞を培養している間、所定のタイミングで、流体機械33が、培地容器32内の培地を、流路31を介して、細胞培養器22内に移動させてもよい。貯留槽130は、新鮮な培地の流入により細胞培養器22内の余剰となった使用済み培地を受け入れてもよい。流体機械33は、例えば、培地の状態、培地中の細胞塊の状態、細胞数、細胞塊数、培地の濁度、及びpHの変化に応じて、培地の送液量を制御したり、培地の送液の開始及び終了をしたりしてもよい。
 細胞培養器22には、細胞培養器22内で培養されている細胞を細胞培養器22から剥離するための剥離剤を収容する剥離剤容器120が接続されていてもよい。なお、剥離剤を、浮遊している細胞塊の破砕のために使用してもよい。
 剥離剤容器120は、内部を外気から閉鎖可能な構造を有し得る。剥離剤容器120の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。剥離剤容器120は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。剥離剤容器120の少なくとも一部は、プレート等の部材に設けられていてもよい。剥離剤容器120の少なくとも一部は、部材に彫り込まれて形成されていてもよい。剥離剤容器120の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。剥離剤容器120は、当該剥離剤容器120の容積を変更可能であってもよい。この場合、例えば、剥離剤容器120は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、剥離剤容器120は、可撓性を有する蛇腹やバッグであってもよい。
 剥離剤容器120には、少なくとも剥離剤を剥離剤容器120から細胞培養器22に送るための流路121が接続されている。剥離剤容器120と、流路121と、は、コネクターで接続されてもよい。流路121には、流路121内の流体を移動させるための流体機械122が設けられていてもよい。流路121には流体機械以外の弁が設けられていなくてもよい。
 流体機械122が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路121が設けられており、流体機械122のポンプヘッドが流路121に接し、流体機械122の駆動部が基板から取り外し可能であってもよい。
 流路121は、内部を外気から閉鎖可能な構造を有し得る。流路121の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路121は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路121の少なくとも一部は、プレート等の部材に設けられていてもよい。流路121の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路121の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械122が、剥離剤容器120内の剥離剤を、流路121を介して細胞培養器22内に移動させる。流体機械122は、剥離剤容器120内の剥離剤を、細胞培養器22内に定量的に移動させてもよい。剥離剤容器120は、剥離剤を送り出す際に、容積を収縮させてもよい。剥離剤容器120は、能動的に容積を収縮させてもよいし、流路121からの吸引力により受動的に容積を収縮させてもよい。
 剥離した細胞を細胞培養器22から流路に移動させた後、細胞の少なくとも一部を細胞培養器22に戻して、細胞を継代してもよい。なお、浮遊培養の場合は、細胞を剥離しなくとも継代可能である。細胞培養器22から細胞を受け取り、再度、細胞培養器22に細胞を戻すための流路は、細胞塊を分割する構造が設けられていてもよい。細胞塊は小さな細胞塊に分割されてもよいし、シングルセルに分割されてもよい。
 細胞培養器22には、細胞培養器22内で培養されている細胞を凍結保存するための凍結保存液を収容する凍結保存液容器123が接続されていてもよい。
 凍結保存液容器123は、内部を外気から閉鎖可能な構造を有し得る。凍結保存液容器123の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。凍結保存液容器123は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。凍結保存液容器123の少なくとも一部は、プレート等の部材に設けられていてもよい。凍結保存液容器123の少なくとも一部は、部材に彫り込まれて形成されていてもよい。凍結保存液容器123の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。凍結保存液容器123は、当該凍結保存液容器123の容積を変更可能であってもよい。この場合、例えば、凍結保存液容器123は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、凍結保存液容器123は、可撓性を有する蛇腹やバッグであってもよい。
 凍結保存液容器123には、少なくとも凍結保存液を凍結保存液容器123から細胞培養器22に送るための流路124が接続されている。凍結保存液容器123と、流路124と、は、コネクターで接続されてもよい。流路124には、流路124内の流体を移動させるための流体機械125が設けられていてもよい。流路124には流体機械以外の弁が設けられていなくてもよい。
 流体機械125が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路124が設けられており、流体機械125のポンプヘッドが流路124に接し、流体機械125の駆動部が基板から取り外し可能であってもよい。
 流路124は、内部を外気から閉鎖可能な構造を有し得る。流路124の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路124は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路124の少なくとも一部は、プレート等の部材に設けられていてもよい。流路124の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路124の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械125が、凍結保存液容器123内の凍結保存液を、流路124を介して、内部で細胞が浮遊している細胞培養器22内に移動させる。流体機械125は、凍結保存液容器123内の凍結保存液を、細胞培養器22内に定量的に移動させてもよい。凍結保存液容器123は、凍結保存液を送り出す際に、容積を収縮させてもよい。凍結保存液容器123は、能動的に容積を収縮させてもよいし、流路124からの吸引力により受動的に容積を収縮させてもよい。
 細胞培養器22には、細胞を凍結保存するための細胞凍結容器126が接続されていてもよい。
 細胞凍結容器126は、内部を外気から閉鎖可能な構造を有し得る。細胞凍結容器126の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。細胞凍結容器126は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。細胞凍結容器126の少なくとも一部は、プレート等の部材に設けられていてもよい。細胞凍結容器126の少なくとも一部は、部材に彫り込まれて形成されていてもよい。細胞凍結容器126の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。細胞凍結容器126は、当該細胞凍結容器126の容積を変更可能であってもよい。この場合、例えば、細胞凍結容器126は、流体を収容するシリンジと、シリンジに挿入され、シリンジ内を移動可能なプランジャーと、を備え、プランジャーの移動により、シリンジ内の流体を収容可能な容積を変更可能である。あるいは、細胞凍結容器126は、可撓性を有する蛇腹やバッグであってもよい。
 細胞凍結容器126には、少なくとも細胞及び凍結保存液を細胞培養器22から細胞凍結容器126に送るための流路127が接続されている。流路127には、細胞塊を分割する構造が設けられていてもよい。細胞凍結容器126と、流路127と、は、コネクターで接続されてもよい。流路127には、流路127内の流体を移動させるための流体機械128が設けられていてもよい。流路127には流体機械以外の弁が設けられていなくてもよい。
 流体機械128が、ポンプヘッドと、ポンプヘッドを駆動する駆動部と、を備えていてもよい。基板に流路127が設けられており、流体機械128のポンプヘッドが流路127に接し、流体機械128の駆動部が基板から取り外し可能であってもよい。
 流路127は、内部を外気から閉鎖可能な構造を有し得る。流路127の内部を含む閉鎖空間は、外部と気体、ウイルス、微生物及び不純物等の交換をしないよう構成され得る。流路127は、ガス非透過性物質に埋め込まれ、包埋されていてもよい。流路127の少なくとも一部は、プレート等の部材に設けられていてもよい。流路127の少なくとも一部は、部材に彫り込まれて形成されていてもよい。流路127の少なくとも一部は、部材に彫り込まれて凹部を重ね合わせて形成されていてもよい。
 流体機械128が、細胞培養器22内の細胞及び凍結保存液を、流路127を介して細胞凍結容器126内に移動させる。流体機械128は、細胞培養器22内の細胞及び凍結保存液を、細胞凍結容器126内に定量的に移動させてもよい。細胞凍結容器126は、細胞及び凍結保存液を受ける際に、容積を膨張させてもよい。細胞凍結容器126は、能動的に容積を膨張させてもよいし、流路127からの圧力により受動的に容積を膨張させてもよい。
 実施形態に係る赤血球除去装置100及び細胞培養装置200は、一つの基板上に設けられていてもよい。赤血球除去装置100及び細胞培養装置200のそれぞれの構成要素は、基板に彫り込まれて形成されていてもよい。赤血球除去装置100及び細胞培養装置200のそれぞれの構成要素は、少なくとも二つの基板の同じ位置に彫り込まれた凹部同士を合わせて形成してもよい。赤血球除去装置100及び細胞培養装置200のそれぞれの構成要素が外気と接触しないよう、赤血球除去装置100及び細胞培養装置200が包埋されていてもよい。
 実施形態に係る赤血球除去装置100及び細胞培養装置200は、流体機械の駆動部が設けられた基板と、流路等が設けられた基板と、を備えていてもよい。赤血球除去装置100及び細胞培養装置200は、流体機械の駆動部が設けられた基板と、流路等が設けられた基板と、を重ね合わせることにより構成されてもよい。
 本発明者らの知見により、細胞は、完全に閉鎖された密閉空間で培養可能であるため、細胞培養器22内に、二酸化炭素ガス、窒素ガス、及び酸素ガス等を積極的に供給しなくともよい。そのため、細胞培養器22をCO2インキュベーター内に配置しなくともよい。また、密閉されている細胞培養器22内に、細胞培養器22外に存在する細胞、微生物、ウイルス、及び塵等が進入しないため、細胞培養器22内の清浄度が保たれる。そのため、細胞培養器22をクリーンルーム内に配置しなくともよい。ただし、細胞が存在する閉鎖系内に二酸化炭素ガス、窒素ガス、及び酸素ガス等を供給することは、必ずしも妨げられない。
 実施形態に係る赤血球除去装置100によれば、例えば、完全閉鎖系で血液が処理されるため、装置からの血液の漏れ出しによる感染のリスクを低減することが可能である。実施形態に係る細胞培養装置200によれば、例えば、完全閉鎖系で細胞が培養されるため、培養装置からの細胞や因子の漏れ出しによるクロスコンタミネーションのリスクを低減することが可能である。また、例えば、細胞がHIV肝炎ウイルス等のウイルスに感染している場合であっても、細胞の漏れ出しによるオペレーターへの感染のリスクを低減することが可能である。さらに、細胞培養器内の培地が、細胞培養器外の空気中の細菌、ウイルス及びカビ等にコンタミネーションするリスクを低減することが可能である。またさらに、実施形態に係る細胞培養器によれば、CO2インキュベーターを用いることなく、細胞を培養することも可能である。なお、閉鎖系とは、外部から細菌及びウイルス等の微生物並びに塵芥が進入しないことを意味し得る。閉鎖系において外部から気体が進入することは許容されてもよいし、気体が進入できないよう構成されてもよい。
 (他の実施形態)
 上記のように、本発明を実施形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施形態、実施形態及び運用技術が明らかになるはずである。例えば、図1に示す細胞培養器22に送られる細胞は、単核球に限定されない。細胞培養器22に送られる細胞は、幹細胞、線維芽細胞、あるいは他の体細胞であってもよい。細胞培養器22に送られる細胞は、任意である。
 (実施例1)
 本実施例においては、完全に閉鎖された環境下において、培地交換及びガス交換をすることなく、細胞を培養可能である例を示す。増殖因子を培地(StemSpan H3000、登録商標、STEMCELL Technologies Inc.)に添加し、さらに培地に脱アシル化ゲランガムを添加して、ゲル培地を用意した。
 用意したゲル培地を15mLチューブに入れ、ゲル培地に2×105個の血液細胞を播種した。その後、15mLチューブをCO2インキュベーター内に配置し、7日間、血液細胞(単核球)を培養した。その後、ゲル培地にOCT3/4、SOX2、KLF4、cMYCを搭載するセンダイウイルスベクターを感染多重度(MOI)が10.0となるよう添加し、血液細胞をセンダイウイルスに感染させた。
 ゲル培地にセンダイウイルスを添加した後、ゲル培地に15mLのゲル化した幹細胞培地(20%KnockOut SR(登録商標、ThermoFisher SCIENTIFIC)を含むDMEM/F12)を添加し、そのうち15mLのセンダイウイルスに感染した細胞を含む培地を密閉可能な細胞培養器に入れ、ゲル培地を細胞培養器に注入した。その後、細胞培養器内部を密閉し、細胞培養器の内部と外部とで、ガス交換が完全に生じないようにした。
 細胞培養器内で初期化因子を導入された細胞の浮遊培養を開始した。その後、2日に一度、培地保持槽40内の2mLのゲル培地を、2mLの新鮮なゲル培地に交換した。
 15日後、細胞を顕微鏡で観察したところ、図10に示すように、ES細胞様コロニーを形成していることが確認された。また、4%-パラホルムアルデヒドを用いて細胞を固定し、フローサイトメーターを用いて、固定された細胞における細胞表面抗原TRA-1-60の発現量を測定したところ、図11に示すように、90%以上TRA-1-60陽性であり、ほぼ完全にリプログラミングされていることが確認された。したがって、完全に閉鎖された環境下において、培地交換及びガス交換をすることなく、幹細胞以外の体細胞からiPS細胞を誘導できることが示された。
 (実施例2)
 血液を赤血球沈降剤で処理し、赤血球を少なくとも部分的に除去された処理血液を得た。処理血液を表面細胞マーカー抗体で処理し、蛍光活性化セルソーティング(FACS)で分析した結果を図12に示す。処理血液は、CD3陽性細胞、CD14陽性細胞、CD31陽性細胞、CD33陽性細胞、CD34陽性細胞、CD19陽性細胞、CD41陽性細胞、CD42陽性細胞、及びCD56陽性細胞を含んでいた。
 赤血球を少なくとも部分的に除去された処理血液を図3に示したような単核球回収器に入れ、緩衝液で希釈し、上澄みを除去した。その後、単核球回収器から単核球を回収した。図13(a)に示すように、単核球回収器に入れる前の処理血液は、血小板を多く含んでいた。一方、図13(b)に示すように、単核球回収器から回収された単核球を含む溶液は、血小板がほぼ除去されていた。同一面積あたりにおける、単核球回収器に入れる前の処理血液における血小板の数と、単核球回収器から回収された単核球を含む溶液における血小板の数と、を示すグラフを図14に示す。
 単核球回収器に入れる前の血小板を含む処理血液を培養液に入れると、図15(a)に示すように、凝集した。これに対し、単核球回収器から回収された、血小板を除去された単核球を含む溶液を培養液に入れると、図15(b)に示すように、凝集しなかった。
 11・・・赤血球除去器、15・・・単核球回収器、17・・・流路、18・・・流体機械、19・・・流路、20・・・単核球吸引装置、21・・・流体機械、22・・・細胞培養器、23・・・流路、24・・・流体機械、25・・・培地容器、31・・・流路、32・・・培地容器、33・・・流体機械、34・・・流路、35・・・コーティング剤容器、36・・・流体機械、40・・・培地保持槽、50・・・血液容器、51・・・流路、52・・・流体機械、53・・・赤血球処理剤容器、54・・・流路、55・・・流体機械、56・・・流路、57・・・混合器、58・・・流路、60・・・流路、61・・・希釈用液容器、62・・・流体機械、81・・・因子容器、82・・・試薬容器、83・・・希釈液容器、84・・・因子希釈容器、85・・・流路、86・・・流路、87・・・流路、88・・・流体機械、89・・・試薬希釈容器、90・・・流路、91・・・流路、92・・・流路、93・・・流体機械、94・・・流体機械、95・・・混合槽、96・・・流路、97・・・流路、98・・・流路、99・・・流体機械、100・・・赤血球除去装置、101・・・培地容器、102・・・培地容器、103・・・流路、104・・・流路、105・・・流路、106・・・流体機械、107・・・流体機械、108・・・流路、109・・・流体機械、115・・・開口、116・・・開口、117・・・流路、120・・・剥離剤容器、121・・・流路、122・・・流体機械、123・・・凍結保存液容器、124・・・流路、125・・・流体機械、126・・・細胞凍結容器、127・・・流路、128・・・流体機械、130・・・貯留槽、131・・・流路、132・・・流路、133・・・流体機械、134・・・流路、135・・・流路、137・・・流路、187・・・流体機械、200・・・細胞培養装置、222・・・筐体、223・・・筐体、322・・・培地成分透過部材、323・・・区画、324・・・区画

Claims (20)

  1.  細胞を培養するための細胞培養器と、
     因子を収容する因子容器と、
     前記因子を前記細胞に導入するための試薬を収容する試薬容器と、
     前記因子容器及び前記試薬容器から前記細胞培養器に前記因子及び前記試薬を送るための流路と、
     を備える、細胞培養装置。
  2.  前記流路に設けられた、前記因子と前記試薬を混合するための混合槽をさらに備える、請求項1に記載の細胞培養装置。
  3.  前記因子容器から前記混合槽に前記因子を送るための第1の流体機械をさらに備える、請求項2に記載の細胞培養装置。
  4.  前記試薬容器から前記混合槽に前記試薬を送るための第2の流体機械をさらに備える、請求項2に記載の細胞培養装置。
  5.  前記混合槽から前記細胞培養器に前記試薬及び前記因子を送るための第3の流体機械をさらに備える、請求項2から4のいずれか1項に記載の細胞培養装置。
  6.  希釈液を収容する希釈液容器と、
     前記流路に設けられた、前記因子を前記希釈液で希釈するための因子希釈容器と、
     をさらに備える、請求項1から5のいずれか1項に記載の細胞培養装置。
  7.  希釈液を収容する希釈液容器と、
     前記流路に設けられた、前記試薬を前記希釈液で希釈するための試薬希釈容器と、
     をさらに備える、請求項1から5のいずれか1項に記載の細胞培養装置。
  8.  希釈液を収容する希釈液容器と、
     前記流路に設けられた、前記因子を前記希釈液で希釈するための因子希釈容器と、
     前記流路に設けられた、前記試薬を前記希釈液で希釈するための試薬希釈容器と、
     をさらに備え、
     前記混合槽において、前記希釈された因子と前記希釈された試薬が混合される、
     請求項2から5のいずれか1項に記載の細胞培養装置。
  9.  前記混合槽に接続された、前記混合槽に供給される培地を収容する培地容器をさらに備える、請求項2から5のいずれか1項に記載の細胞培養装置。
  10.  前記混合槽に接続された、前記混合槽に供給される培地をそれぞれ収容する複数の培地容器をさらに備える、請求項2から5のいずれか1項に記載の細胞培養装置。
  11.  前記細胞培養器の内部、前記因子容器の内部、前記試薬容器の内部、及び前記流路の内部が、外気から閉鎖可能である、請求項1から10のいずれか1項に記載の細胞培養装置。
  12.  前記混合槽の内部が、外気から閉鎖可能である、請求項2に記載の細胞培養装置。
  13.  前記希釈液容器の内部が、外気から閉鎖可能である、請求項6から8のいずれか1項に記載の細胞培養装置。
  14.  前記培地容器の内部が、外気から閉鎖可能である、請求項9に記載の細胞培養装置。
  15.  前記因子容器及び前記試薬容器の少なくとも一方の容積が可変である、請求項1から14のいずれか1項に記載の細胞培養装置。
  16.  前記混合槽の容積が可変である、請求項2から5、8から10、12及び14のいずれか1項に記載の細胞培養装置。
  17.  前記希釈液容器の容積が可変である、請求項6から8のいずれか1項に記載の細胞培養装置。
  18.  前記培地容器の容積が可変である、請求項9に記載の細胞培養装置。
  19.  前記因子がDNA、RNA、タンパク質、及び化合物から選択される少なくとも一つである、請求項1から18のいずれか1項に記載の細胞培養装置。
  20.  前記細胞培養器、前記因子容器、前記試薬容器、及び前記流路がプレートに設けられている、請求項1から19のいずれか1項に記載の細胞培養装置。
PCT/JP2020/040785 2019-11-06 2020-10-30 細胞培養装置 WO2021090767A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20884915.8A EP4056673A4 (en) 2019-11-06 2020-10-30 CELL CULTURE DEVICE
US17/775,205 US20220403307A1 (en) 2019-11-06 2020-10-30 Cell culture device
CN202080063927.3A CN114375324A (zh) 2019-11-06 2020-10-30 细胞培养装置
JP2021554919A JPWO2021090767A1 (ja) 2019-11-06 2020-10-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962931471P 2019-11-06 2019-11-06
US62/931,471 2019-11-06

Publications (1)

Publication Number Publication Date
WO2021090767A1 true WO2021090767A1 (ja) 2021-05-14

Family

ID=75849714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040785 WO2021090767A1 (ja) 2019-11-06 2020-10-30 細胞培養装置

Country Status (5)

Country Link
US (1) US20220403307A1 (ja)
EP (1) EP4056673A4 (ja)
JP (1) JPWO2021090767A1 (ja)
CN (1) CN114375324A (ja)
WO (1) WO2021090767A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822534B (zh) * 2022-12-28 2023-11-11 財團法人工業技術研究院 細胞培養裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
CN103667054A (zh) * 2013-09-18 2014-03-26 中国航天员科研训练中心 一种集成化微流控细胞培养芯片及其制备方法
JP2014114997A (ja) 2012-12-07 2014-06-26 Koken Ltd 局所空気清浄化装置
WO2018154788A1 (ja) * 2017-02-27 2018-08-30 剛士 田邊 体細胞製造システム
JP2018526992A (ja) * 2015-08-31 2018-09-20 アイ ピース,インコーポレイテッド 多能性幹細胞製造システム、幹細胞の誘導方法、幹細胞の浮遊培養方法、幹細胞の浮遊培養器、人工多能性幹細胞の作製方法、及び動物細胞から特定の体細胞を作製する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080575A (ja) * 2019-02-05 2019-05-30 剛士 田邊 体細胞製造システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
JP2014114997A (ja) 2012-12-07 2014-06-26 Koken Ltd 局所空気清浄化装置
CN103667054A (zh) * 2013-09-18 2014-03-26 中国航天员科研训练中心 一种集成化微流控细胞培养芯片及其制备方法
JP2018526992A (ja) * 2015-08-31 2018-09-20 アイ ピース,インコーポレイテッド 多能性幹細胞製造システム、幹細胞の誘導方法、幹細胞の浮遊培養方法、幹細胞の浮遊培養器、人工多能性幹細胞の作製方法、及び動物細胞から特定の体細胞を作製する方法
WO2018154788A1 (ja) * 2017-02-27 2018-08-30 剛士 田邊 体細胞製造システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056673A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822534B (zh) * 2022-12-28 2023-11-11 財團法人工業技術研究院 細胞培養裝置

Also Published As

Publication number Publication date
US20220403307A1 (en) 2022-12-22
EP4056673A1 (en) 2022-09-14
JPWO2021090767A1 (ja) 2021-05-14
EP4056673A4 (en) 2024-04-03
CN114375324A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2020250929A1 (ja) 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法
JP6253216B2 (ja) 多能性幹細胞製造システム
JP5670197B2 (ja) 試料処理システムおよび方法
US20230030031A1 (en) Cell treatment device, suspension culture vessel, and stem cell induction method
WO2016021498A1 (ja) 繊維状タンパク質材料の作製方法、および細胞培養方法
CN110366590A (zh) 细胞处理系统及细胞处理装置
JPWO2020040135A1 (ja) 細胞の培養又は誘導方法
WO2021090767A1 (ja) 細胞培養装置
JP7041325B2 (ja) 細胞培養器及び細胞培養装置
WO2020250927A1 (ja) 赤血球除去装置、単核球回収器、細胞培養装置、細胞培養システム、細胞培養方法、及び単核球の回収方法
US20220195370A1 (en) Cell culture vessel and method for culturing cell
JP7090337B2 (ja) 細胞処理システム及び細胞処理装置
US20230374446A1 (en) Devices and methods of producing tubular systems for cell culture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884915

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021554919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020884915

Country of ref document: EP

Effective date: 20220607