WO2021088940A1 - 换热板以及包含该换热板的换热器 - Google Patents

换热板以及包含该换热板的换热器 Download PDF

Info

Publication number
WO2021088940A1
WO2021088940A1 PCT/CN2020/126857 CN2020126857W WO2021088940A1 WO 2021088940 A1 WO2021088940 A1 WO 2021088940A1 CN 2020126857 W CN2020126857 W CN 2020126857W WO 2021088940 A1 WO2021088940 A1 WO 2021088940A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
fluid
exchange plate
guide
convex hull
Prior art date
Application number
PCT/CN2020/126857
Other languages
English (en)
French (fr)
Inventor
杨宗豪
李马林
刘继辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20885438.0A priority Critical patent/EP4023997A4/en
Publication of WO2021088940A1 publication Critical patent/WO2021088940A1/zh
Priority to US17/696,013 priority patent/US20220205738A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart

Definitions

  • the embodiments of the present application relate to heat exchanger technology, in particular to a heat exchange plate and a heat exchanger including the heat exchange plate.
  • plate heat exchangers are usually used to achieve the exchange between the hot air flow released by the equipment in the data center and the external cold air flow.
  • the surface characteristics of the heat exchange plate (such as surface pattern, pattern arrangement, etc.) affect the heat exchange efficiency of the air passages on both sides of the heat exchanger.
  • a convex hull structure is usually formed on the surface of the heat exchange plate to improve the heat transfer coefficient of the heat exchange plate.
  • the convex hull structure usually includes vertical strip-shaped convex hulls or circular convex hulls arranged in an array.
  • the convex hull structure is usually arranged in a sparse or dense manner. When the sparse arrangement is used for the arrangement, the air distribution is usually uneven and the utilization rate of the heat exchange plate is reduced; when the dense arrangement is used, the flow resistance of the airflow is increased, thereby reducing the flow rate of the airflow. This reduces the flow efficiency. In summary, how to improve the heat exchange efficiency of the heat exchanger to the airflow has become a problem.
  • the heat exchange plate provided by the present application can improve the heat exchange efficiency of the heat exchange plate to the airflow by providing the first fluid or a combination of the first fluid and the second fluid.
  • an embodiment of the present application is a heat exchange plate.
  • the heat exchange plate includes a substrate.
  • the substrate includes a first side along a first direction and a second side along a second direction.
  • the second direction is a different direction;
  • the first guiding fluid the first guiding fluid is disposed on the substrate, and used for guiding the airflow, wherein a plurality of the first guiding fluids are along the first direction Are arranged in a row at intervals, and a plurality of rows of the first guide fluid are arranged at intervals along the second direction;
  • a support structure the support structure is arranged on a substrate, wherein the support structure extends along the first direction,
  • the supporting structure and each row of the first guide fluid are arranged at intervals along the second direction.
  • the heat exchange plate provided by the present application can divert the gas passing through the heat exchanger by forming a first fluid guide and a supporting structure on the surface of the substrate, so that the air flow flows along the diversion direction; secondly, it can also make heat exchange
  • the plate is evenly partitioned into multiple cavities, which can uniformly restrict the airflow in each cavity, avoid uneven distribution of the airflow on the heat exchange plate, improve the utilization rate of the heat exchange plate, and improve heat exchange efficiency.
  • the heat exchange plate further includes a second fluid guide disposed on the substrate; the first fluid guide and the second fluid guide follow the first fluid guide Arranged in a row at intervals in one direction to form multiple rows of fluid guide groups arranged along the second direction, wherein the position of the first fluid guide and the second fluid guide in each row of the fluid guide group The arrangement is the same.
  • the heat exchange plate shown in the present application is provided with a fluid guide group formed by a first fluid guide and a second fluid guide, which can cause the airflow to form a vortex at certain positions of the heat exchange plate, and increase the gap between the airflow and the heat exchange plate.
  • the contact area In this way, sufficient heat exchange can be performed between the airflow and the heat exchange plate, and the effect of airflow exchange can be improved.
  • the guide fluids are arranged in pairs of axial symmetry; in the pair of the guide fluid groups, one row of the guide fluid groups
  • the first fluid guide and the second fluid guide in the fluid guide group extend in the third direction
  • the first fluid guide and the second fluid guide in the fluid guide group in the other row extend in the fourth direction.
  • the first direction and the second fluid guide The second direction, the third direction and the fourth direction are different directions.
  • the airflow can flow in the same direction, avoiding the uneven distribution of the airflow in the flow channel and between the third convex hulls caused by the airflow flowing in multiple directions, thereby improving the airflow
  • the uniformity of the distribution can further improve the heat exchange effect.
  • the pair of the fluid guide group and the supporting structure are arranged at intervals along the second direction.
  • the heat exchange plate further includes a third fluid guide disposed on the substrate; the first fluid guide and the third fluid guide along the first Arranged in a row at intervals in one direction to form a plurality of rows of fluid guide groups arranged along the second direction, wherein the first fluid guide and the second fluid guide are in adjacent rows of the fluid guide groups
  • the location arrangement is different.
  • the heat exchange plate shown in the present application is provided with a fluid guide group formed by a first fluid guide and a third fluid guide, which can cause the airflow to form a vortex when flowing between the gaps of the convex hull, and increase the difference between the airflow and the heat exchange plate.
  • the contact area between the two increases the heat exchange efficiency.
  • the first guiding fluid extends along the first direction
  • the third guiding fluid extends along a third direction, wherein the first direction and the The third direction is a different direction.
  • the first fluid guide and the support structure respectively protrude to different surfaces of the substrate.
  • the first fluid guide and the supporting structure respectively protrude to different surfaces of the substrate, so that the airflow can exchange heat on both sides of the heat exchange plate, thereby reducing the number of heat exchange plates required in the heat exchanger and saving The manufacturing cost of the heat exchanger is reduced.
  • a reinforcing structure is connected between every two of the first conductive fluids arranged at intervals.
  • the first guiding fluid can be made more stable, which is beneficial to improve the stability of the heat exchange plate, and thus is beneficial to improve the heat exchange performance of the heat exchange plate.
  • a positioning boss is further provided on the substrate.
  • the heat exchange plate further includes a plurality of positioning bosses for assembling with adjacent heat exchange plates, and the plurality of positioning bosses are arranged at The substrate.
  • positioning bosses are provided on the substrate, which facilitates the assembly between the heat exchange plates, further improves the stability between the heat exchange plates, and makes the heat exchanger stronger.
  • the pattern formed by the orthographic projection of the first guide fluid onto the substrate includes one of the following: a circle, an ellipse, a drop shape, an elongated shape, and a triangle.
  • the substrate, the first guiding fluid, and the supporting structure are integrally formed; and the material forming the heat exchange plate includes one of the following: metallic material, non-metallic material metallic material.
  • an embodiment of the present application is a heat exchanger, which includes a plurality of heat exchange plates as described in the first aspect.
  • FIGS 1a-1b are schematic views of the structure of two heat exchange plates in the prior art
  • Fig. 2 is a schematic diagram of a surface structure of a heat exchange plate provided by an embodiment of the present application
  • Fig. 3 is a cross-sectional view of the heat exchange plate shown in Fig. 2 provided by an embodiment of the present application;
  • FIG. 4 is another cross-sectional view of the heat exchange plate shown in FIG. 2 provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a pattern formed by orthographic projection of a convex hull to a substrate provided by an embodiment of the present application;
  • Fig. 7 is a schematic structural diagram of an elliptical convex hull provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • Figure 9a is a partial enlarged schematic view of the third convex hull provided by the embodiment of the present application.
  • 9b is a schematic cross-sectional structure diagram of a third convex hull provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the structure of the heat exchanger provided by the embodiment of the present application.
  • Figure 16 is a schematic diagram of the relative positions of the heat exchange plates in the heat exchanger provided by the embodiment of the present application.
  • Figure 17 (a) is a cross-sectional view along the bb' position of the heat exchange plate 161 shown in Figure 16 provided by an embodiment of the present application;
  • Figure 17(b) is a cross-sectional view along the cc' position of the heat exchange plate 162 shown in Figure 16 provided by an embodiment of the present application;
  • Figure 17(c) is a schematic diagram of assembly between two heat exchange plates provided by an embodiment of the present application.
  • Figure 17(d) is a schematic diagram of assembly between four heat exchange plates provided by an embodiment of the present application.
  • Figure 18 (a) is another cross-sectional view along the bb' position of the heat exchange plate 161 shown in Figure 16 provided by the embodiment of the present application;
  • Figure 18(b) is another cross-sectional view along the cc' position of the heat exchange plate 162 shown in Figure 16 provided by the embodiment of the present application;
  • Figure 18(c) is a schematic diagram of the assembly between two heat exchange plates provided by an embodiment of the present application.
  • Fig. 18(d) is a schematic diagram of assembly between four heat exchange plates provided by an embodiment of the present application.
  • the "unit” mentioned in this article usually refers to a functional structure divided logically, and the “unit” can be realized by pure hardware, or a combination of software and hardware.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • FIG. 1a is a schematic diagram of the surface structure of a heat exchange plate in the prior art.
  • the heat exchange plate of the prior art includes strip convex hulls 101 and convex hulls 102 arranged in a crisscross pattern.
  • the convex hull 101 forms a protrusion on the first surface S1 shown in FIG. 1a, and a depression is formed on the second surface opposite to the first surface S1;
  • the convex hull 102 forms a depression on the first surface S1 shown in FIG.
  • the second surface opposite to the first surface S1 forms a protrusion.
  • the strip-shaped convex hulls 101 and 102 are densely arranged.
  • the densely arranged convex hulls can make sufficient heat exchange between the airflow and the heat exchange plate, and improve the heat transfer coefficient of the heat exchange plate.
  • the flow resistance of the airflow is greatly enhanced, which in turn limits the flow rate of the fluid, thereby reducing the airflow heat exchange rate of the data center.
  • Fig. 1b is a schematic diagram of the surface structure of another heat exchange plate in the prior art.
  • the surface of the heat exchange plate includes a plurality of circular convex hulls arranged in an array. It can be seen from Figure 1b that there is a larger interval between each row or each column of convex hulls.
  • the surface of the heat exchange plate is designed into a convex hull of such a shape, which can increase the flow speed of the fluid.
  • the sparse convex hull reduces the heat transfer coefficient on the surface of the heat exchange plate, thereby reducing the heat exchange efficiency between the cold air flow and the hot air flow.
  • the present application provides a heat exchange plate and a heat exchanger including the heat exchange plate.
  • a first fluid guide and a supporting structure are provided to guide the air flow, thereby Improve the heat exchange efficiency of the heat exchanger and reduce the gas flow resistance.
  • the diversion fluid described in the present application may include a convex hull (for example, the convex hull 2011 shown in FIG. 2, for example, the convex hull 20131 shown in FIG. 8), and may also include FIGS. 2 and 5 14.
  • the multiple convex hulls along the second direction in the embodiment shown in FIG. 14 may also include the embodiments shown in FIG. 8, FIG. 10, FIG. 11, and FIG.
  • a pair of convex hulls along the first direction (for example, the third convex hull 2013 shown in FIG. 8) may also include multiple convex hulls along the second direction in the embodiments shown in FIG. 8, FIG. 10, FIG. 11, and FIG.
  • a pair of convex hulls (for example, the fluid guide 201 shown in FIG. 8).
  • FIG. 2 is a schematic diagram of the surface structure of a heat exchange plate provided by an embodiment of the application.
  • the heat exchange plate 20 includes a substrate 21, a conductive fluid 201 formed on the substrate 21 and a supporting structure 202.
  • the substrate 21 includes a first side B1 and a second side B2 along the first direction x, and a third side B3 and a fourth side B4 along the second direction y.
  • the first direction x is the horizontal direction
  • the second direction y is the vertical direction.
  • the substrate 21 further includes a first surface S1 and a second surface opposite to the first surface S1. In Figure 2, the second surface is not shown.
  • the guiding fluid 201 includes a plurality of convex hulls 2011 arranged at intervals along the second direction y.
  • the pattern formed by the orthographic projection of the convex hulls 2011 onto the substrate 21 may include, but is not limited to, an ellipse, a drop shape, an elongated shape, and a triangle.
  • the plurality of convex hulls 2011 may have the same or different shapes, or Same or different in size.
  • FIG. 2 schematically shows that the pattern formed by the orthographic projection of the convex hull 2011 onto the substrate 21 is an ellipse.
  • the support structure 202 extends along the second direction y.
  • the supporting structure can also be referred to as a supporting convex hull because it protrudes outward relative to the substrate 21. It can be seen from Fig. 2 that the supporting structure extends from the side where the first side B1 is located to the side of the second side B2.
  • the supporting structure may also be a plurality of elongated convex hulls arranged at intervals, and the arrangement of the plurality of elongated convex hulls included in the supporting structure may be the same as that of the guide fluid 201.
  • the arrangement of convex hulls is the same.
  • the support structure 202 shown in FIG. 2 is divided into 3 to 5 sections, and a certain gap is provided between each two sections. The supporting structure in this case is no longer shown in the figure.
  • the conductive fluid 201 formed by a plurality of convex hulls 2011 arranged at intervals and the supporting structure 202 formed by the supporting convex hulls are alternately arranged at intervals along the first direction x.
  • the intervals of the guide fluids along the first direction x may be equal.
  • the heat exchange plate is evenly divided into a plurality of cavities.
  • the side where the second side B2 of the heat exchange plate 20 is located is the air inlet, and the external airflow flows from the B2 side to the B1 side.
  • the conductive fluid 201 and the supporting structure 202 may be formed on the same surface, for example, formed on the first surface S1.
  • the convex hulls of the guiding fluid 201 and the supporting structure 202 protrude in the same direction.
  • Fig. 3 shows a cross-sectional view of the heat exchange plate 20 along AA'.
  • the guiding fluid 201 and the supporting structure 202 may be formed on different surfaces.
  • the guiding fluid 201 is formed on the second surface S2, and the supporting structure 202 is formed on the first surface S1.
  • Fig. 4 exemplarily shows another cross-sectional view of the heat exchange plate 20 along AA'.
  • the substrate 21, the guiding fluid 201 and the supporting structure 202 may be integrally formed.
  • the substrate 21, the guiding fluid 201 and the supporting structure 202 are formed of the same material.
  • the material forming the heat exchange plate 20 may be a metal material or a non-metal material.
  • the metal materials include but are not limited to: aluminum, copper, and alloy materials (such as aluminum alloys) mixed with various metals in a certain proportion.
  • Non-metallic materials include but are not limited to PP (Polypropylene, polypropylene), PVC (Polyvinylchlorid, polyvinyl chloride), PS (Polystyrene, polystyrene), PC (Polycarbonate, polycarbonate) mixed with various non-metals in a certain proportion Made of materials.
  • PP Polypropylene, polypropylene
  • PVC Polyvinylchlorid, polyvinyl chloride
  • PS Polystyrene, polystyrene
  • PC Polycarbonate, polycarbonate
  • the height of the formed convex hull is limited.
  • a larger interval is usually set between every two heat exchange plates, which is usually greater than the height of the convex hull.
  • the convex hull is twice the height of the outward protrusion. Therefore, preferably, when the heat exchange plate is made of metal materials, the cross-sectional view structure shown in FIG. 4 can be preferentially selected, that is, the guiding fluid 201 is arranged on the second surface S2, and the supporting structure 202 is arranged on the first surface S1. Structure. In this way, the structure shown in FIG.
  • non-metallic materials such as PP, PVC, PS, PC, etc. are all polymer materials, compared to metal materials, they have the characteristics of low hardness and high flexibility.
  • the convex hull formed by using a non-metallic material can have a larger convex thickness. Therefore, preferably, when the heat exchange plate is made of non-metallic materials, the cross-sectional structure shown in FIG. 3 can be adopted, that is, the guiding fluid 201 and the supporting structure 202 are arranged on the first surface S1 shown in FIG. 3.
  • the structure shown in Fig. 3 can make the distance between every two heat exchange plates approximately equal to the height of the convex hull bulging outward. Thus, the guiding fluid 201 and the supporting structure 202 of the heat exchange plate 20 are more stable.
  • the convex hulls 2011 of the fluid guide 201 may be provided between the convex hulls 2011 of the fluid guide 201 for connecting the convex hulls 2011.
  • the reinforced structure is a convex hull 2012, as shown in FIG. 5, which shows a schematic diagram of the surface structure of another heat exchange plate 20 provided by an embodiment of the present application.
  • the projection of the convex hull 2012 on the substrate 21 is a thin strip.
  • the convex hull 2012 has a supporting effect on the convex hull 2011.
  • the convex hull 2011 can be made more stable, which is beneficial to improve the stability of the heat exchange plate 20, and thus is beneficial to improve the heat exchange performance of the heat exchange plate.
  • the width of the convex hull 2012 along the first direction x may be less than or equal to the width of the convex hull 2011 along the first direction x, as shown in FIG. 5.
  • the ratio between the width of the convex hull 2012 in the first direction x and the width of the convex hull 2011 in the first direction x may be in the range of [0.2, 1].
  • a boss 203 may be provided on the heat exchange plate 20, as shown in FIG. 5.
  • the boss 203 is provided on the substrate 21. In FIG. 5, the boss 203 may be arranged at the position shown in FIG. 5.
  • the number of bosses 203 is not fixed, and is set according to the needs of the application scenario.
  • the heat exchange plate may include four bosses, and the four bosses can be the bosses at four positions at the upper left corner, the lower left corner, the upper right corner, and the lower right corner shown in FIG. 5.
  • the boss 203 may be provided on the supporting structure 202.
  • the boss 203 on the heat exchange plate 20 is usually used for positioning and assembly with the adjacent heat exchange plate 20.
  • a groove is also provided at the same position as the boss 203.
  • the boss 203 of the first heat exchange plate is embedded in the groove of the second heat exchange plate adjacent to the first heat exchange plate.
  • the depth of the groove can be one-third to one-half of the thickness of the substrate, so that the boss 203 of the first heat exchange plate and the boss 203 of the second heat exchange plate are against each other, and the boss 203
  • the height of the part that is not embedded is the same as the height of the convex hull 2011 protruding outward. Therefore, preferably, the protrusion height of the boss 203 may be the sum of the protrusion height of the convex hull 2011 and the depth of the groove.
  • the thickness of the convex hull 2011 gradually increases from the edge to the middle.
  • the orthographic projection of the convex hull 2011 to the substrate 21 has a shape as shown in FIG. 6. It can be seen from FIG. 6 that the pattern formed by the orthographic projection of the convex hull 2011 onto the substrate 21 is two nests of the same shape.
  • FIG. 7 shows a schematic diagram of the structure of an elliptical convex hull.
  • the elliptical convex hull includes a first surface a1 and a second surface a2.
  • the first surface a1 is attached to the first surface S1 of the substrate 21, and the second surface a2 is a convex surface.
  • the boundaries of the first surface a1 and the second surface a2 are all enclosed by ellipses with different sizes and the same or similar shapes. That is, the first surface and the second surface have the same shape. It can be seen from FIGS.
  • the elliptical convex hull gradually bulges from the bottom to the top, so that the cross-sectional view of the elliptical convex hull is trapezoidal.
  • the orthographic projections of the a1 plane and the a2 plane facing the substrate 21 are similar ellipses, and the two ellipses have the same axis, and the major axis of the a1 plane ellipse is larger than the major axis of the a2 plane ellipse.
  • the structure of the elongated convex hull and the drop-shaped convex hull is similar to the structure of the elliptical convex hull, except that the shape of the boundary surrounding the first surface and the second surface is different. I won't repeat them here.
  • FIG. 8 shows a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • the heat exchange plate 20 includes a base plate 21 and a conductive fluid 201 formed on the base plate 21.
  • the substrate 21 includes a first side B1 and a second side B2 along the first direction x, and a third side B3 and a fourth side B4 along the second direction y.
  • the first direction x is the horizontal direction
  • the second direction y is the vertical direction.
  • the substrate 20 further includes a first surface and a second surface disposed opposite to the first surface.
  • the guiding fluid 201 includes a third convex hull 2013.
  • the third convex hull 2013 includes a convex hull 20131 and a convex hull 20132, and the two convex hulls are separated from each other, as shown in FIG. 9a, which is an enlarged schematic diagram of the third convex hull 2013.
  • the convex hull 20131 extends along the third direction m
  • the convex hull 20132 extends along the fourth direction l.
  • the extension line along the third direction m, the extension line along the fourth direction l and the extension line along the first direction x intersect in pairs.
  • a row of convex hulls 20131 arranged along the second direction y may form a fluid conducting group
  • a row of convex hulls 20132 arranged along the second direction y may form a fluid conducting group.
  • the convex hull 20131 and the convex hull 20132 may have the same or different shapes.
  • the orthographic projection of the convex hull 20131 and the convex hull 20132 to the substrate 21 may be elongated as shown in FIG. 9a.
  • the convex hull 20131 and the convex hull 20132 respectively include two ends, one end of which is close to the first side B1 of the substrate 21 and the other end is close to the second side B2 of the substrate 21.
  • the convex hull 20131 and the convex hull 20132 form an "eight" shape, that is, on the side close to the first side B1 of the substrate 21, the two convex hulls 20131 and the convex hull 20132 The ends are close to each other. On the side close to the second side B2 of the substrate 21, the two ends of the convex hull 20131 and the convex hull 20132 are far away from each other.
  • the airflow flows from the second side B2 of the heat exchange plate 20 to the first side B1.
  • the airflow passes through the third convex hull 2013, because the two ends of the convex hull 20131 and the convex hull 20132 are separated near the second side B2 (that is, the bottom ends of the two convex hulls shown in FIG. 8), the airflow It can flow in from the bottom more easily.
  • the two ends of the convex hull 20131 and the convex hull 20132 are close to the first side B1 (that is, the top of the two convex hulls shown in FIG. 8). At this time, when the airflow passes through this position, the opening is small.
  • the convex hull 20131 and the convex hull 20132 range from a position close to the second side B2 as shown in FIG. 8 to a position far away from the second side B2, and the thickness of the convex hull 20131 and the convex hull 20132 gradually increase.
  • the cross-sectional view of the convex hull 20131 along the m direction and/or the cross-sectional view of the convex hull 20132 along the l direction present the shape shown in FIG. 9b.
  • the heat exchange plate 21 includes a plurality of third convex hulls 2013 arranged at intervals along the first direction x and the second direction y.
  • the plurality of third convex hulls 2013 forms a third convex hull array on the substrate 21.
  • the convex hull 20131 and the convex hull 20132 are symmetrical about the same symmetry axis.
  • the convex hull 20131 and the convex hull 20132 are symmetrically distributed on both sides of the symmetry axis L shown in FIG. 8. In this way, the airflow can be made to flow in the same direction, avoiding the uneven distribution of the airflow in the flow channel and between the third convex hulls 2013 due to the airflow flowing in multiple directions, thereby improving the uniformity of the airflow distribution and further improving the exchange rate. Thermal effect.
  • the convex hull 20131 and the convex hull 20132 included in the third convex hull 2013 may also have a shape as shown in FIG. 10.
  • FIG. 10 shows a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • the guiding fluid 201 is arranged at intervals along the first direction x, and the guiding fluid 201 includes a plurality of third convex hulls 2013 arranged at intervals along the second direction y.
  • Fig. 10 schematically shows an ellipse.
  • the convex hull 20131 and the convex hull 20132 gradually bulge from the edge to the middle, that is, the shape of the convex hull shown in FIGS. 6 and 7.
  • the fluid resistance can be reduced and the fluid velocity can be increased under the condition of ensuring the heat exchange efficiency.
  • the heat exchange plate 20 may be integrally formed of a metal material, or may be integrally formed of a non-metallic material.
  • the convex hull 20131 shown in Fig. 8 is a thin strip.
  • its length along the third direction m is It is greater than the length of the convex hull 20131 shown in FIG. 10. Therefore, compared with the shape of the convex hulls in the heat exchange plate 20 shown in FIG. 10, the convex hulls in the heat exchange plate 20 shown in FIG. 8 are arranged more closely and firmly, and have stronger bearing strength. Therefore, in some implementation manners, when the heat exchange plate 20 is made of a metal material, since the metal material has a relatively high hardness, the convex hull structure as shown in FIG.
  • the guiding fluid 201 can be formed on the same surface, for example, on the first surface S1; the guiding fluid 201 can also be formed on different faces. At this time, the guide fluid 201 is formed on different surfaces at intervals. Specifically, in the direction from left to right as shown in FIG. 10, the third convex hulls 2013 in the first row are formed on the first surface, the third convex hulls 2013 in the second row are formed on the second surface, and the third convex hulls 2013 in the third row are formed on the second surface. The third convex hull 2013 is formed on the first surface... and so on, so as to reduce the number of heat exchange plates in the heat exchanger and save costs.
  • the convex hull structure shown in FIG. 8 can be used to form the heat exchange plate at this time.
  • the guiding fluid 201 can be formed on the same surface to improve the bearing strength of the heat exchange plate.
  • the diversion fluid 201 may include a combination of the third convex hull 2013 shown in FIG. 8 and the third convex hull 2013 shown in FIG. 10, as shown in FIG. 11.
  • FIG. 11 shows another schematic diagram of the surface structure of the heat exchange plate provided by the embodiment of the present application.
  • the third convex hulls 2013 in the shape shown in FIG. 8 and the third convex hulls 2013 in the shape shown in FIG. 10 are alternately arranged.
  • the convex hull 20131 shown in FIG. 8 and the convex hull 20131 shown in FIG. 10 form a conductive fluid group along the second direction y, and the convex hull 20132 shown in FIG.
  • the direction y forms a fluid-conducting group.
  • the flow guide groups can be distributed in pairs and axisymmetrically.
  • the heat exchange plate of this structure is suitable for manufacturing of metallic materials and non-metallic materials, and can be selected according to the needs of the application scenario. For example, this structure can be used when the gas flow is small but the energy to be exchanged is high.
  • the heat exchange plate 20 includes a combination of a fluid guide 201 and a supporting structure 202 as shown in any one of FIG. 8, FIG. 10, and FIG. 11, as shown in FIG. 12, and FIG.
  • the supporting structure 202 may have the same structure as the supporting structure 202 shown in FIG. 2, which will not be repeated here. In this way, the air flow can be further restricted in the cavity formed by the two supporting structures 202, so that the air flow is more evenly distributed.
  • the heat exchange plate 20 can be made more stable.
  • the support structure 202 shown in FIG. 12 may also be provided with a convex hull 2021.
  • the shape of the convex hull 2021 may be any of the shapes shown in FIG. 6.
  • FIG. 14 shows a schematic diagram of the surface structure of another heat exchange plate provided by an embodiment of the present application.
  • the heat exchange plate 20 includes a base plate 21 and a plurality of conductive fluids formed on the base plate 21.
  • the substrate 21 includes a first side B1 and a second side B2 along the first direction x, and a third side B3 and a fourth side B4 along the second direction y.
  • the first direction x is the horizontal direction
  • the second direction y is the vertical direction.
  • the substrate 20 further includes a first surface S1 and a second surface opposite to the first surface S1.
  • the plurality of guide fluids includes a guide fluid 201.
  • the guiding fluid 201 includes a fourth convex hull 2014 and a fifth convex hull 2015.
  • the fourth convex hull 2014 extends along the second direction y
  • the fifth convex hull 2015 extends along the third direction z.
  • the extension line in the third direction z crosses the extension line in the second direction y.
  • the angle range between the third direction z and the second direction y is [-15°, -75°].
  • the pattern formed by the orthographic projection of the fourth convex hull 2014 and the fifth convex hull 2015 onto the substrate 21 may be an ellipse, a water drop, a strip, and the like.
  • the pattern formed by the orthographic projection of the fourth convex hull 2014 and the fifth convex hull 2015 onto the substrate 21 may also be as shown in FIG. 6, and the specific structure may refer to the related description corresponding to FIG. Go into details.
  • FIG. 14 along the first direction x, two adjacent convex hulls have different extension directions. Take the first row of convex hulls in Figure 14 as an example. From left to right, they are the fourth convex hull 2014, the fifth convex hull 2015, and the fourth convex hull 2014. That is to say, each convex hull and its The extension directions of adjacent convex hulls are all different. Therefore, when the airflow flows between the gaps of the convex hull, a vortex is formed, which increases the contact area between the airflow and the heat exchange plate and improves the heat exchange efficiency.
  • the group of diversion fluids and the adjacent group of diversion fluids have a larger distance interval, thereby forming an air flow channel. That is, in FIG. 15, a flow channel is formed between the second first fluid guide and the third first fluid guide. In this way, the resistance of the air flow in the flow channel of the heat exchange plate can be reduced, and the flow speed of the air flow can be increased.
  • FIG. 15 shows a schematic structural diagram of the heat exchanger 1500.
  • the heat exchanger 1500 includes a support 1502 for structurally supporting the heat exchanger, a baffle 1501 for protecting the heat exchange plate, and a plurality of stacked heat exchange plates 1503. It can be seen from FIG. 15 that there are four supporting members 1502, which are distributed around the heat exchanger 1500 to support the heat exchanger 1500 and form a space for accommodating the heat exchange plate 1503.
  • the baffles 1501 are oppositely arranged on two opposite surfaces of the heat exchanger 1500. By providing the support 1502 and the baffle 1501, the heat exchange plate can be supported and protected.
  • the multiple heat exchange plates 1503 shown in FIG. 15 may be the heat exchange plates shown in any of the above embodiments.
  • FIG. 16 schematically shows two adjacent heat exchange plates. It can be understood that this application does not limit the number of heat exchange plates included in the heat exchanger, and it is set according to the needs of the application scenario.
  • the surface structure diagram of the heat exchange plate 161 is the same as the surface structure diagram of the heat exchange plate 20 shown in FIG. 5.
  • the surface structure diagram of the heat exchange plate 162 is compared with the surface structure diagram of the heat exchange plate 161. Rotate 90 degrees to the right.
  • the positioning bosses 1611, 1612, 1613, 1614, 1615, and 1616 of the heat exchange plate 161 correspond to the positioning bosses 1621, 1622, 1623, 1624, 1625, 1626 of the heat exchange plate 162, respectively.
  • the first fluid conducting fluid in the heat exchange plate 161 includes a plurality of convex hulls 1618, and the second fluid conducting fluid includes a supporting convex hull 1617; the first fluid conducting fluid in the heat exchange plate 162 includes a plurality of convex hulls 1628.
  • the second guide fluid includes a supporting convex hull 1627.
  • Figure 17 (a) is a cross-sectional view along the bb' position in the heat exchange plate 161 shown in Figure 16
  • Figure 17 (b) is a cross-sectional view along the cc' position in the heat exchange plate 162 shown in Figure 16 Cutaway view.
  • the first surface S1 of the heat exchange plate 161 is provided with bosses 1614, 1615, 1616, and on the second surface S2 of the heat exchange plate 161, there are provided at the same position as the bosses 1614, 1615, 1616. Groove 1619.
  • the first surface S3 of the heat exchange plate 162 is provided with bosses 1624, 1625, 1626, and the second surface S4 of the heat exchange plate 162 is provided at the same position as the bosses 1624, 1625, 1626.
  • the depth of the groove may be one-third to one-half the thickness of the substrate.
  • the bosses 1614, 1615, and 1616 provided on the first surface S1 of the heat exchange plate 161 are respectively inserted into the grooves 1629 on the second surface S4 of the heat exchange plate 162.
  • Fig. 17(c) shows a schematic diagram of the assembly between two heat exchange plates provided by an embodiment of the present application.
  • the outward protrusion height of the above-mentioned bosses is usually the sum of the depth of the groove and the outward protrusion height of the convex hull 1618.
  • the convex hull 1618 and the supporting convex hull 1617 may have the same height, so that when the bosses 1614, 1615, 1616 are respectively embedded in the groove 1629, the convex hull 1618 and the supporting convex hull 1617 in the heat exchange plate 161 protrude from the surface Just against the back of the heat exchange plate 162, a plurality of air flow passages are formed, and the air flow is evenly restricted in the flow passage, so that the distribution of the air flow in the flow passage is more uniform.
  • the heat exchange plates can also support each other to improve the stability and firmness of the heat exchange plates.
  • Figure 18 (a) is a cross-sectional view along the bb' position in the heat exchange plate 161 shown in Figure 16
  • Figure 18 (b) is a cross-sectional view along the cc' position in the heat exchange plate 162 shown in Figure 16 Cutaway view.
  • the convex hull 1618 is located on the first surface S1 of the heat exchange plate 161
  • the supporting convex hull 1617 is located on the second surface S2 of the heat exchange plate 161
  • the convex hull 1628 is located on the first surface S3 of the heat exchange plate 162
  • the supporting convex hull 1627 is located on The second surface S4 of the heat exchange plate 162.
  • the heat exchanger 1500 includes a first surface T1 formed by stacking a plurality of heat exchange plates 1503 and a second surface T2 opposite to the first surface T1.
  • the third surface T3 and the fourth surface T4 opposite to the third surface.
  • the second surface T2 and the fourth surface T4 are not shown.
  • the side where the first surface T1 is located is the air inlet for cold air
  • the side where the second surface T2 is located is the air outlet for the heat exchange of cold air into hot air
  • the side where the third surface T3 is located is the air inlet for hot air
  • the side where the fourth surface T4 is located is the heat The air outlet after the air is cooled by heat exchange.
  • the side B1 of the heat exchange plate 162 are located on the side of the first surface T1; the side B2 of the heat exchange plate 162 and the side B2 of the heat exchange plate 162 are located on the side of the second surface T2.
  • the side B3 of the heat exchange plate 161 and the side B3 of the heat exchange plate 162 are located on the side of the third surface T3; the side B4 of the heat exchange plate 161 and the side B4 of the heat exchange plate 162 are located on the side of the fourth surface T4.
  • Fig. 17(d) shows a schematic diagram of the stacked structure of 4 heat exchange plates.
  • the structure and assembly direction of the heat exchange plate d1 and the heat exchange plate d3 can be the same as the heat exchange plate 162 in Fig. 16, Fig. 17(b), and Fig. 17(c).
  • the structure and assembly direction of the heat exchange plate d2 and d4 The direction may be the same as the heat exchange plate 161 in Fig. 16, Fig. 17(a), and Fig. 17(c).
  • the external cold air enters the heat exchanger 1500 from the first surface T1, that is, from the air flow channels n formed between the heat exchange plates d1 and d2 shown in FIG. 17(d), and the air flow channels formed between d3 and d4 n Enter the heat exchanger 1500.
  • the external cold air is in contact with the heat exchange plates d1, d2, d3, and d4 for heat exchange, and after airflow heat exchange with the air in the air flow channel, it is converted into hot air from the second part of the heat exchanger 1500.
  • Surface T2 output is used to convert hot air from the second part of the heat exchanger 1500.
  • the hot air generated by the equipment in the data center enters the heat exchanger 1500 from the third side T3, that is, from the heat exchange plate d1 shown in Figure 17(d) and the upper heat exchange plate (not shown in the figure)
  • the formed air flow path, the air flow path formed between the heat exchange plate d2 and the heat exchange plate d3 enters the heat exchanger 1500 (because the air flow path is blocked by the supporting convex hull in Figure 17(d), it is not shown in the figure Out of the air flow path).
  • the hot air contacts the heat exchange plates d1, d2, d3 and exchanges heat with the air in the air flow channel, and then converts it into cooled air, which is what the data center needs Fresh air is output from the fourth side T4 of the heat exchanger 1500.
  • the heat exchanger 1500 realizes the exchange of hot air and cold air, and achieves the purpose of reducing the air temperature of the data center.
  • the air flow passages of the cold outside air and the hot air generated by the equipment in the data center are respectively set on different layers, and the cold outside air and the hot air produced by the equipment in the data center enter the heat exchange through the air flow passages in different layers.
  • the inside of the device 1500 exchanges heat with the air in the heat exchange plate and the air flow channel and then flows out.
  • Fig. 18(d) shows a schematic diagram of the stacked structure of 4 heat exchange plates.
  • the structure and assembly direction of the heat exchange plate d1 and the heat exchange plate d3 can be the same as the heat exchange plate 162 in Figure 16, Figure 18 (b), and Figure 18 (c).
  • the structure and assembly of the heat exchange plate d2 and d4 The direction may be the same as the heat exchange plate 161 in Fig. 16, Fig. 18(a), and Fig. 18(c).
  • the external cold air enters the heat exchanger 1500 from the first surface T1, that is, from the air flow channel n formed between the heat exchange plate d1 and the heat exchange plate d2 shown in FIG. 18(d), the heat exchange plate d2 and the heat exchange
  • the air flow channel n formed between the plates d3 and the air flow channel n formed between the heat exchange plate d3 and the heat exchange plate d4 enter the heat exchanger 1500.
  • the external cold air is in contact with the heat exchange plates d1, d2, d3, and d4 for heat exchange, and after airflow heat exchange with the air in the air flow channel, it is converted into hot air from the second part of the heat exchanger 1500.
  • Surface T2 output is used to convert the external cold air from the second part of the heat exchanger 1500.
  • the hot air generated by the equipment in the data center enters the heat exchanger 1500 from the third side T3, that is, from the air flow path and heat exchange formed between the heat exchange plate d1 and the heat exchange plate d2 shown in Figure 18(d)
  • the air flow path formed between the plate d2 and the heat exchange plate d3, the air flow path formed between the heat exchange plate d3 and the heat exchange plate d4 enters the heat exchanger 1500 (the air of hot air is not shown in Figure 18(d) Runner).
  • the hot air exchanges heat with the heat exchange plates d1, d2, d3, and d4, and exchanges heat with the air in the air flow channel, and then converts it into cooled air, which is the place where the data center is located.
  • the required fresh air is output from the fourth side T4 of the heat exchanger 1500.
  • the heat exchanger 1500 realizes the exchange of hot air and cold air, and achieves the purpose of reducing the air temperature of the data center.
  • the air flow channels for the cold outside air and the hot air generated by the equipment in the data center can be set on the same layer, and the cold air outside and the hot air generated by the equipment in the data center can use the air flow channels on the same layer to enter the heat exchange.
  • the inside of the device 1500 exchanges heat with the air in the heat exchange plate and the air flow channel and then flows out.

Abstract

本申请实施例提供了一种换热板以及包括该换热板的换热器,该换热板包括:基板,所述基板包括沿第一方向的第一边以及沿第二方向的第二边,所述第一方向与所述第二方向为不同的方向;第一导流体,所述第一导流体设置于基板上,用于对气流流动进行导流,其中,多个所述第一导流体沿所述第一方向间隔排布为一列,多列所述第一导流体沿所述第二方向间隔排布;支撑结构,所述支撑结构设置于基板上,其中,所述支撑结构沿所述第一方向延伸,所述支撑结构和每一列所述第一导流体之间,沿所述第二方向间隔排布。本申请提供的换热板可以对经过换热器的气体进行导流,使得气流沿着导流方向流动,从而提高换热器对气流的换热效率。

Description

换热板以及包含该换热板的换热器
本申请要求于2019年11月6日提交中国专利局、申请号为201911077938.2、申请名称为“换热板以及包含该换热板的换热器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及换热器技术,尤其涉及一种换热板以及包含该换热板的换热器。
背景技术
随着人工智能技术的发展以及大数据时代的到来,数据中心需要处理的数据激增,用于数据处理的设备释放更多的热能。如何降低数据中心的热量成为亟待解决的问题。
现有技术中,通常采用板式换热器实现数据中心中的设备释放的热气流与外部冷气流之间的交换。在板式换热器中,换热板的表面特征(例如表面图案、图案的排布等)影响换热器两侧空气通道的换热效率。
相关技术中,通常在换热板表面形成凸包结构以提高换热板的传热系数。该凸包结构通常包括阵列排布的竖条状凸包或圆形凸包。该凸包结构通常以稀疏或密集的方式排布。当采用稀疏排布方式进行排布时,通常使得气流分布不均匀,降低换热板的利用率;当采用密集方式进行排布时,使得气流的流动阻力增大,从而降低了气流的流速,进而降低流动效率。综上,如何提高换热器对气流的换热效率成为一个问题。
发明内容
本申请提供的换热板,通过设置第一导流体或者、第一导流体与第二导流体的组合,可以提高换热板对气流的换热效率。
为了解决上述技术问题,本申请采用如下技术方案:
第一方面,本申请实施例一种换热板,换热板包括:基板,所述基板包括沿第一方向的第一边以及沿第二方向的第二边,所述第一方向与所述第二方向为不同的方向;第一导流体,所述第一导流体设置于基板上,用于对气流流动进行导流,其中,多个所述第一导流体沿所述第一方向间隔排布为一列,多列所述第一导流体沿所述第二方向间隔排布;支撑结构,所述支撑结构设置于基板上,其中,所述支撑结构沿所述第一方向延伸,所述支撑结构和每一列所述第一导流体之间,沿所述第二方向间隔排布。
本申请提供的换热板,通过在基板的表面形成第一导流体和支撑结构,可以对经过换热器的气体进行导流,使得气流沿着导流方向流动;其次,还可以使得换热板被均匀的分隔出多个腔体,可以将气流均匀的限制在每个腔体内,避免气流在换热板上分布不均匀,提高换热板的利用率,从而提高换热效率。
结合第一方面,在一种可能的实现方式中,所述换热板还包括设置于所述基板上的第二导流体;所述第一导流体和所述第二导流体沿所述第一方向间隔排布成一列,形成 多列沿所述第二方向排布的导流体组,其中,所述第一导流体和所述第二导流体在每一列所述导流体组中的位置排布相同。
本申请所示的换热板通过设置由第一导流体和第二导流体形成的导流体组,可以使得气流在换热板的某些位置处形成涡流,增大气流与换热板之间的接触面积。这样一来,可以使得气流与换热板之间进行充分换热,提高气流交换效果。
结合第一方面,在一种可能的实现方式中,沿所述第二方向,所述导流体组成对的轴对称排布;成对的所述导流体组中,其中一列所述导流体组中的第一导流体和第二导流体沿第三方向延伸,另外一列所述导流体组中的第一导流体和第二导流体沿第四方向延伸,所述第一方向、所述第二方向、所述第三方向和所述第四方向为不同的方向。
本申请通过将导流体组成对的轴对称排布,可以使得气流沿着同一方向流动,避免气流沿多个方向流动导致气流在流道内以及各第三凸包之间分布不均,从而提高气流分布的均匀性,可以进一步提高换热效果。
结合第一方面,在一种可能的实现方式中,成对的所述导流体组和所述支撑结构沿所述第二方向间隔排布。
结合第一方面,在一种可能的实现方式中,所述换热板还包括设置于所述基板上的第三导流体;所述第一导流体和所述第三导流体沿所述第一方向间隔排布成一列,形成多列沿所述第二方向排布的导流体组,其中,所述第一导流体和所述第二导流体在相邻列所述导流体组中的位置排布不同。
本申请所示的换热板通过设置由第一导流体和第三导流体形成的导流体组,可以使得气流从凸包的各间隙之间流过时形成涡流,增大气流与换热板之间的接触面积,提高换热效率。
结合第一方面,在一种可能的实现方式中,所述第一导流体沿所述第一方向延伸,所述第三导流体沿第三方向延伸,其中,所述第一方向和所述第三方向为不同的方向。
结合第一方面,在一种可能的实现方式中,所述第一导流体和所述支撑结构分别向所述基板的不同面凸出。
本申请通过将第一导流体和支撑结构分别向基板的不同面凸出,可以使得气流在换热板的两面进行换热,从而减少了换热器中所需要的换热板的数目,节约了换热器的制造成本。
结合第一方面,在一种可能的实现方式中,间隔排布的每两个所述第一导流体之间连接有加强结构。
通过在每两个导流体之间设置加强结构,可以使得第一导流体更加稳固,有利于提高换热板的稳定性,进而有利于提高换热板的换热性能。
结合第一方面,在一种可能的实现方式中,所述基板上还设置有定位凸台。
结合第一方面,在一种可能的实现方式中,所述换热板还包括用于与相邻的换热板之间进行装配的多个定位凸台,所述多个定位凸台设置于所述基板上。
本申请通过在基板上设置定位凸台,可以便于换热板之间进行装配,进一步提高换热板之间的稳定性,使得换热器更加牢固。
结合第一方面,在一种可能的实现方式中,所述第一导流体向所述基板的正投影形成的图案包括以下之一:圆形、椭圆形、水滴形、长条形、三角形。
结合第一方面,在一种可能的实现方式中,所述基板、所述第一导流体与所述支撑 结构一体成型;以及形成所述换热板的材料包括以下之一:金属材料,非金属材料。
第二方面,本申请实施例一种换热器,该换热器包括多个如第一方面所述的换热板。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a-图1b是现有技术中两个换热板的结构示意图;
图2是本申请实施例提供的换热板的一个表面结构示意图;
图3是本申请实施例提供的如图2所示的换热板的一个剖视图;
图4是本申请实施例提供的如图2所示的换热板的又一个剖视图;
图5是本申请实施例提供的换热板的又一个的表面结构示意图;
图6是本申请实施例提供的凸包向基板的正投影形成的图案示意图;
图7是本申请实施例提供的椭圆形凸包的一个结构示意图;
图8是本申请实施例提供的换热板的又一个的表面结构示意图;
图9a是本申请实施例提供的第三凸包的一个局部放大示意图;
图9b是本申请实施例提供的第三凸包的剖面结构示意图;
图10是本申请实施例提供的换热板的又一个的表面结构示意图;
图11是本申请实施例提供的换热板的又一个的表面结构示意图;
图12是本申请实施例提供的换热板的又一个的表面结构示意图;
图13是本申请实施例提供的换热板的又一个的表面结构示意图;
图14是本申请实施例提供的换热板的又一个的表面结构示意图;
图15是本申请实施例提供的换热器的一个结构示意图;
图16是本申请实施例提供的换热器中的换热板之间的相对位置的一个示意图;
图17(a)是本申请实施例提供的沿图16所示的换热板161中的bb’位置处的剖视图;
图17(b)是本申请实施例提供的沿图16所示的换热板162中的cc’位置处的剖视图;
图17(c)是本申请实施例提供的两换热板之间的装配示意图;
图17(d)是本申请实施例提供的四换热板之间的装配示意图;
图18(a)是本申请实施例提供的沿图16所示的换热板161中的bb’位置处的又一个剖视图;
图18(b)是本申请实施例提供的沿图16所示的换热板162中的cc’位置处的又一个剖视图;
图18(c)是本申请实施例提供的两换热板之间的装配示意图;
图18(d)是本申请实施例提供的四换热板之间的装配示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属 于本申请保护的范围。
本文所提及的"第一"、"第二"以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,"一个"或者"一"等类似词语也不表示数量限制,而是表示存在至少一个。"连接"或者"相连"等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在本文中提及的"单元"通常是指按照逻辑划分的功能性结构,该"单元"可以由纯硬件实现,或者,软硬件的结合实现。
在本申请实施中,“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1a为现有技术中一种换热板的表面结构示意图。如图1a所示,现有技术的换热板包括纵横交错排布的条状凸包101和凸包102。其中,凸包101在图1a所示的第一面S1形成凸起,在与第一面S1相对的第二面形成凹陷;凸包102在图1a所示的第一面S1形成凹陷,在与第一面S1相对的第二面形成凸起。从图1a中可以看出,各条状凸包101、102之间排布较为密集。该密集排布的凸包可以使得气流与换热板之间充分的进行热交换,提高了换热板的传热系数。但是,由于凸包排布密集,导致气流的流动阻力大大增强,进而限制了流体的流动速度,从而降低数据中心的气流换热速度。
图1b为现有技术中另外一种换热板的表面结构示意图。如图1b所示,换热板表面包括呈阵列排布的多个圆形凸包。从图1b中可以看出,每一行或每一列凸包之间具有较大的间隔。通常将换热板表面设计成如此形状的凸包,可以提高流体的流动速度。然而,稀疏的凸包降低换热板表面的换热系数,从而降低冷气流与热气流之间的换热效率。
基于上述现有的换热板的表面结构存在的问题,本申请提供一种换热板以及包含该换热板的换热器,通过设置第一导流体和支撑结构以对气流进行引流,从而提高换热器的换热效率、降低气体流阻。
首先需要说明的是,本申请中所述的导流体可以包括一个凸包(例如图2所示的凸包2011、例如图8所示的凸包20131),还可以包括如图2、图5、图14所示的实施例中沿第二方向的多个凸包(例如图2所示的导流体201),还可以包括如图8、图10、图11、图12所示的实施例中沿第一方向一对凸包(例如图8所示的第三凸包2013),还可以包括如图8、图10、图11、图12所示的实施例中沿第二方向的多个凸包对(例如图8所示的导流体201)。
图2为本申请实施例提供的一个换热板的表面结构示意图。在图2中,换热板20包括基板21、在基板21上形成的导流体201以及支撑结构202。
基板21包括沿第一方向x的第一边B1、第二边B2和沿第二方向y的第三边B3、第四边B4。其中,第一方向x为水平方向,第二方向y为竖直方向。基板21还包括第一表面S1、以及与第一表面S1相对的第二表面。图2中,第二表面未示出。
导流体201包括沿第二方向y间隔排布的多个凸包2011。具体的,凸包2011向基板21的正投影所形成的图案可以包括但不限于椭圆形、水滴形、长条形、三角形,其中,多个凸包2011之间可以形状相同或不同、也可以大小相同或不同。图2示意性的示出了凸包2011向基板21的正投影所形成的图案为椭圆形的情况。
支撑结构202沿第二方向y延伸。这里,支撑结构由于相对于基板21向外凸起,也可以称为支撑凸包。从图2中可以看出,支撑结构从第一边B1所在侧延伸至第二边B2的一侧。通过将支撑结构202设置成如图2所示的形状,可以提高由多个换热板20叠片装配后形成的换热器的结构强度。
这里需要说明的是,沿第二方向y,支撑结构还可以为间隔排布的多个长条状凸包,支撑结构包括的多个长条状凸包的排布方式可以与导流体201中的凸包的排布方式相同。也即是说,将如图2所示支撑结构202分割成3至5段,每两段之间设置有一定的空隙。该种情况的支撑结构在图中不再示出。
在图2所示的换热板20中,间隔排布的多个凸包2011形成的导流体201与支撑凸包形成的支撑结构202沿第一方向x交替间隔设置。各导流体沿第一方向x的间隔可以相等。从而,换热板被均匀的分隔出多个腔体。通常,换热板20的第二边B2所在侧为进风口,外部气流从B2侧流向B1侧。通过设置支撑结构202,可以将气流均匀的限制在每个腔体内,避免气流在换热板上分布不均匀,提高换热板的利用率,从而提高换热效率。
在图2所示的换热板20中,导流体201和支撑结构202可以形成于同一面,例如形成于第一面S1。也即是说,导流体201和支撑结构202的凸包朝同一方向凸起。如图3所示,图3示出了换热板20沿AA’的一个剖视图。
在一种可能的实现方式中,导流体201和支撑结构202可以形成于不同面。例如,导流体201形成于第二面S2,支撑结构202形成于第一面S1。如图4所示,图4示例性的示出了换热板20沿AA’的另外一个剖视图。
在本实施例中,基板21、导流体201和支撑结构202可以一体成型。也即是说,基板21、导流体201和支撑结构202是由相同的材料形成。这里,形成换热板20的材料可以为金属材料,也可以为非金属材料。其中,金属材料包括但不限于:铝、铜以及各种金属按照一定比例混合而成的合金材料(例如铝合金)。非金属材料包括但不限于PP(Polypropylene,聚丙烯)、PVC(Polyvinylchlorid,聚氯乙烯)、PS(Polystyrene,聚苯乙烯)、PC(Polycarbonate,聚碳酸酯)以各种非金属按照一定比例混合而成的材料。
由于金属材料具有较高的硬度,限制了所形成的凸包向外凸起的高度。通常,由金属材料形成的换热板在装配成换热器的过程中,每两个换热板之间通常设置较大的间隔,该间隔通常大于凸包向外凸起的高度,一般为凸包向外凸起的高度的两倍。因此,优选的,当换热板采用金属材料制造时,可以优先选择如图4所示的剖视图的结构,也即将导流体201设置于第二面S2、将支撑结构202设置于第一面S1的结构。这样一来,图4所示的结构可以使每两个换热板之间的间距约为凸包向外凸起的高度的2倍。其次,由于换热板的两面都具有导流结构,室外新风和室内热风可以交替在换热板的两面进行换热,从而减少了换热器中所需要的换热板的数目,节约了换热器的制造成本。
由于非金属材料PP、PVC、PS、PC等均为高分子材料,相比于金属材料,其具有低硬度、高柔韧性的特点。利用非金属材料形成的凸包可以具有较大的凸起厚度。因此,优选的,当换热板采用非金属材料制造时,可以采用如图3所示的剖视图的结构,也即将导流体201和支撑结构202设置于如图3所示的第一面S1。图3所示的结构可以使每两个换热板之间的间距大约为凸包向外凸起的高度。从而,使得换热板20的导流体201和支撑结构202更加稳固。
在一些可选的实现方式中,当采用非金属材料制造换热板时,为了进一步提高换热板20的稳定性,可以在导流体201的凸包2011之间设置有用于连接各凸包2011的加强结构,该加强结构为凸包2012,如图5所示,图5示出了本申请实施例提供的又一个换热板20的表面结构示意图。凸包2012向基板21的投影为细条状。这里,凸包2012对凸包2011具有支撑作用。通过设置凸包2012,可以使得凸包2011更加稳固,有利于提高换热板20的稳定性,进而有利于提高换热板的换热性能。这里,为了尽可能的减小换热板20的流体阻力,凸包2012沿第一方向x的宽度可以小于等于凸包2011沿第一方向x的宽度,如图5所示。这里,凸包2012沿第一方向x的宽度与凸包2011沿第一方向x的宽度之间的比例可以在[0.2,1]的范围内。
在一些可选的实现方式中,当采用非金属材料制造如图3所示的剖面结构的换热板时,由于换热板20仅有一面形成有导流体,也即为单面换流。为了提高换热器的换热效果,相比于双面形成导流体的结构,通常会多增加几片换热板(例如多增加一倍数目的换热板)。此时,为了进一步提高换热板之间的稳定性,使得换热板更加牢固,可以在换热板20设置有凸台203,如图5所示。凸台203设置于基板21上。在图5中,凸台203可以设置于如图5所示的位置处。值得注意的是,凸台203的数目不是固定的,根据应用场景的需要设置。例如,在一些实施例中,换热板可以包括四个凸台,该四个凸台可以为图5所示的左上角、左下角、右上角、右下角处四个位置的凸台。
可选的,凸台203可以设置于支撑结构202上。
换热板20上的凸台203通常用于与相邻的换热板20进行定位装配。在换热板20上未设置凸台203的另一面、与凸台203相同位置处还设置有凹槽。在换热板20装配过程中,将第一换热板的凸台203嵌入与第一换热板相邻的第二换热板的凹槽内。通常,该凹槽的深度可以为三分之一至二分之一的基板厚度,使得第一换热板的凸台203与第二换热板的凸台203相互顶住,而凸台203未进行嵌入的部分的高度与凸包2011向外突出的高度相同。因此,优选的,凸台203向外突出的高度可以为凸包2011向外突出的高度与凹槽深度之和。
在本实施例的一些可选的实现方式中,凸包2011的厚度由边缘向中间逐渐增厚。在该可选的实现方式下,凸包2011向基板21的正投影为如图6所示的形状。从图6中可以看出,凸包2011向基板21的正投影所形成的图案为两个相同形状的嵌套。
以椭圆形凸包为例,结合图7,对如图6所示的投影形状的凸包2011的结构进行具体说明。图7示出了椭圆形凸包的结构示意图。椭圆形凸包包括第一表面a1和第二表面a2,其中第一表面a1与基板21的第一表面S1贴合,第二表面a2为凸起的表面。第一表面a1和第二表面a2的边界均是由大小不同、形状相同或相似的椭圆围合而成。也即第一表面与第二表面具有相同的形状。从图6和图7中可以看出,椭圆形凸包由底部向顶部逐渐凸起,使得椭圆形凸包的剖视图为梯形形状。也即是说,a1面和a2面向基板21的正投影为相似的椭圆,并且该两个椭圆具有相同的轴心,并且,a1面椭圆的长轴大于a2面椭圆的长轴。通过将凸包设 置为此种形状,可以减小气流流动阻力,提高流体换热速度。
长条形凸包和水滴形凸包的结构与椭圆形凸包的结构相类似,不同的是围合成第一表面和第二表面的边界的形状不同。在此不再赘述。
继续参考图8,其示出了本申请实施例提供的又一个换热板的表面结构示意图。
在图8中,换热板20包括基板21和在基板21上形成的导流体201。
基板21包括沿第一方向x的第一边B1、第二边B2和沿第二方向y的第三边B3、第四边B4。其中,第一方向x为水平方向,第二方向y为竖直方向。基板20还包括第一表面和与第一表面相对设置的第二表面。
导流体201包括第三凸包2013。图中示意性的示出了导流体201包括沿第二方向y的一列第三凸包2013。该第三凸包2013包括凸包20131、凸包20132,该两个凸包相互分离,如图9a所示,图9a为第三凸包2013的放大示意图。其中,凸包20131沿第三方向m延伸,凸包20132沿第四方向l延伸。其中,沿第三方向m的延长线、沿第四方向l的延长线与沿第一方向x的延长线两两相交。此时,沿第二方向y排布的一列凸包20131可以形成导流体组,沿第二方向y排布的一列凸包20132可以形成导流体组。
凸包20131和凸包20132可以具有相同或不同的形状。优选的,凸包20131和凸包20132向基板21的正投影可以为如图9a所示的细长条状。凸包20131和凸包20132分别包括两端,其中一端靠近基板21的第一边B1,另一端靠近基板21的第二边B2。从图8、图9a中可以看出,凸包20131和凸包20132之间形成“八”字形,也即在靠近基板21的第一边B1的一侧,凸包20131和凸包20132的两端相互靠近,在靠近基板21的第二边B2的一侧,凸包20131和凸包20132的两端相互远离。
本实施例中,气流从换热板20的第二边B2流向第一边B1。当气流通过第三凸包2013时,由于,凸包20131和凸包20132的两端在靠近第二边B2的位置(也即图8所示的两凸包的底端)是分离的,气流可以更容易的从底端流入。而凸包20131和凸包20132的两端在靠近第一边B1的位置(也即图8所示的两凸包的顶端)是靠近的,此时气流在通过该位置时,由于开口较小,使得气流在该位置处形成涡流,也即增大气流与换热板之间的接触面积。这样一来,可以使得气流与换热板之间进行充分换热,提高气流交换效果。
在一些可能的实现方式中,凸包20131和凸包20132由靠近如图8所示的第二边B2的位置至远离该第二边B2的位置,凸包20131和凸包20132的厚度逐渐增大;即凸包20131沿m方向的剖面图和/或凸包20132沿l方向的的剖视图呈现如图9b所示的形状。在图9b中,f’为凸包20131和凸包20132靠近第二边B2的位置,f为凸包20131和凸包20132远离第二边B2的位置。通过将凸包设置不同的厚度,可以降低气流在如图8所示的凸包20131和凸包20132的流动阻力,提高流体速度。
在本实施例中,换热板21包括沿第一方向x和沿第二方向y间隔排列的多个第三凸包2013。也即是说,多个第三凸包2013在基板21上形成第三凸包阵列。
这里需要说明的是,对于同一列中的第三凸包2013,凸包20131和凸包20132关于同一对称轴对称。示例性的,对于图8中的左起第一列第三凸包2013,凸包20131和凸包20132对称的分布在图8所示的对称轴L的两边。这样一来,可以使得气流沿着同一方向流动,避免气流沿多个方向流动导致气流在流道内以及各第三凸包2013之间分布不均,从而提高气流分布的均匀性,可以进一步提高换热效果。
在本实施例的一些可选的实现方式中,第三凸包2013所包括的凸包20131和凸包20132 还可以为如图10所示的形状。图10示出了本申请实施例提供的又一个换热板的表面结构示意图。在图10中,导流体201沿第一方向x间隔排布,导流体201包括沿第二方向y间隔排列的多个第三凸包2013。与图8所示的换热板不同的是,图10所示的换热板20的凸包20131和凸包20132向基板21的投影形成的图案可以为椭圆、水滴等。图10示意性的示出了为椭圆的情形。在一些实现方式中,凸包20131和凸包20132由边缘向中间逐渐凸起,也即为图6、图7所示的凸包的形状。
通过将第三凸包设置成如图6、图10所示的形状,在保障换热效率的条件下,可以降低流体阻力,提高流体速度。
在本实施例中,换热板20可以为金属材料一体成型,也可以为非金属材料一体成型。
从图8、图10所示的换热板20中可以看出,图8所示的凸包20131为细条状,与图10所示的凸包20131相比,其沿第三方向m的长度大于图10所示的凸包20131的长度。因此,与图10所示的换热板20中的凸包的形状相比,图8所示的换热板20中的凸包排列更加紧密、牢固,具有更强的承受力度。因此,在一些实现方式中,当换热板20为金属材料时,由于金属材料具有较高的硬度,此时可以采用如图10所示凸包结构形成换热板。在如图10所示换热板中,导流体201可以形成于同一面,例如形成于第一面S1;导流体201也可以形成于不同面。此时,导流体201间隔形成于不同面。具体来说,沿图10所示的从左向右方向,第一列的第三凸包2013形成于第一面,第二列的第三凸包2013形成于第二面,第三列的第三凸包2013形成于第一面…,依次类推,从而可以减少换热器中换热板的数目,节约成本。
在一些实现方式中,当换热板20为非金属材料时,由于形成非金属材料的高分子材料硬度较低,此时可以采用如图8所示的凸包结构形成换热板。此时,导流体201可以形成于同一面,以提高换热板的承受力度。
在一些可能的实现方式中,导流体201可以包括图8所示的第三凸包2013和图10所示的第三凸包2013的组合,如图11所示。图11示出了本申请实施例提供的换热板的又一个表面结构示意图。在图11所示的导流体201中,图8所示的形状的第三凸包2013和图10所示的形状的第三凸包2013交错排布。此时,图8所示的凸包20131和图10所示的凸包20131沿第二方向y形成导流体组,图8所示的凸包20132和图10所示的凸包20132沿第二方向y形成导流体组。从图11中可以看出,导流体组可以成对的轴对称分布。通过采用此结构制造换热板,可以兼顾换热板的换热效率和支撑力度。此结构的换热板既适用于金属材料制造,也适用于非金属材料制造,可以根据应用场景的需要选择。举例来说,当气体流量较小、但需要交换的能量较高时,可以采用此结构。
在一些可能的实现方式中,换热板20包括如图8、图10、图11任意一图所示的导流体201以及支撑结构202的组合,如图12所示,图12示出了图11所示的导流体201与支撑结构202的组合形成的换热板的表面结构示意图。其中,支撑结构202可以与图2所示的支撑结构202具有相同的结构,在此不再赘述。这样一来,可以将气流进一步的限制在两个支撑结构202形成的腔体内,使得气流的分布更加均匀。同时,通过设置支撑结构202,还可以使得换热板20更加稳固。
在一些可能的实现方式中,如图12所示的支撑结构202上还可以设置有凸包2021,如图13所示,凸包2021的形状可以为图6所示的任意一种。通过在支撑结构202上设置凸包2021,可以进一步提高换热效率。
请继续参考图14,其示出了本申请实施例提供的又一个换热板的表面结构示意图。
在图14中,换热板20包括基板21和在基板21上形成的多个导流体。
基板21包括沿第一方向x的第一边B1、第二边B2和沿第二方向y的第三边B3、第四边B4。其中,第一方向x为水平方向,第二方向y为竖直方向。基板20还包括第一表面S1和第一表面S1相对设置的第二表面。
多个导流体包括导流体201。导流体201包括第四凸包2014和第五凸包2015。其中,第四凸包2014沿第二方向y延伸,第五凸包2015沿第三方向z延伸。这里,第三方向z的延长线与第二方向y的延长线交叉。具体的,第三方向z与第二方向y之间的夹角范围为[-15°,-75°]。第四凸包2014与第五凸包2015向基板21的正投影形成的图案可以为椭圆、水滴、长条等。
在一些实施方式中,第四凸包2014和第五凸包2015向基板21的正投影所形成的图案还可以如图6所示,具体结构可参考图6对应的相关描述,在此不再赘述。
请继续参考图14,在图14中,沿第一方向x,相邻的两个凸包具有不同的延伸方向。以图14中第一行凸包举例来说,从左向右,分别为第四凸包2014、第五凸包2015、第四凸包2014…,也即是说,每一个凸包和其相邻的凸包的延伸方向均不相同。从而,当气流从凸包的各间隙之间流过时形成涡流,增大气流与换热板之间的接触面积,提高换热效率。
进一步的,以左边第一个导流体201为起始,每两个导流体作为一组,该组导流体与相邻组导流体之间具有较大的距离间隔,从而形成气流通道。也即在图15中,第二个第一导流体和第三个第一导流体之间形成流道。这样一来,可以减小气流在换热板流道内流动时的阻力,提高气流流动速度。
基于上述各实施例所示的换热板,本申请实施例还提供了一种换热器。具体的,请参考图15,图15示出了换热器1500的结构示意图。换热器1500包括对换热器进行结构支撑的支撑件1502、用于保护换热板的挡板1501以及多个层叠的换热板1503。从图15中可以看出支撑件1502共四根,分布于换热器1500的四周,对换热器1500进行支撑、并形成容纳换热板1503的空间。挡板1501相对设置、设置在换热器1500的相对的两个表面。通过设置支撑件1502以及挡板1501,可以对换热板进行的支撑和保护。
图15所示的多个换热板1503可以为以上任意实施例所示的换热板。
下面以如图5所示的换热板为例,结合图16、图17(a)-图17(c)、图18(a)-图18(c),对换热板的装配方式进行详细说明。为了更加清楚的对包括本申请所示的换热板的装配方式进行说明,图16示意性的示出了2个相邻的换热板。可以理解的是,本申请并不对换热器所包括的换热板的数目进行限制,根据应用场景的需要而设定。
如图16所示,换热板161的表面结构示意图与图5所示的换热板20表面结构示意图相同,换热板162的表面结构示意图与换热板161的表面结构示意图相比,向右旋转90度。在换热器具体的安装过程中,换热板161的定位凸台1611、1612、1613、1614、1615、1616分别与换热板162的定位凸台1621、1622、1623、1624、1625、1626一一对应安装。在图16中,换热板161中的第一导流体包括多个凸包1618,第二导流体包括支撑凸包1617;换热板162中的第一导流体包括多个凸包1628,第二导流体包括支撑凸包1627。
当换热板中的第一导流体和第二导流体位于同一面、朝同一方向凸起时,换热板161、换热板162的剖视图分别如图17(a)、17(b)所示。具体的,图17(a)为沿图16所 示的换热板161中的bb’位置处的剖视图,图17(b)为沿图16所示的换热板162中的cc’位置处的剖视图。在图17(a)中,换热板161的第一面S1设置凸台1614、1615、1616,在换热板161的第二面S2、与凸台1614、1615、1616相同位置处设置有凹槽1619。在图17(b)中,换热板162的第一面S3设置有凸台1624、1625、1626,在换热板162的第二面S4、与凸台1624、1625、1626相同位置处设置有凹槽1629,上述凹槽1619、凹槽1629的深度小于基板的厚度。可选的,该凹槽的深度可以为三分之一至二分之一基板的厚度。在换热板装配过程中,设置于换热板161的第一面S1的凸台1614、1615、1616分别嵌入换热板162的第二面S4的凹槽1629处。如图17(c)所示,图17(c)示出了本申请实施例提供的两换热板之间的装配示意图。上述各凸台向外凸起的高度通常为凹槽的深度与凸包1618向外凸起的高度之和。这里,凸包1618和支撑凸包1617可以具有相同的高度,从而使得当凸台1614、1615、1616分别嵌入凹槽1629之后,换热板161中的凸包1618、支撑凸包1617突出的表面恰好顶住换热板162的背面,形成多个空气流道,将气流均匀的限制在流道内,使得气流在流道内的分布更加均匀。同时,还可以使得换热板之间相互支撑,提高换热板的稳定性以及牢固性。这里需要说明的是,换热板161中的其他凸台均以如上所述的嵌入方式嵌入至换热板162第二面S4中的凹槽中。可以理解的是,图15所示的换热器1500中每相邻的两个换热板均可以通过如图17(c)所示的装配方式进行装配。
当换热板中的第一导流体和第二导流体位于不同面时,换热板161、换热板162的剖视图分别如图18(a)、18(b)所示。具体的,图18(a)为沿图16所示的换热板161中的bb’位置处的剖视图,图18(b)为沿图16所示的换热板162中的cc’位置处的剖视图。其中,凸包1618位于换热板161的第一面S1,支撑凸包1617位于换热板161的第二面S2;凸包1628位于换热板162的第一面S3,支撑凸包1627位于换热板162的第二面S4。当换热板161、换热板162的剖视图分别为如图18(a)、18(b)所示时,换热板161与换热板162之间的装配方式与图17(a)、图17(b)所示的剖视图之间的装配方式相同,具体描述可以参考图17(a)、图17(b)的相关描述,在此不再赘述,换热板161与换热板162叠装后的剖视图如图18(c)所示。这里需要说明的是,上述各凸台向外凸起的高度通常为凹槽的深度、支撑凸包1617(或1627)向外凸起的高度、凸包1618(或1628)向外凸起的高度之和。从而使得当凸台1614、1615、1616分别嵌入凹槽1629之后,位于换热板161第一面S1的凸包1618正好与位于换热板162第二面S4的支撑凸包1627突出的表面互相顶住,形成多个空气流道,将气流均匀的限制在流道内,使得气流在流道内的分布更加均匀。同时,还可以使得换热板之间相互支撑,提高换热板的稳定性以及牢固性。可以理解的是,图15所示的换热器1500中每相邻的两个换热板均可以通过如图18(c)所示的装配方式进行装配。
这里需要说明的是,当换热板上没有设置凸台时,可以利用换热板中的凸包之间互顶的力进行装配。此方法为现有的换热板惯常的装配方式,在此不在赘述。
在图15中,换热器1500包括由多个换热板1503堆叠而成的第一面T1、与第一面T1相对的第二面T2。第三面T3和与第三面相对的第四面T4。其中,第二面T2和第四面T4未示出。第一面T1所在侧为冷空气进风口,第二面T2所在侧为冷空气换热成热空气的出风口,第三面T3所在侧为热空气进风口,第四面T4所在侧为热空气换热冷却后的空气出风口。其中,图16所示的换热板161的边B1、换热板162的边B1位于第一面T1侧;换 热板162的边B2、换热板162的边B2位于第二面T2侧;换热板161的边B3、换热板162的边B3位于第三面T3侧;换热板161的边B4、换热板162的边B4位于第四面T4侧。
当采用图17(c)所示的两换热板之间装配方式形成图15所示的换热器1500时,结合图15、图16、图17(a)-图17(d),对换热器1500的换热原理进行说明。其中,图17(d)示出了4个换热板层叠的结构示意图。其中,换热板d1、换热板d3的结构和装配方向可以与图16、图17(b)、图17(c)中的换热板162相同,换热板d2、d4的结构和装配方向可以与图16、图17(a)、图17(c)中的换热板161相同。
外部冷空气从第一面T1进入换热器1500,也即从图17(d)所示的换热板d1与d2之间形成的空气流道n、d3与d4之间形成的空气流道n进入换热器1500。在换热器1500内部,外部冷空气与换热板d1、d2、d3、d4进行接触换热、与空气流道内的空气进行气流换热后,转换成热空气从换热器1500的第二面T2输出。数据中心中的设备产生的热空气从第三面T3进入换热器1500,也即从图17(d)所示的换热板d1与其上层的换热板(图中未示出)之间形成的空气流道、换热板d2与换热板d3之间形成的空气流道进入换热器1500(由于该空气流道在图17(d)中被支撑凸包挡住,图中未示出该空气流道)。在换热器1500内部,热空气与换热板d1、d2、d3进行接触换热、与空气流道内的空气进行气流换热后,转换成冷却后的空气,也即是数据中心所需要的新风,从换热器1500的第四面T4输出。由此,换热器1500实现热空气与冷空气的交换,达到降低数据中心的空气温度的目的。也即是说,外部冷空气和数据中心的设备产生的热空气的空气流道分别设置于不同层,外部冷空气和数据中心的设备产生的热空气分别通过不同层的空气流道进入换热器1500内部,与换热板和空气流道内的空气进行换热后流出。
当采用图18(c)所示的两换热板之间装配方式形成图15所示的换热器1500时,结合图15、图16、图18(a)-图18(d),对换热器1500的换热原理进行说明。其中,图18(d)示出了4个换热板层叠的结构示意图。其中,换热板d1、换热板d3的结构和装配方向可以与图16、图18(b)、图18(c)中的换热板162相同,换热板d2、d4的结构和装配方向可以与图16、图18(a)、图18(c)中的换热板161相同。
外部冷空气从第一面T1进入换热器1500,也即从图18(d)所示的换热板d1与换热板d2之间形成的空气流道n、换热板d2与换热板d3之间形成的空气流道n、换热板d3与换热板d4之间形成的空气流道n进入换热器1500。在换热器1500内部,外部冷空气与换热板d1、d2、d3、d4进行接触换热、与空气流道内的空气进行气流换热后,转换成热空气从换热器1500的第二面T2输出。数据中心中的设备产生的热空气从第三面T3进入换热器1500,也即从图18(d)所示的换热板d1与换热板d2之间形成的空气流道、换热板d2与换热板d3之间形成的空气流道、换热板d3与换热板d4之间形成的空气流道进入换热器1500(图18(d)中未示出热空气的空气流道)。在换热器1500内部,热空气与换热板d1、d2、d3、d4进行接触换热、与空气流道内的空气进行气流换热后,转换成冷却后的空气,也即是数据中心所需要的新风,从换热器1500的第四面T4输出。由此,换热器1500实现热空气与冷空气的交换,达到降低数据中心的空气温度的目的。也即是说,外部冷空气和数据中心的设备产生的热空气的空气流道可以设置于同一层,外部冷空气和数据中心的设备产生的热空气可以利用同一层的空气流道进入换热器1500内部,与换热板和空气流道内的空气进行换热后流出。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方 式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (12)

  1. 一种换热板,其特征在于,包括:
    基板,所述基板包括沿第一方向的第一边以及沿第二方向的第二边,所述第一方向与所述第二方向为不同的方向;
    第一导流体,所述第一导流体设置于基板上,用于对气流流动进行导流,其中,多个所述第一导流体沿所述第一方向间隔排布为一列,多列所述第一导流体沿所述第二方向间隔排布;
    支撑结构,所述支撑结构设置于基板上,其中,所述支撑结构沿所述第一方向延伸,所述支撑结构和每一列所述第一导流体之间,沿所述第二方向间隔排布。
  2. 根据权利要求1所述的换热板,其特征在于,
    所述换热板还包括设置于所述基板上的第二导流体;
    所述第一导流体和所述第二导流体沿所述第一方向间隔排布成一列,形成多列沿所述第二方向排布的导流体组,其中,所述第一导流体和所述第二导流体在每一列所述导流体组中的位置排布相同。
  3. 根据权利要求2所述的换热板,其特征在于,
    沿所述第二方向,所述导流体组成对的轴对称排布;
    成对的所述导流体组中,其中一列所述导流体组中的第一导流体和第二导流体沿第三方向延伸,另外一列所述导流体组中的第一导流体和第二导流体沿第四方向延伸,所述第一方向、所述第二方向、所述第三方向和所述第四方向为不同的方向。
  4. 根据权利要求3所述的换热板,其特征在于,成对的所述导流体组和所述支撑结构沿所述第二方向间隔排布。
  5. 根据权利要求1所述的换热板,其特征在于,
    所述换热板还包括设置于所述基板上的第三导流体;
    所述第一导流体和所述第三导流体沿所述第一方向间隔排布成一列,形成多列沿所述第二方向排布的导流体组,其中,所述第一导流体和所述第二导流体在相邻列所述导流体组中的位置排布不同。
  6. 根据权利要求5所述的换热板,其特征在于,
    所述第一导流体沿所述第一方向延伸,所述第三导流体沿第三方向延伸,其中,所述第一方向和所述第三方向为不同的方向。
  7. 根据权利要求1所述的换热板,其特征在于,
    所述第一导流体和所述支撑结构分别向所述基板的不同面凸出。
  8. 根据权利要求1或7所述的换热板,其特征在于,
    间隔排布的每两个所述第一导流体之间连接有加强结构。
  9. 根据权利要求1所述的换热板,其特征在于,
    所述基板上还设置有定位凸台。
  10. 根据权利要求1所述的换热板,其特征在于,
    所述第一导流体向所述基板的正投影形成的图案包括以下之一:圆形、椭圆形、水滴形、长条形、三角形。
  11. 根据权利要求1所述的换热板,其特征在于,
    所述基板、所述第一导流体与所述支撑结构一体成型;以及
    形成所述换热板的材料包括以下之一:金属材料,非金属材料。
  12. 一种换热器,其特征在于,包括多个如权利要求1-11之一所述的换热板。
PCT/CN2020/126857 2019-11-06 2020-11-05 换热板以及包含该换热板的换热器 WO2021088940A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20885438.0A EP4023997A4 (en) 2019-11-06 2020-11-05 HEAT EXCHANGER PLATE AND HEAT EXCHANGER WITH IT
US17/696,013 US20220205738A1 (en) 2019-11-06 2022-03-16 Heat exchange plate and heat exchanger including heat exchange plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911077938.2A CN110926256B (zh) 2019-11-06 2019-11-06 换热板以及包含该换热板的换热器
CN201911077938.2 2019-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/696,013 Continuation US20220205738A1 (en) 2019-11-06 2022-03-16 Heat exchange plate and heat exchanger including heat exchange plate

Publications (1)

Publication Number Publication Date
WO2021088940A1 true WO2021088940A1 (zh) 2021-05-14

Family

ID=69853512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126857 WO2021088940A1 (zh) 2019-11-06 2020-11-05 换热板以及包含该换热板的换热器

Country Status (4)

Country Link
US (1) US20220205738A1 (zh)
EP (1) EP4023997A4 (zh)
CN (1) CN110926256B (zh)
WO (1) WO2021088940A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110926256B (zh) * 2019-11-06 2022-03-08 华为数字能源技术有限公司 换热板以及包含该换热板的换热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493293A (zh) * 2008-01-22 2009-07-29 Ls电线有限公司 板式热交换器
US20090294113A1 (en) * 2008-06-03 2009-12-03 Korea Atomic Energy Research Institute Heat exchanger
CN204115548U (zh) * 2014-09-12 2015-01-21 甘肃蓝科石化高新装备股份有限公司 一种具有导向功能的热交换器板束
US20170108291A1 (en) * 2012-07-27 2017-04-20 General Electric Company Plate-like air-cooled engine surface cooler with fluid channel and varying fin geometry
CN110926256A (zh) * 2019-11-06 2020-03-27 华为技术有限公司 换热板以及包含该换热板的换热器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384611A (en) * 1978-05-15 1983-05-24 Hxk Inc. Heat exchanger
FR2690503B1 (fr) * 1992-04-23 1994-06-03 Commissariat Energie Atomique Evaporateur a plaques a hautes performances thermiques fonctionnant en regime d'ebullition nucleee.
EP1106729B1 (de) * 1999-12-02 2003-07-23 Joma-Polytec Kunststofftechnik GmbH Kreuzstrom-Wärmetauscher für Kondensationswäschetrockner
JP6219199B2 (ja) * 2014-02-27 2017-10-25 株式会社神戸製鋼所 熱交換用プレートとなる元板材、及びその元板材の製造方法
CN105241296B (zh) * 2015-09-25 2018-09-14 森德(中国)暖通设备有限公司 热交换器
DE102016012842A1 (de) * 2016-10-27 2018-05-03 Linde Aktiengesellschaft Plattenwärmetauscher
EP3447429B1 (en) * 2017-08-22 2023-06-07 InnoHeat Sweden AB Heat exchanger plate and heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493293A (zh) * 2008-01-22 2009-07-29 Ls电线有限公司 板式热交换器
US20090294113A1 (en) * 2008-06-03 2009-12-03 Korea Atomic Energy Research Institute Heat exchanger
US20170108291A1 (en) * 2012-07-27 2017-04-20 General Electric Company Plate-like air-cooled engine surface cooler with fluid channel and varying fin geometry
CN204115548U (zh) * 2014-09-12 2015-01-21 甘肃蓝科石化高新装备股份有限公司 一种具有导向功能的热交换器板束
CN110926256A (zh) * 2019-11-06 2020-03-27 华为技术有限公司 换热板以及包含该换热板的换热器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023997A4

Also Published As

Publication number Publication date
EP4023997A4 (en) 2022-12-14
EP4023997A1 (en) 2022-07-06
CN110926256B (zh) 2022-03-08
US20220205738A1 (en) 2022-06-30
CN110926256A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
US7334631B2 (en) Heat exchanger
CN111415915B (zh) 一种微通道散热器散热结构
JPH05695Y2 (zh)
CN109906021B (zh) 冷板及用于雷达的散热装置
WO2021088940A1 (zh) 换热板以及包含该换热板的换热器
TWM614782U (zh) 散熱器結構
WO2021043047A1 (zh) 一种复合齿散热器及通讯基站
CN110567301A (zh) 一种散热板及其制造方法
CN115183609A (zh) 换热器芯体及包括其的印刷电路板式换热器
JP2017129335A (ja) 熱交換器及び熱交換方法
CN204598551U (zh) 一种应用3d打印技术的新型水冷板结构
CN100490133C (zh) 铝合金大功率半导体器件用散热器
CN112201918A (zh) 一种用于有源相控阵雷达天线阵面的液冷冷板
WO2023001012A1 (zh) 一种算力板和数据处理设备
CN213547724U (zh) 一种液体浸沉冷却式交换机
CN104501638B (zh) 一种换热翅片、换热器及空调
TWI738584B (zh) 液冷排模組
CN204534886U (zh) 一种散热器及空调器
CN104768356B (zh) 一种应用3d打印技术的新型水冷板结构
WO2020259645A1 (zh) 板式换热器
CN209181133U (zh) 电控盒和具有其的空调室外机
CN113035805A (zh) 液冷板及功率模组
CN220359605U (zh) 一种散热翅片、热虹吸散热器及多维度散热装置
WO2015043183A1 (zh) 散热装置
CN219572764U (zh) 钎焊换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020885438

Country of ref document: EP

Effective date: 20220401

NENP Non-entry into the national phase

Ref country code: DE