WO2021088637A1 - 天线阵列及电子设备 - Google Patents

天线阵列及电子设备 Download PDF

Info

Publication number
WO2021088637A1
WO2021088637A1 PCT/CN2020/122158 CN2020122158W WO2021088637A1 WO 2021088637 A1 WO2021088637 A1 WO 2021088637A1 CN 2020122158 W CN2020122158 W CN 2020122158W WO 2021088637 A1 WO2021088637 A1 WO 2021088637A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
antenna array
radiators
radiator
arc surface
Prior art date
Application number
PCT/CN2020/122158
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021088637A1 publication Critical patent/WO2021088637A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna array and electronic equipment.
  • Electronic devices such as smart phones are usually equipped with antennas, such as cellular network antennas, wireless fidelity (Wireless Fidelity, Wi-Fi) antennas, and global positioning system (Global Positioning System, GPS) antennas.
  • antennas such as cellular network antennas, wireless fidelity (Wireless Fidelity, Wi-Fi) antennas, and global positioning system (Global Positioning System, GPS) antennas.
  • the electronic device can realize communication with the base station, other electronic devices, or satellites.
  • the embodiments of the present application provide an antenna array and an electronic device, which can adjust the radiation direction of the antenna array to the free space radiation beam, thereby improving the flexibility and efficiency of communication between the antenna array and other devices.
  • an antenna array including:
  • each of the lenses includes a first arc surface and a second arc surface opposite to each other, the first arc surface forms a convex portion on one side of the lens, and the second arc surface is A recess is formed on the other side of the lens;
  • each of the radiators is arranged opposite to a concave portion of the lens, and the radiation beam of the radiator is radiated from the concave portion to the lens, and is radiated from the convex portion
  • the lens is used to adjust the shape of the radiation beam of the radiator.
  • an electronic device including:
  • a housing, an accommodating space is formed on the housing
  • the antenna array is arranged in the accommodating space of the housing, and the radiation beam direction of the antenna array faces the outside of the housing, wherein the antenna array includes:
  • each of the lenses includes a first arc surface and a second arc surface opposite to each other, the first arc surface forms a convex portion on one side of the lens, and the second arc surface is A recess is formed on the other side of the lens;
  • each of the radiators is arranged opposite to a concave portion of the lens, and the radiation beam of the radiator is radiated from the concave portion to the lens, and is radiated from the convex portion
  • the lens is used to adjust the shape of the radiation beam of the radiator.
  • FIG. 1 is a schematic diagram of the first structure of an antenna array provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a lens and a radiator in the antenna array shown in FIG. 1.
  • FIG. 2 is a schematic diagram of a lens and a radiator in the antenna array shown in FIG. 1.
  • FIG. 3 is a schematic diagram of a second structure of an antenna array provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a third structure of an antenna array provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a fourth structure of an antenna array provided by an embodiment of this application.
  • Fig. 6 is a left view of the antenna array provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a fifth structure of an antenna array provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of the first structure of an electronic device provided by an embodiment of the application.
  • Fig. 9 is a schematic diagram of the housing and the antenna array in the electronic device shown in Fig. 8.
  • FIG. 10 is a schematic diagram of a second structure of an electronic device provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of the first structure of an antenna array provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a lens and a radiator in the antenna array shown in FIG. 1.
  • the antenna array 100 includes a plurality of lenses 12 and a plurality of radiators 14.
  • the plurality of lenses 12 are arranged in an array.
  • the plurality of lenses 12 may be arranged in a linear array, a rectangular array, a circular array, and so on.
  • Each lens 12 includes a first arc surface 122 and a second arc surface 124 opposite to each other.
  • the first curved surface 122 forms a convex portion on one side of the lens 12, and the convex portion makes the lens 12 convex outward on one side of the first curved surface 122.
  • the second curved surface 124 forms a concave portion on the other side of the lens 12, and the concave portion makes the lens 12 concave inward on one side of the second curved surface 124.
  • first arc surface 122 may be an elliptical arc curved surface
  • second arc surface 124 may be a circular arc curved surface, so that the lens 12 may form an elliptical arc-circular arc curved lens.
  • the second arc surface 124 may also be an elliptical arc curved surface, so that the lens 12 may form a double elliptical arc curved surface lens.
  • the lens 12 can transmit electromagnetic waves, that is, can transmit wireless signals.
  • the material of the lens 12 may be an insulating material, such as plastic, glass, etc.
  • the plurality of radiators 14 are also arranged in an array. Wherein, each of the radiators 14 is arranged opposite to the concave portion 124 of the lens 12. It can be understood that the number of the radiators 14 may be equal to the number of the lenses 12.
  • FIG. 1 shows that the antenna array 100 includes three lenses 12 and three radiators 14, the figure shown in FIG. 1 is only an example, and the number of lenses 12 and radiators 14 included in the antenna array 100 may also be other. Quantity, such as 6, 10, 16, etc.
  • the radiator 14 is used to radiate a beam.
  • the beam may carry one of wireless signals such as cellular network signals, Wi-Fi signals, and GPS signals.
  • the radiation beam of the radiator 14 is radiated to the lens 12 from the concave portion 124 and radiated to the free space by the convex portion 122.
  • the free space is the space outside the antenna array 100.
  • the lens 12 is used to adjust the shape of the radiation beam of the radiator 14. For example, the lens 12 can converge the shape of the radiation beam of the radiator 14 to make the radiation direction of the radiation beam more concentrated, so as to increase the gain of the signal radiated by the antenna array 100 to the free space.
  • the lens 12 can diverge the shape of the radiation beam of the radiator 14 so that the radiation direction of the radiation beam covers a larger angle, so as to improve the coverage of the signal radiated by the antenna array 100 to the free space.
  • the lens 12 can change the direction of the radiation beam of the radiator 14 to make the radiation beam radiate in different directions, so as to realize the scanning of the antenna array 100 in different radiation directions.
  • the radiation beams of the multiple radiators 14 may all be horizontally polarized beams or all vertically polarized beams, so that the antenna array 100 can radiate horizontally polarized wireless signals or vertically polarized beams to free space.
  • Wireless signal to improve the anti-interference performance of the radiated wireless signal.
  • a part of the radiation beams may be horizontally polarized beams, and the other part of the radiation beams may be vertically polarized beams. That is, at least one radiation beam is a horizontally polarized beam, and at least one radiation beam is a vertically polarized beam. Therefore, the antenna array 100 can simultaneously radiate wireless signals of the same frequency to free space through the horizontally polarized beam and the vertically polarized beam, so as to increase the bandwidth of the radiated wireless signal.
  • FIG. 3 is a schematic diagram of the second structure of the antenna array provided by an embodiment of the application.
  • each of the lenses 12 has a focal point 126 formed on one side of the concave portion 124.
  • the center of at least one radiator 14 coincides with one of the focal points 126. Therefore, when the radiator 14 whose center coincides with the focal point 126 radiates a beam, the lens 12 opposite to the radiator 14 can converge the radiation beam into a parallel beam and radiate the parallel beam to free space.
  • the number of the radiator 14 whose center overlaps with the focal point 126 may be one or more.
  • the center of each of the radiators 14 coincides with one of the focal points 126. Therefore, each lens 12 can converge the radiation beam of the radiator 14 opposite to the lens 12 into a parallel beam. Therefore, when the multiple radiators 14 all radiate beams, the antenna array 100 can radiate parallel beams to free space.
  • FIG. 4 is a schematic diagram of a third structure of an antenna array provided by an embodiment of this application.
  • the center of at least one radiator 14 coincides with one of the focal points 126 among the plurality of radiators 14, there may also be an offset of the center of at least one radiator 14 with respect to one of the focal points 126.
  • the focal point 126 is the focal point of the lens 12 arranged opposite to the radiator 14. That is, the center of the at least one radiator 14 is offset with respect to the focal point of the lens 12 disposed opposite to the radiator 14.
  • the lens 12 whose focal point coincides with the center of the radiator 14 can adjust the radiation beam of the radiator 14 to a parallel beam; the lens 12 whose focal point is offset from the center of the radiator 14 can affect the radiation beam of the radiator 14 Converge, but will not adjust to parallel beams. Therefore, when the antenna array 100 radiates beams to free space, the radiated beams include both parallel beams and non-parallel beams. The radiation direction of the parallel beams has stronger wireless signal strength, and the non-parallel beams can cover a larger range. . Therefore, the signal strength of the radiation beam of the antenna array 100 to the free space can be improved, and the radiation beam can cover a larger area.
  • FIG. 5 is a schematic diagram of a fourth structure of an antenna array provided by an embodiment of this application.
  • the plurality of lenses 12 may be arranged in a linear array along the first direction.
  • the first direction may be, for example, a horizontal direction, a vertical direction, or the like.
  • the center of the radiator 14 corresponding to the first lens 12A in the center position of the antenna array 100 coincides with the focal point 126 of the first lens 12A; located on both sides of the first lens 12A
  • the center of the radiator 14 corresponding to the second lens 12B is offset relative to the focal point 126 of the second lens 12B. It can also be understood that the focus of the radiator 14 at the center of the antenna array 100 coincides with the focus of the first lens 12A, and the focus of the radiator 14 at the edge of the antenna array 100 is offset with respect to the focus of the second lens 12B.
  • the center of the radiator 14 corresponding to the second lens 12B is located between the focal point of the first lens 12A and the focal point of the second lens 12B. It can also be understood that the distance between the center of the radiator 14 corresponding to the second lens 12B and the focal point of the first lens 12A is smaller than the difference between the focal point of the second lens 12B and the focal point of the first lens 12A. The distance between.
  • the offset of the center of the radiator 14 corresponding to the second lens 12B relative to the focal point of the second lens 12B is proportional to the distance of the second lens 12B from the center position of the antenna array 100. That is, the farther the second lens 12B is from the center position of the antenna array 100, the more the center of the radiator 14 corresponding to the second lens 12B shifts from the focal point of the second lens 12B. Big.
  • the distance between the focal point of the second lens 12B and the focal point of the first lens 12A can be recorded as the first distance
  • the center of the radiator 14 corresponding to the second lens 12B and the first lens 12A The distance between the focal points of can be recorded as the second distance
  • the offset is the difference between the first distance and the second distance. Therefore, the farther the second lens 12B is from the center position of the antenna array 100, the stronger the converging effect of the second lens 12B on the radiation beam of the radiator 14 corresponding to the second lens 12B.
  • the at least one lens 12 located in the center of the linear array is the first lens 12A
  • the lens 12 located on both sides of the at least one first lens 12A is the second lens.
  • Lens 12B When the number of the plurality of lenses 12 is an even number, the at least two lenses 12 located in the center of the linear array are the first lens 12A, and the lenses 12 located on both sides of the at least two first lenses 12A are the second lens 12B .
  • each of the first lens 12A and the radiator 14 disposed opposite to the first lens 12A may form a positive-axis lens antenna 102
  • each of the second lens 12B and the radiator 14 may form a positive axis lens antenna 102
  • the radiator 14 opposite to the second lens 12B can form an off-axis lens antenna.
  • FIG. 6 is a left view of the antenna array provided by an embodiment of the application.
  • the antenna array 100 further includes a first metal sheet 162 and a second metal sheet 164.
  • the first metal sheet 162 is disposed on the plurality of lenses 12.
  • the first metal sheet 162 is connected to the first arc surface 122 and the second arc surface 124 of each lens 12.
  • the second metal sheet 164 is also arranged on the plurality of lenses 12.
  • the second metal sheet 164 is disposed opposite to the first metal sheet 162.
  • the second metal sheet 164 is also connected to the first arc surface 122 and the second arc surface 124 of each lens 12.
  • each lens 12 further includes a first side surface 123 and a second side surface 125 opposite to each other.
  • the first side surface 123 is connected to the first arc surface 122 and the second arc surface 124
  • the second side surface 125 is also connected to the first arc surface 122 and the second arc surface 124.
  • the first side surface 123 and the second side surface 125 may both be flat.
  • the first metal sheet 162 is disposed on the first side surface 123 of the plurality of lenses 12, and the second metal sheet 164 is disposed on the second side surface 125 of the plurality of lenses 12.
  • the plurality of lens 12 arrays are arranged between the first metal sheet 162 and the second metal sheet 164, and each of the lenses 12 is connected to the first metal sheet 162 and the second metal sheet 164.
  • the second metal sheet 164 is connected. That is, the first side surface 123 of each lens 12 is attached to the first metal sheet 162, and the second side surface 125 of each lens 12 is attached to the second metal sheet 164.
  • first arc surface 122 and the second arc surface 124 of each lens 12 can be understood as the surface connected between the first metal sheet 162 and the second metal sheet 164, and each of the The first arc surface 122 and the second arc surface 124 of the lens 12 are both perpendicular to the first metal sheet 162, and the first arc surface 122 and the second arc surface 124 of each lens 12 are both perpendicular to the second arc surface.
  • the metal sheet 164 is vertical.
  • the plurality of radiators 14 are arranged in an array between the first metal sheet 162 and the second metal sheet 164.
  • each of the radiators 14 may be connected to the first metal sheet 162 and the second metal sheet 164. It can be understood that the plurality of radiators 14 are electrically insulated from the first metal sheet 162 and the second metal sheet 164.
  • first metal sheet 162 and the second metal sheet 164 protrude from the plurality of lenses 12 on the side where the second curved surface 124 of the plurality of lenses 12 is located, thereby forming a container. ⁇ 163.
  • the plurality of radiators 14 are arrayed in the accommodating space 163.
  • the protruding length of the first metal sheet 162 and the second metal sheet 164 relative to the second arc surface 124 of the plurality of lenses 12 is greater than or equal to the focal point 126 and the second arc of each lens 12 The distance between the arcs 124. Therefore, the focal point 126 of each lens 12 is located between the first metal sheet 162 and the second metal sheet 164, or it is understood that the focal point 126 of each lens 12 is located in the accommodating space. 163, so that the arrangement of the plurality of radiators 14 can be facilitated.
  • first metal sheet 162 and the second metal sheet 164 can provide support for the plurality of lenses 12 and the plurality of radiators 14, so as to facilitate the plurality of lenses 12 and the plurality of radiators. Installation and fixing of the radiator 14.
  • first metal sheet 162 and the second metal sheet 164 may form the outer frame of the antenna array 100, or it may be understood that the first metal sheet 162 and the second metal sheet 164 form the antenna array 100. ⁇ The shell.
  • the antenna array 100 can form an integral sealing structure.
  • FIG. 7 is a schematic diagram of a fifth structure of an antenna array provided by an embodiment of the application.
  • the antenna array 100 further includes a plurality of control switches 18.
  • Each of the control switches 18 is electrically connected to one of the radiators 14 to control the radiator 14 to radiate the beam or to stop the radiation beam.
  • the control switch 18 may control the application of electrical signals to the radiator 14 to control the radiation beam of the radiator 14; or control to stop the application of electrical signals to the radiator 14 to control the radiator 14 to stop. Radiation beam.
  • the number of the control switches 18 may be equal to the number of the radiators 14, so that each control switch 18 is electrically connected to a radiator 14 and controls the radiator 14.
  • multiple control switches 18 may be integrated on the processor, or integrated on a single processing chip.
  • each lens 12 can adjust the radiation beam shape of the radiator 14 disposed opposite to the lens 12, each lens 12 can radiate to different directions in free space. Beams, so that the plurality of radiators 14 can be controlled by the plurality of control switches 18, so that the antenna array 100 realizes radiation beam scanning in different directions.
  • the multiple control switches 18 can sequentially control one radiator 14 to radiate beams and control other radiators 14 to stop radiating beams, so as to realize the scanning of the antenna array 100. That is, the plurality of control switches 18 control only one radiator 14 to radiate beams, and control other radiators 14 to stop radiating beams. Therefore, the antenna array 100 only radiates beams in one direction of free space at each time, and can radiate beams in different directions at different times, so as to realize radiation beam scanning in different directions.
  • each lens 12 can adjust the shape of the radiation beam of the radiator 14 disposed opposite to the lens 12, so that when the antenna array 100 radiates the beam to free space, The radiation direction of the radiation beam is adjusted, and then the radiation direction with the strongest wireless signal can be selected to radiate the beam, so the flexibility and efficiency of communication between the antenna array 100 and other devices can be improved.
  • the embodiment of the present application also provides an electronic device.
  • the electronic device can be a smart phone, a tablet computer, etc., or a game device, AR (Augmented Reality) device, automobile device, data storage device, audio playback device, video playback device, notebook computer, desktop computing Equipment, etc.
  • AR Augmented Reality
  • FIG. 8 is a schematic diagram of the first structure of an electronic device provided by an embodiment of this application.
  • the electronic device 200 includes a display screen 22, a housing 24, a circuit board 26, a battery 28, and an antenna array 100.
  • the display screen 22 is arranged on the housing 24 to form a display surface of the electronic device 200 for displaying information such as images and texts.
  • the display screen 22 may include a liquid crystal display (Liquid Crystal Display, LCD) or an Organic Light-Emitting Diode (OLED) display screen.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • a cover plate may also be provided on the display screen 22 to protect the display screen 22 and prevent the display screen 22 from being scratched or damaged by water.
  • the cover plate may be a transparent glass cover plate, so that the user can observe the content displayed on the display screen 22 through the cover plate.
  • the cover plate may be a glass cover plate made of sapphire.
  • the housing 24 is used to form the outer contour of the electronic device 200 so as to accommodate the electronic devices and functional components of the electronic device 200, while sealing and protecting the electronic devices and functional components inside the electronic device.
  • all functional components of the camera, circuit board, and vibration motor of the electronic device 200 can be arranged inside the housing 24.
  • the housing 24 may include a middle frame and a battery cover.
  • the middle frame may have a thin plate or sheet-like structure, or a hollow frame structure.
  • the middle frame is used to provide support for the electronic devices or functional components in the electronic device 200 so as to install the electronic devices and functional components of the electronic device 200 together.
  • structures such as grooves, protrusions, and through holes may be provided on the middle frame to facilitate the installation of electronic devices or functional components of the electronic device 200.
  • the material of the middle frame may include metal or plastic.
  • the battery cover is connected to the middle frame.
  • the battery cover may be attached to the middle frame through an adhesive such as double-sided tape to realize the connection with the middle frame.
  • the battery cover is used to seal the electronic devices and functional components of the electronic device 200 in the electronic device 200 together with the middle frame and the display screen 22 to protect the electronic devices and functional components of the electronic device 200.
  • the battery cover can be integrally formed. During the molding process of the battery cover, a rear camera mounting hole and other structures can be formed on the battery cover. It is understandable that the material of the battery cover may also include metal or plastic.
  • the circuit board 26 is arranged inside the housing 24.
  • the circuit board 26 can be installed on the middle frame of the housing 24 for fixing, and the circuit board 26 can be sealed inside the electronic device through a battery cover.
  • the circuit board 26 may be the main board of the electronic device 200.
  • the circuit board 26 may also be integrated with one or more of functional components such as a processor, a camera, an earphone interface, an acceleration sensor, a gyroscope, and a motor.
  • the display screen 22 may be electrically connected to the circuit board 26 to control the display of the display screen 22 through a processor on the circuit board 26.
  • the battery 28 is provided inside the housing 24.
  • the battery 28 may be installed on the middle frame of the housing 24 for fixing, and the battery 28 may be sealed inside the electronic device through a battery cover.
  • the battery 28 is electrically connected to the circuit board 26 to realize that the battery 28 supplies power to the electronic device 200.
  • the circuit board 26 may be provided with a power management circuit.
  • the power management circuit is used to distribute the voltage provided by the battery 28 to various electronic devices in the electronic device 200.
  • the antenna array 100 is the antenna array 100 described in any of the foregoing embodiments.
  • the antenna array 100 is arranged inside the housing 24.
  • the antenna array 100 is used to radiate beams to free space outside the electronic device 200 to realize the wireless communication function of the electronic device 200. It can be understood that the direction of the radiation beam of the antenna array 100 is toward the outside of the housing 24, so that the antenna array 100 can radiate the beam to the outside of the electronic device 200.
  • the electronic device 200 further includes a processor 262.
  • the processor 262 may be arranged on the circuit board 26.
  • the processor 262 is electrically connected to the antenna array 100, so that the antenna array 100 can be controlled by the processor 262.
  • the processor 262 may be used to control the antenna array 100 to scan the radiation beam in different directions in order to determine the radiation direction with the strongest radiation signal, and to control the antenna array 100 to face the strongest radiation signal.
  • the radiation direction radiates the beam, thereby increasing the wireless signal strength of the electronic device 200.
  • the processor 262 may control the plurality of control switches 18 of the antenna array 100, so that the plurality of control switches 18 control each of the plurality of radiators 14 to radiate beams in turn, so that The antenna array 100 sequentially scans the radiation beam toward different directions, thereby determining the radiation direction with the strongest radiation signal. Subsequently, the processor 262 may control the antenna array 100 to radiate the beam toward the radiation direction with the strongest radiation signal.
  • FIG. 9 is a schematic diagram of the housing and the antenna array in the electronic device shown in FIG. 8.
  • an accommodating space 242 is formed on the housing 24.
  • the accommodating space 242 may be formed at the side of the housing 24, for example. It can be understood that the accommodating space 242 may be a groove or an opening opened on the housing 24.
  • the antenna array 100 may be arranged in the accommodating space 242 of the housing 24 to realize the installation of the antenna array 100 on the housing 24 to form a fixing and protective effect on the antenna array 100.
  • FIG. 10 is a schematic diagram of a second structure of an electronic device provided by an embodiment of this application.
  • the electronic device 200 may include a plurality of antenna arrays 100 arranged at intervals. Among them, more than one is 2 or more. For example, as shown in FIG. 10, the electronic device 200 may include two antenna arrays 100 arranged at intervals, and each of the antenna arrays 100 is arranged at one side of the housing 24.
  • Multiple antenna arrays 100 are provided on the electronic device 200, on the one hand, it can enhance the wireless signal strength when the electronic device 200 radiates beams outward, on the other hand, it can also expand the coverage of the wireless signal, thereby improving the wireless signal strength of the electronic device 200 And wireless signal coverage.
  • the electronic device 200 provided by the embodiment of the present application includes an antenna array 100.
  • each lens can adjust the radiation beam shape of a radiator disposed opposite to the lens, so that when the antenna array 100 is directed When the beam is radiated in free space, the radiation direction of the radiation beam can be adjusted, and then the radiation direction with the strongest wireless signal can be selected to radiate the beam. Therefore, the flexibility and efficiency of communication between the electronic device 200 and other devices can be improved.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线阵列及电子设备,天线阵列包括:多个阵列设置的透镜,每一所述透镜的一侧形成凸出部,另一侧形成凹陷部;多个阵列设置的辐射体,每一所述辐射体与一个所述透镜的凹陷部相对设置,所述辐射体的辐射波束由所述凹陷部辐射至所述透镜,并由所述凸出部辐射至自由空间,所述透镜用于调节所述辐射体的辐射波束的形状。

Description

天线阵列及电子设备
本申请要求于2019年11月05日提交中国专利局、申请号为201911072372.4、发明名称为“天线阵列及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种天线阵列及电子设备。
背景技术
诸如智能手机等电子设备中通常都设置有天线,例如蜂窝网络天线、无线保真(Wireless Fidelity,Wi-Fi)天线、全球定位系统(Global Positioning System,GPS)天线等。从而,电子设备可以实现与基站、其它电子设备或者卫星之间的通信。
发明内容
本申请实施例提供一种天线阵列及电子设备,可以对天线阵列向自由空间辐射波束的辐射方向进行调节,从而提高天线阵列与其它设备之间通信的灵活性和效率。
第一方面,本申请实施例提供一种天线阵列,包括:
多个阵列设置的透镜,每一所述透镜包括相对的第一弧面及第二弧面,所述第一弧面在所述透镜的一侧形成凸出部,所述第二弧面在所述透镜的另一侧形成凹陷部;
多个阵列设置的辐射体,每一所述辐射体与一个所述透镜的凹陷部相对设置,所述辐射体的辐射波束由所述凹陷部辐射至所述透镜,并由所述凸出部辐射至自由空间,所述透镜用于调节所述辐射体的辐射波束的形状。
第二方面,本申请实施例还提供一种电子设备,包括:
壳体,所述壳体上形成有容置空间;
天线阵列,设置在所述壳体的容置空间内,所述天线阵列的辐射波束方向朝向所述壳体外部,其中,所述天线阵列包括:
多个阵列设置的透镜,每一所述透镜包括相对的第一弧面及第二弧面,所述第一弧面在所述透镜的一侧形成凸出部,所述第二弧面在所述透镜的另一侧形成凹陷部;
多个阵列设置的辐射体,每一所述辐射体与一个所述透镜的凹陷部相对设置,所述辐射体的辐射波束由所述凹陷部辐射至所述透镜,并由所述凸出部辐射至自由空间,所述透镜用于调节所述辐射体的辐射波束的形状。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的天线阵列的第一种结构示意图。
图2为图1所示天线阵列中的透镜和辐射体的示意图。
图3为本申请实施例提供的天线阵列的第二种结构示意图。
图4为本申请实施例提供的天线阵列的第三种结构示意图。
图5为本申请实施例提供的天线阵列的第四种结构示意图。
图6为本申请实施例提供的天线阵列的左视图。
图7为本申请实施例提供的天线阵列的第五种结构示意图。
图8为本申请实施例提供的电子设备的第一种结构示意图。
图9为图8所示电子设备中的壳体和天线阵列的示意图。
图10为本申请实施例提供的电子设备的第二种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参考图1和图2,图1为本申请实施例提供的天线阵列的第一种结构示意图,图2为图1所示天线阵列中的透镜和辐射体的示意图。
其中,天线阵列100包括多个透镜12以及多个辐射体14。
所述多个透镜12呈阵列设置。例如,所述多个透镜12可以呈直线阵列设置、矩形阵列设置、圆形阵列设置等等。每一所述透镜12包括相对的第一弧面122以及第二弧面124。所述第一弧面122在所述透镜12的一侧形成凸出部,所述凸 出部使得透镜12在第一弧面122的一侧向外凸出。所述第二弧面124在所述透镜12的另一侧形成凹陷部,所述凹陷部使得所述透镜12在第二弧面124的一侧向内凹陷。
其中,所述第一弧面122可以为椭圆弧曲面,所述第二弧面124可以为圆弧曲面,从而所述透镜12可以形成椭圆弧-圆弧曲面透镜。
可以理解的,所述第一弧面122为椭圆弧曲面时,所述第二弧面124也可以为椭圆弧曲面,从而所述透镜12可以形成双椭圆弧曲面透镜。
其中,所述透镜12可以供电磁波透过,也即可以供无线信号透过。所述透镜12的材质可以为绝缘材料,例如塑胶、玻璃等。
所述多个辐射体14也呈阵列设置。其中,每一所述辐射体14与一个所述透镜12的凹陷部124相对设置。可以理解的,所述辐射体14的数量可以与所述透镜12的数量相等。尽管图1中示出了天线阵列100包括3个透镜12以及3个辐射体14,但图1所示仅仅是一种示例,天线阵列100包括的透镜12和辐射体14的数量还可以为其它数量,例如6个、10个、16个等等。
其中,所述辐射体14用于辐射波束。所述波束可以携带蜂窝网络信号、Wi-Fi信号、GPS信号等无线信号中的一种。所述辐射体14的辐射波束由所述凹陷部124辐射至所述透镜12,并由所述凸出部122辐射至自由空间。其中,自由空间即为所述天线阵列100外部的空间。所述透镜12用于调节所述辐射体14的辐射波束的形状。例如,所述透镜12可以对辐射体14的辐射波束的形状进行汇聚,使辐射波束的辐射方向更为集中,以提高天线阵列100向自由空间辐射的信号的增益。再例如,所述透镜12可以对辐射体14的辐射波束的形状进行发散,使辐射波束的辐射方向覆盖更大的角度,以提高天线阵列100向自由空间辐射的信号的覆盖范围。再例如,所述透镜12可以改变辐射体14的辐射波束的朝向,使辐射波束朝向不同方向进行辐射,以实现天线阵列100对不同辐射方向的扫描。
其中,所述多个辐射体14的辐射波束可以均为水平极化波束或者均为垂直极化波束,从而所述天线阵列100可以实现向自由空间辐射水平极化的无线信号或者垂直极化的无线信号,以提高辐射的无线信号的抗干扰性能。
可以理解的,所述多个辐射体14的辐射波束中,一部分辐射波束可以为水平极化波束,另一部分辐射波束可以为垂直极化波束。也即,至少一个辐射波 束为水平极化波束,至少一个辐射波束为垂直极化波束。从而,天线阵列100可以同时通过水平极化波束和垂直极化波束向自由空间辐射相同频率的无线信号,以提高辐射的无线信号的带宽。
在本申请的描述中,需要理解的是,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
同时参考图3,图3为本申请实施例提供的天线阵列的第二种结构示意图。
所述多个透镜12中,每一所述透镜12在所述凹陷部124的一侧形成有焦点126。其中,所述多个辐射体14中,至少一个辐射体14的中心与一个所述焦点126重合。从而,中心与所述焦点126重合的辐射体14辐射波束时,与所述辐射体14相对的透镜12可以将所述辐射波束汇聚为平行波束,并向自由空间辐射平行波束。
其中,中心与焦点126重合的辐射体14的数量可以为一个,也可以为多个。例如,如图3所示,所述多个辐射体14中,每一所述辐射体14的中心均与一个所述焦点126重合。从而,每一个所述透镜12都可以将与所述透镜12相对的辐射体14的辐射波束汇聚为平行波束。因此,所述多个辐射体14都辐射波束时,所述天线阵列100可以向自由空间辐射平行波束。
参考图4,图4为本申请实施例提供的天线阵列的第三种结构示意图。
可以理解的,所述多个辐射体14中,至少一个辐射体14的中心与一个所述焦点126重合时,还可以存在至少一个辐射体14的中心相对于一个所述焦点126偏移。其中,所述焦点126为与所述辐射体14相对设置的透镜12的焦点。也即,至少一个辐射体14的中心相对于与所述辐射体14相对设置的透镜12的焦点偏移。
从而,焦点与辐射体14的中心重合的透镜12可以将所述辐射体14的辐射波束调节为平行波束;焦点与辐射体14的中心偏移的透镜12可以对所述辐射体14的辐射波束进行汇聚,但并不会调节为平行波束。因此,所述天线阵列100向自由空间辐射波束时,辐射的波束既包括平行波束,又包括非平行波束,平行波束朝向的辐射方向的无线信号强度更强,非平行波束可以覆盖更大的范围。因此,既可以提高天线阵列100向自由空间辐射波束的信号强度,又可以保证辐射波束覆盖较大的范围。
参考图5,图5为本申请实施例提供的天线阵列的第四种结构示意图。
其中,所述多个透镜12可以沿第一方向呈直线阵列设置。所述第一方向例如可以为水平方向、垂直方向等。在所述第一方向上,处于所述天线阵列100的居中位置的第一透镜12A对应的辐射体14的中心与所述第一透镜12A的焦点126重合;位于所述第一透镜12A两侧的第二透镜12B对应的辐射体14的中心相对于所述第二透镜12B的焦点126偏移。也可以理解为,位于天线阵列100居中位置的辐射体14与第一透镜12A的焦点重合,位于天线阵列100边缘位置的辐射体14相对于第二透镜12B的焦点偏移。
其中,所述第二透镜12B对应的辐射体14的中心位于所述第一透镜12A的焦点与所述第二透镜12B的焦点之间。也可以理解为,所述第二透镜12B对应的辐射体14的中心与所述第一透镜12A的焦点之间的距离小于所述第二透镜12B的焦点与所述第一透镜12A的焦点之间的距离。
其中,所述第二透镜12B对应的辐射体14的中心相对于所述第二透镜12B的焦点的偏移量与所述第二透镜12B距所述天线阵列100的居中位置的距离成正比。也即,所述第二透镜12B距所述天线阵列100的居中位置越远时,所述第二透镜12B对应的辐射体14的中心相对于所述第二透镜12B的焦点的偏移量越大。其中,所述第二透镜12B的焦点与所述第一透镜12A的焦点之间的距离可以记为第一距离,所述第二透镜12B对应的辐射体14的中心与所述第一透镜12A的焦点之间的距离可以记为第二距离,所述偏移量即为所述第一距离与所述第二距离之差。因此,所述第二透镜12B距所述天线阵列100的居中位置越远时,所述第二透镜12B对与所述第二透镜12B对应的辐射体14的辐射波束的汇聚作用越强。
可以理解的,当所述多个透镜12的数量为奇数时,位于直线阵列居中位置的至少一个透镜12为第一透镜12A,位于所述至少一个第一透镜12A两侧的透镜12为第二透镜12B。当所述多个透镜12的数量为偶数时,位于直线阵列居中位置的至少两个透镜12为第一透镜12A,位于所述至少两个第一透镜12A两侧的透镜12为第二透镜12B。
其中,还可以理解的,每一个所述第一透镜12A以及与所述第一透镜12A相对设置的辐射体14可以形成一个正轴型透镜天线102,每一个所述第二透镜12B以及与所述第二透镜12B相对设置的辐射体14可以形成一个偏轴型透镜天 线。
参考图6,图6为本申请实施例提供的天线阵列的左视图。
其中,天线阵列100还包括第一金属片162以及第二金属片164。所述第一金属片162设置在所述多个透镜12上。并且,所述第一金属片162与每一所述透镜12的第一弧面122、第二弧面124连接。所述第二金属片164也设置在所述多个透镜12上。所述第二金属片164与所述第一金属片162相对设置。并且,所述第二金属片164也与每一所述透镜12的第一弧面122、第二弧面124连接。
可以理解的,每一所述透镜12还包括相对的第一侧面123和第二侧面125。所述第一侧面123与所述第一弧面122、所述第二弧面124连接,所述第二侧面125也与所述第一弧面122、所述第二弧面124连接。所述第一侧面123、所述第二侧面125可以都为平面。其中,所述第一金属片162设置在所述多个透镜12的第一侧面123,所述第二金属片164设置在所述多个透镜12的第二侧面125。
也可以理解为,所述多个透镜12阵列设置在所述第一金属片162与所述第二金属片164之间,并且每一所述透镜12均与所述第一金属片162、所述第二金属片164连接。也即,每一所述透镜12的第一侧面123均与所述第一金属片162贴合,每一所述透镜12的第二侧面125均与所述第二金属片164贴合。其中,每一所述透镜12的第一弧面122、第二弧面124可以理解为连接在所述第一金属片162和所述第二金属片164之间的表面,并且每一所述透镜12的第一弧面122、第二弧面124均与所述第一金属片162垂直,以及每一所述透镜12的第一弧面122、第二弧面124均与所述第二金属片164垂直。
其中,所述多个辐射体14阵列设置在所述第一金属片162与所述第二金属片164之间。并且,每一所述辐射体14可以与所述第一金属片162、所述第二金属片164连接。可以理解的,所述多个辐射体14与所述第一金属片162、所述第二金属片164之间为电绝缘的。
可以理解的,所述第一金属片162、所述第二金属片164在所述多个透镜12的第二弧面124所在的一侧凸出于所述多个透镜12,从而形成一容置空间163。所述多个辐射体14阵列设置在所述容置空间163中。
此外,所述第一金属片162、所述第二金属片164相对于所述多个透镜12的第二弧面124凸出的长度大于或等于每一所述透镜12的焦点126与第二弧面124之间的距离。因此,每一所述透镜12的焦点126均位于所述第一金属片162 与所述第二金属片164之间,或者理解为每一所述透镜12的焦点126均位于所述容置空间163中,从而可以便于所述多个辐射体14的设置。
可以理解的,所述第一金属片162、所述第二金属片164可以为所述多个透镜12以及所述多个辐射体14提供支撑作用,便于所述多个透镜12以及所述多个辐射体14的安装和固定。此外,所述第一金属片162、所述第二金属片164可以形成天线阵列100的外部框架,或者理解为所述第一金属片162、所述第二金属片164形成所述天线阵列100的外壳。从而,所述天线阵列100可以形成一个整体的密封结构。
参考图7,图7为本申请实施例提供的天线阵列的第五种结构示意图。
其中,天线阵列100还包括多个控制开关18。每一所述控制开关18与一个所述辐射体14电连接,以控制所述辐射体14辐射波束或停止辐射波束。例如,所述控制开关18可以控制向所述辐射体14施加电信号,以控制所述辐射体14辐射波束;或者控制停止向所述辐射体14施加电信号,以控制所述辐射体14停止辐射波束。其中,可以理解的,所述控制开关18的数量可以与所述辐射体14的数量相等,从而实现每一个控制开关18与一个辐射体14电连接并控制所述辐射体14。
可以理解的,所述多个控制开关18可以集成到处理器上,或者集成到一个单独的处理芯片上。
所述天线阵列100中,由于每一所述透镜12都可以对与所述透镜12相对设置的辐射体14的辐射波束形状进行调节,因此每一所述透镜12可以向自由空间的不同方向辐射波束,从而可以通过所述多个控制开关18控制所述多个辐射体14,使得所述天线阵列100实现不同方向的辐射波束扫描。
其中,所述多个控制开关18可以依次控制一个所述辐射体14辐射波束以及控制其它辐射体14停止辐射波束,以实现所述天线阵列100的扫描。也即,每一时刻所述多个控制开关18只控制一个辐射体14辐射波束,并控制其它的辐射体14停止辐射波束。因此,每一时刻所述天线阵列100只向自由空间的一个方向辐射波束,在不同的时刻可以向不同的方向辐射波束,从而实现不同方向的辐射波束扫描。
本申请实施例提供的天线阵列100中,每一个透镜12可以对与所述透镜12相对设置的辐射体14的辐射波束形状进行调节,从而当所述天线阵列100向自 由空间辐射波束时,可以对辐射波束的辐射方向进行调节,进而可以选择无线信号最强的辐射方向来辐射波束,因此可以提高天线阵列100与其它设备之间通信的灵活性和效率。
本申请实施例还提供一种电子设备。所述电子设备可以是智能手机、平板电脑等设备,还可以是游戏设备、AR(Augmented Reality,增强现实)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。
参考图8,图8为本申请实施例提供的电子设备的第一种结构示意图。
其中,电子设备200包括显示屏22、壳体24、电路板26、电池28以及天线阵列100。
显示屏22设置在壳体24上,以形成电子设备200的显示面,用于显示图像、文本等信息。其中,显示屏22可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(Organic Light-Emitting Diode,OLED)等类型的显示屏。
可以理解的,显示屏22上还可以设置盖板,以对显示屏22进行保护,防止显示屏22被刮伤或者被水损坏。其中,所述盖板可以为透明玻璃盖板,从而用户可以透过盖板观察到显示屏22显示的内容。可以理解的,所述盖板可以为蓝宝石材质的玻璃盖板。
壳体24用于形成电子设备200的外部轮廓,以便于容纳电子设备200的电子器件、功能组件等,同时对电子设备内部的电子器件和功能组件形成密封和保护作用。例如,电子设备200的摄像头、电路板、振动马达都功能组件都可以设置在壳体24内部。可以理解的,所述壳体24可以包括中框和电池盖。
其中,所述中框可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框用于为电子设备200中的电子器件或功能组件提供支撑作用,以将电子设备200的电子器件、功能组件安装到一起。例如,所述中框上可以设置凹槽、凸起、通孔等结构,以便于安装电子设备200的电子器件或功能组件。可以理解的,中框的材质可以包括金属或塑胶等。
所述电池盖与所述中框连接。例如,所述电池盖可以通过诸如双面胶等粘接剂贴合到中框上以实现与中框的连接。其中,电池盖用于与所述中框、所述显示屏22共同将电子设备200的电子器件和功能组件密封在电子设备200内部, 以对电子设备200的电子器件和功能组件形成保护作用。可以理解的,电池盖可以一体成型。在电池盖的成型过程中,可以在电池盖上形成后置摄像头安装孔等结构。可以理解的,电池盖的材质也可以包括金属或塑胶等。
电路板26设置在所述壳体24内部。例如,电路板26可以安装在壳体24的中框上,以进行固定,并通过电池盖将电路板26密封在电子设备内部。其中,电路板26可以为电子设备200的主板。其中,所述电路板26上还可以集成有处理器、摄像头、耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。同时,显示屏22可以电连接至电路板26,以通过电路板26上的处理器对显示屏22的显示进行控制。
电池28设置在壳体24内部。例如,电池28可以安装在壳体24的中框上,以进行固定,并通过电池盖将电池28密封在电子设备内部。同时,电池28电连接至所述电路板26,以实现电池28为电子设备200供电。其中,电路板26上可以设置有电源管理电路。所述电源管理电路用于将电池28提供的电压分配到电子设备200中的各个电子器件。
所述天线阵列100为上述任一实施例所述的天线阵列100。所述天线阵列100设置在所述壳体24内部。其中,所述天线阵列100用于向电子设备200外部的自由空间辐射波束,以实现电子设备200的无线通信功能。可以理解的,所述天线阵列100的辐射波束方向朝向所述壳体24外部,从而所述天线阵列100可以向电子设备200外部辐射波束。
可以理解的,所述电子设备200还包括处理器262。所述处理器262可以设置在所述电路板26上。所述处理器262与所述天线阵列100电连接,从而可以通过所述处理器262对所述天线阵列100进行控制。
其中,所述处理器262可以用于控制所述天线阵列100依次朝向不同方向进行辐射波束扫描,以确定辐射信号最强的辐射方向,并控制所述天线阵列100朝向所述辐射信号最强的辐射方向辐射波束,从而提高电子设备200的无线信号强度。
例如,所述处理器262可以对所述天线阵列100的多个控制开关18进行控制,使所述多个控制开关18控制所述多个辐射体14中的每一个辐射体依次辐射波束,使得所述天线阵列100依次朝向不同方向进行辐射波束扫描,从而确定出辐射信号最强的辐射方向。随后,所述处理器262可以控制所述天线阵列100 朝向所述辐射信号最强的辐射方向辐射波束。
同时参考图9,图9为图8所示电子设备中的壳体和天线阵列的示意图。
其中,所述壳体24上形成有容置空间242。所述容置空间242例如可以形成在壳体24的侧边处。可以理解的,所述容置空间242可以为所述壳体24上开设的凹槽或者开口等结构。所述天线阵列100可以设置在所述壳体24的容置空间242内,以实现将所述天线阵列100安装到壳体24上,从而对所述天线阵列100形成固定和保护作用。
参考图10,图10为本申请实施例提供的电子设备的第二种结构示意图。
可以理解的,电子设备200可以包括多个间隔设置的天线阵列100。其中,多个即为2个或2个以上。例如,如图10所示,电子设备200可以包括间隔设置的2个天线阵列100,每一所述天线阵列100设置在壳体24的一个侧边处。
电子设备200上设置多个天线阵列100,一方面可以增强电子设备200向外辐射波束时的无线信号强度,另一方面也可以扩大无线信号的覆盖范围,从而可以提高电子设备200的无线信号强度和无线信号的覆盖范围。
本申请实施例提供的电子设备200包括天线阵列100,所述天线阵列100中,每一个透镜可以对与所述透镜相对设置的辐射体的辐射波束形状进行调节,从而当所述天线阵列100向自由空间辐射波束时,可以对辐射波束的辐射方向进行调节,进而可以选择无线信号最强的辐射方向来辐射波束,因此可以提高电子设备200与其它设备之间通信的灵活性和效率。
以上对本申请实施例提供的天线阵列及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种天线阵列,包括:
    多个阵列设置的透镜,每一所述透镜包括相对的第一弧面及第二弧面,所述第一弧面在所述透镜的一侧形成凸出部,所述第二弧面在所述透镜的另一侧形成凹陷部;
    多个阵列设置的辐射体,每一所述辐射体与一个所述透镜的凹陷部相对设置,所述辐射体的辐射波束由所述凹陷部辐射至所述透镜,并由所述凸出部辐射至自由空间,所述透镜用于调节所述辐射体的辐射波束的形状。
  2. 根据权利要求1所述的天线阵列,其中,每一所述透镜在所述凹陷部的一侧形成有焦点,所述多个辐射体中,至少一个所述辐射体的中心与一个所述焦点重合。
  3. 根据权利要求2所述的天线阵列,其中,每一所述辐射体的中心均与一个所述焦点重合。
  4. 根据权利要求2所述的天线阵列,其中,所述多个辐射体中,至少一个所述辐射体的中心相对于一个所述焦点偏移,所述焦点为与所述辐射体相对设置的透镜的焦点。
  5. 根据权利要求4所述的天线阵列,其中,所述多个透镜沿第一方向阵列设置,在所述第一方向上,处于所述天线阵列的居中位置的第一透镜对应的辐射体的中心与所述第一透镜的焦点重合,位于所述第一透镜两侧的第二透镜对应的辐射体的中心相对于所述第二透镜的焦点偏移。
  6. 根据权利要求5所述的天线阵列,其中,所述第二透镜对应的辐射体的中心位于所述第一透镜的焦点与所述第二透镜的焦点之间。
  7. 根据权利要求5所述的天线阵列,其中,所述第二透镜对应的辐射体的中心相对于所述第二透镜的焦点的偏移量与所述第二透镜距所述天线阵列的居中位置的距离成正比。
  8. 根据权利要求1所述的天线阵列,其中,所述第一弧面为椭圆弧曲面,所述第二弧面为圆弧曲面。
  9. 根据权利要求1所述的天线阵列,其中,所述第一弧面为椭圆弧曲面,所述第二弧面为椭圆弧曲面。
  10. 根据权利要求1所述的天线阵列,其中,所述多个辐射体的辐射波束 均为水平极化波束或者均为垂直极化波束。
  11. 根据权利要求1所述的天线阵列,其中,所述多个辐射体的辐射波束中,至少一个辐射波束为水平极化波束,至少一个辐射波束为垂直极化波束。
  12. 根据权利要求1所述的天线阵列,其中,还包括:
    第一金属片,设置在所述多个透镜上,所述第一金属片与每一所述透镜的第一弧面、第二弧面连接;
    第二金属片,设置在所述多个透镜上,所述第二金属片与所述第一金属片相对设置,所述第二金属片与每一所述透镜的第一弧面、第二弧面连接;其中
    所述多个辐射体阵列设置在所述第一金属片与所述第二金属片之间。
  13. 根据权利要求1所述的天线阵列,其中,还包括多个控制开关,每一所述控制开关与一个所述辐射体电连接,以控制所述辐射体辐射波束或停止辐射波束。
  14. 根据权利要求13所述的天线阵列,其中,所述多个控制开关依次控制一个所述辐射体辐射波束以及控制其它辐射体停止辐射波束,以使得所述天线阵列实现不同方向的辐射波束扫描。
  15. 一种电子设备,包括:
    壳体,所述壳体上形成有容置空间;
    天线阵列,设置在所述壳体的容置空间内,所述天线阵列的辐射波束方向朝向所述壳体外部,其中,所述天线阵列包括:
    多个阵列设置的透镜,每一所述透镜包括相对的第一弧面及第二弧面,所述第一弧面在所述透镜的一侧形成凸出部,所述第二弧面在所述透镜的另一侧形成凹陷部;
    多个阵列设置的辐射体,每一所述辐射体与一个所述透镜的凹陷部相对设置,所述辐射体的辐射波束由所述凹陷部辐射至所述透镜,并由所述凸出部辐射至自由空间,所述透镜用于调节所述辐射体的辐射波束的形状。
  16. 根据权利要求15所述的电子设备,其中,每一所述透镜在所述凹陷部的一侧形成有焦点,所述多个辐射体中,至少一个所述辐射体的中心与一个所述焦点重合。
  17. 根据权利要求16所述的电子设备,其中,每一所述辐射体的中心均与一个所述焦点重合。
  18. 根据权利要求16所述的电子设备,其中,所述多个辐射体中,至少一个所述辐射体的中心相对于一个所述焦点偏移,所述焦点为与所述辐射体相对设置的透镜的焦点。
  19. 根据权利要求18所述的电子设备,其中,所述多个透镜沿第一方向阵列设置,在所述第一方向上,处于所述天线阵列的居中位置的第一透镜对应的辐射体的中心与所述第一透镜的焦点重合,位于所述第一透镜两侧的第二透镜对应的辐射体的中心相对于所述第二透镜的焦点偏移。
  20. 根据权利要求15所述的电子设备,其中,还包括处理器,所述处理器与所述天线阵列电连接,所述处理器用于控制所述天线阵列依次朝向不同方向进行辐射波束扫描,以确定辐射信号最强的辐射方向,并控制所述天线阵列朝向所述辐射信号最强的辐射方向辐射波束。
PCT/CN2020/122158 2019-11-05 2020-10-20 天线阵列及电子设备 WO2021088637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911072372.4A CN110783697A (zh) 2019-11-05 2019-11-05 天线阵列及电子设备
CN201911072372.4 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021088637A1 true WO2021088637A1 (zh) 2021-05-14

Family

ID=69389226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122158 WO2021088637A1 (zh) 2019-11-05 2020-10-20 天线阵列及电子设备

Country Status (2)

Country Link
CN (1) CN110783697A (zh)
WO (1) WO2021088637A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600917B2 (en) * 2021-03-15 2023-03-07 Alpha Networks Inc. Antenna cover adapted to modify antenna pattern

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783697A (zh) * 2019-11-05 2020-02-11 Oppo广东移动通信有限公司 天线阵列及电子设备
US20230275358A1 (en) * 2020-06-16 2023-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Lens Antenna, Radio Unit and Base Station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742824A (zh) * 2016-04-13 2016-07-06 中国电子科技集团公司第五十四研究所 一种可宽角扫描的低剖面透镜天线
WO2017137634A1 (en) * 2016-02-12 2017-08-17 Aeronet Global Communications Labs Dac Antenna system and method for aerial vehicles
WO2018167717A1 (en) * 2017-03-17 2018-09-20 Isotropic Systems Ltd Lens antenna system
CN209472105U (zh) * 2019-01-15 2019-10-08 中国移动通信有限公司研究院 一种透镜天线
CN110783697A (zh) * 2019-11-05 2020-02-11 Oppo广东移动通信有限公司 天线阵列及电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130171B2 (en) * 2008-03-12 2012-03-06 The Boeing Company Lens for scanning angle enhancement of phased array antennas
CN104752841B (zh) * 2015-03-25 2017-11-10 江苏中兴微通信息科技有限公司 一种双极化集成平面透镜天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137634A1 (en) * 2016-02-12 2017-08-17 Aeronet Global Communications Labs Dac Antenna system and method for aerial vehicles
CN105742824A (zh) * 2016-04-13 2016-07-06 中国电子科技集团公司第五十四研究所 一种可宽角扫描的低剖面透镜天线
WO2018167717A1 (en) * 2017-03-17 2018-09-20 Isotropic Systems Ltd Lens antenna system
CN209472105U (zh) * 2019-01-15 2019-10-08 中国移动通信有限公司研究院 一种透镜天线
CN110783697A (zh) * 2019-11-05 2020-02-11 Oppo广东移动通信有限公司 天线阵列及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600917B2 (en) * 2021-03-15 2023-03-07 Alpha Networks Inc. Antenna cover adapted to modify antenna pattern

Also Published As

Publication number Publication date
CN110783697A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2021088572A1 (zh) 天线阵列及电子设备
WO2021088637A1 (zh) 天线阵列及电子设备
US11239562B2 (en) Antenna module and electronic device
US11355831B2 (en) Antenna system and mobile terminal
US11056771B2 (en) Antenna module and electronic device
US20210384645A1 (en) Antenna Device and Electronic Apparatus
KR102577623B1 (ko) 무선 통신을 위한 안테나를 포함하는 전자 장치
BR122022007185B1 (pt) Antena e dispositivo eletrônico incluindo a mesma
CN111418195B (zh) 天线和包括天线的电子装置
KR20200008408A (ko) 안테나를 포함하는 디스플레이 조립체 및 이를 포함하는 전자 장치
KR20190060283A (ko) 안테나를 포함하는 전자 장치
US11177556B2 (en) Antenna and electronic device comprising same
CN209767598U (zh) 电子设备
US20230199096A1 (en) Antenna and electronic device including same
KR20200132041A (ko) 방열 구조를 포함하는 전자 장치
US20100302109A1 (en) Electronic apparatus
US20170195537A1 (en) Communication device antenna assembly and communication device having the same
WO2021088712A1 (zh) 天线辐射体、天线组件及电子设备
KR20210100443A (ko) 유전 시트가 부착된 안테나 모듈을 포함하는 전자 장치
CN210668661U (zh) 电子设备
US20200144722A1 (en) Antenna and electronic device including dielectric overlapped with at least portion of the antenna
CN108493575B (zh) 天线组件及电子设备
US11502393B2 (en) Antenna and electronic device including the same
KR20200113696A (ko) 안테나 접속 부재를 포함하는 전자 장치
ES2949054T3 (es) Dispositivo electrónico que incluye un módulo de antena

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884780

Country of ref document: EP

Kind code of ref document: A1