WO2021088594A1 - 基于ntn的数据传输方法、装置和存储介质 - Google Patents

基于ntn的数据传输方法、装置和存储介质 Download PDF

Info

Publication number
WO2021088594A1
WO2021088594A1 PCT/CN2020/120333 CN2020120333W WO2021088594A1 WO 2021088594 A1 WO2021088594 A1 WO 2021088594A1 CN 2020120333 W CN2020120333 W CN 2020120333W WO 2021088594 A1 WO2021088594 A1 WO 2021088594A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
transmission
harq process
mode
dci
Prior art date
Application number
PCT/CN2020/120333
Other languages
English (en)
French (fr)
Inventor
陈莹
罗禾佳
乔云飞
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20884447.2A priority Critical patent/EP4044480A4/en
Publication of WO2021088594A1 publication Critical patent/WO2021088594A1/zh
Priority to US17/738,632 priority patent/US20220263606A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to communication technology, and in particular to a data transmission method, device and storage medium based on non-terrestrial networks (NTN).
  • NTN non-terrestrial networks
  • Satellite communication has the characteristics of long communication distance, large coverage area, and flexible networking. It can provide services for both fixed terminals and various mobile terminals.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • 5G technical standards to study space-earth integration communication technologies, mainly integrating existing 5G standards and satellite communication technologies, to meet full coverage on a global scale .
  • the Hybrid Automatic Repeat reQuest (HARQ) method is adopted, and the receiving end
  • the incorrectly decoded data packet will be stored in a HARQ buffer and combined with the subsequent received retransmitted data packet to obtain a data packet that is more reliable than decoding alone (a "soft combination” process). Then decode the combined data packet. If it still fails, repeat the process of "request for retransmission and then soft merge".
  • the current HARQ uses a stop-and-wait protocol to transmit data. In the stop-and-wait protocol, after the sender sends a Transport Block (TB), it stops and waits for the confirmation message from the receiver.
  • TB Transport Block
  • the receiving end will use 1-bit information to confirm the TB in the affirmative (ACK) or negative (NACK).
  • ACK affirmative
  • NACK negative
  • the sender stops and waits for confirmation, which will result in very low throughput. Therefore, when multiple parallel stop-and-wait processes are used to wait for confirmation information, the sender can use another HARQ process to continue sending data, so that the data can be continuously transmitted, and each HARQ process is at the receiving end All need to have an independent HARQ buffer in order to soft-combine the received data.
  • the embodiments of the present application provide an NTN-based data transmission method, device and storage medium, which are used to solve the problem that if the existing HARQ scheme applied in LTE or NR is directly used in the process of data transmission using NTN, it will greatly increase The communication delay and the buffer pressure on the receiving end.
  • the first aspect of the present application provides an NTN-based data transmission method, which is applied to a terminal device, and the method includes:
  • DCI Downlink control information DCI sent by a network device, where the DCI includes a first partial bit indicating a process number of a first HARQ process for data transmission, and the first HARQ process does not adopt the HARQ mode;
  • the first HARQ process of transmitting data does not use the HARQ transmission mode, and the vacant bits in the DCI can be multiplexed.
  • the network device and the terminal device perform data through the DCI Transmission.
  • This solution provides a transmission solution that does not use HARQ.
  • the DCI indicates related parameters to perform uplink or downlink transmission.
  • the sender does not need to wait for feedback from the receiver, which effectively reduces the communication delay.
  • the DCI further includes: a second partial bit indicating the process number of the first HARQ process, and/or a bit indicating the transmission mode of the first HARQ process.
  • the meaning of this solution is that when the HARQ method is not used for data transmission, there are more processes, and the process number may be larger than 16.
  • the original number of bits used to send the process number in the DCI is not enough to send the process number.
  • the process number can be sent through other bits in the DCI and the bits of the number of processes originally used for sending, and the spare bits in the DCI can also be used to send some other parameters, for example, the transmission mode can be sent. Through this scheme, the throughput and flexibility can be increased while reducing the transmission delay.
  • the method further includes:
  • Determining the transmission mode adopted by the first HARQ process includes: repeated transmission or aggregate transmission.
  • the transmission mode is repeated transmission, and the bit indicating the transmission mode of the first HARQ process is used to indicate the number of transmissions of repeated transmission.
  • the transmission mode is aggregate transmission
  • the bit indicating the transmission mode of the first HARQ process is used to indicate a transmission version of aggregate transmission.
  • the first HARQ process does not adopt the HARQ manner, in order to ensure the reliability of data transmission, it may also be implemented in a manner of repeated transmission or aggregated transmission.
  • the method further includes:
  • the fact that the first HARQ process does not adopt the HARQ mode is determined according to the agreement;
  • Radio link control RRC message sent by a network device, where the RRC carries indication information
  • the fact that the first HARQ process does not adopt the HARQ mode is determined according to the indication information, and the indication information is used to indicate that the first HARQ process does not adopt the HARQ mode or the first HARQ process adopts the HARQ mode;
  • the first HARQ process does not adopt the HARQ mode, and a request message is sent to the network device , The request message is used to indicate that the first HARQ process does not adopt the HARQ mode;
  • HARQ or not HARQ is used in the HARQ process of uplink or downlink data transmission, which can be determined by protocol agreement, network device configuration, or channel quality or service quality.
  • the length of the DCI is consistent with the length of the DCI when the first HARQ process is transmitted in the HARQ mode.
  • the length of the DCI when the HARQ process adopts the HARQ method is the same as the length of the DCI when the HARQ method is not adopted.
  • the DCI does not need to send other information except for the bit of the process number. Bits are idle.
  • the technical solution of the present application multiplexes these idle bits, and can send parameters such as process number and transmission mode, which improves the throughput of NTN-based data transmission, reduces transmission delay and increases flexibility.
  • the second aspect of the present application provides an NTN-based data transmission method, which is applied to a network device, and the method further includes:
  • the DCI includes a first part of bits indicating the process number of the first HARQ process for data transmission, and the first HARQ process does not adopt the HARQ mode;
  • the first HARQ process for transmitting data does not use the HARQ transmission mode, and the vacant bits in the DCI can be multiplexed.
  • the network device sends the DCI to the terminal device, including the first part of the bit of the process number of the first HARQ process.
  • Other bits of the DCI can be used to indicate the process number or other parameters, and then the relevant parameters are indicated by the DCI to perform uplink or downlink transmission.
  • the sender does not need to wait for feedback from the receiver, which effectively reduces the communication delay.
  • the DCI further includes: a second partial bit indicating a process number of the first HARQ process, and/or a bit indicating a transmission mode of the first HARQ process.
  • the method further includes:
  • Determining the transmission mode adopted by the first HARQ process includes: repeated transmission or aggregate transmission.
  • the transmission mode is repeated transmission, and the bit indicating the transmission mode of the first HARQ process is used to indicate the number of transmissions of repeated transmission.
  • the transmission mode is aggregate transmission
  • the bit indicating the transmission mode of the first HARQ process is used to indicate a transmission version of aggregate transmission.
  • the method further includes:
  • the fact that the first HARQ process does not adopt the HARQ mode is determined according to the agreement;
  • the first HARQ process does not adopt the HARQ mode according to at least one of channel quality, service quality QoS, network load, and previous uplink/downlink transmission conditions (including throughput rate, error frequency, etc.);
  • the method further includes:
  • the RRC carries indication information
  • the indication information is used to indicate that the first HARQ process does not adopt the HARQ mode or the first HARQ process adopts the HARQ mode.
  • the length of the DCI is consistent with the length of the DCI when the first HARQ process is transmitted in the HARQ mode.
  • the third aspect of the present application provides an NTN-based data transmission device, including:
  • a transceiver module configured to receive downlink control information DCI sent by a network device, where the DCI includes the first part of the bit indicating the process number of the first HARQ process for data transmission, and the first HARQ process does not adopt the HARQ mode;
  • the processing module is configured to perform data processing according to the DCI to obtain processed data, and output the processed data.
  • the DCI further includes: a second part of bits indicating a process number of the first HARQ process, and/or a bit indicating a transmission mode of the first HARQ process.
  • processing module is also used to:
  • Determining the transmission mode adopted by the first HARQ process includes: repeated transmission or aggregate transmission.
  • the transmission mode is repeated transmission, and the bit indicating the transmission mode of the first HARQ process is used to indicate the number of transmissions of repeated transmission.
  • the transmission mode is aggregate transmission
  • the bit indicating the transmission mode of the first HARQ process is used to indicate a transmission version of aggregate transmission.
  • the processing module determines whether the first HARQ process does not adopt the HARQ mode, it is determined by the processing module according to the agreement;
  • the transceiver module is further configured to receive a radio link control RRC message sent by a network device, where the RRC carries indication information;
  • the first HARQ process not adopting the HARQ mode is determined by the processing module according to the indication information, and the indication information is used to indicate that the first HARQ process does not adopt the HARQ mode or the first HARQ process adopts the HARQ mode ;
  • the processing module is further configured to determine that the first HARQ process does not adopt the HARQ mode according to at least one of channel quality, service quality QoS, and previous uplink/downlink transmission conditions (including throughput rate, error frequency, etc.), and pass Sending, by the transceiver module, a request message to the network device, where the request message is used to indicate that the first HARQ process does not adopt the HARQ mode;
  • the processing module is further configured to determine, according to the DCI, that the first HARQ process does not adopt the HARQ mode.
  • the length of the DCI is consistent with the length of the DCI when the first HARQ process is transmitted in the HARQ manner.
  • the fourth aspect of the present application provides an NTN-based data transmission device, including:
  • a transceiver module configured to send downlink control information DCI to a terminal device, where the DCI includes the first part of the bit indicating the process number of the first HARQ process for data transmission, and the first HARQ process does not adopt the HARQ mode;
  • the processing module is configured to perform data processing according to the DCI to obtain processed data, and output the processed data.
  • the DCI further includes: a second part of bits indicating a process number of the first HARQ process, and/or a bit indicating a transmission mode of the first HARQ process.
  • processing module is also used to:
  • Determining the transmission mode adopted by the first HARQ process includes: repeated transmission or aggregate transmission.
  • the transmission mode is repeated transmission, and the bit indicating the transmission mode of the first HARQ process is used to indicate the number of transmissions of repeated transmission.
  • the transmission mode is aggregate transmission
  • the bit indicating the transmission mode of the first HARQ process is used to indicate a transmission version of aggregate transmission.
  • the processing module determines whether the first HARQ process does not adopt the HARQ mode, it is determined by the processing module according to the agreement;
  • the transceiver module is configured to receive a request message sent by the terminal device, where the request message is used to indicate that the first HARQ process does not adopt the HARQ mode;
  • the processing module is further configured to determine that the first HARQ process does not adopt the HARQ mode according to at least one of channel quality, service quality QoS, network load, and previous uplink/downlink transmission conditions (including throughput rate, error frequency, etc.) ;
  • the processing module is further configured to determine, according to the DCI, that the first HARQ process does not adopt the HARQ mode.
  • the transceiver module is also used for:
  • the RRC carries indication information
  • the indication information is used to indicate that the first HARQ process does not adopt the HARQ mode or that the first HARQ process adopts the HARQ mode.
  • the length of the DCI is consistent with the length of the DCI when the first HARQ process is transmitted in the HARQ manner.
  • a fifth aspect of the present application provides a communication device, including a processor and a communication interface, the communication interface is used to receive data to be processed and/or output processed data, and the processor is used to perform processing on the data to be processed Perform the method as described in any one of the first aspect.
  • the communication device further includes a memory for storing program instructions, and when the program instructions are executed by the processor, the method described in any one of the first aspect is executed.
  • a sixth aspect of the present application provides a communication device, including a processor and a communication interface, the communication interface is used to receive data to be processed and/or output processed data, and the processor is used to perform processing on the data to be processed Perform any of the methods described in the second aspect.
  • the communication device further includes a memory for storing program instructions, and when the program instructions are executed by the processor, the method described in any one of the second aspect is executed.
  • a seventh aspect of the present application provides a communication device, including: a logic circuit and an input interface, wherein:
  • the input interface is used to obtain data to be processed
  • the logic circuit is used to execute the method described in any one of the first aspect on the data to be processed to obtain the processed data.
  • the communication device further includes: an output interface for outputting the processed data.
  • An eighth aspect of the present application provides a communication device, including: a logic circuit and an output interface, wherein:
  • the logic circuit is used to execute the method according to any one of the second aspect on the data to be processed to obtain the processed data; and the output interface is used to output the processed data.
  • the communication device further includes: an input interface, and the input interface is used to obtain the to-be-processed data;
  • a ninth aspect of the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a program, and the program is used to execute the method described in any one of the first aspects when the program is executed by a processor.
  • a tenth aspect of the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a program, and when the program is executed by a processor, the joint handover method described in any one of the second aspects is executed .
  • the NTN-based data transmission method, device and storage medium provided in this application.
  • the first HARQ process of transmitting data does not use the HARQ transmission mode. Some fields in the DCI no longer need to be defined, and the corresponding bits become spare bits. At this time, the spare bits in the DCI can be multiplexed, and the network device sends the DCI to the terminal device. , Contains the first part of the process ID of the first HARQ process. The other bits of the DCI can be used to indicate the process ID or other parameters.
  • the terminal device obtains the DCI
  • the network device and the terminal device perform data transmission through the DCI , This solution provides a transmission solution that does not use HARQ.
  • the DCI indicates related parameters to perform uplink or downlink transmission.
  • the sender does not need to wait for feedback from the receiver, which effectively reduces the communication delay and reduces the buffer pressure on the receiver.
  • Figure 1 is a schematic diagram of a satellite network scenario provided by this application.
  • FIG. 3 is a schematic diagram of an indication situation of a HARQ process provided by this application.
  • FIG. 4 is a schematic diagram of the allocation situation of a HARQ process provided by this application.
  • FIG. 5 is a schematic diagram of another HARQ process allocation provided by this application.
  • Embodiment 1 of an NTN-based data transmission device provided by this application.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of an NTN-based data transmission device provided by this application.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a communication device provided by this application.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of a communication device provided by this application.
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ Cyclic Redundancy Check CRC
  • ACK positive feedback
  • NACK negative feedback
  • Step1 The sender sends data to the receiver
  • Step2 The receiving end decodes the received data
  • Step3 The receiving end feeds back ACK/NACK to the sending end according to the decoding result.
  • the decoding is correct, the ACK is fed back, and when the decoding is wrong, the NACK is fed back;
  • Step4 After the sender receives the ACK/NACK, when it is NACK, the sender resends the data to the receiver, otherwise it does not send.
  • HARQ uses stop-and-wait protocol to send data. That is to say, after sending a TB, the sender stops and waits for the confirmation message. The receiving end will use 1-bit information to confirm the TB in the affirmative (ACK) or negative (NACK). However, after each transmission, the sender stops and waits for confirmation, which will result in very low throughput. Therefore, when multiple parallel stop-and-wait processes are used to wait for confirmation information, the sender can use another HARQ process to continue sending data, so that the data can be continuously transmitted.
  • Each HARQ process needs to have an independent HARQ buffer at the receiving end in order to softly combine the received data.
  • the data sent from the media access control (MAC) layer of the receiving end to the radio link control (RLC) layer may be out of order. Therefore, the RLC layer needs to reorder the received data.
  • the RLC layer In carrier aggregation, the RLC layer is uniformly responsible for data reordering. This is because the RLC layer is invisible to carrier aggregation, and each carrier unit has an independent HARQ entity, resulting in an RLC layer that needs to receive data from multiple HARQ entities , And the data received from multiple HARQ entities is likely to be out of order.
  • HARQ is divided into downlink HARQ and uplink HARQ: downlink HARQ is for DL-SCH data, and uplink HARQ is for UL-SCH data. Downlink HARQ and uplink HARQ are independent of each other, and the processing methods are different.
  • asynchronous HARQ transmission is used for both uplink and downlink, and retransmission can occur at any time, and the HARQ process can be used in any order.
  • the HARQ process corresponding to the current transmission must be specified in the DCI.
  • the 3GPP standards organization has released 5G technical standards to study world-earth integration communication technologies, mainly integrating existing 5G standards and satellite communication technologies to meet full coverage on a global scale.
  • NTN non-terrestrial networks
  • the communication throughput rate will be low.
  • the number of processes is simply increased, the data caching capability and processing capability of the UE will be too high.
  • this application provides a method suitable for NTN data transmission, and specifically provides a HARQ method adapted to NTN, which supports a dynamic HARQ mechanism.
  • Each HARQ process can independently adopt its own HARQ method.
  • HARQ enabling abbreviation: HARQe
  • HARQ disabling abbreviation: HARQd
  • the idle bits in the PDCCH can be multiplexed, which can be used to indicate the process number or other transmission parameters.
  • the technical solution provided in this application mainly involves two executive bodies, network equipment and terminal equipment, and can be applied to communication systems such as 5G, especially in the data transmission process of non-terrestrial networks.
  • the network device may provide communication coverage in a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network equipment can be a base station (Base Transceiver Station, BTS) in a satellite, a GSM system, or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved type in the LTE system
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • the base station Evolutional Node B, eNB or eNodeB
  • the network equipment can be a mobile switching center, a relay station, an access point, or a vehicle-mounted device , Wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, and network side devices in new network systems in the future.
  • the terminal equipment includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection; and/or another Data connection/network; and/or via wireless interface, such as for cellular network, wireless local area network (WLAN), digital TV network such as DVB-H network, satellite network, AM-FM broadcast transmitter; and /Or a device of another terminal device that is set to receive/send communication signals; and/or an Internet of Things (IoT) device.
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal” or a "mobile terminal".
  • Examples of the terminal equipment include, but are not limited to, satellite phones or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet /Intranet access, Web browser, memo pad, calendar, and/or PDA with Global Positioning System (GPS) receiver; and conventional laptop and/or palm-type receiver or including radio phone transceiver Other electronic devices. It can refer to an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • PCS Personal Communications System
  • It can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a wireless communication function.
  • FIG. 1 is a schematic diagram of a satellite network scenario provided by this application.
  • a ground mobile terminal accesses the network through a 5G new air interface, and the 5G base station is deployed on the satellite and connected to the ground core network through a wireless link .
  • the network equipment related to the technical solution of the present application is a 5G base station, and the terminal equipment is the terminal in the figure.
  • the network elements in Figure 1 and their interfaces are described as follows:
  • the terminal is a mobile device that supports the 5G new air interface, typically mobile devices such as mobile phones and pads. You can access the satellite network through the air interface and initiate calls, surf the Internet and other services.
  • 5G base stations mainly provide wireless access services, dispatch wireless resources to access terminals, and provide reliable wireless transmission protocols and data encryption protocols.
  • the 5G core network includes services such as user access control, mobility management, session management, user security authentication, and billing. It is composed of multiple functional units, which can be divided into functional entities of the control plane and the data plane. Access and mobility management unit (Authentication Management Function, AMF) is responsible for user access management, security authentication, and mobility management.
  • AMF Authentication Management Function
  • UPF user plane unit
  • Ground station responsible for forwarding signaling and service data between the satellite base station and the 5G core network.
  • the 5G new air interface is a wireless link between the terminal and the base station.
  • the Xn interface is an interface between a 5G base station and a base station, and is mainly used for signaling interaction such as handover.
  • the NG interface is the interface between the 5G base station and the 5G core network, which mainly interacts with the core network's NAS and other signaling, as well as user service data.
  • FIG. 2 is a flowchart of Embodiment 1 of the NTN-based data transmission method provided by this application. As shown in Figure 2, the method is applied between a terminal device and a network device.
  • the network device may be the 5G base station in Figure 1 above.
  • the terminal device may be the terminal in FIG. 1 above, and the NTN-based data transmission method specifically includes the following steps:
  • S101 Send the DCI to the terminal device, where the DCI includes the first part of the bit indicating the process number of the first HARQ process for data transmission, and the first HARQ process does not adopt the HARQ mode.
  • This application provides a HARQ mode that adapts to NTN and supports a dynamic HARQ mechanism.
  • Each HARQ process can adopt HARQ mode, namely HARQ enabling (abbreviation: HARQe), or not adopt HARQ mode, namely HARQ disabling (abbreviation: HARQd) for data transmission.
  • HARQe HARQ enabling
  • HARQd HARQ disabling
  • the network device when performing uplink data transmission or downlink data transmission, the network device needs to send control information to the terminal device, that is, to send DCI.
  • the first HARQ process in this solution does not use the HARQ mode, and the terminal device is sent
  • the DCI only needs to indicate the process number, that is, the DCI only needs to include the bit indicating the process number of the first HARQ process.
  • the DCI is received, and the process ID of the first HARQ process can be obtained through the DCI.
  • both the network device and the terminal device need to determine whether the HARQ process of the transmission adopts the HARQ mode, which can be specifically determined by at least the following methods.
  • the network device or the terminal device can determine whether to use the HARQ method during data transmission through protocol agreement, and this method is applicable to both uplink and downlink transmission.
  • the terminal device determines whether to adopt the HARQ method in the process of uplink transmission or downlink transmission according to the instruction of the network device.
  • the terminal device may receive the RRC message sent by the network device, and the RRC message carries the indication information. Then, according to the indication information, it is determined that the first HARQ process to be used for data transmission adopts the HARQ mode or does not adopt the HARQ mode. For example, the first HARQ process in this embodiment not adopts the HARQ mode is determined according to the indication information.
  • the terminal device can also determine the follow-up according to at least one of channel quality, quality of service (Quality of Service, QoS), and previous uplink/downlink transmission conditions (including throughput, frequency of errors, etc.) It is suitable to use the HARQ mode or not to use the HARQ mode in the data transmission, and then make a request to the network device and use it after confirmation.
  • the uplink transmission is taken as an example.
  • the terminal equipment is based on the downlink channel quality (the terminal equipment can determine the channel quality according to the downlink control channel and the downlink data channel), QoS, and previous uplink/downlink transmission conditions (including throughput, The frequency of error, etc.) determines that the first HARQ process does not adopt the HARQ mode, and sends a request message to the network device.
  • the request message is used to indicate that the first HARQ process does not adopt the HARQ mode, and the network
  • the device determines whether the HARQ mode can be used according to the distribution of the process, etc., and confirms to the terminal device.
  • the terminal device may also determine whether the HARQ process transmitted by the process adopts or does not adopt the HARQ mode according to the DCI.
  • an indication can be made through redundant bits in the DCI, or it can be determined according to specific information in the DCI, and similarly, the network device can also make the determination according to this method. For example, if only the process ID is indicated in the DCI, and the resources and parameters for retransmission are not indicated, the terminal device can determine that the process corresponding to the process ID does not adopt the HARQ mode.
  • HARQ method For network equipment, in addition to determining the method agreed in the protocol in the first method, it can also be determined to adopt or not to adopt the HARQ method according to the following methods.
  • the network device receives the request message sent by the terminal device.
  • the request message is used to request the HARQ mode or not to use the HARQ mode in subsequent data transmission, and the network device uses or not to use the HARQ mode in the process of determining the cell according to the request. , And need to confirm with the terminal device.
  • the request message is used to indicate that the first HARQ process does not adopt the HARQ mode, and the network device may determine that the first HARQ process does not adopt the HARQ mode according to the distribution of the process and the request message.
  • the network device can also determine whether the data transmission process adopts or does not adopt HARQ according to at least one of channel quality, QoS, previous uplink/downlink transmission conditions (including throughput rate, error frequency, etc.), and network load conditions. the way.
  • the following line transmission is taken as an example.
  • the network device determines that the first HARQ process does not use the HARQ method according to the uplink channel quality (the network device can determine the channel quality according to the uplink control channel or the uplink data channel) or the network load. .
  • the network device may indicate to the terminal device through an RRC message.
  • the terminal device as the receiving end can judge and notify according to its own situation (for example: data buffer pressure, multiple decoding situation, MCS) and channel quality (CQI) threshold
  • MCS multiple decoding situation
  • CQI channel quality threshold
  • the network equipment adopts the HARQ mode or does not adopt the HARQ mode, that is, performs or does not perform HARQd.
  • the network equipment as the receiving end integrates the current situation of each HARQ process including: the ratio of HARQd and HARQe processes, the total number of HARQ processes, and decides whether to adopt HARQ mode or not.
  • the network equipment can indicate whether each HARQ process adopts HARQd or HARQe through RRC signaling.
  • the network equipment can indicate whether to use HARQd or HARQe for each HARQ process according to the channel quality in the uplink control channel and through RRC signaling.
  • S102 Perform data processing according to DCI to obtain processed data, and output the processed data.
  • the network device and the terminal device perform uplink data transmission or downlink data transmission according to DCI.
  • the terminal device can encode, modulate, and rate the data according to the DCI to obtain processed data, and send the processed data to the network device through the communication interface, and the network device performs processing. Data analysis and other processing and output the obtained data.
  • the network device performs encoding, modulation, rate matching and other processing corresponding to the DCI to obtain the processed data, and then sends the processed data to the terminal device through the communication interface, and the terminal device performs processing according to the DCI. Data analysis and other processing, and output the processed data.
  • the first HARQ process for transmitting data does not use the HARQ transmission mode.
  • the network device sends the DCI to the terminal device, including the first part of the process number of the first HARQ process.
  • the network device and the terminal device transmit data through the DCI.
  • the sender does not need to wait for feedback from the receiver, which effectively reduces the communication delay and reduces the buffer pressure on the receiver.
  • HARQ related DCI bits Format 1-0 bits
  • HARQ process number 4 New data indicator
  • NDI Redundancy version
  • RV Redundancy version
  • DAI Downlink assignment index
  • PUCCH resource indicator PUCCH resource indicator
  • PDSCH-HARQ feedback timing indicator PDSCH-to-HARQ feedback timing indicator
  • the number of HARQ processes may exceed the current number. 16.
  • the number of HARQ processes exceeds 16
  • the process number is relatively large, the four bits in the current DCI can only indicate a maximum of 16.
  • this application also proposes a method for multiplexing free bits in DCI. Since the first HARQ process does not use HARQ for data transmission, the DCI in this solution except for those bits originally used to indicate the process number, the remaining For example, in Table 1 above, in the case of Format1-0, in addition to the process number used to indicate the HARQ process, the other 11 bits are free. Therefore, these free bits It can be multiplexed to indicate the process number of the HARQ process and/or the transmission mode of the process.
  • the DCI sent by the network device further includes: a second part of bits used to indicate the process number of the first HARQ process, that is to say, the process number of the first HARQ process is indicated by two parts of bits. That is, the aforementioned first part bits and second part bits together indicate the process ID of the first HARQ process.
  • the number of bits in the free part of the DCI can be determined according to the size of the specific process ID to indicate.
  • each HARQ process requires 6 bits to indicate a process number (also called process identifier, ID).
  • ID process number
  • 2 bits are required.
  • the remaining bits are used to extend the process number or transmission mode of other HARQd processes in addition to extending the process number indication of the current HARQ process.
  • the increase in the number of HARQ processes and the corresponding process numbers can be indicated by additional bit overhead.
  • This solution can multiplex part of the bits in the DCI corresponding to HARQd, thereby eliminating the need or using less additional signaling
  • the overhead is used to implement the expansion of the user HARQ process.
  • the DCI sent by the network device also includes bits used to indicate the transmission mode of the first HARQ process, that is to say, the vacant bits in the DCI can also be used to indicate the transmission mode. Ways include repeated transmission, or aggregate transmission.
  • the data transmission method can be changed through repetition or aggregation, for example, multiple RV versions are transmitted at a time, and multiple repeated versions are transmitted at a time.
  • some bits in the DCI corresponding to HARQd are used to indicate the data transmission mode of the current HARQ process.
  • the 1 bit indicating NDI in the original DCI can be used to indicate the specific transmission mode.
  • the transmission mode that is, the bit originally used to indicate the NDI is used to indicate the transmission mode. When it is 0, it indicates the mode of repeated transmission, and when it is 1, it indicates the mode of aggregate transmission.
  • Repetition index Repetition number 0 1 1 2 2 3 3 4
  • the transmission mode is repeated transmission
  • the bit in the DCI indicating the transmission mode of the first HARQ process can be used to indicate the number of transmissions of repeated transmission.
  • the reserved redundancy version (Redundancy version, RV) or one or more of the others can be used to instruct the user to use different RV version aggregation, as shown in Table 3, where the combination of RV can be There are many, not limited to this table. When there are more combinations, more bits are needed to indicate the data transmission mode of the HARQ process.
  • Combination index RV combination method 0 0,1 1 0,2 2 0,3 3 0,1,2 4 0,1,3 5 0,2,3 6 0,1,2,3 ... ...
  • the transmission mode is aggregate transmission
  • the bit in the DCI indicating the transmission mode of the first HARQ process can be used to indicate the transmission version of the aggregate transmission, specifically including the version number or the combination mode of the versions, and so on.
  • the NDI bit can be used to indicate the transmission mode, but also one or more of the remaining 11 bits in the original DCI can be used for the indication.
  • the number of repetitions and the transmission version in Table 3 can also be indicated based on one or more of the remaining 11 bits.
  • the main idea of this solution is to multiplex idle bits in the DCI, and it is not limited to use a specific bit to indicate a specific parameter.
  • the original NDI bits can be used to indicate other content.
  • the transmitted RV version may also have only one version, for example, only the RV0 version is transmitted.
  • the vacant part of DCI may also include the second part of the bit indicating the process number of the first HARQ process and the bit indicating the transmission mode of the first HARQ process, and the indication mode in the specific application process Similar to the above.
  • the data throughput rate can be effectively increased.
  • the transmission mode and/or indication can be realized without adding new bits. Or process number, which reduces data transmission delay while increasing flexibility.
  • the HARQ mode is not used in the HARQ process, that is, in the HARQd mode, the spare part of the DCI can indicate the process number.
  • the remaining bits can also be used to indicate the process ID of the HARQ process.
  • FIG. 3 is a kind of HARQ provided by this application.
  • the DCI in the HARQd process can also be used to indicate the process number of the neighboring HARQ process.
  • the number of HARQd and HARQe is dynamically allocated.
  • This embodiment provides a method of adopting a fixed ratio, and all HARQ processes are in accordance with the agreed ratio.
  • the number of HARQd and HARQe is allocated.
  • FIG. 4 is a schematic diagram of the allocation of HARQ processes provided by this application. As shown in Figure 4, HARQd processes are evenly distributed among all processes, and can be used to indicate the process numbers of multiple HARQe processes that are fixed nearby.
  • Figure 5 is a schematic diagram of another HARQ process allocation provided by this application. As shown in Figure 5, HARQd processes are also continuously distributed among all processes, and the DCI of each HARQd can be used to indicate the process numbers of some subsequent HARQe processes.
  • the HARQd process can also be distributed among all processes in one or more fixed manners, and the data is transmitted according to the agreed distribution mode during data transmission, or the sender allocates the HARQd and HARQe processes according to the instructions, or In a 1:1 manner, a HARQd extension indicates the process number of the HARQ process of HARQe, which is not limited in this solution.
  • the processes using HARQd and HARQe can be aggregated or repeated.
  • the remaining bits in the DCI can not only indicate the current process
  • the data transmission mode of can also be used to indicate the data transmission mode in the HARQe process.
  • the time of one HARQ process will be increased, thereby reducing the number of HARQ processes and reducing the signaling overhead for indicating the number of processes.
  • each process in this embodiment can adopt a flexible transmission mode.
  • the data transmitted in each process can be repetitively or aggregated for each transmission to improve reliability.
  • network devices with different orbital heights such as the base station in the scenario shown in Figure 2
  • Adaptive is the control channel indicating the corresponding transmission mode.
  • the RV indicates the version number of the data transmission.
  • each data transmission can be performed in accordance with the agreed number of versions, version combination, or repetition number.
  • RV0 corresponds to one piece of data
  • RV0 and RV2 correspond to two pieces of data in the same data block
  • RV0, RV1, and RV2 correspond to three pieces of data in the same data block
  • RV0, RV1, RV2, and RV3 correspond to four pieces of data in the same data block.
  • each process can transmit several pieces of data at a time in an agreed manner. Satellites with different orbital heights may adopt different agreed methods due to different round trip delay (RTD). For example, low-orbit satellites transmit 2 minutes of data at a time, medium-orbit satellites transmit 3 minutes of data at a time, and high-orbit satellites transmit 4 minutes of data at a time.
  • RTD round trip delay
  • HARQ mode that is, HARQd process
  • some HARQ-related bits can be used, or the meaning of RV parameters can be redefined to indicate the data transmission mode, as shown in Table 3.
  • RV parameters can be redefined to indicate the data transmission mode, as shown in Table 3.
  • the existing transmission mode (one data transmission at a time) can be used.
  • Each transmission can also use the HARQd transmission mode mentioned above.
  • the non-adaptive method can also be used in the adaptive method.
  • satellites with different orbital heights can have corresponding transmission methods (HARQd has only one transmission, and HARQe will have the next transmission when the receiver feedbacks NCAK, that is, each transmission can be non-adaptive) , Including the number of copies of data transmitted each time, and the RV combination method. Since there are no extra DCI bits to use, it can be indicated by the extra bits in HARQd.
  • a 2-bit RV can also represent different data transmission methods. Refer to Table 3.
  • the DCI that does not use HARQ can also indicate the transmission mode used by the HARQ process. Specifically, it can also indicate the transmission data version, version combination or number of repetitions. Wait.
  • the MCSindex that is not used in the MCS table can also be used to implicitly indicate the corresponding data transmission mode, which is not limited in this solution.
  • the technical solution of this application is not limited to a fixed number of processes.
  • Different orbit heights are different from RTDs, and the number of processes can be different, for example:
  • the ground and low orbit are 16, and the medium and high orbit are 32; for example, the ground and low orbit are 16, the middle orbit is 32, and the high orbit is 64, etc.; when the number of processes is greater than 16, the HARQe process number can be determined by the DCI bits in HARQd Extended instructions.
  • the data transmission mode, such as the combination of RV version, etc., the HARQe process ID can also be indicated by the DCI bit extension in HARQd.
  • the remaining bits in HARQd can be used for the ID extension indication of the HARQe process, or the data transmission mode.
  • the ratio of the number of HARQd and HARQe processes reference may be made to the solution in the foregoing embodiment.
  • the redundant bits in the control signaling corresponding to the process are multiplexed to indicate the process number of the HARQ process, that is, HARQe Corresponding ID, reduce overhead.
  • the ratio of HARQd and HARQe is designed to ensure that there are enough resources to indicate the HARQe ID.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of an NTN-based data transmission device provided by this application. As shown in FIG. 6, the NTN-based data transmission device 10 includes:
  • the transceiver module 11 is configured to receive a DCI sent by a network device, where the DCI includes a first part of the bit indicating the process number of the first HARQ process for data transmission, and the first HARQ process does not adopt the HARQ mode;
  • the processing module 12 is configured to perform data processing according to the DCI to obtain processed data, and output the processed data.
  • the NTN-based data transmission apparatus provided in this embodiment is used to implement the technical solutions on the terminal device side in any of the foregoing method embodiments.
  • the first HARQ process for transmitting data does not use the HARQ transmission mode, and the vacant bits in the DCI can be processed. Multiplexing, using DCI to indicate related parameters to perform uplink or downlink transmission, and the sender does not need to wait for feedback from the receiver, which effectively reduces the communication delay and reduces the buffer pressure on the receiver.
  • the DCI further includes: a second partial bit indicating the process number of the first HARQ process, and/or indicating the first HARQ process A bit of the transmission mode of the HARQ process.
  • processing module 12 is further configured to:
  • Determining the transmission mode adopted by the first HARQ process includes: repeated transmission or aggregate transmission.
  • the transmission mode is repeated transmission, and the bit indicating the transmission mode of the first HARQ process is used to indicate the number of transmissions of repeated transmission.
  • the transmission mode is aggregate transmission
  • the bit indicating the transmission mode of the first HARQ process is used to indicate a transmission version of aggregate transmission.
  • the fact that the first HARQ process does not adopt the HARQ mode is determined by the processing module 12 according to the agreement;
  • the transceiver module 11 is also configured to receive a radio link control RRC message sent by a network device, where the RRC carries indication information;
  • the first HARQ process does not adopt the HARQ mode is determined by the processing module 12 according to the indication information, and the indication information is used to indicate that the first HARQ process does not adopt the HARQ mode or the first HARQ process adopts HARQ the way;
  • the processing module 12 is further configured to determine that the first HARQ process does not adopt the HARQ mode according to at least one of channel quality, service quality QoS, and previous uplink/downlink transmission conditions (including throughput, error frequency, etc.), and Sending a request message to the network device through the transceiver module 11, where the request message is used to indicate that the first HARQ process does not adopt the HARQ mode;
  • the processing module 12 is further configured to determine, according to the DCI, that the first HARQ process does not adopt the HARQ mode.
  • the length of the DCI is consistent with the length of the DCI when the first HARQ process is transmitted in the HARQ manner.
  • the NTN-based data transmission apparatus provided in this embodiment is used to implement the technical solution on the terminal device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of an NTN-based data transmission device provided by this application. As shown in FIG. 7, the NTN-based data transmission device 20 includes:
  • the transceiver module 21 is configured to send DCI to a terminal device, where the DCI includes a first partial bit indicating the process number of the first HARQ process for data transmission, and the first HARQ process does not adopt the HARQ mode;
  • the processing module 22 is configured to perform data processing according to the DCI to obtain processed data, and output the processed data.
  • the NTN-based data transmission device provided in this embodiment is used to implement the technical solution on the network device side in any of the foregoing method embodiments.
  • the first HARQ process for transmitting data does not use the HARQ transmission mode, and the vacant bits in the DCI can be processed Multiplexing, using DCI to indicate related parameters to perform uplink or downlink transmission, and the sender does not need to wait for feedback from the receiver, which effectively reduces the communication delay and reduces the buffer pressure on the receiver.
  • the DCI further includes: a second partial bit indicating the process number of the first HARQ process, and/or a bit indicating the transmission mode of the first HARQ process.
  • processing module 22 is further configured to:
  • Determining the transmission mode adopted by the first HARQ process includes: repeated transmission or aggregate transmission.
  • the transmission mode is repeated transmission, and the bit indicating the transmission mode of the first HARQ process is used to indicate the number of transmissions of repeated transmission.
  • the transmission mode is aggregate transmission
  • the bit indicating the transmission mode of the first HARQ process is used to indicate a transmission version of aggregate transmission.
  • the fact that the first HARQ process does not adopt the HARQ mode is determined by the processing module 22 according to the agreement;
  • the transceiver module 21 is configured to receive a request message sent by the terminal device, where the request message is used to indicate that the first HARQ process does not adopt the HARQ mode;
  • the processing module 22 is further configured to determine that the first HARQ process does not adopt the HARQ mode according to at least one of channel quality, QoS, network load, and previous uplink/downlink transmission conditions (including throughput rate, error frequency, etc.);
  • the processing module 22 is further configured to determine, according to the DCI, that the first HARQ process does not adopt the HARQ mode.
  • the transceiver module 21 is also used to:
  • the RRC carries indication information
  • the indication information is used to indicate that the first HARQ process does not adopt the HARQ mode or that the first HARQ process adopts the HARQ mode.
  • the length of the DCI is consistent with the length of the DCI when the first HARQ process is transmitted in the HARQ manner.
  • the NTN-based data transmission device provided in this embodiment is used to implement the technical solution on the network device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a communication device provided by this application.
  • the communication device 100 includes a processor 101 and a communication interface 102.
  • the communication interface 102 is used to receive data to be processed and/ Or output the processed data, and the processor 101 is used for the technical solution on the terminal device side in any of the foregoing embodiments for the to-be-processed data.
  • the communication device 100 further includes a memory 103 for storing program instructions.
  • the program instructions are executed by the processor, the technical solution on the terminal device side in any of the foregoing embodiments is carried out.
  • the data to be processed by the communication interface 102 includes the data carried by DCI, the data in the RRC message sent by the network device, and the data for downlink transmission by the network device, etc., output processing
  • the latter data includes data such as a request message sent to the network device, data for uplink transmission to the network device, and feedback information.
  • the communication device 100 may be a terminal device, a chip, an integrated circuit, etc., which is not limited in this solution.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of the communication device provided by this application.
  • the communication device 200 includes a processor 201 and a communication interface 202.
  • the communication interface 202 is used to receive data to be processed and/ Or output processed data
  • the processor 201 is configured to execute the technical solution on the network device side in any of the foregoing embodiments on the to-be-processed data.
  • the communication device 200 further includes a memory 203 for storing program instructions, and when the program instructions are executed by the processor, the technical solution on the network device side in any of the foregoing embodiments is executed.
  • the data to be processed received by the communication interface 202 includes request messages sent by the terminal device, uplink data sent by the terminal device, and feedback information sent by the terminal device.
  • the output processed data includes the data carried by the DCI, the data in the sent RRC message and the data for downlink transmission, and the confirmation message sent to the terminal device.
  • the communication device 200 may be a network device, a chip, an integrated circuit, etc., which is not limited in this solution.
  • the memory and the processor are directly or indirectly electrically connected to achieve data transmission or interaction, that is, the memory and the processor can be connected through an interface or can be integrated together.
  • these elements may be electrically connected to each other through one or more communication buses or signal lines, for example, they may be connected through a bus.
  • the memory stores computer execution instructions for implementing the data access control method, including at least one software function module that can be stored in the memory in the form of software or firmware.
  • the processor executes various software programs and modules by running the software programs and modules stored in the memory. Functional application and data processing.
  • the memory can be, but is not limited to, Random Access Memory (RAM), Read Only Memory (ROM), Programmable Read-Only Memory (PROM) ), Erasable Programmable Read-Only Memory (EPROM), Electrical Erasable Programmable Read-Only Memory (EEPROM), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • the memory is used to store the program, and the processor executes the program after receiving the execution instruction.
  • the software programs and modules in the aforementioned memory may also include an operating system, which may include various software components and/or drivers for managing system tasks (such as memory management, storage device control, power management, etc.), and may Communicate with various hardware or software components to provide an operating environment for other software components.
  • the processor can be an integrated circuit chip with signal processing capabilities.
  • the foregoing processor may be a general-purpose processor, including a central processing unit (Central Processing Unit, abbreviated as: CPU), a network processor (Network Processor, abbreviated as: NP), and so on.
  • CPU Central Processing Unit
  • NP Network Processor
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • this application also provides a communication device, including: a logic circuit and an input interface, wherein: the input interface is used to obtain the data to be processed; the logic circuit is used to perform the aforementioned method implementation on the data to be processed In the example, the technical solution on the terminal device side obtains the processed data.
  • the communication device may further include: an output interface for outputting processed data.
  • the data to be processed obtained by the input interface includes the data carried by DCI, the data in the RRC message sent by the network device and the data transmitted by the network device for downlink transmission, etc., and the data output by the output interface
  • the processed data includes data such as a request message sent to the network device, data for uplink transmission to the network device, and feedback information.
  • the present application also provides a communication device, including: a logic circuit and an output interface, wherein: the logic circuit is used to execute the technical solution on the network device side in the foregoing method embodiment for the data to be processed to obtain the processed data; and, The output interface is used to output processed data.
  • the communication device further includes: an input interface, and the input interface is used to obtain the data to be processed.
  • the data to be processed obtained by the input interface includes the request message sent by the terminal device, the uplink data sent by the terminal device, and the feedback information sent by the terminal device.
  • the processed data output by the output interface includes the data carried by the DCI, the data in the sent RRC message and the data for downlink transmission, and the confirmation message sent to the terminal device.
  • the aforementioned communication device may be implemented as a chip.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium is used to store a program, and the program is used to execute the technical solution on the terminal device side in the foregoing embodiment when the program is executed by the processor.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium is used to store a program, and the program is used to execute the technical solution on the network device side in the foregoing embodiment when the program is executed by the processor.
  • the program product includes a computer program stored in a readable storage medium. At least one processor of the network device can read the computer program from the readable storage medium, and at least one processor executes the computer program.
  • the computer program enables the network device to implement the technical solution in any of the foregoing method embodiments.
  • the present application also provides a program product.
  • the program product includes a computer program.
  • the computer program is stored in a readable storage medium.
  • At least one processor of the terminal can read the computer program from the readable storage medium, and at least one processor executes the computer program.
  • the computer program enables the terminal device to implement the technical solution in any of the foregoing method embodiments.

Abstract

本申请提供一种基于NTN的数据传输方法、装置和存储介质。该方法中,传输数据的第一HARQ进程不采用HARQ传输方式,可将DCI中空余的比特进行复用,网络设备向终端设备发送DCI,包含了第一HARQ进程的进程号的第一部分比特,DCI的其他部分比特可以用来指示进程号或者其他的参数,在终端设备获取到DCI之后,网络设备和终端设备通过该DCI进行数据的处理并输出处理后的数据,也就是进行数据传输,本方案提供一种不采用HARQ方式的传输方案,通过DCI指示相关参数则进行上行或者下行传输,发送端不需要等待接收端的反馈,有效减小通信时延,减轻接收端缓存压力。

Description

基于NTN的数据传输方法、装置和存储介质
本申请要求于2019年11月08日提交中国专利局、申请号为201911088858.7、申请名称为“基于NTN的数据传输方法、装置和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种基于非地面网络(non-terrestrial networks,NTN)的数据传输方法、装置和存储介质。
背景技术
随着信息技术发展,对通信的高效、机动、多样性等提出更迫切的要求,目前,在一些重要领域,如空间通信、航空通信、军事通信等,卫星发挥着无可替代的作用。卫星通信具备通信距离远、覆盖面积大、组网灵活等特点,其既可为固定终端,也可为各种移动终端提供服务。第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准组织已经发布了5G技术标准,研究天地融合通信技术,主要是融合现有的5G标准和卫星通信技术,满足在全球范围内的全覆盖。
目前,在长期演进(Long Term Evolution,LTE)和新无线(New Radio,NR)系统中,为了提高数据传输可靠性,采用混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的方式,接收端对于译码错误的数据包会保存在一个HARQ buffer中,并与后续接收到的重传数据包进行合并,从而得到一个比单独解码更可靠的数据包(“软合并”的过程)。然后对合并后的数据包进行解码,如果还是失败,则重复“请求重传,再进行软合并”的过程。目前的HARQ使用停等协议(stop-and-wait protocol)来传输数据。在停等协议中,发送端发送一个传输块(Transport Block,TB)后,就停下来等待接收端反馈的确认信息。接收端会使用1比特的信息对该TB进行肯定(ACK)或者否定(NACK)的确认。但是每次传输后发送端就停下来等待确认,会导致吞吐量很低。因此使用多个并行的停等进程(stop-and-wait process)在等待确认信息时,发送端可以使用另一个HARQ process来继续发送数据,从而使得数据可以连续传输,每个HARQ process在接收端都需要有独立的HARQ buffer以便对接收到的数据进行软合并。
在目前NTN研究中没有提出明确的HARQ方案,若直接沿用已有的应用于LTE或者NR中的HARQ方案,会大大增加通信的延迟,以及接收端缓存的压力。
发明内容
本申请实施例提供一种基于NTN的数据传输方法、装置和存储介质,用于解决在使用NTN进行数据传输过程中,若直接沿用已有的应用于LTE或者NR中的HARQ方案,会大大增加通信的延迟,以及接收端缓存的压力的问题。
本申请第一方面提供一种基于NTN的数据传输方法,应用于终端设备,所述方法包括:
接收网络设备发送的下行控制信息DCI,所述DCI包括指示进行数据传输的第一HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
本方案提供的数据传输方法,传输数据的第一HARQ进程不采用HARQ传输方式,可将DCI中空余的比特进行复用,在终端设备获取到DCI之后,网络设备和终端设备通过该DCI进行数据传输,本方案提供一种不采用HARQ方式的传输方案,通过DCI指示相关参数则进行上行或者下行传输,发送端不需要等待接收端的反馈,有效减小通信时延。
在上述方案的一种具体实施方式中,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
本方案的含义是,在不采用HARQ方式进行数据传输时,进程比较多,进程号可能比16更大,原来DCI中用来发送的进程数的比特不足以发送该进程号,这种情况下可通过DCI中其他的比特和原来用来发送的进程数的比特一起发送进程号,并且还可以应用DCI中空余的比特进行一些其他的参数发送,例如,可以发送传输方式。通过该方案,在降低传输时延的同时还可以提高吞吐量,增加灵活性。
在上述方案的基础上,所述方法还包括:
确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
可选的,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
可选的,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
在上述几种实现方式中,第一HARQ进程不采用HARQ方式的同时,为了保证数据传输的可靠性,还可以通过重复传输或者聚合传输的方式来实现。
在上述任一种实现方式的基础上,所述方法还包括:
所述第一HARQ进程不采用HARQ方式是根据协议约定确定;
或者,
接收网络设备发送的无线链路控制RRC消息,所述RRC携带指示信息;
所述第一HARQ进程不采用HARQ方式是根据所述指示信息确定的,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式;
或者,
根据信道质量、服务质量QoS以及之前的上/下行传输情况(包括吞吐率、出错的频率等)中的至少一个确定所述第一HARQ进程不采用HARQ方式,并向所述网络设备发送请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
或者,
根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
本方案中,对于终端设备来说,确定在进行上行或者下行数据传输的HARQ进程中采用HARQ或者不采用HARQ,可以通过协议约定,网络设备配置,或者信道质量或服务质量来确定。
在上述任一实施方式的基础上,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
该方案中,HARQ进程采用HARQ方式时的DCI的长度与不采用HARQ方式时的DCI的长度一致,在不采用HARQ方式时DCI中除了发送进程号的比特,不需要发送其他信息,则其他的比特是空闲的,本申请的技术方案将这些空闲的比特进行复用,可以发送进程号以及传输方式等参数,提高基于NTN的数据传输的吞吐量,降低传输时延且增加灵活性。
本申请第二方面提供一种基于NTN的数据传输方法,应用于网络设备,所述方法还包括:
向终端设备发送DCI,所述DCI包括指示进行数据传输的第一HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
本方案中,传输数据的第一HARQ进程不采用HARQ传输方式,可将DCI中空余的比特进行复用,网络设备向终端设备发送DCI,包含了第一HARQ进程的进程号的第一部分比特,DCI的其他部分比特可以用来指示进程号或者其他的参数,后续通过DCI指示相关参数则进行上行或者下行传输,发送端不需要等待接收端的反馈,有效减小通信时延。
在一种具体实施方式中,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
在一种具体实施方式中,所述方法还包括:
确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
可选的,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
可选的,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
在另一种具体实施方式中,所述方法还包括:
所述第一HARQ进程不采用HARQ方式是根据协议约定确定;
或者,
接收所述终端设备发送的请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
所述第一HARQ进程不采用HARQ方式是根据所述请求消息确定的;
或者,
根据信道质量、服务质量QoS、网络负载以及之前的上/下行传输情况(包括吞吐率、出错的频率等)中的至少一个确定所述第一HARQ进程不采用HARQ方式;
或者,
根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
在又一种具体实施方式中,所述方法还包括:
向所述终端设备发送无线链路控制RRC消息,所述RRC携带指示信息,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式。
在上述任一方案的基础上,在该具体实施方式中,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
本申请第三方面提供一种基于NTN的数据传输装置,包括:
收发模块,用于接收网络设备发送的下行控制信息DCI,所述DCI包括指示进行数据传输的第一HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
处理模块,用于根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
可选的,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
可选的,所述处理模块还用于:
确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
可选的,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
可选的,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
可选的,
所述第一HARQ进程不采用HARQ方式是所述处理模块根据协议约定确定;
或者,
所述收发模块还用于接收网络设备发送的无线链路控制RRC消息,所述RRC携带指示信息;
所述第一HARQ进程不采用HARQ方式是所述处理模块根据所述指示信息确定的,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式;
或者,
所述处理模块还用于根据信道质量、服务质量QoS以及之前的上/下行传输情况(包括吞吐率、出错的频率等)中的至少一个确定所述第一HARQ进程不采用HARQ方式,并通过所述收发模块向所述网络设备发送请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
或者,
所述处理模块还用于根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
可选的,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
本申请第四方面提供一种基于NTN的数据传输装置,包括:
收发模块,用于向终端设备发送下行控制信息DCI,所述DCI包括指示进行数据传输的第一HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
处理模块,用于根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
可选的,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
可选的,所述处理模块还用于:
确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
可选的,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
可选的,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
可选的,
所述第一HARQ进程不采用HARQ方式是所述处理模块根据协议约定确定;
或者,
所述收发模块用于接收所述终端设备发送的请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
所述第一HARQ进程不采用HARQ方式是所述处理模块根据所述请求消息确定的;
或者,
所述处理模块还用于根据信道质量、服务质量QoS、网络负载以及之前的上/下行传输情况(包括吞吐率、出错的频率等)中的至少一个确定所述第一HARQ进程不采用HARQ方式;
或者,
所述处理模块还用于根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
可选的,所述收发模块还用于:
向所述终端设备发送无线链路控制RRC消息,所述RRC携带指示信息,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式。
可选的,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
本申请第五方面提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收待处理的数据和/或输出处理后的数据,所述处理器用于对所述待处理的数据执行如第一方面任一项所述的方法。
可选的,所述通信装置还包括存储器,用于存储程序指令,所述程序指令由所述处理器执行时,使得第一方面任一项所述的方法被执行。
本申请第六方面提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收待处理的数据和/或输出处理后的数据,所述处理器用于对所述待处理的数据执行第二方面任一项所述的方法。
可选的,所述通信装置还包括存储器,用于存储程序指令,所述程序指令由所述处理器执行时,使得第二方面任一项所述的方法被执行。
本申请第七方面提供一种通信装置,包括:逻辑电路和输入接口,其中:
所述输入接口用于获取待处理的数据;
所述逻辑电路用于对待处理的数据执行如第一方面任一项所述的方法,得到处理后的数据。
可选的,该通信装置还包括:输出接口,该输出接口用于输出所述处理后的数据。
本申请第八方面提供一种通信装置,包括:逻辑电路和输出接口,其中:
所述逻辑电路用于对待处理的数据执行如第二方面任一项所述的方法,得到处理后的数据;以及,所述输出接口用于输出处理后的数据。
可选的,该通信装置还包括:输入接口,输入接口用于获取所述待处理的数据;
本申请第九方面提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序,所述程序在被处理器执行时用于执行第一方面任一项所述的方法。
本申请第十方面提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序,所述程序在被处理器执行时用于执行第二方面任一项所述的联合切换方法。
本申请提供的基于NTN的数据传输方法、装置和存储介质。传输数据的第一HARQ进程不采用HARQ传输方式,DCI中部分域不再需要定义,对应的比特成为空余的比特,此时可将DCI中空余的比特进行复用,网络设备向终端设备发送DCI,包含了第一HARQ进程的进程号的第一部分比特,DCI的其他部分比特可以用来指示进程号或者其他的参数,在终端设备获取到DCI之后,网络设备和终端设备通过该DCI进行数据传输,本方案提供一种不采用HARQ方式的传输方案,通过DCI指示相关参数则进行上行或者下行传输,发送端不需要等待接收端的反馈,有效减小通信时延,减轻接收端缓存压力。
附图说明
图1为本申请提供的一种卫星网络的场景示意图;
图2为本申请提供的基于NTN的数据传输方法实施例一的流程图;
图3为本申请提供的一种HARQ进程的指示情况示意图;
图4为本申请提供的一种HARQ进程的分配情况示意图;
图5为本申请提供的又一种HARQ进程的分配情况示意图;
图6为本申请提供的基于NTN的数据传输装置实施例一的结构示意图;
图7为本申请提供的基于NTN的数据传输装置实施例二的结构示意图;
图8为本申请提供的通信装置实施例一的结构示意图;
图9为本申请提供的通信装置实施例二的结构示意图。
具体实施方式
在在长期演进(Long Term Evolution,LTE)和新无线(New Radio,NR)系统中,为了提高数据传输可靠性,采用混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)方式进行数据传输,HARQ是通过循环冗余校验(Cyclic Redundancy Check,CRC)来判断接收到的数据包是否出错,并且校验CRC是在软合并之后进行的。如果CRC校验成功,则接收端会发送肯定的反馈(Acknowledge,ACK);如果CRC校验失败,则接收端会发送否定的反馈(NACK)。具体包括包括以下几个步骤:
Step1:发送端发送数据到接收端;
Step2:接收端对接收数据进行译码处理;
Step3:接收端根据译码结果反馈ACK/NACK给发送端,当译码正确时,反馈ACK,当译码错误时,反馈NACK;
Step4:发送端接收到ACK/NACK后,当为NACK时,发送端重发数据给接收端,否则不发。
HARQ使用stop-and-wait protocol(停等协议)来发送数据。也就是说发送端发送一个TB后,就停下来等待确认信息。接收端会使用1比特的信息对该TB进行肯定(ACK)或者否定(NACK)的确认。但是每次传输后发送端就停下来等待确认,会导致吞吐量很低。因此使用多个并行的stop-and-wait process在等待确认信息时,发送端可以使用另一个HARQ process来继续发送数据,从而使得数据可以连续传输。
每个HARQ process在接收端都需要有独立的HARQ buffer以便对接收到的数据进行软合并。在使用多个并行的stop-and-wait process时,可能导致接收端的媒体介入控制(Media Access Control,MAC)层送往无线链路控制(Radio Link Control,RLC)层的数据是乱序的,因此,RLC层需要对接收到的数据进行重排序。在载波聚合中,RLC层统一需要负责数据的重排序,这是因为RLC层对载波聚合不可见,而每个载波单元有独立的HARQ实体,导致一个RLC层需要从多个HARQ实体中接收数据,而接收自多个HARQ实体的数据很可能是乱序的。
当发送端收到一个确认信息(ACK/NACK)后,需要知道该确认信息对应的HARQ进程(process),这是通过确认信息与传输的数据之间固定的timing关系来确定的。(这对上下行都适用)对于HARQ,只有在对应同一传输块(Transport Block,TB),也即同一HARQ process的基础上讨论“初传”、“重传”才有意义。HARQ有下行HARQ和上行HARQ之分:下行HARQ针对DL-SCH数据,上行HARQ针对UL-SCH数据。下行HARQ和上行HARQ是相 互独立的,处理的方式也不相同。
在NR网络中,上下行都采用异步HARQ传输,重传可以发生在任意时刻,能以任意顺序使用HARQ process,DCI中要明确当前传输所对应的HARQ process。
目前,3GPP标准组织已经发布了5G技术标准,研究天地融合通信技术,主要是融合现有的5G标准和卫星通信技术,满足在全球范围内的全覆盖。然而,目前的非地面网络(non-terrestrial networks,NTN)标准中,没有提出明确的HARQ方案。
若沿前述已有的应用于LTE或者NR中的HARQ方案,所有HARQ进程延用现有的HARQ技术,即译码不成功发送NACK,等待接收下一份数据用户软合并,直到译码成功,会大大增加通信的延迟,以及接收端的缓存的压力。
如果在NTN的数据传输过程中,对HARQ进程的个数若仍然为8次或者16次,则会导致通信吞吐率偏低。为了解决上述问题,如果只是增加简单的增加进程个数,会对UE端的数据缓存能力和处理能力的要求过高。
针对上述存在的这些问题,本申请提供一种适用于NTN数据传输方式,具体的提供了一种适应NTN的HARQ方式,支持动态的HARQ机制,每个HARQ进程可以独立的采用各自的HARQ方式,例如:采用HARQ方式,也就是HARQ enabling(简称:HARQe),或者不采用HARQ方式,也就是HARQ disabling(简称:HARQd)进行数据传输,在对采用HARQ方式和不采用HARQ方式的具体实现中可以综合考虑到NTN系统中的吞吐、延迟、可靠度等问题。
具体的,本申请的总体思路是在HARQ进程不采用HARQ方式时,可以将PDCCH中空闲的比特进行复用,可以用来指示进程号或者其他的传输参数。
本申请提供的技术方案主要涉及网络设备和终端设备两个执行主体,可应用于5G等通信系统,特别是应用在非地面网络的数据传输过程中。
该网络设备可以是在特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备可以是卫星、GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备、以及未来新的网络系统的网络侧设备等。
该终端设备包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。该终端设备的示例包括但不限于卫星电话或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。可以指接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、 终端、无线通信设备、用户代理或用户装置。还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的UE或者未来演进的终端等。
下面提供一种本方案的具体应用场景,该数据的传输方法可应用在卫星通信范畴。3GPP各成员融合卫星通信和5G技术,提出下图典型的网络应用架构。图1为本申请提供的一种卫星网络的场景示意图,如图1所示,地面移动终端通过5G新空口接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。该场景中,涉及到本申请技术方案的网络设备为5G基站,终端设备则为图中的终端。图1中的各个网元以及他们的接口说明如下:
终端为支持5G新空口的移动设备,典型的比如手机,pad等移动设备。可以通过空口接入卫星网络并发起呼叫,上网等业务。
5G基站主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。
5G核心网包括用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(Authentication Management Function,AMF),负责用户接入管理,安全认证,还有移动性管理。用户面单元(UPF)负责管理用户面数据的传输,流量统计,安全窃听等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口为终端和基站之间的无线链路。
Xn接口为5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口为5G基站和5G核心网之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。
基于上述任一种应用场景,下面通过具体的实施方式对本方案提供的基于NTN的数据传输方法进行详细说明。
图2为本申请提供的基于NTN的数据传输方法实施例一的流程图,如图2所示,该方法应用在终端设备以及网络设备之间,该网络设备可以是上述图1中的5G基站,终端设备可以是上述图1中的终端,该基于NTN的数据传输方法具体包括以下步骤:
S101:向终端设备发送DCI,DCI包括指示进行数据传输的第一HARQ进程的进程号的第一部分比特,第一HARQ进程不采用HARQ方式。
本申请提供了一种适应NTN的HARQ方式,支持动态的HARQ机制,每个HARQ进程可以采用HARQ方式,也就是HARQ enabling(简称:HARQe),或者不采用HARQ方式,也就是HARQ disabling(简称:HARQd)进行数据传输,在该方案中,应理解,当数据的传输采用HARQe,也就是在HARQ进程中采用HARQ方式进行数据传输时,对于接收端来说,依然需要对每个进程传输的数据进行反馈。然而,在数据的传输采用HARQd,也就是在HARQ进程中不采用HARQ方式进行数据传输时,则接收端不需要对每个进程传输的数据进行反馈。
在本步骤中,在进行上行数据传输或者下行数据传输时,网络设备需要向终端设备发送控制信息,也就是发送DCI,本方案中的第一HARQ进程不采用HARQ方式,则向终端设备发送的DCI中只需要指示进程号即可,即在该DCI中只需要包括指示第一HARQ进程的进程号的比特。
对于接收端的终端设备来说,则接收该DCI,通过该DCI可以获取到第一HARQ进程的进程号。
在该方案的具体实现中,在上行传输或者下行传输中,网络设备和终端设备均需要确定传输的HARQ进程是否采用HARQ方式,具体的至少可以通过以下几种方式进行确定。
第一种方式,网络设备或者终端设备均可以通过协议约定确定在进行数据传输时是否采用HARQ方式,该方式在上行或者下行传输中均适用。
第二种方式,终端设备根据网络设备的指示,确定在上行传输或者下行传输的进程中是否采用HARQ方式。
在该方式的一种具体实现中,终端设备可以接收网络设备发送的RRC消息,所述RRC携带指示信息。然后根据该指示信息确定要进行数据传输的第一HARQ进程采用HARQ方式或者不采用HARQ方式,例如:本实施例中的第一HARQ进程不采用HARQ方式就是根据该指示信息确定的。
第三种方式,对于终端设备来说,还可以根据信道质量、服务质量(Quality of Service,QoS)以及之前的上/下行传输情况(包括吞吐率、出错的频率等)中的至少一个确定后续的数据传输中适合采用HARQ方式或者不采用HARQ方式,然后向网络设备进行请求,确定后使用。具体实现中,以上行传输为例,终端设备根据下行的信道质量(终端设备可根据下行控制信道以及下行数据信道的情况确定信道质量)、QoS以及之前的上/下行传输情况(包括吞吐率、出错的频率等)中的至少一个确定所述第一HARQ进程不采用HARQ方式,并向所述网络设备发送请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式,网络设备根据进程的分布情况等确定是否能够使用不采用HARQ方式,并向终端设备进行确认。
第四种实现方式,终端设备还可以根据DCI确定进程传输的HARQ进程采用或者不采用HARQ方式。具体实现中,可以通过DCI中多余的比特进行指示,也可以根据DCI中具体的信息进行确定,同样的,网络设备也可以根据该方式进行确定。例如,DCI中只指示了进程号,没有指示重传的资源和参数等,则终端设备可确定该进程号对应的进程的不采用HARQ方式。
对于网络设备来说,除了根据第一种方式中的协议约定的方式确定,还可以根据以下几种方式确定采用或者不采用HARQ方式。
第五种方式,网络设备接收终端设备发送的请求消息,请求消息用来请求在后续的数据传输中采用HARQ方式或者不采用HARQ方式,网络设备根据该请求小区确定进程中采用或者不采用HARQ方式,并需要向终端设备进行确认。例如在该方案中,请求消息用于指示所述第一HARQ进程不采用HARQ方式,网络设备可根据进程的分布情况以及该请求消息确定第一HARQ进程不采用HARQ方式。
第六种方式,网络设备也可以根据信道质量、QoS、之前的上/下行传输情况(包括吞吐率、出错的频率等)以及网络负载情况中的至少一个确定数据传输的进程采用或者不采用HARQ方式。在具体应用中,以下行传输为例,网络设备根据上行的信道质量(网络设备可以根据上行控制信道或者上行数据信道的情况确定该信道质量)或者网络负载确定该第一HARQ进程不采用HARQ方式。
在上述任一种实现方式中,网络设备确定了第一HARQ进程采用或者不采用HARQ方式之后,可以通过RRC消息指示给终端设备。
举例来说,在下行传输过程中,对于每一个HARQ进程,作为接收端的终端设备可根据 自身情况(例如:数据缓存压力,多次译码情况,MCS)以及信道质量(CQI)阈值判断并通知网络设备采用HARQ方式或者不采用HARQ方式,即执行或者不执行HARQd。
作为接收端的网络设备综合当前每个HARQ进程的情况包括:HARQd和HARQe进程的比例,HARQ进程的总个数,决定采用HARQ方式或者不采用HARQ方式。网络设备可可以通过RRC信令,指示每个HARQ进程采用HARQd还是HARQe。
在上行传输中,网络设备可以根据上行控制信道当中的信道质量并通过RRC信令,指示每个HARQ进程采用HARQd还是HARQe。
S102:根据DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
在本步骤中,网络设备以及该终端设备根据DCI进行上行数据传输或者下行数据传输。具体的,在上行数据传输过程中,终端设备可根据该DCI对数据进行编码、调制、速率匹配等处理得到处理后的数据,并通过通信接口将处理后的数据发送给网络设备,网络设备进行数据的解析等处理并输出得到的数据。在下行数据传输过程中,网络设备进行与该DCI相对应的编码、调制、速率匹配等处理得到处理后的数据,再通过通信接口将处理后的数据发送给终端设备,终端设备根据该DCI进行数据的解析等处理,并输出处理后的数据。
本方案中,传输数据的第一HARQ进程不采用HARQ传输方式,网络设备向终端设备发送DCI,包含了第一HARQ进程的进程号的第一部分比特,网络设备和终端设备通过该DCI进行数据传输,提供一种不采用HARQ方式的传输方案,通过DCI指示相关参数则进行上行或者下行传输,发送端不需要等待接收端的反馈,有效减小通信时延,减轻接收端缓存压力。
在该方案的一种具体实现中,在目前的传输标准中,采用HARQ方式传输时,DCI中还需要携带一些重传指示,重传资源等信息,具体的,例如在现有的标准中规定了一些DCI的具体的比特的解释,例如,[5,TS 38.212]以及[5,TS 38.213]中,对DCI的比特携带的信息进行了规定,具体如下表1:
表1
HARQ相关的DCI比特 格式1-0(bits)
HARQ进程号(HARQ process number) 4
新数据指示(New data indicator,NDI) 1
冗余版本(Redundancy version,RV) 2
下行分配参数(Downlink assignment index,DAI) 2
PUCCH资源指示(PUCCH resource indicator) 3
PDSCH-HARQ反馈定时指示(PDSCH-to-HARQ feedback timing indicator) 3
基于上述表1可知,在格式1-0(Format1-0)的情况下,DCI中采用4个比特进行HARQ进程的进程号指示,其他的11个比特用来指示重传的资源和参数等。
在NTN系统中进行数据传输,由于终端设备和网络设备之间的距离较远,为了能提高通信的吞吐量,则需要使用更多的进程进行数据传输,即HARQ进程的数量可能会超过目前的16。在HARQ进程的数量超过16时,在进程号比较大时候,则目前的DCI中的四个比特最大只能指示到16,对于更大的进程号则没法进行指示,此时需要对指示进程号的比特进行增加,已实现进程号的指示。
基于此,本申请还提出一种对于DCI中空闲比特的复用的方式,由于第一HARQ进程不采用HARQ方式进行数据传输,则该方案中DCI除了原来用于指示进程号的那些比特,剩余的比特则是空闲的,以上表1为例,在Format1-0的情况下,除了用于指示HARQ进程的进 程号之外,其他的11个比特则是空余的状态,因此,这些空余的比特可以进行复用,用来指示HARQ进程的进程号和/或进程的传输方式等。
在上述实施例的基础上,网络设备发送的DCI还包括:用于指示第一HARQ进程的进程号的第二部分比特,也就是说第一HARQ进程的进程号通过两部分比特进行指示,也就是前述的第一部分比特和第二部分比特一起指示第一HARQ进程的进程号,在具体的实现中,可根据具体的进程号的大小确定采用DCI空闲部分的几个比特来指示。例如:
以最大HARQ进程数是64为例,每个HARQ进程需要6比特指示进程号(也称为进程标识,ID)。除了表1中HARQ process number的4bit外,需要2个比特,可以使用DAI的2bit作为进程号的最高两位或者最低两位,即:ID=DAI(2比特)以及HARQ process number(4比特)组成,或者,ID=HARQ process number(4比特)DAI(2比特)。
本方案中,剩余比特(例如Format1-0有11个额外的比特)除了扩展当前HARQ进程的进程号的指示,还用于扩展指示其余HARQd的进程号或者传输方式等。需要说明的是,HARQ进程数量的增加以及对应的进程号可以通过额外的比特开销来指示,本方案可通过复用HARQd对应的DCI中的部分比特,从而不需要或者用较少的额外信令开销来实现用户HARQ进程的扩展。
例如,在上述任一实现方式的基础上,网络设备发送的DCI还包括用于指示第一HARQ进程的传输方式的比特,也就是说DCI中空余的比特还可以用来指示传输方式,该传输方式包括重复传输,或者聚合传输。
为了提高HARQd的可靠度,可以改变数据的传输方式通过重复或者聚合的方式,例如一次传多个RV版本,一次传多份重复版本等方式。本实施例利用HARQd所对应的DCI中的部分比特用于指示当前HARQ进程的数据传输方式。
例如,可以用原DCI中的指示NDI的1比特,用来指示具体的传输方式,举例来说,比特NDI=0表示采用重复传输(repetition)的传输方式,比特NDI=1表示采用聚合传输的传输方式,即原来用于指示NDI的比特用来指示传输方式,为0的时候指示重复传输的方式,为1的时候指示聚合传输的方式。当比特NDI=0时,还可以利用预留的Redundancy version(RV)的两个比特来指示重复的次数。在一种具体实现中可如表2所示,其中,NDI=0和RV=0可以表示收端请求HARQd,且发端同意请求的传输方式。
表2
重复次数索引 重复次数(Repetition number)
0 1
1 2
2 3
3 4
在该方案中,可知传输方式为重复传输,则DCI中指示该第一HARQ进程的传输方式的比特可以用于指示重复传输的传输次数。
当比特NDI=1时,可以利用预留的冗余版本(Redundancy version,RV)或者其余的一个或者多个,指示用户采用不同的RV版本聚合,如表3所示,其中RV的组合方式可以有多种,不限于此表。当组合数较多时需要用到更多的比特用户指示HARQ进程的数据传输方 式。
表3
组合方式索引 RV组合方式
0 0,1
1 0,2
2 0,3
3 0,1,2
4 0,1,3
5 0,2,3
6 0,1,2,3
在该方案中,可知传输方式为聚合传输,则DCI中指示该第一HARQ进程的传输方式的比特可以用于指示聚合传输的传输版本,具体包括版本号或者版本的组合方式等。
根据上述方式,对于传输方式的指示不止可以采用NDI比特进行指示,也可以采用原DCI中的空余的11个比特中的其他的一个或者多个比特进行指示,同样的,对于表2和/或表3中的重复次数,以及传输版本也可以根据空余的11个比特中的其他的一个或者多个比特进行指示。本方案的主旨是在于对DCI中空闲的比特的复用,并不限定采用某个特定比特指示特定参数。
在上述方案的基础上,如果系统中只支持一种传输方式,则原来NDI的比特可以用来指示其他的内容。在表3对应实现中,若系统只支持聚合方式,则传输的RV版本也可以只有一个版本的情况,例如,只传输RV0版本。
在上述几种实现方式的基础上,DCI的空余部分也可以包括指示第一HARQ进程的进程号的第二部分比特以及指示该第一HARQ进程传输方式的比特,具体的应用过程中的指示方式与上述类似。
对于DCI中其他不同的格式,类似的原则同样适用,这里不再赘述。
上述实施例提供方案中,扩展了HARQ进程数量之后,可以有效提高数据吞吐率,同时通过对DCI中的空余比特的复用,在不增加新的比特的情况下,可实现指示传输方式和/或进程号,降低数据传输时延的同时,提高灵活性。
在本申请提供的基于NTN的数据传输方法的另一实施例中,在上述实施例的基础上,在HARQ进程不采用HARQ方式,也就是HARQd方式中,DCI中的空余部分除了可以指示进程号,或者传输方式之外,剩余的比特还可以用来指示采用HARQ方式的进程的进程号。
具体的,以上述表1中的Format1-0的情况为例,除了用于指示HARQ进程的进程号之外,其他的11个比特则是空余的状态。
在一种具体实现中,以最大HARQ进程数是64为例,每个HARQ进程需要6比特指示进程号(也称为进程标识,ID),除了表1中HARQ process number的4bit外,需要两位2个比特, 了可以使用DAI的2bit作为进程号的最高两位或者最低两位,即:ID=DAI(2比特)以及HARQ process number(4比特)组成,或者,ID=HARQ process number(4比特)DAI(2比特)。剩余9比特的全部或者部分用于HARQe。若HARQd只需要指示ID号,那么最大进程数为64的情况下,一个HARQd所对应的DCI可以扩展指示4个HARQe的ID号。假设最大进程数为N ID,那么一个HARQd所对应的DCI可以指示的HARQe数为:Floor((15-log 2N ID)/(log 2N ID-4))。
在本申请方案的另一种具体实现中,假设有3比特用于指示当前的第一HARQ进程的数据的传输方式,那么针对HARQd和HARQe进程的数目,为满足HARQd中多余的比特足够指示HARQe的ID号,对于Format 1-0(bits)需要满足如下条件,
m·(12-(log 2N ID))≥n·(log 2N ID-4)   (1),
其中,m表示HARQd的进程数,n表示HARQe的进程数,N ID表示最大进程数,当N ID=64时,需要满足m/n≥1/3,图3为本申请提供的一种HARQ进程的指示情况示意图,如图3所示,HARQd进程中的DCI还可以用于指示邻近HARQ进程的进程号。
在本申请提供的基于NTN的数据传输方法的另一实施例中,采用动态的分配HARQd和HARQe的数目,本实施例提供一种采用固定的配比的方式,所有的HARQ进程按照约定的比例分配HARQd和HARQe的数目,图4为本申请提供的一种HARQ进程的分配情况示意图。如图4所示,HARQd的进程均匀的分布在所有进程当中,可以用来指示固定临近的多个HARQe进程的进程号。图5为本申请提供的又一种HARQ进程的分配情况示意图。如图5所示,HARQd的进程也连续的分布在所有进程当中,每个HARQd的DCI可以用来指示后续的一些HARQe进程的进程号。
可选的,HARQd的进程也可以按照某一种或者多种固定的方式分布在所有进程当中,数据传输时按照约定的分布方式进行传输,或者发端按照指示的方式分配HARQd和HARQe的进程,或者按照1:1的方式,由一个HARQd扩展指示HARQe的HARQ进程的进程号,对此本方案不做限制。
本申请提供的基于NTN的数据传输方法的另一实施例中,在实际应用中,采用HARQd和HARQe的进程都可以采用聚合或者重复的方式,HARQd中,DCI中的剩余比特不仅可以指示当前进程的数据的传输方式,也可以用于指示HARQe的进程中数据的传输方式。采用一次传输多份数据的时候,会增加一个HARQ进程的时间,从而减少HARQ进程的数量,减少指示进程数的信令开销。为了不改变进程数或者不增加过多的进程数,同时充分利用卫星通信较长的RTD提高吞吐,本实施例中每个进程可以采用灵活的传输方式。每个进程中传输的数据(相同的传输块编码得到的数据)每次传输可以采用重复或者聚合的方式提高可靠度。在一种可能的实施方式中,不同轨道高度的网络设备(例如图2所示场景中的基站)采用统一的进程数16,则不需要额外开销进程数指示的比特,每次传输多份数据(对应相同数据块的多个重复版本,或者多个RV版本)),增加每个进程的时长。
需要说明的是,数据的具体传输中可以包括自适应和非自适应两种情况,自适应是由控制信道来指示相应的传输方式,例如现有技术中由RV来指示数据传输的版本号,非自适应按照约定的方式,每次重传采用默认的RV版本顺序。
对于不采用HARQ方式的进程,也就是HARQd进程,若采用完全非自适应的数据方式,可以按照约定要的版本数,版本组合或者重复数等方式进行每一次的数据传输。例如,RV0对应一份数据,RV0和RV2对应相同数据块的两份数据,RV0,RV1,RV2对应相同数据块的三份数据,RV0,RV1,RV2,RV3对应相同数据块的四份数据,具体每个进程一次传输几份数据可以按照约定的方式,不同轨道高度的卫星,由于往返延迟(Round Trip Delay,RTD) 不同,可以采用不同的约定方式。例如低轨卫星,一次传输2分数据,中轨卫星,一次传输3分数据,高轨卫星,一次传输4分数据。
对于不采用HARQ方式的进程,也就是HARQd进程,如果采用自适应的方式,部分与HARQ相关的比特可以利用,也可以重新定义RV参数的含义,用来指示数据的传输方式,如表3中,举例了几种RV版本的组合方式。因为没有重传,因此在每个组合中都包含了RV0版本。
对于采用HARQ方式的进程,也就是HARQe进程,可以采用现有的传输方式(一次传一份数据)。每一次传输也可以采用上述提到的HARQd的传输方式。即采用非自适应的方式也可以采用自适应的方式。对于非自适应的方式,不同轨道高度的卫星,可以有对应的传输方式(HARQd只有一次传输,HARQe在收端反馈NCAK的时候会有下一次传输,也就是每次传输可以采用非自适应),包括每次传输的数据份数,以及RV组合方式。由于没有多余的DCI比特可以利用,可以利用HARQd中的多余比特来指示。当HARQe采用重复传输或者聚合传输的方式来减少重传次数时,2bit的RV,也可以代表不同的数据传输方式,参考表3。
综上所述,也就是说在本方案的时限中,不采用HARQ方式的DCI中,还可以指示采用HARQ方式的进程采用的传输方式,具体的还可以指示传输数据版本,版本组合或者重复次数等。另外主要说明的是,除了DCI中的比特可以指示数据的传输方式,也可以利用MCS表中用不到的MCSindex,隐式的指示相应的数据的传输方式,对此本方案不做限制。
在前述任一实施例的基础上,在NTN的数据传输中,对于进程数,本申请的技术方案不限于固定的进程数,不同轨道高度与RTD不一样,进程数可以有所区别,例如:地面和低轨为16,中高轨为32;例如地面和低轨为16,中轨为32,高轨为64等;进程数大于16的情况下,HARQe的进程号可以由HARQd中的DCI比特扩展指示。数据的传输方式,例如RV版本的组合等,HARQe进程ID也可以由HARQd中的DCI比特扩展指示。即HARQd中的剩余比特,可以用于HARQe进程的ID扩展指示,或者数据传输方式。HARQd和HARQe的进程数配比可以参考前述实施例中的方案。
上述几个实施例提供的基于NTN的数据传输方案,对于不采用HARQ的方式的进程,复用该进程对应的控制信令中的多余比特指示采用HARQ的方式的进程的进程号,也就是HARQe对应的ID,减少overhead。同时还设计了HARQd和HARQe的配比,保证有足够的资源指示HARQe的ID。
图6为本申请提供的基于NTN的数据传输装置实施例一的结构示意图,如图6所示,该基于NTN的数据传输装置10,包括:
收发模块11,用于接收网络设备发送的DCI,所述DCI包括指示进行数据传输的第一HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
处理模块12,用于根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
本实施例提供的基于NTN的数据传输装置,用于执行前述任一方法实施例中终端设备侧的技术方案,传输数据的第一HARQ进程不采用HARQ传输方式,可将DCI中空余的比特进行复用,通过DCI指示相关参数则进行上行或者下行传输,发送端不需要等待接收端的反馈,有效减小通信时延,减轻接收端缓存压力。
在上述方案的基础上,该基于NTN的数据传输装置10的具体实现中,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
可选的,所述处理模块12还用于:
确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
可选的,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
可选的,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
可选的,
所述第一HARQ进程不采用HARQ方式是所述处理模块12根据协议约定确定;
或者,
所述收发模块11还用于接收网络设备发送的无线链路控制RRC消息,所述RRC携带指示信息;
所述第一HARQ进程不采用HARQ方式是所述处理模块12根据所述指示信息确定的,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式;
或者,
所述处理模块12还用于根据信道质量、服务质量QoS以及之前的上/下行传输情况(包括吞吐率、出错的频率等)中的至少一个确定所述第一HARQ进程不采用HARQ方式,并通过所述收发模块11向所述网络设备发送请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
或者,
所述处理模块12还用于根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
可选的,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
本实施例提供的基于NTN的数据传输装置,用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图7为本申请提供的基于NTN的数据传输装置实施例二的结构示意图,如图7所示,该基于NTN的数据传输装置20,包括:
收发模块21,用于向终端设备发送DCI,所述DCI包括指示进行数据传输的第一HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
处理模块22,用于根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
本实施例提供的基于NTN的数据传输装置,用于执行前述任一方法实施例中网络设备侧的技术方案,传输数据的第一HARQ进程不采用HARQ传输方式,可将DCI中空余的比特进行复用,通过DCI指示相关参数则进行上行或者下行传输,发送端不需要等待接收端的反馈,有效减小通信时延,减轻接收端缓存压力。
在上述实施例的具体实现中,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
可选的,所述处理模块22还用于:
确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
可选的,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
可选的,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
可选的,
所述第一HARQ进程不采用HARQ方式是所述处理模块22根据协议约定确定;
或者,
所述收发模块21用于接收所述终端设备发送的请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
所述第一HARQ进程不采用HARQ方式是所述处理模块22根据所述请求消息确定的;
或者,
所述处理模块22还用于根据信道质量、QoS、网络负载以及之前的上/下行传输情况(包括吞吐率、出错的频率等)中的至少一个确定所述第一HARQ进程不采用HARQ方式;
或者,
所述处理模块22还用于根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
可选的,所述收发模块21还用于:
向所述终端设备发送无线链路控制RRC消息,所述RRC携带指示信息,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式。
可选的,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
本实施例提供的基于NTN的数据传输装置,用于执行前述任一方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图8为本申请提供的通信装置实施例一的结构示意图,如图8所示,该通信装置100,包括处理器101和通信接口102,所述通信接口102用于接收待处理的数据和/或输出处理后的数据,所述处理器101用于对所述待处理的数据前述任一实施例中终端设备侧的技术方案。
在一种可选方案中,所述通信装置100还包括存储器103,用于存储程序指令,所述程序指令由所述处理器执行时,使得前述任一实施例中终端设备侧的技术方案被执行。
当该通信装置100执行终端设备侧的技术方案,该通信接口102接收的待处理的数据包括DCI携带的数据,网络设备发送的RRC消息中的数据以及网络设备进行下行传输的数据等,输出处理后的数据包括向网络设备发送的请求消息,向网络设备进行上行传输的数据以及反馈信息等数据。
该通信装置100可以是终端设备,也可以是芯片,集成电路等,对此本方案不做限制。
图9为本申请提供的通信装置实施例二的结构示意图,如图9所示,该通信装置200,包括处理器201和通信接口202,所述通信接口202用于接收待处理的数据和/或输出处理后的数据,所述处理器201用于对所述待处理的数据执行前述任一实施例中网络设备侧的技术方案。
可选的,所述通信装置200还包括存储器203,用于存储程序指令,所述程序指令由所述处理器执行时,使得前述任一实施例中网络设备侧的技术方案被执行。
当该通信装置100执行网络设备侧的技术方案,该通信接口202接收的待处理的数据包括终端设备发送的请求消息,以及终端设备发送的上行数据,终端设备发送的反馈信息等。输出处理后的数据包括DCI携带的数据,发送的RRC消息中的数据以及进行下行传输的数据,向终端设备发送的确认消息等。
该通信装置200可以是网络设备,也可以是芯片,集成电路等,对此本方案不做限制。
在上述在通信装置的实现中,存储器和处理器之间直接或间接地电性连接,以实现数据的传输或交互,也就是存储器和处理器可以通过接口连接,也可以集成在一起。例如,这些元件相互之间可以通过一条或者多条通信总线或信号线实现电性连接,如可以通过总线连接。存储器中存储有实现数据访问控制方法的计算机执行指令,包括至少一个可以软件或固件的形式存储于存储器中的软件功能模块,处理器通过运行存储在存储器内的软件程序以及模块,从而执行各种功能应用以及数据处理。
存储器可以是,但不限于,随机存取存储器(Random Access Memory,简称:RAM),只读存储器(Read Only Memory,简称:ROM),可编程只读存储器(Programmable Read-Only Memory,简称:PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,简称:EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,简称:EEPROM)等。其中,存储器用于存储程序,处理器在接收到执行指令后,执行程序。进一步地,上述存储器内的软件程序以及模块还可包括操作系统,其可包括各种用于管理系统任务(例如内存管理、存储设备控制、电源管理等)的软件组件和/或驱动,并可与各种硬件或软件组件相互通信,从而提供其他软件组件的运行环境。
处理器可以是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称:CPU)、网络处理器(Network Processor,简称:NP)等。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在上述基础上,本申请还提供一种通信装置,包括:逻辑电路、输入接口,其中:所述输入接口用于获取待处理的数据;所述逻辑电路用于对待处理的数据执行前述方法实施例中终端设备侧的技术方案,得到处理后的数据。
可选的,该通信装置还可以包括:输出接口,所述输出接口用于输出处理后的数据。
当该逻辑电路执行终端设备侧的技术方案,该输入接口获取的待处理的数据包括DCI携带的数据,网络设备发送的RRC消息中的数据以及网络设备进行下行传输的数据等,输出接口输出的处理后的数据包括向网络设备发送的请求消息,向网络设备进行上行传输的数据以及反馈信息等数据。
本申请还提供一种通信装置,包括:逻辑电路和输出接口,其中:所述逻辑电路用于对待处理的数据执行前述方法实施例中网络设备侧的技术方案,得到处理后的数据;以及,所述输出接口用于输出处理后的数据。
可选的,该通信装置还包括:输入接口,该输入接口用于获取待处理的数据。
当该逻辑电路执行网络设备侧的技术方案,该输入接口获取的待处理的数据包括终端设备发送的请求消息,以及终端设备发送的上行数据,终端设备发送的反馈信息等。输出接口输出的处理后的数据包括DCI携带的数据,发送的RRC消息中的数据以及进行下行传输的数据,向终端设备发送的确认消息等。
在该方案的一种具体实现中,上述的通信装置可以实现为芯片。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序,所述程序在被处理器执行时用于执行前述实施例中终端设备侧的技术方案。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序,所述程序在被处理器执行时用于执行前述实施例中网络设备侧的技术方案。
本申请还提供一种程序产品该程序产品包括计算机程序,该计算机程序存储在可读存储介质中,网络设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理 器执行该计算机程序使得网络设备实施前述任一方法实施例中的技术方案。
本申请还提供一种程序产品,该程序产品包括计算机程序,该计算机程序存储在可读存储介质中,终端的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得终端设备实施前述任一方法实施例中的技术方案。
本领域普通技术人员应理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质,具体的介质类型本申请不做限制。

Claims (42)

  1. 一种基于NTN的数据传输方法,其特征在于,应用于终端设备,所述方法包括:
    接收网络设备发送的下行控制信息DCI,所述DCI包括指示进行数据传输的第一混合自动重传请求HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
    根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
  4. 根据权利要求3所述的方法,其特征在于,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
  5. 根据权利要求3所述的方法,其特征在于,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述第一HARQ进程不采用HARQ方式是根据协议约定确定;
    或者,
    接收网络设备发送的无线链路控制RRC消息,所述RRC携带指示信息;
    所述第一HARQ进程不采用HARQ方式是根据所述指示信息确定的,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式;
    或者,
    根据信道质量或者服务质量QoS确定所述第一HARQ进程不采用HARQ方式,并向所述网络设备发送请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
    或者,
    根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
  8. 一种基于NTN的数据传输方法,其特征在于,应用于网络设备,所述方法还包括:
    向终端设备发送下行控制信息DCI,所述DCI包括指示进行数据传输的第一混合自动重传请求HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
    根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
  9. 根据权利要求8所述的方法,其特征在于,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
  11. 根据权利要求10所述的方法,其特征在于,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
  12. 根据权利要求10所述的方法,其特征在于,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一HARQ进程不采用HARQ方式是根据协议约定确定;
    或者,
    接收所述终端设备发送的请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
    所述第一HARQ进程不采用HARQ方式是根据所述请求消息确定的;
    或者,
    根据信道质量、服务质量QoS或者网络负载确定所述第一HARQ进程不采用HARQ方式;
    或者,
    根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送无线链路控制RRC消息,所述RRC携带指示信息,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式。
  15. 根据权利要求8至14任一项所述的方法,其特征在于,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
  16. 一种基于NTN的数据传输装置,其特征在于,包括:
    收发模块,用于接收网络设备发送的下行控制信息DCI,所述DCI包括指示进行数据传输的第一混合自动重传请求HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
    处理模块,用于根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
  17. 根据权利要求16所述的装置,其特征在于,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
  18. 根据权利要求17所述的装置,其特征在于,所述处理模块还用于:
    确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
  19. 根据权利要求18所述的装置,其特征在于,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
  20. 根据权利要求18所述的装置,其特征在于,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
  21. 根据权利要求16至20任一项所述的装置,其特征在于,
    所述第一HARQ进程不采用HARQ方式是所述处理模块根据协议约定确定;
    或者,
    所述收发模块还用于接收网络设备发送的无线链路控制RRC消息,所述RRC携带指示信息;
    所述第一HARQ进程不采用HARQ方式是所述处理模块根据所述指示信息确定的,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式;
    或者,
    所述处理模块还用于根据信道质量或者服务质量QoS确定所述第一HARQ进程不采用HARQ方式,并通过所述收发模块向所述网络设备发送请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
    或者,
    所述处理模块还用于根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
  22. 根据权利要求16至21任一项所述的装置,其特征在于,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
  23. 一种基于NTN的数据传输装置,其特征在于,包括:
    收发模块,用于向终端设备发送下行控制信息DCI,所述DCI包括指示进行数据传输的第一混合自动重传请求HARQ进程的进程号的第一部分比特,所述第一HARQ进程不采用HARQ方式;
    处理模块,用于根据所述DCI进行数据处理得到处理后的数据,并输出所述处理后的数据。
  24. 根据权利要求23所述的装置,其特征在于,所述DCI还包括:指示所述第一HARQ进程的进程号的第二部分比特,和/或,指示所述第一HARQ进程的传输方式的比特。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块还用于:
    确定所述第一HARQ进程采用的传输方式包括:重复传输或者聚合传输。
  26. 根据权利要求25所述的装置,其特征在于,所述传输方式为重复传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示重复传输的传输次数。
  27. 根据权利要求25所述的装置,其特征在于,所述传输方式为聚合传输,则所述指示所述第一HARQ进程的传输方式的比特用于指示聚合传输的传输版本。
  28. 根据权利要求23至27任一项所述的装置,其特征在于,
    所述第一HARQ进程不采用HARQ方式是所述处理模块根据协议约定确定;
    或者,
    所述收发模块用于接收所述终端设备发送的请求消息,所述请求消息用于指示所述第一HARQ进程不采用HARQ方式;
    所述第一HARQ进程不采用HARQ方式是所述处理模块根据所述请求消息确定的;
    或者,
    所述处理模块还用于根据信道质量、服务质量QoS或者网络负载确定所述第一HARQ进程不采用HARQ方式;
    或者,
    所述处理模块还用于根据所述DCI确定所述第一HARQ进程不采用HARQ方式。
  29. 根据权利要求28所述的装置,其特征在于,所述收发模块还用于:
    向所述终端设备发送无线链路控制RRC消息,所述RRC携带指示信息,所述指示信息用于指示所述第一HARQ进程不采用HARQ方式或者所述第一HARQ进程采用HARQ方式。
  30. 根据权利要求23至29任一项所述的装置,其特征在于,所述DCI的长度与所述第一HARQ进程采用HARQ方式传输时的DCI的长度一致。
  31. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收待处理的数据和/或输出处理后的数据,所述处理器用于对所述待处理的数据执行如权利要求1至7任一项所述的方法。
  32. 根据权利要求31所述的通信装置,其特征在于,所述通信装置还包括存储器,用于存储程序指令,所述程序指令由所述处理器执行时,使得权利要求1至7中任一项所述的方法被执行。
  33. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收待处理的数据和/或输出处理后的数据,所述处理器用于对所述待处理的数据执行如权利要求8至 15任一项所述的方法。
  34. 根据权利要求33所述的通信装置,其特征在于,所述通信装置还包括存储器,用于存储程序指令,所述程序指令由所述处理器执行时,使得权利要求8至15中任一项所述的方法被执行。
  35. 一种通信装置,其特征在于,包括:逻辑电路和输入接口,其中:
    所述输入接口用于获取待处理的数据;
    所述逻辑电路用于对待处理的数据执行如权利要求1至7任一项所述的方法,得到处理后的数据。
  36. 根据权利要求35所述的通信装置,其特征在于,所述通信装置还包括:
    输出接口,所述输出接口用于输出所述处理后的数据。
  37. 一种通信装置,其特征在于,包括:逻辑电路和输出接口,其中:
    所述逻辑电路用于对待处理的数据执行如权利要求8至15任一项所述的方法,得到处理后的数据;以及,所述输出接口用于输出所述处理后的数据。
  38. 根据权利要求37所述的通信装置,其特征在于,所述通信装置还包括:
    输入接口,所述输入接口用于获取所述待处理的数据。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储程序,所述程序在被处理器执行时用于执行权利要求1至7任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储程序,所述程序在被处理器执行时用于执行权利要求8至15任一项所述的联合切换方法。
  41. 一种程序产品,其特征在于,包括:计算机程序,所述计算机程序存储在可读存储介质中,终端设备的至少一个处理器从所述可读存储介质中读取所述计算机程序,至少一个处理器执行所述计算机程序使得所述终端设备实施权利要求1至7任一项所述的基于NTN的数据传输方法。
  42. 一种程序产品,其特征在于,包括:计算机程序,所述计算机程序存储在可读存储介质中,网络设备的至少一个处理器从所述可读存储介质中读取所述计算机程序,至少一个处理器执行所述计算机程序使得所述网络设备实施权利要求8至15任一项所述的基于NTN的数据传输方法。
PCT/CN2020/120333 2019-11-08 2020-10-12 基于ntn的数据传输方法、装置和存储介质 WO2021088594A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20884447.2A EP4044480A4 (en) 2019-11-08 2020-10-12 NTN-BASED DATA TRANSMISSION METHOD AND DEVICE, AND STORAGE MEDIUM
US17/738,632 US20220263606A1 (en) 2019-11-08 2022-05-06 Ntn-based data transmission method and apparatus and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911088858.7 2019-11-08
CN201911088858.7A CN112787770B (zh) 2019-11-08 2019-11-08 基于ntn的数据传输方法、装置和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/738,632 Continuation US20220263606A1 (en) 2019-11-08 2022-05-06 Ntn-based data transmission method and apparatus and storage medium

Publications (1)

Publication Number Publication Date
WO2021088594A1 true WO2021088594A1 (zh) 2021-05-14

Family

ID=75748914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120333 WO2021088594A1 (zh) 2019-11-08 2020-10-12 基于ntn的数据传输方法、装置和存储介质

Country Status (4)

Country Link
US (1) US20220263606A1 (zh)
EP (1) EP4044480A4 (zh)
CN (2) CN114900271A (zh)
WO (1) WO2021088594A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900269A (zh) * 2022-07-08 2022-08-12 广州思德医疗科技有限公司 数据传输方法、电子设备及计算机存储介质
WO2023214807A1 (ko) * 2022-05-04 2023-11-09 현대자동차주식회사 비-지상 네트워크에서 harq를 위한 방법 및 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114503482A (zh) * 2021-12-31 2022-05-13 北京小米移动软件有限公司 信息接收、传输方法和装置、通信装置和存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160737A1 (en) * 2018-02-14 2019-08-22 Idac Holdings, Inc. Methods and procedures for harq management in nr-based non-terrestrial networks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2585857A (en) * 2019-07-17 2021-01-27 Samsung Electronics Co Ltd Improvements in and relating to dynamic HARQ in a non-terrestrial network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160737A1 (en) * 2018-02-14 2019-08-22 Idac Holdings, Inc. Methods and procedures for harq management in nr-based non-terrestrial networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC ET AL.: "Further consideration on HARQ configuration in NTN", 3GPP TSG-RAN WG2 MEETING 107BIS R2-1913173, 18 October 2019 (2019-10-18), XP051791186 *
INTEL CORPORATION: "Discussion on HARQ for NTN", 3GPP TSG RAN WG1 #98-BIS R1-1910659, 20 October 2019 (2019-10-20), XP051789451 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214807A1 (ko) * 2022-05-04 2023-11-09 현대자동차주식회사 비-지상 네트워크에서 harq를 위한 방법 및 장치
CN114900269A (zh) * 2022-07-08 2022-08-12 广州思德医疗科技有限公司 数据传输方法、电子设备及计算机存储介质

Also Published As

Publication number Publication date
EP4044480A4 (en) 2022-11-23
CN114900271A (zh) 2022-08-12
CN112787770B (zh) 2022-06-14
CN112787770A (zh) 2021-05-11
EP4044480A1 (en) 2022-08-17
US20220263606A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2020088540A1 (zh) 传输方法和装置
JP5009410B2 (ja) 移動局装置、無線通信方法および集積回路
RU2493656C2 (ru) Повышение надежности протокола гибридного автоматического запроса на повторную передачу данных
KR102566795B1 (ko) 데이터 송신을 위한 방법, 디바이스, 및 시스템
WO2021088594A1 (zh) 基于ntn的数据传输方法、装置和存储介质
TWI733667B (zh) 在存取點與行動終端機之間使用下行鏈路及上行鏈路傳輸之無線通訊測試之方法
US11191075B2 (en) Data transmission method, device, and communications system
WO2019028684A1 (zh) 通信方法与设备
JPWO2018229948A1 (ja) 基地局装置、端末装置、無線通信システム、および通信方法
CN108631948B (zh) 一种数据重传方法、通信设备和数据重传系统
WO2014117391A1 (zh) 传输数据的方法、基站和用户设备
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
WO2020143062A1 (zh) 无线通信方法和终端
US20230050066A1 (en) Telecommunications apparatus and methods
JP2023520688A (ja) サイドリンク伝送方法及び装置
CN113767584A (zh) 终端、基站、接收方法及发送方法
CN111277371A (zh) 数据传输方法及设备
CN110140317B (zh) 解码部分无线电传送
US20230361922A1 (en) Data transmission method and apparatus
JP5719460B2 (ja) 移動局装置、無線通信方法および集積回路
US20220311559A1 (en) Method and apparatus for determining harq-ack codebook, and device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020884447

Country of ref document: EP

Effective date: 20220429

NENP Non-entry into the national phase

Ref country code: DE