WO2021088591A1 - 功率控制的方法和装置 - Google Patents

功率控制的方法和装置 Download PDF

Info

Publication number
WO2021088591A1
WO2021088591A1 PCT/CN2020/120286 CN2020120286W WO2021088591A1 WO 2021088591 A1 WO2021088591 A1 WO 2021088591A1 CN 2020120286 W CN2020120286 W CN 2020120286W WO 2021088591 A1 WO2021088591 A1 WO 2021088591A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
transmission power
uplink transmission
uplink
Prior art date
Application number
PCT/CN2020/120286
Other languages
English (en)
French (fr)
Inventor
陈莹
乔云飞
罗禾佳
杜颖钢
余荣道
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20884863.0A priority Critical patent/EP4040853A4/en
Publication of WO2021088591A1 publication Critical patent/WO2021088591A1/zh
Priority to US17/736,501 priority patent/US20220264484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for power control in the field of communications.
  • Satellite communication has the characteristics of long communication distance, large coverage area, and flexible networking. It can provide services for both fixed terminals and various mobile terminals.
  • the 3rd generation partnership project (3GPP) standards organization has released the 5th generation (5th generation mobile networks, 5G) mobile network technology standards to study world-earth integration communication technologies, mainly integrating existing 5G standards and Satellite communication technology satisfies full coverage on a global scale.
  • 5G 5th generation mobile networks
  • This application provides a method and device for power control, which can perform power control in a communication system where terrestrial communication and satellite communication are merged.
  • the terminal device adjusts the first uplink transmission power used when communicating between the terminal device and the source network device according to the first parameter, and determines the second uplink transmission power used when the terminal device communicates with the target network device,
  • the path loss between the source network device and the terminal device is different from the path loss between the target network device and the terminal device
  • the above-mentioned first parameter includes the first compensation value of the first uplink transmission power (which can be denoted as ⁇ P HO ) and/or the second compensation value of the path loss factor corresponding to the first uplink transmit power (may be denoted as N).
  • the terminal device In the process that the terminal device is switched from the source network device to the target network device, the terminal device communicates with the target network device using the above-mentioned second uplink transmission power.
  • the first uplink transmission power used in the communication between the terminal device and the source network device is adjusted according to the first parameter to obtain the second uplink transmission power, and the second uplink transmission power is used in the handover process.
  • the second uplink transmission power is used in the handover process. 2.
  • positive power compensation may be performed on the first uplink transmission power, so that the second transmission power is greater than the first transmission power.
  • a transmission power, so that the second uplink transmission power can compensate for path loss and fading in the wireless channel, and improve the communication quality between the terminal device and the target network device.
  • negative power compensation may be performed on the first uplink transmission power, so that the second transmission power is less than The first transmit power, thereby reducing additional interference to other users in the same wireless resource.
  • the battery life of the terminal device can also be extended.
  • the second uplink transmission power may be the sum of the first uplink transmission power and ⁇ P HO , that is, the first uplink transmission power used when the terminal device communicates with the source network device Performing ⁇ P HO compensation, the second uplink transmit power can be obtained.
  • the value of ⁇ P HO may be a positive number, or a negative number, or 0, which is not limited in the embodiment of the present application.
  • the path loss factor corresponding to the second uplink transmission power may be the sum of the path loss factor ⁇ 1 and N ( ⁇ 1 + N), or the product of ( ⁇ 1 ⁇ N, or ⁇ 1 ⁇ N, or ⁇ 1 N), that is, through the path corresponding to the first uplink transmission power used in the communication between the terminal device and the source network device
  • the path loss factor ⁇ 2 corresponding to the second uplink transmission power
  • the value of N when the path loss factor corresponding to the second uplink transmission power is the sum of the path loss factor corresponding to the first uplink transmission power and N, the value of N may be a positive number, a negative number, or zero.
  • the path loss factor corresponding to the second uplink transmission power is the product of the path loss factor corresponding to the first uplink transmission power and N, the value of N may be a positive or negative number.
  • the path loss factor corresponding to the first uplink transmission power can be positively compensated.
  • the second transmission power is greater than the first transmission power
  • the path loss between the target network device and the terminal device is less than the path loss between the source network device and the terminal device, through the path corresponding to the first uplink transmission power
  • the loss factor is negatively compensated, so that the second transmission power is less than the first transmission power, so that the uplink transmission power that satisfies the communication between the terminal device and the target network device can be obtained in different handover scenarios.
  • the first parameter is based on the delay parameter and/or distance parameter between the terminal device and the source network device, and the relationship between the terminal device and the target network device. Delay parameters and/or distance parameters are determined.
  • the first parameter It can be determined based on the height between the terminal device and the source network device, and the height between the terminal device and the target network device.
  • the first parameter may be determined according to the type of the source network device and the type of the target network device.
  • the terminal device may determine the first parameter according to the common delay difference between the terminal device and the source network device and the target network device (which may be expressed as ⁇ TA common ).
  • the common delay difference is the difference between the common delay between the terminal device and the source network device and the common delay between the terminal device and the target network device.
  • the second uplink transmission power is less than or equal to the maximum uplink transmission power of the terminal device.
  • the terminal device uses it when actually communicating with the target network device
  • the second uplink transmit power of may be the maximum uplink transmit power of the terminal device.
  • the terminal device switches from the source network device to the target network device. , Both communicate with the target network device at the maximum uplink transmission power.
  • the terminal device may not need to use complicated calculations to obtain the uplink transmit power used when communicating with the target network device, which can reduce the complexity of the terminal device.
  • the terminal device and the network device communicate with the maximum uplink transmission power, there is no need to report the power headroom to the network device, which can save signaling overhead.
  • an open-loop power control method or a closed-loop power control method may be used to determine the second uplink transmit power.
  • the terminal device when the open-loop power control method is adopted, can be based on the delay parameter and/or distance parameter between the terminal device and the source network device, and the delay parameter between the terminal device and the target network device And/or the distance parameter to determine the first parameter.
  • the target network device when a closed-loop power control method is adopted, can be based on the delay parameter and/or distance parameter between the terminal device and the source network device, and the delay parameter between the terminal device and the target network device And/or the distance parameter to determine the first parameter. Then, the target network device sends first indication information to the terminal device, where the first indication information is used to indicate the first parameter.
  • the terminal device may also receive the first indication information.
  • the first indication information may be carried in radio resource control (radio resource control, RRC) signaling, such as an RRC reconfiguration message (RRC Reconfiguration message).
  • RRC radio resource control
  • a third uplink transmit power may be determined, wherein the first The third uplink transmit power is determined according to at least one of the size of the transmit power of the terminal device and the size of the path loss between the terminal device and the target network device. Then, the terminal device uses the third uplink transmission power to communicate with the target network device.
  • the third uplink transmission power is obtained according to the transmission power of the terminal device and/or the path loss between the terminal device and the target network device, and the third uplink transmission power and the network device are used. Communicate between. Based on this, the embodiment of the present application can more flexibly control the uplink transmission power of the terminal device in a scenario where the ground terminal device communicates with the satellite network device.
  • the terminal device may also receive second indication information, where the second indication information is used to indicate the third uplink transmit power.
  • the terminal device may receive the second indication information from the target network device. In this way, power control can be achieved through closed-loop power control.
  • the third uplink transmit power is the maximum uplink transmit power of the terminal device, or the third uplink transmit power is controlled according to a pre-configured uplink power Uplink transmit power determined by the method.
  • the embodiments of the present application may not need to calculate the uplink transmission power, but directly use the maximum uplink transmission power to communicate with the network device, which can reduce the complexity of the terminal device.
  • the terminal device and the network device communicate with the maximum uplink transmit power, there is no need to perform a power headroom report (heardroom report) to the network device, which can save signaling overhead.
  • a power control method is provided.
  • the method is executed by a target network device or a component (for example, a chip or a circuit, etc.) that can be configured in the target network device.
  • the following describes the method executed by the target network device as an example.
  • the target network device determines the first parameter, and the first parameter is used to adjust the first uplink transmit power used in the communication between the terminal device and the source network device to obtain the time when the terminal device communicates with the target network device.
  • the second uplink transmission power used, where the first parameter includes the first compensation value of the first uplink transmission power and/or the second compensation value of the path loss factor corresponding to the first uplink transmission power, and the difference between the source network device and the terminal device The path loss between the target network device and the terminal device is different from the path loss between the target network device and the terminal device.
  • the target network device sends first indication information to the terminal device, where the first indication information is used to indicate the first parameter.
  • the first uplink transmission power used in the communication between the terminal device and the source network device is adjusted according to the first parameter to obtain the second uplink transmission power, and the second uplink transmission power is used in the handover process.
  • the second uplink transmission power is used in the handover process. 2.
  • positive power compensation may be performed on the first uplink transmission power, so that the second transmission power is greater than the first transmission power.
  • a transmission power, so that the second uplink transmission power can compensate for path loss and fading in the wireless channel, and improve the communication quality between the terminal device and the target network device.
  • negative power compensation may be performed on the first uplink transmission power, so that the second transmission power is less than The first transmit power, thereby reducing additional interference to other users in the same wireless resource.
  • the battery life of the terminal device can also be extended.
  • the second uplink transmission power may be the sum of the first uplink transmission power and ⁇ P HO , that is, the first uplink transmission power used when the terminal device communicates with the source network device Performing ⁇ P HO compensation, the second uplink transmit power can be obtained.
  • the value of ⁇ P HO may be a positive number, or a negative number, or 0, which is not limited in the embodiment of the present application.
  • the path loss factor corresponding to the second uplink transmission power may be the sum of the path loss factor ⁇ 1 and N ( ⁇ 1 + N), or the product of ( ⁇ 1 ⁇ N, or ⁇ 1 ⁇ N, or ⁇ 1 N), that is, through the path corresponding to the first uplink transmission power used in the communication between the terminal device and the source network device
  • the path loss factor ⁇ 2 corresponding to the second uplink transmission power
  • the value of N when the path loss factor corresponding to the second uplink transmission power is the sum of the path loss factor corresponding to the first uplink transmission power and N, the value of N may be a positive number, a negative number, or zero.
  • the path loss factor corresponding to the second uplink transmission power is the product of the path loss factor corresponding to the first uplink transmission power and N, the value of N may be a positive or negative number.
  • the path loss factor corresponding to the first uplink transmission power can be positively compensated.
  • the second transmission power is greater than the first transmission power
  • the path loss between the target network device and the terminal device is less than the path loss between the source network device and the terminal device, through the path corresponding to the first uplink transmission power
  • the loss factor is negatively compensated, so that the second transmission power is less than the first transmission power, so that the uplink transmission power that satisfies the communication between the terminal device and the target network device can be obtained in different handover scenarios.
  • the first parameter is based on the delay parameter and/or distance parameter between the terminal device and the source network device, and the relationship between the terminal device and the source network device.
  • the delay parameters and/or distance parameters between the target network devices are determined.
  • the terminal device may determine the first parameter according to the common delay difference between the terminal device and the source network device and the target network device (which may be expressed as ⁇ TA common ).
  • the common delay difference is the difference between the common delay between the terminal device and the source network device and the common delay between the terminal device and the target network device.
  • the second uplink transmission power is less than or equal to the maximum uplink transmission power of the terminal device.
  • the terminal device uses it when actually communicating with the target network device
  • the second uplink transmit power of may be the maximum uplink transmit power of the terminal device.
  • the terminal device switches from the source network device to the target network device. , Both communicate with the target network device at the maximum uplink transmission power.
  • the terminal device may not need to use complicated calculations to obtain the uplink transmit power used when communicating with the target network device, which can reduce the complexity of the terminal device.
  • the terminal device and the network device communicate with the maximum uplink transmission power, there is no need to report the power headroom to the network device, which can save signaling overhead.
  • the target network device when the second uplink transmit power is determined by the closed-loop power control method, can be based on the delay parameter and/or distance parameter between the terminal device and the source network device, and the terminal device and the target The delay parameter and/or the distance parameter between the network devices determine the first parameter. Then, the first indication information is sent to the terminal device, where the first indication information is used to indicate the first parameter.
  • the first indication information may be carried in radio resource control (radio resource control, RRC) signaling, such as an RRC reconfiguration message (RRC Reconfiguration message).
  • RRC radio resource control
  • some implementations of the second aspect further include:
  • the third uplink transmission power is obtained according to the transmission power of the terminal device and/or the path loss between the terminal device and the target network device, and the third uplink transmission power is used with the target network. Communicate between devices. Based on this, the embodiment of the present application can more flexibly control the uplink transmit power of the terminal device in the scenario where the ground terminal device communicates with the satellite network device.
  • the third uplink transmit power is the maximum uplink transmit power of the terminal device, or the third uplink transmit power is controlled according to a pre-configured uplink power Uplink transmit power determined by the method.
  • the embodiments of the present application may not need to calculate the uplink transmission power, but directly use the maximum uplink transmission power to communicate with the network device, which can reduce the complexity of the terminal device.
  • the terminal device and the network device communicate with the maximum uplink transmission power, there is no need to perform a power headroom report (heardroom report) to the network device, which can save signaling overhead.
  • a power control method is provided, which is executed by a terminal device or a component (for example, a chip or a circuit, etc.) configurable in the terminal device.
  • the method is executed by a terminal device as an example for description.
  • the terminal device determines the third uplink transmission power, where the third uplink transmission power is based on the transmission power of the terminal device and the path loss between the terminal device and the network device. At least one kind of certain. Then, the terminal device communicates with the network device using the third uplink transmission power.
  • the third uplink transmission power is obtained according to the transmission power of the terminal device and/or the path loss between the terminal device and the network device, and the third uplink transmission power is used as the difference between the third uplink transmission power and the network device. Communicate between. Based on this, the embodiment of the present application can more flexibly control the uplink transmission power of the terminal device in a scenario where the ground terminal device communicates with the satellite network device.
  • an open-loop power control method or a closed-loop power control method may be used to determine the third uplink transmit power.
  • the terminal device can be based on at least one of the size of the transmission power of the terminal device and the size of the path loss between the terminal device and the network device, Determine the third uplink transmit power.
  • the network device may determine according to at least one of the size of the transmission power of the terminal device and the size of the path loss between the terminal device and the network device The third uplink transmit power. Then, the terminal device receives second indication information, where the second indication information is used to indicate the third uplink transmit power.
  • the third uplink transmit power is the maximum uplink transmit power of the terminal device, or the third uplink transmit power is controlled according to a pre-configured uplink power Uplink transmit power determined by the method.
  • the embodiments of the present application may not need to calculate the uplink transmission power, but directly use the maximum uplink transmission power to communicate with the network device, which can reduce the complexity of the terminal device.
  • the terminal device and the network device communicate with the maximum uplink transmission power, there is no need to perform a power headroom report (heardroom report) to the network device, which can save signaling overhead.
  • a power control method is provided.
  • the method is executed by a network device or a component (for example, a chip or a circuit, etc.) configurable in the network device.
  • the following describes the method executed by a network device as an example.
  • the network device determines the third uplink transmit power according to at least one of the size of the transmit power of the terminal device and the size of the path loss between the terminal device and the network device. Then, the network device sends second indication information to the terminal device, where the second indication information is used to indicate the third uplink transmit power.
  • the third uplink transmission power is obtained according to the transmission power of the terminal device and/or the path loss between the terminal device and the network device, and the third uplink transmission power is used as the difference between the third uplink transmission power and the network device. Communicate between. Based on this, the embodiment of the present application can more flexibly control the uplink transmission power of the terminal device in a scenario where the ground terminal device communicates with the satellite network device.
  • the third uplink transmit power is the maximum uplink transmit power of the terminal device, or the third uplink transmit power is controlled according to a pre-configured uplink power Uplink transmit power determined by the method.
  • the embodiments of the present application may not need to calculate the uplink transmission power, but directly use the maximum uplink transmission power to communicate with the network device, which can reduce the complexity of the terminal device.
  • the terminal device and the network device communicate with the maximum uplink transmission power, there is no need to perform a power headroom report (heardroom report) to the network device, which can save signaling overhead.
  • the embodiments of the present application provide a communication device for executing the method in any one of the foregoing first to fourth aspects or in any possible implementation manner of any one of the aspects.
  • the device includes A module for executing the method in any one of the foregoing first to fourth aspects or any possible implementation manner of any one of the aspects.
  • an embodiment of the present application provides a communication device, including a processor and a transceiver.
  • memory may also be included.
  • the memory is used to store instructions
  • the processor is used to execute instructions stored in the memory
  • the execution causes the processor to execute any one of the first aspect to the fourth aspect Aspect or any possible implementation of any aspect.
  • the embodiments of the present application provide a computer-readable medium for storing a computer program.
  • the computer program includes any possible implementation manner for executing any one of the first to fourth aspects or any one of the aspects.
  • the instructions in the method are not limited to any one of the first to fourth aspects or any one of the aspects.
  • the embodiments of the present application also provide a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, the computer is caused to execute any or any of the first to fourth aspects. Any possible implementation method.
  • a chip including a processor and a communication interface, the processor is configured to call and execute instructions from the communication interface, and when the processor executes the instructions, the first aspect to the first aspect are implemented.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement any one of the foregoing first to fourth aspects or the method in any possible implementation manner of any one of the aspects.
  • a communication system in a tenth aspect, includes a device capable of realizing the methods and various possible designs of the above-mentioned first aspect, and the above-mentioned devices are capable of realizing the various methods and various possible designs of the above-mentioned second aspect.
  • Functional device capable of realizing the various methods and various possible designs of the above-mentioned first aspect, and the above-mentioned devices are capable of realizing the various methods and various possible designs of the above-mentioned second aspect.
  • a communication system includes a device capable of implementing the methods and various possible design functions of the foregoing third aspect, and the foregoing methods and various possibilities of implementing the foregoing fourth aspect. Designed functional device.
  • Fig. 1 shows a schematic diagram of an NTN communication system according to an embodiment of the present application.
  • Fig. 2 shows an interaction flowchart of a power control method provided by an embodiment of the present application.
  • Figure 3 shows an example of communication between different network devices in the NTN network.
  • Fig. 4 shows an interaction flowchart of a power control method provided by an embodiment of the present application.
  • Fig. 5 shows a schematic diagram of a method for dynamic power control provided by an embodiment of the present application.
  • Fig. 6 shows a schematic diagram of a wireless communication apparatus provided by an embodiment of the present application.
  • Fig. 7 shows a schematic structural diagram of a terminal device provided by the present application.
  • Fig. 8 shows a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application is applicable to a communication system in which terrestrial communication and satellite communication are integrated.
  • This communication system may also be called a non-terrestrial network (NTN) communication system.
  • NTN non-terrestrial network
  • the terrestrial communication system may be, for example, a long term evolution (LTE) system, a universal mobile telecommunication system (UMTS), a 5G communication system, or a new radio (NR) system, or a future downlink system.
  • LTE long term evolution
  • UMTS universal mobile telecommunication system
  • 5G communication system a new radio (NR) system
  • NR new radio
  • Fig. 1 shows a schematic diagram of an NTN communication system according to an embodiment of the present application.
  • the NTN communication system fusion of 5G communication and satellite communication is taken as an example.
  • the communication system includes terminal equipment 1, terminal equipment 2, access network equipment 1, access network equipment 2, and core network equipment.
  • the terminal device can access the network (such as an access network device) through a 5G new air interface (such as a Uu interface) interface, and the access network device can be connected to a core network device through a wireless link (such as an NG interface).
  • a wireless link such as an NG interface
  • the NG interface can be used to interact with the non-access stratum (NAS) and other signaling of the core network device, as well as the user's service data.
  • NAS non-access stratum
  • Xn interface wireless link between the access network equipment, which can complete the signaling interaction and user data transmission between the access network equipment and the access network equipment.
  • the Xn interface can be used for signaling such as interactive handover.
  • the terminal equipment may be a ground mobile terminal device or a ground fixed terminal device
  • the access network equipment may be deployed on a satellite or on the ground
  • the core network equipment may be deployed on the ground.
  • the access network equipment When the access network equipment is deployed on a satellite, the access network equipment can be turned into a satellite network equipment.
  • the communication system shown in FIG. 1 may also include a ground station, which is responsible for forwarding signaling and service data before the satellite network equipment and the core network equipment.
  • the ground station may be connected to the satellite network device through a wireless link (such as an NG interface), and connected to the AMF or UPF through a wireless link or a wired link.
  • the terminal equipment in the embodiments of this application may also be referred to as: user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminals are: mobile phones, tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality.
  • MID mobile internet devices
  • VR virtual reality
  • Wireless terminals in transportation safety transportation safety
  • wireless terminals in smart city smart city
  • wireless terminals in smart home smart home
  • cellular phones cordless phones
  • session initiation protocol session initiation protocol
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • handheld device with wireless communication function computing device or other processing device connected to wireless modem
  • vehicle Devices wearable devices
  • terminal devices in a 5G network or terminal devices in an evolved public land mobile network (PLMN), etc., which are not limited in the embodiment of the present application.
  • PLMN evolved public land mobile network
  • the access network device in the embodiment of the present application may be a device used to communicate with terminal devices, mainly providing wireless access services, scheduling wireless resources for terminal devices, and providing reliable wireless transmission protocols and data encryption protocols.
  • Access network equipment can also be called access equipment or radio access network equipment. It can be an evolved NodeB (eNB or eNodeB) in an LTE system, or it can be a cloud radio access network (cloud radio access network, The wireless controller in the CRAN) scenario, or the access device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and an access device in a 5G network or a network device in a future evolved PLMN network, etc., which can be
  • the access point (AP) in the WLAN may be a gNB in a new radio system (new radio, NR) system, and this embodiment of the application is not limited.
  • the access network device is a device in the RAN, or in other words, a RAN node that connects a terminal device to a wireless network.
  • gNB transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B, NB
  • BSC base station controller
  • BTS base transceiver station
  • BTS home base station
  • BBU baseband unit
  • Wifi wireless fidelity
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node (CU-UP node) and RAN equipment of DU node.
  • the core network device may be connected to the access network device for services such as user access control, mobility association, session management, user security authentication, and charging.
  • the core network equipment may be composed of multiple functional units, which can be exemplified by control plane functional entities and data plane functional entities.
  • the control plane function entity includes, for example, an access management function (AMF) and a session management function (session management function, SMF).
  • Data plane functional entities include, for example, UPF, data network, and so on.
  • AMF is mainly responsible for access and mobility control, including registration management (RM) and connection management (CM), access authentication and authorization, reachability management, and mobility management.
  • RM registration management
  • CM connection management
  • access authentication and authorization access authentication and authorization
  • reachability management mobility management
  • SMF is responsible for session management, including the establishment, modification, and release of packet data unit (PDU) sessions.
  • PDU packet data unit
  • UPF mainly provides user plane support, including connection points between PDU sessions and data networks, data packet routing and forwarding, data packet inspection and user plane policy execution, quality of service (QoS) processing for the user plane, and downstream data packet caching And the trigger of the downlink data notification, etc.
  • QoS quality of service
  • the core network device may include a 5G control plane and a 5G data plane, where the 5G control plane may include AMF and SMF, and the 5G data plane may include UPF and a data network.
  • the 5G control plane may include AMF and SMF
  • the 5G data plane may include UPF and a data network.
  • the communication system in FIG. 1 is only an example, and the communication system applicable to this application is not limited to this.
  • one access network device can serve multiple terminal devices, and FIG. 1 only takes one terminal device as an example.
  • the core network side may also include other core network equipment, such as authentication server function (AUSF), packet control function (PCF), and so on.
  • AUSF authentication server function
  • PCF packet control function
  • Power control is based on evaluating indicators such as the received signal strength or signal-to-noise ratio at the receiver, and changing the transmit power in time to compensate for path loss and fading in the wireless channel.
  • power control can maintain communication quality without causing additional interference to other users in the same radio resource.
  • power control reduces the power of the transmitter, which can extend the battery life.
  • Closed-loop power control refers to the process in which the transmitting end controls the transmit power according to the feedback information sent by the receiving end.
  • the open-loop power control does not require feedback from the receiving end, and the transmitting end controls the transmit power according to the information obtained by its own measurement.
  • a terminal device when it sends a signal to a network device (such as an access network device), it can perform uplink power control.
  • the terminal device can perform physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), physical random access channel (PRACH) and sounding reference Signals (sounding reference signal, SRS) and other signals perform uplink power control.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • SRS sounding reference Signals
  • the uplink power control mainly includes an open-loop power control part, a closed-loop power control part, and other adjustments.
  • PRACH always uses open loop power control.
  • the terminal device can calculate the uplink transmit power according to the parameter settings, that is, perform open-loop power control.
  • the PUSCH carried in the message 3 (Msg3) in the random access process is also transmitted in an open-loop power control manner.
  • the power control of other channels/signals can be closed-loop power control, such as through the transmit power control (TPC) signal in the physical downlink control channel (physical downlink control channel, PDCCH) channel. Make closed-loop power control.
  • TPC transmit power control
  • PDCCH physical downlink control channel
  • the network device can calculate the power adjustment amount according to the uplink channel quality and send it to the terminal device.
  • the terminal device can calculate the uplink power value according to the power adjustment amount.
  • the terminal device configures the transmission power P cmax to limit the maximum output power.
  • the general calculation formula of uplink power control P is as follows:
  • the user needs to periodically report the power control margin during the communication process, that is, the difference between the current transmit power and the maximum transmit power.
  • the network device may send a control channel, such as PDCCH, and the control channel may carry scheduling information for scheduling PDSCH, PUSCH, or PUCCH.
  • the scheduling information includes resource allocation information, modulation and coding mode, etc., which are not limited in the embodiment of the present application.
  • the terminal device detects the control channel in the subframe, and performs PDSCH reception, or PUSCH transmission, or PUCCH transmission according to the scheduling information carried in the detected control channel.
  • the scheduling information may include UL downlink control information (downlink control information, DCI), which is used to indicate PUSCH transmission.
  • the UL DCI can carry the TPC command word ⁇ PUSCH of PUSCH .
  • the scheduling information may also include DL DCI, which is used to indicate PDSCH reception.
  • the DL DCI may also carry the TPC command word ⁇ PUCCH of the PUCCH .
  • the transmit power of PUSCH can be shown in the following formula (1):
  • the transmit power of PUCCH can be shown in the following formula (2):
  • f represents the carrier
  • c represents the serving cell
  • i represents the PUSCH transmission period
  • j represents the configured parameter
  • l represents the power control adjustment state index
  • P CMAX,f,c (i) represents the maximum transmit power allowed by the terminal equipment to transmit on the carrier and serving cell
  • PO_PUSCH,f,c (j) represents the initial power of PUSCH, which is composed of cell-level high-level configuration parameters and terminal equipment-level high-level configuration parameters;
  • PL f,c (q d ) represents the estimated value of path loss
  • f f,c (i,l) represents the PUSCH power closed-loop control adjustment parameter, which is obtained by mapping the TPC information in the PUSCH;
  • PO_PUCCH, b, f, c (q u ) represents the initial power of PUCCH, which is composed of cell-level high-level configuration parameters and terminal equipment-level high-level configuration parameters;
  • ⁇ F_PUCCH (F) reflects the impact of different transmission formats of PUCCH on the transmit power
  • g b, f, c (i, l) represents the adjustment amount of PUCCH transmit power, which is obtained by mapping the TPC information in the PDCCH.
  • the above-mentioned uplink transmission power method is suitable for the power control of the terrestrial communication system.
  • satellite communication there is a big difference between satellite communication and terrestrial communication.
  • the height of the terrestrial network equipment is the same.
  • the path loss between the terminal equipment and the source network equipment is less different from the path loss between the terminal equipment and the target network equipment.
  • the uplink transmit power of the terminal device is relatively constant.
  • the terminal equipment is between the satellite network equipment and the ground network.
  • the distance between the source network device and the target network device is relatively large, resulting in a gap between the terminal device and the source network device.
  • the path loss is quite different from the path loss between the terminal device and the target network device, such as a jump. At this time, the power control method in the terrestrial communication system is no longer applicable.
  • the embodiments of the present application provide a power control method and device, which can determine the path loss between the source network device and the terminal device and the target network device when the terminal device switches between the source network device and the target network device.
  • the uplink transmission power used when the terminal device communicates with the target network device is controlled.
  • the method and device for power control can be applied to NTN networks.
  • the technical solution of the present application can be applied to a wireless communication system, for example, the communication system shown in FIG. 1.
  • At least two communication devices in the wireless communication system may have a wireless communication connection relationship.
  • One of the at least two communication devices may correspond to the access network device 1 shown in FIG. 1, for example, it may be the access network device 1 or a chip configured in the access network device 1.
  • the at least two communication devices For example, one of the devices may correspond to the access network device 2 shown in FIG. 1, for example, it may be the access network device 2 or a chip configured in the access network device 2.
  • the other of the at least two communication devices One may correspond to the terminal device 1 in FIG. 1, for example, it may be the terminal device 1 or a chip configured in the terminal device 1.
  • the access network device 1 may be an example of a source network device
  • the access network device 2 may be an example of a target network device.
  • a power control process of a terminal device is taken as an example to describe the embodiments of the present application in detail. It can be understood that any terminal device in the wireless communication system or the chip configured in the terminal device can perform power control based on the same method, and any network device in the wireless communication system or the chip configured in the network device can be Power control can be performed based on the same method. This application does not limit this.
  • FIG. 2 shows an interaction flowchart of a method 200 for power control provided by an embodiment of the present application.
  • the data transmission method 200 includes step 210 to step 230.
  • the terminal device determines, according to the first parameter, the uplink transmit power used when the terminal device communicates with the target network device in the process of switching from the source network device to the target network device.
  • the path loss between the source network device and the terminal device is different from the path loss between the target network device and the terminal device.
  • the path loss between the target network device and the terminal device is relative to the difference between the source network device and the terminal device.
  • the path loss between time has jumped.
  • the first parameter is used for power adjustment of the first uplink transmit power used in the communication between the terminal device and the source network device. That is to say, by adjusting the power of the first uplink transmission power according to the first parameter, the uplink transmission power used by the terminal device when communicating with the target network device during the handover process (hereinafter referred to as the second transmission power) can be obtained .
  • the second uplink transmission power may be the uplink transmission power used when the terminal device sends a data channel (for example, PUSCH) to the target network device, or may be used when the terminal device sends a control channel (for example, PUCCH) to the target network device
  • the uplink transmission power may be the uplink transmission power used when the terminal device sends PARCH or SRS to the target network device, which is not limited in the embodiment of the present application.
  • the source network device and the target network device may be two different network devices in the NTN network.
  • Figure 3 shows an example of communication between different network devices in the NTN network.
  • NTN networks can include different types of base stations, such as ground base stations, low earth orbit (LEO) base stations, medium orbit satellite base stations, and high orbit satellite (geostationary earth orbit, GEO) base stations. and many more.
  • the NTN network may also include ground stations.
  • the source network equipment in Figure 2 can be a ground base station, a low orbit satellite base station, a medium orbit satellite base station, a high orbit satellite base station or a ground station
  • the target network equipment can be a ground base station, a low orbit satellite base station, a medium orbit satellite base station,
  • the high-orbit satellite base station or the ground station is not limited in the embodiment of this application.
  • the height of LEO is usually less than 2000KM, for example, it can be 600KM, which is recorded as LEO (600KM), and for example, it can be 1200KM, which is recorded as LEO (1200KM).
  • the usual altitude range of medium orbit satellites is 2000 to 20000km.
  • the height of GEO is usually greater than 20000km, for example, it can be 35768KM, which is recorded as GEO (35768KM).
  • the source network equipment is a ground base station
  • the target network equipment is a satellite base station (such as a low-orbit satellite base station, a medium-orbit satellite base station, or a high-orbit satellite base station), or the source network equipment is a satellite base station
  • the target network equipment is a ground base station
  • the source network equipment is a low-orbit satellite base station and the target network equipment is a high-orbit satellite base station
  • the source network equipment is a high-orbit satellite base station and the target network equipment is a low-orbit satellite base station
  • the source is very large, which causes the path loss between the source network device and the terminal network device to be different from the path loss between the target network device and the terminal device, for example, the path loss changes.
  • the path loss between the network equipment and the terminal equipment includes not only the path loss between the satellite network equipment and the terminal equipment, but also satellite Path loss between network equipment and ground station.
  • the satellite network device when a terminal device communicates with a satellite network device, the satellite network device needs to forward signaling or service data to the ground station for processing. At this time, if the terminal device does not switch communication with the satellite network device, but the satellite network device switches the ground station with which it communicates, the satellite network device switches from the source ground station to the target ground station. At this time, if the path loss between the satellite network device and the source ground station is different from the path loss between the satellite network device and the target ground station, it can still be considered that the path loss between the source network device and the terminal device is the same as that of the target network. The path loss between the device and the terminal device is different.
  • the terminal device since the path loss between the source network device and the terminal network device is different from the path loss between the target network device and the terminal device, the terminal device is switched from the source network device to the target network device. It is not possible to continue to communicate with the target network device according to the first uplink transmission power between the terminal device and the source network device.
  • the path loss between the target network device and the terminal device is greater than the path loss between the source network device and the terminal device, if the first uplink transmit power is still used to communicate with the target network device, it may be unable to compensate for wireless The path loss and fading in the channel reduce the communication quality between the terminal device and the target network device.
  • the path loss between the target network device and the terminal device is less than the path loss between the source network device and the terminal device, if the communication with the target network device is still performed according to the first uplink transmission power, it may lead to the same Other users in the wireless resources generate additional interference. In addition, the larger transmission power will shorten the battery life of the terminal equipment.
  • the first uplink transmit power used in the communication between the terminal device and the source network device is adjusted according to the first parameter, so that the first uplink transmit power used in the communication between the terminal device and the target network device can be obtained.
  • the second uplink transmit power is used in other words, the embodiment of the present application can use the adjusted first uplink transmission power (that is, the second uplink transmission power) to communicate with the target network device.
  • the above-mentioned first parameter includes a first compensation value (may be denoted as ⁇ P HO ) of the first uplink transmission power between the terminal device and the source network device and/or the path loss factor corresponding to the first uplink transmission power (may be Denoted as ⁇ 1 ) the second compensation value (can be denoted as N).
  • a first compensation value may be denoted as ⁇ P HO
  • the path loss factor corresponding to the first uplink transmission power may be Denoted as ⁇ 1
  • the second compensation value can be denoted as N).
  • the first compensation value since the first compensation value compensates for the first uplink transmission power, the first compensation value may also be referred to as a power compensation value. Since the second compensation value compensates for the path loss factor corresponding to the first uplink transmission power, the second compensation value may also be referred to as a path loss factor compensation value.
  • the second uplink transmission power may be the sum of the first uplink transmission power and ⁇ P HO , that is, the first uplink transmission power used when the terminal device communicates with the source network device Performing ⁇ P HO compensation, the second uplink transmit power can be obtained.
  • the uplink transmit power used when the terminal device sends the PUSCH to the target network device can be shown in the following formula (3):
  • the uplink transmit power used when the terminal device sends the PUCCH to the target network device can be shown in the following formula (4):
  • the value of ⁇ P HO may be a positive number, or a negative number, or 0, which is not limited in the embodiment of the present application.
  • the path loss factor corresponding to the second uplink transmission power may be the sum of the path loss factor ⁇ 1 and N ( ⁇ 1 + N), or the product of ( ⁇ 1 ⁇ N, or ⁇ 1 ⁇ N, or ⁇ 1 N), that is, through the path corresponding to the first uplink transmission power used in the communication between the terminal device and the source network device
  • the path loss factor ⁇ 2 corresponding to the second uplink transmission power
  • the second uplink transmission power can be determined according to the path loss factor ⁇ 2 corresponding to the second uplink transmission power.
  • the ⁇ 2 value may be substituted for the path loss factor ⁇ 1 in the first uplink transmit power formula used when the terminal device communicates with the source network device (for example, the path loss factor ⁇ 1 in the above formula (1) or (2)) to obtain the first 2. Transmitting power.
  • the uplink transmit power used when the terminal device sends the PUSCH to the target network device can be shown in the following formula (5) or formula (6):
  • the uplink transmit power used by the terminal device when sending PUCCH to the target network device can be shown in the following formula (7) or (8):
  • the value of N is The value can be positive, negative, or 0.
  • the value of N can be a positive number or negative number.
  • the uplink transmission power of the terminal device can be changed from the first uplink transmission power to the second uplink transmission power.
  • This power change can be understood as a response to a change in the communication distance (that is, path loss) between the terminal device and the network device.
  • the change in the communication distance (or path loss) between the terminal device and the network device will also change the communication delay between the terminal device and the network device.
  • the delay parameter and/or distance parameter between the terminal device and the source network device, and the delay between the terminal device and the target network device may be Parameters and/or distance parameters to determine the first parameter.
  • the first parameter It can be determined based on the height between the terminal device and the source network device, and the height between the terminal device and the target network device.
  • the first parameter may be determined according to the type of the source network device and the type of the target network device.
  • the first network device type Second network device type ⁇ P HO value Ground network equipment LEO(600KM) ⁇ 15dB Ground network equipment LEO(1200KM) ⁇ 20B Ground network equipment GEO ⁇ 20B LEO(600KM) LEO(1200KM) ⁇ 5dB LEO(600KM) GEO ⁇ 20dB LEO(1200KM) GEO ⁇ 15dB
  • the value of ⁇ P HO is positive, that is, ⁇ P HO takes the "+" in the column where ⁇ P HO is located.
  • the value of ⁇ P HO is +15dB, that is, the first transmit power is positively compensated.
  • the path loss between the target network device and the terminal device when the path loss between the target network device and the terminal device is greater than the path loss between the source network device and the terminal device, positive power compensation is performed on the first uplink transmission power, so that the first uplink transmission power is compensated.
  • the second transmission power is greater than the first transmission power, so that it is possible to obtain the uplink transmission power that satisfies the communication between the terminal device and the target network device in different handover scenarios.
  • the value of ⁇ P HO is negative, that is, ⁇ P HO takes the "-" in the column where ⁇ P HO is located.
  • the terminal device switches from a LEO (600KM) network device to a ground network device
  • the value of ⁇ P HO is -15dB, that is, the first transmit power is negatively compensated.
  • the path loss between the target network device and the terminal device when the path loss between the target network device and the terminal device is less than the path loss between the source network device and the terminal device, negative power compensation is performed on the first uplink transmission power, so that the first uplink transmission power is negatively compensated.
  • the second transmission power is less than the first transmission power, so that it is possible to obtain the uplink transmission power that satisfies the communication between the terminal device and the target network device in different handover scenarios.
  • path loss factor compensation value N As an example, different source network device types and target network device types correspond to different path loss factor compensation values N.
  • Table 2 shows an example of different network device types and the value of the path loss factor compensation value N 1 .
  • the value of N 1 is greater than 1, that is, N 1 takes the value outside the brackets in the column where N 1 is located.
  • the value of N 1 is 4, that is, the path loss factor corresponding to the first uplink transmission power is expanded.
  • the path loss between the target network device and the terminal device when the path loss between the target network device and the terminal device is greater than the path loss between the source network device and the terminal device, by expanding the path loss factor corresponding to the first uplink transmission power, The second transmission power is made greater than the first transmission power, so that the uplink transmission power that satisfies the communication between the terminal device and the target network device can be obtained in different handover scenarios.
  • the value of N 1 is less than 1, that is, N 1 takes the value outside the brackets in the column where N 1 is located.
  • the value of N 1 is 1/4, that is, the path loss factor corresponding to the first uplink transmission power is scaled.
  • the path loss between the target network device and the terminal device when the path loss between the target network device and the terminal device is less than the path loss between the source network device and the terminal device, by scaling the path loss factor corresponding to the first uplink transmission power, The second transmission power is made smaller than the first transmission power, so that the uplink transmission power that satisfies the communication between the terminal device and the target network device can be obtained in different handover scenarios.
  • Table 3 shows an example of different network device types and the value of the path loss factor compensation value N 2 .
  • the path loss factor corresponding to the second uplink transmission power is the sum of the path loss factor corresponding to the first uplink transmission power and N 2 .
  • the value of N 2 is positive, that is, N 2 takes the "+" in the column where N 2 is located.
  • the value of N 2 is +4, that is, the path loss factor corresponding to the first uplink transmission power is positively compensated.
  • the path loss factor corresponding to the first uplink transmission power can be positively compensated. , Making the second transmission power greater than the first transmission power, so that the uplink transmission power that satisfies the communication between the terminal device and the target network device can be obtained in different handover scenarios.
  • the value of N 2 is negative, that is, N 2 takes "-" in the column where N 2 is located.
  • the value of N 2 is -4, that is, the path loss factor corresponding to the first uplink transmission power is negatively compensated.
  • the value range of the path loss factor corresponding to the first uplink transmission power after compensation (that is, the path loss factor corresponding to the second uplink transmission power) can be a real number, that is, it can be less than or equal to 1, or greater than 1. All are within the protection scope of the embodiments of this application.
  • the terminal device may obtain or save the common delay in advance.
  • the network device can notify the terminal device of the common delay through broadcast or other methods.
  • the terminal device may also obtain the common delay according to positioning information, ephemeris information, and so on.
  • the terminal device may determine the first parameter according to the common delay difference between the terminal device and the source network device and the target network device (which may be expressed as ⁇ TA common ).
  • the common delay difference is the difference between the common delay between the terminal device and the source network device and the common delay between the terminal device and the target network device.
  • Table 4 shows an example of the common delay difference and the corresponding ⁇ P HO value.
  • the power compensation value ⁇ P HO can be determined according to the following formulas (9) and (10):
  • ⁇ L represents the common distance difference between the terminal device and the source network device and the target network device, that is, the difference between the distance between the terminal device and the source network device and the distance between the terminal device and the target network device;
  • C represents the speed of light;
  • L1 represents the communication distance between the terminal device and the source network device;
  • L1+ ⁇ L represents the communication distance between the terminal device and the target network device;
  • ⁇ loss represents the path loss after the source network device is switched to the target network device.
  • the value of ⁇ P HO can be equal to ⁇ loss, thereby realizing compensation for the first uplink transmission power.
  • the terminal device may also obtain the distance parameter of the source network device or the target network device, and determine the power compensation value ⁇ P HO according to the distance parameter.
  • the network device may notify the terminal device of the distance parameter through broadcast or other methods.
  • the second uplink transmission power is less than or equal to the maximum uplink transmission power of the terminal device.
  • the terminal device when the value of the uplink transmission power used by the terminal device when communicating with the target network device calculated according to the above table or formula is greater than the maximum uplink transmission power of the terminal device, the terminal device is actually communicating with the target network device
  • the second uplink transmission power used at this time may be the maximum uplink transmission power of the terminal device.
  • P CMAX represents the maximum uplink transmit power of the terminal equipment.
  • the terminal device switches from the source network device to the target network device. , Both communicate with the target network device at the maximum uplink transmission power.
  • the uplink transmit power used by the terminal device when sending the PUCCH to the target network device may be shown in the following formula (12):
  • the uplink transmit power used by the terminal device when sending PUCCH to the target network device can be shown in the following formula (13):
  • the terminal device may not need to use complicated calculations to obtain the uplink transmit power used when communicating with the target network device, which can reduce the complexity of the terminal device.
  • the terminal device and the network device communicate with the maximum uplink transmission power, there is no need to report the power headroom to the network device, which can save signaling overhead.
  • the terminal device when the terminal device is not in the process of switching from the source network device to the target network device, such as before or after the switch, the terminal device can use the existing power control method, for example, according to formula (1) or formula (2) Determine the uplink transmit power.
  • an open-loop power control method or a closed-loop power control method may be used to determine the second uplink transmit power.
  • the terminal device when the open-loop power control method is adopted, can be based on the delay parameter and/or distance parameter between the terminal device and the source network device, and the delay parameter between the terminal device and the target network device And/or the distance parameter to determine the first parameter.
  • the terminal device may look up the table to obtain the power compensation value ⁇ P HO or the path loss factor compensation value N according to the type of the source network device and the type of the target network device, or according to the common delay difference.
  • the terminal device accesses the network device, it can identify the type of the network device according to related parameters such as delay or distance.
  • the terminal device may obtain or save the foregoing Table 1 to Table 4 in advance, so as to determine the second uplink transmit power by looking up the table.
  • the target network device when a closed-loop power control method is adopted, can be based on the delay parameter and/or distance parameter between the terminal device and the source network device, and the delay parameter between the terminal device and the target network device And/or the distance parameter to determine the first parameter.
  • the target network device may obtain or store the foregoing Table 1 to Table 4 in advance, so as to determine the second uplink transmit power by looking up the table.
  • the method 200 further includes step 230.
  • the target network device may send first indication information to the terminal device, where the first indication information is used to indicate the first parameter.
  • the terminal device can determine the first parameter according to the first indication information.
  • the first indication information may include the first parameter.
  • the target network device may send the first instruction information to the source network device through the Xn interface, and then the source network device sends the first instruction information to the terminal device through the 5G new air interface with the terminal device .
  • the first indication information may be carried in radio resource control (radio resource control, RRC) signaling, such as an RRC reconfiguration message (RRC Reconfiguration message).
  • RRC radio resource control
  • the RRC reconfiguration message may include the power compensation value ⁇ P HO or the path loss factor compensation value N.
  • a power compensation (power compensation) field may be added to the information element (IE) field of the RRC reconfiguration message to indicate the power compensation value ⁇ P HO .
  • IE information element
  • the following shows an example of the power compensation (power compensation) field in the IE structure of the RRC reconfiguration message in the embodiment of the present application.
  • the terminal device communicates with the target network device.
  • the terminal device communicates with the target network device using the above-mentioned second uplink transmission power.
  • the terminal device may use the second uplink transmission power to send the PUSCH to the target network device.
  • the terminal device may use the second uplink transmission power to send the PUCCH to the target network device.
  • the terminal device may use the second uplink transmission power to send the PARCH to the target network device.
  • the terminal device may use the second uplink transmission power to send the SRS to the target network device.
  • the embodiments of the present application are not limited to this.
  • the first uplink transmission power used in the communication between the terminal device and the source network device is adjusted according to the first parameter to obtain the second uplink transmission power, and the second uplink transmission power is used in the handover process.
  • the second uplink transmission power is used in the handover process. 2.
  • positive power compensation may be performed on the first uplink transmission power, so that the second transmission power is greater than the first transmission power.
  • a transmission power, so that the second uplink transmission power can compensate for path loss and fading in the wireless channel, and improve the communication quality between the terminal device and the target network device.
  • negative power compensation may be performed on the first uplink transmission power, so that the second transmission power is less than The first transmit power, thereby reducing additional interference to other users in the same wireless resource.
  • the battery life of the terminal device can also be extended.
  • the embodiments of the present application also provide a power control method and device, which can determine the use of when communicating with the network device according to the transmission power of the terminal device and/or the path loss between the terminal device and the network device.
  • Uplink transmit power can be determined by the embodiments of the present application.
  • At least two communication devices in the wireless communication system may have a wireless communication connection relationship.
  • one of the at least two communication devices may correspond to the access network device 1 shown in FIG. 1, for example, it may be the access network device 1 or a chip configured in the access network device 1, and the other
  • it may correspond to the terminal device 1 in FIG. 1, for example, it may be the terminal device 1 or a chip configured in the terminal device 1.
  • one of the at least two communication devices may correspond to the access network device 2 shown in FIG. 1, for example, it may be the access network device 2 or a chip configured in the access network device 2, and the other Another example may correspond to the terminal device 2 shown in FIG. 1, for example, it may be the terminal device 2 or a chip configured in the terminal device 2.
  • a power control process of a terminal device is taken as an example to describe the embodiments of the present application in detail. It can be understood that any terminal device in the wireless communication system or the chip configured in the terminal device can perform power control based on the same method, and any network device in the wireless communication system or the chip configured in the network device can be Power control can be performed based on the same method. This application does not limit this.
  • FIG. 4 shows an interaction flowchart of a power control method 400 provided by an embodiment of the present application.
  • the data transmission method 400 includes step 410 to step 430.
  • the terminal device determines the third uplink transmit power used when communicating with the network device.
  • the terminal device can determine the uplink transmission power used for communication between the terminal device and the network device according to the size of the transmission power of the terminal device and/or the size of the path loss between the terminal device and the network device, for example, it can be called Is the third uplink transmit power.
  • step 430 may be further included.
  • the terminal device receives second indication information sent by the network device, where the second indication information is used to indicate the foregoing third uplink transmit power.
  • the third uplink transmit power may be determined by the network device according to the size of the transmit power of the terminal device and/or the size of the path loss between the terminal device and the network device.
  • the communication distance or communication delay between the terminal device and the network device is related to the path loss of the terminal device.
  • different path loss values correspond to different communication distances or communication delays. Therefore, in some possible implementation manners, the third uplink transmit power may also be determined according to the distance parameter and/or delay parameter between the terminal device and the network device.
  • the third uplink transmission power can also be determined according to the type of the network equipment.
  • network equipment can be divided into LEO network equipment, low-orbit satellite network equipment and GEO network equipment.
  • the third uplink transmission power in the embodiment of the present application may be the maximum uplink transmission power of the terminal device, or the third uplink transmission power may be the uplink transmission power determined according to a pre-configured uplink power control mode.
  • the configured uplink power control mode is, for example, the uplink power control mode defined by the NR protocol, for example, the mode of determining the uplink transmission power according to the above formula (1) or formula (2).
  • the transmission power of the terminal equipment is small, and the distance between the terminal equipment and GEO is long, resulting in a large path loss.
  • the uplink transmission power is determined in the manner of formula (2), the calculated uplink transmission power is likely to be close to or greater than the maximum uplink transmission power P CMAX,f,c (i) of the terminal device. Therefore, in this case, in order to reduce the complexity of the terminal device, it is not necessary to calculate the uplink transmission power, but directly use the maximum uplink transmission power to communicate with the network device.
  • a power headroom report (heardroom report)
  • the transmission power of the terminal equipment is relatively large, and the distance between the terminal equipment and the LEO-600KM is relatively short, according to the above formula (1) or formula (
  • the uplink transmit power calculated by the method 2) may be less than the maximum uplink transmit power P CMAX,f,c (i) of the terminal device. Therefore, in this case, the uplink transmit power can still be determined according to the pre-configured uplink power control mode.
  • terminal devices can be classified according to the size of the transmission power of the terminal device.
  • terminal devices can be divided into handheld terminal devices, very small aperture terminal (VSAT) terminal devices, other terminal devices, and so on.
  • VSAT very small aperture terminal
  • the transmission power of other terminal equipment is greater than the transmission power of the VSAT terminal equipment
  • the transmission power of the VSAT terminal equipment is greater than the transmission power of the handheld terminal equipment.
  • the third uplink transmission power can be determined according to the type of the terminal equipment and the type of the network equipment.
  • Table 5 shows an example of the correspondence between the terminal device type, the network device type, and the third uplink transmit power.
  • P max in Table 5 represents communication with the maximum transmission power
  • power control represents the determination of the third uplink transmission power according to the power control preset in the protocol, for example, according to the above formula (1) or (2).
  • Table 5 can also define whether power headroom reporting is required. Among them, disabling (disable) in the column where the margin reporting is located indicates that power headroom reporting is not required, and enabling (enable) in the column where the margin reporting is located indicates that power headroom reporting is required.
  • an open-loop power control method or a closed-loop power control method may be used to determine the third uplink transmit power.
  • the terminal device may determine the third uplink transmission power according to the size of the transmission power of the terminal device and/or the path loss between the terminal device and the network device.
  • the terminal device accesses the network device, it can identify the type of the network device according to related parameters such as delay or distance.
  • the terminal device may obtain or save the above-mentioned Table 5 in advance, so as to determine the third uplink transmit power by looking up the table.
  • the network device may determine the third uplink transmit power according to the size of the transmit power of the terminal device and/or the path loss between the terminal device and the network device.
  • the network device may obtain or save the foregoing Table 5 in advance, so as to determine the third uplink transmit power by looking up the table.
  • the method 400 may further include step 430.
  • the network device may send second indication information to the terminal device, where the second indication information is used to indicate the third uplink transmit power. In this way, the terminal device can determine the third uplink transmit power according to the second indication information.
  • the second indication information may be carried in RRC signaling, or may be carried in PUCCH scheduling information (for example, in DCI), which is not limited in the embodiment of the present application.
  • the second indication information may indicate whether the third uplink transmission power is the maximum uplink transmission power. For example, when the second indication information is an indication bit, when the indication bit is "1", it means that the third uplink transmission power is the maximum uplink transmission power; when the indication bit is "0", it means that it is in a pre-configured manner To determine the third uplink transmit power. Or, it can be reversed, which is not limited in the embodiment of the present application.
  • the network device can dynamically adjust the power control mode of the terminal device.
  • the network device may be prohibited identifier (P max disabling flag) P max by signaling to indicate whether a power adjustment at the maximum transmit power.
  • P max disabling flag P max by signaling to indicate whether a power adjustment at the maximum transmit power.
  • the terminal device is instructed to perform uplink transmission to the network device with the maximum uplink transmission power.
  • the terminal device is instructed to perform uplink transmission to the network device according to the pre-configured power control mode.
  • the terminal device communicates with the network device using the third uplink transmission power.
  • the terminal device may use the third uplink transmission power to send the PUSCH to the network device.
  • the terminal device may use the third uplink transmission power to send the PUCCH to the target network device.
  • the embodiments of the present application are not limited to this.
  • the third uplink transmission power is obtained according to the transmission power of the terminal device and/or the path loss between the terminal device and the network device, and the third uplink transmission power is used as the difference between the third uplink transmission power and the network device. Communicate between. Based on this, the embodiment of the present application can more flexibly control the uplink transmission power of the terminal device in a scenario where the ground terminal device communicates with the satellite network device.
  • the method shown in FIG. 4 may also be executed before the method shown in FIG. 2 or after the method shown in FIG. 2.
  • the power control method shown in Figure 4 can be used to control the uplink transmission power of the communication between the terminal device and the source network device.
  • the power control method shown in FIG. 4 can be used to control the uplink transmit power for communication between the terminal device and the target network device.
  • FIG. 6 is a schematic diagram of a wireless communication apparatus 600 provided in an embodiment of this application.
  • the apparatus 600 may include a processing unit 610 (that is, an example of a processor) and a communication unit 630.
  • the processing unit 610 may also be referred to as a determining unit
  • the communication unit 630 may also be referred to as a transceiving unit.
  • the transceiver unit may include a receiving unit and a sending unit.
  • the communication unit 630 may be implemented by a transceiver or a transceiver-related circuit or interface circuit.
  • the device may further include a storage unit 620.
  • the storage unit 620 is used to store instructions.
  • the storage unit may also be used to store data or information.
  • the storage unit 620 may be implemented by a memory.
  • the processing unit 610 is configured to execute the instructions stored in the storage unit 620, so that the apparatus 600 implements the steps performed by the terminal device in the foregoing method.
  • the processing unit 610 may be used to call the data of the storage unit 620, so that the apparatus 600 implements the steps performed by the terminal device in the foregoing method.
  • the processing unit 610 is configured to execute the instructions stored in the storage unit 620, so that the apparatus 600 implements the steps performed by the network device in the foregoing method.
  • the processing unit 610 may be used to call the data of the storage unit 620, so that the apparatus 600 implements the steps performed by the network device in the foregoing method.
  • the processing unit 610, the storage unit 620, and the communication unit 630 may communicate with each other through an internal connection path to transfer control and/or data signals.
  • the storage unit 620 is used to store a computer program, and the processing unit 610 can be used to call and run the computer program from the storage unit 620 to control the communication unit 630 to receive signals and/or send signals to complete the above method. Steps for terminal equipment or network equipment.
  • the storage unit 620 may be integrated in the processing unit 610, or may be provided separately from the processing unit 610.
  • the communication unit 630 includes a receiver and a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the communication unit 630 includes an input interface and an output interface.
  • the function of the communication unit 630 may be implemented by a transceiving circuit or a dedicated chip for transceiving.
  • the processing unit 610 may be implemented by a dedicated processing chip, a processing circuit, a processing unit, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the communication device (such as a terminal device or a network device) provided in the embodiments of the present application. That is, the program code for realizing the functions of the processing unit 610 and the communication unit 630 is stored in the storage unit 620, and the general processing unit implements the functions of the processing unit 610 and the communication unit 630 by executing the code in the storage unit 620.
  • the apparatus 600 may be a terminal device, or a chip or circuit provided in the terminal device.
  • the terminal device may correspond to the terminal device in the embodiment of FIG. 2 or FIG. 4.
  • the apparatus 600 may be a terminal device, or a chip or circuit provided in the terminal device, in one embodiment, the units of the apparatus 600 are respectively used to perform the following operations and/or processing.
  • the processing unit 610 is configured to adjust the first uplink transmission power used in the communication between the terminal device and the source network device according to the first parameter, and determine the second uplink transmission power used in the communication between the terminal device and the target network device, wherein, the path loss between the source network device and the terminal device is different from the path loss between the target network device and the terminal device, and the first parameter includes the first uplink transmit power. A compensation value and/or a second compensation value of the path loss factor corresponding to the first uplink transmit power.
  • the communication unit 630 is configured to communicate with the target network device at the second uplink transmission power when the terminal device is switched from the source network device to the target network device.
  • the first parameter is based on a delay parameter and/or a distance parameter between the terminal device and the source network device, and a delay parameter between the terminal device and the target network device And/or distance parameters are determined.
  • the second uplink transmission power is less than or equal to the maximum uplink transmission power of the terminal device.
  • the communication unit 630 is further configured to receive first indication information, where the first indication information is used to indicate the first parameter.
  • the processing unit 610 is further configured to determine a third uplink transmission power, where the third uplink transmission power is based on the transmission power of the terminal device and the difference between the terminal device and the target network device. At least one of the magnitude of the path loss between the two is determined.
  • the communication unit 630 is further configured to communicate with the target network device using the third uplink transmission power.
  • the communication unit 630 is further configured to receive second indication information, where the second indication information is used to indicate the third uplink transmit power.
  • the third uplink transmission power is the maximum uplink transmission power of the terminal device, or the third uplink transmission power is the uplink transmission power determined according to a pre-configured uplink power control mode.
  • the apparatus 600 may be a terminal device, or a chip or circuit provided in the terminal device, in another embodiment, the units of the apparatus 600 are respectively used to perform the following operations and/or processing.
  • the processing unit 610 is configured to determine a third uplink transmission power, where the third uplink transmission power is based on the transmission power of the terminal device and the path loss between the terminal device and the network device. At least one definite.
  • the communication unit 630 is configured to communicate with the target network device using the third uplink transmission power.
  • the communication unit 630 is further configured to receive second indication information, where the second indication information is used to indicate the third uplink transmit power.
  • the third uplink transmission power is the maximum uplink transmission power of the terminal device, or the third uplink transmission power is the uplink transmission power determined according to a pre-configured uplink power control mode.
  • each module or unit in the device 600 can be used to perform various actions or processing procedures performed by the terminal device in the above method.
  • detailed descriptions are omitted.
  • the apparatus 600 may be a network device, or a chip or circuit provided in the network device.
  • the device 600 may be a network device, or a chip or circuit provided in the network device, in one embodiment, the units of the device 600 are respectively used to perform the following operations and/or processing.
  • the network device may correspond to the target network device in the embodiment of FIG. 2.
  • the processing unit 610 is configured to determine a first parameter, where the first parameter is used to adjust the first uplink transmission power used in the communication between the terminal device and the source network device, so as to obtain the communication between the terminal device and the target network device
  • the path loss between the source network device and the terminal device is different from the path loss between the target network device and the terminal device.
  • the communication unit 630 is configured to send first indication information to the terminal device, where the first indication information is used to indicate the first parameter.
  • the first parameter is based on a delay parameter and/or a distance parameter between the terminal device and the source network device, and a delay parameter between the terminal device and the target network device And/or distance parameters are determined.
  • the second uplink transmission power is less than or equal to the maximum uplink transmission power of the terminal device.
  • the processing unit 610 is further configured to determine the third uplink transmit power according to at least one of the transmit power of the terminal device and the path loss between the target terminal device and the network device .
  • the communication unit 630 is further configured to send second indication information to the terminal device, where the second indication information is used to indicate the third uplink transmit power.
  • the third uplink transmission power is the maximum uplink transmission power of the terminal device, or the third uplink transmission power is the uplink transmission power determined according to a pre-configured uplink power control mode.
  • the apparatus 600 may be a network device, or a chip or circuit provided in the network device, in another embodiment, the units of the apparatus 600 are respectively used to perform the following operations and/or processing.
  • the network device may correspond to the network device in the embodiment of FIG. 4.
  • the processing unit 610 is configured to determine the third uplink transmission power according to at least one of the transmission power of the terminal device and the path loss between the terminal device and the network device;
  • the communication unit 630 is configured to send second indication information to the terminal device, where the second indication information is used to indicate the third uplink transmit power.
  • the third uplink transmission power is the maximum uplink transmission power of the terminal device, or the third uplink transmission power is the uplink transmission power determined according to a pre-configured uplink power control mode.
  • each module or unit in the device 600 can be used to execute various actions or processing procedures performed by the network device in the above method.
  • detailed descriptions are omitted.
  • FIG. 7 is a schematic structural diagram of a terminal device 700 provided by this application.
  • the terminal device 700 can perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 7 only shows the main components of the terminal device.
  • the terminal device 700 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program. For example, it is used to support the terminal device to execute the above-mentioned transmission precoding matrix instruction method embodiment.
  • the memory is mainly used to store software programs and data, for example, to store the codebook described in the above embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process software programs. data.
  • the processor in FIG. 7 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 710 of the terminal device 700
  • the processor with the processing function can be regarded as the processing unit 720 of the terminal device 700.
  • the terminal device 700 includes a transceiving unit 710 and a processing unit 720.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 710 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 710 as the sending unit, that is, the transceiver unit includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • FIG. 8 is a schematic structural diagram of a network device 800 provided by an embodiment of this application, which may be used to implement the functions of the network device (for example, the target network device) in the foregoing method.
  • the network device 800 includes one or more radio frequency units, such as a remote radio unit (RRU) 810 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 820.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 810 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 811 and a radio frequency unit 812.
  • the RRU 810 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending the signaling messages described in the foregoing embodiments to terminal equipment.
  • the BBU820 part is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 810 and the BBU 820 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 820 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU (processing unit) 820 may be used to control the base station 40 to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU820 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network of a single access standard (such as an LTE system or a 5G system), and may also support different access networks respectively. Enter the standard wireless access network.
  • the BBU 820 further includes a memory 821 and a processor 822.
  • the memory 821 is used to store necessary instructions and data.
  • the memory 821 stores the codebook and the like in the above-mentioned embodiment.
  • the processor 822 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 821 and the processor 822 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • SoC system-on-chip
  • all or part of the functions of part 820 and part 810 can be realized by SoC technology, for example, a base station function chip Realization, the base station function chip integrates a processor, a memory, an antenna interface and other devices, the program of the base station related functions is stored in the memory, and the processor executes the program to realize the related functions of the base station.
  • the base station function chip can also read a memory external to the chip to implement related functions of the base station.
  • FIG. 8 the structure of the network device illustrated in FIG. 8 is only a possible form, and should not constitute any limitation in the embodiment of the present application. This application does not exclude the possibility of other types of base station structures that may appear in the future.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the embodiments of the present application also provide a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the steps performed by the terminal device in any of the foregoing embodiments or the steps performed by the network device are implemented.
  • the embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the steps performed by the terminal device in any of the foregoing embodiments, or the steps performed by the network device.
  • the embodiment of the present application also provides a system chip, which includes a communication unit and a processing unit.
  • the processing unit may be a processor, for example.
  • the communication unit may be, for example, a communication interface, an input/output interface, a pin or a circuit, or the like.
  • the processing unit can execute computer instructions, so that the chip in the communication device executes the steps executed by the terminal device provided in the embodiments of the present application, or the steps executed by the network device.
  • the computer instructions are stored in a storage unit.
  • the embodiment of the present application also provides a communication system, which includes the aforementioned network device and terminal device.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • pre-acquisition may include being indicated by network device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment). This application does not make any specific implementation methods. limited.
  • the “saving” involved in the embodiments of the present application may refer to being stored in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • protocol in the embodiments of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请提供一种功率控制的方法和装置,能够在地面通信和卫星通信融合的通信系统中,进行功率控制。在该方法中,通过根据第一参数对终端设备与源网络设备之间进行通信时采用的第一上行发射功率进行调整,获取第二上行发射功率,并在切换过程中采用该第二上行发射功率与目标网络设备之间进行通信。基于此,本申请实施例能够实现在终端设备切换的过程中,在源网络设备和终端设备的路径损耗与目标网络设备和终端设备之间的路径损耗不同的情况下,对终端设备与目标网络设备进行通信时采用的上行功率进行控制。

Description

功率控制的方法和装置
本申请要求于2019年11月08日提交中国专利局、申请号为201911090501.2、申请名称为“功率控制的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体的,涉及通信领域中的一种功率控制的方法和装置。
背景技术
随着信息技术的发展,对通信的高效、机动、多样性等提出更迫切的要求。目前,通信系统领域的一个发展重点是全球移动通信,而全球移动通信的重要组成部分是卫星通信。在一些重要领域,如空间通信、航空通信、海事通信、军事通信等,卫星发挥着不可替代的作用。卫星通信具备通信距离远、覆盖面积大、组网灵活等特点,其既可为固定终端,也可为各种移动终端提供服务。
第三代合作伙伴项目(3rd generation partnership project,3GPP)标准组织已经发布了第五代(5th generation mobile networks,5G)移动网络技术标准,研究天地融合通信技术,主要是融合现有的5G标准和卫星通信技术,满足在全球范围的全覆盖。
在5G通信和卫星通信融合的通信系统中,如何进行功率控制是亟需解决的问题。
发明内容
本申请提供一种功率控制的方法和装置,能够在地面通信和卫星通信融合的通信系统中,进行功率控制。
第一方面,提供了一种功率控制的方法。该方法由终端设备或可配置于终端设备的部件(例如芯片或者电路等)执行。下面以该方法由终端设备执行为例进行描述。
在该方法中,终端设备根据第一参数对终端设备与源网络设备之间通信时采用的第一上行发射功率进行调整,确定该终端设备与目标网络设备通信时采用的第二上行发射功率,其中,该源网络设备和终端设备之间的路径损耗与该目标网络设备和终端设备之间的路径损耗不同,上述第一参数包括所述第一上行发射功率的第一补偿值(可以记为ΔP HO)和/或所述第一上行发射功率对应的路径损耗因子的第二补偿值(可以记为N)。
在所述终端设备由所述源网络设备切换到所述目标网络设备的过程中,终端设备以上述第二上行发射功率与目标网络设备进行通信。
因此,本申请实施例中,通过根据第一参数对终端设备与源网络设备之间进行通信时采用的第一上行发射功率进行调整,获取第二上行发射功率,并在切换过程中采用该第二上行发射功率与目标网络设备之间进行通信。基于此,本申请实施例能够实现在终端设备切换的过程中,在源网络设备和终端设备的路径损耗与目标网络设备和终端设备之间的路径损耗不同的情况下,对终端设备与目标网络设备进行通信时采用的上行功率进行控制。
例如,在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,可以对第一上行发射功率进行正的功率补偿,使得第二发射功率大于第一发射功率,从而使得第二上行发射功率能够补偿无线信道中的路径损耗和衰落,提高终端设备与目标网络设备之间的通信质量。
又例如,在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,可以对第一上行发射功率进行负的功率补偿,使得第二发射功率小于第一发射功率,从而降低对同一无线资源中其他用户产生的额外的干扰。另外,通过减小终端设备的上行发射功率,还能够延长终端设备电池的使用时间。
作为一个示例,当第一参数为ΔP HO时,第二上行发射功率可以为第一上行发射功率与ΔP HO之和,即通过对终端设备与源网络设备进行通信时采用的第一上行发射功率进行ΔP HO的补偿,可以获取第二上行发射功率。
本申请实施例中,ΔP HO的取值可以为正数,或者负数,或者为0,本申请实施例对此不做限定。
作为另一个示例,当第一参数为N时,第二上行发射功率对应的路径损耗因子(可以记为α 2)可以为第一上行发射功率对应的路径损耗因子α 1与N之和(α 1+N),或者之积(α 1×N,或α 1·N,或α 1N),即通过对终端设备与源网络设备之间进行通信时采用的第一上行发射功率对应的路径损耗因子α 1乘以N倍或增加N大小的补偿,可以获取第二上行发射功率对应的路径损耗因子α 2
本申请实施例中,当第二上行发射功率对应的路径损耗因子为第一上行发射功率对应的路径损耗因子与N之和时,N的取值可以为正数、负数或者为0。当第二上行发射功率对应的路径损耗因子为第一上行发射功率对应的路径损耗因子与N之积时,N的取值可以为正数或负数。
因此,本申请实施例能够在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率对应的路径损耗因子进行正补偿,使得第二发射功率大于第一发射功率,在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率对应的路径损耗因子进行负补偿,使得第二发射功率小于第一发射功率,从而能够实现在不同的切换场景中获取满足终端设备与目标网络设备通信的上行发射功率。
结合第一方面,在第一方面的某些实现方式中,所述第一参数是根据终端设备与源网络设备之间的延迟参数和/或距离参数,以及终端设备与目标网络设备之间的延迟参数和/或距离参数确定的。
作为本申请一种实现方式,由于网络设备的高度与网络设备与终端设备之间的距离相关,比如随着网络设备高度的增加,该网络设备与终端设备之间的距离增加,因此第一参数可以是根据终端设备与源网络设备的高度,以及终端设备与目标网络设备之间的高度确定的。在一些可选的实施例中,当网络设备按照高度分类时,第一参数可以是根据源网络设备的类型和目标网络设备的类型确定的。
作为本申请另一种实现方式,终端设备可以根据终端设备与源网络设备和目标网络设备之间的公共延迟差(可以表示为ΔTA common),确定第一参数。其中,公共延迟差即为终端设备和源网络设备之间的公共延迟与终端设备和目标网络设备之间的公共延迟之间的差值。
结合第一方面,在第一方面的某些实现方式中,所述第二上行发射功率小于或等于终端设备的最大上行发射功率。
作为一种实现方式,当根据上述方式计算得到的终端设备在与目标网络设备通信时采用的上行发射功率的值大于终端设备的最大上行发射功率时,终端设备在与目标网络设备实际通信时采用的第二上行发射功率可以取值为该终端设备的最大上行发射功率。
作为另一种实现方式,当源网络设备和终端网络设备之间的路径损耗与目标网络设备和终端设备之间的路径损耗不同的情况下,终端设备在由源网络设备切换到目标网络设备时,均以最大上行发射功率与目标网络设备之间进行通信。
这样,终端设备可以不需要通过复杂的计算来获取与目标网络设备进行通信时采用的上行发射功率,能够降低终端设备的复杂度。另外,当终端设备与网络设备与最大上行发射功率进行通信时,可以不需要向网络设备进行功率余量的上报,能够节省信令开销。
本申请实施例中,可以采用开环功率控制的方式或者闭环功率控制的方式来确定第二上行发射功率。
作为一种实现方式,在采用开环功率控制的方式时,终端设备可以根据终端设备与源网络设备之间的延迟参数和/或距离参数,以及该终端设备与目标网络设备之间的延迟参数和/或距离参数,确定第一参数。
作为一种实现方式,在采用闭环功率控制的方式时,目标网络设备可以根据终端设备与源网络设备之间的延迟参数和/或距离参数,以及该终端设备与目标网络设备之间的延迟参数和/或距离参数,确定第一参数。然后,目标网络设备向终端设备发送第一指示信息,该第一指示信息用于指示所述第一参数。对应的,终端设备还可以接收该第一指示信息。
一种可能的实现方式中,第一指示信息可以携带在无线资源控制(radio resource control,RRC)信令,例如RRC重配置消息(RRC Reconfiguration message)中。
结合第一方面,在第一方面的某些实现方式中,在所述终端设备由所述源网络设备切换到所述目标网络设备之后,还可以确定第三上行发射功率,其中,所述第三上行发射功率是根据所述终端设备的发射功率大小和所述终端设备与所述目标网络设备之间的路径损耗大小中的至少一种确定的。然后,终端设备以所述第三上行发射功率与所述目标网络设备进行通信。
因此,本申请实施例中,通过根据终端设备的发射功率大小和/或终端设备与目标网络设备之间路径损耗的大小,获取第三上行发射功率,并采用该第三上行发射功率与网络设备之间进行通信。基于此,本申请实施例能够在地面终端设备与卫星网络设备通信的场景中,更灵活的对终端设备的上行发射功率进行控制。
结合第一方面,在第一方面的某些实现方式中,终端设备还可以接收第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。示例性的,终端设备可以从目标网络设备接收该第二指示信息。这样,能够实现通过闭环功率控制的方式进行功率控制。
结合第一方面,在第一方面的某些实现方式中,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
因此,本申请实施例可以不需要对进行上行发射功率的计算,而是直接采用最大上行发射功率与网络设备进行通信,这样能够减少终端设备的复杂度。另外,当终端设备与网络设备与最大上行发射功率进行通信时,可以不需要向网络设备进行功率余量上报 (heardroom report),能够节省信令开销。
第二方面,提供了一种功率控制的方法。该方法由目标网络设备或可配置于目标网络设备的部件(例如芯片或者电路等)执行。下面以该方法由目标网络设备执行为例进行描述。
在该方法中,目标网络设备确定第一参数,第一参数用于对终端设备与源网络设备之间通信时采用的第一上行发射功率进行调整,以获取该终端设备与目标网络设备通信时采用的第二上行发射功率,其中该第一参数包括第一上行发射功率的第一补偿值和/或第一上行发射功率对应的路径损耗因子的第二补偿值,源网络设备与终端设备之间的路径损耗与目标网络设备与终端设备之间的路径损耗不同。
目标网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参数。
因此,本申请实施例中,通过根据第一参数对终端设备与源网络设备之间进行通信时采用的第一上行发射功率进行调整,获取第二上行发射功率,并在切换过程中采用该第二上行发射功率与目标网络设备之间进行通信。基于此,本申请实施例能够实现在终端设备切换的过程中,在源网络设备和终端设备的路径损耗与目标网络设备和终端设备之间的路径损耗不同的情况下,对终端设备与目标网络设备进行通信时采用的上行功率进行控制。
例如,在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,可以对第一上行发射功率进行正的功率补偿,使得第二发射功率大于第一发射功率,从而使得第二上行发射功率能够补偿无线信道中的路径损耗和衰落,提高终端设备与目标网络设备之间的通信质量。
又例如,在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,可以对第一上行发射功率进行负的功率补偿,使得第二发射功率小于第一发射功率,从而降低对同一无线资源中其他用户产生的额外的干扰。另外,通过减小终端设备的上行发射功率,还能够延长终端设备电池的使用时间。
作为一个示例,当第一参数为ΔP HO时,第二上行发射功率可以为第一上行发射功率与ΔP HO之和,即通过对终端设备与源网络设备进行通信时采用的第一上行发射功率进行ΔP HO的补偿,可以获取第二上行发射功率。
本申请实施例中,ΔP HO的取值可以为正数,或者负数,或者为0,本申请实施例对此不做限定。
作为另一个示例,当第一参数为N时,第二上行发射功率对应的路径损耗因子(可以记为α 2)可以为第一上行发射功率对应的路径损耗因子α 1与N之和(α 1+N),或者之积(α 1×N,或α 1·N,或α 1N),即通过对终端设备与源网络设备之间进行通信时采用的第一上行发射功率对应的路径损耗因子α 1乘以N倍或增加N大小的补偿,可以获取第二上行发射功率对应的路径损耗因子α 2
本申请实施例中,当第二上行发射功率对应的路径损耗因子为第一上行发射功率对应的路径损耗因子与N之和时,N的取值可以为正数、负数或者为0。当第二上行发射功率对应的路径损耗因子为第一上行发射功率对应的路径损耗因子与N之积时,N的取值可以为正数或负数。
因此,本申请实施例能够在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率对应的路径损耗因子进行 正补偿,使得第二发射功率大于第一发射功率,在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率对应的路径损耗因子进行负补偿,使得第二发射功率小于第一发射功率,从而能够实现在不同的切换场景中获取满足终端设备与目标网络设备通信的上行发射功率。
结合第二方面,在第二方面的某些实现方式中,所述第一参数是根据所述终端设备与所述源网络设备之间的延迟参数和/或距离参数,以及所述终端设备与所述目标网络设备之间的延迟参数和/或距离参数确定的。
作为本申请一种实现方式,由于网络设备的高度与网络设备与终端设备之间的距离相关,比如随着网络设备高度的增加,该网络设备与终端设备之间的距离增加,因此第一参数可以是根据终端设备与源网络设备的高度,以及终端设备与目标网络设备之间的高度确定的。在一些可选的实施例中,当网络设备按照高度分类时,第一参数可以是根据源网络设备的类型和目标网络设备的类型确定的。
作为本申请另一种实现方式,终端设备可以根据终端设备与源网络设备和目标网络设备之间的公共延迟差(可以表示为ΔTA common),确定第一参数。其中,公共延迟差即为终端设备和源网络设备之间的公共延迟与终端设备和目标网络设备之间的公共延迟之间的差值。
结合第二方面,在第二方面的某些实现方式中,所述第二上行发射功率小于或等于所述终端设备的最大上行发射功率。
作为一种实现方式,当根据上述方式计算得到的终端设备在与目标网络设备通信时采用的上行发射功率的值大于终端设备的最大上行发射功率时,终端设备在与目标网络设备实际通信时采用的第二上行发射功率可以取值为该终端设备的最大上行发射功率。
作为另一种实现方式,当源网络设备和终端网络设备之间的路径损耗与目标网络设备和终端设备之间的路径损耗不同的情况下,终端设备在由源网络设备切换到目标网络设备时,均以最大上行发射功率与目标网络设备之间进行通信。
这样,终端设备可以不需要通过复杂的计算来获取与目标网络设备进行通信时采用的上行发射功率,能够降低终端设备的复杂度。另外,当终端设备与网络设备与最大上行发射功率进行通信时,可以不需要向网络设备进行功率余量的上报,能够节省信令开销。
本申请实施例中,当采用闭环功率控制的方式来确定第二上行发射功率时,目标网络设备可以根据终端设备与源网络设备之间的延迟参数和/或距离参数,以及该终端设备与目标网络设备之间的延迟参数和/或距离参数,确定第一参数。然后,向终端设备发送第一指示信息,该第一指示信息用于指示所述第一参数。
一种可能的实现方式中,第一指示信息可以携带在无线资源控制(radio resource control,RRC)信令,例如RRC重配置消息(RRC Reconfiguration message)中。
结合第二方面,在第二方面的某些实现方式中,还包括:
根据终端设备的发射功率大小和所述终端设备与所述目标网络设备之间的路径损耗大小中的至少一种,确定第三上行发射功率。然后,向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
因此,本申请实施例中,通过根据终端设备的发射功率大小和/或终端设备与目标网络设备之间路径损耗的大小,获取第三上行发射功率,并采用该第三上行发射功率与目标网络设备之间进行通信。基于此,本申请实施例能够在地面终端设备与卫星网络设备通信的 场景中,更灵活的对终端设备的上行发射功率进行控制。
结合第二方面,在第二方面的某些实现方式中,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
因此,本申请实施例可以不需要对进行上行发射功率的计算,而是直接采用最大上行发射功率与网络设备进行通信,这样能够减少终端设备的复杂度。另外,当终端设备与网络设备与最大上行发射功率进行通信时,可以不需要向网络设备进行功率余量上报(heardroom report),能够节省信令开销。
第三方面,提供了一种功率控制的方法,该方法由终端设备或可配置于终端设备的部件(例如芯片或者电路等)执行。下面以该方法由终端设备执行为例进行描述。
在该方法中,终端设备确定第三上行发射功率,其中,所述第三上行发射功率是根据所述终端设备的发射功率大小和所述终端设备与所述网络设备之间的路径损耗大小中的至少一种确定的。然后,终端设备以所述第三上行发射功率与网络设备进行通信。
因此,本申请实施例中,通过根据终端设备的发射功率大小和/或终端设备与网络设备之间路径损耗的大小,获取第三上行发射功率,并采用该第三上行发射功率与网络设备之间进行通信。基于此,本申请实施例能够在地面终端设备与卫星网络设备通信的场景中,更灵活的对终端设备的上行发射功率进行控制。
本申请实施例中,可以采用开环功率控制的方式或者闭环功率控制的方式来确定第三上行发射功率。
作为一种实现方式,在采用开环功率控制的方式时,终端设备可以根据所述终端设备的发射功率大小和所述终端设备与所述网络设备之间的路径损耗大小中的至少一种,确定第三上行发射功率。
作为一种实现方式,在采用闭环功率控制的方式时,网络设备可以根据所述终端设备的发射功率大小和所述终端设备与所述网络设备之间的路径损耗大小中的至少一种,确定第三上行发射功率。然后,终端设备接收第二指示信息,该第二指示信息用于指示所述第三上行发射功率。
结合第一方面,在第一方面的某些实现方式中,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
因此,本申请实施例可以不需要对进行上行发射功率的计算,而是直接采用最大上行发射功率与网络设备进行通信,这样能够减少终端设备的复杂度。另外,当终端设备与网络设备与最大上行发射功率进行通信时,可以不需要向网络设备进行功率余量上报(heardroom report),能够节省信令开销。
第四方面,提供了一种功率控制的方法。该方法由网络设备或可配置于网络设备的部件(例如芯片或者电路等)执行。下面以该方法由网络设备执行为例进行描述。
在该方法中,网络设备根据终端设备的发射功率大小和所述终端设备与所述网络设备之间的路径损耗大小中的至少一种,确定第三上行发射功率。然后,网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
因此,本申请实施例中,通过根据终端设备的发射功率大小和/或终端设备与网络设备之间路径损耗的大小,获取第三上行发射功率,并采用该第三上行发射功率与网络设备之 间进行通信。基于此,本申请实施例能够在地面终端设备与卫星网络设备通信的场景中,更灵活的对终端设备的上行发射功率进行控制。
结合第四方面,在第四方面的某些实现方式中,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
因此,本申请实施例可以不需要对进行上行发射功率的计算,而是直接采用最大上行发射功率与网络设备进行通信,这样能够减少终端设备的复杂度。另外,当终端设备与网络设备与最大上行发射功率进行通信时,可以不需要向网络设备进行功率余量上报(heardroom report),能够节省信令开销。
第五方面,本申请实施例提供了一种通信装置,用于执行上述第一方面至第四方面中任一方面或任一方面的任意可能的实现方式中的方法,具体的,该装置包括用于执行上述第一方面至第四方面中任一方面或任一方面的任意可能的实现方式中的方法的模块。
第六方面,本申请实施例提供了一种通信装置,包括:处理器和收发器。可选的,还可以包括存储器。其中,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面至第四方面中任一方面或任一方面任意可能的实现方式中的方法。
第七方面,本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面至第四方面中任一方面或任一方面任意可能的实现方式中的方法的指令。
第八方面,本申请实施例还提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行第一方面至第四方面中任一方面或任一方面的任意可能的实现方式中的方法。
第九方面,提供了一种芯片,包括处理器和通信接口,所述处理器用于从所述通信接口调用并运行指令,当所述处理器执行所述指令时,实现上述第一方面至第四方面中任一方面或任一方面的任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面至第四方面中任一方面或任一方面的任意可能的实现方式中的方法。
第十方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置,上述具有实现上述第二方面的各方法及各种可能设计的功能的装置。
第十一方面,提供了一种通信系统,该通信系统包括具有实现上述第三方面的各方法及各种可能设计的功能的装置,以及上述具有实现上述第四方面的各方法及各种可能设计的功能的装置。
附图说明
图1示出了本申请实施例的一种NTN通信系统的示意图。
图2示出了本申请实施例提供的一种功率控制的方法的交互流程图。
图3示出了NTN网络中不同网络设备之间通信的一个示例。
图4示出了本申请实施例提供的一种功率控制的方法的交互流程图。
图5示出了本申请实施例提供的一种动态功率控制的方法的示意图。
图6示出了本申请实施例提供的一种无线通信的装置的示意图。
图7示出了本申请提供的一种终端设备的结构示意图。
图8示出了本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案适用于地面通信和卫星通信融合的通信系统。该通信系统也可以称为非地面网络(non-terrestrial network,NTN)通信系统。其中,地面通信系统例如可以为长期演进(long term evolution,LTE)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、5G通信系统或新无线(new radio,NR)系统,或未来的下一代移动通信系统。
图1示出了本申请实施例的一种NTN通信系统的示意图。其中,图1中以NTN通信系统融合5G通信和卫星通信为例。如图1所示,该通信系统中包括终端设备1、终端设备2、接入网设备1、接入网设备2和核心网设备。
其中,终端设备可以通过5G新空口(比如Uu接口)接口接入网络(比如接入网设备),接入网设备可以通过无线链路(比如NG接口)与核心网设备连接。一个示例,NG接口可以用于交互核心网设备的非接入层(non-access stratum,NAS)等信令,以及用户的业务数据。另外,在接入网设备之间存在无线链路(比如Xn接口),能够完成接入网设备与接入网设备之间的信令交互和用户数据传输。一个示例,Xn接口可以用于交互切换等信令。
在图1中,终端设备可以为地面移动终端设备或地面固定终端设备,接入网设备可以部署在卫星上或者部署在地面,核心网设备可以部署在地面上。当接入网设备部署在卫星上时,可以将该接入网设备成为卫星网络设备。
可选的,在图1所示的通信系统中,还可以包括地面站,负责转发卫星网络设备和核心网设备之前的信令和业务数据。示例性的,地面站可以通过无线链路(比如NG接口)与卫星网络设备连接,通过无线链路或有线链路与AMF或UPF连接。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital  assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的接入网设备可以是用于与终端设备通信的设备,主要提供无线接入服务,为终端设备调度无线资源,提供可靠的无线传输协议和数据加密协议。接入网设备也可以称为接入设备或无线接入网设备,可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的接入设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB本申请实施例并不限定。
另外,在本申请实施例中,接入网设备是RAN中的设备,或者说,是将终端设备接入到无线网络的RAN节点。例如,作为示例而非限定,作为接入网设备,可以列举:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
本申请实施例中,核心网设备可以与接入网设备连接,用于用户接入控制、移动性关联、会话管理、用户安全认证、计费等业务。核心网设备可以由多个功能单元组成,示例性的,可以分为控制面功能实体和数据面功能实体。控制面功能实体例如包括接入管理功能(access management function,AMF)、会话管理功能(session management function,SMF)。数据面功能实体例如包括UPF,数据网络等。
AMF主要负责接入和移动性控制,包括注册管理(registration management,RM)和连接管理(connection management,CM)、接入鉴权和接入授权、可达性管理和移动性管理等。
SMF负责会话管理,包括分组数据单元(packet data unit,PDU)会话的建立、修改、释放等。
UPF主要提供用户面支持,包括PDU会话和数据网络的连接点、数据包路由和转发、数据包检测和用户面策略执行、为用户面处理服务质量(quality of service,QoS)、下行数据包缓存和下行数据通知的触发等。
示例性的,如图1所示,核心网设备可以例如包括5G控制面和5G数据面,其中5G控制面可以包括AMF、SMF,5G数据面包括UPF和数据网络。
应理解,图1中的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,一个接入网设备可以服务于多个终端设备,图1只是以其中的一个终端设备为例。又例如,核心网侧还可以包括其他的核心网设备,比如鉴权服务功能(authentication server function, AUSF)、分组控制功能(packet control function,PCF)等。
为便于理解本申请实施例,下面对本申请涉及的相关术语做简单介绍。
1)功率控制
功率控制是在对是在对接收机端的接收信号强度或信噪比等指标进行评估的基础上,适时改变发射功率来补偿无线信道中的路径损耗和衰落。一方面,功率控制能够既维持了通信质量,又不会对同一无线资源中其他用户产生额外干扰。另一方面,功率控制使得发射机功率减小,从而能够延长电池使用时间。
功率控制一般分为开环和闭环的方式,闭环功控是指发射端根据接收端送来的反馈信息对发射功率进行控制的过程。而开环功控不需要接收端的反馈,发射端根据自身测量得到的信息对发射功率进行控制。
2)上行(uplink,UL)功率控制
对终端设备而言,其在向网络设备(比如接入网设备)发送信号时,可以进行上行功率控制。示例性的,终端设备可以对物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、物理随机接入信道(physical random access channel,PRACH)和探测参考信号(sounding reference signal,SRS)等信号进行上行功率控制。
目前的NR协议中,上行功率控制主要包括开环功率控制部分、闭环功率控制部分,以及其他调整量。
3)开环功率控制
PRACH总是采用开环功率控制的方式。对于PRACH而言,在随机接入时,由于终端设备与网络设备还没有完成上行同步过程,无法获取网络设备的指示。此时终端设备可以根据参数设置计算出上行发射功率,即进行开环功率控制。
另外,随机接入过程中的消息3(Msg3)中承载的PUSCH也采用开环功率控制的方式进行发送。
4)闭环功率控制
除PRACH信道之外,其他信道/信号的功率控制,可以采用闭环功率控制的方式,比如通过物理下行控制信道(physical downlink control channel,PDCCH)信道中的传输功率控制(transmit power control,TPC)信令进行闭环功率控制。
对于PUSCH、PUCCH和SRS而言,网络设备可以根据上行信道质量情况,计算功率调整量,并发送给终端设备。终端设备可以根据功率调整量计算出上行的功率值。
此外,为了确保与终端设备的功率分类相符,终端设备配置传输功率P cmax用于限制最大输出功率。一般来说,上行功率控制P的一般计算公式如下:
P=min[P cmax,{开环运行点}+{闭环偏移量}+{其他调节量}]
用户在通信过程当中需要定期的上报功率控制余量,即当前发射功率与最大发射功率之间的差。
5)PUSCH和PUCCH的上行发射功率
在NR协议中,业务的传输是基于网络设备调度的。示例性的,网络设备可以发送控制信道,比如PDCCH,该控制信道可以承载用于调度PDSCH、PUSCH或PUCCH的调度信息。其中,调度信息包括资源分配信息,调制编码方式等,本申请实施例对此不做限定。终端设备在子帧中检测控制信道,并根据检测出的控制信道中承载的调度信息来进行 PDSCH的接收,或PUSCH的发送,或PUCCH的发送。
示例性的,调度信息可以包括UL下行控制信息(downlink control information,DCI),用于指示PUSCH的发送。UL DCI中可以携带PUSCH的TPC命令字δ PUSCH。调度信息中也可以包括DL DCI,用于指示PDSCH的接收。DL DCI中还可以携带PUCCH的TPC命令字δ PUCCH
一个示例,PUSCH的发射功率可以如下公式(1)所示:
Figure PCTCN2020120286-appb-000001
PUCCH的发射功率可以如下公式(2)所示:
Figure PCTCN2020120286-appb-000002
其中,f表示载波,c表示服务小区,i表示PUSCH传输周期,j表示配置的参数,l表示功率控制调整状态指数;
P CMAX,f,c(i)表示终端设备允许在该载波和服务小区上发射的最大发射功率;
P O_PUSCH,f,c(j)表示PUSCH的初始功率,由小区级高层配置参数与终端设备级高层配置参数组成;
Figure PCTCN2020120286-appb-000003
表示PUSCH资源分配带宽指示信息;
α f,c(j)≤1路径损耗补偿因子;
PL f,c(q d)表示路径损耗估计值;
Figure PCTCN2020120286-appb-000004
表示调制方式偏移量,用于控制信息在PUSCH中传输的功率;
f f,c(i,l)表示PUSCH功率闭环控制调整参数,由PUSCH中的TPC信息映射获得;
P O_PUCCH,b,f,c(q u)表示PUCCH的初始功率,由小区级高层配置参数与终端设备级高层配置参数组成;
Figure PCTCN2020120286-appb-000005
表示PUCCH资源分配带宽指示信息;
Δ F_PUCCH(F)反映PUCCH不同的传输格式对发射功率的影响;
g b,f,c(i,l)表示PUCCH发射功率的调整量,由PDCCH中的TPC信息映射获得。
应理解,上文列举的NR协议中对于功率控制的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
上述上行发射功率的方式适用于地面通信系统的功率控制。但是,卫星通信与地面通信有比较大的区别。例如,地面网络设备的高度相当,当终端设备在相邻网络设备切换的时候,终端设备与源网络设备之间的路径损耗,与终端设备与目标网络设备之间的路径损耗的差别比较小,此时终端设备的上行发射功率相对恒定。
而在NTN网络中,比如图1的通信系统,由于卫星网络设备与地面网络设备,或卫星网络设备之间,或地面网络设备之间的距离比较大,在终端设备在卫星网络设备与地面 网络设备之间切换,或者在卫星网络设备之间切换时,或者在地面网络设备之间切换时,由于源网络设备与目标网络设备之间的距离比较大,导致终端设备与源网络设备之间的路径损耗与终端设备与目标网络设备之间的路径损耗差别比较大,比如会发生跳变。此时,地面通信系统中的功率控制方式不再适用。
有鉴于此,本申请实施例提供了一种功率控制的方法和装置,能够在终端设备在源网络设备和目标网络设备之间切换时,在源网络设备和终端设备的路径损耗与目标网络设备和终端设备之间的路径损耗不同情况下,对终端设备与目标网络设备通信时采用的上行发射功率进行控制。该功率控制的方法和装置能够适用于NTN网络。
下面结合图2对本申请实施例的功率控制的方法进行描述。
本申请的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统。处于无线通信系统中的至少两个通信装置之间可具有无线通信连接关系。该至少两个通信装置中的一个例如可以对应于图1中所示的接入网设备1,如可以为接入网设备1或者配置于接入网设备1中的芯片,该至少两个通信装置中的一个又例如可以对应于图1中所示的接入网设备2,如可以为接入网设备2或配置于接入网设备2中的芯片,该至少两个通信装置中的另一个例如可以对应于图1中的终端设备1,如可以为终端设备1或者配置于终端设备1中的芯片。示例性的,接入网设备1可以为源网络设备的一个示例,接入网设备2可以为目标网络设备的一个示例。
以下,不失一般性,首先以一个终端设备的功率控制过程为例详细说明本申请实施例。可以理解,处于无线通信系统中的任意一个终端设备或者配置于终端设备中的芯片均可以基于相同的方法进行功率控制,处于无线通信系统中的任意一个网络设备或者配置于网络设备中的芯片均可以基于相同的方法进行功率控制。本申请对此不做限定。
图2示出了本申请实施例提供的一种功率控制的方法200的交互流程图。如图2所示,该数据传输的方法200包括步骤210至步骤230。
210,终端设备根据第一参数,确定终端设备由源网络设备切换到目标网络设备的过程中,与目标网络设备通信时采用的上行发射功率。其中,源网络设备和终端设备之间的路径损耗与目标网络设备和所述终端设备之间的路径损耗不同,例如目标网络设备和终端设备之间的路径损耗相对于源网络设备和终端设备之间的路径损耗发生了跳变。
其中,第一参数用于对终端设备与源网络设备之间通信时采用的第一上行发射功率进行功率调整。也就是说,通过根据第一参数,对第一上行发射功率进行功率调整,可以获取终端设备在切换过程中与目标网络设备通信时采用的上行发射功率(下文中称之为第二发射功率)。
示例性的,第二上行发射功率可以为终端设备向目标网络设备发送数据信道(例如PUSCH)时采用的上行发射功率,或者可以为终端设备向目标网络设备发送控制信道(例如PUCCH)时采用的上行发射功率,或者可以为终端设备向目标网络设备发送PARCH或SRS时采用的上行发射功率,本申请实施例对此不作限定。
本申请实施例中,源网络设备和目标网络设备可以分别为NTN网络中不同的两个网络设备。图3示出了NTN网络中不同网络设备之间通信的一个示例。以网络设备为基站为例,NTN网络中可以包括不同类型的基站,例如地面基站、低轨卫星(low earth orbit,LEO)基站、中轨卫星基站和高轨卫星(geostationary earth orbit,GEO)基站等等。一些可选的实施例中,NTN网络中还可以包括地面站。其中,图2中的源网络设备可以为地面 基站、低轨卫星基站、中轨卫星基站、高轨卫星基站或地面站,目标网络设备可以为地面基站、低轨卫星基站、中轨卫星基站、高轨卫星基站或地面站,本申请实施例对此不做限定。
示例性的,LEO的高度通常小于2000KM,比如可以为600KM,记为LEO(600KM),又比如可以为1200KM,记为LEO(1200KM)等。中轨卫星通常的高度范围为2000~20000km。GEO的高度通常大于20000km,比如可以为35768KM,记为GEO(35768KM)。
一个示例,当终端设备地面终端设备,源网络设备为地面基站、目标网络设备为卫星基站(比如低轨卫星基站、中轨卫星基站或高轨卫星基站)时,或者源网络设备为卫星基站、目标网络设备为地面基站时,或者源网络设备为低轨卫星基站、目标网络设备为高轨卫星基站时,或者源网络设备为高轨卫星基站、目标网络设备为低轨卫星基站时,由于源网络设备和目标网络设备之间的距离很大,会导致源网络设备和终端网络设备之间的路径损耗与目标网络设备和终端设备之间的路径损耗不同,例如路径损耗发生跳变。
另外,当卫星网络设备还需要将信令或业务数据转发给地面站时,网络设备和终端设备之间的路径损耗包括除了包括卫星网络设备与终端设备之间的路径损耗之外,还包括卫星网络设备与地面站之间的路径损耗。
一个示例,当终端设备与卫星网络设备进行通信时,该卫星网络设备需要将信令或业务数据转发给地面站进行处理。此时,如果终端设备并没有切换与该卫星网络设备的通信,而该卫星网络设备切换了与其通信的地面站,即卫星网络设备由源地面站切换到目标地面站。此时如果该卫星网络设备和源地面站之间的路径损耗与该卫星网络设备和目标地面站之间的路径损耗不同时,仍然可以认为源网络设备和终端设备之间的路径损耗与目标网络设备和所述终端设备之间的路径损耗不同。
本申请实施例中,由于源网络设备和终端网络设备之间的路径损耗与目标网络设备和终端设备之间的路径损耗不同,导致终端设备在由源网络设备切换到目标网络设备的过程中,不能继续按照终端设备与源网络设备之间的第一上行发射功率与目标网络设备进行通信。
比如,在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,如果仍然按照第一上行发射功率与目标网络设备通信,可能会导致无法补偿无线信道中的路径损耗和衰落,降低终端设备与目标网络设备之间的通信质量。
又比如,在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,如果仍然按照第一上行发射功率与目标网络设备通信,可能会导致对同一无线资源中其他用户产生额外的干扰。另外,较大的发射功率还会缩短终端设备电池使用时间。
而本申请实施例中,根据第一参数对终端设备与源网络设备之间进行通信时采用的第一上行发射功率进行调整,能够获取用于终端设备与目标网络设备之间进行通信时采用的第二上行发射功率。也就是说,本申请实施例能够采用调整后的第一上行发射功率(即第二上行发射功率)与目标网络设备进行通信。
一些实施例中,上述第一参数包括终端设备与源网络设备之间第一上行发射功率的第一补偿值(可以记为ΔP HO)和/或第一上行发射功率对应的路径损耗因子(可以记为α 1)的第二补偿值(可以记为N)。
在一些可能的描述中,由于第一补偿值是对第一上行发射功率进行补偿,因此还可以将该第一补偿值称为功率补偿值。由于第二补偿值是对第一上行发射功率对应的路径损耗因子进行补偿的,因此还可以将该第二补偿值称为路径损耗因子补偿值。
作为一个示例,当第一参数为ΔP HO时,第二上行发射功率可以为第一上行发射功率与ΔP HO之和,即通过对终端设备与源网络设备进行通信时采用的第一上行发射功率进行ΔP HO的补偿,可以获取第二上行发射功率。
以第二上行发射功率为终端设备向目标网络设备发送PUSCH时采用的上行发射功率为例,当终端设备向源网络设备发送PUSCH时采用的上行发射功率为上文中的公式(1)时,则终端设备向目标网络设备发送PUSCH时采用的上行发射功率可以如下公式(3)所示:
Figure PCTCN2020120286-appb-000006
以第二上行发射功率为终端设备向目标网络设备发送PUCCH时采用的上行发射功率为例,当终端设备向源网络设备发送PUCCH时采用的上行发射功率为上文中的公式(2)时,则终端设备向目标网络设备发送PUCCH时采用的上行发射功率可以如下公式(4)所示:
Figure PCTCN2020120286-appb-000007
本申请实施例中,ΔP HO的取值可以为正数,或者负数,或者为0,本申请实施例对此不做限定。
作为另一个示例,当第一参数为N时,第二上行发射功率对应的路径损耗因子(可以记为α 2)可以为第一上行发射功率对应的路径损耗因子α 1与N之和(α 1+N),或者之积(α 1×N,或α 1·N,或α 1N),即通过对终端设备与源网络设备之间进行通信时采用的第一上行发射功率对应的路径损耗因子α 1乘以N倍或增加N大小的补偿,可以获取第二上行发射功率对应的路径损耗因子α 2
然后,可以根据第二上行发射功率对应的路径损耗因子α 2,确定第二上行发射功率。示例性的,可以将α 2值代替终端设备与源网络设备进行通信时采用的第一上行发射功率的公式(例如上述公式(1)或(2))中的路径损耗因子α 1,获取第二发射功率。
以第二上行发射功率为终端设备向目标网络设备发送PUSCH时采用的上行发射功率为例,当终端设备向源网络设备发送PUSCH时采用的上行发射功率为上文中的公式(1)时,则终端设备向目标网络设备发送PUSCH时采用的上行发射功率可以如下公式(5)或公式(6)所示:
Figure PCTCN2020120286-appb-000008
Figure PCTCN2020120286-appb-000009
以第二上行发射功率为终端设备向目标网络设备发送PUCCH时采用的上行发射功率为例,当终端设备向源网络设备发送PUCCH时采用的上行发射功率为上文中的公式(2)时,则终端设备向目标网络设备发送PUCCH时采用的上行发射功率可以如下公式(7)或(8)所示:
Figure PCTCN2020120286-appb-000010
Figure PCTCN2020120286-appb-000011
本申请实施例中,当第二上行发射功率对应的路径损耗因子为第一上行发射功率对应的路径损耗因子与N之和时,例如在公式(5)和公式(7)中,N的取值可以为正数、负数或者为0。当第二上行发射功率对应的路径损耗因子为第一上行发射功率对应的路径损耗因子与N之积时,例如在公式(6)和公式(8)中,N的取值可以为正数或负数。
由上文可知,根据第一参数,能够使得终端设备的上行发射功率可以由第一上行发射功率变为第二上行发射功率。这种功率变化可以理解为是响应终端设备与网络设备的通信距离(即路径损耗)的改变而产生的。另外,终端设备与网络设备的通信距离(或路径损耗)的改变还会使得终端设备与网络设备的通信延迟产生改变。
基于此,在一些可选的实施例中,可以根据所述终端设备与所述源网络设备之间的延迟参数和/或距离参数,以及所述终端设备与所述目标网络设备之间的延迟参数和/或距离参数,来确定的第一参数。
作为本申请一种实现方式,由于网络设备的高度与网络设备与终端设备之间的距离相关,比如随着网络设备高度的增加,该网络设备与终端设备之间的距离增加,因此第一参数可以是根据终端设备与源网络设备的高度,以及终端设备与目标网络设备之间的高度确定的。在一些可选的实施例中,当网络设备按照高度分类时,第一参数可以是根据源网络设备的类型和目标网络设备的类型确定的。
以第一参数为功率补偿值ΔP HO为例,对于不同的源网络设备类型和目标网络设备类型,则对应不同的功率补偿值ΔP HO。表1示出了不同的网络设备类型与对应的ΔP HO取值的一个示例。
表1
第一网络设备类型 第二网络设备类型 ΔP HO取值
地面网络设备 LEO(600KM) ±15dB
地面网络设备 LEO(1200KM) ±20B
地面网络设备 GEO ±20B
LEO(600KM) LEO(1200KM) ±5dB
LEO(600KM) GEO ±20dB
LEO(1200KM) GEO ±15dB
其中,当第一网络设备为源网络设备,第二网络设备为目标网络设备时,ΔP HO的取值为正,即ΔP HO取ΔP HO所在列中的“+”。例如,对于终端设备从地面网络设备切换到LEO(600KM)网络设备时,ΔP HO取值为+15dB,即对第一发射功率进行正补偿。
因此,本申请实施例能够在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率进行正的功率补偿,使得第二发射功率大于第一发射功率,从而能够实现在不同的切换场景中获取满足终端设备与目标网络设备通信的上行发射功率。
当第一网络设备为目标网络设备,第二网络设备为源网络设备时,ΔP HO的取值为负,即ΔP HO取ΔP HO所在列中的“-”。例如,对于终端设备从LEO(600KM)网络设备切换到地面网络设备时,ΔP HO取值为-15dB,即对第一发射功率进行负补偿。
因此,本申请实施例能够在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率进行负的功率补偿,使得第二发射功率小于第一发射功率,从而能够实现在不同的切换场景中获取满足终端设备与目标网络设备通信的上行发射功率。
以第一参数为路径损耗因子补偿值N为例,对于不同的源网络设备类型和目标网络设备类型,则对应不同的路径损耗因子补偿值N。
表2示出了不同的网络设备类型与路径损耗因子补偿值N 1的取值的一个示例。其中,第二上行发射功率对应的路径损耗因子为第一上行发射功率对应的路径损耗因子与N 1的乘积。
表2
第一网络设备类型 第二网络设备类型 N 1取值
地面网络设备 LEO(600KM) 4(1/4)
地面网络设备 LEO(1200KM) 7(1/7)
地面网络设备 GEO 10(1/10)
LEO(600KM) LEO(1200KM) 3(1/3)
LEO(600KM) GEO 17(1/17)
LEO(1200KM) GEO 15(1/15)
其中,当第一网络设备为源网络设备,第二网络设备为目标网络设备时,N 1的取值大于1,即N 1取N 1所在列中括号外面的数值。例如,对于终端设备从地面网络设备切换到LEO(600KM)网络设备时,N 1取值为4,即对第一上行发射功率对应的路径损耗因子进行扩大。
因此,本申请实施例能够在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率对应的路径损耗因子进行扩大,使得第二发射功率大于第一发射功率,从而能够实现在不同的切换场景中获取满足终端设备与目标网络设备通信的上行发射功率。
当第一网络设备为目标网络设备,第二网络设备为源网络设备时,N 1的取值小于1,即N 1取N 1所在列中括号外内的数值。例如,对于终端设备从地面网络设备切换到LEO(600KM)网络设备时,N 1取值为1/4,即对第一上行发射功率对应的路径损耗因子进行缩放。
因此,本申请实施例能够在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率对应的路径损耗因子进行缩放,使得第二发射功率小于第一发射功率,从而能够实现在不同的切换场景中获取满足终端设备与目标网络设备通信的上行发射功率。
表3示出了不同的网络设备类型与路径损耗因子补偿值N 2的取值的一个示例。其中,第二上行发射功率对应的路径损耗因子为第一上行发射功率对应的路径损耗因子与N 2之和。
表3
第一网络设备类型 第二网络设备类型 N 2取值
地面网络设备 LEO(600KM) ±4
地面网络设备 LEO(1200KM) ±7
地面网络设备 GEO ±10
LEO(600KM) LEO(1200KM) ±3
LEO(600KM) GEO ±17
LEO(1200KM) GEO ±15
其中,当第一网络设备为源网络设备,第二网络设备为目标网络设备时,N 2的取值为正,即N 2取N 2所在列中的“+”。例如,对于终端设备从地面网络设备切换到LEO(600KM)网络设备时,N 2取值为+4,即对第一上行发射功率对应的路径损耗因子进行正补偿。
因此,本申请实施例能够在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率对应的路径损耗因子进行正补偿,使得第二发射功率大于第一发射功率,从而能够实现在不同的切换场景中获取满足终端设备与目标网络设备通信的上行发射功率。
当第一网络设备为目标网络设备,第二网络设备为源网络设备时,N 2的取值为负,即N 2取N 2所在列中的“-”。例如,对于终端设备从地面网络设备切换到LEO(600KM)网络设备时,N 2取值为-4,即对第一上行发射功率对应的路径损耗因子进行负补偿。
因此,本申请实施例能够在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,通过对第一上行发射功率对应的路径损耗因子进行负补偿,使得第二发射功率小于第一发射功率,从而能够实现在不同的切换场景中获取满足终端设备与目标网络设备通信的上行发射功率。
由表2或表3可知,补偿之后的第一上行发射功率对应的路径损耗因子(即第二上行发射功率对应的路径损耗因子)的取值范围可以为实数,即可以小于等于1,或大于1,都在本申请实施例的保护范围之内。
由于卫星网络设备有一定的高度,在与卫星网络设备进行通信的过程中,一个区域内(例如一个小区,一个波束内)的终端设备会有一个与高度相关的公共延迟(common TA)。一些实施例中,终端设备可以预先获取或保存该公共延迟。一些可能的实现方式,网络设备可以将该公共延迟通过广播,或者其他方式告知终端设备。一些可能的实现方式,终端设备也可以根据定位信息、星历信息等获取该公共延迟。
作为本申请另一种实现方式,终端设备可以根据终端设备与源网络设备和目标网络设备之间的公共延迟差(可以表示为ΔTA common),确定第一参数。其中,公共延迟差即为终端设备和源网络设备之间的公共延迟与终端设备和目标网络设备之间的公共延迟之间的差值。表4示出了公共延迟差与对应的ΔP HO取值的一个示例。
表4
公共延迟差 ΔP HO
ΔTA common_1 ΔP HO_1
ΔTA common_2 ΔP HO_2
ΔTA common_3 ΔP HO_3
ΔTA common_m ΔP HO_m
由表4可知,不同公共延迟差可以对应不同的ΔP HO取值。可以理解的是,在一些可选的实施例中,不同的公共延迟差也可以对应不同的N的取值。
除了查表获得公共延迟差对应的功率补偿值之外,还可以通过在线计算的方式,根据公共延迟差,确定功率补偿值ΔP HO
示例性的,可以根据如下公式(9)和(10)来确定功率补偿值ΔP HO
ΔL=ΔTA common/(2*c)   (9)
ΔP HO=Δloss=20*log10((L1+ΔL)/L1)    (10)
其中,ΔL表示终端设备与源网络设备和目标网络设备之间的公共距离差,即终端设备和源网络设备之间的距离与终端设备和目标网络设备之间的距离之间的差值;C表示光速;L1表示终端设备与源网络设备之间的通信距离;L1+ΔL表示终端设备与目标网络设备之间的通信距离;Δloss表示由源网络设备切换到目标网络设备之后产生的路径损耗。ΔP HO的取值可以与Δloss相等,从而实现对第一上行发射功率的补偿。
需要说明的是,除了根据公共延迟差来确定公共距离差的方式之外,终端设备还可以通过获取源网络设备或目标网络设备的距离参数,并根据该距离参数确定功率补偿值ΔP HO。例如,网络设备可以将该距离参数通过广播,或者其他方式告知终端设备。
本申请一些可选的实施例中,第二上行发射功率小于或等于该终端设备的最大上行发射功率。
作为一种实现方式,当根据上述表格或公式计算得到的终端设备在与目标网络设备通信时采用的上行发射功率的值大于终端设备的最大上行发射功率时,终端设备在与目标网络设备实际通信时采用的第二上行发射功率可以取值为该终端设备的最大上行发射功率。
例如,当第一上行发射功率表示为P1,第二上行发射功率表示为P1+ΔP HO时,P1+ΔP HO满足如下公式(11):
P1+ΔP HO≤P CMAX   (11)
其中,P CMAX表示终端设备的最大上行发射功率。
作为另一种实现方式,当源网络设备和终端网络设备之间的路径损耗与目标网络设备和终端设备之间的路径损耗不同的情况下,终端设备在由源网络设备切换到目标网络设备时,均以最大上行发射功率与目标网络设备之间进行通信。
示例性的,在切换过程中,终端设备向目标网络设备发送PUCCH时采用的上行发射功率可以如下公式(12)所示:
P PUSCH,f,c(i)=P CMAX,f,c(i)   (12)
在切换过程中,终端设备向目标网络设备发送PUCCH时采用的上行发射功率可以如下公式(13)所示:
P PUCCH,b,f,c(i)=P CMAX,f,c(i)   (13)
这样,终端设备可以不需要通过复杂的计算来获取与目标网络设备进行通信时采用的上行发射功率,能够降低终端设备的复杂度。另外,当终端设备与网络设备与最大上行发射功率进行通信时,可以不需要向网络设备进行功率余量的上报,能够节省信令开销。
另外,当终端设备没有处于由源网络设备切换到目标网络设备的过程中,比如切换前,或者切换后,终端设备可以采用现有的功率控制方式,比如根据公式(1)或公式(2)确定上行发射功率。
本申请实施例中,可以采用开环功率控制的方式或者闭环功率控制的方式来确定第二上行发射功率。
作为一种实现方式,在采用开环功率控制的方式时,终端设备可以根据终端设备与源网络设备之间的延迟参数和/或距离参数,以及该终端设备与目标网络设备之间的延迟参 数和/或距离参数,确定第一参数。
例如,终端设备可以根据源网络设备的类型和目标网络设备的类型,或者根据公共延迟差,查表获取功率补偿值ΔP HO或路径损耗因子补偿值N。一些可能的实现方式中,终端设备在接入网络设备时,可以根据延迟或距离等相关参数来识别网络设备类型。另外,终端设备可以预先获取或保存有上述表1至表4,以便通过查表来确定第二上行发射功率。
作为一种实现方式,在采用闭环功率控制的方式时,目标网络设备可以根据终端设备与源网络设备之间的延迟参数和/或距离参数,以及该终端设备与目标网络设备之间的延迟参数和/或距离参数,确定第一参数。示例性的,目标网络设备可以预先获取或保存有上述表1至表4,以便通过查表来确定第二上行发射功率。
然后,可选的,方法200还包括步骤230,目标网络设备可以向终端设备发送第一指示信息,该第一指示信息用于指示第一参数。这样,终端设备可以根据该第一指示信息,确定第一参数。一个示例,该第一指示信息可以包括第一参数。
示例性的,目标网络设备可以通过Xn接口将该第一指示信息发送给源网络设备,然后再由源网络设备通过与终端设备之间的5G新空口,将该第一指示信息发送给终端设备。
一种可能的实现方式中,第一指示信息可以携带在无线资源控制(radio resource control,RRC)信令,例如RRC重配置消息(RRC Reconfiguration message)中。一个示例,RRC重配置消息中可以包括功率补偿值ΔP HO或路径损耗因子补偿值N。
例如,可以在RRC重配置消息的信元(information element,IE)域中增加一个功率补偿(power compensation)字段来指示功率补偿值ΔP HO。下面示出了本申请实施例中的RRC重配置消息的IE结构中功率补偿(power compensation)字段的一个示例。
PowerCompensation ENUMERATED{-20dB,-10dB,0dB,10dB,20dB}
220,终端设备与目标网络设备进行通信。
具体而言,终端设备在由源网络设备切换到目标网络设备的过程中,以上述第二上行发射功率与目标网络设备进行通信。
示例性的,当第二上行发射功率为终端设备向目标网络设备发送PUSCH时采用的上行发射功率时,终端设备可以以该第二上行发射功率,向目标网络设备发送PUSCH。当第二上行发射功率为终端设备向目标网络设备发送PUCCH时采用的上行发射功率时,终端设备可以以该第二上行发射功率,向目标网络设备发送PUCCH。当第二上行发射功率为终端设备向目标网络设备发送PARCH时采用的上行发射功率时,终端设备可以以该第二上行发射功率,向目标网络设备发送PARCH。当第二上行发射功率为终端设备向目标网络设备发送SRS时采用的上行发射功率时,终端设备可以以该第二上行发射功率,向目标网络设备发送SRS。但是本申请实施例并不限于此。
因此,本申请实施例中,通过根据第一参数对终端设备与源网络设备之间进行通信时采用的第一上行发射功率进行调整,获取第二上行发射功率,并在切换过程中采用该第二上行发射功率与目标网络设备之间进行通信。基于此,本申请实施例能够实现在终端设备切换的过程中,在源网络设备和终端设备的路径损耗与目标网络设备和终端设备之间的路径损耗不同的情况下,对终端设备与目标网络设备进行通信时采用的上行功率进行控制。
例如,在目标网络设备和终端设备之间的路径损耗大于源网络设备和终端设备之间的路径损耗的情况下,可以对第一上行发射功率进行正的功率补偿,使得第二发射功率大于第一发射功率,从而使得第二上行发射功率能够补偿无线信道中的路径损耗和衰落,提高 终端设备与目标网络设备之间的通信质量。
又例如,在目标网络设备和终端设备之间的路径损耗小于源网络设备和终端设备之间的路径损耗的情况下,可以对第一上行发射功率进行负的功率补偿,使得第二发射功率小于第一发射功率,从而降低对同一无线资源中其他用户产生的额外的干扰。另外,通过减小终端设备的上行发射功率,还能够延长终端设备电池的使用时间。
另外,对于地面通信系统与卫星通信系统融合的系统架构而言,终端设备在与卫星网络设备进行通信时,一方面,由于卫星网络设备的高度都比较高,其与终端设备之间的距离比较大,导致终端设备与网络设备之间的路径损耗比较大。另一方面,地面终端设备的发射功率较小,当终端设备与网络设备之间的路径损耗比较大时,很容易就会出现终端设备以最大发射功率与网络设备进行上行传输的情况。此时,如何进行上行功率控制是亟需解决的问题。
有鉴于此,本申请实施例还提供了一种功率控制的方法和装置,能够根据终端设备的发射功率大小和/或终端设备与网络设备之间的路径损耗,确定与网络设备进行通信时采用的上行发射功率。
下面结合图4对本申请实施例的功率控制的方法进行描述。
本申请的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统。处于无线通信系统中的至少两个通信装置之间可具有无线通信连接关系。一个示例,该至少两个通信装置中的一个例如可以对应于图1中所示的接入网设备1,如可以为接入网设备1或者配置于接入网设备1中的芯片,另一个例如可以对应于图1中的终端设备1,如可以为终端设备1或者配置于终端设备1中的芯片。另一个示例,该至少两个通信装置中的一个例如可以对应于图1中所示的接入网设备2,如可以为接入网设备2或配置于接入网设备2中的芯片,另一个又例如可以对应于图1中所示的终端设备2,如可以为终端设备2或配置于终端设备2中的芯片。
以下,不失一般性,首先以一个终端设备的功率控制过程为例详细说明本申请实施例。可以理解,处于无线通信系统中的任意一个终端设备或者配置于终端设备中的芯片均可以基于相同的方法进行功率控制,处于无线通信系统中的任意一个网络设备或者配置于网络设备中的芯片均可以基于相同的方法进行功率控制。本申请对此不做限定。
图4示出了本申请实施例提供的一种功率控制的方法400的交互流程图。如图4所示,该数据传输的方法400包括步骤410至步骤430。
410,终端设备确定与网络设备通信时采用的第三上行发射功率。
一些实施例中,终端设备可以根据终端设备的发射功率大小和/或终端设备与网络设备的路径损耗大小,来确定终端设备与该网络设备之间进行通信时采用的上行发射功率,例如可以称为第三上行发射功率。
一些实施例中,在步骤410之前,还可以包括步骤430,终端设备接收网络设备发送的第二指示信息,该第二指示信息用于指示上述第三上行发射功率。此时,第三上行发射功率可以是由网络设备根据终端设备的发射功率大小和/或终端设备与网络设备的路径损耗大小确定的。
可以理解的是,终端设备与网络设备之间的通信距离或通信延迟与终端设备的路径损耗相关。也就是说,不同的路径损耗值会对应不同的通信距离或通信延迟。因此,在一些可能的实现方式中,还可以根据终端设备与网络设备之间的距离参数和/或延迟参数,来确 定第三上行发射功率。
另外,当网络设备按照高度进行分类时,还可以根据网络设备的类型,来确定第三上行发射功率。例如,网络设备可以分为LEO网络设备、低轨卫星网络设备和GEO网络设备。
可选的,本申请实施例中第三上行发射功率可以为所述终端设备的最大上行发射功率,或者第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。示例性的,配置的上行功率控制方式比如根据NR协议定义的上行功率控制方式,比如按照上文中公式(1)或公式(2)确定上行发射功率的方式。
例如,对于手持(handheld)终端设备与GEO网络设备而言,终端设备的发射功率较小,并且终端设备与GEO的距离远,导致路径损耗较大,此时如果根据上文中的公式(1)或公式(2)的方式确定上行发射功率,则计算得到的上行发射功率很可能接近,或者已经大于终端设备的最大上行发射功率P CMAX,f,c(i)了。因此,对于这种情况,为了减少终端设备的复杂度,可以不需要对进行上行发射功率的计算,而是直接采用最大上行发射功率与网络设备进行通信。另外,当终端设备与网络设备与最大上行发射功率进行通信时,可以不需要向网络设备进行功率余量上报(heardroom report),能够节省信令开销。
又例如,对于VSAT终端设备和LEO-600KM网络设备而言,终端设备的发射功率较大,并且终端设备与LEO-600KM的距离相对较近,此时根据上文中的公式(1)或公式(2)的方式计算得到的上行发射功率可能小于终端设备的最大上行发射功率P CMAX,f,c(i)。因此,对于这种情况,仍然可以按照预配置的上行功率控制方式确定上行发射功率。
一些可能的实现方式中,可以根据终端设备的发射功率的大小,对终端设备进行分类。例如,可以将终端设备分为手持终端设备、甚小口径(very small aperture terminal,VSAT)终端设备、其他终端设备等。其中,其他终端设备的发射功率大于VSAT终端设备,VSAT终端设备的发射功率大于手持终端设备的发射功率。
当终端设备根据发射功率大小进行分类,网络设备按照高度进行分类时,可以根据终端设备的类型和网络设备的类型,确定第三上行发射功率。表5示出了终端设备类型、网络设备类型和第三上行发射功率的对应关系的一个示例。
表5
Figure PCTCN2020120286-appb-000012
其中,表5中P max表示以最大发射功率进行通信,功率控制(power control)表示按照协议预设的功率控制的方式确定第三上行发射功率,比如根据上述公式(1)或(2)确定第三上行发射功率。
可选的,表5中还可以定义是否需要进行功率余量上报。其中,余量上报所在列中去使能(disable)表示不需要进行功率余量上报,余量上报所在列中使能(enable)表示需要进行功率余量上报。
本申请实施例中,可以采用开环功率控制的方式或者闭环功率控制的方式来确定第三上行发射功率。
作为一种实现方式,在采用开环功率控制的方式时,终端设备可以根据终端设备发射功率的大小和/或终端设备与网络设备之间的路径损耗,确定第三上行发射功率。一些可能的实现方式中,终端设备在接入网络设备时,可以根据延迟或距离等相关参数来识别网络设备类型。另外,终端设备可以预先获取或保存有上述表5,以便通过查表来确定第三上行发射功率。
作为一种实现方式,在采用闭环功率控制的方式时,网络设备可以根据终端设备发射功率大小和/或终端设备与网络设备之间的路径损耗,确定第三上行发射功率。示例性的,网络设备可以预先获取或保存有上述表5,以便通过查表来确定第三上行发射功率。
然后,可选的,在步骤410之前,方法400还可以包括步骤430,网络设备可以向终端设备发送第二指示信息,该第二指示信息用于指示第三上行发射功率。这样,终端设备可以根据该第二指示信息,确定第三上行发射功率。
示例性的,第二指示信息可以携带在RRC信令中,或者可以携带在PUCCH的调度信息(比如DCI中),本申请实施例对此不做限定。
一种可能的实现方式,第二指示信息可以指示第三上行发射功率是否为最大上行发射功率。例如,当第二指示信息为指示比特位,该指示比特位为“1”时,表示第三上行发射功率为最大上行发射功率;该指示比特位为“0”时,表示按照预配置的方式来确定第三上行发射功率。或者,可以反之,本申请实施例对此不做限定。
另一种可能的实现方式,网络设备可以动态调整终端设备的功率控制方式。例如,网络设备可以通过P max禁止标识(P max disabling flag)信令来指示是否需要以最大发射功率进行功率调整。如图5所示,当网络设备向终端设备发送的P max禁止标识打开(即P max禁止标识=1)时,指示终端设备以最大上行发射功率向网络设备进行上行传输。当网络设备向终端设备发送的P max禁止标识关闭(即P max禁止标识=0)时,指示终端设备按照预配置的功率控制方式向网络设备进行上行传输。
420,终端设备以第三上行发射功率与网络设备进行通信。
示例性的,当第三上行发射功率为终端设备向网络设备发送PUSCH时采用的上行发射功率时,终端设备可以以该第三上行发射功率,向网络设备发送PUSCH。当第三上行发射功率为终端设备向网络设备发送PUCCH时采用的上行发射功率时,终端设备可以以该第三上行发射功率,向目标网络设备发送PUCCH。但是本申请实施例并不限于此。
因此,本申请实施例中,通过根据终端设备的发射功率大小和/或终端设备与网络设备之间路径损耗的大小,获取第三上行发射功率,并采用该第三上行发射功率与网络设备之间进行通信。基于此,本申请实施例能够在地面终端设备与卫星网络设备通信的场景中,更灵活的对终端设备的上行发射功率进行控制。
另外,本申请实施例中,图4中所示的方法还可以在图2所示的方法之前执行,或者在图2所示的方法之后执行。也就是说,在终端设备由源网络设备切换到目标网络设备之前,可以采用图4所示的功率控制的方法,对终端设备与源网络设备之间通信的上行发射功率进行控制,在终端设备由源网络设备切换到目标网络设备之后,可以采用图4所示的功率控制的方法,对终端设备与目标网络设备之间进行通信的上行发射功率进行控制。
根据前述方法,图6为本申请实施例提供的无线通信的装置600的示意图。
一种可能的方式中,该装置600可以包括处理单元610(即,处理器的一例)和通信单元630。一些可能的实现方式中,处理单元610还可以称为确定单元,通信单元630还可以称为收发单元。一些可能的实现方式中,收发单元可以包括接收单元和发送单元。
可选的,通信单元630可以通过收发器或者收发器相关电路或者接口电路实现。
可选的,该装置还可以包括存储单元620。一种可能的方式中,该存储单元620用于存储指令。可选的,该存储单元也可以用于存储数据或者信息。存储单元620可以通过存储器实现。
一些可能的设计中,该处理单元610用于执行该存储单元620存储的指令,以使装置600实现如上述方法中终端设备执行的步骤。或者,该处理单元610可以用于调用存储单元620的数据,以使装置600实现如上述方法中终端设备执行的步骤。
一些可能的设计中,该处理单元610用于执行该存储单元620存储的指令,以使装置600实现如上述方法中网络设备执行的步骤。或者,该处理单元610可以用于调用存储单元620的数据,以使装置600实现如上述方法中网络设备执行的步骤。
例如,该处理单元610、存储单元620、通信单元630可以通过内部连接通路互相通信,传递控制和/或数据信号。例如,该存储单元620用于存储计算机程序,该处理单元610可以用于从该存储单元620中调用并运行该计算计程序,以控制通信单元630接收信号和/或发送信号,完成上述方法中终端设备或网络设备的步骤。该存储单元620可以集成在处理单元610中,也可以与处理单元610分开设置。
可选地,若该装置600为通信设备(例如,终端设备,或网络设备),该通信单元630包括接收器和发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置600为芯片或电路,该通信单元630包括输入接口和输出接口。
作为一种实现方式,通信单元630的功能可以考虑通过收发电路或者收发的专用芯片实现。处理单元610可以考虑通过专用处理芯片、处理电路、处理单元或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备(例如终端设备,或网络设备)。即将实现处理单元610、通信单元630功能的程序代码存储在存储单元620中,通用处理单元通过执行存储单元620中的代码来实现处理单元610、通信单元630的功能。
一些实施例中,装置600可以为终端设备,或设置于终端设备的芯片或电路。示例性的,该终端设备可以对应图2或图4的实施例中的终端设备。
当装置600可以为终端设备,或设置于终端设备的芯片或电路时,一个实施例,装置600的各单元分别用于执行如下操作和/或处理。
处理单元610,用于根据第一参数对终端设备与源网络设备之间通信时采用的第一上行发射功率进行调整,确定所述终端设备与目标网络设备通信时采用的第二上行发射功率, 其中,所述源网络设备和所述终端设备之间的路径损耗与所述目标网络设备和所述终端设备之间的路径损耗不同,所述第一参数包括所述第一上行发射功率的第一补偿值和/或所述第一上行发射功率对应的路径损耗因子的第二补偿值。
通信单元630,用于在所述终端设备由所述源网络设备切换到所述目标网络设备的过程中,以所述第二上行发射功率与所述目标网络设备进行通信。
一些可能的实现方式,所述第一参数是根据所述终端设备与所述源网络设备之间的延迟参数和/或距离参数,以及所述终端设备与所述目标网络设备之间的延迟参数和/或距离参数确定的。
一些可能的实现方式,所述第二上行发射功率小于或等于所述终端设备的最大上行发射功率。
一些可能的实现方式,通信单元630还用于接收第一指示信息,所述第一指示信息用于指示所述第一参数。
一些可能的实现方式,处理单元610还用于确定第三上行发射功率,其中,所述第三上行发射功率是根据所述终端设备的发射功率大小和所述终端设备与所述目标网络设备之间的路径损耗大小中的至少一种确定的。
通信单元630还用于以所述第三上行发射功率与所述目标网络设备进行通信。
一些可能的实现方式,通信单元630还用于接收第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
一些可能的实现方式,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
当装置600可以为终端设备,或设置于终端设备的芯片或电路时,另一个实施例,装置600的各单元分别用于执行如下操作和/或处理。
处理单元610,用于确定第三上行发射功率,其中,所述第三上行发射功率是根据所述终端设备的发射功率大小和所述终端设备与所述网络设备之间的路径损耗大小中的至少一种确定的。
通信单元630,用于以所述第三上行发射功率与所述目标网络设备进行通信。
一些可能的实现方式,通信单元630还用于接收第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
一些可能的实现方式,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
当该装置600配置在或本身即为终端设备时,装置600中各模块或单元可以用于执行上述方法中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
一些实施例中,装置600可以为网络设备时,或设置于网络设备中的芯片或电路。
当装置600可以为网络设备,或设置于网络设备的芯片或电路时,一个实施例,装置600的各单元分别用于执行如下操作和/或处理。此时,该网络设备可以对应图2的实施例中的目标网络设备。
处理单元610,用于确定第一参数,所述第一参数用于对终端设备与源网络设备之间通信时采用的第一上行发射功率进行调整,以获取所述终端设备与目标网络设备通信时采用的第二上行发射功率,其中所述第一参数包括所述第一上行发射功率的第一补偿值和/或所述第一上行发射功率对应的路径损耗因子的第二补偿值,所述源网络设备与所述终端 设备之间的路径损耗与所述目标网络设备与所述终端设备之间的路径损耗不同。
通信单元630,用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参数。
一些可能的实现方式,所述第一参数是根据所述终端设备与所述源网络设备之间的延迟参数和/或距离参数,以及所述终端设备与所述目标网络设备之间的延迟参数和/或距离参数确定的。
一些可能的实现方式,所述第二上行发射功率小于或等于所述终端设备的最大上行发射功率。
一些可能的实现方式,所述处理单元610还用于根据终端设备的发射功率大小和所述目标终端设备与所述网络设备之间的路径损耗大小中的至少一种,确定第三上行发射功率。
所述通信单元630还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
一些可能的实现方式,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
当装置600可以为网络设备,或设置于网络设备的芯片或电路时,另一个实施例,装置600的各单元分别用于执行如下操作和/或处理。此时,该网络设备可以对应图4的实施例中的网络设备。
处理单元610,用于根据终端设备的发射功率大小和所述终端设备与所述网络设备之间的路径损耗大小中的至少一种,确定第三上行发射功率;
通信单元630,用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
一些可能的实现方式,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
当该装置600配置在或本身即为网络设备时,装置600中各模块或单元可以用于执行上述方法中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置600所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图7为本申请提供的一种终端设备700的结构示意图。该终端设备700可以执行上述方法实施例中终端设备执行的动作。
为了便于说明,图7仅示出了终端设备的主要部件。如图7所示,终端设备700包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基 带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
例如,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图7中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备700的收发单元710,将具有处理功能的处理器视为终端设备700的处理单元720。如图7所示,终端设备700包括收发单元710和处理单元720。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图8为本申请实施例提供的一种网络设备800的结构示意图,可以用于实现上述方法中的网络设备(例如,目标网络设备)的功能。网络设备800包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)810和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)820。所述RRU810可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线811和射频单元812。所述RRU810部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU820部分主要用于进行基带处理,对基站进行控制等。所述RRU810与BBU820可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU820为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)820可以用于控制基站40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU820可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU820还包括存储器821和处理器822。所述存储器821用以存储必要的指令和数据。例如存储器821存储上述实施例中的码本等。所述处理器822用于控制 基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器821和处理器822可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(system-on-chip,SoC)技术的发展,可以将820部分和810部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图8示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一实施例中的终端设备执行的步骤,或者网络设备执行的步骤。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一实施例中的终端设备执行的步骤,或者网络设备执行的步骤。
本申请实施例还提供了一种系统芯片,该系统芯片包括:通信单元和处理单元。该处理单元,例如可以是处理器。该通信单元例如可以是通信接口、输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的终端设备执行的步骤,或者网络设备执行的步骤。
可选地,该计算机指令被存储在存储单元中。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和终端设备。
本申请中的各个实施例可以独立的使用,也可以进行联合的使用,这里不做限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
应理解,在上文示出的实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的上行发射功率、不同的指示信息等。
还应理解,在上文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
还应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种功率控制的方法,其特征在于,包括:
    根据第一参数对终端设备与源网络设备之间通信时采用的第一上行发射功率进行调整,确定所述终端设备与目标网络设备通信时采用的第二上行发射功率,其中,所述源网络设备和所述终端设备之间的路径损耗与所述目标网络设备和所述终端设备之间的路径损耗不同,所述第一参数包括所述第一上行发射功率的第一补偿值和/或所述第一上行发射功率对应的路径损耗因子的第二补偿值;
    在所述终端设备由所述源网络设备切换到所述目标网络设备的过程中,以所述第二上行发射功率与所述目标网络设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数是根据所述终端设备与所述源网络设备之间的延迟参数和/或距离参数,以及所述终端设备与所述目标网络设备之间的延迟参数和/或距离参数确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二上行发射功率小于或等于所述终端设备的最大上行发射功率。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,还包括:
    接收第一指示信息,所述第一指示信息用于指示所述第一参数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在所述终端设备由所述源网络设备切换到所述目标网络设备之后,还包括:
    确定第三上行发射功率,其中,所述第三上行发射功率是根据所述终端设备的发射功率大小和所述终端设备与所述目标网络设备之间的路径损耗大小中的至少一种确定的;
    以所述第三上行发射功率与所述目标网络设备进行通信。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    接收第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
  8. 一种功率控制的方法,其特征在于,包括:
    确定第一参数,所述第一参数用于对终端设备与源网络设备之间通信时采用的第一上行发射功率进行调整,以获取所述终端设备与目标网络设备通信时采用的第二上行发射功率,其中所述第一参数包括所述第一上行发射功率的第一补偿值和/或所述第一上行发射功率对应的路径损耗因子的第二补偿值,所述源网络设备与所述终端设备之间的路径损耗与所述目标网络设备与所述终端设备之间的路径损耗不同;
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参数。
  9. 根据权利要求8所述的方法,其特征在于,所述第一参数是根据所述终端设备与所述源网络设备之间的延迟参数和/或距离参数,以及所述终端设备与所述目标网络设备之间的延迟参数和/或距离参数确定的。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二上行发射功率小于或等于所述终端设备的最大上行发射功率。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,还包括:
    根据终端设备的发射功率大小和所述终端设备与所述目标网络设备之间的路径损耗大小中的至少一种,确定第三上行发射功率;
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
  12. 根据权利要求11所述的方法,其特征在于,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
  13. 一种功率控制的装置,其特征在于,包括:
    确定单元,用于根据第一参数对终端设备与源网络设备之间通信时采用的第一上行发射功率进行调整,确定所述终端设备与目标网络设备通信时采用的第二上行发射功率,其中,所述源网络设备和所述终端设备之间的路径损耗与所述目标网络设备和所述终端设备之间的路径损耗不同,所述第一参数包括所述第一上行发射功率的第一补偿值和/或所述第一上行发射功率对应的路径损耗因子的第二补偿值;
    通信单元,用于在所述终端设备由所述源网络设备切换到所述目标网络设备的过程中,以所述第二上行发射功率与所述目标网络设备进行通信。
  14. 根据权利要求13所述的装置,其特征在于,所述第一参数是根据所述终端设备与所述源网络设备之间的延迟参数和/或距离参数,以及所述终端设备与所述目标网络设备之间的延迟参数和/或距离参数确定的。
  15. 根据权利要求13或14所述的装置,其特征在于,所述第二上行发射功率小于或等于所述终端设备的最大上行发射功率。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述通信单元还用于:
    接收第一指示信息,所述第一指示信息用于指示所述第一参数。
  17. 根据权利要求13-16任一项所述的装置,其特征在于,所述确定单元还用于:
    确定第三上行发射功率,其中,所述第三上行发射功率是根据所述终端设备的发射功率大小和所述终端设备与所述目标网络设备之间的路径损耗大小中的至少一种确定的;
    以所述第三上行发射功率与所述目标网络设备进行通信。
  18. 根据权利要求17所述的装置,其特征在于,所述通信单元还用于:
    接收第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
  20. 一种功率控制的装置,其特征在于,包括:
    确定单元,用于确定第一参数,所述第一参数用于对终端设备与源网络设备之间通信时采用的第一上行发射功率进行调整,以获取所述终端设备与目标网络设备通信时采用的第二上行发射功率,其中所述第一参数包括所述第一上行发射功率的第一补偿值和/或所述第一上行发射功率对应的路径损耗因子的第二补偿值,所述源网络设备与所述终端设备之间的路径损耗与所述目标网络设备与所述终端设备之间的路径损耗不同;
    通信单元,用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参数。
  21. 根据权利要求20所述的装置,其特征在于,所述第一参数是根据所述终端设备与所述源网络设备之间的延迟参数和/或距离参数,以及所述终端设备与所述目标网络设备之间的延迟参数和/或距离参数确定的。
  22. 根据权利要求20或21所述的装置,其特征在于,所述第二上行发射功率小于或等于所述终端设备的最大上行发射功率。
  23. 根据权利要求20-23任一项所述的装置,其特征在于,
    所述确定单元还用于根据终端设备的发射功率大小和所述终端设备与所述目标网络设备之间的路径损耗大小中的至少一种,确定第三上行发射功率;
    所述通信单元还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第三上行发射功率。
  24. 根据权利要求23所述的装置,其特征在于,所述第三上行发射功率为所述终端设备的最大上行发射功率,或者所述第三上行发射功率为根据预配置的上行功率控制方式确定的上行发射功率。
  25. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求1至12任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至12中任一项所述的方法。
  27. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于从所述通信接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1至12中任一项所述的方法。
PCT/CN2020/120286 2019-11-08 2020-10-12 功率控制的方法和装置 WO2021088591A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20884863.0A EP4040853A4 (en) 2019-11-08 2020-10-12 POWER CONTROL METHOD AND APPARATUS
US17/736,501 US20220264484A1 (en) 2019-11-08 2022-05-04 Power control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911090501.2 2019-11-08
CN201911090501.2A CN112788723B (zh) 2019-11-08 2019-11-08 功率控制的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/736,501 Continuation US20220264484A1 (en) 2019-11-08 2022-05-04 Power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2021088591A1 true WO2021088591A1 (zh) 2021-05-14

Family

ID=75749382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120286 WO2021088591A1 (zh) 2019-11-08 2020-10-12 功率控制的方法和装置

Country Status (4)

Country Link
US (1) US20220264484A1 (zh)
EP (1) EP4040853A4 (zh)
CN (1) CN112788723B (zh)
WO (1) WO2021088591A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11778566B2 (en) * 2020-02-10 2023-10-03 Qualcomm Incorporated Transmission parameter modification for uplink communications
CN113891446B (zh) * 2021-10-19 2023-06-06 中国联合网络通信集团有限公司 一种发射功率配置方法、装置、服务器及存储介质
CN116868631A (zh) * 2021-12-31 2023-10-10 北京小米移动软件有限公司 一种非地面网络中无随机接入信道切换的方法及其装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254118A (zh) * 2013-06-28 2014-12-31 华为技术有限公司 功率控制方法、装置及ue
CN107645766A (zh) * 2016-07-21 2018-01-30 中兴通讯股份有限公司 功率控制方法及装置
CN108632971A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备
CN108886724A (zh) * 2016-03-16 2018-11-23 华为技术有限公司 一种无线通信系统中管理连接的系统和方法
CN109600826A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 功率控制方法及装置
WO2019095111A1 (zh) * 2017-11-14 2019-05-23 Oppo广东移动通信有限公司 一种调整上行发射功率的方法、用户设备及网络设备
CN110662281A (zh) * 2018-06-29 2020-01-07 中国移动通信有限公司研究院 一种调整上行发射功率的方法、用户设备及网络侧设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829860B1 (ko) * 2006-09-27 2008-05-19 한국전자통신연구원 Atc를 포함하는 위성/이동통신 시스템에서 핸드오버를고려한 전력제어 방법
US8331937B2 (en) * 2009-08-17 2012-12-11 Motorola Mobility Llc Mitigation of uplink interference from wireless communication device connected to a micro cell
KR20130018704A (ko) * 2010-02-23 2013-02-25 엘지전자 주식회사 상향링크 전송 전력을 제어하는 단말 장치 및 그 방법
CN103596257B (zh) * 2012-08-14 2018-04-27 电信科学技术研究院 一种上行功率控制的方法、系统及装置
CN104735738B (zh) * 2015-04-21 2018-03-06 重庆邮电大学 一种gmr‑1卫星移动通信系统中的切换方法
JP2019091960A (ja) * 2016-03-30 2019-06-13 シャープ株式会社 端末装置および方法
CN108632968B (zh) * 2017-03-24 2021-01-29 华为技术有限公司 用于上行功率控制的方法和装置
CN108810960B (zh) * 2017-04-28 2021-06-22 华为技术有限公司 一种小区切换、确定上行发送功率的方法及装置
WO2018197930A1 (en) * 2017-04-29 2018-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for uplink power control
GB2582662B (en) * 2019-03-29 2021-10-06 Samsung Electronics Co Ltd Improvements in and relating to non-terrestrial networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254118A (zh) * 2013-06-28 2014-12-31 华为技术有限公司 功率控制方法、装置及ue
CN108886724A (zh) * 2016-03-16 2018-11-23 华为技术有限公司 一种无线通信系统中管理连接的系统和方法
CN107645766A (zh) * 2016-07-21 2018-01-30 中兴通讯股份有限公司 功率控制方法及装置
CN108632971A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备
CN109600826A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 功率控制方法及装置
WO2019095111A1 (zh) * 2017-11-14 2019-05-23 Oppo广东移动通信有限公司 一种调整上行发射功率的方法、用户设备及网络设备
CN110662281A (zh) * 2018-06-29 2020-01-07 中国移动通信有限公司研究院 一种调整上行发射功率的方法、用户设备及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040853A4

Also Published As

Publication number Publication date
US20220264484A1 (en) 2022-08-18
EP4040853A4 (en) 2022-12-07
EP4040853A1 (en) 2022-08-10
CN112788723B (zh) 2022-08-09
CN112788723A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
US11646766B2 (en) Enhanced sounding reference signaling for uplink beam tracking
WO2021088591A1 (zh) 功率控制的方法和装置
US10925005B2 (en) Uplink power control for 5G systems
US20200106647A1 (en) Method and device for srs transmission
US20160227485A1 (en) Drs based power control in communication systems
US20220030525A1 (en) Dynamic transmit power adjustment
US11722216B2 (en) Uplink transmission puncturing to reduce interference between wireless services
US11470665B2 (en) Negotiation on bearer type configurations
WO2021078224A1 (zh) 通信处理方法、BBU、RHUB和第二pRRU
CN112867129B (zh) 功率余量上报发送方法和装置
US20220116882A1 (en) Reference signal determination method and device, and ue
US20230262696A1 (en) Method for determining uplink transmission parameter, and terminal device
WO2021063071A1 (zh) 无线通信方法和装置
WO2021031028A1 (zh) 一种用于信号发送的方法、装置以及用于信号接收的方法、装置
WO2022253150A1 (zh) 数据传输方法及装置
WO2019096278A1 (zh) 信号测量的方法和设备
WO2021129120A1 (zh) 通信方法以及终端设备
WO2024020822A1 (zh) 上行功率控制方法、装置、设备及存储介质
WO2023131244A1 (zh) 通信方法和通信装置
WO2022236542A1 (zh) 传输方法、终端设备、网络设备及通信系统
US20240098738A1 (en) Uplink transmission method, terminal device, and network device
WO2023115341A1 (zh) 无线通信的方法、终端设备及网络设备
US20230224763A1 (en) Wireless communication method, terminal device, and network device
WO2024007336A1 (zh) 信息处理方法、终端设备和网络设备
WO2021026695A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020884863

Country of ref document: EP

Effective date: 20220506

NENP Non-entry into the national phase

Ref country code: DE