WO2021088550A1 - 电动车辆节能寻优切换点确定方法和运行方法 - Google Patents

电动车辆节能寻优切换点确定方法和运行方法 Download PDF

Info

Publication number
WO2021088550A1
WO2021088550A1 PCT/CN2020/117019 CN2020117019W WO2021088550A1 WO 2021088550 A1 WO2021088550 A1 WO 2021088550A1 CN 2020117019 W CN2020117019 W CN 2020117019W WO 2021088550 A1 WO2021088550 A1 WO 2021088550A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching point
unit
running
motors
working curve
Prior art date
Application number
PCT/CN2020/117019
Other languages
English (en)
French (fr)
Inventor
姚福来
Original Assignee
姚福来
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 姚福来 filed Critical 姚福来
Publication of WO2021088550A1 publication Critical patent/WO2021088550A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque

Definitions

  • This application relates to a power-saving operation method of an electric vehicle, in particular to a method and an operation method for determining an optimal switching point for energy-saving electric vehicles.
  • Electric vehicles, high-speed trains, and subway trains equipped with more than one drive motor consume a large amount of electric energy every day.
  • the energy-saving and efficient operation of these vehicles is of great significance.
  • the driving motor speed and the running speed of the vehicle are operated in accordance with a certain relationship.
  • the number of driving motors and the method of load distribution determine the overall energy efficiency of these vehicles, and determine the energy-saving quality of these vehicles. High and low.
  • the optimized control between the drive motors can improve the overall Operational energy efficiency reduces operating energy consumption.
  • many of the urban rail transit-subways, which have been vigorously developed, are driven by 2-3 electric motors.
  • the optimized operation of these driving motors will also have a significant impact on reducing the energy consumption of the subway.
  • the currently known designs for these vehicles are carried out in accordance with the conventional design specifications, and the design specifications do not guarantee that multiple drive motors can achieve the most energy-saving operation of the equipment and design methods to quantify energy-saving, drive motors and corresponding speed regulation
  • the operating efficiency of the motor changes due to changes in resistance and speed during the speed adjustment process.
  • the motor factory data does not provide the efficiency change curve of the motor at different speeds and different load rates, and the speed control drive manufacturer does not provide different frequencies and different load rates. Based on these factors, it is very difficult to determine the best power-saving operation mode of these vehicles after speed-regulated operation.
  • the Chinese invention patent ZL201010265930.1 provides general equipment load regulation and quantity control methods. It is a milestone invention in this field. However, the patent does not provide a method for determining and obtaining the optimal switching point of the number of driving motors.
  • this application provides a method for determining the optimal switching point for energy-saving electric vehicles And the operation method can be directly applied in the project conveniently.
  • ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ and ⁇ are coefficients, ⁇ 0, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time.
  • M 1Max (V s ) M 1 ⁇ 0
  • M 1Max (V s ) is the highest output torque of the first drive motor when the electric vehicle runs at speed V s ;
  • any one of M m-1, m and P m-1, m is taken as the optimal switching point for unit A operation, and two on-site process values that are absolutely equal cannot be found in the engineering. , Can only find the approximate value near the optimal switching point, and the instrument itself has errors. If the electric vehicle requires the drive motor to start and stop the interval time limit, it should avoid frequent switching of the number of drive motors near the optimal switching point, and comprehensively consider various Factor, the actual switching point value is a value within a range near the optimal switching point.
  • the actual switching point is taken as the value of the optimal switching point multiplied by (1+ ⁇ ), 0.15 ⁇ 0
  • the actual switching point is taken as the value of the best switching point multiplied by (1- ⁇ ), 0.15 ⁇ 0; That is, the value near the optimal switching point is used as the actual switching point value.
  • the value is greater than the actual switching point value
  • the number of driving motors will be increased; when the value is less than the actual switching point value, the number of driving motors will be reduced, and the driving motor will be maintained or switched at the actual switching point.
  • These actual switching points are approximate optimal switching points; for different electric vehicle operating speeds V s , the same method is used to obtain different optimal switching points and different actual switching points.
  • unit A uses the optimal switching point to switch the number of driving motors at the vehicle operating speed V s , M A ⁇ M 1 , At 2 o'clock, the operating efficiency of unit A ⁇ (V s ) ⁇ ⁇ 1 M 1, 2 V s /P 1 , 2, unit A is operating in the high-efficiency zone.
  • the beneficial effect of this application is to first obtain the working curve of a driving motor running at the vehicle speed V s , and directly draw all the working curves from 2 driving motors to k driving motors, and passing through the intersection of these working curves.
  • the optimal switching point at the vehicle speed V s is obtained. This method is easy to implement in engineering. According to these optimal switching points, the number of driving motors is switched and the speed control is performed to ensure that the unit A runs at high efficiency. State.
  • a subway train driven by 3 driving motors, 3 driving motors of the same model equipped with the same governor and transmission device constitute unit A, and there are 0 driving motors of other models, and the subway train runs at speed V under s
  • total torque output of the unit a is M a
  • the unit a is the total input power of all P a governor, designated a Renyiyitai unit driving motor as a first stage drive motor
  • the output torque of the drive motor is M i
  • the input power of the governor corresponding to the i-th drive motor is P i
  • M A M 1 +M 2 +M 3
  • P A P 1 +P 2 +P 3.
  • M 1Max (V s ) is the highest output torque of the first drive motor when the subway train runs at speed V s ;
  • working curve The intersection point of w 1 and working curve w 2 is point C, which is the best switching point between one drive
  • the value of the switching point is a value within a range near the optimal switching point.
  • Running at speed V s when the number of driving motors increases from 1 to 2, the switching point is taken as P 1, 2 (1+0.1), and when the number of driving motors decreases from 2 to 1, the switching point is taken as P 1.
  • the switching point when the number of driving motors increases from 2 to 3, the switching point is P 2, 3 (1+0.1), and when the number of driving motors decreases from 3 to 2, the switching point is P 2, 3 (1-0.1); that is, use the value near the optimal switching point as the actual switching point value, maintain the number of drive motors running at the actual switching point, increase the number of drive motors running when the value is greater than the switching point, and increase the number of drive motors when it is less than the value of the switching point Reduce the number of driving motors, these actual switching points are approximately optimal switching points.
  • an electric vehicle driven by three drive motors, three drive motors of the same model with the same speed governor and the same transmission form unit A, and the number of drive motors of other models is 0, and the electric vehicle runs at speed V under s
  • total torque output of the unit a is M a
  • the unit a is the total input power of all P a governor, designated a Renyiyitai unit driving motor as a first stage drive motor
  • the output torque of the drive motor is M i
  • the input power of the governor corresponding to the i-th drive motor is P i
  • M A M 1 +M 2 +M 3
  • P A P 1 +P 2 +P 3.
  • M 1Max (V s ) is the highest output torque of the first driving motor of the electric vehicle running at the speed V s ;
  • working curve The intersection point of y 1 and working curve y 2 is point C.
  • Point C is the best switching point between 1 drive motor and 2 drive motors at the electric vehicle operating speed V s .
  • the actual switching point is a value within a range near the optimal switching point.
  • the actual switching point is taken as M 1, 2 (1+0.1), and when the number of driving motors operating decreases from 2 to 1, the actual switching point is taken as M 1, 2 (1-0.1)
  • the actual switching point is taken as M 2,3 (1+0.1), and when the number of driving motors decreases from 3 to 2, the actual switching point is taken as M 2,3 (1- 0.1); That is, the value near the optimal switching point is used as the actual switching point value, and the number of driving motors is maintained at the actual switching point.
  • the value is greater than the switching point, the number of driving motors is increased, and when the value is less than the switching point, the number of driving motors is reduced. The number of units, these actual switching points are approximate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动车辆节能寻优切换点确定方法和运行方法。在多驱动电动机共同驱动的车辆中,有k台配备相同调速器和相同传动装置的相同型号的驱动电动机构成机组A,在车辆运行速度V s下,记录机组A中第1台驱动电动机的输出转矩M 1和调速器输入功率P 1,得出1台驱动电动机运行的M A-P A工作曲线w 1,取M A=mM 1和P A=mP 1,得到m台运行驱动电动机运行在相同输出转矩下的工作曲线w m,工作曲线w m-1和工作曲线w m的相交点,为m-1台驱动电动机运行与m台驱动电动机运行在车辆运行速度V s下的最佳切换点。

Description

电动车辆节能寻优切换点确定方法和运行方法
本申请要求于2019年11月04日提交中国专利局、申请号为201911064018.7、发明名称为“电动车辆节能寻优切换点确定方法和运行方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动车辆的节电运行方法,尤其是电动车辆节能寻优切换点确定方法和运行方法。
背景技术
配置1个以上驱动电动机的电动汽车、高速列车和地铁列车,每天都消耗大量的电能,这些车辆的节能高效运行,意义重大。这些车辆在运行中,驱动电动机转速与车辆的运行速度按照一定的关系进行运转,驱动电动机运行台数的多少和负荷的分配方法,决定着这些车辆的整体运行能效高低,决定着这些车辆节能品质的高低。
城市中单人开车上下班的人群很庞大,常规的电动汽车由1台电动机驱动,常处于极低负荷运行状态,再加上天气、路况和频繁启停等问题,能源浪费严重,把1个驱动电动机的动力用2-4个驱动电动机代替,通过优化可以实现更节能的运行,预计可以缓解这些问题造成的能源浪费,并提高电动汽车的续航里程,有望成为未来电动汽车的主流方向。高速列车,一般由多个电动机共同驱动,由于客流变化大、运行速度快,再加上天气、风阻、上下坡因素的影响,负荷轻重变化很大,驱动电动机之间的优化控制,可以提高整体运行能效降低运行能耗。目前,得到大力发展的城市轨道交通――地铁,很多也是由2-3个电动机驱动的,这些驱动电动机的优化运行,也会对降低地铁能耗产生显著的影响。
目前公知的用于这些车辆的设计是按照常规设计规范进行的,而设计规范并没有保证多台驱动电动机实现最节电运行的设备配备方法和量化节能的设计手段,驱动电动机和对应的调速器在调速过程中由于阻力和速度的变化 其运行效率也是变化的,电动机出厂资料中不提供电动机在不同转速不同负荷率下的效率变化曲线,调速驱动器厂家也不提供不同频率不同负荷率下的效率变化曲线,基于这些因素,要确定这些车辆调速运行后的最佳节电运行方式是非常困难的。
中国发明专利ZL201010265930.1给出了通用设备负荷调节和数量控制方法,是该领域里程碑式的发明,但是该专利并没有给出如何确定和获取驱动电动机之间运行数量最佳切换点的方法。
发明内容
为了给出多驱动电动机的电动汽车、高速列车和地铁列车在工程上确定驱动电动机运行台数最佳切换点的寻找方法和最佳运行方法,本申请提供一种电动车辆节能寻优切换点确定方法和运行方法,可以方便地在工程中直接进行应用。
本申请解决其技术问题所采用的技术方案是:在k+k1台驱动电动机共同驱动的一个电动车辆中,有k台配备相同型号调速器和相同型号传动装置的相同型号驱动电动机构成的机组A,k为大于1的整数,有k1台其它型号的驱动电动机,k1≥0,车辆运行在速度V s下,机组A所有驱动电动机输出的总转矩为M A,机组A中所有调速器的总输入功率为P A,指定机组A中任意一台驱动电动机为第1台驱动电动机,机组A中第i台驱动电动机输出的转矩为M i,第i台驱动电动机对应的调速器的输入功率为P i,M A=M 1+M 2+…+M k,P A=P 1+P 2+…+P k,对于机组A,以V s速度下得出的M A φV s λP A μ-βM A δV s ξP A σ曲线作为工作曲线w,工作曲线可以称为工作方程或工作函数,求取机组A的最佳切换点以及最佳运行方法,φ、λ、μ、β、δ、ξ和σ是系数,β≠0,φ和μ不能同时等于0,φ和δ不能同时等于0,σ和δ不能同时等于0,σ和μ不能同时等于0。
在一些实施方式中,在电动车辆运行速度V s下,记录机组A中第1台驱动电动机的输出转矩M 1以及对应M 1的调速器输入功率P 1,M 1Max(V s)≥M 1≥0,M 1Max(V s)为电动车辆运行在速度V s下第1台驱动电动机的最高输出转矩;M A=M 1,P A=P 1,得出1台驱动电动机运行的工作曲线 w 1;取M A=(m-1)M 1和P A=(m-1)P 1,m为正整数,k≥m≥2,得到m-1台驱动电动机运行在相同输出转矩下的工作曲线w m-1,M 1=M 2=…=M m-1,P 1=P 2=…=P m-1;取M A=mM 1和P A=mP 1,m为正整数,k≥m≥2,得到m台驱动电动机运行在相同输出转矩下的工作曲线w m,M 1=M 2=…=M m,P 1=P 2=…=P m;工作曲线w m-1和工作曲线w m的相交点,为m-1台驱动电动机运行与m台驱动电动机运行在电动车辆运行速度V s下的最佳切换点,最佳切换点处M A=M m-1,m和P A=P m-1,m,在相交点,m-1台运行的驱动电动机的效率和m台运行的驱动电动机的效率相同,称为“等效切换”;如果工作曲线w m-1和工作曲线w m没有相交点,则m-1台运行的驱动电动机与m台运行的驱动电动机的切换点为m-1运行的驱动电动机都运行在最高输出转矩M 1Max(V s)点;M m-1,m为用机组A的总输出转矩表示的最佳切换点,P m-1,m为用机组A中所有调速器的总输入功率表示的最佳切换点;m=2时,最佳切换点为M A=M 1,2和P A=P 1,2,m=k时,最佳切换点为M A=M k-1,k和P A=P k-1,k;m-1台驱动电动机运行时,保持M 1=M 2=…=M m-1,P 1=P 2=…=P m-1;m台驱动电动机运行时,保持M 1=M 2=…=M m,P 1=P 2=…=P m,即运行中的相同型号的驱动电动机保持相同的负荷,称为“同机同荷”。
在一些实施方式中,工程应用中,取M m-1,m和P m-1,m中的任意一个作为机组A运行的最佳切换点,工程中无法找到绝对相等的两个现场工艺数值,只能找到最佳切换点附近的近似值,仪表本身也有误差,如果电动车辆要求驱动电动机启停间隔有时间限制时,应避免驱动电动机运行台数在最佳切换点附近频繁切换,综合考虑各种因素,实际切换点的数值为最佳切换点附近一个范围内的数值,在机组A中,驱动电动机运行台数从m-1增加到m时,实际切换点取为最佳切换点的数值乘以(1+θ),0.15≥θ≥0,驱动电动机运行台数从m减少为m-1时,实际切换点取为最佳切换点的数值乘以(1-ε),0.15≥ε≥0;也就是用最佳切换点附近的数值作为实际切换点数值,大于实际切换点数值时增加驱动电动机运行台数,小于实际切换点数值时减少驱动电动机运行台数,在实际切换点时维持或切换驱动电动机的运行台数,这些实际切换点是近似最佳切换点;对于不同的电动车辆运行速度V s, 用同样的方法,得出不同的最佳切换点和不同的实际切换点。
在一些实施方式中,当δ=1,ξ=1,σ=-1和β=β 1时,βM A δV s ξP A σ=β 1M A V s/P A,β 1M A V s/P A代表机组A的运行效率η(V s),β 1为系数,机组A在车辆运行速度V s下,采用最佳切换点进行驱动电动机运行台数的切换,M A≥M 1,2时,机组A的运行效率η(V s)≥β 1M 1,2V s/P 1,2,机组A运行在高效区。
本申请的有益效果是先得出1台驱动电动机运行在车辆速度V s下的工作曲线,直接画出2台驱动电动机运行到k台驱动电动机运行的所有工作曲线,通过这些工作曲线的相交点得出在车辆速度V s下的最佳切换点,这一方法在工程中很容易实现,按照这些最佳切换点进行驱动电动机运行台数的切换和调速控制,就可以保证机组A运行在高效状态下。
附图说明
下面结合附图和实施例,对本申请进一步说明。
图1是k=3时用M A-P A曲线作为工作曲线得出最佳切换点和最佳负荷分配方法的实施例。
图2是k=3时用M A-M A/P A曲线作为工作曲线得出最佳切换点和最佳负荷分配方法的实施例。
具体实施方式
在图1中,3台驱动电动机共同驱动的一个地铁列车,3台配备相同调速器相同传动装置的相同型号驱动电动机构成机组A,有0台其它型号的驱动电动机,地铁列车运行在速度V s下,机组A输出的总转矩为M A,机组A中所有调速器的总输入功率为P A,指定机组A中任意一台驱动电动机为第1台驱动电动机,机组A中第i台驱动电动机输出的转矩为M i,第i台驱动电动机对应的调速器的输入功率为P i,M A=M 1+M 2+M 3,P A=P 1+P 2+P 3,取φ=1,λ=0,μ=0,β=1,δ=0,ξ=0,σ=1,M A φV s λP A μ-βM A δV s ξP A σ变成M A-P A,M A-P A作为工作曲线w。
在地铁列车运行速度V s下,记录机组A中第1台驱动电动机的输出转矩 M 1以及对应M 1的调速器输入功率P 1,M 1Max(V s)≥M 1≥0,M 1Max(V s)为地铁列车运行在速度V s下第1台驱动电动机的最高输出转矩;M A=M 1,P A=P 1,得出1台驱动电动机运行的工作曲线w 1;取M A=2M 1和P A=2P 1,得到2台运行驱动电动机运行在相同输出转矩下的工作曲线w 2,保持M 1=M 2,则P 1=P 2;取M A=3M 1和P A=3P 1,得到3台运行驱动电动机运行在相同输出转矩下的工作曲线w 3,保持M 1=M 2=M 3,则P 1=P 2=P 3;工作曲线w 1和工作曲线w 2的相交点为C点,C点为1台驱动电动机运行与2台驱动电动机运行在机车运行速度V s下的最佳切换点,最佳切换点处M A=M 1,2和P A=P 1,2;工作曲线w 2和工作曲线w 3的相交点为D点,D点为2台驱动电动机运行与3台驱动电动机运行在机车运行速度V s下的最佳切换点,最佳切换点处M A=M 2,3和P A=P 2,3;选P 1,2和P 2,3作为机组A运行的最佳切换点。
在工程应用中,工艺要求驱动电动机启停间隔有时间限制时,为避免驱动电动机运行台数在最佳切换点附近频繁切换,切换点的数值为最佳切换点附近一个范围内的数值,地铁列车运行在速度V s下,驱动电动机运行台数从1增加到2时,切换点取为P 1,2(1+0.1),驱动电动机运行台数从2减少为1时,切换点取为P 1,2(1-0.1),驱动电动机运行台数从2增加到3时,切换点取为P 2,3(1+0.1),驱动电动机运行台数从3减少为2时,切换点取为P 2,3(1-0.1);也就是用最佳切换点附近的数值作为实际切换点数值,在实际切换点时维持驱动电动机运行台数,大于切换点数值时增加驱动电动机运行台数,小于切换点数值时减少驱动电动机运行台数,这些实际切换点是近似最佳切换点。
1.1P 1,2≥P A≥0时保持1台驱动电动机运行,P A>1.1P 1,2时切换到2台驱动电动机运行,且保持M 1=M 2,1.1P 2,3≥P A≥1.1P 1,2时保持2台驱动电动机运行,且保持M 1=M 2,P A>1.1P 2,3时切换到3台驱动电动机运行,且保持M 1=M 2=M 3;P A≥0.9P 2,3时保持3台驱动电动机运行,且保持M 1=M 2=M 3,0.9P 2,3>P A时切换到2台驱动电动机运行,且保持M 1=M 2,1.1P 2,3≥P A≥1.1P 1,2时用2台驱动电动机运行,且保持M 1=M 2,0.9P 1,2>P A时切换到1台驱动电动机运行,1.1P 1,2≥P A≥0时保持1台驱动电动机运行,对于不同的地铁列车运行速度V s,用同样的方法,得出不同的最 佳切换点和不同的实际切换点。
在图2中,3台驱动电动机共同驱动的一个电动汽车,3台配备相同调速器相同传动装置的相同型号驱动电动机构成机组A,其它型号的驱动电动机为0台,电动汽车运行在速度V s下,机组A输出的总转矩为M A,机组A中所有调速器的总输入功率为P A,指定机组A中任意一台驱动电动机为第1台驱动电动机,机组A中第i台驱动电动机输出的转矩为M i,第i台驱动电动机对应的调速器的输入功率为P i,M A=M 1+M 2+M 3,P A=P 1+P 2+P 3,取φ=1,λ=0,μ=0,β=1,δ=1,ξ=0,σ=-1,M A φV s λP A μ-βM A δV s ξP A σ成为M A-M A/P A,M A-M A/P A作为工作曲线w。
在电动汽车运行速度V s下,记录机组A中第1台驱动电动机的输出转矩M 1以及对应M 1的调速器输入功率P 1,M 1Max(V s)≥M 1≥0,M 1Max(V s)为电动汽车运行在速度V s下第1台驱动电动机的最高输出转矩;M A=M 1,P A=P 1,得出1台驱动电动机运行的工作曲线y 1;取M A=2M 1和P A=2P 1,得到2台运行驱动电动机运行在相同输出转矩下的工作曲线y 2,保持M 1=M 2,则P 1=P 2;取M A=3M 1和P A=3P 1,得到3台运行驱动电动机运行在相同输出转矩下的工作曲线y 3,保持M 1=M 2=M 3,则P 1=P 2=P 3;工作曲线y 1和工作曲线y 2的相交点为C点,C点为1台驱动电动机运行与2台驱动电动机运行在电动汽车运行速度V s下的最佳切换点,最佳切换点处M A=M 1,2;工作曲线y 2和工作曲线y 3的相交点为D点,D点为2台驱动电动机运行与3台驱动电动机运行在电动汽车运行速度V s下的最佳切换点,最佳切换点处M A=M 2,3
在工程应用中,工艺要求驱动电动机启停间隔有时间限制时,为避免驱动电动机运行台数在最佳切换点附近频繁切换,实际切换点的数值为最佳切换点附近一个范围内的数值,驱动电动机运行台数从1增加到2时,实际切换点取为M 1,2(1+0.1),驱动电动机运行台数从2减少为1时,实际切换点取为M 1,2(1-0.1),驱动电动机运行台数从2增加到3时,实际切换点取为M 2,3(1+0.1),驱动电动机运行台数从3减少为2时,实际切换点取为M 2,3(1-0.1);也就是用最佳切换点附近的数值作为实际切换点数值,在实际切换点时维持驱动电动机运行台数,大于切换点数值时增加驱动电动机运 行台数,小于切换点数值时减少驱动电动机运行台数,这些实际切换点是近似最佳切换点。
1.1M 1,2≥M A≥0时保持1台驱动电动机运行,M A>1.1M 1,2时切换到2台驱动电动机运行,且保持M 1=M 2,1.1M 2,3≥M A≥1.1M 1,2时保持2台驱动电动机运行,且保持M 1=M 2,M A>1.1M 2,3时切换到3台驱动电动机运行,且保持M 1=M 2=M 3;M A≥0.9M 2,3时保持3台驱动电动机运行,且保持M 1=M 2=M 3,0.9M 2,3>M A时切换到2台驱动电动机运行,且保持M 1=M 2,1.1M 2,3≥M A≥1.1M 1,2时用2台驱动电动机运行,且保持M 1=M 2,0.9M 1,2>M A时切换到1台驱动电动机运行,1.1M 1,2≥M A≥0时保持1台驱动电动机运行;对于不同的电动汽车运行速度V s,用同样的方法,得出不同的最佳切换点和不同的实际切换点。
熟悉本领域的技术人员应该认识到,在不背离本申请的精神和范围的情况下可以做出许多修改,如使用其它字母进行描述,改变术语的名称,改变的驱动电动机的台数,改变所用数据的点数和形式,乘以或除以一个常数或一个系数,改变表达式的结构,如用M A/V s-P A作为工作曲线,因为V s取值为恒定,工作曲线与M A-P A相似,等等,显然,本领域的技术人员不脱离本申请的构思可以以其它形式实施本申请,因而,其它的实施例也在本申请权利要求的范围内。

Claims (4)

  1. 一种电动车辆节能寻优切换点确定方法和运行方法,在k+k1台驱动电动机共同驱动的一个电动车辆中,有k台配备相同型号调速器和相同型号传动装置的相同型号驱动电动机构成的机组A,k为大于1的整数,有k1台其它型号的驱动电动机,k1≥0,车辆运行在速度V s下,机组A所有驱动电动机输出的总转矩为M A,机组A中所有调速器的总输入功率为P A,指定机组A中任意一台驱动电动机为第1台驱动电动机,机组A中第i台驱动电动机输出的转矩为M i,第i台驱动电动机对应的调速器的输入功率为P i,M A=M 1+M 2+…+M k,P A=P 1+P 2+…+P k,其特征是:对于机组A,以V s速度下得出的M A φV s λP A μ-βM A δV s ξP A σ曲线作为工作曲线w,求取机组A的最佳切换点以及最佳运行方法,φ、λ、μ、β、δ、ξ和σ是系数,β≠0,φ和μ不能同时等于0,φ和δ不能同时等于0,σ和δ不能同时等于0,σ和μ不能同时等于0。
  2. 根据权利要求1所述的电动车辆节能寻优切换点确定方法和运行方法,其特征是:在电动车辆运行速度V s下,记录机组A中第1台驱动电动机的输出转矩M 1以及对应M 1的调速器输入功率P 1,M 1Max(V s)≥M 1≥0,M 1Max(V s)为电动车辆运行在速度V s下第1台驱动电动机的最高输出转矩;M A=M 1,P A=P 1,得出1台驱动电动机运行的工作曲线w 1;取M A=(m-1)M 1和P A=(m-1)P 1,m为正整数,k≥m≥2,得到m-1台驱动电动机运行在相同输出转矩下的工作曲线w m-1,M 1=M 2=…=M m-1,P 1=P 2=…=P m-1;取M A=mM 1和P A=mP 1,m为正整数,k≥m≥2,得到m台驱动电动机运行在相同输出转矩下的工作曲线w m,M 1=M 2=…=M m,P 1=P 2=…=P m;工作曲线w m-1和工作曲线w m的相交点,为m-1台驱动电动机运行与m台驱动电动机运行在电动车辆运行速度V s下的最佳切换点,最佳切换点处M A=M m-1,m和P A=P m-1,m,在相交点,m-1台运行的驱动电动机的效率和m台运行的驱动电动机的效率相同,称为“等效切换”;如果工作曲线w m-1和工作曲线w m没有相交点,则m-1台运行的驱动电动机与m台运行的驱动电动机的切换点为m-1运行的驱动电动机都运行在最高输出转矩M 1Max(V s)点;M m-1,m为用机组A的总输出转矩表示的最佳切换点,P m-1,m为 用机组A中所有调速器的总输入功率表示的最佳切换点;m=2时,最佳切换点为M A=M 1,2和P A=P 1,2,m=k时,最佳切换点为M A=M k-1,k和P A=P k-1,k;m-1台驱动电动机运行时,保持M 1=M 2=…=M m-1,P 1=P 2=…=P m-1;m台驱动电动机运行时,保持M 1=M 2=…=M m,P 1=P 2=…=P m,即运行中的相同型号的驱动电动机保持相同的负荷,称为“同机同荷”。
  3. 根据权利要求2所述的电动车辆节能寻优切换点确定方法和运行方法,其特征是:工程应用中,取M m-1,m和P m-1,m中的任意一个作为机组A运行的最佳切换点;机组A中的驱动电动机运行台数从m-1增加到m时,实际切换点取为最佳切换点的数值乘以(1+θ),0.15≥θ≥0,驱动电动机运行台数从m减少为m-1时,实际切换点取为最佳切换点的数值乘以(1-ε),0.15≥ε≥0。
  4. 根据权利要求1所述的电动车辆节能寻优切换点确定方法和运行方法,其特征是:β 1M AV s/P A代表机组A的运行效率η(V s),β 1为系数,机组A在车辆运行速度V s下,采用最佳切换点进行驱动电动机运行台数的切换,M A≥M 1,2时,机组A的运行效率η(V s)≥β 1M 1,2V s/P 1,2
PCT/CN2020/117019 2019-11-04 2020-09-23 电动车辆节能寻优切换点确定方法和运行方法 WO2021088550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911064018.7A CN110758116A (zh) 2019-11-04 2019-11-04 电动车辆节能寻优切换点确定方法和运行方法
CN201911064018.7 2019-11-04

Publications (1)

Publication Number Publication Date
WO2021088550A1 true WO2021088550A1 (zh) 2021-05-14

Family

ID=69335476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117019 WO2021088550A1 (zh) 2019-11-04 2020-09-23 电动车辆节能寻优切换点确定方法和运行方法

Country Status (2)

Country Link
CN (2) CN117183768A (zh)
WO (1) WO2021088550A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117183768A (zh) * 2019-11-04 2023-12-08 姚福来 电动车辆节能寻优切换点确定方法和运行方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509680A (zh) * 2009-03-16 2009-08-19 哈尔滨工业大学 调节同步变速变流量供热系统中水泵台数的节能控制方法
CN101976043A (zh) * 2010-08-24 2011-02-16 姚福来 通用设备整体高效率节能运行的控制和调度方法
CN102694488A (zh) * 2011-03-20 2012-09-26 姚福来 一台以上电动机共同驱动设备的节能控制方法
CN103625307A (zh) * 2012-08-29 2014-03-12 上海大众汽车有限公司 基于多种行驶模式的电动机扭矩控制方法
CN105182735A (zh) * 2014-05-26 2015-12-23 姚福来 不同型号设备组成系统的整体效率优化控制方法
KR20170038396A (ko) * 2015-09-30 2017-04-07 현대오트론 주식회사 전기자동차 구동 제어 장치
CN110758116A (zh) * 2019-11-04 2020-02-07 姚福来 电动车辆节能寻优切换点确定方法和运行方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8825320B2 (en) * 2007-11-02 2014-09-02 GM Global Technology Operations LLC Method and apparatus for developing a deceleration-based synchronous shift schedule
CN106347138B (zh) * 2016-10-27 2018-09-14 北京新能源汽车股份有限公司 一种纯电动汽车的能量回收控制方法、装置及纯电动汽车
CN109703346B (zh) * 2017-10-25 2022-04-26 上海汽车集团股份有限公司 双电机汽车动力系统及其控制方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509680A (zh) * 2009-03-16 2009-08-19 哈尔滨工业大学 调节同步变速变流量供热系统中水泵台数的节能控制方法
CN101976043A (zh) * 2010-08-24 2011-02-16 姚福来 通用设备整体高效率节能运行的控制和调度方法
CN102694488A (zh) * 2011-03-20 2012-09-26 姚福来 一台以上电动机共同驱动设备的节能控制方法
CN103625307A (zh) * 2012-08-29 2014-03-12 上海大众汽车有限公司 基于多种行驶模式的电动机扭矩控制方法
CN105182735A (zh) * 2014-05-26 2015-12-23 姚福来 不同型号设备组成系统的整体效率优化控制方法
KR20170038396A (ko) * 2015-09-30 2017-04-07 현대오트론 주식회사 전기자동차 구동 제어 장치
CN110758116A (zh) * 2019-11-04 2020-02-07 姚福来 电动车辆节能寻优切换点确定方法和运行方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO FULAI: "Efficiency Optimization Method and Optimal Control of Mechanical and Electrical Equipments", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 June 2012 (2012-06-01), XP055809944 *

Also Published As

Publication number Publication date
CN117183768A (zh) 2023-12-08
CN110758116A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2021088550A1 (zh) 电动车辆节能寻优切换点确定方法和运行方法
Xiao et al. Modeling and energy-optimal control for high-speed trains
CZ2002321A3 (cs) Způsob energetické optimalizace režimu jízdy vozidla/vlaku při použití kinetické energie
CN111245316B (zh) 基于双模糊pi控制的航空宽变频三级式电机调压方法
CN110266226B (zh) 一种基于模型预测控制的电动汽车能效控制方法
He et al. Optimal control of metro energy conservation based on regenerative braking: A complex model study of trajectory and overlap time
CN111188732B (zh) 一种风力发电变桨鲁棒容错控制方法
CN111824119B (zh) 增程器瞬时优化控制方法
Deng et al. Hierarchical eco-driving and energy management control for hydrogen powered hybrid trains
CN109703593B (zh) 一种无接触网有轨电车全区间运行综合优化方法
CN112498332B (zh) 一种并联式混合动力汽车模糊自适应能量管理控制方法
CN110758121B (zh) 一种基于递阶控制的能量管理系统
Yang et al. Optimization of fuzzy controller based on genetic algorithm
WO2021088620A1 (zh) 水泵机组节电寻优运行方法和切换点确定方法
CN201278499Y (zh) 双变频电机控制装置
CN110701078A (zh) 一种基于功率预测的地铁能馈装置风机调速方法
Licheng et al. Optimization of train speed curve based on ATO tracking control strategy
CN112287288B (zh) 考虑牵引变流器可靠性的轨道交通车辆运行曲线优化方法
Chen et al. Evaluation of low-carbon benefits of smart grids based on a three-stage DEA model
CN114035432B (zh) 基于线性整数-动态规划组合算法的一组考虑开停机损耗的泵站控制方法
Ke et al. Model of traction system and speed control for single train of Taipei mass rapid transit system
CN114069669A (zh) 一种共享储能运行模式控制方法
CZ2002320A3 (cs) Způsob energetické optimalizace vozidla/vlaku s účinností závislou na pracovním bodě
Huang et al. Toward Intelligent Train Driving through Learning Human Experience
Mo et al. A realization and simulation of ATO speed control module—predictive fuzzy control algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884147

Country of ref document: EP

Kind code of ref document: A1