WO2021088620A1 - 水泵机组节电寻优运行方法和切换点确定方法 - Google Patents

水泵机组节电寻优运行方法和切换点确定方法 Download PDF

Info

Publication number
WO2021088620A1
WO2021088620A1 PCT/CN2020/121509 CN2020121509W WO2021088620A1 WO 2021088620 A1 WO2021088620 A1 WO 2021088620A1 CN 2020121509 W CN2020121509 W CN 2020121509W WO 2021088620 A1 WO2021088620 A1 WO 2021088620A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
switching point
pumps
running
water
Prior art date
Application number
PCT/CN2020/121509
Other languages
English (en)
French (fr)
Inventor
姚福来
Original Assignee
姚福来
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 姚福来 filed Critical 姚福来
Priority to JP2021526462A priority Critical patent/JP7143522B2/ja
Priority to DE112020000196.2T priority patent/DE112020000196B4/de
Priority to US17/339,381 priority patent/US11719233B2/en
Publication of WO2021088620A1 publication Critical patent/WO2021088620A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/007Installations or systems with two or more pumps or pump cylinders, wherein the flow-path through the stages can be changed, e.g. from series to parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0208Power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump

Definitions

  • the invention relates to a power-saving operation method for a water pump unit, in particular to a power-saving operation method and a switching point determination method for the water pump unit.
  • Parallel water pump units are used in secondary frequency conversion water supply equipment, non-negative pressure frequency conversion water supply equipment, superimposed frequency conversion water supply equipment, factory and mining enterprise water supply pumping stations, circulating water pumping stations, central air conditioning refrigeration pumping stations, cooling pumping stations, water supply systems of water companies, and municipal There are a large number of sewage pumping stations, drainage pumping stations, irrigation pumping stations of the agricultural sector, and water transfer pumping stations of the water conservancy sector.
  • the currently known design methods for water pump units are carried out in accordance with the conventional design specifications, and the design specifications are only a guiding design principle, and do not guarantee the most power-saving operation of the water pump unit.
  • the specific equipment configuration method and the quantified energy-saving design are not guaranteed.
  • the operating efficiency of the water pump at different pressures and flow rates after the speed adjustment of the frequency converter changes.
  • the motor factory data does not provide the efficiency change curve of the motor at different frequencies and different load rates, and the frequency converter factory data does not provide Based on these factors, it is very difficult to determine the best power-saving operation mode for the speed-regulating operation of parallel water pump units based on the efficiency change curves under different frequencies and different load rates.
  • Patent 200810099427.6 gives the speed regulation and switching method used to control the parallel energy-saving operation of water pumps, and gives the power-saving pump set switching characteristics and power-saving speed regulation method. It is a milestone invention in this field, but the patent does not How to find and determine these optimal switching points and how to operate are given.
  • the present invention provides a power saving optimization operation method and a switching point determination method for the water pump unit, which can be easily determined in engineering applications.
  • the best switching point of the water pump unit and a power-saving operation control method are given.
  • the technical scheme adopted by the present invention to solve its technical problem is: in the parallel water pump units, there are k water pumps of the same type equipped with frequency converters to form the sub-pump group A, k is an integer greater than 1, and there are k1 water pumps of other types.
  • K1 is an integer greater than or equal to 0, the parallel water pump units adopt constant pressure operation mode, the constant pressure value is H s , the constant pressure value H s is the value converted to the full head of the water pump unit, and the density of the conveyed liquid is ⁇ , the sub pump
  • the total water output of group A is Q A
  • the total input power of the inverter in sub pump group A is P A
  • any pump in sub pump group A is designated as the first pump
  • the water output is Q i
  • the input power of the inverter is P i
  • the operating frequency is f i
  • Q A Q 1 +Q 2 +...+Q k
  • P A P 1 +P 2 +...+P k
  • Sub-pump group A obtained under constant pressure operation mode
  • the curve is regarded as the working curve w, and the working curve can be called the working equation or working function.
  • the parallel water pump unit keeps the constant pressure H s operation state, and records the water output of the first water pump in the sub pump group A Q 1 and Q corresponding to a first stage pump 1 corresponding to the inverter input power P 1, Q 1Max (H s ) ⁇ Q 1 ⁇ 0, Q 1Max (H s) to maintain a constant pressure operating state of Paragraph 1 H s
  • the water pump inverter runs at the water output corresponding to the maximum allowable frequency f max , f max is one of the grid power supply frequency and the power supply frequency corresponding to the rated speed n
  • any one of m and P m-1, m is the value of the optimal switching point between m-1 running water pumps and m running water pumps of sub-pump group A under constant pressure H s ; it cannot be found in the project Two absolutely equal field values, and the instrument itself also has errors.
  • many pump units have time restrictions on the start and stop intervals of the pump. It is necessary to avoid frequent switching of the number of pumps near the optimal switching point. Taking these factors into account, the actual switching The value of the point is the value within a range near the optimal switching point.
  • sub-pump group A when the number of pumps increases from m-1 to m, the actual switching point is taken as the value of the optimal switching point multiplied by (1+ ⁇ 1 ), 0.15 ⁇ 1 ⁇ 0, when the number of pumps running decreases from m to m-1, the actual switching point is taken as the value of the best switching point multiplied by (1- ⁇ 1 ), 0.15 ⁇ 1 ⁇ 0, That is, the value near the optimal switching point is used as the actual switching point value.
  • the value is greater than the switching point value, the number of pumps will be increased, and when the value is less than the switching point, the number of pumps will be reduced.
  • Q m-1, m is obtained in the above sub-sub-pump A pump assembly A of total amount of water represented by m 1-m pumps and pumps running works best switching point at constant pressure of H s, k ⁇ m ⁇ 2, for sub-pump group A, obtained under constant pressure operation mode
  • the curve is the frequency curve y.
  • the frequency curve can also be called frequency equation or frequency function.
  • the parallel pump unit maintains the constant pressure H s operation state, and records the water output of the first pump in sub pump group A Q 1 and the inverter operating frequency f 1 corresponding to Q 1 ;
  • the value of the actual switching point is a value within a range near the optimal switching point.
  • the actual switching point is taken as f m-1, m (1+ ⁇ 2 ), 0.15 ⁇ 2 ⁇ 0
  • the actual switching point is taken as f m, m-1 (1- ⁇ 2 ), 0.15 ⁇ 2 ⁇ 0, that is, use
  • the value near the best switching point is used as the actual switching point value.
  • is 1 ton/m3
  • H s is in meters
  • Q A is in cubic meters/hour
  • P A is in kilowatts
  • ⁇ 1 is equal to 1/367.2.
  • the "same pump and same frequency" control mode can use the controller's bus communication signal and analog output signal to send the same frequency value to all inverters at once.
  • the present invention also provides another power-saving optimization operation method and switching point determination method of the water pump unit.
  • the power saving and optimizing operation method and switching point determination method of the water pump unit include:
  • the first coefficient group includes: ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , where ⁇ 0, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ Cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time
  • the constant pressure value of the water pump unit the total input power of the frequency converter, the density of the liquid delivered by the water pump unit, and the first specific coefficient group, it is determined in the constant pressure operation mode.
  • the optimal switching point and the optimal operation method of each pump in the pump unit are determined.
  • the power-saving optimization operation method and switching point determination method of this water pump unit also include:
  • the second specific coefficient group includes: ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ and ⁇ , where ⁇ 0, And ⁇ cannot be equal to 0 at the same time, And ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time, and ⁇ and ⁇ cannot be equal to 0 at the same time;
  • a frequency curve is determined in a constant pressure operation mode
  • the best switching point and the best operating method of each pump in the water pump unit are determined.
  • the beneficial effect of the present invention is to first obtain the working curve of one running water pump in the state of speed regulation and constant pressure, directly draw all the working curves from 2 running water pumps to k running water pumps, and obtain the result from the intersection of these working curves Optimal switching point, this method is easy to implement in engineering, according to these optimal switching points to switch the number of pumps and speed control, you can ensure that the sub-pump group A runs in a high-efficiency state.
  • Fig. 4 is a flow chart of another power-saving optimizing operation method and switching point determination method of a water pump unit provided by the present invention.
  • the purpose of the present invention is to provide a power-saving optimization operation method and a switching point determination method of a water pump unit, so as to find and determine the best switching point and the best operation method of the water pump unit in engineering.
  • the total water output of sub-pump group A is Q A, and the total water output of sub-pump group A is Q A.
  • H s is the same Q A is the same P A is the same, so the efficiency of one running pump is the same as the efficiency of two running pumps, which is called "equivalent switching" , P A > P 1 , 2, switch from 1 running water pump to 2 running water pumps.
  • the value of the actual switching point is a value within a range near the optimal switching point, when the number of pumps running increases from 1 to 2, the actual switching point is taken as P 1, 2 (1+0.08), and the pump is running When the number of units is reduced from 2 to 1, the actual switching point is taken as P 1, 2 (1-0.08), and when the number of pumps is increased from 2 to 3, the actual switching point is taken as P 2, 3 (1+0.08), and the pump is running When the number of units is reduced from 3 to 2, the actual switching point is taken as P 2,3 (1-0.08), the value near the optimal switching point is used as the actual switching point value, and the number of pumps running at the switching point is maintained, which is greater than the switching point value Increase
  • the total water output of sub-pump group A is Q A, and the total water output of sub-pump group A is Q A.
  • the actual switching point is a value within a range near the optimal switching point.
  • the actual switching The point is Q 1, 2 (1+0.04)
  • the actual switching point is Q 1, 2 (1-0.04)
  • the actual switching point is Q 2,3 (1+0.04).
  • the actual switching point is Q 2,3 (1-0.04), that is, the value near the optimal switching point is used as the actual Switching point value, maintain the number of pumps running at the switching point, increase the number of pumps running when it is greater than the value of the switching point, and reduce the number of pumps running when it is less than the value of the switching point.
  • These actual switching points are approximate optimal switching points; for different constant pressure operations For the value H s , using the same method, different optimal switching points and different actual switching points are obtained.
  • the actual switching point is taken as f 1, 2 (1+0.02 ), when the number of pumps is reduced from 2 to 1, the actual switching point is taken as f 2,1 (1-0.02), when the number of pumps is increased from 2 to 3, the actual switching point is taken as f 2,3 (1+0.02) ), when the number of running pumps is reduced from 3 to 2, the actual switching point is taken as f 3,2 (1-0.02), that is, the value near the optimal switching point is used as the actual switching point value, and the pump operation is maintained at the actual switching point If the number of units is greater than the actual switching point, increase the number of pumps, and reduce the number of pumps when it is less than the actual switching point.
  • These actual switching points are approximate optimal switching points; for different constant pressure operating values H s , use the same method to get Different optimal switching points and different actual switching points.
  • the present invention also provides another power-saving optimization operation method and switching point determination method of the water pump unit.
  • the power-saving optimization operation method and switching point determination method of the water pump unit include:
  • Step 100 Obtain the water output of each pump in the pump unit, the constant pressure value of the pump unit, the input power of each inverter and the density of the liquid delivered by the pump unit;
  • Step 101 Determine the total water output of the water pump unit according to the water output of each water pump, and determine the total input power of the frequency converter in the water pump unit according to the input power of each frequency converter;
  • Step 102 Obtain a first specific coefficient group; the first coefficient group includes: ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , where ⁇ 0, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time
  • Step 103 According to the total water output, the constant pressure value of the water pump unit, the total input power of the frequency converter, the density of the liquid delivered by the water pump unit, and the first specific coefficient group, in the constant pressure operation mode Confirm to get the working curve;
  • Step 104 Determine the best switching point and the best operating method of each pump in the water pump unit according to the working curve.
  • the power-saving optimization operation method and switching point determination method of this water pump unit also include:
  • Step 105 Obtain the operating frequency and a second specific coefficient group of each pump in the water pump unit;
  • the second specific coefficient group includes: ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ and ⁇ , where ⁇ 0, And ⁇ cannot be equal to 0 at the same time, And ⁇ cannot be equal to 0 at the same time, ⁇ and ⁇ cannot be equal to 0 at the same time, and ⁇ and ⁇ cannot be equal to 0 at the same time;
  • Step 106 Determine and obtain a frequency curve in a constant pressure operation mode according to the total water output, the constant pressure value of the water pump unit, the operating frequency and the second specific coefficient group;
  • Step 107 Determine the best switching point obtained by determining the best switching point and the best operation of each pump in the water pump unit according to the frequency curve and the above-mentioned first power-saving operation method and switching point determination method of the water pump unit method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

一种水泵机组节电寻优运行方法和切换点确定方法。在并联的水泵机组中,有k台配备变频器的相同型号水泵构成子泵组A,采用恒压运行方式,记录子泵组A中第1台水泵的出水量Q 1以及对应Q 1的变频器输入功率P 1和对应Q 1的变频器运行频率f 1,Q A=Q 1,P A=P 1,得出1台运行水泵的Q A-P A曲线作为工作曲线w 1,取Q A=mQ 1和P A=mP 1,m为正整数,k≥m≥2,得到m台运行水泵运行在相同频率下的工作曲线w m,f 1=f 2=…=f m,工作曲线w m -1和工作曲线w m的相交点,为m-1台运行水泵与m台运行水泵在恒压H s下的最佳切换点。按照这些最佳切换点进行水泵运行台数的切换和调速控制,可以保证子泵组A运行在高效状态下。

Description

水泵机组节电寻优运行方法和切换点确定方法
本申请要求于2019年11月04日提交中国专利局、申请号为201911064017.2、发明名称为“水泵机组节电寻优运行方法和切换点确定方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及用于水泵机组的节电运行方法,尤其是水泵机组节电寻优运行方法和切换点确定方法。
背景技术
并联的水泵机组在二次变频供水设备、无负压变频供水设备、叠压变频供水设备、厂矿企业供水泵站、循环水泵站、中央空调冷冻泵站、冷却泵站、自来水公司供水系统、市政污水泵站、排水泵站、农业部门的灌溉泵站和水利部门的调水泵站中大量存在。
世界很多知名的电气厂商如ABB、西门子、富士、东芝、AB、通用电气等公司都推出了用于水泵节能运行的产品,调速器是目前应用最广泛的技术手段,使用调速器可以对水泵的转速进行调节。常用的调速器包括变频器、串级调速器、电磁调速器和液力耦合器等,目前,变频器因自身运行效率相对较高而应用最为迅速。目前公知的并联水泵机组的调速运行方法是常规单闭环控制,常规的单闭环控制方法是以满足工艺要求为单一目标,没有保障水泵机组整体运行效率最高的方法和措施,从而导致水泵机组不能保证在最低电耗下运行。目前公知的用于水泵机组的设计方法是按照常规的设计规范进行的,而设计规范只是一个指导性的设计原则,并没有保证水泵机组实现最节电运行的具体设备配备方法和量化的节能设计指标,再加上变频器调速后的水泵在不同压力不同流量下的运行效率是变化的,电动机出厂资料不提供电动机在不同频率不同负荷率下的效率变化曲线,变频器出厂资料也不提供不同频率不同负荷率下的效率变化曲线,基于这些因素,要确定并联水泵机组调速运行的最佳节电运行方式是非常困难的。
专利200810099427.6给出了用于控制水泵并联节能运行的调速和切换方法,给出了节电的泵组切换特征和节电的调速方法,是该领域里程碑 式的发明,但是该专利并没有给出如何寻找和确定这些最佳切换点的方法以及运行方法。
发明内容
为了给出工程上寻找和确定水泵机组节电的最佳切换点和最佳运行方法,本发明提供一种水泵机组节电寻优运行方法和切换点确定方法,方便地在工程应用中确定出水泵机组的最佳切换点并给出节电的运行控制方法。
本发明解决其技术问题所采用的技术方案是:在并联的水泵机组中,有k台配备变频器的相同型号水泵构成子泵组A,k为大于1的整数,有k1台其它型号的水泵,k1为大于等于0的整数,并联的水泵机组采用恒压运行方式,恒压值为H s,恒压值H s为折合为水泵机组全扬程的数值,输送液体的密度为ρ,子泵组A的总出水量为Q A,子泵组A中变频器的总输入功率为P A,指定子泵组A中任意一台水泵为第1台水泵,子泵组A中第i台水泵的出水量为Q i、变频器输入功率为P i、运行频率为f i,Q A=Q 1+Q 2+…+Q k,P A=P 1+P 2+…+P k;对于子泵组A,以恒压运行方式下得出的
Figure PCTCN2020121509-appb-000001
曲线作为工作曲线w,工作曲线可以称为工作方程或工作函数,求取子泵组A的最佳切换点以及最佳运行方法,α、
Figure PCTCN2020121509-appb-000002
λ、μ、β、ω、δ、ξ和σ是系数,β≠0,
Figure PCTCN2020121509-appb-000003
和μ不能同时等于0,
Figure PCTCN2020121509-appb-000004
和δ不能同时等于0,σ和δ不能同时等于0,σ和μ不能同时等于0;并联的水泵机组在保持恒压H s运行状态下,记录子泵组A中第1台水泵的出水量Q 1以及对应Q 1的第1台水泵对应的变频器的输入功率P 1,Q 1Max(H s)≥Q 1≥0,Q 1Max(H s)为保持恒压H s运行状态下第1台水泵变频器运行在允许的最高频率f max对应的出水量,f max为电网供电频率和第1台水泵额定转速n e对应的供电频率中的一个;Q A=Q 1,P A=P 1,得出1台运行水泵的工作曲线w 1;取Q A=(m-1)Q 1和P A=(m-1)P 1,m为正整数,k≥m≥2,得到m-1台运行水泵运行在相同频率下的工作曲线w m- 1,f 1=f 2=…=f m-1,取Q A=mQ 1和P A=mP 1,m为正整数,k≥m≥2,得到m台运行水泵运行在相同频率下的工作曲线w m,f 1=f 2=…=f m;工作曲线w m-1和工作曲线w m的相交点,为m-1台水泵运行与m台水泵运行在恒压H s下的最佳切换点,Q A=Q m-1,m,P A=P m-1,m,在相交点,H s相 同Q A相同P A相同,所以m-1台运行水泵的效率和m台运行水泵的效率相同,称为“等效切换”;如果工作曲线w m-1和工作曲线w m没有相交点,则m-1台运行水泵与m台运行水泵的切换点为m-1运行水泵对应的变频器的输出频率等于f max点,f max为电网供电频率和第1台水泵额定转速n e对应的供电频率中的一个;Q m-1,m为用子泵组A的总出水量表示的最佳切换点,P m-1,m为用子泵组A中变频器的总输入功率表示的最佳切换点,用m-1台水泵运行,保持f 1=f 2=…=f m-1,用m台水泵运行,保持f 1=f 2=…=f m,相同型号的运行水泵对应的变频器用相同的输出频率运行,称为“同泵同频”,每台运行水泵的Q i、P i、H s和运行效率都相同;m=2时,最佳切换点为Q A=Q 1,2,P A=P 1,2,m=k时,最佳切换点为Q A=Q k-1.k,P A=P k-1,k;在工程应用中,取Q m-1,m和P m-1,m中的任意一个作为子泵组A的m-1台运行水泵与m台运行水泵在恒压H s下的最佳切换点的数值;由于工程中无法找到两个绝对相等的现场数值,同时仪表本身也有误差,再加上很多水泵机组对水泵启停间隔有时间限制,需要避免水泵运行台数在最佳切换点附近频繁切换,考虑到这些因素,实际切换点的数值为最佳切换点附近一个范围内的数值,在子泵组A中,水泵运行台数从m-1增加到m时,实际切换点取为最佳切换点的数值乘以(1+θ 1),0.15≥θ 1≥0,水泵运行台数从m减少为m-1时,实际切换点取为最佳切换点的数值乘以(1-ε 1),0.15≥ε 1≥0,也就是用最佳切换点附近的数值作为实际切换点数值,大于切换点数值时增加水泵运行台数,小于切换点数值时减少水泵运行台数,在实际切换点上可以选择维持水泵运行台数或进行水泵运行台数切换,这些实际切换点是近似最佳切换点;不同的恒压运行值H s,有不同的最佳切换点和实际切换点。
Q m-1,m为上述求出的用子泵组A总出水量表示的子泵组A中m-1台水泵运行与m台水泵运行在恒压H s下的最佳切换点,k≥m≥2,对于子泵组A,以恒压运行方式下得出的
Figure PCTCN2020121509-appb-000005
曲线作为频率曲线y,频率曲线也可以称为频率方程或频率函数,利用Q m-1,m,求取子泵组A的频率最佳切换点以及最佳运行方法,α、
Figure PCTCN2020121509-appb-000006
λ、γ、ν、ω、δ、ξ、ψ是系数,ν≠0,
Figure PCTCN2020121509-appb-000007
和γ不能同时等于0,
Figure PCTCN2020121509-appb-000008
和δ不能同时等于0,ψ和δ不能同时等于0,ψ和γ不能同时等于0;并联的水泵机组在保持恒压H s运行状态 下,记录子泵组A中第1台水泵的出水量Q 1以及对应Q 1的变频器运行频率f 1;Q A=Q 1,f A=f 1,f A表示子泵组A中所有运行变频器的输出频率相同时用一个频率表示的数值,得出1台运行水泵的频率曲线y 1;取Q A=(m-1)Q 1和f A=f 1,m为正整数,k≥m≥2,得到m-1台运行水泵运行在相同频率下的频率曲线y m-1,f A=f 1=f 2=…=f m-1;取Q A=mQ 1和f A=f 1,m为正整数,k≥m≥2,得到m台运行水泵运行在相同频率下的频率曲线y m,f A=f 1=f 2=…=f m;Q m-1,m对应y m-1频率曲线上的切换点为f m-1,m,f m-1,m为m-1台运行水泵在最佳切换点的变频器运行频率,Q m-1, m对应y m频率曲线上的切换点为f m,m-1,f m,m-1为m台运行水泵在最佳切换点的变频器运行频率,f m-1,m>f m,m-1,在工程应用中,无法找到绝对相等的两个数值,只能找到最佳切换点附近的近似值,同时仪表本身也有误差,很多水泵机组对水泵启停间隔有时间限制,需要避免水泵运行台数在最佳切换点附近频繁切换,考虑到这些因素,实际切换点的数值为最佳切换点附近一个范围内的数值,子泵组A的水泵运行台数从m-1增加到m时,实际切换点取为f m-1,m(1+θ 2),0.15≥θ 2≥0,水泵运行台数从m减少为m-1时,实际切换点取为f m,m-1(1-ε 2),0.15≥ε 2≥0,也就是用最佳切换点附近的数值作为实际切换点数值,大于切换点数值时增加水泵运行台数,小于切换点数值时减少水泵运行台数,在实际切换点上可以选择维持水泵运行台数或进行水泵运行台数切换,这些实际切换点是近似最佳切换点;对于不同的恒压运行值H s,用同样的方法,得出不同的最佳切换点和实际切换点。不考虑滑差因素,频率与转速是一一对应的,最佳切换点的变频器运行频率和最佳切换点的水泵转速也一一对应。
当ω=1,δ=1,ξ=1,σ=-1和β=β 1时,βρ ωQ A δH s ξP A σ=β 1ρQ AH s/P A,β 1ρQ AH s/P A代表子泵组A的运行效率η(H s),β 1为系数,子泵组A运行在恒压H s,采用最佳切换点进行水泵运行台数切换,Q A≥Q 1,2时,子泵组A的运行效率η(H s)≥β 1ρQ 1,2H s/P 1,2
并联的水泵机组输送液体为清水时,ρ为1吨/每立方米,H s单位为米,Q A单位为立方米/每小时,P A单位为千瓦,β 1等于1/367.2。
在工程应用方面,“同泵同频”控制方式,可以使用控制器的总线通信信号、模拟输出信号把同一个频率值一次性送到所有的变频器中。
此外对应于上述提供的技术方案,本发明还对应提供了另外一种水泵机组节电寻优运行方法和切换点确定方法。该水泵机组节电寻优运行方法和切换点确定方法,包括:
获取水泵机组中每一水泵的出水量、水泵机组的恒压值、每一变频器的输入功率和水泵机组输送液体的密度;
根据每一所述水泵的出水量确定水泵机组的总出水量,根据每一所述变频器的输入功率确定所述水泵机组中变频器的总输入功率;
获取第一特定系数组;所述第一系数组包括:α、φ、λ、γ、ν、ω、δ、ξ和ψ,其中,ν≠0,φ和γ不能同时等于0,φ和δ不能同时等于0,ψ和δ不能同时等于0,ψ和γ不能同时等于0
根据所述总出水量、所述水泵机组的恒压值、所述变频器的总输入功率、所述水泵机组输送液体的密度和所述第一特定系数组,在恒压运行方式下确定得到工作曲线;
根据所述工作曲线确定水泵机组中每一水泵的最佳切换点以及最佳运行方法。
这一水泵机组节电寻优运行方法和切换点确定方法还包括:
获取水泵机组中每一水泵的运行频率和第二特定系数组;所述第二特定系数组包括:α、
Figure PCTCN2020121509-appb-000009
λ、γ、ν、ω、δ、ξ和ψ,其中,ν≠0,
Figure PCTCN2020121509-appb-000010
和γ不能同时等于0,
Figure PCTCN2020121509-appb-000011
和δ不能同时等于0,ψ和δ不能同时等于0,ψ和γ不能同时等于0;
根据所述总出水量、所述水泵机组的恒压值、所述运行频率和所述第二特定系数组,在恒压运行方式下确定得到频率曲线;
根据所述频率曲线确定水泵机组中每一水泵的最佳切换点以及最佳运行方法。
本发明的有益效果是先得出1台运行水泵在调速恒压状态下的工作曲线,直接画出2台运行水泵到k台运行水泵的所有工作曲线,通过这些工作曲线的相交点得出最佳切换点,这一方法在工程中很容易实现,按照这些最佳切换点进行水泵运行台数的切换和调速控制,就可以保证子泵组A运行在高效状态下。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是k=3时用Q A-P A曲线作为工作曲线得出最佳切换点和最佳调速方法的实施例。
图2是k=3时用Q A-Q A/P A曲线作为工作曲线得出最佳切换点和最佳调速方法的实施例。
图3是k=3时用Q A-P A曲线和Q A-f A曲线得出最佳切换点和最佳调速方法的实施例。
图4是本发明提供的另一种水泵机组节电寻优运行方法和切换点确定方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种水泵机组节电寻优运行方法和切换点确定方法,以给出工程上寻找和确定水泵机组节电的最佳切换点和最佳运行方法。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
在图1中,并联的水泵机组中,有3台配备变频器的相同型号水泵构成子泵组A,k=3,没有其它型号的水泵,k1=0,并联的水泵机组采用恒压运行方式,恒压值为H s=17(米),所述恒压值为水泵机组的全扬程恒压值,水泵机组输送清水,指定子泵组A中任意一台水泵为第1台水泵,子泵组A中第i台水泵的出水量为Q i、变频器输入功率为P i、运行 频率为f i,子泵组A的总出水量为Q A,子泵组A中变频器的总输入功率为P A,Q A=Q 1+Q 2+Q 3,P A=P 1+P 2+P 3;取α=0,
Figure PCTCN2020121509-appb-000012
λ=0,μ=0,β=1,ω=0,δ=0,ξ=0,σ=1,
Figure PCTCN2020121509-appb-000013
变为Q A-P A,用Q A-P A作为工作曲线w,在保持恒压H s=17(米)的运行状态下,记录子泵组A中第1台水泵的出水量Q 1以及对应Q 1的变频器输入功率P 1,Q A=Q 1,P A=P 1,得出1台水泵运行的Q A-P A曲线作为工作曲线w 1,取Q A=2Q 1和P A=2P 1,得出2台水泵运行的工作曲线w 2,取Q A=3Q 1和P A=3P 1,得出3台水泵运行的工作曲线w 3;工作曲线w 1和工作曲线w 2相交于C点,C点就是1台运行水泵与2台运行水泵在恒压H s=17(米)时的最佳切换点,Q A=Q 1,2,P A=P 1,2;选P 1,2作为最佳切换点,在相交点,H s相同Q A相同P A相同,所以1台运行水泵的效率和2台运行水泵的效率相同,称为“等效切换”,P A>P 1,2时,从1台运行水泵切换到2台运行水泵,2台水泵运行时,保持f 1=f 2,相同型号的运行水泵对应的变频器用相同的输出频率运行,称为“同泵同频”,Q 1=Q 2,P 1=P 2,H s相同,P A<P 1,2时,从2台运行水泵切换到1台运行水泵;工作曲线w 2和工作曲线w 3相交于D点,D点就是2台运行水泵与3台运行水泵在恒压H s=17(米)时的最佳切换点,Q A=Q 2,3,P A=P 2,3,选P 2,3作为最佳切换点,P A>P 2,3时,从2台运行水泵切换到3台运行水泵,3台水泵运行时,保持f 1=f 2=f 3;P A<P 2,3时,从3台运行水泵切换到2台运行水泵,保持f 1=f 2;工艺要求对水泵启停间隔有时间限制,为避免水泵运行台数在最佳切换点附近频繁切换,实际切换点的数值为最佳切换点附近一个范围内的数值,水泵运行台数从1增加到2时,实际切换点取为P 1,2(1+0.08),水泵运行台数从2减少为1时,实际切换点取为P 1,2(1-0.08),水泵运行台数从2增加到3时,实际切换点取为P 2,3(1+0.08),水泵运行台数从3减少为2时,实际切换点取为P 2,3(1-0.08),用最佳切换点附近的数值作为实际切换点数值,在切换点时维持水泵运行台数,大于切换点数值时增加水泵运行台数,小于切换点数值时减少水泵运行台数,这些实际切换点是近似最佳切换点;对于不同的恒压运行值H s,用同样的方法,得出不同的最佳切换点和不同的实际切换点。
在图2中,并联的水泵机组中,有3台配备变频器的相同型号水泵构 成子泵组A,k=3,没有其它型号的水泵,k1=0,并联的水泵机组采用恒压运行方式,恒压值为H s=17(米),所述恒压值为水泵机组的全扬程恒压值,水泵机组输送清水,指定子泵组A中任意一台水泵为第1台水泵,子泵组A中第i台水泵的出水量为Q i、变频器输入功率为P i、运行频率为f i,子泵组A的总出水量为Q A,子泵组A中变频器的总输入功率为P A,Q A=Q 1+Q 2+Q 3,P A=P 1+P 2+P 3;取α=0,
Figure PCTCN2020121509-appb-000014
λ=0,μ=0,β=1,ω=0,δ=1,ξ=0,σ=-1,
Figure PCTCN2020121509-appb-000015
变为Q A-Q A/P A,用Q A-Q A/P A作为工作曲线w,在保持恒压H s=17(米)的运行状态下,记录子泵组A中第1台水泵的出水量Q 1以及对应Q 1的变频器输入功率P 1,Q A=Q 1,P A=P 1,得出1台水泵运行的Q A-Q A/P A曲线作为工作曲线w 1,取Q A=2Q 1和P A=2P 1,得出2台水泵运行的工作曲线w 2,取Q A=3Q 1和P A=3P 1,得出3台水泵运行的工作曲线w 3;工作曲线w 1和工作曲线w 2相交于C点,C点就是1台运行水泵与2台运行水泵在恒压H s=17(米)时的最佳切换点,Q A=Q 1,2;选择Q 1,2作为最佳切换点,Q A>Q 1,2时,从1台运行水泵切换到2台运行水泵,2台水泵运行时,保持f 1=f 2;Q A<Q 1,2时,从2台运行水泵切换到1台运行水泵;工作曲线w 2和工作曲线w 3相交于D点,D点就是2台运行水泵与3台运行水泵在恒压H s=17(米)时的最佳切换点,Q A=Q 2,3,选择Q 2,3作为最佳切换点,Q A>Q 2,3时,从2台运行水泵切换到3台运行水泵,3台水泵运行时,保持f 1=f 2=f 3;Q A<Q 2,3时,从3台运行水泵切换到2台运行水泵,保持f 1=f 2;工艺要求对水泵启停间隔有时间限制,为避免水泵运行台数在最佳切换点附近频繁切换,实际切换点的数值为最佳切换点附近一个范围内的数值,水泵运行台数从1增加到2时,实际切换点取为Q 1,2(1+0.04),水泵运行台数从2减少为1时,实际切换点取为Q 1,2(1-0.04),水泵运行台数从2增加到3时,实际切换点取为Q 2,3(1+0.04),水泵运行台数从3减少为2时,实际切换点取为Q 2,3(1-0.04),也就是用最佳切换点附近的数值作为实际切换点数值,在切换点时维持水泵运行台数,大于切换点数值时增加水泵运行台数,小于切换点数值时减少水泵运行台数,这些实际切换点是近似最佳切换点;对于不同的恒压运行值H s,用同样的方法,得出不同的最佳切换点和不同的实际切换点。
在图3(a)和图3(b)部分中,并联的水泵机组中,有3台配备变频器的相同型号水泵构成子泵组A,k=3,没有其它型号的水泵,k1=0,并联的水泵机组采用恒压运行方式,恒压值为H s=17(米),所述恒压值为水泵机组的全扬程恒压值,水泵机组输送清水,指定子泵组A中任意一台水泵为第1台水泵,子泵组A中第i台水泵的出水量为Q i、变频器输入功率为P i、运行频率为f i,子泵组A的总出水量为Q A,子泵组A中变频器的总输入功率为P A,Q A=Q 1+Q 2+Q 3,P A=P 1+P 2+P 3;取α=0,
Figure PCTCN2020121509-appb-000016
λ=0,μ=0,β=1,ω=0,δ=0,ξ=0,σ=1,
Figure PCTCN2020121509-appb-000017
变为Q A-P A,用Q A-P A作为工作曲线w;取α=0,
Figure PCTCN2020121509-appb-000018
λ=0,γ=0,ν=1,ω=0,δ=0,ξ=0,ψ=1,
Figure PCTCN2020121509-appb-000019
变为Q A-f A,Q A-f A作为频率曲线y;在保持恒压H s=17(米)的运行状态下,记录子泵组A中第1台水泵的出水量Q 1以及对应Q 1的变频器输入功率P 1和对应Q 1的变频器运行频率f 1,Q A=Q 1,P A=P 1,得出1台水泵运行的工作曲线w 1,取Q A=2Q 1和P A=2P 1,得出2台水泵运行的工作曲线w 2,取Q A=3Q 1和P A=3P 1,得出3台水泵运行的工作曲线w 3;工作曲线w 1和工作曲线w 2相交于C点,C点就是1台运行水泵与2台运行水泵在恒压H s=17(米)时的最佳切换点,Q A=Q 1,2,工作曲线w 2和工作曲线w 3相交于D点,D点就是2台运行水泵与3台运行水泵在恒压H s=17(米)时的最佳切换点,Q A=Q 2,3;f max为第1台水泵额定转速n e对应的供电频率,Q A=Q 1,f A=f 1,根据数据记录得出1台运行水泵的频率曲线y 1,取Q A=2Q 1和f A=f 1,得到2台运行水泵运行在相同频率下的频率曲线y 2;取Q A=3Q 1和f A=f 1,得到3台运行水泵运行在相同频率下的频率曲线y 3,Q 1,2对应y 1频率曲线上的切换点为f 1,2,Q 1,2对应y 2频率曲线上的切换点为f 2,1,f 1,2为1台运行水泵在最佳切换点的变频器运行频率,f 2,1为2台运行水泵在最佳切换点的变频器运行频率,f 1,2>f 2,1,Q 2,3对应y 2频率曲线上的切换点为f 2,3,Q 2,3对应y 3频率曲线上的切换点为f 3,2,f 2,3为2台运行水泵在最佳切换点的变频器运行频率,f 3,2为3台运行水泵在最佳切换点的变频器运行频率,f 2,3>f 3,2;1台水泵运行时,如果f A>f 1,2,则从1台运行水泵切换到2台运行水泵并保持f 1=f 2;2台水泵运行时,如果f A<f 2,1,则从2台运行水泵切换到1台运行水泵;2台水泵运行,如果f A>f 2,3, 则从2台运行水泵切换到3台运行水泵并保持f 1=f 2=f 3;3台水泵运行时,如果f A<f 2,3,则从3台运行水泵切换到2台运行水泵并保持f 1=f 2;工艺要求对水泵启停间隔有时间限制,为避免水泵运行台数在最佳切换点附近频繁切换,实际切换点的数值为最佳切换点附近一个范围内的数值,水泵运行台数从1增加到2时,实际切换点取为f 1,2(1+0.02),水泵运行台数从2减少为1时,实际切换点取为f 2,1(1-0.02),水泵运行台数从2增加到3时,实际切换点取为f 2,3(1+0.02),水泵运行台数从3减少为2时,实际切换点取为f 3,2(1-0.02),也就是用最佳切换点附近的数值作为实际切换点数值,在实际切换点维持水泵运行台数,大于实际切换点时增加水泵运行台数,小于实际切换点时减少水泵运行台数,这些实际切换点是近似最佳切换点;对于不同的恒压运行值H s,用同样的方法,得出不同的最佳切换点和不同的实际切换点。
此外对应于上述提供的技术方案,本发明还对应提供了另外一种水泵机组节电寻优运行方法和切换点确定方法。如图4所示,该水泵机组节电寻优运行方法和切换点确定方法,包括:
步骤100:获取水泵机组中每一水泵的出水量、水泵机组的恒压值、每一变频器的输入功率和水泵机组输送液体的密度;
步骤101:根据每一所述水泵的出水量确定水泵机组的总出水量,根据每一所述变频器的输入功率确定所述水泵机组中变频器的总输入功率;
步骤102:获取第一特定系数组;所述第一系数组包括:α、φ、λ、γ、ν、ω、δ、ξ和ψ,其中,ν≠0,φ和γ不能同时等于0,φ和δ不能同时等于0,ψ和δ不能同时等于0,ψ和γ不能同时等于0
步骤103:根据所述总出水量、所述水泵机组的恒压值、所述变频器的总输入功率、所述水泵机组输送液体的密度和所述第一特定系数组,在恒压运行方式下确定得到工作曲线;
步骤104:根据所述工作曲线确定水泵机组中每一水泵的最佳切换点以及最佳运行方法。
进一步,这一水泵机组节电寻优运行方法和切换点确定方法还包括:
步骤105:获取水泵机组中每一水泵的运行频率和第二特定系数组;所述第二特定系数组包括:α、
Figure PCTCN2020121509-appb-000020
λ、γ、ν、ω、δ、ξ和ψ,其中,ν≠0,
Figure PCTCN2020121509-appb-000021
和γ不能同时等于0,
Figure PCTCN2020121509-appb-000022
和δ不能同时等于0,ψ和δ不能同时等于0,ψ和γ不能同时等于0;
步骤106:根据所述总出水量、所述水泵机组的恒压值、所述运行频率和所述第二特定系数组,在恒压运行方式下确定得到频率曲线;
步骤107:根据所述频率曲线和上述第一种水泵机组节电寻优运行方法和切换点确定方法确定得到的最佳切换点,确定水泵机组中每一水泵的最佳切换点以及最佳运行方法。
在提供的另一种水泵机组节电寻优运行方法和切换点确定方法的技术方案中,其实质实施的过程请参见第一种水泵机组节电寻优运行方法和切换点确定方法,因二者实施方式基本相同,在此不进行赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种水泵机组节电寻优运行方法和切换点确定方法,在并联的水泵机组中,有k台配备变频器的相同型号水泵构成子泵组A,k为大于1的整数,有k1台其它型号的水泵,k1为大于等于0的整数,并联的水泵机组采用恒压运行方式,恒压值为H s,恒压值H s为折合为水泵机组全扬程的数值,输送液体的密度为ρ,子泵组A的总出水量为Q A,子泵组A中变频器的总输入功率为P A,指定子泵组A中任意一台水泵为第1台水泵,子泵组A中第i台水泵的出水量为Q i、变频器输入功率为P i、运行频率为f i,Q A=Q 1+Q 2+…+Q k,P A=P 1+P 2+…+P k,其特征是:对于子泵组A,以恒压运行方式下得出的
    Figure PCTCN2020121509-appb-100001
    曲线作为工作曲线w,求取子泵组A的最佳切换点以及最佳运行方法,α、
    Figure PCTCN2020121509-appb-100002
    λ、μ、β、ω、δ、ξ和σ是系数,β≠0,
    Figure PCTCN2020121509-appb-100003
    和μ不能同时等于0,
    Figure PCTCN2020121509-appb-100004
    和δ不能同时等于0,σ和δ不能同时等于0,σ和μ不能同时等于0。
  2. 根据权利要求1所述的水泵机组节电寻优运行方法和切换点确定方法,其特征是:并联的水泵机组在保持恒压H s运行状态下,记录子泵组A中第1台水泵的出水量Q 1以及对应Q 1的第1台水泵对应的变频器的输入功率P 1,Q A=Q 1,P A=P 1,得出1台运行水泵的工作曲线w 1;取Q A=(m-1)Q 1和P A=(m-1)P 1,m为正整数,k≥m≥2,得到m-1台运行水泵运行在相同频率下的工作曲线w m-1,f 1=f 2=…=f m-1,取Q A=mQ 1和P A=mP 1,m为正整数,k≥m≥2,得到m台运行水泵运行在相同频率下的工作曲线w m,f 1=f 2=…=f m;工作曲线w m-1和工作曲线w m的相交点,为m-1台水泵运行与m台水泵运行在恒压H s下的最佳切换点,Q A=Q m-1,m,P A=P m-1,m,在相交点,H s相同Q A相同P A相同,所以m-1台运行水泵的效率和m台运行水泵的效率相同,称为“等效切换”;Q m-1, m为用子泵组A的总出水量表示的最佳切换点,P m-1,m为用子泵组A中变频器的总输入功率表示的最佳切换点,用m-1台水泵运行,保持f 1=f 2=…=f m-1,用m台水泵运行,保持f 1=f 2=…=f m,相同型号的运行水泵对应的变频器用相同的输出频率运行,称为“同泵同频”,每台运行水泵的Q i、P i、H s和运行效率都相同。
  3. 根据权利要求2所述的水泵机组节电寻优运行方法和切换点确定 方法,其特征是:在工程应用中,取Q m-1,m和P m-1,m中的任意一个作为子泵组A的m-1台运行水泵与m台运行水泵在恒压H s下的最佳切换点的数值,在子泵组A中,水泵运行台数从m-1增加到m时,实际切换点取为最佳切换点的数值乘以(1+θ 1),0.15≥θ 1≥0,水泵运行台数从m减少为m-1时,实际切换点取为最佳切换点的数值乘以(1-ε 1),0.15≥ε 1≥0。
  4. 根据权利要求2所述的水泵机组节电寻优运行方法和切换点确定方法,其特征是:对于子泵组A,以恒压运行方式下得出的
    Figure PCTCN2020121509-appb-100005
    曲线作为频率曲线y,利用Q m-1,m,求取子泵组A的频率最佳切换点以及最佳运行方法,α、
    Figure PCTCN2020121509-appb-100006
    λ、γ、ν、ω、δ、ξ、ψ是系数,ν≠0,
    Figure PCTCN2020121509-appb-100007
    和γ不能同时等于0,
    Figure PCTCN2020121509-appb-100008
    和δ不能同时等于0,ψ和δ不能同时等于0,ψ和γ不能同时等于0。
  5. 根据权利要求4所述的水泵机组节电寻优运行方法和切换点确定方法,其特征是:并联的水泵机组在保持恒压H s运行状态下,记录子泵组A中第1台水泵的出水量Q 1以及对应Q 1的变频器运行频率f 1;Q A=Q 1,f A=f 1,f A表示子泵组A中所有运行变频器的输出频率相同时用一个频率表示的数值,得出1台运行水泵的频率曲线y 1;取Q A=(m-1)Q 1和f A=f 1,m为正整数,k≥m≥2,得到m-1台运行水泵运行在相同频率下的频率曲线y m-1,f A=f 1=f 2=…=f m-1;取Q A=mQ 1和f A=f 1,m为正整数,k≥m≥2,得到m台运行水泵运行在相同频率下的频率曲线y m,f A=f 1=f 2=…=f m;Q m-1,m对应y m-1频率曲线上的切换点为f m-1,m,f m-1, m为m-1台运行水泵在最佳切换点的变频器运行频率,Q m-1,m对应y m频率曲线上的切换点为f m,m-1,f m,m-1为m台运行水泵在最佳切换点的变频器运行频率,f m-1,m>f m,m-1
  6. 根据权利要求5所述的水泵机组节电寻优运行方法和切换点确定方法,其特征是:在工程应用中,子泵组A的水泵运行台数从m-1增加到m时,实际切换点取为f m-1,m(1+θ 2),0.15≥θ 2≥0,水泵运行台数从m减少为m-1时,实际切换点取为f m,m-1(1-ε 2),0.15≥ε 2≥0。
  7. 根据权利要求1所述的水泵机组节电寻优运行方法和切换点确定方法,其特征是:β 1ρQ AH s/P A代表子泵组A的运行效率η(H s),β 1为系数,子泵组A运行在恒压H s,采用最佳切换点进行水泵运行台数切换,Q A≥Q 1,2 时,子泵组A的运行效率η(H s)≥β 1ρQ 1,2H s/P 1,2
  8. 根据权利要求2所述的水泵机组节电寻优运行方法和切换点确定方法,其特征是:在工程应用方面,“同泵同频”控制方式,可以使用控制器的总线通信信号、模拟输出信号把同一个频率值一次性送到所有的变频器中。
  9. 一种水泵机组节电寻优运行方法和切换点确定方法,其特征在于,包括:
    获取水泵机组中每一水泵的出水量、水泵机组的恒压值、每一变频器的输入功率和水泵机组输送液体的密度;
    根据每一所述水泵的出水量确定水泵机组的总出水量,根据每一所述变频器的输入功率确定所述水泵机组中变频器的总输入功率;
    获取第一特定系数组;所述第一系数组包括:α、φ、λ、γ、ν、ω、δ、ξ和ψ,其中,ν≠0,φ和γ不能同时等于0,φ和δ不能同时等于0,ψ和δ不能同时等于0,ψ和γ不能同时等于0
    根据所述总出水量、所述水泵机组的恒压值、所述变频器的总输入功率、所述水泵机组输送液体的密度和所述第一特定系数组,在恒压运行方式下确定得到工作曲线;
    根据所述工作曲线确定水泵机组中每一水泵的最佳切换点以及最佳运行方法。
  10. 根据权利要求9所述的水泵机组节电寻优运行方法和切换点确定方法,其特征在于,还包括:
    获取水泵机组中每一水泵的运行频率和第二特定系数组;所述第二特定系数组包括:α、
    Figure PCTCN2020121509-appb-100009
    λ、γ、ν、ω、δ、ξ和ψ,其中,ν≠0,
    Figure PCTCN2020121509-appb-100010
    和γ不能同时等于0,
    Figure PCTCN2020121509-appb-100011
    和δ不能同时等于0,ψ和δ不能同时等于0,ψ和γ不能同时等于0;
    根据所述总出水量、所述水泵机组的恒压值、所述运行频率和所述第二特定系数组,在恒压运行方式下确定得到频率曲线;
    根据所述频率曲线确定水泵机组中每一水泵的最佳切换点以及最佳运行方法。
PCT/CN2020/121509 2019-11-04 2020-10-16 水泵机组节电寻优运行方法和切换点确定方法 WO2021088620A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021526462A JP7143522B2 (ja) 2019-11-04 2020-10-16 水ポンプユニットの省電力・最適化動作方法及び切り替え点の決定方法
DE112020000196.2T DE112020000196B4 (de) 2019-11-04 2020-10-16 Betriebsverfahren zur Energiesparoptimierung und Schaltpunktbestimmung für ein Wasserpumpenaggregat
US17/339,381 US11719233B2 (en) 2019-11-04 2020-10-16 Power-saving optimization operation method and switching point determining method for water pump unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911064017.2A CN110939560B (zh) 2019-11-04 2019-11-04 水泵机组节电寻优运行和切换点确定方法
CN201911064017.2 2019-11-04

Publications (1)

Publication Number Publication Date
WO2021088620A1 true WO2021088620A1 (zh) 2021-05-14

Family

ID=69906578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121509 WO2021088620A1 (zh) 2019-11-04 2020-10-16 水泵机组节电寻优运行方法和切换点确定方法

Country Status (5)

Country Link
US (1) US11719233B2 (zh)
JP (1) JP7143522B2 (zh)
CN (1) CN110939560B (zh)
DE (1) DE112020000196B4 (zh)
WO (1) WO2021088620A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110939560B (zh) 2019-11-04 2021-09-14 姚福来 水泵机组节电寻优运行和切换点确定方法
KR20240082492A (ko) * 2022-12-02 2024-06-11 한국전자기술연구원 인공지능 기반 유체기계의 최적 운전점 예측 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105983A (ja) * 1982-12-08 1984-06-19 Yaskawa Electric Mfg Co Ltd ポンプの制御方法
TWI273171B (en) * 2004-04-13 2007-02-11 Taiwan Flux Technologies Ltd Method for individually and synchronously controlling frequency conversion of parallel constant-pressure inverter-controlled pumps
CN101509680A (zh) * 2009-03-16 2009-08-19 哈尔滨工业大学 调节同步变速变流量供热系统中水泵台数的节能控制方法
CN107305055A (zh) * 2016-04-18 2017-10-31 上海统力控制技术有限公司 一种中央空调水泵的变频控制系统
CN109595746A (zh) * 2018-12-20 2019-04-09 珠海格力电器股份有限公司 水泵运行效率优化控制方法、装置和计算机设备
CN110939560A (zh) * 2019-11-04 2020-03-31 姚福来 水泵机组节电寻优运行方法和切换点确定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259731A (en) * 1991-04-23 1993-11-09 Dhindsa Jasbir S Multiple reciprocating pump system
US6186743B1 (en) * 1999-11-04 2001-02-13 American Manufacturing Co., Inc. Multiple pump sequencing controller
CN101270755B (zh) 2008-05-11 2014-05-21 姚福来 用于控制水泵风机并联节能运行的调速与切换方法
US8371821B1 (en) * 2012-08-17 2013-02-12 Nasser Fred Mehr Green waste water pump station control system
DE102015000373A1 (de) 2015-01-20 2016-07-21 Magnussen EMSR-Technik GmbH Verfahren zur Reduzierung des Energieverbrauchs einer Förderpumpe, die Wasser aus einem Brunnen in ein Leitungsnetz fördert, sowie Anlage zum Fördern von Wasser aus mindestens einem Brunnen in ein Leitungsnetz
NO338836B1 (en) * 2015-06-11 2016-10-24 Fmc Kongsberg Subsea As Load-sharing in parallel fluid pumps
CN105243179B (zh) 2015-09-01 2019-03-05 湖南集森节能环保科技有限公司 变频泵组最优运行台数的确定方法及台数加减的控制方法
EP3242033B1 (de) 2016-12-30 2024-05-01 Grundfos Holding A/S Verfahren zum betreiben eines elektronisch gesteuerten pumpenaggregates
DE102017223189A1 (de) 2017-12-19 2019-06-19 KSB SE & Co. KGaA Mehrpumpenanlage und Verfahren zu deren Betrieb
CN110397579A (zh) 2019-07-08 2019-11-01 广东美的暖通设备有限公司 空调的水泵的控制方法、系统及空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105983A (ja) * 1982-12-08 1984-06-19 Yaskawa Electric Mfg Co Ltd ポンプの制御方法
TWI273171B (en) * 2004-04-13 2007-02-11 Taiwan Flux Technologies Ltd Method for individually and synchronously controlling frequency conversion of parallel constant-pressure inverter-controlled pumps
CN101509680A (zh) * 2009-03-16 2009-08-19 哈尔滨工业大学 调节同步变速变流量供热系统中水泵台数的节能控制方法
CN107305055A (zh) * 2016-04-18 2017-10-31 上海统力控制技术有限公司 一种中央空调水泵的变频控制系统
CN109595746A (zh) * 2018-12-20 2019-04-09 珠海格力电器股份有限公司 水泵运行效率优化控制方法、装置和计算机设备
CN110939560A (zh) * 2019-11-04 2020-03-31 姚福来 水泵机组节电寻优运行方法和切换点确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAO FULAI ; SUN HEXU: "Optimal method of the system composed of two different devices", CONTROL CONFERENCE (CCC), 2012 31ST CHINESE, IEEE, 25 July 2012 (2012-07-25), pages 2411 - 2415, XP032288773, ISBN: 978-1-4673-2581-3 *
YAO FULAI: "Efficiency Optimization Method and Optimal Control of Mechanical and Electrical Equipments", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 June 2012 (2012-06-01), XP055809944 *

Also Published As

Publication number Publication date
CN110939560A (zh) 2020-03-31
DE112020000196B4 (de) 2023-02-23
US20220120270A1 (en) 2022-04-21
DE112020000196T5 (de) 2021-08-19
JP2022510123A (ja) 2022-01-26
JP7143522B2 (ja) 2022-09-28
CN110939560B (zh) 2021-09-14
US11719233B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2021088620A1 (zh) 水泵机组节电寻优运行方法和切换点确定方法
CN103452824B (zh) 基于流量-功率曲线的最小功率算法的风机水泵节能系统
WO2018214767A1 (zh) 一种定频空调器控制方法和定频空调器
CN101556068A (zh) 中央空调系统中循环泵的恒压变频节能控制方法
CN202598765U (zh) 一种一次泵变流量系统的优化控制装置
CN116294102A (zh) 一种中央空调冷却水供回水温差优化控制系统及方法
CN201547915U (zh) 中央空调节能装置
CN207004782U (zh) 环保电厂循环水节能装置
CN201671802U (zh) 风机泵类负载自适应超级节电装置
CN201118513Y (zh) 三相感应电动机效率优化控制系统
CN203081721U (zh) 一种水泵节能系统
US11942870B2 (en) Power supply unit with autonomous input power limiting
CN114439767A (zh) 一种风机的变频调节方法
CN208154726U (zh) 地源热泵变频节能控制装置
CN110165664B (zh) 一种分布式潮流控制器分段投资建设的决策方法
CN209760358U (zh) 全流量全变频供水设备
CN210562428U (zh) 一种基于不利点的变频恒压供水设备
Jing-Hua et al. Reducing voltage energy-saving control method of induction motor
CN111981548B (zh) 一种暖通空调管网循环泵水系统与其节电运行方法
CN111927776A (zh) 一种基于边缘计算的变频空压机组节能的方法
CN204572462U (zh) 一种伺服螺杆空气压缩机控制系统
CN105697346A (zh) 一种空压机节能控制方法
CN207603494U (zh) 基于物联智能调压、调速、无谐波的电机节电保护控制器
CN216561431U (zh) 一种自来水厂恒压供水系统
CN113489349B (zh) 一种低压配电网末端低电压治理装置均压电路的控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021526462

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885853

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20885853

Country of ref document: EP

Kind code of ref document: A1