WO2021088513A1 - 基于自制热导线的智能融冰设备及其融冰方法 - Google Patents

基于自制热导线的智能融冰设备及其融冰方法 Download PDF

Info

Publication number
WO2021088513A1
WO2021088513A1 PCT/CN2020/114814 CN2020114814W WO2021088513A1 WO 2021088513 A1 WO2021088513 A1 WO 2021088513A1 CN 2020114814 W CN2020114814 W CN 2020114814W WO 2021088513 A1 WO2021088513 A1 WO 2021088513A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
ice thickness
connecting rod
wire
melting
Prior art date
Application number
PCT/CN2020/114814
Other languages
English (en)
French (fr)
Inventor
莫思特
李碧雄
刘天琪
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to CA3126982A priority Critical patent/CA3126982C/en
Publication of WO2021088513A1 publication Critical patent/WO2021088513A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/16Devices for removing snow or ice from lines or cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables

Definitions

  • the invention relates to an anti-icing and ice melting technology for power transmission lines, in particular to an intelligent ice melting device based on a self-made thermal wire and an ice melting method thereof.
  • the material replaces the heating material and effectively utilizes the heat generated by its own steel core resistor to achieve the purpose of preventing ice and melting.
  • Application number CN201810952697.0 "On-line monitoring equipment and detection method for self-made thermal wires embedded with insulating materials" set up online monitoring equipment on the basis of self-made thermal wires embedded with insulating materials. On-line monitoring equipment accurately measures the operating parameters of the transmission line through simulation, and predicts and analyzes the control of the transmission line's ice and melting ice.
  • the purpose of the present invention is to solve the problem of the need to supply power in terms of control and detection when using a coaxial cable structure to make a self-made thermal conductor and making a heating device to effectively prevent ice melting.
  • the intelligent ice melting device is connected between the self-made thermal wire and the traditional power transmission wire A, and the other end of the self-made thermal wire is connected to the traditional power transmission wire B after the inner conductor and the outer conductor are short-circuited;
  • the ice equipment has three external connection ends, a wire connection end, an inner conductor connection end, and an outer conductor connection end.
  • the connecting end of the wire is connected with the traditional power transmission wire A4, the connecting end of the inner conductor is connected with the inner conductor of the homemade heating wire, and the connecting end of the outer conductor is connected with the outer conductor of the homemade heating wire.
  • the intelligent ice melting control equipment consists of a passive intelligent switch and an isolating switch; among them, the passive intelligent switch has three external connections: the intelligent switch wire connection end, the intelligent switch inner conductor connection end, and the intelligent switch outer conductor connection end; the isolating switch has Two external connection terminals: disconnecting switch connection terminal A and disconnecting switch connection terminal B.
  • the smart switch wire connection end of the passive smart switch is short-circuited with the isolation switch connection terminal A of the isolation switch; the smart switch outer conductor connection end of the passive smart switch is short-circuited to the isolation switch connection terminal B of the isolation switch; the passive smart switch's The inner conductor connection end of the smart switch is short-circuited with the inner conductor connection end of the smart ice melting device.
  • the isolation switch is composed of isolation resistance and control switch in parallel.
  • the two ends of the parallel connection are isolation switch connection terminal A and isolation switch connection terminal B; when ice melting is required, both ends of the control switch are disconnected; when ice melting is not required, Both ends of the control switch are short-circuited.
  • the passive intelligent switch is composed of an ice thickness sensor and an intelligent controller.
  • the ice thickness sensor has two connection terminals: ice thickness sensor connection terminal A and ice thickness sensor connection terminal B.
  • the intelligent controller has two connection terminals: intelligent control connection terminal A and intelligent control connection terminal B. After the ice thickness sensing connection terminal A of the ice thickness sensor is short-circuited with the intelligent control connection terminal A of the intelligent controller and the intelligent switch wire connection end of the passive intelligent switch, it is connected to the wire connection of the intelligent ice melting device.
  • the ice thickness sensing connection terminal B of the ice thickness sensor is short-circuited with the inner conductor connection end of the smart switch and the inner conductor connection end of the smart ice melting device; the smart control connection terminal B of the smart controller is connected to the outer conductor connection end of the smart switch, and the smart melting The connection end of the outer conductor of the ice device is short-circuited.
  • the ice thickness sensor is composed of an ice thickness sensing plane, an ice thickness sensing connecting rod, and an ice thickness sensing fastening kit.
  • the ice thickness sensing plane is composed of an ice thickness sensing wire and a sensing wire positioning rod, and the ice thickness sensing wire and the sensing wire positioning rod are fastened by a sensing plane fastening kit.
  • the top of the ice thickness sensor connecting rod is the top screw, and the top screw is tightly connected with the intelligent controller; the lower end is the connecting rod U-shaped hook, and the connecting rod U-shaped hook has a hook screw at the end; the connecting rod U-shaped hook is used for Fasten the ice thickness sensing plane; between the top screw and the U-shaped hook of the connecting rod is the connecting rod body; the ice thickness sensing plane is placed horizontally; the connecting rod body is placed vertically and perpendicular to the ice thickness sensing plane.
  • the ice thickness sensing fastening kit includes an ice thickness sensing support rod and a support rod bracket, and the ice thickness sensing support rod has the same 4 support rods.
  • the ice thickness sensing wire is a self-made thermal conductor with a single coaxial cable structure.
  • the ice thickness sensing wire is distributed in a serpentine shape in the same plane.
  • the two ends are semicircular, and the middle connection is parallel to each other. How many parallel connections are there?
  • the sensing wire positioning rod is made of materials with relatively high rigidity and strength. There are multiple sensing wire positioning rods.
  • the sensing wire positioning rod is perpendicular to the multiple parallel ice thickness sensing wires, and the intersection is perpendicular to the center.
  • the intersection point of is the fastening point of the sensor connecting rod, and the intersection point of the four corners is the fastening point of the sensor connecting rod.
  • sensing plane fastening kit to fasten the sensing wire positioning rod and the vertical intersecting ice thickness sensing wire, so that the sensing wire positioning rod and the ice thickness sensing wire are connected as a whole, and the overall plane is horizontal place.
  • the sensing plane fastening kit is composed of a U-shaped fastening connector, a fastening pressure plate, and a fastening spring washer fastening nut.
  • the sensing plane fastening kit fastens the ice thickness sensing wire inside the U-shaped fastening connector .
  • the ice thickness sensing connecting rod is made of insulating material with relatively large rigidity and strength. It is used to connect the ice thickness sensing plane and the intelligent controller.
  • the upper end is a vertical cylindrical rod with a top screw on the top. The top screw is used for intelligent control.
  • the lower end is the U-shaped hook of the connecting rod, and the connecting rod pressing plate is fixed on the plane of the U-shaped hook of the connecting rod. There are hook screws at the end of the U-shaped hook of the connecting rod.
  • the connecting rod U-shaped hook is used to fasten the ice thickness sensing plane; between the top screw and the connecting rod U-shaped hook is the main body of the connecting rod; the ice thickness sensing plane is placed horizontally.
  • the main body of the connecting rod is placed vertically and perpendicular to the ice thickness sensing plane;
  • the connecting rod pressing plate is a U-shaped pressing piece made of materials with relatively large rigidity and strength.
  • the connecting rod pressing plate has a slot at one end and a connecting rod end at one end. Head through hole.
  • the fastening point of the sensing connecting rod of the ice thickness sensing plane is placed on the U-shaped hook of the connecting rod of the ice thickness sensing connecting rod, and the groove of the connecting rod pressing plate passes through the main body of the ice thickness sensing connecting rod to connect
  • the through hole of the connecting rod end of the rod pressing plate passes through the hook screw of the sensor connecting rod, and the outer side uses a tightening spring washer and a tightening nut to press the connecting rod into the plate, the ice thickness sensing plane, and the ice thickness sensor.
  • the support rod is tightened.
  • the ice thickness sensing fastening kit includes an ice thickness sensing support rod and a support rod bracket.
  • the support rod of the ice thickness sensor is composed of a support rod hook, a support rod screw, a support rod body, and an end mounting screw hole.
  • the end mounting screw hole installs the ice thickness sensor support rod on the support rod bracket;
  • the support rod hook is used to install the ice thickness sensing plane at the fastening point of the support rod of the ice thickness sensing plane; the connection of the connecting rod pressing plate
  • the rod end passes through the support rod screw, and the outer side uses a fastening spring washer and a fastening nut to fasten the connecting rod pressing plate, the ice thickness sensing plane, and the ice thickness sensing connecting rod.
  • the support rod bracket includes a bracket body and four bracket side ears.
  • the main body of the bracket is hollow and has a bracket through hole in the middle.
  • the bracket through hole passes through the ice thickness sensor connecting rod.
  • Each side ear has a support rod mounting hole in the middle.
  • the support rod mounting hole corresponds to the end mounting Screw holes, use screws to pass through the support rod mounting holes and the end mounting screw holes to fasten the support rod bracket and the ice thickness sensor support rod.
  • the intelligent controller is composed of a controller shell, a controller inner tank, a normal latch, a normal spring, a top short-circuit plate, a top cover, a short-circuit spring, a step control board, a continuous spring, a step spring, a melting spring, and a melting spring.
  • the ice latch, the short-circuit connecting wire B, the short-circuit connecting wire A and the bottom end cover plate are formed.
  • the controller shell, the top cover, and the bottom cover are combined into a closed space, which encloses the controller liner in the middle.
  • the controller liner and the control step board are in the step control board guide grooves on both sides of the controller shell. Free movement up and down under the restrictions of the left step control panel and the right step control panel.
  • the step spring is sleeved outside the ice thickness sensing connecting rod and installed between the bottom end cover plate and the bottom end cover plate of the inner liner.
  • the smart control connection terminal B is short-circuited with the controller inner tank through the short-circuit connection line B; the short-circuit spring is connected between the top short-circuit board and the top cover plate, and the short-circuit connection line A short-circuits the top short-circuit board and the intelligent control connection terminal A.
  • the controller housing is in the shape of a tube with a certain thickness, made of insulating material, and its axis is perpendicular to the horizontal plane; the top and bottom of the pipe wall have mounting holes for the top cover plate and the bottom cover plate; the lower side wall has a smart
  • the mounting hole of control connection terminal B is used to install the intelligent control terminal B; there is an ice melting latch mounting hole on the same level on the left and right sides of the upper side wall to install the ice melting latch, and each has a normal state on the same level.
  • the normal lock bolt is installed in the lock mounting hole, and the normal lock bolt and normal spring are placed in the normal lock mounting hole.
  • the normal lock bolt is installed inside the controller shell. Outside the normal lock bolt, the normal spring is placed on the outside of the controller shell.
  • the spring is closed. Under the action of the normal spring, the normal latch is exposed inside the controller housing; the ice melting latch and the ice melting spring are placed in the mounting hole of the ice melting latch, and the ice melting latch is installed inside the controller housing to melt the ice. Outside the latch, place an ice-melting spring, and seal the ice-melting spring on the outside of the controller housing. Under the action of the ice-melting spring, the ice-melting latch exposes the inside of the controller housing.
  • the controller liner is arranged in the controller shell and includes a top cover of the liner, a main body of the liner, and a bottom end cover of the liner; the main body of the liner is a tube with a certain thickness, and its axis is perpendicular to the horizontal plane.
  • the top and bottom of the pipe wall are provided with mounting holes for installing the top cover plate of the liner and the bottom end cover plate of the liner.
  • the top cover of the liner, the main body of the liner, and the bottom end cover of the liner are all made of materials with good electrical conductivity.
  • the width of the liner guide groove is smaller than the diameter of the normal latch and the ice-melting latch; a certain part of the liner guide groove has a liner lock hole; the liner lock hole axis It is horizontal, and the diameter is larger than the diameter of the normal latch and the ice-melting latch.
  • the inner bladder lock hole and inner bladder guide groove of the controller inner bladder are on the same plane as the ice melting latch installation hole and the normal lock bolt installation hole of the controller shell and the axis of the controller shell.
  • the step control board is composed of a step top board, a step bottom board, a left step control board, and a right step control board.
  • the step top plate and the step bottom plate are circular, with a connecting rod through hole symmetrically opened in the middle.
  • the side step fastening hole, the left side fastening hole of the step and the right side fastening hole are on a straight line, and the straight line passes through the center of the step top plate; the diameter of the connecting rod of the step top plate is slightly larger than the ice thickness transmission The diameter of the connecting rod is sensed; the diameter of the connecting rod through hole of the step bottom plate is slightly larger than the diameter of the continuous spring.
  • the left step control board is a plate-shaped rectangular parallelepiped with a notch on the outside.
  • the outside is called the upper convex edge from top to bottom, the concave edge on the outside, the lower convex edge on the outside, and the concave edge on the outside concave toward the inside.
  • the control board at the top there are two mounting holes on the control board at the top, corresponding to the fastening holes on the left side of the step top plate, used to fasten the step top plate and the left step control board; there are two mounting holes under the control board at the bottom, Corresponding to the fastening hole on the left side of the step bottom plate, used to fasten the step bottom plate and the left step control board;
  • the upper oblique side is the transition side between the outer convex edge and the outer concave edge, from the top It gradually slopes from outside to inside when it reaches the bottom, the downward slope is the transitional side between the outer concave edge and the outer lower convex edge, and it gradually slopes from the inside to the outside from the top to the bottom;
  • the right step control panel and the left step control panel are Symmetrical relationship.
  • the ice thickness sensing connecting rod passes through the bottom end cover, step spring, bottom end cover of the inner tank, continuous spring, and step bottom plate from bottom to top, and the ice thickness sensor is sensed by the top screw of the ice thickness sensing connecting rod.
  • the connecting rod is fastened to the step top plate of the step control board.
  • the step spring is sleeved outside the ice thickness sensing connecting rod and is fixed between the bottom end cover plate and the bottom end cover of the inner tank; the continuous spring is sleeved outside the ice thickness sensing connecting rod and is fixed to the bottom end cover of the inner tank.
  • the sensing plane fastening kit fastens the sensor wire positioning rod and the perpendicularly intersecting ice thickness sensing wire, and fastens the sensing wire positioning rod and the perpendicularly intersecting ice thickness sensing wire, including U-shaped fastening Connecting pieces, tightening pressure plates, tightening spring washers and tightening nuts.
  • the U-shaped fastening connector is U-shaped, and the two ends are parallel straight lines, and the middle is connected by a semicircle; the U-shaped fastening connector wire port is on the parallel straight; the U-shaped fastening connector wire port is matched with the fastening nut to tighten Two fastener through holes are opened on the upper side of the pressure plate, and the distance between the two fastener through holes and the two ends of the U-shaped fastening connector is equal, and the size is such that they can pass through the U-shaped fastening connector wire opening.
  • the top cover plate is a disc, which is made of insulating material. The diameter of the disc is larger than the outer diameter of the controller housing.
  • the lower end is a metal disc top short-circuit plate made of metal material.
  • the top short-circuit plate and the intelligent control terminal A pass through the short-circuit connection line A.
  • a short-circuit spring is arranged between the top cover plate and the top short-circuit plate.
  • On the top cover there are mounting holes for the intelligent control connection terminal A, four controller housing mounting holes, and four suspension mounting holes.
  • the controller housing mounting holes correspond to the top cover mounting holes of the controller housing one by one.
  • the mounting screw passes through the mounting hole of the controller shell to install the top cover of the controller inner tank on the controller shell.
  • the hanging mounting hole is used to fix the passive intelligent ice melting control switch on the mounting bracket; the intelligent control connection terminal A mounting hole Install the intelligent control connection terminal A.
  • the bottom cover of the controller is made of insulating material and is in the shape of a disc. There are bottom cover through holes on the top, and the bottom cover through holes correspond to the bottom cover mounting holes one by one. The screws pass through the bottom cover. Drill into the mounting hole of the bottom end cover plate of the controller housing, and fasten the bottom end cover plate on the controller housing.
  • the bottom through hole of the connecting rod is in the middle of the bottom end cover plate, and the ice thickness sensing connecting rod passes through the through hole at the bottom of the connecting rod.
  • Ice melting method the connection of the intelligent ice melting control device is between the self-made heating wire and the traditional power transmission wire A.
  • the working process of the intelligent controller is divided into five processes: normal working state, icing working state, ice melting working state, and recovery Working state, return to normal state.
  • the normal working state refers to the ice-free state of the ice thickness sensor.
  • the ice thickness sensor belongs to the lightest state;
  • the controller inner tank is pressed on the step spring; the outer concave edge of the left step control board and the right step control board are flush with the inner tank keyhole of the main body of the inner tank in the horizontal direction; in the normal state Under the action of the spring, the normal lock bolt passes through the lock hole of the inner tank to lock the inner tank of the controller.
  • the step top plate that controls the step plate is subjected to the upward elastic force of the continuous spring and the downward pull force of the ice thickness sensing connecting rod. Since the ice thickness sensor connecting rod and the ice thickness sensor are in the lightest state under normal conditions, the control step board is at the highest position.
  • the top short circuit board is short-circuited with the top cover of the inner tank, so that the smart control connection terminal A and the smart control connection terminal B are short-circuited.
  • the icing working state refers to the state where the ice thickness sensing wire starts to be iced.
  • the weight of the ice thickness sensor increases;
  • the top short-circuit plate and the top cover of the inner tank are short-circuited, so that the intelligent control connection terminal A and the intelligent control connection terminal B are short-circuited.
  • the top short circuit board and the top cover of the inner tank are open, so that the smart control connection terminal A and the smart control connection terminal B are open.
  • the weight of the ice thickness sensor is reduced.
  • the control step plate rises, and under the action of the downward slope of the control step plate, the ice melting latch gradually moves outward.
  • the top short circuit board and the top cover of the inner tank are open, so that the smart control connection terminal A and the smart control connection terminal B are open.
  • the ice-melting latch When the ice thickness sensing wire is completely dissolved, the ice-melting latch is pushed out of the lock hole of the inner tank to release the locked state of the inner tank, and the step spring pushes the inner tank to move up and return to the normal working state.
  • the elastic coefficient of the spring is calculated as:
  • the elastic coefficient of the step spring used is the same as that of the continuous spring, and the elastic coefficient is expressed by K 70 ;
  • All units are metric units, basic unit: length unit: meter (m); time unit: second (sec), mass unit: kilogram (kg), temperature unit: Kelvin (K).
  • the length of the ice thickness sensing wire (120) on the ice thickness sensor is L, and the outer diameter of the self-made hot wire is represented by D w ; the thickness at the beginning of melting is W, from normal working state to melting working state
  • the moving distance of the control step board (69) is H, then:
  • the outer diameter of the outer conductor of the self-made heating wire used is represented by D w ; the length of the self-made heating wire between the traditional wire A and the traditional wire B is represented by L; the outer diameter of the inner conductor of the self-made heating wire is represented by D n ; the insulation layer of the self-made heating wire DZ represents a thickness; inner conductor resistivity n-represented by a; a maximum current flowing through a conventional transmission line is represented by IA;
  • All units are metric units, basic unit: length unit: meter (m); time unit: second (sec), mass unit: kilogram (kg), temperature unit: Kelvin (K).
  • W max D w ⁇ L ⁇ 3500 (watts)
  • the positive effect of the present invention is to solve the problem of the need to supply power in terms of control and detection when using a coaxial cable structure to make a self-made thermal conductor and making a heating device to effectively prevent ice and melt ice.
  • the icing condition of the transmission line is sensed without the need for power; after the transmission line is sensed icing, the transmission line is automatically started to melt the ice; the ice melting is automatically stopped after the sense of the ice is over, which greatly expands the
  • the application of intelligent ice melting equipment with self-made thermal wires has improved the level of intelligent ice melting equipment.
  • Fig. 1 is a schematic diagram of the structure of a self-made thermal wire used in the present invention.
  • Fig. 2 is a schematic diagram of the connection method of the smart ice melting device of the present invention when in use.
  • Fig. 3 is a schematic diagram of the intelligent ice melting device based on a self-made thermal wire of the present invention.
  • Figure 4 is a schematic diagram of an isolating switch.
  • Figure 5 is a schematic diagram of the passive smart switch structure.
  • Figure 6 is a schematic diagram of the ice thickness sensor structure.
  • Figure 7 is a schematic diagram of the plane structure of ice thickness sensing.
  • Figure 8 is a schematic diagram of the sensing plane fastening kit.
  • Figure 9 is a schematic diagram of a U-shaped fastening connection.
  • Figure 10 is a schematic diagram of a tightening pressure plate.
  • Figure 11 is a schematic diagram of the connecting rod pressing plate.
  • Figure 12 is a schematic diagram showing how the ice thickness sensing connecting rod is fastened to the sensing plane.
  • Figure 13 is a schematic diagram of the ice thickness sensor connecting rod structure.
  • Figure 14 is a schematic diagram of the ice thickness sensing support rod of the ice thickness sensing fastening kit.
  • Figure 15 is a front view of the support rod bracket.
  • Figure 16 is a left side view of the support rod bracket.
  • Figure 17 is a top view of the support rod bracket.
  • Figure 18 is a schematic diagram of the ice thickness sensor fastening kit used and connected.
  • Figure 19 is a schematic diagram of the intelligent controller structure.
  • Figure 20 is a schematic diagram of the smart controller housing.
  • Figure 21 is a schematic diagram of the guide groove of the step control board of the intelligent controller housing.
  • Figure 22 is a schematic diagram of the top cover of the smart controller housing.
  • FIG. 23 Schematic diagram of the installation hole of the intelligent control connection terminal A.
  • Figure 24 is a schematic diagram of the bottom cover of the smart controller housing.
  • Figure 25 The front view of the controller inner tank of the intelligent controller.
  • Figure 26 The main structure diagram of the controller liner of the intelligent controller.
  • FIG. 27 Schematic diagram of the top cover of the inner tank of the intelligent controller.
  • Figure 28 is a schematic diagram of the bottom cover of the inner tank of the intelligent controller.
  • Figure 29 The front view of the step control board.
  • Figure 30 The top view of the step control board.
  • Figure 31 Schematic diagram of stepped top plate and stepped bottom plate.
  • Figure 32 Schematic diagram of fastening the ice thickness sensor connecting rod to the step top plate.
  • Fig. 33 is a schematic diagram of the structure of the step control board on the left side.
  • Figure 34 is a schematic diagram of the combined installation of the intelligent controller.
  • Figure 35 shows the state diagram of the intelligent controller in normal working state.
  • Figure 36 is the state diagram of the energy controller in the icing state.
  • Figure 37 shows the state diagram of the intelligent controller in the working state of ice melting.
  • Fig. 38 is a geometric structure diagram of a self-made thermal wire used in the present invention.
  • the self-made thermal conductor 5 used in the present invention is a coaxial cable structure, and the self-made thermal conductor disclosed in the patent application number CN201810370549.8 is adopted.
  • the intelligent ice melting control device is connected between the self-made thermal wire and the traditional transmission wire A4.
  • the other end of the self-made thermal wire is connected to the traditional transmission wire B16 after the inner conductor 3 and the outer conductor 1 are short-circuited;
  • the intelligent ice melting device has three Two external connection ends, wire connection end 9, inner conductor connection end 11, outer conductor connection end 10; wire connection end 9 is connected to traditional power transmission wire A4, inner conductor connection end 11 is connected to self-made heating wire inner conductor 3, and the outer conductor is connected
  • the terminal 10 is connected to the outer conductor 1 of the self-made heating wire.
  • the intelligent ice melting control equipment is composed of a passive intelligent switch 100 and an isolating switch 101; among them, the passive intelligent switch has three external connection terminals: the intelligent switch wire connection terminal 102, the intelligent switch inner conductor connection terminal 103, and the intelligent switch outer conductor connection terminal 104;
  • the isolation switch 101 has two external connections: isolation switch connection terminal A 105, isolation switch connection terminal B106.
  • the smart switch wire connection terminal 102 of the passive smart switch is short-connected to the disconnecting switch terminal A 105 of the disconnecting switch; the smart switch outer conductor connection terminal 104 of the passive smart switch is short-circuited to the disconnecting switch terminal B106 of the disconnecting switch; passive The inner conductor connection terminal 103 of the smart switch of the smart switch is short-circuited to the inner conductor connection terminal 11 of the passive smart ice melting control switch;
  • the isolation switch 101 is formed by the isolation resistance 21 and the control switch 22 in parallel.
  • the two ends of the parallel connection are the isolation switch connection terminal A105 and the isolation switch connection terminal B 106; when ice melting is required, both ends of the control switch are disconnected; When the ice is melting, both ends of the control switch are short-circuited.
  • the isolating switch in this embodiment adopts Zhejiang Qigu Electric Co., Ltd.: Model: GW9-12 high-voltage isolating switch.
  • the passive smart switch 100 is composed of an ice thickness sensor 110 and a smart controller 111.
  • the ice thickness sensor 110 has two connection terminals: the ice thickness sensor connection terminal A 112 and the ice thickness sensor connection terminal B 113.
  • the smart controller 111 has two connection terminals: the smart control connection terminal A114 and the smart control connection terminal B 115.
  • the ice thickness sensing connection terminal A112 of the ice thickness sensor is short-circuited with the intelligent control connection terminal A 114 of the smart controller, and the smart switch wire connection terminal 102 of the passive smart switch is connected to the wire connection terminal 9 of the smart ice melting device;
  • the ice thickness sensing connection terminal B 113 of the ice thickness sensor is short-circuited to the inner conductor connection terminal 103 of the smart switch and the inner conductor connection terminal 11 of the smart ice melting device;
  • the smart control connection terminal B 115 of the smart controller is connected to the outer conductor of the smart switch Terminal 104, the outer conductor connection terminal 10 of the smart ice melting device is short-circuited.
  • the ice thickness sensor 110 is composed of an ice thickness sensing plane 60, an ice thickness sensing connecting rod 61, and an ice thickness sensing fastening kit;
  • the ice thickness sensing plane 60 is composed of an ice thickness sensing wire 120 and a sensing wire positioning rod 121- 1 to 121-3, the ice thickness sensing wire 120 and the sensing wire positioning rods 121-1 to 121-3 are fastened by the sensing plane fastening kit.
  • the ice thickness sensing fastening kit includes an ice thickness sensing support rod and a support rod bracket 150.
  • the ice thickness sensing support rods have the same 4 ice thickness sensing support rods 122-1 to 122-4.
  • the ice thickness sensing wire 120 is a self-made thermal conductor with a single coaxial cable structure.
  • the self-made thermal conductor disclosed in the patent application number CN201810370549.8 is adopted.
  • the ice thickness sensing wire is distributed in a serpentine shape in the same plane, and the two ends are semicircular. Shape, the lines in the middle are parallel to each other, and there are multiple parallel lines. In this example, 11 pieces were used.
  • the sensing wire positioning rods 121-1 to 121-3 at both ends of the ice thickness sensing wire 120 are made of materials with relatively large rigidity and strength. There are multiple sensing wire positioning rods, and the sensing wire positioning rods are parallel to the multiple ones.
  • the ice thickness sensing wire is vertical and intersects vertically.
  • the intersection point at the exact center is the sensing connecting rod fastening point 126, and the intersection of the four corners is the sensing connecting rod fastening point 125-1 ⁇ 125-4; other intersections Point-use sensing plane fastening kits 124-a2, a3, ⁇ a10,124-b1, b2 ⁇ b10, 124-c2, c3 ⁇ c10, connect the sensing wire positioning rods 121-1 ⁇ 121-3 to the ice that intersects perpendicularly
  • the thick sensing wire 120 is fastened so that the sensing wire positioning rod and the ice thickness sensing wire are connected as a whole, and the integrally formed plane is placed horizontally; the inner conductors at both ends of the ice thickness sensing wire are respectively connected to the ice thickness sensing connection terminal A Connect to terminal B for ice thickness sensor.
  • the sensing plane fastening kit is composed of a U-shaped fastening connector 127, a fastening pressure plate 128, a fastening spring pad 129-1, 129-2, and a fastening nut 130-1, 130-2.
  • the sensing plane fastening kit The ice thickness sensing wire 120 is fastened inside the U-shaped fastening connector 127.
  • the two ends of the U-shaped fastening connector are parallel straight lines, and the middle is connected by a semicircle; there are U-shaped fastening connector thread openings on the parallel straight; the U-shaped fastening connector thread opening is matched with the fastening nut.
  • the U-shaped fastening connector is clamped at the junction of the sensor wire positioning rod and the ice thickness sensor wire, and the two fasteners of the fastening pressure plate pass through the U-shaped fastening connector wire opening, and then tighten it with The spring washer and the fastening nut pass through the thread opening of the U-shaped fastening connector to fasten the sensing wire positioning rod and the ice thickness sensing wire.
  • the ice thickness sensing connecting rod 61 is composed of an insulating material with relatively large rigidity and strength, and is used to connect the ice thickness sensing plane 60 and the intelligent controller 111.
  • the upper end is a vertical cylindrical rod, and the top end has a top screw 134, which is used to fasten the connection with the intelligent controller.
  • the lower end is the U-shaped hook 136 of the connecting rod.
  • the connecting rod pressing plate 133 is fixed on the plane of the U-shaped hook 136 of the connecting rod.
  • the connecting rod U-shaped hook is used to fasten the ice thickness sensing plane.
  • the connecting rod body 135 Between the top screw and the U-shaped hook of the connecting rod is the connecting rod body 135; the ice thickness sensing plane is placed horizontally; the connecting rod body is placed vertically and perpendicular to the ice thickness sensing plane; the connecting rod pressing plate is a U-shaped pressing plate 133 is made of materials with relatively high rigidity and strength.
  • One end of the connecting rod compression plate is slotted, and one end has a connecting rod end through hole 334; the sensor connecting rod fastening point 126 of the ice thickness sensing plane is placed on the ice thickness transmission
  • the groove of the connecting rod pressing plate passes through the main body of the ice thickness sensor connecting rod, and the connecting rod end through hole 334 of the connecting rod pressing plate passes through the sensor connecting rod. Fasten the hook screw, and fasten the connecting rod pressing plate, the ice thickness sensing plane, and the ice thickness sensing connecting rod with a tightening spring washer and a tightening nut.
  • the ice thickness sensor fastening kit includes ice thickness sensor support rods 122-1 ⁇ 122-4 and a support rod bracket 150.
  • the ice thickness sensor support rod consists of a support rod hook 138, a support rod screw 139, a support rod body 140, and an end Install the screw hole combination 341, and install the screw hole combination 341 at the end to install the ice thickness sensor support rod on the support rod bracket;
  • the support rod hook is used to install the ice thickness sensing plane at the fastening point of the support rod of the ice thickness sensing plane ;
  • the connecting rod end of the connecting rod pressing plate 133 passes through the support rod screw, and the outer side of the connecting rod pressing plate 133, the ice thickness sensing plane 60, and the ice thickness sensor are connected with a fastening spring washer and a fastening nut
  • the rod 61 is tightened.
  • the connecting rod pressing plate 133 There are two fastener through holes 132-1 and 132-2 on the upper side of the connecting rod pressing plate 133.
  • the two fastener through holes are at the same distance from the two ends of the U-shaped fastening connector, and the size can pass through the U-shaped fastening.
  • Connector wire mouth The connecting rod pressing plate 133 is made of a material with relatively high rigidity and strength, and stainless steel is used in the embodiment.
  • the ice thickness sensing connecting rod is made of insulating material with relatively large rigidity and strength, and engineering plastics are used in this embodiment.
  • the ice thickness sensing connecting rod is used to connect the ice thickness sensing plane and the intelligent controller.
  • the upper end is a vertical cylindrical rod, and the top end has a top screw, which is used to fasten the connection with the intelligent controller; the lower end is a U-shaped connecting rod.
  • the U-shaped hook of the connecting rod has a hook screw at the end; the U-shaped hook of the connecting rod is used to fasten the ice thickness sensing plane; the main body of the connecting rod is between the top screw and the U-shaped hook of the connecting rod; ice thickness sensing The plane is placed horizontally; the main body of the connecting rod is placed vertically and perpendicular to the ice thickness sensing plane.
  • the fastening point of the sensing connecting rod of the ice thickness sensing plane is placed on the U-shaped hook of the connecting rod of the ice thickness sensing connecting rod, and the groove of the connecting rod pressing plate passes through the main body of the ice thickness sensing connecting rod to connect
  • the through hole of the connecting rod end of the rod pressing plate passes through the hook screw of the sensor connecting rod, and the outer side uses a tightening spring washer and a tightening nut to press the connecting rod into the plate, the ice thickness sensing plane, and the ice thickness sensor.
  • the connecting rod is tightened.
  • the support rod support 150 includes a support main body 141 and four support side ears 143-1 to 143-4; the support main body 141 is a hollow tube with a support through hole 142 in the middle, and the support through hole passes through the ice thickness sensing connecting rod 61, and there are Four bracket side ears 143-1 ⁇ 143-4. There is a support rod mounting hole 144 in the middle of each side ear. The support rod mounting hole corresponds to the end mounting screw hole 141. Use screws to pass through the support rod mounting hole 144 and the end mounting screw hole 141 fastens the support rod bracket 150 with the ice thickness sensor support rod.
  • the support rod hook 136 of the sensor support rod is fastened to the ice thickness sensing plane 60, and the four ice thickness sensor support rods are fastened to the bracket side ears 143-1 to 143-4 of the support rod bracket through the end mounting screw holes 141, so that The ice thickness sensing plane 60 and the ice thickness sensing connecting rod 61 form a whole to form an ice thickness sensor.
  • the intelligent controller 111 is connected to the intelligent control connection terminal B 115. It consists of controller housing 62, controller inner tank 63, normal latches 64-1, 64-2, normal springs 65-1, 65-2, top short-circuit plate 66, top cover 67, short-circuit spring 68, step control Plate 69, continuous spring 70, step spring 71, ice-melting spring 72-1, 72-2, ice-melting latch 73-1, 73-2, short-circuit connection line B160, short-circuit connection line A161, and bottom end cover plate 162 constitute.
  • the controller housing 62 is a tube with a certain thickness, made of insulating material, and its axis is perpendicular to the horizontal plane; the top and bottom of the pipe wall have a top cover mounting hole 166 and a bottom cover mounting hole 167; the lower side wall has one
  • the intelligent control connection terminal B mounting hole 163 is used to install the intelligent control connection terminal B115.
  • ice-melting latch installation hole 164-1, 164-2 on the left and right sides of the upper side wall on the same level to install the ice-melting latch 73-1, 73-2, and there is also a normal latch on the same level.
  • the mounting holes 165-1, 165-2 are used to install the normal latches 64-1, 64-2.
  • the normal latches and normal springs are placed in the normal latch mounting holes.
  • the normal latches are installed inside the controller housing and outside the normal latches. , Place the normal spring, and close the normal spring on the outside of the controller housing.
  • the normal latch Under the action of the normal spring, the normal latch is exposed inside the controller housing; the ice-melting latch and the ice-melting spring are placed in the mounting hole of the ice-melting latch to melt
  • the ice latch is installed inside the controller housing. Outside the ice melting latch, an ice melting spring is placed. The ice melting spring is sealed on the outside of the controller housing. Under the action of the ice melting spring, the ice melting latch exposes the inside of the controller housing.
  • the step control plate 69 is composed of a step top plate 230, a step bottom plate 231, a left step control plate 232, and a right step control plate 233; the step top plate 230 and the step bottom plate 231 are circular, with symmetrical openings in the middle A connecting rod through hole 234, the connecting rod through hole 234 has two left step fastening holes 235-1, 235-2 on the left side, and the connecting rod through hole 234 has two right step fastening holes on the right side Holes 235-3, 235-4, the fastening hole on the left side of the step and the fastening hole on the right side of the step are on a straight line, and the straight line passes through the center of the step top plate; the diameter of the connecting rod of the step top plate is slightly larger than that of the ice Thick sensing connecting rod diameter; the through hole diameter of the step bottom plate connecting rod is slightly larger than the continuous spring diameter.
  • the left step control board 232 is a plate-shaped rectangular parallelepiped with a notch on the outside.
  • the outer side is called the outer upper convex edge 242, the outer concave edge 243, the outer lower convex edge 244, and the outer concave edge is recessed inward from top to bottom;
  • the upper inclined side surface 247 is the outer upper side
  • the transition side surface between the convex edge 242 and the outer concave side 243 gradually slopes from the outside to the inside from top to bottom, and the downward slope side 248 is the transition side surface
  • the controller housing 62, the top cover plate 67, and the bottom end cover plate 162 are combined into a closed space, which encloses the controller liner 63, the controller liner 63 and the control step plate 69 in the middle.
  • step control board guide grooves 172-1 and 172-2 on both sides of the controller housing, the left step control board 232 and the right step control board 233, they can move up and down freely.
  • the controller inner tank 63 is arranged in the controller housing 62, and includes the inner tank top cover 221, the inner tank main body 222, and the inner tank bottom end cover 223; the inner tank main body is a tube with a certain thickness, and its axis is perpendicular to the horizontal plane;
  • the top and bottom of the tube wall are provided with mounting holes to install the top cover 221 of the inner liner and the bottom end cover 223 of the inner liner; there are vertical inner liner guide grooves 177-1, 176-2 on both sides of the tube wall, and the inner liner guide grooves
  • the width is smaller than the diameter of the normal latch and the ice-melting latch; there are liner lock holes 175-1, 175-2 at a certain part of the liner guide groove; the axis of the liner lock hole is horizontal, and the diameter is larger than that of the normal latch And the diameter of the ice-melting latch; when in use, the liner lock hole and liner guide groove of the controller liner are on the same plane as the ice
  • the controller inner tank 63 is arranged in the controller housing 62, and includes the inner tank top cover 221, the inner tank main body 222, and the inner tank bottom end cover 223; the inner tank main body is a tube with a certain thickness, and its axis is perpendicular to the horizontal plane;
  • the top and bottom of the tube wall are provided with mounting holes to install the top cover 221 of the inner liner and the bottom end cover 223 of the inner liner; there are vertical inner liner guide grooves 177-1, 176-2 on both sides of the tube wall, and the inner liner guide grooves
  • the width is smaller than the diameter of the normal latch and the ice-melting latch; there are liner lock holes 175-1, 175-2 at a certain part of the liner guide groove; the axis of the liner lock hole is horizontal, and the diameter is larger than that of the normal latch And the diameter of the melting ice latch.
  • the inner tank lock hole and inner tank guide groove of the controller inner tank are on the same plane as the ice melting latch installation hole and the normal lock latch installation hole of the controller shell.
  • the top cover 67 of the controller inner tank is a metal disc, the diameter of the disc is smaller than the inner diameter of the controller shell, and the lower end is the top short-circuit plate 66 of the metal disc.
  • a short-circuit spring 68 is arranged between the top cover 67 and the top short-circuit plate 66; the top cover 67 has an intelligent control connection terminal A mounting hole 170, four controller housing mounting holes 168-1 to 168-4, and four suspensions Mounting holes 169-1 ⁇ 169-4, four controller housing mounting holes 168-1 ⁇ 168-4, controller housing mounting holes 168-1 ⁇ 168-4 and controller housing top cover mounting hole 166-1 ⁇ 166-4 one-to-one correspondence; hanging mounting holes 169-1 ⁇ 169-4 are used to fix the passive intelligent ice melting control switch 100 on the mounting bracket; intelligent control connection terminal A mounting hole 170 to install intelligent control connection terminal A 114 .
  • the mounting screw holes 177-1 ⁇ 177-4 of the top cover of the liner correspond to the top mounting holes 174-1 ⁇ 174-4 of the main body of the liner.
  • the mounting screws pass through the mounting screw holes of the top cover of the liner.
  • the mounting holes at the top of the inner tank are twisted, and the inner tank top cover plate is installed on the main body of the inner tank.
  • the bottom end cover 162 of the controller is made of insulating material and is in the shape of a disc.
  • the screws go through the through holes of the bottom end cover plate, drill into the bottom end cover plate mounting holes 167-1 to 167-4 of the controller housing, and fasten the bottom end cover plate on the controller housing.
  • the bottom through hole 220 of the connecting rod is in the middle of the bottom end cover plate, and the ice thickness sensor connecting rod 61 passes through the through hole at the bottom of the connecting rod.
  • the mounting screw holes 177-1 ⁇ 178-4 of the bottom cover of the inner tank correspond to the positions of the mounting holes at the bottom of the inner tank body.
  • the mounting screws pass through the mounting screw holes of the bottom cover of the inner tank and are connected to the bottom mounting holes of the inner tank. Twist, install the bottom cover of the inner tank on the main body of the inner tank; the diameter of the connecting rod of the bottom cover of the inner tank is slightly larger than the diameter of the ice thickness sensing connecting rod, and the ice thickness sensing connecting rod can pass through the bottom cover of the inner tank Connecting rod through hole.
  • the step control plate 69 is composed of a step top plate 230, a step bottom plate 231, a left step control plate 232, and a right step control plate 233; the step top plate 230 and the step bottom plate 231 are circular, with symmetrical openings in the middle A connecting rod through hole 234, the connecting rod through hole 234 has two left step fastening holes 235-1, 235-2 on the left side, and the connecting rod through hole 234 has two right step fastening holes on the right side Holes 235-3, 235-4, the fastening hole on the left side of the step and the fastening hole on the right side of the step are on a straight line, and the straight line passes through the center of the step top plate; the diameter of the connecting rod of the step top plate is slightly larger than that of the ice Thick sensing connecting rod diameter; the through hole diameter of the step bottom plate connecting rod is slightly larger than the continuous spring diameter.
  • the left step control board 232 is a plate-shaped rectangular parallelepiped with a notch on the outside.
  • the outer side is called the outer upper convex edge 242, the outer concave edge 243, the outer lower convex edge 244, and the outer concave edge is recessed inward from top to bottom;
  • the upper inclined side 247 is the outer upper side
  • the transition side surface between the convex edge 242 and the outer concave side 243 gradually slopes from the outside to the inside from top to bottom, and the downward slope side 248 is the transition side surface between
  • the ice thickness sensing connecting rod 61 is fastened on the step top plate 230 with the connecting rod mounting upper nut 238 and the connecting rod mounting lower nut 239.
  • Figure 33 shows the controller assembly installation diagram.
  • the step top plate 230, the step bottom plate 231, the left step control plate 232, and the right step control plate (233) combine to form a control step plate 69.
  • the upper and lower outer edges of the left side step control board 232 and the right side step control board 233 are stuck between the inner liner guide grooves on both sides of the inner liner main body, and move flexibly between the inner liner guide grooves .
  • the outer upper convex edge and the outer lower convex edge are exposed outside the main body of the inner tank, and are stuck between the guide grooves of the step control board on both sides of the controller casing, so that the main body of the inner tank can follow the step control on both sides of the controller casing
  • the board guide groove moves flexibly.
  • the inner tank top cover 221, the inner tank main body 222, and the inner tank bottom cover 223 are combined to form the controller tank 63.
  • the control step plate 69 is enclosed in the controller tank 63 and is restricted to the left by the inner tank guide groove.
  • the movement trajectory of the side step control board 232 and the right step control board 233 enables the control step board 69 to move up and down flexibly in the inner tank of the controller;
  • the continuous spring passes through the connecting rod of the step bottom plate 231 of the control step board
  • the through hole and the inner side of the control board of the left step control board 232 and the right step control board 233 are installed between the step top plate 230 and the bottom end cover plate 223 of the inner tank;
  • the continuous spring 70 is sleeved in the ice thickness sensor connection
  • the outside of the rod passes through the step bottom plate 231 and is connected between the step top plate 230 and the bottom end cover plate 223 of the inner liner.
  • the controller housing 62, the top cover plate 67, and the bottom end cover plate 162 are combined into a closed space, which encloses the controller liner 63 in the middle.
  • the controller liner 63 and the control step plate 69 are located on the two sides of the controller housing. Under the restrictions of the guide slot of the jump control board, the left step control board 232 and the right step control board 233, they can move up and down freely.
  • the step spring 71 is sleeved outside the ice thickness sensing connecting rod and installed between the bottom end cover plate 162 and the bottom end cover plate 223 of the inner liner.
  • the intelligent control connection terminal B 115 is short-circuited to the controller inner tank 63 through a short-circuit connection line B 160.
  • the short-circuit spring 68 is connected between the top short-circuit plate 66 and the top cover plate 67, and the short-circuit connection line A 161 short-circuits the top short-circuit plate 66 and the intelligent control connection terminal A 114.
  • the normal latch 64 and the normal spring 65 are installed in the normal latch mounting hole 165, the normal spring 65 is located outside the controller, and the normal latch 64 is located inside the controller housing.
  • the ice-melting spring 72 and the ice-melting latch 73 are installed in the ice-melting latch installation hole 164, the ice-melting spring 72 is located outside, and the ice-melting latch 73 is located outside the controller housing.
  • the ice thickness sensing connecting rod 61 passes through the bottom end cover 162, the step spring 71, the inner tank bottom end cover 223, the continuous spring 70, and the step bottom plate 231 sequentially from bottom to top, and passes through the ice thickness sensing connecting rod 61
  • the top screw 134 fastens the ice thickness sensor connecting rod 61 and the step top plate 230 of the step control board 69.
  • the step spring 71 is sleeved outside the ice thickness sensing connecting rod and fixed between the bottom end cover plate 162 and the bottom end cover plate 223 of the inner tank; the continuous spring 70 is sleeved outside the ice thickness sensing connecting rod and fixed at the bottom of the inner tank Between the end cover plate 223 and the step top plate 230.
  • the working process of the intelligent controller is divided into five processes: normal working state, icing working state, ice melting working state, restoring working state, and returning to normal state.
  • Figure 35 shows the state diagram of the intelligent controller in normal working state.
  • the normal working state refers to the ice-free state of the ice thickness sensor.
  • the ice thickness sensor belongs to the lightest state.
  • the controller inner tank 63 Under normal working conditions, the controller inner tank 63 is pressed on the step spring 71; the outer concave edge 243 of the left step control board 232 and the right step control board 233 and the inner tank lock hole 175 of the inner main body 222 are in contact with each other.
  • the horizontal direction is flush; under the action of the normal spring 65, the normal latch 64 passes through the inner tank lock hole 175 to lock the controller inner tank 63; the step top plate 230 that controls the step plate 69 is subjected to the upward elastic force of the continuous spring 70 And the pull-down force of the ice thickness sensing connecting rod. Since the ice thickness sensor connecting rod and the ice thickness sensor are in the lightest state in the normal state, the control step plate 69 is at the highest position. In a normal working state, the top short-circuit plate 66 and the inner tank top cover 221 are short-circuited, so that the smart control connection terminal A 114 and the smart control connection terminal B 115 are short-circuited.
  • Figure 36 is the state diagram of the energy controller in the icing state.
  • the working state refers to the state in which the ice thickness sensing wire 120 starts to be coated with ice.
  • the weight of the ice thickness sensor increases.
  • the weight of the ice thickness sensor is reduced.
  • the control step plate 69 rises, and under the action of the downward slope 248 of the control step plate 69, the ice melting latch 73 gradually moves outward;
  • the top short-circuit plate 66 and the inner tank top cover 221 are open, so that the smart control connection terminal A 114 and the smart control connection terminal B 115 are open.
  • the ice melting latch 73 is pushed out of the inner tank lock hole 175 to release the locked state of the inner tank 63, and the step spring 71 pushes the inner tank 63 to move up and return to the normal working state.
  • the elastic coefficient of the spring is calculated as:
  • the elastic coefficient of the step spring 71 used is the same as that of the continuous spring 70, and the elastic coefficient is represented by K 70 ;
  • All units are metric units, basic unit: length unit: meter (m); time unit: second (sec), mass unit: kilogram (kg), temperature unit: Kelvin (K);
  • the length of the ice thickness sensing wire (120) on the ice thickness sensor is L, and the outer diameter of the self-made heating wire is denoted by D w ; the thickness at the beginning of melting is W, from the normal working state to the melting operation
  • the moving distance of the state control step board (69) is H, then:
  • the outer diameter of the outer conductor of the self-made heating wire used is represented by D w ; the length of the self-made heating wire between the traditional wire A and the traditional wire B is represented by L; the outer diameter of the inner conductor of the self-made heating wire is represented by D n ; the thickness of the insulation layer of the self-made heating wire represented by dz; inner conductor resistivity n-represented by a; a maximum current flowing through a conventional transmission line is represented by IA;
  • All units are metric units, basic unit: length unit: meter (m); time unit: second (sec), mass unit: kilogram (kg), temperature unit: Kelvin (K);
  • W max D w ⁇ L ⁇ 3500 (watts)

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Resistance Heating (AREA)

Abstract

一种基于自制热导线的智能融冰设备及其融冰方法。智能融冰控制设备由无源智能开关和隔离开关构成。无源智能开关由冰厚传感器和智能控制器构成;隔离开关由隔离电阻和控制开关并联而成。冰厚传感器由冰厚传感平面、冰厚传感连接杆、冰厚传感紧固套件构成;冰厚传感平面由冰厚传感导线和传感导线定位杆构成,冰厚传感导线和传感导线定位杆通过传感平面紧固套件紧固。融冰过程包括:正常工作状态、结冰工作状态、融冰工作状态和恢复工作状态。本发明解决了自制热导体制作制热设备时,需要在控制和检测方面供给电源的难题,能在不需要电源的情况下感知输电线路结冰状况;在感知输电线路结冰后,自动启动输电导线融冰;在感知融冰结束后自动停止融冰。

Description

基于自制热导线的智能融冰设备及其融冰方法 (一)技术领域
本发明涉及一种电力输电线路防冰融冰技术,特别是一种基于自制热导线的智能融冰设备及其融冰方法。
(二)背景技术
电力输电线路防冰融冰技术在电力输电中必不可少,尤其在寒冷的冬季,不少地区的线路都会结冰,造成线路的损坏。当结冰超过线路的承受力时,就会发生断线等严重事故。所以,冬季的电力输电线除冰十分重要。在现有技术中,融冰技术在不断提高。申请号CN201810370549.8的《嵌入绝缘导热材料的自制热导体和制热设备及其实现方法》提出了一种含外导体,绝缘导热材料和内导体的同轴电缆结构自制热导体,采用绝缘导热材料取代制热材料,有效利用自身钢芯电阻的发热,达到防冰融冰目的。申请号为CN201810952697.0的《嵌入绝缘材料自制热导线在线监测设备与检测方法》在嵌入绝缘材料自制热导线基础上设置了在线监测设备。在线监测设备通过模拟对输电线路运行参数进行准确测量,对输电线路防冰融冰控制进行预判与分析。
这两种自制热导体融冰技术防冰融冰效果好,能够确保用电设备安全。但是在控制和检测方面需要供给电源。在输电线路实际运行时,取电成为应用难题。
(三)发明内容
本发明的目的是解决在使用同轴电缆结构自制热导体,制作制热设备有效防冰融冰时,需要在控制和检测方面供给电源的难题。
本发明的目的是这样达到的:智能融冰设备连接在自制热导线与传统输电导线A之间,自制热导线的另一端,在内导体和外导体短路后与传统输电导线B连接;智能融冰设备有三个对外连接端,导线连接端、内导体连接端,外导体连接端。导线连接端与传统输电导线A4连接,内导体连接端与自制热导线内导体连接,外导体连接端与自制热导线外导体连接。智能融冰控制设备由无源智能开关和隔离开关构成;其中,无源智能开关有三个对外连接端:智能开关导线连接端、智能开关内导体连接端、智能开关外导体连接端;隔离开关有两个对外连接端:隔离开关连接端A、隔离开关连接端B。
无源智能开关的智能开关导线连接端与隔离开关的隔离开关连接端A短连接;无源智能开关的智能开关外导体连接端与隔离开关的隔离开关连接端B短路连接;无源智能开关的智能开关内导体连接端与智能融冰设备的内导体连接端短路连接。
隔离开关由隔离电阻和控制开关并联而成,并联后的两端为隔离开关连接端A和隔离开关连接端B;当需要融冰时,控制开关两端断开;当不需要融冰时,控制开关两端短路。
无源智能开关由冰厚传感器和智能控制器构成。冰厚传感器有两个连接端:冰厚传感连接端A,冰厚传感连接端B。智能控制器有两个连接端:智能控制连接端A、智能控制连接端B。冰厚传感器的冰厚传感连接端A与智能控制器的智能控制连接端A、无源智能开关的智能开关导线连接端短路连接后,连接到智能融冰设备的导线连接。冰厚传感器的冰厚传感连接端B与智能开关内导体连接端、智能融冰设备的内导体连接端短路连接;智能控制器的智能控制连接端B与智能开关外导体连接端、智能融冰设备的外导体连接端短路连接。
冰厚传感器由冰厚传感平面、冰厚传感连接杆、冰厚传感紧固套件构成。冰厚传感平面由冰厚传感导线和传感导线定位杆构成,冰厚传感导线和传感导线定位杆通过传感平面紧固套件紧固。
冰厚传感连接杆顶端为顶端螺丝,顶端螺丝与智能控制器紧固连接;下端为连接杆U型弯钩,连接杆U型弯钩尽头有弯钩螺丝;连接杆U型弯钩用于紧固冰厚传感平面;顶端螺丝与连接杆U型弯钩之间为连接杆主体;冰厚传感平面水平放置;连接杆主体垂直放置,并与冰厚传感平面垂直。
冰厚传感紧固套件包括冰厚传感支撑杆和支撑杆支架,冰厚传感支撑杆有相同的4个。
冰厚传感导线为单根同轴电缆结构的自制热导体,冰厚传感导线在同一平面内呈蛇形分布,两端为半圆形,中间连线相互平行,平行的连线有多根;传感导线定位杆为刚度和强度都比较大的材料构成,传感导线定位杆有多根,传感导线定位杆与多根平行的冰厚传感导线垂直,垂直相交处,正中心的相交点为传感连接杆紧固点,四个角的相交点为传感连接杆紧固点。其他相交点用传感平面紧固套件将传感导线定位杆与垂直相交的冰厚传感导线紧固,使得传感导线定位杆与冰厚传感导线连接成一个整体,整体形成的平面水平放置。
传感平面紧固套件由U型紧固连接件、紧固压力板、紧固弹垫紧固螺母构成,传感平面紧固套件将冰厚传感导线紧固在U型紧固连接件里面。
冰厚传感连接杆由刚度和强度都比较大的绝缘材料构成,用于连接冰厚传感平面与智能控制器,上端为竖直圆柱杆,顶端有顶端螺丝,顶端螺丝用于与智能控制器紧固连接;下端为连接杆U型弯钩,连接杆压固板固定在连接杆U型弯钩的平面上,连接杆U型弯钩尽头有弯钩螺丝。连接杆U型弯钩用于紧固冰厚传感平面;顶端螺丝与连接杆U型弯钩之间为连接杆主体;冰厚传感平面水平放置。连接杆主体垂直放置,并与冰厚传感平面垂直;连接杆压固板为U型压片由刚度和强度都比较大的材料构成,连接杆压固板一端开槽,一端有连接杆端头过孔。冰厚传感平面的传感连接杆紧固点放置于冰厚传感连接杆的连接杆U型弯钩上,连接杆压固板开槽处穿过冰厚传感连接杆的主体,连接杆压固板的连接杆端头过孔穿过传感连接杆紧的弯钩螺丝,外侧用紧固弹垫和紧固螺母将连接杆压固板、冰厚传感平面、冰厚传感支撑杆紧固。
冰厚传感紧固套件包括冰厚传感支撑杆和支撑杆支架。冰厚传感器支撑杆由支撑杆弯钩、支撑杆螺丝、支撑杆主体、末端安装螺孔组合。末端安装螺孔将冰厚传感器支撑杆安装在支撑杆支架上;支撑杆弯钩用于在冰厚传感平面的支撑杆紧固点,安装冰厚传感平面;连接杆压固板的连接杆端头过孔穿过支撑杆螺丝,外侧用紧固弹垫和紧固螺母将连接杆压固板、冰厚传感平面、冰厚传感连接杆紧固。
支撑杆支架包括支架主体和四个支架侧耳。支架主体呈空管状,中间有支架过孔,支架过孔穿过冰厚传感连接杆,外边有四个支架侧耳,每个侧耳中间有个支撑杆安装孔,支撑杆安装孔对应于末端安装螺孔,用螺丝穿过支撑杆安装孔与末端安装螺孔将支撑杆支架与冰厚传感器支撑杆紧固。
通过支撑杆支架的支架过孔穿过冰厚传感连接杆,并将冰厚传感连接杆的连接杆U型弯钩与冰厚传感平面紧固,四根冰厚传感器支撑杆的支撑杆弯钩与冰厚传感平面紧固,四根冰厚传感器支撑杆通过末端安装螺孔与支撑杆支架的支架侧耳紧固,使得冰厚传感平面与冰厚传感连接杆形成一个整体,构成冰厚传感器。
所述智能控制器由控制器外壳、控制器内胆、常态锁闩、常态弹簧、顶端短路板、顶端盖板、短路弹簧、阶跃控制板、连续弹簧、阶跃弹簧、融冰弹簧、融冰锁闩、短路连接线B、短路连接线A和底端盖板构成。
控制器外壳、顶端盖板、底端盖板组合成一个封闭空间,将控制器内胆封闭在中间,控制器内胆和控制阶跃板在控制器外壳两侧的阶跃控制板导槽和左侧阶跃控制板、右侧阶跃控制板的限制下做上下自由活动。
阶跃弹簧套在冰厚传感连接杆外边,安装在底端盖板和内胆底端盖板之间。
智能控制连接端B通过短路连接线B与控制器内胆短路连接;短路弹簧连接在顶端短路板与顶端盖板之间,短路连接线A将顶端短路板与智能控制连接端A短路连接。
所述控制器外壳呈有一定厚度的管状,由绝缘材料制成,其轴线与水平面垂直;管壁顶部和底部均有顶端盖板安装孔和底端盖板安装孔;下边侧壁有一个智能控制连接端B安装孔,用于安装智能控制连接端B;上边侧壁左右各有一个在同一水平面上的融冰锁闩安装孔安装融冰锁闩,还各有一个在同一水平面上的常态锁闩安装孔安装常态锁闩,常态锁闩和常态弹簧放置在常态锁闩安装孔内,常态锁闩安装在控制器外壳内侧,常态锁闩外,放置常态弹簧,在控制器外壳外侧将常态弹簧封闭,在常态弹簧的作用下,常态锁闩露出控制器外壳内侧;融冰锁闩和融冰弹簧放置在融冰锁闩安装孔内,融冰锁闩安装在控制器外壳内侧,融冰锁闩外,放置融冰弹簧,在控制器外壳外侧将融冰弹簧封闭,在融冰弹簧的作用下,融冰锁闩露出控制器外壳内侧。
控制器内胆设置在控制器外壳内,含内胆顶端盖板、内胆主体、内胆底端盖板;内胆主体呈有一定厚度的管状,其轴线与水平面垂直。管壁顶部与有底部设有安装孔,安装内胆顶端盖板和内胆底端盖板。内胆顶端盖板、内胆主体、内胆底端盖板均为导电良好的材料制作。管壁两侧竖向有内胆导槽,内胆导槽宽度小于常态锁闩和融冰锁闩的直径;在内胆导槽的某一部位,有内胆锁孔;内胆锁孔轴线为水平方向,直径大于常态锁闩和融冰锁闩的直径。使用时,控制器内胆的内胆锁孔和内胆导槽与控制器外壳的融冰锁闩安装孔和常态锁闩安装孔以及控制器外壳轴线在同一个平面上。
阶跃控制板由阶跃顶板、阶跃底板、左侧阶跃控制板、右侧阶跃控制板构成。阶跃顶板和阶跃底板为圆形,中间对称开有一个连接杆过孔,连接杆过孔左侧开有两个左侧阶跃紧固孔,连接杆过孔右侧开有两个右侧阶跃紧固孔,阶跃左侧紧固孔和阶跃右侧紧固孔在一根直线上,所在直线过阶跃顶板的圆心;阶跃顶板连接杆过孔直径稍大于冰厚传感连接杆直径;阶跃底板连接杆过孔直径稍大于连续弹簧直径。
左侧阶跃控制板为一个外侧有凹口的板状长方体,外侧从上至下称为外侧上凸边,外侧凹边,外侧下凸边,外侧凹边朝内凹进。顶部有两个控制板上安装孔,与阶跃顶板 的阶跃左侧紧固孔对应,用于阶跃顶板与左侧阶跃控制板的紧固;底部有两个控制板下安装孔,与阶跃底板的阶跃左侧紧固孔对应,用于阶跃底板与左侧阶跃控制板的紧固;上斜侧面为外侧上凸边与外侧凹边之间的过度侧面,从上到下逐渐由外向内倾斜,下斜侧面为外侧凹边与外侧下凸边之间的过度侧面,从上到下逐渐由内向外倾斜;右侧阶跃控制板与左侧阶跃控制板为对称关系。
冰厚传感连接杆由下至上依次穿过底端盖板、阶跃弹簧、内胆底端盖板、连续弹簧、阶跃底板,通过冰厚传感连接杆的顶端螺丝将冰厚传感连接杆与阶跃控制板的阶跃顶板紧固。阶跃弹簧套在冰厚传感连接杆外,固定在底端盖板与内胆底端盖板之间;连续弹簧套在冰厚传感连接杆外,固定在内胆底端盖板与阶跃顶板之间;
所述传感平面紧固套件将传感导线定位杆与垂直相交的冰厚传感导线紧固,将传感导线定位杆与垂直相交的冰厚传感导线紧固连接,含U型紧固连接件、紧固压力板、紧固弹垫紧固螺母。U型紧固连接件为U型,两头为平行直线,中间用半圆形连接;平行直上有U型紧固连接件丝口;U型紧固连接件丝口与紧固螺母匹配,紧固压力板上边开有两个紧固件过孔,两个紧固件过孔与U型紧固连接件两头距离相等,大小为能穿过U型紧固连接件丝口。
顶端盖板为圆盘,由绝缘材料构成,圆盘直径大于控制器外壳外径,下端是由金属材料制作的金属圆盘顶端短路板,顶端短路板与智能控制连接端A通过短路连接线A短路连接,在顶端盖板与顶端短路板之间设置有短路弹簧。顶端盖板上边有智能控制连接端A安装孔和四个控制器外壳安装孔、四个悬挂安装孔,控制器外壳安装孔与控制器外壳的顶端盖板安装孔一一对应。安装螺钉穿过控制器外壳安装孔将控制器内胆顶端盖板安装在控制器外壳上,悬挂安装孔用于将无源智能融冰控制开关固定在安装支架上;智能控制连接端A安装孔安装智能控制连接端A。
控制器底端盖板由绝缘材料构成,为圆盘状,上边有底端盖板过孔,底端盖板过孔与底端盖板安装孔一一对应,螺钉穿过底端盖板过孔,钻入控制器外壳的底端盖板安装孔,将底端盖板紧固在控制器外壳上。
连接杆底端过孔在底端盖板中间,冰厚传感连接杆从连接杆底端过孔穿过。
融冰方法:智能融冰控制设备的连接在自制热导线与传统输电导线A之间,将智能控制器工作过程分为五个过程:正常工作状态,结冰工作状态,融冰工作状态,恢复工作状态,返回正常状态。
(1)正常工作状态
正常工作状态是指冰厚传感器无冰状态,在冰厚传感器无冰状态下,冰厚传感器属于最轻的状态;
正常工作状态下,控制器内胆压在阶跃弹簧上;左侧阶跃控制板与右侧阶跃控制板的外侧凹边与内胆主体的内胆锁孔在水平方向平齐;在常态弹簧的作用下,常态锁闩穿过内胆锁孔,将控制器内胆锁定。控制阶跃板的阶跃顶板受到连续弹簧向上弹力的作用和冰厚传感连接杆向下拉力的作用。由于正常状态下冰厚传感连接杆及冰厚传感器属于最轻的状态,控制阶跃板处于最高位。
正常工作状态下,顶端短路板与内胆顶端盖板短路,使得智能控制连接端A与智能控制连接端B短路。
(2)结冰工作状态
结冰工作状态是指冰厚传感导线开始覆冰的状态。当冰厚传感导线开始覆冰时,冰厚传感器重量增加;
冰厚传感器重量增加时,由于常态锁闩穿过内胆锁孔,将控制器内胆锁定,内胆固定不动;由于冰厚传感器重量增加,控制阶跃板下移。当冰厚传感器重量逐渐增加时,在控制阶跃板的上斜侧面作用下,常态锁闩逐渐向外移动。
在结冰工作状态下,顶端短路板与内胆顶端盖板短路,使得智能控制连接端A与智能控制连接端B短路。
(3)融冰工作状态
当冰厚传感器增加到一定重量时,在控制阶跃板的上斜侧面作用下,常态锁闩移出内胆锁孔,解除了内胆锁定状态。冰厚传感器重量增加,导致阶跃弹簧下压,使得内胆下移,在融冰弹簧的作用下,融冰锁闩穿过内胆锁孔,将内胆锁定。
在融冰工作状态下,顶端短路板与内胆顶端盖板开路,使得智能控制连接端A与智能控制连接端B开路。
(4)恢复工作状态
融冰开始后,冰厚传感器重量减轻,在连续弹簧的作用下,控制阶跃板上升,在控制阶跃板的下斜侧面作用下,融冰锁闩逐渐向外移动。在恢复工作状态下,顶端短路板与内胆顶端盖板开路,使得智能控制连接端A与智能控制连接端B开路。
(5)返回正常状态
当冰厚传感导线冰完全溶解时,融冰锁闩被推出内胆锁孔,解除内胆锁定状态,阶跃弹簧推动内胆上移,回到正常工作状态。
弹簧的弹性系数计算为:
所采用的阶跃弹簧与连续弹簧的弹性系数相同,弹性系数用K 70表示;
所有单位均为公制单位,基本单位:长度单位:米(m);时间单位:秒(sec),质量单位:千克(kg),温度单位:开尔文(K)。
在公制单位下,设冰厚传感器上的冰厚传感导线(120)长度为L,自制热导线外径用D w表示;融冰开始的厚度为W,从正常工作状态到融冰工作状态控制阶跃板(69)移动距离为H,则:
Figure PCTCN2020114814-appb-000001
隔离电阻的的电阻值R dzs计算方法:
设所用的自制热导线外导体外径,用D w表示;传统导线A与传统导线B之间自制热导线长度用L表示;自制热导线内导体外径用D n表示;自制热导线绝缘层厚度用dz表示;内导体电阻率用A n表示;传统输电导线A流过的最大电流用IA表示;
所有单位均为公制单位,基本单位:长度单位:米(m);时间单位:秒(sec),质量单位:千克(kg),温度单位:开尔文(K)。
(1)计算内导体电阻,内导体电阻用R n表示:
Figure PCTCN2020114814-appb-000002
(2)计算内导体最大功率,用W max表示,
W max=D w·L·3500(瓦特)
(3)计算内导体最大电流,用I nmax表示
Figure PCTCN2020114814-appb-000003
(4)计算外导体最小电流,用I wmin表示
I wmin=IA-I nmax
(5)计算隔离电阻阻值,用R dzs表示
Figure PCTCN2020114814-appb-000004
本发明的积极效果是:解决在使用同轴电缆结构自制热导体,制作制热设备有效防冰融冰时,需要在控制和检测方面供给电源的难题。采用本发明技术,不需要电源的情况下感知输电线路结冰状况;在感知输电线路结冰后,自动启动输电导线融冰;在感知融冰结束后自动停止融冰,极大的拓展了基于自制热导线的智能融冰设备应用,提升了智能融冰设备的水平。
(四)附图说明
图1是本发明使用的自制热导线结构结构示意图。
图2是本发明的智能融冰设备使用时的连接方法示意图。
图3是本发明的基于自制热导线的智能融冰设备结构示意图。
图4是隔离开关示意图。
图5是无源智能开关结构示意图。
图6是冰厚传感器结构示意图。
图7是冰厚传感平面结构示意图。
图8是传感平面紧固套件示意图。
图9是U型紧固连接件示意图。
图10是紧固压力板示意图。
图11是连接杆压固板示意图。
图12是冰厚传感连接杆与传感平面紧固示意图。
图13是冰厚传感连接杆结构示意图。
图14是冰厚传感紧固套件的冰厚传感支撑杆示意图。
图15是支撑杆支架主视图。
图16是支撑杆支架左视图。
图17是支撑杆支架俯视图。
图18是冰厚传感紧固套件使用连接示意图。
图19是智能控制器结构示意图。
图20是智能控制器外壳示意图。
图21是智能控制器外壳的阶跃控制板导槽示意图。
图22是智能控制器外壳的顶端盖板示意图。
图23智能控制连接端A安装孔示意图。
图24智能控制器外壳的底端盖板示意图。
图25智能控制器的控制器内胆主视图。
图26智能控制器的控制器内胆主体结构图。
图27智能控制器内胆顶端盖板示意图。
图28智能控制器内胆底端盖板示意图。
图29阶跃控制板主视图。
图30阶跃控制板俯视图。
图31阶跃顶板和阶跃底板示意图。
图32冰厚传感连接杆与阶跃顶板紧固示意图。
图33左侧阶跃控制板结构示意图。
图34智能控制器的组合安装示意图。
图35智能控制器在正常工作状态时的状态图。
图36能控制器在结冰工作状态时的状态图。
图37智能控制器在融冰工作状态时的状态图。
图38本发明使用的自制热导线几何结构图。
图中,1外导体,2绝缘导热材料,3内导体,4传统输电导线A,5自制热导线,8智能融冰设备,9导线连接端,10外导体连接端,11内导体连接端,16传统输电导线B,21隔离电阻,22控制开关,60冰厚传感平面,61冰厚传感连接杆,62控制器外壳,63控制器内胆,64-1、64-2常态锁闩,65-1、65-2常态弹簧,66顶端短路板,67顶端盖板,68短路弹簧69阶跃控制板,70连续弹簧,71阶跃弹簧,72-1、72-2融冰弹簧,73融冰锁闩;100无源智能开关,101隔离开关,102智能开关导线连接端,103智能开关内导体连接端,104智能开关外导体连接端,105隔离开关连接端A,106隔离开关连接端B,110冰厚传感器,111智能控制器,112冰厚传感连接端A,113冰厚传感连接端B,114智能控制连接端A,115智能控制连接端B,120冰厚传感导线,121-1~121-3传感导线定位杆,122-1~122-4冰厚传感支撑杆,124-a2、a3、~a10,124-b1、b2~b10.124-c2、c3~c10传感平面紧固套件,125-1~125-4支撑杆紧固点,126传感连接杆紧固点,127U型紧固连接件,128紧固压力板,129-1、129-2 129-a、 129-b1、129-b2紧固弹垫,130-1、130-2、130-a、130-b1、130-b2紧固螺母,131-1、131-2U型紧固连接件丝口,132-1、132-2紧固件过孔,133-b1、133-b2 133接杆压固板,134顶端螺丝,135连接杆主体,136连接杆U型弯钩,137弯钩螺丝,138-1、138-2支撑杆弯钩,139支撑杆螺丝,140支撑杆主体,141支架主体,142支架过孔,143-1~143-4支架侧耳,144-1~144-4支撑杆安装孔,150支撑杆支架,160短路连接线B,161短路连接线A 162底端盖板,163智能控制连接端B安装孔,164-1、164-2融冰锁闩安装孔,165-1、165-2常态锁闩安装孔,166-1~166-4顶端盖板安装孔,167-1~167-4底端盖板安装孔,168-1~168-4控制器外壳安装孔,169-1~169-4悬挂安装孔,170智能控制连接端A安装孔,171-1~171-4底端盖板过孔,172-1、172-2阶跃控制板导槽,173-1~173-4内胆底端安装孔,174-1~174-4内胆顶端安装孔,175-1、175-2内胆锁孔,176-1~176-2内胆导槽,177-1~177-4内胆顶盖板安装螺孔,178-1~178-4内胆底盖板安装螺孔,179内胆底盖板连接杆过孔,220连接杆底端过孔,221内胆顶端盖板,222内胆主体,223内胆底端盖板,230阶跃顶板,231阶跃底板,232左侧阶跃控制板,233右侧阶跃控制板,234连接杆过孔,235-1~235-4控制板安装螺钉,236-1、236-2阶跃左侧紧固孔,237-1、237-2阶跃右侧紧固孔,238连接杆安装上螺母,239连接杆安装下螺母,241-1、241-2控制板上安装孔,242外侧上凸边,243外侧凹边,244外侧下凸边,245-1、245-2控制板下安装孔,246控制板内侧,247上斜侧面,248下斜侧面,334连接杆端头过孔,341末端安装螺孔。
(五)具体实施方式
参见附图1。
本发明使用的自制热导线5是同轴电缆结构,采用申请号CN201810370549.8专利公示的自制热导体。
参见附图2、3
智能融冰控制设备的连接在自制热导线与传统输电导线A 4之间,自制热导线的另一端,在内导体3和外导体1短路后与传统输电导线B 16连接;智能融冰设备有三个对外连接端,导线连接端9、内导体连接端11,外导体连接端10;导线连接端9与传统输电导线A4连接,内导体连接端11与自制热导线内导体3连接,外导体连接端10与自制热导线外导体1连接。
智能融冰控制设备由无源智能开关100和隔离开关101构成;其中,无源智能开关有三个对外连接端:智能开关导线连接端102、智能开关内导体连接端103、智能开 关外导体连接端104;隔离开关101有两个对外连接端:隔离开关连接端A 105、隔离开关连接端B106。
无源智能开关的智能开关导线连接端102与隔离开关的隔离开关连接端A 105短连接;无源智能开关的智能开关外导体连接端104与隔离开关的隔离开关连接端B106短路连接;无源智能开关的智能开关内导体连接端103与无源智能融冰控制开关的内导体连接端11短路连接;
参见附图4。
隔离开关101由隔离电阻21和控制开关22并联而成,并联后的两端为隔离开关连接端A105和隔离开关连接端B 106;当需要融冰时,控制开关两端断开;当不需要融冰时,控制开关两端短路。
本实施例中隔开关采用浙江启固电气有限公司:型号:GW9-12高压隔离开关。
参见附图5
无源智能开关100由冰厚传感器110和智能控制器111构成。冰厚传感器110有两个连接端:冰厚传感连接端A 112,冰厚传感连接端B 113。智能控制器111有两个连接端:智能控制连接端A114、智能控制连接端B 115。冰厚传感器的冰厚传感连接端A112与智能控制器的智能控制连接端A 114、无源智能开关的智能开关导线连接端102短路连接后,连接到智能融冰设备的导线连接端9;冰厚传感器的冰厚传感连接端B 113与智能开关内导体连接端103、智能融冰设备的内导体连接端11短路连接;智能控制器的智能控制连接端B 115与智能开关外导体连接端104、智能融冰设备的外导体连接端10短路连接。
参见图6
冰厚传感器110由冰厚传感平面60、冰厚传感连接杆61、冰厚传感紧固套件构成;冰厚传感平面60由冰厚传感导线120和传感导线定位杆121-1~121-3构成,冰厚传感导线120和传感导线定位杆121-1~121-3通过传感平面紧固套件紧固。冰厚传感紧固套件包括冰厚传感支撑杆和支撑杆支架150,冰厚传感支撑杆有相同的4个,为冰厚传感支撑杆122-1~122-4。
参见图7、8.
冰厚传感导线120为单根同轴电缆结构的自制热导体,采用申请号CN201810370549.8专利公示的自制热导体,冰厚传感导线在同一平面内呈蛇形分布, 两端为半圆形,中间连线相互平行,平行的连线有多根。本实施例中使用了11根。冰厚传感导线120两端的传感导线定位杆121-1~121-3为刚度和强度都比较大的材料构成,传感导线定位杆有多根,传感导线定位杆与多根平行的冰厚传感导线垂直,垂直相交处,正中心的相交点为传感连接杆紧固点126,四个角的相交点为传感连接杆紧固点125-1~125-4;其他相交点用传感平面紧固套件124-a2、a3、~a10,124-b1、b2~b10.124-c2、c3~c10将传感导线定位杆121-1~121-3与垂直相交的冰厚传感导线120紧固,使得传感导线定位杆与冰厚传感导线连接成一个整体,整体形成的平面水平放置;冰厚传感导线两端的内导体分别连接冰厚传感连接端A和冰厚传感连接端B。
参见附图9、10。
传感平面紧固套件由U型紧固连接件127、紧固压力板128、紧固弹垫129-1、129-2紧固螺母130-1、130-2构成,传感平面紧固套件将冰厚传感导线120紧固在U型紧固连接件127里面。U型紧固连接件两头为平行直线,中间用半圆形连接;平行直上有U型紧固连接件丝口;U型紧固连接件丝口与紧固螺母匹配。
U型紧固连接件在传感导线定位杆与冰厚传感导线交接处卡入,紧固压力板的两个紧固件过孔穿过U型紧固连接件丝口,然后用紧固弹垫和紧固螺母穿过U型紧固连接件丝口,将传感导线定位杆与冰厚传感导线紧固。
参见图11~14.
冰厚传感连接杆61由刚度和强度都比较大的绝缘材料构成,用于连接冰厚传感平面60与智能控制器111。上端为竖直圆柱杆,顶端有顶端螺丝134,顶端螺丝用于与智能控制器紧固连接。下端为连接杆U型弯钩136,连接杆压固板133固定在连接杆U型弯钩136的平面上,连接杆U型弯钩尽头有弯钩螺丝137。连接杆U型弯钩用于紧固冰厚传感平面。顶端螺丝与连接杆U型弯钩之间为连接杆主体135;冰厚传感平面水平放置;连接杆主体垂直放置,并与冰厚传感平面垂直;连接杆压固板为U型压片133由刚度和强度都比较大的材料构成,连接杆压固板一端开槽,一端有连接杆端头过孔334;冰厚传感平面的传感连接杆紧固点126放置于冰厚传感连接杆的连接杆U型弯钩上,连接杆压固板开槽处穿过冰厚传感连接杆的主体,连接杆压固板的连接杆端头过孔334穿过传感连接杆紧的弯钩螺丝,外侧用紧固弹垫和紧固螺母将连接杆压固板、冰厚传感平面、冰厚传感连接杆紧固。
冰厚传感紧固套件包括冰厚传感支撑杆122-1~122-4和支撑杆支架150,冰厚传感器支撑杆由支撑杆弯钩138、支撑杆螺丝139、支撑杆主体140、末端安装螺孔组合341,末端安装螺孔组合341将冰厚传感器支撑杆安装在支撑杆支架上;支撑杆弯钩用于在冰厚传感平面的支撑杆紧固点,安装冰厚传感平面;连接杆压固板133的连接杆端头过孔穿过支撑杆螺丝,外侧用紧固弹垫和紧固螺母将连接杆压固板133、冰厚传感平面60、冰厚传感连接杆61紧固。
连接杆压固板133上边开有两个紧固件过孔132-1、132-2,两个紧固件过孔与U型紧固连接件两头距离相等,大小可以穿过U型紧固连接件丝口。连接杆压固板133由刚度和强度都比较大的材料构成,实施例用不锈钢。
冰厚传感连接杆由刚度和强度都比较大的绝缘材料构成,本实施列采用工程塑料。冰厚传感连接杆用于连接冰厚传感平面与智能控制器,上端为竖直圆柱杆,顶端有顶端螺丝,顶端螺丝用于与智能控制器紧固连接;下端为连接杆U型弯钩,连接杆U型弯钩尽头有弯钩螺丝;连接杆U型弯钩用于紧固冰厚传感平面;顶端螺丝与连接杆U型弯钩之间为连接杆主体;冰厚传感平面水平放置;连接杆主体垂直放置,并与冰厚传感平面垂直。
冰厚传感平面的传感连接杆紧固点放置于冰厚传感连接杆的连接杆U型弯钩上,连接杆压固板开槽处穿过冰厚传感连接杆的主体,连接杆压固板的连接杆端头过孔穿过传感连接杆紧的弯钩螺丝,外侧用紧固弹垫和紧固螺母将连接杆压固板、冰厚传感平面、冰厚传感连接杆紧固。
参见附图15~18。
支撑杆支架150包括支架主体141和四个支架侧耳143-1~143-4;支架主体141呈空管状,中间有支架过孔142,支架过孔穿过冰厚传感连接杆61,外边有四个支架侧耳143-1~143-4,每个侧耳中间有个支撑杆安装孔144,支撑杆安装孔对应于末端安装螺孔141,用螺丝穿过支撑杆安装孔144与末端安装螺孔141将支撑杆支架150与冰厚传感器支撑杆紧固。
通过支撑杆支架的支架过孔142穿过冰厚传感连接杆61,并将冰厚传感连接杆61的连接杆U型弯钩136与冰厚传感平面60紧固,四根冰厚传感器支撑杆的支撑杆弯钩136与冰厚传感平面60紧固,四根冰厚传感器支撑杆通过末端安装螺孔141与支撑杆 支架的支架侧耳143-1~143-4紧固,使得冰厚传感平面60与冰厚传感连接杆61形成一个整体,构成冰厚传感器。
参见附图19。
智能控制器111与智能控制连接端B 115连接。由控制器外壳62、控制器内胆63、常态锁闩64-1、64-2、常态弹簧65-1、65-2、顶端短路板66、顶端盖板67、短路弹簧68、阶跃控制板69、连续弹簧70、阶跃弹簧71、融冰弹簧72-1、72-2、融冰锁闩73-1、73-2、短路连接线B160、短路连接线A161和底端盖板162构成。
参见附图20~24.
控制器外壳62呈有一定厚度的管状,由绝缘材料制成,其轴线与水平面垂直;管壁顶部和底部均有顶端盖板安装孔166和底端盖板安装孔167;下边侧壁有一个智能控制连接端B安装孔163,用于安装智能控制连接端B115。
上边侧壁左右各有一个在同一水平面上的融冰锁闩安装孔164-1、164-2安装融冰锁闩73-1、73-2,还各有一个在同一水平面上的常态锁闩安装孔165-1、165-2安装常态锁闩64-1、64-2,常态锁闩和常态弹簧放置在常态锁闩安装孔内,常态锁闩安装在控制器外壳内侧,常态锁闩外,放置常态弹簧,在控制器外壳外侧将常态弹簧封闭,在常态弹簧的作用下,常态锁闩露出控制器外壳内侧;融冰锁闩和融冰弹簧放置在融冰锁闩安装孔内,融冰锁闩安装在控制器外壳内侧,融冰锁闩外,放置融冰弹簧,在控制器外壳外侧将融冰弹簧封闭,在融冰弹簧的作用下,融冰锁闩露出控制器外壳内侧。
阶跃控制板69由阶跃顶板230、阶跃底板231、左侧阶跃控制板232、右侧阶跃控制板233构成;阶跃顶板230和阶跃底板231为圆形,中间对称开有一个连接杆过孔234,连接杆过孔234左侧开有两个左侧阶跃紧固孔235-1、235-2,连接杆过孔234右侧开有两个右侧阶跃紧固孔235-3、235-4,阶跃左侧紧固孔和阶跃右侧紧固孔在一根直线上,所在直线过阶跃顶板的圆心;阶跃顶板连接杆过孔直径稍大于冰厚传感连接杆直径;阶跃底板连接杆过孔直径稍大于连续弹簧直径。
左侧阶跃控制板232为一个外侧有凹口的板状长方体,外侧从上至下称为外侧上凸边242,外侧凹边243,外侧下凸边244,外侧凹边朝内凹进;顶部有两个控制板上安装孔241-1、241-2,与阶跃顶板的阶跃左侧紧固孔对应,用于阶跃顶板230与左侧阶跃控制板232的紧固;底部有两个控制板下安装孔,与阶跃底板231的阶跃左侧紧固孔236对应,用于阶跃底板231与左侧阶跃控制板232的紧固;上斜侧面247为外侧上凸 边242与外侧凹边243之间的过度侧面,从上到下逐渐由外向内倾斜,下斜侧面248为外侧凹边234与外侧下凸边244之间的过度侧面,从上到下逐渐由内向外倾斜;右侧阶跃控制板与左侧阶跃控制板为对称关系。
控制器外壳62、顶端盖板67、底端盖板162组合成一个封闭空间,将控制器内胆63封闭在中间,控制器内胆63和控制阶跃板69。
在控制器外壳两侧的阶跃控制板导槽172-1、172-2和左侧阶跃控制板232、右侧阶跃控制板233的限制下做上下自由活动。
控制器内胆63设置在控制器外壳62内,含内胆顶端盖板221、内胆主体222、内胆底端盖板223;内胆主体呈有一定厚度的管状,其轴线与水平面垂直;管壁顶部与有底部设有安装孔,安装内胆顶端盖板221和内胆底端盖板223;管壁两侧竖向有内胆导槽176-1、176-2,内胆导槽宽度小于常态锁闩和融冰锁闩的直径;在内胆导槽的某一部位,有内胆锁孔175-1、175-2;内胆锁孔轴线为水平方向,直径大于常态锁闩和融冰锁闩的直径;使用时,控制器内胆的内胆锁孔和内胆导槽与控制器外壳的融冰锁闩安装孔和常态锁闩安装孔在同一个平面上。
参见附图25-26.
控制器内胆63设置在控制器外壳62内,含内胆顶端盖板221、内胆主体222、内胆底端盖板223;内胆主体呈有一定厚度的管状,其轴线与水平面垂直;管壁顶部与有底部设有安装孔,安装内胆顶端盖板221和内胆底端盖板223;管壁两侧竖向有内胆导槽176-1、176-2,内胆导槽宽度小于常态锁闩和融冰锁闩的直径;在内胆导槽的某一部位,有内胆锁孔175-1、175-2;内胆锁孔轴线为水平方向,直径大于常态锁闩和融冰锁闩的直径。
使用时,控制器内胆的内胆锁孔和内胆导槽与控制器外壳的融冰锁闩安装孔和常态锁闩安装孔在同一个平面上。
参见图27、28。
控制器内胆顶端盖板67为金属圆盘,圆盘直径小于控制器外壳内径,下端是金属圆盘顶端短路板66,顶端短路板与智能控制连接端A通过短路连接线A短路连接,在顶端盖板67与顶端短路板66之间设置有短路弹簧68;顶端盖板67上边有智能控制连接端A安装孔170和四个控制器外壳安装孔168-1~168-4、四个悬挂安装孔169-1~169-4、四个控制器外壳安装孔168-1~168-4,控制器外壳安装孔168-1~168-4 与控制器外壳的顶端盖板安装孔166-1~166-4一一对应;悬挂安装孔169-1~169-4用于将无源智能融冰控制开关100固定在安装支架上;智能控制连接端A安装孔170安装智能控制连接端A 114。内胆顶盖板安装螺孔177-1~177-4与内胆主体的内胆顶端安装孔174-1~174-4位置相对应,安装螺钉穿过内胆顶盖板安装螺孔,与内胆顶端安装孔绞合,将内胆顶盖板安装在内胆主体上。
控制器底端盖板162由绝缘材料构成,为圆盘状,上边有底端盖板过孔171-1~171-4,底端盖板过孔与底端盖板安装孔一一对应,螺钉穿过底端盖板过孔,钻入控制器外壳的底端盖板安装孔167-1~167-4,将底端盖板紧固在控制器外壳上。连接杆底端过孔220在底端盖板中间,冰厚传感连接杆61从连接杆底端过孔穿过。
内胆底盖板安装螺孔178-1~178-4与内胆主体的内胆底端安装孔位置相对应,安装螺钉穿过内胆底盖板安装螺孔,与内胆底端安装孔绞合,将内胆底盖板安装在内胆主体上;内胆底盖板连接杆过孔直径稍微大于冰厚传感连接杆直径,冰厚传感连接杆可以穿过内胆底盖板连接杆过孔。
参见附图29、30
阶跃控制板69由阶跃顶板230、阶跃底板231、左侧阶跃控制板232、右侧阶跃控制板233构成;阶跃顶板230和阶跃底板231为圆形,中间对称开有一个连接杆过孔234,连接杆过孔234左侧开有两个左侧阶跃紧固孔235-1、235-2,连接杆过孔234右侧开有两个右侧阶跃紧固孔235-3、235-4,阶跃左侧紧固孔和阶跃右侧紧固孔在一根直线上,所在直线过阶跃顶板的圆心;阶跃顶板连接杆过孔直径稍大于冰厚传感连接杆直径;阶跃底板连接杆过孔直径稍大于连续弹簧直径。
左侧阶跃控制板232为一个外侧有凹口的板状长方体,外侧从上至下称为外侧上凸边242,外侧凹边243,外侧下凸边244,外侧凹边朝内凹进;顶部有两个控制板上安装孔241-1、241-2,与阶跃顶板的阶跃左侧紧固孔对应,用于阶跃顶板230与左侧阶跃控制板232的紧固;底部有两个控制板下安装孔,与阶跃底板231的阶跃左侧紧固孔236对应,用于阶跃底板231与左侧阶跃控制板232的紧固;上斜侧面247为外侧上凸边242与外侧凹边243之间的过度侧面,从上到下逐渐由外向内倾斜,下斜侧面248为外侧凹边234与外侧下凸边244之间的过度侧面,从上到下逐渐由内向外倾斜;右侧阶跃控制板与左侧阶跃控制板为对称关系。
参见附图32.
用连接杆安装上螺母238和连接杆安装下螺母239将冰厚传感连接杆61紧固在阶跃顶板230上。
附图33出了控制器组合安装图。
阶跃顶板230、阶跃底板231、左侧阶跃控制板232、右侧阶跃控制板(233)组合形成控制阶跃板69。组合后,左侧阶跃控制板232、右侧阶跃控制板233的外侧上凸边和外侧下凸边卡在内胆主体两侧的内胆导槽间,在内胆导槽间灵活移动,外侧上凸边和外侧下凸边露出内胆主体外,并卡在控制器外壳两侧的阶跃控制板导槽之间,使得内胆主体可以顺着控制器外壳两侧的阶跃控制板导槽灵活移动。
内胆顶端盖板221、内胆主体222、内胆底端盖板223组合成控制器内胆63,控制阶跃板69被封闭在控制器内胆63内,并通过内胆导槽限制左侧阶跃控制板232、右侧阶跃控制板233活动轨迹,使得控制阶跃板69可以在控制器内胆内上下灵活活动;连续弹簧穿过控制阶跃板的阶跃底板231的连接杆过孔和左侧阶跃控制板232、右侧阶跃控制板233的控制板内侧,安装在阶跃顶板230和内胆底端盖板223之间;连续弹簧70套在冰厚传感连接杆外边,并穿过阶跃底板231,连接在阶跃顶板230与内胆底端盖板223之间。
控制器外壳62、顶端盖板67、底端盖板162组合成一个封闭空间,将控制器内胆63封闭在中间,控制器内胆63和控制阶跃板69在控制器外壳两侧的阶跃控制板导槽和左侧阶跃控制板232、右侧阶跃控制板233的限制下上下自由活动。
阶跃弹簧71套在冰厚传感连接杆外边,安装在底端盖板162和内胆底端盖板223之间。智能控制连接端B 115通过短路连接线B 160与控制器内胆63短路连接。
短路弹簧68连接在顶端短路板66与顶端盖板67之间,短路连接线A 161将顶端短路板66与智能控制连接端A 114短路连接。
常态锁闩64、常态弹簧65安装在常态锁闩安装孔165内,、常态弹簧65位于控制器外侧,常态锁闩64位于控制器外壳内侧。
融冰弹簧72、融冰锁闩73安装在融冰锁闩安装孔164内,融冰弹簧72位于外侧、融冰锁闩73位于控制器外壳外侧。
冰厚传感连接杆61由下至上依次穿过底端盖板162、阶跃弹簧71、内胆底端盖板223、连续弹簧70、阶跃底板231,通过冰厚传感连接杆61的顶端螺丝134将冰厚传感连接杆61与阶跃控制板69的阶跃顶板230紧固。阶跃弹簧71套在冰厚传感连接杆外, 固定在底端盖板162与内胆底端盖板223之间;连续弹簧70套在冰厚传感连接杆外,固定在内胆底端盖板223与阶跃顶板230之间。
智能控制器工作过程分为五个过程:正常工作状态,结冰工作状态,融冰工作状态,恢复工作状态,返回正常状态。
(1)、正常工作状态
图35智能控制器在正常工作状态时的状态图。
正常工作状态是指冰厚传感器无冰状态,在冰厚传感器无冰状态下,冰厚传感器属于最轻的状态。
正常工作状态下,控制器内胆63压在阶跃弹簧71上;左侧阶跃控制板232与右侧阶跃控制板233的外侧凹边243与内胆主体222的内胆锁孔175在水平方向平齐;在常态弹簧65的作用下,常态锁闩64穿过内胆锁孔175,将控制器内胆63锁定;控制阶跃板69的阶跃顶板230受到连续弹簧70向上弹力的作用和冰厚传感连接杆向下拉力的作用。由于正常状态下冰厚传感连接杆及冰厚传感器属于最轻的状态,控制阶跃板69处于最高位。正常工作状态下,顶端短路板66与内胆顶端盖板221短路,使得智能控制连接端A 114与智能控制连接端B 115短路。
(2)、结冰工作状态
图36能控制器在结冰工作状态时的状态图。
工作状态是指冰厚传感导线120开始覆冰的状态。当冰厚传感导线120开始覆冰时,冰厚传感器重量增加。
冰厚传感器重量增加时,由于常态锁闩64穿过内胆锁孔175,将控制器内胆63锁定,内胆固定不动;由于冰厚传感器重量增加,控制阶跃板69下移;当冰厚传感器重量逐渐增加时,在控制阶跃板69的上斜侧面247作用下,常态锁闩64逐渐向外移动。在结冰工作状态下,顶端短路板66与内胆顶端盖板221短路,使得智能控制连接端A 114与智能控制连接端B 115短路。
(3)、融冰工作状态
参见图37。
传感器增加到一定重量时,在控制阶跃板69的上斜侧面247作用下,常态锁闩64移出内胆锁孔175,解除了内胆锁定状态;在冰厚传感器重量增加,导致阶跃弹簧71下压,使得内胆63下移,在融冰弹簧72的作用下,融冰锁闩73穿过内胆锁孔175, 将内胆63锁定。在融冰工作状态下,顶端短路板66与内胆顶端盖板221开路,使得智能控制连接端A 114与智能控制连接端B 115开路。
(4)、恢复工作状态
融冰开始后,冰厚传感器重量减轻,在连续弹簧70的作用下,控制阶跃板69上升,在控制阶跃板69的下斜侧面248作用下,融冰锁闩73逐渐向外移动;在恢复工作状态下,顶端短路板66与内胆顶端盖板221开路,使得智能控制连接端A 114与智能控制连接端B 115开路。
(5)、返回正常状态
当冰厚传感导线120冰完全溶解时,融冰锁闩73被推出内胆锁孔175,解除内胆63锁定状态,阶跃弹簧71推动内胆63上移,回到正常工作状态。
弹簧的弹性系数计算为:
所采用的阶跃弹簧71与连续弹簧70的弹性系数相同,弹性系数用K 70表示;
所有单位均为公制单位,基本单位:长度单位:米(m);时间单位:秒(sec),质量单位:千克(kg),温度单位:开尔文(K);
在公制单位下,设冰厚传感器上的冰厚传感导线(120)长度为L,自制热导线外经用用D w表示;融冰开始的厚度为W,从正常工作状态到融冰工作状态控制阶跃板(69)移动距离为H,则:
Figure PCTCN2020114814-appb-000005
无源温控电阻的电阻丝的电阻R dzs计算方法:
参见图38。
使用的自制热导线外导体外径,用D w表示;传统导线A与传统导线B之间自制热导线长度用L表示;自制热导线内导体外径用D n表示;自制热导线绝缘层厚度用dz表示;内导体电阻率用A n表示;传统输电导线A流过的最大电流用IA表示;
所有单位均为公制单位,基本单位:长度单位:米(m);时间单位:秒(sec),质量单位:千克(kg),温度单位:开尔文(K);
(1)计算内导体电阻,内导体电阻用R n表示:
Figure PCTCN2020114814-appb-000006
(2)计算内导体最大功率,用W max表示,
W max=D w·L·3500(瓦特)
(3)计算内导体最大电流,用I nmax表示
Figure PCTCN2020114814-appb-000007
(4)计算外导体最小电流,用I wmin表示
I wmin=IA-I nmax
(5)计算隔离电阻阻值,用R dzs表示
Figure PCTCN2020114814-appb-000008

Claims (9)

  1. 一种基于自制热导线的智能融冰设备,其特征在于:智能融冰设备(8)连接在自制热导线(5)与传统输电导线A(4)之间,自制热导线(5)的另一端,在内导体(3)和外导体(1)短路后与传统输电导线B(16)连接;智能融冰设备(8)有三个对外连接端,导线连接端(9)、内导体连接端(11),外导体连接端(10);导线连接端(9)与传统输电导线A(4)连接,内导体连接端(11)与自制热导线内导体(3)连接,外导体连接端(10)与自制热导线外导体(1)连接;
    智能融冰控制设备由无源智能开关(100)和隔离开关(101)构成;其中,无源智能开关有三个对外连接端:智能开关导线连接端(102)、智能开关内导体连接端(103)、智能开关外导体连接端(104);隔离开关(101)有两个对外连接端:隔离开关连接端A(105)、隔离开关连接端B(106);
    无源智能开关的智能开关导线连接端(102)与隔离开关的隔离开关连接端A(105)短路连接;无源智能开关的智能开关外导体连接端(104)与隔离开关的隔离开关连接端B(106)短路连接;无源智能开关的智能开关内导体连接端(103)与智能融冰设备的内导体连接端(11)短路连接;
    隔离开关(101)由隔离电阻(21)和控制开关(22)并联而成,并联后的两端为隔离开关连接端A(105)和隔离开关连接端B(106);当需要融冰时,控制开关两端断开;当不需要融冰时,控制开关两端短路;
    无源智能开关(100)由冰厚传感器(110)和智能控制器(111)构成,冰厚传感器(110)有两个连接端:冰厚传感连接端A(112),冰厚传感连接端B(113);智能控制器(111)有两个连接端:智能控制连接端A(114)、智能控制连接端B(115);冰厚传感器的冰厚传感连接端A(112)与智能控制器的智能控制连接端A(114)、无源智能开关的智能开关导线连接端(102)短路连接后,连接到智能融冰设备的导线连接端(9);冰厚传感器的冰厚传感连接端B(113)与智能开关内导体连接端(103)、智能融冰设备的内导体连接端(11)短路连接;智能控制器的智能控制连接端B(115)与智能开关外导体连接端(104)、智能融冰设备的外导体连接端(10)短路连接。
  2. 如权利要求1所述的基于自制热导线的智能融冰设备,其特征在于:所述冰厚传感器(110)由冰厚传感平面(60)、冰厚传感连接杆(61)、冰厚传感紧固套件构 成;冰厚传感平面(60)由冰厚传感导线(120)和传感导线定位杆(121-1~121-3)构成,冰厚传感导线(120)和传感导线定位杆(121-1~121-3)通过传感平面紧固套件紧固;
    冰厚传感连接杆(61)顶端为顶端螺丝(134),顶端螺丝(134)与智能控制器(111)紧固连接;下端为连接杆U型弯钩(136),连接杆U型弯钩尽头有弯钩螺丝(137);连接杆U型弯钩用于紧固冰厚传感平面;顶端螺丝与连接杆U型弯钩之间为连接杆主体(135);冰厚传感平面水平放置;连接杆主体垂直放置,并与冰厚传感平面垂直;
    冰厚传感紧固套件包括冰厚传感支撑杆和支撑杆支架(150),冰厚传感支撑杆有相同的4个,为冰厚传感支撑杆(122-1~122-4)。
  3. 如权利要求2所述的基于自制热导线的智能融冰设备,其特征在于:所述
    冰厚传感导线(120)为单根同轴电缆结构的自制热导体,冰厚传感导线在同一平面内呈蛇形分布,两端为半圆形,中间连线相互平行,平行的连线有多根;传感导线定位杆(121-1~121-3)为刚度和强度都比较大的材料构成,传感导线定位杆有多根,传感导线定位杆与多根平行的冰厚传感导线垂直,垂直相交处,正中心的相交点为传感连接杆紧固点(126),四个角的相交点为支撑杆紧固点(125-1~125-4);其他相交点用传感平面紧固套件(124-a2、a3、~a10,124-b1、b2~b10.124-c2、c3~c10)将传感导线定位杆(121-1~121-3)与垂直相交的冰厚传感导线(120)紧固,使得传感导线定位杆与冰厚传感导线连接成一个整体,整体形成的平面水平放置;冰厚传感导线两端的内导体分别连接冰厚传感连接端A(112)和冰厚传感连接端B(113);传感平面紧固套件由U型紧固连接件(127)、紧固压力板(128)、紧固弹垫(129-1、129-2)、紧固螺母(130-1、130-2)构成,传感平面紧固套件将冰厚传感导线(120)和传感导线定位杆(121-1~121-3)紧固在U型紧固连接件(127)里面;
    冰厚传感连接杆(61)由刚度和强度都比较大的绝缘材料构成,用于连接冰厚传感平面(60)与智能控制器(111),上端为竖直圆柱杆,顶端有顶端螺丝(134),顶端螺丝用于与智能控制器紧固连接;下端为连接杆U型弯钩(136),连接杆压固板(133)固定在连接杆U型弯钩(136)的平面上,连接杆U型弯钩尽头有弯钩螺丝(137);连接杆U型弯钩用于紧固冰厚传感平面;顶端螺丝与连接杆U型弯钩之间为连接杆主体(135);冰厚传感平面水平放置;连接杆主体垂直放置,并与冰厚传感平面垂直; 连接杆压固板为U型压片(133)由刚度和强度都比较大的材料构成,连接杆压固板一端开槽,一端有连接杆端头过孔(334);冰厚传感平面的传感连接杆紧固点(126)放置于冰厚传感连接杆的连接杆U型弯钩上,连接杆压固板开槽处穿过冰厚传感连接杆的主体,连接杆压固板的连接杆端头过孔(334)穿过传感连接杆紧的弯钩螺丝,外侧用紧固弹垫和紧固螺母将连接杆压固板、冰厚传感平面、冰厚传感连接杆紧固;
    冰厚传感紧固套件包括冰厚传感支撑杆(122-1~122-4)和支撑杆支架(150),冰厚传感器支撑杆由支撑杆弯钩(138)、支撑杆螺丝(139)、支撑杆主体(140)、末端安装螺孔(341)组合,末端安装螺孔(341)将冰厚传感器支撑杆安装在支撑杆支架上;支撑杆弯钩用于在冰厚传感平面的支撑杆紧固点(125),安装冰厚传感平面;连接杆压固板(133)的连接杆端头过孔穿过支撑杆螺丝,外侧用紧固弹垫和紧固螺母将连接杆压固板(133)、冰厚传感平面(60)、冰厚传感支撑杆紧固;
    支撑杆支架(150)包括支架主体(141)和四个支架侧耳(143-1~143-4);支架主体(141)呈空管状,中间有支架过孔(142),支架过孔穿过冰厚传感连接杆(61),外边有四个支架侧耳(143-1~143-4),每个侧耳中间有个支撑杆安装孔(144),支撑杆安装孔对应于末端安装螺孔(341),用螺丝穿过支撑杆安装孔(144)与末端安装螺孔(341)将支撑杆支架(150)与冰厚传感器支撑杆紧固;
    通过支撑杆支架的支架过孔(142)穿过冰厚传感连接杆(61),并将冰厚传感连接杆(61)的连接杆U型弯钩(136)与冰厚传感平面(60)紧固,四根冰厚传感器支撑杆的支撑杆弯钩(138)与冰厚传感平面(60)紧固,四根冰厚传感器支撑杆通过末端安装螺孔(341)与支撑杆支架的支架侧耳(143-1~143-4)紧固,使得冰厚传感平面(60)与冰厚传感连接杆(61)形成一个整体,构成冰厚传感器。
  4. 如权利要求1所述的基于自制热导线的智能融冰设备,其特征在于:所述智能控制器(111)由控制器外壳(62)、控制器内胆(63)、常态锁闩(64-1、64-2)、常态弹簧(65-1、65-2)、顶端短路板(66)、顶端盖板(67)、短路弹簧(68)、阶跃控制板(69)、连续弹簧(70)、阶跃弹簧(71)、融冰弹簧(72-1、72-2)、融冰锁闩(73-1、73-2)、短路连接线B(160)、短路连接线A(161)和底端盖板(162)构成;
    控制器外壳(62)、顶端盖板(67)、底端盖板(162)组合成一个封闭空间,将控制器内胆(63)封闭在中间,控制器内胆(63)和控制阶跃板(69)在控制器外壳 两侧的阶跃控制板导槽(172-1、172-2)和左侧阶跃控制板(232)、右侧阶跃控制板(233)的限制下做上下自由活动;
    阶跃弹簧(71)套在冰厚传感连接杆(61)外边,安装在底端盖板(162)和内胆底端盖板(223)之间;
    智能控制连接端B(115)通过短路连接线B(160)与控制器内胆(63)短路连接;短路弹簧(68)连接在顶端短路板(66)与顶端盖板(67)之间,短路连接线A(161)将顶端短路板(66)与智能控制连接端A(114)短路连接。
  5. 如权利要求4所述的基于自制热导线的智能融冰设备,其特征在于:所述控制器外壳(62)呈有一定厚度的管状,由绝缘材料制成,其轴线与水平面垂直;管壁顶部和底部均有顶端盖板安装孔(166)和底端盖板安装孔(167);下边侧壁有一个智能控制连接端B安装孔(163),用于安装智能控制连接端B(115);上边侧壁左右各有一个在同一水平面上的融冰锁闩安装孔(164-1、164-2)安装融冰锁闩(73-1、73-2),还各有一个在同一水平面上的常态锁闩安装孔(165-1、165-2)安装常态锁闩(64-1、64-2),常态锁闩和常态弹簧放置在常态锁闩安装孔内,常态锁闩安装在控制器外壳(62)内侧,常态锁闩外,放置常态弹簧,在控制器外壳(62)外侧将常态弹簧封闭,在常态弹簧的作用下,常态锁闩露出控制器外壳(62)内侧;融冰锁闩和融冰弹簧放置在融冰锁闩安装孔内,融冰锁闩安装在控制器外壳(62)内侧,融冰锁闩外,放置融冰弹簧,在控制器外壳(62)外侧将融冰弹簧封闭,在融冰弹簧的作用下,融冰锁闩露出控制器外壳(62)内侧;
    控制器内胆(63)设置在控制器外壳(62)内,含内胆顶端盖板(221)、内胆主体(222)、内胆底端盖板(223);内胆顶端盖板(221)、内胆主体(222)、内胆底端盖板(223)均为导电良好的材料制作;内胆主体呈有一定厚度的管状,其轴线与水平面垂直;管壁顶部与底部设有安装孔,安装内胆顶端盖板(221)和内胆底端盖板(223);管壁两侧竖向有内胆导槽(176-1、176-2),内胆导槽宽度小于常态锁闩和融冰锁闩的直径;在内胆导槽的某一部位,有内胆锁孔(175-1、175-2);内胆锁孔轴线为水平方向,直径大于常态锁闩和融冰锁闩的直径;使用时,控制器内胆的内胆锁孔和内胆导槽与控制器外壳(62)的融冰锁闩安装孔和常态锁闩安装孔以及控制器外壳轴线在同一个平面上;
    阶跃控制板(69)由阶跃顶板(230)、阶跃底板(231)、左侧阶跃控制板(232)、右侧阶跃控制板(233)构成;阶跃顶板(230)和阶跃底板(231)为圆形,中间对称开有一个连接杆过孔(234),连接杆过孔(234)左侧开有两个左侧阶跃紧固孔(236-1、236-2),连接杆过孔(234)右侧开有两个右侧阶跃紧固孔(237-1、237-2),阶跃左侧紧固孔和阶跃右侧紧固孔在一根直线上,所在直线过阶跃顶板的圆心;阶跃顶板连接杆过孔直径稍大于冰厚传感连接杆直径;阶跃底板连接杆过孔直径稍大于连续弹簧直径;
    左侧阶跃控制板(232)为一个外侧有凹口的板状长方体,外侧从上至下称为外侧上凸边(242),外侧凹边(243),外侧下凸边(244),外侧凹边朝内凹进;顶部有两个控制板上安装孔(241-1、241-2),与阶跃顶板的阶跃左侧紧固孔对应,用于阶跃顶板(230)与左侧阶跃控制板(232)的紧固;底部有两个控制板下安装孔(245-1,245-2),与阶跃底板(231)的阶跃左侧紧固孔(236)对应,用于阶跃底板(231)与左侧阶跃控制板(232)的紧固;上斜侧面(247)为外侧上凸边(242)与外侧凹边(243)之间的过度侧面,从上到下逐渐由外向内倾斜,下斜侧面(248)为外侧凹边(243)与外侧下凸边(244)之间的过度侧面,从上到下逐渐由内向外倾斜;右侧阶跃控制板与左侧阶跃控制板为对称关系;
    冰厚传感连接杆(61)由下至上依次穿过底端盖板(162)、阶跃弹簧(71)、内胆底端盖板(223)、连续弹簧(70)、阶跃底板(231),通过冰厚传感连接杆(61)的顶端螺丝(134)将冰厚传感连接杆(61)与阶跃控制板(69)的阶跃顶板(230)紧固;阶跃弹簧(71)套在冰厚传感连接杆外,固定在底端盖板(162)与内胆底端盖板(223)之间;连续弹簧(70)套在冰厚传感连接杆外,固定在内胆底端盖板(223)与阶跃顶板(230)之间。
  6. 如权利要求3所述的基于自制热导线的智能融冰设备,其特征在于:所述传感平面紧固套件(124-a2、a3、~a10,124-b1、b2~b10.124-c2、c3~c10)将传感导线定位杆(121-1~121-3)与垂直相交的冰厚传感导线(120)紧固,含U型紧固连接件(127)、紧固压力板(128)、紧固弹垫(129-1、129-2)、紧固螺母(130-1、130-2);U型紧固连接件为U型,两头为平行直线,中间用半圆形连接;平行直上有U型紧固连接件丝口;U型紧固连接件丝口与紧固螺母匹配,紧固压力板上边开有两个紧固件 过孔,两个紧固件过孔与U型紧固连接件两头距离相等,大小为能穿过U型紧固连接件丝口。
  7. 如权利要求4所述的基于自制热导线的智能融冰设备,其特征在于:顶端盖板(67)为圆盘,由绝缘材料构成,圆盘直径大于控制器外壳(62)外径,下端是由金属材料制作的金属圆盘型顶端短路板(66),顶端短路板与智能控制连接端A(114)通过短路连接线A短路连接,在顶端盖板(67)与顶端短路板(66)之间设置有短路弹簧(68);顶端盖板(67)上边有智能控制连接端A安装孔(170)和四个控制器外壳安装孔(168-1~168-4)、四个悬挂安装孔(169-1~169-4),控制器外壳安装孔(168-1~168-4)与控制器外壳(62)的顶端盖板安装孔(166-1~166-4)一一对应,安装螺钉穿过控制器外壳安装孔将控制器内胆顶端盖板安装在控制器外壳(62)上;悬挂安装孔(169-1~169-4)用于将无源智能开关(100)固定在安装支架上;智能控制连接端A安装孔(170)安装智能控制连接端A(114);
    底端盖板(162)由绝缘材料构成,为圆盘状,上边有底端盖板过孔(171-1~171-4),底端盖板过孔与底端盖板安装孔一一对应,螺钉穿过底端盖板过孔,钻入控制器外壳的底端盖板安装孔(167-1~167-4),将底端盖板紧固在控制器外壳(62)上;
    连接杆底端过孔(220)在底端盖板中间,冰厚传感连接杆(61)从连接杆底端过孔穿过;
    内胆顶盖板安装螺孔(177-1~177-4)与内胆主体的内胆顶端安装孔(174-1~174-4)位置相对应,安装螺钉穿过内胆顶盖板安装螺孔,与内胆顶端安装孔绞合,将内胆顶盖板安装在内胆主体上;内胆底盖板安装螺孔(178-1~178-4)与内胆主体的内胆底端安装孔(173-1~173-4)位置相对应,安装螺钉穿过内胆底盖板安装螺孔,与内胆底端安装孔绞合,将内胆底盖板安装在内胆主体上;内胆底盖板连接杆过孔直径稍微大于冰厚传感连接杆直径,冰厚传感连接杆可以穿过内胆底盖板连接杆过孔。
  8. 一种采用如权利要求1所述的基于自制热导线的智能融冰设备的融冰方法,其特征在于:智能融冰控制设备的连接在自制热导线(5)与传统输电导线A(4)之间,将智能控制器工作过程分为五个过程:正常工作状态,结冰工作状态,融冰工作状态,恢复工作状态,返回正常状态;
    (1)正常工作状态
    正常工作状态是指冰厚传感器无冰状态,在冰厚传感器无冰状态下,冰厚传感器属于最轻的状态;
    正常工作状态下,控制器内胆(63)压在阶跃弹簧(71)上;左侧阶跃控制板(232)与右侧阶跃控制板(233)的外侧凹边(243)与内胆主体(222)的内胆锁孔(175)在水平方向平齐;在常态弹簧(65)的作用下,常态锁闩(64)穿过内胆锁孔(175),将控制器内胆(63)锁定;控制阶跃板(69)的阶跃顶板(230)受到连续弹簧(70)向上弹力的作用和冰厚传感连接杆向下拉力的作用;由于正常状态下冰厚传感连接杆及冰厚传感器属于最轻的状态,控制阶跃板(69)处于最高位;
    正常工作状态下,顶端短路板(66)与内胆顶端盖板(221)短路,使得智能控制连接端A(114)与智能控制连接端B(115)短路;
    (2)结冰工作状态
    结冰工作状态是指冰厚传感导线(120)开始覆冰的状态;当冰厚传感导线(120)开始覆冰时,冰厚传感器重量增加;
    冰厚传感器重量增加时,由于常态锁闩(64)穿过内胆锁孔(175),将控制器内胆(63)锁定,内胆固定不动;由于冰厚传感器重量增加,控制阶跃板(69)下移;当冰厚传感器重量逐渐增加时,在控制阶跃板(69)的上斜侧面(247)作用下,常态锁闩(64)逐渐向外移动;
    在结冰工作状态下,顶端短路板(66)与内胆顶端盖板(221)短路,使得智能控制连接端A(114)与智能控制连接端B(115)短路;
    (3)融冰工作状态
    当冰厚传感器增加到一定重量时,在控制阶跃板(69)的上斜侧面(247)作用下,常态锁闩(64)移出内胆锁孔(175),解除了内胆锁定状态;冰厚传感器重量增加,导致阶跃弹簧(71)下压,使得内胆(63)下移,在融冰弹簧(72)的作用下,融冰锁闩(73)穿过内胆锁孔(175),将内胆(63)锁定;
    在融冰工作状态下,顶端短路板(66)与内胆顶端盖板(221)开路,使得智能控制连接端A(114)与智能控制连接端B(115)开路;
    (4)恢复工作状态
    融冰开始后,冰厚传感器重量减轻,在连续弹簧(70)的作用下,控制阶跃板(69)上升,在控制阶跃板(69)的下斜侧面(248)作用下,融冰锁闩(73)逐渐向外移动; 在恢复工作状态下,顶端短路板(66)与内胆顶端盖板(221)开路,使得智能控制连接端A(114)与智能控制连接端B(115)开路;
    (5)返回正常状态
    当冰厚传感导线(120)冰完全溶解时,融冰锁闩(73)被推出内胆锁孔(175),解除内胆(63)锁定状态,阶跃弹簧(71)推动内胆(63)上移,回到正常工作状态。
  9. 如权利要求8所述的融冰方法,其特征在于:弹簧的弹性系数计算为:所采用的阶跃弹簧(71)与连续弹簧(70)的弹性系数相同,弹性系数用K 70表示;所有单位均为公制单位,基本单位:长度单位:米(m);时间单位:秒(sec),质量单位:千克(kg),温度单位:开尔文(K);
    在公制单位下,设冰厚传感器上的冰厚传感导线(120)长度为L,自制热导线外径用D w表示;融冰开始的厚度为W,从正常工作状态到融冰工作状态控制阶跃板(69)移动距离为H,则:
    Figure PCTCN2020114814-appb-100001
    隔离电阻的电阻值R dzs计算方法:
    设所用的自制热导线外导体外径,用D w表示;传统导线A与传统导线B之间自制热导线长度用L表示;自制热导线内导体外径用D n表示;自制热导线绝缘层厚度用dz表示;内导体电阻率用A n表示;传统输电导线A流过的最大电流用IA表示;
    所有单位均为公制单位,基本单位:长度单位:米(m);时间单位:秒(sec),
    质量单位:千克(kg),温度单位:开尔文(K);
    (1)计算内导体电阻,内导体电阻用R n表示:
    Figure PCTCN2020114814-appb-100002
    (2)计算内导体最大功率,用W max表示,
    W max=D w·L·3500(瓦特)
    (3)计算内导体最大电流,用I nmax表示
    Figure PCTCN2020114814-appb-100003
    (4)计算外导体最小电流,用I wmin表示I wmin=IA-I nmax
    (5)计算隔离电阻阻值,用R dzs表示
    Figure PCTCN2020114814-appb-100004
PCT/CN2020/114814 2019-11-08 2020-09-11 基于自制热导线的智能融冰设备及其融冰方法 WO2021088513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3126982A CA3126982C (en) 2019-11-08 2020-09-11 Intelligent ice melting device based on self-heating wire and ice melting method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911088598.3 2019-11-08
CN201911088598.3A CN110707645B (zh) 2019-11-08 2019-11-08 基于自制热导线的智能融冰设备及其融冰方法

Publications (1)

Publication Number Publication Date
WO2021088513A1 true WO2021088513A1 (zh) 2021-05-14

Family

ID=69205567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114814 WO2021088513A1 (zh) 2019-11-08 2020-09-11 基于自制热导线的智能融冰设备及其融冰方法

Country Status (3)

Country Link
CN (1) CN110707645B (zh)
CA (1) CA3126982C (zh)
WO (1) WO2021088513A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507081A (zh) * 2021-07-14 2021-10-15 四川大学 一种用于耐张塔的无源无损单相防冰融冰控制设备
CN115333033A (zh) * 2022-09-20 2022-11-11 丁邦平 一种无人区输电线路自除冰系统
CN118224949A (zh) * 2024-05-27 2024-06-21 国网山东省电力公司聊城供电公司 一种架空输电线路的覆冰厚度检测装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707645B (zh) * 2019-11-08 2024-05-28 四川大学 基于自制热导线的智能融冰设备及其融冰方法
CN113541081B (zh) * 2021-07-14 2022-08-19 四川大学 一种基于晶闸管的无损单相防冰融冰控制设备
CN113507084B (zh) * 2021-07-14 2022-05-17 四川大学 一种用于耐张塔的单相电阻型无源防冰融冰控制设备
CN113517667B (zh) * 2021-07-14 2022-08-19 四川大学 一种基于绝缘栅双极型晶体管的无损单相防冰融冰控制设备
CN114362083A (zh) * 2021-12-02 2022-04-15 贵州电网有限责任公司 一种mmc型融冰装置功能复用的结构及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318792A (ja) * 2005-05-13 2006-11-24 Fujikura Ltd 融雪電線
CN108366442A (zh) * 2018-04-23 2018-08-03 四川大学 嵌入绝缘导热材料的自制热导体和制热设备及其实现方法
CN108923365A (zh) * 2018-08-24 2018-11-30 国网湖南省电力有限公司 一种适用于带电在线融冰的输电线路导线及其使用方法
CN109239438A (zh) * 2018-10-12 2019-01-18 四川大学 多股绝缘自制热导线的制热控制检测设备与检测控制方法
CN110707645A (zh) * 2019-11-08 2020-01-17 四川大学 基于自制热导线的智能融冰设备及其融冰方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221036A (zh) * 2008-01-25 2008-07-16 太原理工大学 电容层析成像式冰厚检测装置及其检测方法
CN101272042B (zh) * 2008-05-09 2010-09-08 东南大学 输电线路的工频谐振除冰方法
CN102638021B (zh) * 2012-04-10 2015-01-21 西安交通大学 一种电力线重力冲击除冰装置及其应用
RU175935U1 (ru) * 2017-06-08 2017-12-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" Устройство перемещения по проводам воздушной линии электропередачи
CN211456634U (zh) * 2019-11-08 2020-09-08 四川大学 基于自制热导线的智能融冰设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318792A (ja) * 2005-05-13 2006-11-24 Fujikura Ltd 融雪電線
CN108366442A (zh) * 2018-04-23 2018-08-03 四川大学 嵌入绝缘导热材料的自制热导体和制热设备及其实现方法
CN108923365A (zh) * 2018-08-24 2018-11-30 国网湖南省电力有限公司 一种适用于带电在线融冰的输电线路导线及其使用方法
CN109239438A (zh) * 2018-10-12 2019-01-18 四川大学 多股绝缘自制热导线的制热控制检测设备与检测控制方法
CN110707645A (zh) * 2019-11-08 2020-01-17 四川大学 基于自制热导线的智能融冰设备及其融冰方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507081A (zh) * 2021-07-14 2021-10-15 四川大学 一种用于耐张塔的无源无损单相防冰融冰控制设备
CN115333033A (zh) * 2022-09-20 2022-11-11 丁邦平 一种无人区输电线路自除冰系统
CN118224949A (zh) * 2024-05-27 2024-06-21 国网山东省电力公司聊城供电公司 一种架空输电线路的覆冰厚度检测装置

Also Published As

Publication number Publication date
CN110707645A (zh) 2020-01-17
CA3126982C (en) 2023-06-27
CA3126982A1 (en) 2021-05-14
CN110707645B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2021088513A1 (zh) 基于自制热导线的智能融冰设备及其融冰方法
CN211456634U (zh) 基于自制热导线的智能融冰设备
CN110676790B (zh) 无源智能融冰控制设备及其融冰控制方法
CN112355974A (zh) 面向变电站内带电一次设备接线板螺栓的自动紧固装置
CN210246253U (zh) 一种智能型母线槽
CN204289866U (zh) 快速高防护母线槽连接装置
CN206628283U (zh) 一种用于矿热炉短网多芯水冷电缆的冷却系统
CN206628309U (zh) 一种矿热炉短网用多芯水冷电缆
WO2023284015A1 (zh) 一种用于耐张塔的单相电阻型无源防冰融冰控制设备
CN210201411U (zh) 一种主动调节温度的耐热抗凝母线槽
CN204441503U (zh) 具有发热警示功能的电力联接线夹
CN109425438A (zh) 一种测温装置及用该测温装置的开关柜
CN219473058U (zh) 一种流体电加热装置
CN201396116Y (zh) 石油钻机气路防冻装置
CN214626271U (zh) 一种散热性能好的加强型母线槽
CN202034735U (zh) 一种具有空气流向降温装置的绝缘管型输电母线槽
CN210197677U (zh) 一种工业用热水机
CN216277807U (zh) 一种井口解冻用快速加热装置
CN108507184A (zh) 一种电阻丝液体加热器
WO2023284014A1 (zh) 一种用于耐张塔的无源无损单相防冰融冰控制设备
CN212230924U (zh) 一种高压柜多功能电力仪表
CN201657349U (zh) 一种金融自助服务设备专用的加热装置
CN214234501U (zh) 一种浮选机加热装置
CN210265034U (zh) 一种自加热式调温支架
CN207053975U (zh) 一种水冷散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3126982

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883912

Country of ref document: EP

Kind code of ref document: A1