WO2021088344A1 - 一种多点定位系统仿真测试方法 - Google Patents

一种多点定位系统仿真测试方法 Download PDF

Info

Publication number
WO2021088344A1
WO2021088344A1 PCT/CN2020/090117 CN2020090117W WO2021088344A1 WO 2021088344 A1 WO2021088344 A1 WO 2021088344A1 CN 2020090117 W CN2020090117 W CN 2020090117W WO 2021088344 A1 WO2021088344 A1 WO 2021088344A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
signal
target
simulated
simulated target
Prior art date
Application number
PCT/CN2020/090117
Other languages
English (en)
French (fr)
Inventor
成伟明
章林
杨沛
苗峰
王梦
杜剑波
胡玥
程超
钱亮宇
王虎
Original Assignee
南京莱斯电子设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京莱斯电子设备有限公司 filed Critical 南京莱斯电子设备有限公司
Publication of WO2021088344A1 publication Critical patent/WO2021088344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the invention relates to the technical field of multi-point correlation positioning (MLAT) in the civil aviation field, and in particular to a simulation test method for a multi-point positioning system.
  • MLAT multi-point correlation positioning
  • MLAT Multilateration
  • GPS Global Positioning System
  • TDOA time difference of arrival
  • MLAT gets rid of the influence of factors such as the mobility of GPS satellite base stations, theoretically the accuracy can reach the meter level or even the sub-meter level.
  • A-SMGCS Advanced Surface Movement Guidance & Control System
  • the positioning accuracy index of the MLAT system depends on the layout of the MLAT system, at present, the actual layout of the MLAT system is often analyzed before the construction of the MLAT system.
  • the station layout analysis is only a theoretical analysis, and it is impossible to conduct a comprehensive analysis and test on the performance of the MLAT system before construction and installation. Therefore, it is very important to establish a physical simulation test platform for the multi-point positioning system in the laboratory. It can not be restricted by factors such as space and time, and at the same time simulate the real system operating environment to the greatest extent.
  • the present invention provides a simulation test method for a multi-point positioning system, which includes the following steps:
  • Step 1 According to the real electromagnetic environment, establish a 3D physical model, generate the corresponding simulation target, and set the simulation position of the ground station;
  • Step 2 Calculate the distance value from the real-time virtual position of the simulated target to the simulated position of the ground station, obtain the signal delay value of the simulated signal to different ground stations, and generate the content of the simulated message to be transmitted;
  • Step 3 Send a control command to the simulation target.
  • the control command includes the content of the simulation message to be transmitted and the delay time of each channel signal output from the simulation target (calculate the different transmissions from the simulation target to the simulated multipoint ground station).
  • Delay because the speed of light is constant, the simulation delay for the ground station to receive the simulated target should be proportional to the distance from the simulated target to the simulated location of the ground station. Through calculation, the delay from the simulated target to each ground station to be measured is obtained. Time and time); the simulated target generates the secondary radar response signal to be transmitted according to the content of the simulated message to be transmitted; the positioning principle of the multi-point positioning system: First, the multi-point positioning system includes multiple observation stations, and the position information of each station has been know.
  • the time of each station has been fully synchronized through GPS time calibration.
  • a target to be tested appears, and the location of the target to be tested is unknown.
  • the target sends an electromagnetic signal at regular intervals (with a delay of 0.5 seconds). If the multi-point positioning system has more than three observing stations to observe the electromagnetic signal sent by the target, the time of receiving the electromagnetic signal may be different . (If they are the same, it means that the positions of the target to the three receiving stations are equal) By calculating the delay time and position information of the ground stations, the theoretical position of the target can be derived.
  • Step 4 The secondary radar response signal generated by the simulated target passes through an adjustable delayer, and the transmission signal is adjusted according to the high-precision clock source and the delay parameters of each channel (a ground station of a multi-point positioning system corresponds to one channel) signal Delay (the high-precision clock source is a 3GHz high-precision clock source, which can generate a stable 3GHz electromagnetic signal, and the delay adjustment of the analog signal of each channel can be carried out through the counter of the FPGA);
  • the high-precision clock source is a 3GHz high-precision clock source, which can generate a stable 3GHz electromagnetic signal, and the delay adjustment of the analog signal of each channel can be carried out through the counter of the FPGA
  • Step 5 The ground station demodulates the received secondary radar response signal after different delays, and reports the signal and the time stamp of the current received radar signal to the central processing station of the multi-point positioning system.
  • the simulation position of the surface station is different from the time when the surface station receives the same message sent by the same simulation target.
  • the position of the simulation target at this time is calculated (the position difference between the simulation target and the surface station can be obtained by the multi-point positioning system.
  • the position of each ground station is known, so that the different time of the same message sent by the same simulation target is obtained, and the current position of the simulation target is calculated);
  • Step 6 Compare the historical location information of the simulated target with the calculation result of the central processing station, and test and evaluate the signal receiving and processing capabilities of the ground stations.
  • step 1 obtain the terrain digital elevation model and airport building structure data of the airport where the multi-point positioning system receiving station layout will be carried out, establish a 3D physical model according to the real electromagnetic environment, generate the corresponding simulation target, and set the ground station Simulation position (you can manually specify the trajectory of the simulation target, such as a uniform linear motion or a uniform circular motion).
  • Step 2 includes: calculate the real-time virtual position of the simulated target according to the set trajectory, and record it; meanwhile, according to the distance difference between the virtual position of the simulated target and the simulated position of the ground station, the delay value of the signal is obtained (the simulated target arrives The delay value of each ground station is the simulated distance from the simulated target to each ground station divided by the speed of light).
  • Step 4 includes: After the processor receives the test data, it converts the analog digital signal into the original analog electrical signal through the time control module of the FPGA, and transmits the signal to each delayer; each delayer performs a specified time delay After that, control two or more transmitters to transmit corresponding secondary radar response signals to the ground stations to be tested in different multi-point positioning systems.
  • the processor is a processor (and an embedded computer system) that controls the FPGA.
  • the hardware performance is weaker than that of an ordinary computer, but it is small in size and can provide PCI and network interfaces.
  • the network interface is used for information interaction with monitoring software.
  • the PCI interface is used for information exchange with FPGA.
  • the test data is the parameter information of the simulation target sent by the monitoring software through the network (each parameter information includes the message information that should be sent in each channel, and the corresponding delay and signal amplitude. After the simulator receives these information, The corresponding message will be sent from each channel after the specified delay. The amplitude of the output signal will be adjusted).
  • Step 5 includes:
  • Step 5-1 set the position coordinates of the simulated target as (x, y, z), the base station that detects the simulated target earliest is the primary station, and the rest are secondary stations.
  • the distance between the simulated target and the primary station and the secondary station is different.
  • R 0 represents the distance from the simulation target to the master station
  • R i represents the distance from the simulation target to the secondary station
  • the measured value of the distance difference between the simulated target and the primary station and the secondary station is represented by ⁇ R i , then:
  • c is the propagation speed of radio waves
  • ⁇ d i is the measured value of time difference
  • n i is the noise introduced when measuring time difference, set n i to be Gaussian white noise with independent and identically distributed variance as ⁇ 2 and expected value of zero;
  • Step 5-2 suppose:
  • ⁇ R M is the measured value of the distance difference between the simulated target and the primary station and the M-th secondary station, Is a one-dimensional matrix of the measured values of the distance difference between the primary station and all secondary stations, Is a one-dimensional matrix of the measured value of the distance from the simulated target to all secondary stations, R M is the measured value of the distance from the simulated target to the Mth secondary station, Is the first-order M-order matrix of the measured value of the distance from the simulated target to the main station, R 0 is the measured value of the distance from the simulated target to the main station, Represents the first-order matrix of the noise introduced by each secondary station when measuring time difference, n M represents the noise introduced by the Mth secondary station when measuring time difference;
  • Step 5-3 considering the situation when M>3, use the maximum likelihood method to estimate the position coordinates (x, y, z) of the simulated target.
  • Step 5-3 includes: ⁇ R i obeys the Gaussian distribution with the mean value (R i -R 0 ) and the variance ⁇ 2. Since each measured value is independent, the likelihood function P(x,y,z) is:
  • Step 6 includes: evaluating the ability of the ground station to receive the processing signal and the time synchronization ability according to the position of the simulated target reported by the central processing station and the time when the ground station receives the secondary radar response signal sent by the simulated target.
  • the simulation test method of a multi-point positioning system provided by the present invention can adjust the transmission delay time of each channel signal according to the monitoring software. Therefore, it is possible to simulate the motion state of an airport simulation target in a laboratory environment, so as to achieve the purpose of testing the base station equipment of the multi-point positioning system. Facilitate the verification and testing of base station functions.
  • the present invention has the following beneficial effects:
  • the difference of the MLAT simulation test system is only in the process of receiving the antenna target signal through the base station, instead of directly connecting the output of the signal generator through the base station's radio frequency input port.
  • Figure 1 is the signal flow chart of the signal generator
  • Figure 2 is a flow chart of the transmitter signal
  • Figure 3 shows the simulated signal transmitted by the transmitter.
  • Figure 4 is a flow chart of the method of the present invention.
  • the present invention provides a simulation test method for a multi-point positioning system, which specifically includes:
  • the first step is to establish the electromagnetic environment model of the airport area through the monitoring software (the existing monitoring software can be used) according to the actual situation.
  • the monitoring software the existing monitoring software can be used
  • the second step is to convert the generated signal transmission content into the corresponding secondary radar signal waveform.
  • Figure 3 shows the generation of analog secondary radar signals.
  • the secondary radar signal and the delay value of each channel are sent to the delayers of different channels.
  • the delayers of different channels transmit the secondary radar signal to different base stations after a certain delay according to the high-precision time signal and the set delay value.
  • the base station of the multi-point positioning system calculates the secondary radar response signal radiated from the simulated aircraft, and the signal is captured by the ground receiving station simulated on the airport surface and the surrounding area. Because the distance between the signal source and the ground station is different, the time of reaching each remote station (Time Of Arrival, TOA) is also different. The time difference is TDOA, which reflects the positional relationship between the signal source and each site. Since the location of the ground station is fixed and known, as long as the accurate TDOA can be obtained, the target's location can be accurately calculated. In theory, at least 3 stations are required to capture target signals at the same time to locate a surface target; at least 4 stations are required to capture target signals at the same time to locate an air target.
  • the positioning equation is:
  • the measured value of the distance difference is represented by ⁇ R i , then:
  • c is the propagation velocity of radio waves
  • ⁇ d i is the measured value of time difference
  • n i is the noise introduced when measuring time difference, assuming that n i is Gaussian white noise with independent and identically distributed variance of ⁇ 2 and expected value of zero;
  • the maximum likelihood method is used to estimate the coordinates of the radiation source (x, y, z); because ⁇ R i obeys the Gaussian distribution with the mean value (R i -R 0 ) and the variance ⁇ 2 , because of the measurement If the values are independent, the likelihood function P(x,y,z) is:
  • Finding the coordinate value that maximizes the likelihood function is equivalent to finding:
  • the monitoring software receives the time when each base station receives the message forwarded by the central processing station, and can check the GNSS position and beacon receiving capability, signal receiving and decoding capability, information processing and output capability, monitoring and maintenance capability of each base station, CRC check ability is tested and evaluated. At the same time, it can also compare the location information of the simulation target calculated by the central processing station with the recorded location information of the simulation target, so as to compare the processing capacity, processing delay, data communication interface, continuous working ability, and anti-interference suppression of the central processing station. Ability, etc. are tested in various aspects. For example, the monitoring software simulates a target moving at a constant speed, and can calculate the delay from the target to the ground station based on the distance between the simulated target's position and the ground station.
  • the present invention also provides a multi-point positioning system simulation test equipment, including a processor, an FPGA, a delayer, and two or more transmitters.
  • the processor is a processor (and an embedded computer system) that controls the FPGA,
  • the hardware performance is weaker than that of ordinary computers, but it is small in size and can provide PCI and network interfaces.
  • the network interface is used for information exchange with monitoring software.
  • the PCI interface is used for information exchange with FPGA.
  • the system is directly connected to the signal generator, and the signal processing flowchart of the signal generator is shown in Figure 1.
  • Figure 2 is a flow chart of the transmitter signal. The device completes the simulation test by executing the following steps:
  • Step 1 According to the real electromagnetic environment, establish a 3D physical model, generate the corresponding simulation target, and set the simulation position of the ground station;
  • Step 2 Calculate the distance value from the real-time virtual position of the simulated target to the simulated position of the ground station, obtain the signal delay value of the simulated signal to different ground stations, and generate the content of the simulated message to be transmitted;
  • Step 3 Send a control command to the simulation target.
  • the control command includes the content of the simulation message to be transmitted and the delay time of each channel signal output from the simulation target (calculate the different transmissions from the simulation target to the simulated multipoint ground station).
  • Delay because the speed of light is constant, the simulation delay for the ground station to receive the simulated target should be proportional to the distance from the simulated target to the simulated location of the ground station. Through calculation, the delay from the simulated target to each ground station to be measured is obtained. Time); the simulated target generates the secondary radar response signal to be transmitted according to the content of the simulated message to be transmitted;
  • Step 4 The secondary radar response signal generated by the simulated target passes through an adjustable delayer, and the transmission signal is adjusted according to the high-precision clock source and the delay parameters of each channel (a ground station of a multi-point positioning system corresponds to one channel) signal Delay (the high-precision clock source is a 3GHz high-precision clock source, which can generate a stable 3GHz electromagnetic signal, and the delay adjustment of the analog signal of each channel can be carried out through the counter of the FPGA);
  • the high-precision clock source is a 3GHz high-precision clock source, which can generate a stable 3GHz electromagnetic signal, and the delay adjustment of the analog signal of each channel can be carried out through the counter of the FPGA
  • Step 4 includes: After the processor receives the test data, it converts the analog digital signal into the original analog electrical signal through the time control module of the FPGA, and transmits the signal to each delayer; each delayer performs a specified time delay After that, control two or more transmitters to transmit corresponding secondary radar response signals to the ground stations to be tested in different multi-point positioning systems.
  • Step 5 The ground station demodulates the received secondary radar response signal after different delays, and reports the signal and the time stamp of the current received radar signal to the central processing station of the multi-point positioning system.
  • the simulation position of the surface station is different from the time when the surface station receives the same message sent by the same simulation target.
  • the position of the simulation target at this time is calculated (the position difference between the simulation target and the surface station can be obtained by the multi-point positioning system.
  • the position of each ground station is known, so that the different time of the same message sent by the same simulation target is obtained, and the current position of the simulation target is calculated);
  • Step 6 Compare the historical location information of the simulated target with the calculation result of the central processing station, and test and evaluate the signal receiving and processing capabilities of the ground stations.
  • the present invention provides a simulation test method for a multi-point positioning system.
  • the above are only the preferred embodiments of the present invention. It should be noted that for those of ordinary skill in the art Under the premise of not departing from the principle of the present invention, several improvements and modifications can be made, and these improvements and modifications should also be regarded as the protection scope of the present invention. All the components that are not clear in this embodiment can be implemented using existing technology.

Abstract

一种多点定位系统仿真测试方法,其包括可以控制模拟仿真环境的监控软件;获取相应发射参数,并转化为实际模拟信号的信号发生器;提供高精度时钟频率信号的时钟源;根据高精度时钟信号和配置参数对发射信号延时的延时器,通过将模拟信号通过不同的延时,可以根据监控软件进行调整,发送给多个多点定位系统的接收站,比对模拟信号位置与中心站计算结果的偏差,评估系统的定位误差,解决了无法在建设安装前对多点定位系统的性能进行全面的分析和测试的问题。通过在实验室建立多点定位系统的实物仿真测试平台,可以不受空间和时间等因素的限制,同时最大程度的模拟真实的系统运行环境。

Description

一种多点定位系统仿真测试方法 技术领域
本发明涉及民用航空领域中多点相关定位(MLAT)技术领域,尤其涉及一种多点定位系统仿真测试方法。
背景技术
随着空地数据链技术、地面站接收技术和抗干扰等技术的深入研究与发展,传统的雷达定位技术正在发生演进。多点定位(Multilateration,MLAT)技术就是其中的典型代表。MLAT系统的定位原理类似于全球卫星定位系统(Global Position System,GPS)系统。但它依赖于地面接收站,依据信号源到达各地面站之间的时间差(Time DifferenceOf Arrival,TDOA)以及地面站之间的位置关系,来确定目标的位置。由于MLAT摆脱了GPS卫星基站移动性等因素的影响,理论上精度可以达到米级,甚至亚米级。为此,在国际民航组织的先进场面活动目标导航与控制系统(Advanced Surface Movement Guidance&Control System,A-SMGCS)等相关规范中,MLAT被推荐为未来大型机场的必备设备,代表了未来民用航空监视技术的发展方向。
由于MLAT系统的定位精度指标依赖于MLAT系统的布局,目前在MLAT系统在建设前往往针对MLAT系统的实际布局进行布站分析。但布站分析只是理论上的分析,无法在建设安装前对MLAT系统的性能进行全面的分析和测试。因此在实验室建立多点定位系统的实物仿真测试平台至关重要,它可以不受空间和时间等因素的限制,同时最大程度的模拟真实的系统运行环境。
发明内容
为了解决实验室建立多点定位系统的实物仿真测试平台,同时最大程度的模拟真实的系统运行环境,评估多点相关定位系统的定位精度的问题。本发明提供了一种多点定位系统仿真测试方法,包括如下步骤:
步骤1,根据真实电磁环境,建立3D物理模型,生成相应的模拟目标,并设定各地面站的仿真位置;
步骤2,计算模拟目标实时的虚拟位置到各地面站的仿真位置的距离数值,得到仿真信号到不同的地面站的信号延时数值,并生成待发射的模拟报文内容;
步骤3,向模拟目标发送控制命令,所述控制命令包括待发射的模拟报文内容,以及与模拟目标输出的各通道信号的延时时间(计算模拟目标到模拟各多点地面站的不同传输延时,因为光速是恒定的,所以各地面站收到模拟目标的模拟延时应该与模拟目标到各地面站模拟位置的距离成正比。通过计算,得到模拟目标到各待测地面站的延时时间);模拟目标根据待发射的模拟报文内容产生待发射的二次雷达应答信号;多点定位系统的定位原理:首先多点定位系统包含多个观测站,且各站的位置信息已知。并且各站的时间通过GPS校时已经完全同步。此时出现一个待测目标,待测目标位置不知。该目标每隔一段时间(延时0.5秒)发送一次电磁信号,如果多点定位系统有三个以上的观测站观测到该目标发 送的电磁信号,但是收到该电磁信号的时间可能是不一样的。(如果一样,则说明该目标到三个接收站的位置是相等的)通过计算各地面站的延时时间和位置信息,可以推导出该目标的理论位置。
步骤4,模拟目标产生的二次雷达应答信号经过可调延时器,根据高精度时钟源和各通道(一个多点定位系统的地面站对应于一个通道)信号的延时参数调整发射信号的延时(高精度时钟源是3GHz高精度时钟源,其可产生稳定的3GHz电磁信号,通过FPGA的计数器,可以对各通道的模拟信号进行延时调整);
步骤5,各地面站解调收到的经过不同延时后的二次雷达应答信号,并将信号与当前接收到雷达信号的时间戳上报至多点定位系统的中心处理站,中心处理站根据各地面站的仿真位置与各地面站收到同一模拟目标发送的同一报文的不同时间,计算模拟目标此时的位置(由多点定位系统即可得到模拟目标到各地面站的位置差,而各地面站的位置是已知的,从而得到根据同一模拟目标发送的同一报文的不同时间,计算模拟目标此时的位置);
步骤6,比对模拟目标的历史位置信息与中心处理站的计算结果,对各地面站的信号接收处理能力进行测试评估。
步骤1中,获取将要进行多点定位系统接收站布局的机场的地形数字高程模型和机场建筑结构数据,根据真实电磁环境,建立3D物理模型,生成相应的模拟目标,并设定各地面站的仿真位置(可以人为指定模拟目标的运行轨迹,例如匀速直线运动,或者是匀速圆周运动)。
步骤2包括:根据设定的轨迹,计算模拟目标的实时虚拟位置,并予以记录;同时根据模拟目标的虚拟位置到各地面站的仿真位置的距离差,得到信号的延时数值(模拟目标到各个地面站的延时值是模拟目标到各个地面站的模拟距离除以光速)。
步骤4包括:处理机接收到测试数据后,通过FPGA的时间控制模块,将模拟数字信号转为原始模拟电信号,并将信号发射到各延时器;各延时器进行指定时间的延时后,控制两个以上的发射机发射相应的二次雷达应答信号发射到不同的多点定位系统待测的地面站。所述处理机是控制FPGA的处理机(及嵌入式计算机系统),硬件性能弱于普通计算机,但是体积小,同时能够提供PCI和网络接口,网络接口用于与监控软件进行信息交互。PCI接口用于与FPGA进行信息交互。所述测试数据是监控软件通过网络发送的模拟目标的各参数信息(各参数信息包括各通路应发的报文信息,以及相应的延时与信号幅度大小。模拟器在收到这些信息后,将会从各通道,经过指定的延时发送相应的报文。并调整输出信号的幅度)。
步骤5包括:
步骤5-1,设定模拟目标的位置坐标为(x,y,z),最早探测到模拟目标的基站为主站,其余为副站,模拟目标到主站和副站的的距离差的真实值为ΔR i 0,i=1,2,…,M,M为能探测到所述模拟目标的基站数,主站的坐标为(x 0,y 0,z 0),第i个副站的坐标为(x i,y i,z i),则定位方程为:
Figure PCTCN2020090117-appb-000001
其中,R 0表示模拟目标到主站的距离,R i表示模拟目标到副站的距离;
模拟目标到主站和副站的的距离差的测量值用ΔR i表示,则:
ΔR i=cΔd i=ΔR i 0+cn i=R i-R 0+cn i  (2)
式中:c为电波传播速度;Δd i是时差测量值;n i是测量时差时引入的噪声,设定n i为独立同分布的方差为σ 2,期望值为零的高斯白噪声;
步骤5-2,设:
Figure PCTCN2020090117-appb-000002
Figure PCTCN2020090117-appb-000003
得到:
Figure PCTCN2020090117-appb-000004
其中,ΔR M是模拟目标到主站和第M个副站的距离差的测量值,
Figure PCTCN2020090117-appb-000005
是主站和所有副站的距离差的测量值的一维矩阵,
Figure PCTCN2020090117-appb-000006
是模拟目标到所有副站的距离的测量值的一维矩阵,R M是模拟目标到第M个副站的距离的测量值,
Figure PCTCN2020090117-appb-000007
是是模拟目标到主站的距离的测量值的一阶M阶矩阵,R 0是模拟目标到主站的距离的测量值,
Figure PCTCN2020090117-appb-000008
表示测量时差时,各副站引入的噪声的一阶矩阵,n M表示测量时差时,第M个副站引入的噪声;
步骤5-3,考虑M>3时的情况,采用最大似然法估计模拟目标的位置坐标(x,y,z)。
步骤5-3包括:ΔR i服从均值为(R i–R 0),方差为σ 2的高斯分布,因各测量值独立,则似然函数P(x,y,z)为:
Figure PCTCN2020090117-appb-000009
求使似然函数最大的坐标值,从而得到(x,y,z):
Figure PCTCN2020090117-appb-000010
步骤6包括:根据中心处理站上报的模拟目标的位置,以及各地面站收到模拟目标发送的二次雷达应答信号的时间,对地面站接受处理信号的能力和时间同步能力进行评估。
本发明提供的一种多点定位系统仿真测试方法,可以根据监控软件,调整各通道信号的发射延时时间。因此可在实验室环境内,模拟机场模拟目标的运动状态,从而达到对多点定位系统的基站设备进行测试的目的。便于基站功能的校验与测试。
与现有技术相比,本发明具有如下的有益效果:
与实际系统相比,MLAT仿真测试系统的区别仅仅在于通过基站接收天线目标信号的过程,改为通过基站射频输入口直接连接信号发生器的输出。通过这样的改变,有利于在实验室环境下的安装部署,同时可以方便的实现对于MLAT系统的整机性能测试。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为信号发生器的信号流程图;
图2为发射机信号流程图;
图3为发射机发射的模拟仿真信号。
图4为本发明方法流程图。
具体实施方式
实施例:
如图4所示,本发明提供了一种多点定位系统仿真测试方法,具体包括:
第一步,按实际情况,通过监控软件(可以使用现有的监控软件)建立机场区域电磁环境模型。获取将要进行MLAT接收站布局的机场的地形数字高程模型、机场建筑(候机大楼、廊桥、跑道等)结构、材质与尺寸数据,磁环境接近的3D物理模型。生成相应的模拟目标,并根据各基站的模拟位置,计算到各基站的信号延时数值。
第二步,将生成的信号发射内容转换为相应的二次雷达信号波形。图3为产生模拟二次雷达信号。
并通过功分器,将二次雷达信号和各通道的延时数值发送到不同通道的延时器。
第三步,不同通道的延时器根据高精度时间信号和设定的延时数值,将二次雷达信号进行一定的延时后发射到不同的基站。
第四步,多点定位系统基站计算模拟飞行器向外辐射二次雷达应答信号,该信号被模拟布设在机场场面及周边的地面接收站捕获。因为信号源距离各地面站的距离是不同的,因此到达各远端站的时间(Time Of Arrival,TOA)也不同。其中的时间差就是TDOA,它反映了信号源与各站点之间的位置关系。由于地面站位置固定且已知,因此只要能获取准确的TDOA,目标的位置也就可以被准确地计算出来。理论上,若要定位场面目标需要至少3站同时捕获目标信号;定位空中目标需要至少4站同时捕获目标信号。
设待定的辐射源位置为(x,y,z),它到主站(x 0,y 0,z 0)和副站(x i,y i,z i)的距离差的真实值为ΔR i 0,i=1,2,…,M,那么定位方程为:
Figure PCTCN2020090117-appb-000011
距离差的测量值用ΔR i表示,则:
ΔR i=cΔd i=ΔR i 0+cn i=R i-R 0+cn i  (2)
式中:c为电波传播速度;Δd i是时差测量值;n i是测量时差时引入的噪声,假设n i为独立同分布的方差为σ 2,期望值为零的高斯白噪声;
设:
Figure PCTCN2020090117-appb-000012
Figure PCTCN2020090117-appb-000013
得到:
Figure PCTCN2020090117-appb-000014
考虑M>3时的情况,采用最大似然法估计辐射源坐标(x,y,z);因为ΔR i服从均值为(R i–R 0),方差为σ 2的高斯分布,因各测量值独立,则似然函数P(x,y,z)为:
Figure PCTCN2020090117-appb-000015
求使似然函数最大的坐标值,相当于求:
Figure PCTCN2020090117-appb-000016
第五步,监控软件收到中心处理站转发的各基站接收报文的时间,可以对各基站的GNSS位置和信标接收能力、信号接收和解码能力、信息处理和输出能力、监控与维护能力、CRC校验能力进行测试评估。同时也可以根据中心处理站计算的仿真目标的位置信息与记录的仿真目标的位置信息进行比对,从而对中心处理站的处理容量、处理延时、数据通信接口、连续工作能力、抗干扰抑制能力等进行多方面的测试。例如,监控软件仿真一个匀速运动的目标,可以根据该模拟目标的位置与各地面站的距离,推算出该目标到各地面站的延时。当模拟目标运动时则可以收到各地面站发送的时间记录信息。通过比对即可知道各地面站的报文时间戳是否存在问题。可以在给多个地面站的报文中引入时间偏差量,模拟干扰或者是时间同步故障,检验多点定位系统是否能够排查出存在偏差,在计算模拟目标位置的时候,将出问题的地面站排除出计算队列并指出该地面站存在问题。
本发明还提供了一种多点定位系统仿真测试设备,包括处理机、FPGA、延时器、两个以上的发射机,所述处理机是控制FPGA的处理机(及嵌入式计算机系统),硬件性能弱于普通计算机,但是体积小,同时能够提供PCI和网络接口,网络接口用于与监控软件进行信息交互。PCI接口用于与FPGA进行信息交互。所述系统直接连接信号发生器,信号发生器的信号的处理流程图如图1所示。图2为发射机信号流程图。所述设备通过执行如下步骤完成仿真测试:
步骤1,根据真实电磁环境,建立3D物理模型,生成相应的模拟目标,并设定各地面站的仿真位置;
步骤2,计算模拟目标实时的虚拟位置到各地面站的仿真位置的距离数值,得到仿真信号到不同的地面站的信号延时数值,并生成待发射的模拟报文内容;
步骤3,向模拟目标发送控制命令,所述控制命令包括待发射的模拟报文内容,以及与模拟目标输出的各通道信号的延时时间(计算模拟目标到模拟各多点地面站的不同传输延时,因为光速是恒定的,所以各地面站收到模拟目标的模拟延时应该与模拟目标到各地面站模拟位置的距离成正比。通过计算,得到模拟目标到各待测地面站的延时时间);模拟目标根据待发射的模拟报文内容产生待发射的二次雷达应答信号;
步骤4,模拟目标产生的二次雷达应答信号经过可调延时器,根据高精度时钟源和各通道(一个多点定位系统的地面站对应于一个通道)信号的延时参数调整发射信号的延时(高精度时钟源是3GHz高精度时钟源,其可产生稳定的3GHz电磁信号,通过FPGA的计数器,可以对各通道的模拟信号进行延时调整);
步骤4包括:处理机接收到测试数据后,通过FPGA的时间控制模块,将模拟数字信号转为原始模拟电信号,并将信号发射到各延时器;各延时器进行指定时间的延时后,控制两个以上的发射机发射相应的二次雷达应答信号发射到不同的多点定位系统待测的地面站。
步骤5,各地面站解调收到的经过不同延时后的二次雷达应答信号,并将信号与当前接收到雷达信号的时间戳上报至多点定位系统的中心处理站,中心处理站根据各地面站的仿真位置与各地面站收到同一模拟目标发送的同一报文的不同时间,计算模拟目标此时的位置(由多点定位系统即可得到模拟目标到各地面站的位置差,而各地面站的位置是已 知的,从而得到根据同一模拟目标发送的同一报文的不同时间,计算模拟目标此时的位置);
步骤6,比对模拟目标的历史位置信息与中心处理站的计算结果,对各地面站的信号接收处理能力进行测试评估。
本发明提供了一种多点定位系统仿真测试方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (7)

  1. 一种多点定位系统仿真测试方法,其特征在于,包括如下步骤:
    步骤1,根据真实电磁环境,建立3D物理模型,生成相应的模拟目标,并设定各地面站的仿真位置;
    步骤2,计算模拟目标实时的虚拟位置到各地面站的仿真位置的距离数值,得到仿真信号到不同的地面站的信号延时数值,并生成待发射的模拟报文内容;
    步骤3,向模拟目标发送控制命令,所述控制命令包括待发射的模拟报文内容,以及模拟目标到各地面站的延时时间;模拟目标根据待发射的模拟报文内容产生待发射的二次雷达应答信号;
    步骤4,模拟目标产生的二次雷达应答信号经过可调延时器,根据高精度时钟源和各通道信号的延时参数调整发射信号的延时;
    步骤5,各地面站解调收到的经过不同延时后的二次雷达应答信号,并将信号与当前接收到雷达信号的时间戳上报至多点定位系统的中心处理站,中心处理站根据各地面站的仿真位置与各地面站收到同一模拟目标发送的同一报文的不同时间,计算模拟目标此时的位置;
    步骤6,比对模拟目标的历史位置信息与中心处理站的计算结果,对各地面站的信号接收处理能力进行测试评估。
  2. 根据权利要求1所述的方法,其特征在于,步骤1中,获取将要进行多点定位系统接收站布局的机场的地形数字高程模型和机场建筑结构数据,根据真实电磁环境,建立3D物理模型,生成相应的模拟目标,并设定各地面站的仿真位置。
  3. 根据权利要求2所述的方法,其特征在于,步骤2包括:根据设定的轨迹,计算模拟目标的实时虚拟位置,并予以记录;同时根据模拟目标的虚拟位置到各地面站的仿真位置的距离差,得到信号的延时数值。
  4. 根据权利要求3所述的方法,其特征在于,步骤4包括:处理机接收到测试数据后,通过FPGA的时间控制模块,将模拟数字信号转为原始模拟电信号,并将信号发射到各延时器;各延时器进行指定时间的延时后,控制两个以上的发射机发射相应的二次雷达应答信号发射到不同的多点定位系统待测的地面站。
  5. 根据权利要求4所述的方法,其特征在于,步骤5包括:
    步骤5-1,设定模拟目标的位置坐标为(x,y,z),最早探测到模拟目标的基站为主站,其余为副站,模拟目标到主站和副站的的距离差的真实值为ΔR i 0,i=1,2,…,M,M为能探测到所述模拟目标的基站数,主站的坐标为(x 0,y 0,z 0),第i个副站的坐标为(x i,y i,z i),则定位方程为:
    Figure PCTCN2020090117-appb-100001
    其中,R 0表示模拟目标到主站的距离,R i表示模拟目标到副站的距离;
    模拟目标到主站和第i个副站的的距离差的测量值用ΔR i表示,则:
    ΔR i=cΔd i=ΔR i 0+cn i=R i-R 0+cn i    (2)
    式中:c为电波传播速度;Δd i是时差测量值;n i是测量时差时引入的噪声,设定n i为独 立同分布的方差为σ 2,期望值为零的高斯白噪声,
    步骤5-2,设:
    Figure PCTCN2020090117-appb-100002
    Figure PCTCN2020090117-appb-100003
    得到:
    Figure PCTCN2020090117-appb-100004
    其中,ΔR M是模拟目标到主站和第M个副站的距离差的测量值,
    Figure PCTCN2020090117-appb-100005
    是主站和所有副站的距离差的测量值的一维矩阵,
    Figure PCTCN2020090117-appb-100006
    是模拟目标到所有副站的距离的测量值的一维矩阵,R M是模拟目标到第M个副站的距离的测量值,
    Figure PCTCN2020090117-appb-100007
    是是模拟目标到主站的距离的测量值的一阶M阶矩阵,R 0是模拟目标到主站的距离的测量值,
    Figure PCTCN2020090117-appb-100008
    表示测量时差时,各副站引入的噪声的一阶矩阵,n M表示测量时差时,第M个副站引入的噪声;
    步骤5-3,考虑M>3时的情况,采用最大似然法估计模拟目标的位置坐标(x,y,z)。
  6. 根据权利要求5所述的方法,其特征在于,步骤5-3包括:ΔR i服从均值为(R i–R 0),方差为σ 2的高斯分布,因各测量值独立,则似然函数P(x,y,z)为:
    Figure PCTCN2020090117-appb-100009
    求使似然函数最大的坐标值,从而得到(x,y,z):
    Figure PCTCN2020090117-appb-100010
  7. 根据权利要求6所述的方法,其特征在于,步骤6包括:根据中心处理站上报的模拟目标的位置,以及各地面站收到模拟目标发送的二次雷达应答信号的时间,对地面站接受处理信号的能力和时间同步能力进行评估。
PCT/CN2020/090117 2019-11-07 2020-05-14 一种多点定位系统仿真测试方法 WO2021088344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911080713.2A CN110764050A (zh) 2019-11-07 2019-11-07 一种多点定位系统仿真测试方法
CN201911080713.2 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021088344A1 true WO2021088344A1 (zh) 2021-05-14

Family

ID=69336806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090117 WO2021088344A1 (zh) 2019-11-07 2020-05-14 一种多点定位系统仿真测试方法

Country Status (2)

Country Link
CN (1) CN110764050A (zh)
WO (1) WO2021088344A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110764050A (zh) * 2019-11-07 2020-02-07 南京莱斯电子设备有限公司 一种多点定位系统仿真测试方法
CN112147574B (zh) * 2020-09-25 2022-02-01 四川九洲电器集团有限责任公司 一种多站定位算法验证方法和一种模拟系统
CN112394372A (zh) * 2020-11-06 2021-02-23 四川九洲空管科技有限责任公司 一种基于ads-b记录数据评估多点定位性能的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053989A1 (en) * 2000-09-19 2002-05-09 Ching-Fang Lin Method and system for anti-jamming simulation
CN103064057A (zh) * 2012-12-26 2013-04-24 北京遥测技术研究所 一种提高多点时差定位精度的方法
CN104133378A (zh) * 2014-08-05 2014-11-05 中国民用航空总局第二研究所 一种机场活动区监控引导系统的实时仿真平台
CN109188355A (zh) * 2018-09-14 2019-01-11 四川大学 一种多点定位系统接收天线优化及最优布站方法
CN109597026A (zh) * 2018-11-30 2019-04-09 四川九洲电器集团有限责任公司 一种多点定位综合仿真评估方法和系统
CN110139303A (zh) * 2019-04-23 2019-08-16 四川九洲电器集团有限责任公司 一种等效信号级toa测量的快速仿真方法和装置
CN110764050A (zh) * 2019-11-07 2020-02-07 南京莱斯电子设备有限公司 一种多点定位系统仿真测试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001259401A1 (en) * 2000-05-05 2001-11-20 Cellguide Ltd. System for the location of mobile units by information accompanying satellite reception
WO2011113176A1 (en) * 2010-03-17 2011-09-22 Honeywell International Inc. Systems and methods for short baseline, low cost determination of airborne aircraft location
US8638671B2 (en) * 2011-07-22 2014-01-28 Qualcomm Incorporated System and method for testing wireless position locating
CN106535128B (zh) * 2016-11-22 2020-04-03 四川九洲电器集团有限责任公司 一种多点定位方法及装置
CN106814357A (zh) * 2016-12-23 2017-06-09 安徽四创电子股份有限公司 用于分布式多点定位监视系统的半正定松弛时差定位方法
CN109557516B (zh) * 2018-11-28 2022-08-30 四川九洲电器集团有限责任公司 多目标空间信号的快速生成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053989A1 (en) * 2000-09-19 2002-05-09 Ching-Fang Lin Method and system for anti-jamming simulation
CN103064057A (zh) * 2012-12-26 2013-04-24 北京遥测技术研究所 一种提高多点时差定位精度的方法
CN104133378A (zh) * 2014-08-05 2014-11-05 中国民用航空总局第二研究所 一种机场活动区监控引导系统的实时仿真平台
CN109188355A (zh) * 2018-09-14 2019-01-11 四川大学 一种多点定位系统接收天线优化及最优布站方法
CN109597026A (zh) * 2018-11-30 2019-04-09 四川九洲电器集团有限责任公司 一种多点定位综合仿真评估方法和系统
CN110139303A (zh) * 2019-04-23 2019-08-16 四川九洲电器集团有限责任公司 一种等效信号级toa测量的快速仿真方法和装置
CN110764050A (zh) * 2019-11-07 2020-02-07 南京莱斯电子设备有限公司 一种多点定位系统仿真测试方法

Also Published As

Publication number Publication date
CN110764050A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2021088344A1 (zh) 一种多点定位系统仿真测试方法
KR101240629B1 (ko) Ads-b 시스템이 탑재된 항공기를 이용한 미지신호 검출 및 발생원 위치 추정방법
US8638671B2 (en) System and method for testing wireless position locating
CN109343089B (zh) 定位设备的性能测试设备、测试方法及其装置
Sharp et al. Enhanced least-squares positioning algorithm for indoor positioning
CN202178871U (zh) 用于室内飞艇的定位系统
CN110045341A (zh) 雷达高度表低截获性能测试方法
CN104808106A (zh) 电力设备局部放电定位方法和系统
CN110174643A (zh) 一种无需噪声功率信息的基于到达时间差的定位方法
CN106679694B (zh) 塔康信标模拟器空-空应答延时测量精度标校装置及方法
Sorbelli et al. Measurement errors in range-based localization algorithms for UAVs: Analysis and experimentation
CN106851821A (zh) 一种基于无线通信基站的室内三维定位方法
Wang et al. A low-cost platform for time-variant wireless channel measurements with application to positioning
Gnaś et al. Indoor localization system using UWB
Yang et al. Optimal sensor placement for source tracking under synchronization offsets and sensor location errors with distance-dependent noises
JPWO2013136648A1 (ja) 広域マルチラテレーションシステム、中央局及びそれらに用いる二次元位置算出方法
Calvo-Ramírez et al. UAV air-ground channel ray tracing simulation validation
CN108989988A (zh) 基于机器学习的室内定位方法
CN109597026B (zh) 一种多点定位综合仿真评估方法和系统
Huilla et al. Smartphone-based indoor positioning using Wi-Fi fine timing measurement protocol
CN109596089B (zh) 确定方位角的方法、装置、电子设备和存储介质
Alia et al. Advanced tools to analyze the expected performance of multilateration and wide area multilateration
CN109855598A (zh) 一种基于无人机雷达测距的天线下倾角测量方法和装置
CN109798917B (zh) 一种定位精度巡检方法
Yang et al. Quasi-Deterministic Modeling for Industrial IoT Channels Based on Millimeter Wave Measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885372

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20885372

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20885372

Country of ref document: EP

Kind code of ref document: A1