WO2021088094A1 - 一种发送物理上行共享信道的方法及装置 - Google Patents

一种发送物理上行共享信道的方法及装置 Download PDF

Info

Publication number
WO2021088094A1
WO2021088094A1 PCT/CN2019/116895 CN2019116895W WO2021088094A1 WO 2021088094 A1 WO2021088094 A1 WO 2021088094A1 CN 2019116895 W CN2019116895 W CN 2019116895W WO 2021088094 A1 WO2021088094 A1 WO 2021088094A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
time
nominal
nominal pusch
symbol
Prior art date
Application number
PCT/CN2019/116895
Other languages
English (en)
French (fr)
Inventor
胡丹
徐修强
马蕊香
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980100779.5A priority Critical patent/CN114467340A/zh
Priority to PCT/CN2019/116895 priority patent/WO2021088094A1/zh
Publication of WO2021088094A1 publication Critical patent/WO2021088094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method and device for transmitting a physical uplink shared channel.
  • the International Telecommunication Union defines three major business application scenarios for the fifth generation (5G) mobile communication system and future mobile communication systems: enhanced mobile broadband (eMBB) , High reliability and low latency communications (ultra reliable and low latency communications, URLLC), massive machine type communications (mMTC)
  • eMBB enhanced mobile broadband
  • URLLC ultra reliable and low latency communications
  • mMTC massive machine type communications
  • 5G terminal devices can use the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) version 15 (release 15, R15) transmission mechanism or version 16 (release 16, R16) transmission mechanism to send the physical uplink shared channel (physical uplink) to the network device.
  • the R15 transmission mechanism includes slot-based single transmission and slot-based repetition. Slot-based repetition can also be referred to as slot aggregation.
  • the R16 transmission mechanism can be called mini-slot-based repetition transmission. Mini-slot-based repetitive transmission refers to the transmission of at least one PUSCH on the time domain resource of one time slot, or the transmission of at least one PUSCH across the time slot boundary on the time domain resources of multiple consecutive time slots.
  • the embodiments of the present application provide a method and device for transmitting a physical uplink shared channel, which solves the problem of how to transmit the PUSCH after the repetition number of the PUSCH repetition type B is dynamically indicated after being disabled.
  • the embodiments of the present application provide a method for transmitting a physical uplink shared channel.
  • the method can be applied to a terminal device, or the method can be applied to a communication device that can support the terminal device to implement the method.
  • the communication device includes Chip system.
  • the method includes: after the terminal device receives the first information from the network device, the terminal device enables the first transmission mode, and if the terminal device receives the second information that is disabled and dynamically indicates the number of repetitions, according to the first transmission mode or The second transmission mode sends the first nominal PUSCH.
  • the first transmission mode is to transmit M nominal PUSCHs on the time domain resources of one time unit, or transmit M nominal PUSCHs on the time domain resources of multiple consecutive time units, and the M nominal PUSCHs include the first nominal PUSCH, M is an integer greater than or equal to 1.
  • the second transmission mode is to repeatedly send K first nominal PUSCHs on K consecutive time units, and one first nominal PUSCH is sent for one time unit, and K is an integer greater than or equal to 1.
  • the terminal device after the terminal device receives the indication of disabling the dynamic indication of the number of repetitions, it can transmit the first nominal PUSCH according to the first transmission mode or the second transmission mode, thereby avoiding the terminal equipment
  • the inconsistent understanding of PUSCH transmission after disabling (dynamically indicating the repetition number of PUSCH repetition type B) between the device and the network device improves the reliability of the transmission and avoids unnecessary retransmissions.
  • the time unit described herein may refer to a time slot.
  • the method further includes: the terminal device receives the time domain resource allocation information list and the first control information from the network device.
  • the time domain resource allocation information list includes at least one time domain resource allocation information
  • the time domain resource allocation information indicates an offset value, the number of the starting symbol of the nominal PUSCH, the length of the nominal PUSCH and the number of repetitions
  • the offset value is The difference between the number of the time unit for transmitting the physical downlink control channel (PDCCH) and the number of the time unit for transmitting the nominal PUSCH.
  • PDCCH physical downlink control channel
  • the first control information is carried in the PDCCH, the first control information indicates first time domain resource allocation information, the time domain resource allocation information list includes first time domain resource allocation information, and the first time domain resource allocation information indicates the first bias
  • the shift value, the number of the first symbol and the first length, the first nominal PUSCH is the first nominal PUSCH determined according to the first symbol and the first length.
  • the first nominal PUSCH is the first nominal PUSCH determined according to the first symbol and the first length, and can also be alternatively described as, the first nominal PUSCH is the first nominal PUSCH determined according to the number of the first symbol and the first length. It should be understood that the terminal device may first determine the first symbol according to the number of the first symbol, and then determine the first nominal PUSCH according to the first symbol and the first length.
  • the terminal device determines the first time domain resource allocation information according to the first control information and the time domain resource allocation information list, and determines the first time unit for sending the first nominal PUSCH according to the first offset value. Therefore, it is convenient for the terminal device or the network device to determine the time domain resource for transmitting the first nominal PUSCH.
  • the terminal device sending the first nominal PUSCH according to the first transmission mode includes: the terminal device sends the first PUSCH set to the network device within the first time unit according to the first symbol and the first length, and
  • the time domain resources corresponding to a PUSCH set are all or part of the time domain resources corresponding to the first nominal PUSCH in the first time unit.
  • the start time of the first nominal PUSCH is the first symbol
  • the end time of the first time unit is the first symbol. Between the start time of a nominal PUSCH and the end time of the first nominal PUSCH.
  • the terminal device further sends a second PUSCH set to the network device, and the time domain resource corresponding to the second PUSCH set is the time domain resource determined according to the first symbol and the first length after the end time of the first time unit.
  • the terminal device transmits the first nominal PUSCH according to the second transmission mode, including: the terminal device performs a single transmission of the first nominal PUSCH in the first time unit according to the first symbol and the first length .
  • the terminal device performs a single transmission of the first nominal PUSCH in the first time unit according to the first symbol and the first length, including: the terminal device transmits the first nominal PUSCH in the first time unit according to the first symbol and the first length.
  • the network device sends the first nominal PUSCH, the time domain resources corresponding to the first nominal PUSCH are all or part of the time domain resources corresponding to the first nominal PUSCH in the first time unit, and the start time of the first nominal PUSCH is the first symbol,
  • the end time of the first time unit is between the start time of the first nominal PUSCH and the end time of the first nominal PUSCH.
  • the first nominal PUSCH is not sent after the end time of the first time unit.
  • the method further includes: the terminal device receives third information from the network device, where the third information indicates K.
  • the terminal device sends the first nominal PUSCH to the network device according to the second transmission mode, including: the terminal device sends the first nominal PUSCH to the network device in each of the M time units according to the first symbol and the first length
  • the device sends the first nominal PUSCH.
  • the time domain resources corresponding to the first nominal PUSCH are all or part of the time domain resources corresponding to the first nominal PUSCH in each time unit.
  • the start time of the first nominal PUSCH is the first symbol, and the time The end time of the unit is between the start time of the first nominal PUSCH and the end time of the first nominal PUSCH, and the M time units include the first time unit.
  • the method further includes: not sending the first nominal PUSCH after the end time of the M time units.
  • the terminal device sending the nominal PUSCH according to the first transmission mode includes: the terminal device sends K nominal PUSCHs according to the first symbol and the first length, and the K nominal PUSCHs include the first nominal PUSCH.
  • the embodiments of the present application provide a method for receiving a physical uplink shared channel.
  • the method can be applied to a network device, or the method can be applied to a communication device that can support the network device to implement the method.
  • the communication device includes Chip system.
  • the method includes: after the network device sends the first information and the second information to the terminal device, it may receive the first nominal PUSCH from the terminal device according to the first transmission mode or the second transmission mode.
  • the first information enables the first transmission mode.
  • the second information is disabled to dynamically indicate the number of repetitions.
  • the first transmission mode is to transmit M nominal PUSCHs on the time domain resources of one time unit, or transmit M nominal PUSCHs on the time domain resources of multiple consecutive time units.
  • the M nominal PUSCHs include the first nominal PUSCH, and M is An integer greater than or equal to 1.
  • the second transmission mode is to repeatedly send K first nominal PUSCHs on K consecutive time units, and one first nominal PUSCH is sent for one time unit, where K is an integer greater than or equal to 1.
  • the method further includes: the network device sends the time domain resource allocation information list and the first control information to the terminal device.
  • the time-domain resource allocation information list includes at least one time-domain resource allocation information
  • the time-domain resource allocation information indicates the offset value, the starting symbol number of the nominal PUSCH, the length of the nominal PUSCH and the number of repetitions
  • the offset value is the transmission PDCCH The difference between the number of the time unit and the number of the time unit for transmitting the nominal PUSCH.
  • the first control information is carried in the PDCCH, the first control information indicates the first time domain resource allocation information, the time domain resource allocation information list includes the first time domain resource allocation information, and the first time domain resource allocation information indicates the first offset value ,
  • the number and the first length of the first symbol, the first nominal PUSCH is the first nominal PUSCH determined according to the first symbol and the first length.
  • the network device determines the first time unit for receiving the first nominal PUSCH according to the first offset value.
  • the network device receives the first nominal PUSCH according to the first transmission mode or the second transmission mode.
  • the network device receiving the first nominal PUSCH from the terminal device according to the first transmission mode includes: the network device receives the first nominal PUSCH from the terminal device in the first time unit according to the first symbol and the first length.
  • the first PUSCH set, the time domain resources corresponding to the first PUSCH set are all or part of the time domain resources corresponding to the first nominal PUSCH in the first time unit, the start time of the first nominal PUSCH is the first symbol, and the first time The end time of the unit is between the start time of the first nominal PUSCH and the end time of the first nominal PUSCH.
  • the network device further receives a second PUSCH set from the terminal device, and the time domain resource corresponding to the second PUSCH set is the time domain resource determined according to the first symbol and the first length after the end time of the first time unit .
  • the network device receiving the first nominal PUSCH from the terminal device according to the second transmission mode includes: the network device responds to the first nominal PUSCH in the first time unit according to the first symbol and the first length. Make a single reception.
  • the network device receives the first nominal PUSCH once in the first time unit according to the first symbol and the first length, including: the network device receives the first nominal PUSCH in the first time unit according to the first symbol and the first length Receive the first nominal PUSCH from the terminal device, the time domain resources corresponding to the first nominal PUSCH are all or part of the time domain resources corresponding to the first nominal PUSCH in the first time unit, and the start time of the first nominal PUSCH is the first Symbol, the end time of the first time unit is between the start time of the first nominal PUSCH and the end time of the first nominal PUSCH.
  • the method further includes: the network device sends third information to the terminal device, and the third information indicates K.
  • the network device receives the first nominal PUSCH from the terminal device according to the second transmission mode, including: the network device within each time unit of the M time units according to the first symbol and the first length Receive the first nominal PUSCH from the terminal device, the time domain resources corresponding to the first nominal PUSCH are all or part of the time domain resources corresponding to the first nominal PUSCH in each time unit, and the start time of the first nominal PUSCH is the first Symbol, the end time of the time unit is between the start time of the first nominal PUSCH and the end time of the first nominal PUSCH, and the M time units include the first time unit.
  • the network device receives the nominal PUSCH from the terminal device according to the first transmission mode, including: the network device receives K nominal PUSCHs from the terminal device according to the first symbol and the first length, and K nominal PUSCHs
  • the PUSCH includes the first nominal PUSCH.
  • the embodiments of the present application also provide a communication device, and the beneficial effects can be referred to the description of the first aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the first aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the transceiving unit is configured to receive first information from a network device, the first information enables a first transmission mode, and the first transmission mode is to transmit M nominal PUSCHs on time domain resources of one time unit, or to transmit multiple M nominal PUSCHs are transmitted on the time domain resources of a time unit, and the M nominal PUSCHs include the first nominal PUSCH, where M is an integer greater than or equal to 1; the transceiver unit is also used to receive second information, the second Information disabling dynamically indicates the number of repetitions; the processing unit is used to determine the first nominal PUSCH; the transceiver unit is also used to send the first nominal PUSCH to the network device according to the first transmission mode or the second transmission mode, The second transmission mode is to repeatedly send K first nominal PUSCHs on K consecutive time units, and one first nominal PUSCH is sent for one time unit, where K is an integer greater than or equal to 1.
  • the embodiments of the present application also provide a communication device, and the beneficial effects can be referred to the description of the second aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the second aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the transceiving unit is configured to send first information to a terminal device, the first information enables a first transmission mode, and the first transmission mode is to transmit M nominal PUSCHs on the time domain resource of one time unit, or in multiple consecutive M nominal PUSCHs are transmitted on the time domain resources of the time unit, and the M nominal PUSCHs include the first nominal PUSCH, where M is an integer greater than or equal to 1.
  • the transceiver unit is also configured to send second information to the terminal device, and the second information is disabled to dynamically indicate the number of repetitions.
  • the processing unit is used to determine the first nominal PUSCH.
  • the transceiver unit is further configured to receive the first nominal PUSCH sent by the terminal device according to the first transmission mode or the second transmission mode.
  • the second transmission mode is to repeatedly send K first nominal PUSCHs on K continuous time units, one A first nominal PUSCH is sent in a time unit, where K is an integer greater than or equal to 1.
  • a communication device may be the terminal device in the foregoing method embodiment, or a chip set in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the terminal device in the foregoing method embodiment.
  • a communication device may be the network device in the foregoing method embodiment, or a chip set in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the network device in the foregoing method embodiment.
  • a computer program product includes: computer program code, which when the computer program code is running, causes the methods executed by the terminal device in the above aspects to be executed.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method executed by the network device in the above aspects is executed.
  • the present application provides a chip system, which includes a processor, configured to implement the functions of the terminal device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor, and is configured to implement the functions of the network device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the network device in the above aspects is implemented.
  • FIG. 1 is an example diagram of the architecture of a mobile communication system provided by an embodiment
  • FIG. 2 is an example diagram of SLIV in a time slot provided by an embodiment
  • FIG. 3 is an example diagram of transmission nominal PUSCH of an R15 transmission mechanism provided by an embodiment
  • FIG. 4 is an example diagram of transmission nominal PUSCH of an R16 transmission mechanism provided by an embodiment
  • FIG. 5 is a flowchart of sending a physical uplink shared channel according to an embodiment
  • FIG. 6 is a flowchart of sending a physical uplink shared channel according to an embodiment
  • FIG. 7 is an example diagram of transmission nominal PUSCH of an R16 transmission mechanism provided by an embodiment
  • FIG. 8 is an example diagram of transmission nominal PUSCH of an R16 transmission mechanism provided by an embodiment
  • FIG. 9 is an example diagram of a nominal PUSCH transmission of an R16 transmission mechanism provided by an embodiment
  • FIG. 10 is an example diagram of transmission nominal PUSCH of an R15 transmission mechanism provided by an embodiment
  • FIG. 11 is an example diagram of transmission nominal PUSCH of an R15 transmission mechanism provided by an embodiment
  • FIG. 12 is an example diagram of transmission nominal PUSCH of an R15 transmission mechanism provided by an embodiment
  • FIG. 13 is an example diagram of transmission nominal PUSCH of an R15 transmission mechanism provided by an embodiment
  • FIG. 14 is an example diagram of transmission nominal PUSCH of an R15 transmission mechanism provided by an embodiment
  • FIG. 15 is an example diagram of transmission nominal PUSCH of an R16 transmission mechanism provided by an embodiment
  • FIG. 16 is an example diagram of transmission nominal PUSCH of an R16 transmission mechanism provided by an embodiment
  • FIG. 17 is a flowchart of sending a physical uplink shared channel according to an embodiment
  • FIG. 19 is a diagram of an example of the composition of a communication device provided by an embodiment.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the time domain granularity of resource scheduling in the 5G mobile communication system should be more flexible.
  • 5G supports not only the time-domain scheduling granularity of the time slot level, but also the time-domain scheduling granularity of the micro-time unit.
  • scheduling of time unit granularity is mainly used for eMBB services
  • scheduling of micro time unit granularity is mainly used for URLLC services.
  • the above-mentioned time unit and micro-time unit are general terms. A specific example may be that the time unit may be called a time slot, and the micro-time unit may be called a micro-slot or sub-slot (sub-slot).
  • a time slot may include 14 time domain symbols, and the number of time domain symbols included in a mini-slot is less than 14, such as 2, 3, 4, 5, 6 or 7, etc.; or, for example, a time slot may include 7 time domain symbols, and the number of time domain symbols included in a mini-slot is less than 7, such as 2 or 4, and the specific value is not limited.
  • the time domain symbols here may be orthogonal frequency division multiplexing (OFDM) symbols.
  • the corresponding time length is 0.5 ms; for a time slot with a sub-carrier spacing of 60 kHz, the corresponding time The length is shortened to 0.125ms.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of the present application.
  • the mobile communication system includes a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or it can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device. It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location, or it can be movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiment of the present application does not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • Radio access network equipment is the access equipment that terminal equipment accesses to the mobile communication system in a wireless manner. It can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), and a transmission reception point. TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes part of the base station functions, such as It may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device.
  • wireless access network equipment is referred to as network equipment. Unless otherwise specified, network equipment refers to wireless access network equipment.
  • the terminal device may also be referred to as a terminal, user equipment (UE), mobile station, mobile terminal, and so on.
  • Terminal equipment can be mobile phones, tablet computers (Pad), computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, and wireless terminals in remote surgery , Wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • This application can be applied to a 5G new radio (NR) system, or to other communication systems, as long as there is an entity in the communication system that needs to send transmission direction indication information, and another entity needs to receive the indication information according to The indication information determines the transmission direction within a certain period of time.
  • NR new radio
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • Network equipment and terminal equipment can communicate through licensed spectrum (licensed spectrum), communicate through unlicensed spectrum (unlicensed spectrum), or communicate through licensed spectrum and unlicensed spectrum at the same time.
  • Network equipment and terminal equipment can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the time domain symbols may be OFDM symbols, or single carrier-frequency division multiplexing (SC-FDM) symbols.
  • SC-FDM single carrier-frequency division multiplexing
  • the PUSCH is only used as an example of the uplink data channel.
  • the data channel may have different names.
  • the embodiment of this application does not. Make a limit.
  • the terminal device Before the terminal device sends data to the network device, it first determines the nominal PUSCH, and uses the 3GPP R15 or R16 transmission mechanism to transmit the nominal PUSCH, and the time domain resources occupied by the nominal PUSCH carry data.
  • the nominal PUSCH is dynamically scheduled by the network device (dynamic grant), and is the PUSCH determined by the terminal device according to the uplink authorization scheduling information sent by the network device, and is not necessarily the PUSCH actually transmitted by the terminal device.
  • the uplink authorization scheduling information here may be carried in a physical downlink control channel (PDCCH) through downlink control information (DCI).
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • the uplink grant scheduling information may indicate the time domain resource allocation information in the time domain resource allocation information list, and the time domain resource allocation information indicates the offset value, the number of the starting symbol of the nominal PUSCH, and the number of the nominal PUSCH. length.
  • the uplink authorization scheduling information includes an index of time domain resource allocation information, and the terminal device queries the time domain resource allocation information list according to the index of time domain resource allocation information to determine the time domain resource allocation information.
  • the terminal device can determine the nominal PUSCH according to the starting symbol of the nominal PUSCH and the length of the nominal PUSCH, and determine the time slot for transmitting the nominal PUSCH according to the offset value, that is, the sum of the number of the PDCCH time slot and the offset value is determined as the transmission nominal The number of the time slot of the PUSCH, using the 3GPP R15 or R16 transmission mechanism to transmit the nominal PUSCH.
  • the offset value is the difference between the number of the time slot for transmitting the PDCCH and the number of the time slot for transmitting the nominal PUSCH.
  • the time domain resource allocation information list can be configured by the network equipment for the terminal equipment through high-level signaling.
  • the time-domain resource allocation information list includes at least one piece of time-domain resource allocation information.
  • the time domain resource allocation information list may be a time domain resource allocation (TDRA) table.
  • the TDRA table includes N rows, where N is an integer, N ⁇ 1, and N is not greater than 64. Each row represents a time domain resource allocation information.
  • each row corresponds to an offset value and a start and length indicator value (SLIV) in a time slot.
  • SLIV is the time domain position (time domain resource) at which the terminal device transmits the nominal PDSCH in the time slot, and the time domain resource may include at least one OFDM symbol.
  • SLIV includes the number of the starting symbol of the nominal PUSCH and the length of the nominal PUSCH.
  • FIG. 2 an example diagram of SLIV in a time slot.
  • a slot includes 16 time domain resources that can transmit PUSCH.
  • the network device may select a time domain resource location from the TDRA table to carry the PUSCH.
  • the network device can configure the TDRA form of the R15 transmission mechanism and the TDRA form of the R16 transmission mechanism for the terminal device.
  • the R15 transmission mechanism can refer to repeatedly sending K nominal PUSCHs in K consecutive time slots, one nominal PUSCH is sent in one time slot, and the same time domain symbol is used to send the nominal PUSCH in each time slot, where K is greater than or equal to An integer of 1.
  • the time slot aggregation of the R15 transmission mechanism may also be referred to as PUSCH repeated transmission type A.
  • the R15 transmission mechanism is illustrated as an example.
  • the nominal PUSCH is transmitted in a single time based on the time slot, that is, 1 nominal PUSCH is transmitted in 1 time slot.
  • the length of the nominal PUSCH is 4 symbols and the starting symbol of the nominal PUSCH is symbol 4, then the nominal PUSCH is sent on the 4th symbol and the 7th symbol in time slot n. PUSCH.
  • the nominal PUSCH is transmitted based on time slot aggregation, that is, 1 nominal PUSCH is transmitted on each of the K continuously available time slots.
  • the length of the nominal PUSCH is 4 symbols, and the starting symbol of the nominal PUSCH is symbol 4, then the fourth symbol and the seventh symbol in time slot n
  • the nominal PUSCH is sent for the first time on the symbol, and the nominal PUSCH is sent for the second time on the 4th and 7th symbols in the slot n+1.
  • the terminal device For the nominal PUSCH based on dynamic scheduling, if a PUSCH aggregation factor (pusch-AggregationFactor) K is configured in high-level signaling, the terminal device repeatedly sends the same transport block on K consecutively available time slots, and Each time slot in the time slot uses the same symbol allocation.
  • the time-domain resource allocation information may further include the number of repetitions, and the number of repetitions indicates the PUSCH aggregation factor (pusch-aggregation factor) K of time slot aggregation.
  • the value of K can be 2, 4, 6, 8, 10, or 16.
  • the repetition number K of the time slot aggregation transmission of the R15 transmission mechanism can also be dynamically indicated in the same way as the R16PUSCH transmission mechanism, that is, a column is added to the TDRA table to indicate the number of repetitions, and the number of repetitions indicates the repetition of the time slot.
  • the number of times and repetition times K can indicate K through uplink scheduling signaling (DCI format (format) 0_1/DCI format).
  • the R16 transmission mechanism is to transmit M nominal PUSCHs on the time domain resources of one time slot, or transmit M nominal PUSCHs on the time domain resources of multiple consecutively available time slots, where the M nominal PUSCHs include the first Nominal PUSCH, where the M is an integer greater than or equal to 1.
  • the time domain resource allocation of M nominal PUSCHs is back-to-back.
  • the start symbol of the mth nominal PUSCH is the next symbol of the end symbol of the m-1th nominal PUSCH.
  • the starting time slot of the mth nominal PUSCH is expressed as The start symbol in the time slot is expressed as The end time slot of the mth nominal PUSCH is expressed as The end symbol in the time slot is expressed as
  • K s is the start time slot of PUSCH transmission, Represents the number of symbols in a time slot, generally 14.
  • M is dynamically indicated by the network device.
  • the high-level signaling configures the terminal equipment to support the R16 transmission mechanism
  • the number of repetitions M can be passed through the uplink scheduling signaling (DCI format 0_1 /DCI format) instructions.
  • the R16 transmission mechanism may also be referred to as PUSCH repetition type B.
  • the value range of the sum of the nominal PUSCH start symbol S and the length of the nominal PUSCH is ⁇ 4,14 ⁇ ; for PUSCH mapping type B, the nominal PUSCH start symbol S and The value range of the sum of the length of the nominal PUSCH is ⁇ 1,14 ⁇ .
  • the value range of the sum of the starting symbol S of the nominal PUSCH and the length of the nominal PUSCH is ⁇ 1,27 ⁇ .
  • the R16 transmission mechanism is illustrated as an example.
  • the starting symbol of the nominal PUSCH is symbol 1
  • the first symbol to the 14th symbol in time slot n and time slot n The nominal PUSCH is sent on the first symbol and the second symbol in +1.
  • the nominal PUSCH crosses the time slot boundary and is divided into two PUSCHs by the time slot boundary.
  • the first PUSCH and the second PUSCH are actually transmitted, and the same transmission block is carried on the first PUSCH and the second PUSCH.
  • the nominal PUSCH (first PUSCH) is sent for the first time on the 7th symbol.
  • the nominal PUSCH (second PUSCH) is sent for the second time on the 8th to 11th symbols in the slot n.
  • the nominal PUSCH is transmitted for the third time on the 12th to 14th symbols in time slot n and the 1st symbol in time slot n+1.
  • the nominal PUSCH sent for the third time crosses the slot boundary and is divided into two PUSCHs by the slot boundary.
  • the third PUSCH and the fourth PUSCH are actually transmitted, and the third PUSCH and the fourth PUSCH carry the same transmission block. , And it is the same as other transport blocks carried on the nominal PUSCH without separate segmentation.
  • an embodiment of the present application provides a method for transmitting the PUSCH.
  • the method includes: after the terminal device receives the information sent by the network device to dynamically indicate the number of repetitions M, the terminal device adopts the R16 transmission mechanism to transmit a nominal PUSCH; or the terminal device adopts the R16 transmission mechanism according to the PUSCH aggregation factor K transmits K nominal PUSCHs; or, the terminal device adopts a single transmission based on a time slot or a slot-based repetition specified by R15. Therefore, after the network device instructs to disable the dynamic indication of the number of repetitions, the terminal device can transmit the nominal PUSCH in the above manner.
  • Fig. 5 is a flowchart of a method for transmitting a physical uplink shared channel provided by an embodiment of the application.
  • network equipment and terminal equipment are taken as examples for description.
  • the first transmission mode is the 3GPP R15 transmission mechanism.
  • the second transmission mode is the R15 transmission mechanism.
  • the method may include:
  • S501 The network device sends the first information to the terminal device.
  • the network device may send the first information to the terminal device through high-level signaling.
  • High-level signaling may refer to signaling sent by the high-level protocol layer.
  • the high-level protocol layer is at least one protocol layer above the physical layer. Among them, the high-level protocol layer may specifically include at least one of the following protocol layers: medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol (packet data convergence) protocol, PDCP) layer, radio resource control (RRC) layer, and non-access stratum (NAS).
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • NAS non-access stratum
  • the network device may send the first information to the terminal device through RRC signaling, and the first information enables the first transmission mode.
  • the first transmission mode is to transmit M nominal PUSCHs on the time domain resources of one time unit, or transmit M nominal PUSCHs on the time domain resources of multiple consecutively available time units, and the M nominal PUSCHs include the first nominal PUSCH.
  • PUSCH wherein the M is an integer greater than or equal to 1.
  • the first information also enables the second transmission mode.
  • the RRC signaling that carries the second information includes two states, one state indicates that the first transmission mode is enabled, and the other state indicates that the second transmission mode is enabled. These two states are opposites and cannot appear at the same time.
  • the second information is independently configured for each DCI format. For example, the second information of DCI format 0_1 and the second information of DCI format 0_2 are independently configured.
  • the first information enables the first transmission method.
  • S502 The terminal device receives the first information sent by the network device.
  • the network device may send the first information to the terminal device through RRC signaling, and the first information enables the first transmission mode, that is, the terminal device uses the first transmission mode to send the nominal PUSCH.
  • the first information enables the first transmission mode, that is, the terminal device uses the first transmission mode to send the nominal PUSCH.
  • S503 The network device sends the second information to the terminal device.
  • the network device may send the second information to the terminal device through RRC signaling, and the second information is disabled to dynamically indicate the number of repetitions.
  • the second information is an information element (IE) in RRC signaling that is different from the first information.
  • the second information is a field in DCI.
  • the second information is a sequence.
  • the sequence may be a reference signal, such as a demodulation reference signal (DMRS).
  • S504 The terminal device receives the second information sent by the network device.
  • the network device may send the second information to the terminal device through RRC signaling, and the second information is disabled to dynamically indicate the number of repetitions.
  • the second information is disabled to dynamically indicate the number of repetitions.
  • the terminal device sends the first nominal PUSCH to the network device according to the first transmission mode or the second transmission mode.
  • the terminal device may first determine the first nominal PUSCH and the time slot for transmitting the first nominal PUSCH before sending the first nominal PUSCH.
  • the offset value and SLIV are determined according to the uplink grant scheduling information and the TDRA table.
  • the method further includes S601 to S606.
  • the network device sends a time domain resource allocation information list to the terminal device.
  • the terminal device receives the time domain resource allocation information list sent by the network device.
  • the time domain resource allocation information list may refer to the TDRA form.
  • TDRA form For the explanation of the TDRA form, please refer to the above explanation.
  • S603 The network device sends the first control information to the terminal device.
  • S604 The terminal device receives the first control information sent by the network device.
  • the first control information may be uplink authorization scheduling information.
  • the first control information is carried in the PDCCH.
  • the first control information is used to instruct to send the first nominal PUSCH and the first time domain resource allocation information, the time domain resource allocation information list includes the first time domain resource allocation information, and the first time domain resource allocation information indicates the first offset value, The number and first length of the first symbol.
  • the first offset value is the difference between the number of the time slot for transmitting the PDCCH and the number of the time slot for transmitting the first nominal PUSCH.
  • the first symbol is the start time of sending the first nominal PUSCH.
  • the first length is the length of the first nominal PUSCH.
  • the terminal device determines first time domain resource allocation information according to the first control information and the time domain resource allocation information list.
  • the uplink authorization scheduling information includes an index of the first time domain resource allocation information
  • the terminal device queries the time domain resource allocation information list according to the index of the time domain resource allocation information to determine the first time domain resource allocation information.
  • the terminal device determines the first time unit for sending the first nominal PUSCH according to the first offset value.
  • the terminal device may determine the first nominal PUSCH according to the first symbol and the first length, and determine the first time unit for sending the first nominal PUSCH according to the first offset value, that is, the sum of the number of the time unit of the PDCCH and the first offset value
  • the value of is determined as the number of the first time unit for transmitting the first nominal PUSCH, and the 3GPP R15 or R16 transmission mechanism is used to transmit the first nominal PUSCH.
  • the first time unit may be a time slot.
  • the first nominal PUSCH is the first nominal PUSCH transmitted.
  • the network device receives the first nominal PUSCH sent by the terminal device according to the first transmission mode or the second transmission mode.
  • the network device may receive the first nominal PUSCH sent by the terminal device at the time domain location indicated by the uplink grant scheduling information.
  • the time domain position indicated by the uplink grant scheduling information reference may be made to the above description of the terminal equipment determining the first nominal PUSCH, which will not be repeated.
  • the "transmitting the first nominal PUSCH” may refer to transmitting the first nominal PUSCH or receiving the first nominal PUSCH.
  • the terminal device transmits the first nominal PUSCH once according to the first transmission mode, that is, uses the R16 transmission mechanism to transmit the first nominal PUSCH once.
  • the first PUSCH set is sent in the first time unit according to the first symbol and the first length. It is understandable that, starting from the first symbol in the first time unit, the first PUSCH set is sent on the time domain resource of the first time unit according to the first length.
  • the start time of the first nominal PUSCH is the first symbol.
  • the end time of the first time unit is between the start time of the first nominal PUSCH and the end time of the first nominal PUSCH.
  • the first PUSCH set includes the first PUSCH and the third PUSCH, where the time domain resource corresponding to the first PUSCH is the continuous valid uplink symbol in the first time unit from the start time of the first nominal PUSCH, and the third PUSCH corresponds to The time domain resource is a continuous valid uplink symbol after at least one non-uplink symbol after the start time of the first nominal PUSCH in the first time unit.
  • the end time of the first time unit is after the end time of the first nominal PUSCH.
  • the time domain resources corresponding to the first PUSCH set are all time domain resources corresponding to the first nominal PUSCH in the first time unit.
  • the start symbol of the first nominal PUSCH is symbol 3
  • the first nominal PUSCH is transmitted from the 3rd symbol to the 10th symbol in the time slot n.
  • the end time of the first time unit is before the end time of the first nominal PUSCH.
  • the time domain resources corresponding to the first PUSCH set are part of the time domain resources corresponding to the first nominal PUSCH in the first time unit.
  • the terminal device may also send a second PUSCH set, and the time domain resource corresponding to the second PUSCH set is the time domain resource determined according to the first symbol and the first length after the end time of the first time unit.
  • the starting symbol of the first nominal PUSCH is symbol 11
  • the 11th symbol to the 14th symbol in slot n and the first symbol in slot n+1
  • the first nominal PUSCH is mapped from the first symbol to the fourth symbol. Since the first nominal PUSCH crosses the slot boundary, the slot boundary divides the first nominal PUSCH into two PUSCHs, that is, the first PUSCH and the second PUSCH.
  • the first PUSCH set includes the first PUSCH.
  • the second PUSCH set includes the second PUSCH.
  • the terminal device transmits the first PUSCH on the 11th symbol to the 14th symbol in the time slot n, and transmits the second PUSCH on the 1st symbol to the 4th symbol in the time slot n+1.
  • the same transport block is carried on the first PUSCH and the second PUSCH.
  • the network device receives the first PUSCH set on the resource corresponding to the first PUSCH set, and receives the second PUSCH set on the resource corresponding to the second PUSCH set.
  • the terminal device maps (or is referred to as virtual mapping) the first nominal PUSCH on the effective uplink symbols in the time domain according to the length of the first nominal PUSCH from the start time of the first nominal PUSCH.
  • the so-called effective uplink symbol refers to a symbol used for mapping PUSCH or uplink information. Effective uplink symbols may also include flexible symbols indicated as uplink by a slot format indicator (SFI).
  • the uplink information includes uplink control information and uplink data information. Alternatively, the uplink information includes uplink control information. Alternatively, the uplink information includes uplink data information.
  • the non-uplink symbols include downlink symbols, flexible symbols indicated as downlink by SFI, and symbols within a short time interval.
  • the downlink symbols are used for mapping PDSCH or downlink information symbols.
  • the downlink information includes downlink control information and downlink data information. Alternatively, the downlink information includes downlink control information. Alternatively, the downlink information includes downlink data information.
  • the short time interval may refer to the first time interval.
  • the short time interval is less than or not greater than the first time interval.
  • the length of the first time interval may refer to the length of a single symbol (Orphan symbol).
  • the period between the start time of the first nominal PUSCH and the end time of the first time unit indicated by the first control information includes at least one valid uplink symbol and at least one non-uplink symbol.
  • the start time of the first nominal PUSCH may be within the first time unit.
  • the first nominal PUSCH is mapped to at least one valid uplink symbol, and the first nominal PUSCH skips at least one non-uplink symbol during mapping.
  • the time domain resource used for mapping the first nominal PUSCH includes at least two uplink regions.
  • Each of the at least two uplink regions includes at least one valid uplink symbol.
  • Any one of the at least two uplink areas is composed of P valid uplink symbols that are continuous in time.
  • the sum of the length of the time domain of at least one uplink region corresponds to the length of the first nominal PUSCH indicated by the first control information, and P is a positive integer.
  • Any two adjacent uplink areas in the at least two uplink areas include non-uplink symbols, that is, no valid uplink symbols are included.
  • the end time of the first time unit is before the end time of the first nominal PUSCH.
  • the time domain resources corresponding to the first PUSCH set are part of the time domain resources corresponding to the first nominal PUSCH in the first time unit. For example, as shown in Figure 9. Assume that the length L of the first nominal PUSCH is 8 symbols, and the start symbol of the first nominal PUSCH is symbol 5. The fifth symbol to the eighth symbol in slot n, the 13th symbol and the 14th symbol in slot n, and the first symbol and second symbol in slot n+1 are mapped on A nominal PUSCH.
  • the 9th to 12th symbols in slot n are downlink symbols
  • the 9th to 12th symbols are skipped, and the mapping of the first nominal PUSCH is postponed, and the first uplink symbol after the downlink symbol is skipped.
  • the symbol (the 12th symbol of time slot n) starts to map to the first nominal PUSCH, that is, the 13th symbol and the 14th symbol in time slot n continue to be mapped to the first nominal PUSCH.
  • the first nominal PUSCH crosses the slot boundary, and the slot boundary divides the first nominal PUSCH into two PUSCHs.
  • the PUSCH mapped on the 13th symbol to the 14th symbol of slot n can be called the second PUSCH, the PUSCH mapped on the first symbol and the first symbol of time slot n+1 may be referred to as the third PUSCH.
  • the first PUSCH set includes the first PUSCH and the second PUSCH.
  • the second PUSCH set includes the third PUSCH.
  • the first PUSCH and the second PUSCH are located in the same uplink region.
  • the terminal device transmits the first PUSCH on the 5th symbol to the 8th symbol in the time slot n, transmits the second PUSCH on the 13th symbol to the 14th symbol in the time slot n, and transmits the second PUSCH on the time slot n+1
  • the third PUSCH is sent on the first symbol to the second symbol in.
  • the same transport block is carried on the first PUSCH, the second PUSCH, and the third PUSCH.
  • the network device receives the first PUSCH set on the resource corresponding to the first PUSCH set, and receives the second PUSCH set on the resource corresponding to the second PUSCH set.
  • the terminal device transmits the first nominal PUSCH according to the second transmission mode, that is, the first nominal PUSCH is transmitted using the single transmission based on the time slot specified by R15.
  • a single transmission of the first nominal PUSCH is performed within the first time unit according to the first symbol and the first length.
  • the first nominal PUSCH is sent on the time domain resource of the first time unit according to the first length.
  • the start time of the first nominal PUSCH is the first symbol
  • the end time of the first time unit is between the start time of the first nominal PUSCH and the end time of the first nominal PUSCH.
  • the end time of the first time unit is after the end time of the first nominal PUSCH.
  • the time domain resources corresponding to the first nominal PUSCH are all time domain resources corresponding to the first nominal PUSCH in the first time unit.
  • the start symbol of the first nominal PUSCH is symbol 3
  • the first nominal PUSCH is transmitted from the 3rd symbol to the 10th symbol in the time slot n.
  • the end time of the first time unit is before the end time of the first nominal PUSCH.
  • the time domain resources corresponding to the first nominal PUSCH are part of the time domain resources corresponding to the first nominal PUSCH in the first time unit.
  • the first nominal PUSCH is not sent after the end time of the first time unit.
  • the starting symbol of the first nominal PUSCH is symbol 1
  • the first nominal PUSCH is mapped on the first symbol to the 14th symbol in the time slot n. Since the first nominal PUSCH crosses the slot boundary, the slot boundary divides the first nominal PUSCH into two PUSCHs, that is, the first PUSCH and the second PUSCH.
  • the terminal device transmits the first PUSCH on the first symbol to the fourteenth symbol in the time slot n, and does not transmit the second PUSCH.
  • the network device receives the first PUSCH on the resource corresponding to the first PUSCH.
  • the first nominal PUSCH is mapped on the first symbol to the eleventh symbol in slot n.
  • the terminal device transmits the first PUSCH on the first symbol to the eleventh symbol in the time slot n.
  • the network device receives the first PUSCH on the resource corresponding to the first PUSCH.
  • the terminal device repeatedly transmits the first nominal PUSCH based on the time slot according to the second transmission mode, that is, the first nominal PUSCH is repeatedly transmitted based on the time slot specified by R15.
  • the first nominal PUSCH is transmitted in each time unit of M time units according to the first symbol and the first length.
  • the terminal device receives the third information sent by the network device, and the third information indicates the value of the time slot aggregation factor K. If K is not equal to M, because the network equipment of M dynamically indicates that it is determined by the network equipment in real time according to the uplink channel quality, the terminal equipment can send M first nominal PUSCHs according to the second transmission mode, thereby improving the reliability of data transmission Sexuality and adaptability.
  • the first nominal PUSCH is sent according to the first length.
  • the start time of the first nominal PUSCH is the first symbol.
  • the end time of the time unit is between the start time of the first nominal PUSCH and the end time of the first nominal PUSCH, and the M time units include the first time unit.
  • the end time of the time unit is after the end time of the first nominal PUSCH.
  • the time domain resources corresponding to the first nominal PUSCH are all time domain resources corresponding to the first nominal PUSCH in the first time unit.
  • the length L of the first nominal PUSCH is 8 symbols
  • the start symbol of the first nominal PUSCH is symbol 7
  • the first transmission is performed for the first time from the 7th symbol to the 14th symbol in the time slot n.
  • the first nominal PUSCH is sent for the second time on the 7th symbol to the 14th symbol in the time slot n+1.
  • the end time of the time unit is before the end time of the first nominal PUSCH.
  • the time domain resources corresponding to the first nominal PUSCH are part of the time domain resources corresponding to the first nominal PUSCH in the first time unit.
  • the first nominal PUSCH is not sent after the end time of M time units.
  • the length L of the first nominal PUSCH is 8 symbols, and the start symbol of the first nominal PUSCH is symbol 11.
  • the first nominal PUSCH is mapped on the 11th to 14th symbols in the slot n. Since the first nominal PUSCH crosses the slot boundary, the slot boundary divides the first nominal PUSCH into two PUSCHs, that is, the first PUSCH and the second PUSCH.
  • the terminal device sends the first PUSCH on the 11th symbol to the 14th symbol in the time slot n, and does not send the second PUSCH.
  • the network device receives the first PUSCH on the resource corresponding to the first PUSCH in the time slot n.
  • the first nominal PUSCH is mapped on the 11th symbol to the 14th symbol in the time slot n+1. Since the first nominal PUSCH crosses the time slot boundary, the time slot boundary divides the first nominal PUSCH into two PUSCHs, that is, the first PUSCH and the second PUSCH.
  • the terminal device sends the first PUSCH on the 11th symbol to the 14th symbol in the time slot n+1, and does not send the second PUSCH.
  • the network device receives the first PUSCH on the resource corresponding to the first PUSCH in the time slot n+1.
  • the terminal device receives the third information sent by the network device, and the third information indicates the value of the time slot aggregation factor K. If K is equal to M, the terminal device can send M first nominal PUSCHs according to the second transmission mode, which is equivalent to that the terminal device can send K first nominal PUSCHs according to the second transmission mode, which is the same as the time slot-based repetition specified by R15 ( Slot-based repetition) The mechanism for sending the first nominal PUSCH is the same.
  • the terminal device receives the third information sent by the network device, and the third information indicates the value of the time slot aggregation factor K.
  • the terminal device sends K first nominal PUSCHs according to the first transmission mode, that is, uses the R16 transmission mechanism to send K first nominal PUSCHs.
  • K nominal PUSCHs are transmitted according to the first length, and the K nominal PUSCHs include the first nominal PUSCH.
  • the nominal PUSCH is the i-th nominal PUSCH in the first nominal PUSCH indicated by the repeated transmission of the first control information, i is an integer, and 1 ⁇ i ⁇ K.
  • the starting time of the first nominal PUSCH in the K nominal PUSCHs corresponds to the starting time of the nominal PUSCH in the time domain resource allocation field, that is, the starting time of the first symbol (the starting time of the first nominal PUSCH Starting time).
  • the length of the first nominal PUSCH in the K nominal PUSCHs corresponds to the length of the nominal PUSCH in the time domain resource allocation field, that is, the first length (the length of the first nominal PUSCH).
  • the first nominal PUSCH in the K nominal PUSCHs may refer to the nominal PUSCH indicated by the first control information.
  • the end time of the first nominal PUSCH indicated by the first control information is determined by the start time of the first nominal PUSCH indicated by the first control information and the length L of the first nominal PUSCH.
  • the end time of the first nominal PUSCH indicated by the first control information is the start time of the first nominal PUSCH indicated by the first control information, the length L of the first nominal PUSCH, and the first nominal PUSCH indicated by the first control information. Determined by non-uplink symbols after the start time of a nominal PUSCH.
  • the starting time of the i-th nominal PUSCH in the K nominal PUSCHs is composed of the starting time of the first nominal PUSCH, the length of the first nominal PUSCH, and the starting time of the first nominal PUSCH
  • the following non-uplink symbols are determined.
  • the length of the i-th nominal PUSCH in the K nominal PUSCHs corresponds to the length of the first nominal PUSCH in the above-mentioned time domain resource allocation field.
  • the end time of the i-th nominal PUSCH in the K nominal PUSCHs is determined by the start time of the first nominal PUSCH, the length of the first nominal PUSCH, and the non-uplink symbols after the start time of the first nominal PUSCH.
  • the end time of the nominal PUSCH is later than the end time corresponding to the first nominal PUSCH indicated by the first control information.
  • the start time S of the nominal PUSCH can be expressed as S0+(i -1)*L.
  • the end time of the nominal PUSCH can be expressed as S0+i*L.
  • S0 represents the start time of the first nominal PUSCH among the K nominal PUSCHs indicated by the first control information.
  • the start time of the first nominal PUSCH indicated by the first control information to the end time of the first time unit includes at least one valid uplink symbol and at least one non-uplink symbol
  • the start of the nominal PUSCH Time S can be expressed as S0+(i-1)*L+N_NUL.
  • the end time of the nominal PUSCH can be expressed as S0+i*L+N_NUL_2.
  • N_NUL represents the number of non-uplink symbols between the start time of the first nominal PUSCH in the K nominal PUSCHs and the start time of the nominal PUSCH
  • N_NUL_2 represents the start time of the first nominal PUSCH in the K nominal PUSCHs and The number of non-uplink symbols between the end moments of the nominal PUSCH.
  • the starting time S of the first nominal PUSCH in the K nominal PUSCHs can be expressed as S0+N_NUL, and S0+N_NUL can represent the starting time of the first nominal PUSCH in the K nominal PUSCHs and the There are non-uplink symbols between the starting moments indicated by the first control information.
  • the first PUSCH set is sent on the time domain resource of the first time unit according to the first length.
  • the start time of the first nominal PUSCH is the first symbol.
  • the end time of the first time unit is between the start time of the nominal PUSCH and the end time of the nominal PUSCH.
  • the end time of the first time unit is after the end time of the nominal PUSCH.
  • the first nominal PUSCH is transmitted for the first time on the 5th to 8th symbols in the slot n.
  • the first nominal PUSCH is sent for the second time on the 9th to 12th symbols in slot n.
  • the first PUSCH set includes the first PUSCH and the second PUSCH.
  • the network device receives the first PUSCH on the resource corresponding to the first PUSCH, and receives the second PUSCH on the resource corresponding to the second PUSCH.
  • the end time of the first time unit is before the end time of the nominal PUSCH.
  • the time domain resources corresponding to the first PUSCH set are part of the time domain resources corresponding to the first nominal PUSCH in the first time unit.
  • the terminal device may also send a second PUSCH set, and the time domain resource corresponding to the second PUSCH set is the time domain resource determined according to the first symbol and the first length after the end time of the time unit.
  • the 9th to 12th symbols in slot n are downlink symbols
  • the 9th to 12th symbols are skipped, and the mapping of the first nominal PUSCH is postponed, and the first uplink symbol after the downlink symbol is skipped.
  • the symbol (the 12th symbol of time slot n) starts to map to the first nominal PUSCH, that is, the 13th symbol and the 14th symbol in time slot n continue to be mapped to the first nominal PUSCH.
  • the first nominal PUSCH crosses the slot boundary, and the slot boundary divides the first nominal PUSCH into two PUSCHs.
  • the PUSCH mapped on the 13th symbol to the 14th symbol of slot n can be called the second PUSCH, the PUSCH mapped on the first symbol and the first symbol of time slot n+1 may be referred to as the third PUSCH.
  • the first PUSCH set includes the first PUSCH and the second PUSCH.
  • the second PUSCH set includes the third PUSCH.
  • the first PUSCH and the second PUSCH are located in the same uplink region.
  • the terminal device transmits the first PUSCH on the 5th symbol to the 8th symbol in the time slot n, transmits the second PUSCH on the 13th symbol to the 14th symbol in the time slot n, and transmits the second PUSCH on the time slot n+1
  • the third PUSCH is sent on the first symbol to the second symbol in.
  • the same transport block is carried on the first PUSCH, the second PUSCH, and the third PUSCH.
  • the network device receives the first PUSCH set on the resource corresponding to the first PUSCH set, and receives the second PUSCH set on the resource corresponding to the second PUSCH set.
  • the terminal device considers that the dynamically indicated R16 PUSCH transmission repetition number is disabled, which means that it is instructed to no longer support the R16 transmission mechanism.
  • the time domain resource allocation table configured by the network device for the R16 transmission mechanism is also unavailable.
  • the network device can configure a time domain resource allocation table that supports the R15 transmission mechanism for the terminal device.
  • the terminal device uses the time domain resource allocation table configured to the DCI format 0_0 and the control information of the uplink scheduling grant to determine the time domain resources of the PUSCH. Because DCI format 0_0 is called fallback DCI and does not support the R16 transmission mechanism, all time domain resources in the time domain resource allocation table configured for fallback DCI can be used for R15 transmission.
  • Fallback DCI (fallback DCI) refers to the DCI transmitted when the access state is initialized or when the cell is switched.
  • the control information of the uplink scheduling grant is downlink control information, and the control information may be DCI format 0_1 or DCI format 0_2.
  • the cyclic redundancy check (CRC) of the control information can be determined by the cell radio network temporary identifier (C-RNTI) and the configured scheduling-cell radio network temporary identifier (C-RNTI). At least one RNTI scrambling in identifier, CS-RNTI) and modulation and coding mode-Cell Radio Network Temporary Identifier (Modulation and coding scheme-Cell-Radio network temporary identifier, MCS-C-RNTI).
  • the "DCI Format Identifier" (Identifier for DCI Formats) information field in the DCI is used to identify the DCI format.
  • the DCI format 0_1 is a non-fallback DCI, and the non-fallback DCI is different from the fallback DCI (DCI format 0_0).
  • RNTI is used to scramble DCI format 0_0.
  • RNTI includes paging-radio network temporary identifier (P-RNTI), random access-radio network temporary identifier (RA-RNTI), system message-radio network temporary identifier (RA-RNTI) Identifier (System information-Radio network temporary identifier, SI-RNTI), temporary cell radio network temporary identifier (Temporary cell-Radio network temporary identifier, TC-RNTI), and C-RNTI, CS-RNTI, and MCS-RNTI.
  • the DCI format 0_0 can be used to schedule a downlink shared physical channel (PDSCH) that carries paging information, initial access response information, or system messages.
  • the DCI format 0_1 is used to schedule PDSCH in the connected state.
  • DCI format 0_1 carries more control information than DCI format 0_0.
  • DCI format 0_1 includes carrier indicator, BWP indicator, downlink allocation indicator, SRS resource indicator, precoding information and number of layers, SRS request, CSI request, coding block transmission indicator, antenna port, rate matching indicator, DMRS sequence initialization and At least one of UL-SCH indications.
  • DCI format 0_2 is compact DCI (compact DCI).
  • compact DCI compact DCI
  • the feature of compact DCI is different from the other two DCI formats in that most of its DCI fields can be configured with 0 bits to save DCI overhead and improve the reliability of DCI transmission.
  • FIG. 17 is a flowchart of a method for transmitting a physical uplink shared channel provided by an embodiment of the application.
  • network equipment and terminal equipment are taken as examples for description.
  • the first transmission mode is the 3GPP R15 transmission mechanism.
  • the second transmission mode is the R15 transmission mechanism.
  • the method may include:
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information sent by the network device.
  • the first information indicates the first transmission mode or the second transmission mode.
  • the first transmission mode is to transmit M nominal PUSCHs on the time domain resources of one time unit, or transmit M nominal PUSCHs on the time domain resources of multiple time units that are continuously available, and the M nominal PUSCHs include the first nominal PUSCH,
  • the second transmission mode is to repeatedly send K first nominal PUSCHs on K continuously available time units, one first nominal PUSCH is sent for one time unit, M is an integer greater than or equal to 1, and K is an integer greater than or equal to 1. .
  • the terminal device When the first information indicates the second transmission mode, the terminal device considers that the dynamically indicated R16 PUSCH transmission repetition number is disabled, which means that it is instructed to no longer support the R16 transmission mechanism.
  • the method also includes S1703 and S1704.
  • the terminal device sends the first nominal PUSCH to the network device according to the second transmission mode.
  • the terminal device starts a single transmission of the first nominal PUSCH according to the first length from the first symbol in the first time unit. Specifically, starting from the first symbol in the first time unit, the first nominal PUSCH is sent on the time domain resource of the first time unit according to the first length, and the time domain resource corresponding to the first nominal PUSCH is in the first time unit All or part of the time domain resources corresponding to the first nominal PUSCH, the start time of the first nominal PUSCH is the first symbol, and the end time of the first time unit is the start time of the first nominal PUSCH and the end of the first nominal PUSCH Between moments. If the length of the first nominal PUSCH is greater than the length of the first time unit, the first nominal PUSCH is not sent after the end time of the first time unit.
  • the network device receives the first nominal PUSCH sent by the terminal device according to the second transmission mode.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • Figures 18 and 19 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can be used to implement the functions of the terminal device or the network device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • the communication device may be the terminal device 130 or the terminal device 140 shown in FIG. 1, or the wireless access network device 120 shown in FIG. 1, or it may be applied to the terminal device. Or a module of a network device (such as a chip).
  • the communication device 1800 includes a processing unit 1810 and a transceiving unit 1820.
  • the communication device 1800 is configured to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 5, FIG. 6 or FIG. 17.
  • the transceiver unit 1820 is used to perform S502, S504, and S505.
  • the transceiver unit 1820 is used to execute S501, S503, and S506.
  • the transceiver unit 1820 is used to execute S502, S504, S505, S602, and S604; the processing unit 1810 is used to S605 and S606.
  • the transceiver unit 1820 is used in S501, S503, S506, S601, and S603.
  • the transceiver unit 1820 is used to perform S1702 and S1703.
  • the transceiver unit 1820 is used in S1701 and S1704.
  • processing unit 1810 and the transceiver unit 1820 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 5, FIG. 6 or FIG. 17, and will not be repeated here.
  • the communication device 1900 includes a processor 1910 and an interface circuit 1919.
  • the processor 1910 and the interface circuit 1919 are coupled to each other.
  • the interface circuit 1919 may be a transceiver or an input/output interface.
  • the communication device 1900 may further include a memory 1930 configured to store instructions executed by the processor 1910 or input data required by the processor 1910 to run the instructions or store data generated after the processor 1910 runs the instructions.
  • the processor 1910 is used to perform the function of the above-mentioned processing unit 1810
  • the interface circuit 1919 is used to perform the function of the above-mentioned transceiving unit 1820.
  • the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent from the terminal device to the network device.
  • the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antennas).
  • the antenna sends information, which is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), and programmable read-only memory (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known Any other form of storage medium.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • Electrically Erasable Programmable Read-Only Memory Electrically Erasable Programmable Read-Only Memory
  • register hard disk
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be downloaded from a website, computer, The server or data center transmits to another website site, computer, server or data center through wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disc (digital video disc, DVD); and it may also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated object before and after is an “or” relationship; in the formula of this application, the character “/” indicates that the associated object before and after is a kind of "division" Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种发送物理上行共享信道的方法及装置,涉及通信领域,解决了去使能动态指示PUSCH重复类型B的重复次数后,如何传输PUSCH的问题。该方法包括:在终端设备接收到网络设备发送的去使能动态指示重复次数M的信息后,终端设备采用R16传输机制传输一个名义PUSCH;或者,终端设备采用R16传输机制,根据PUSCH聚合因子K传输K个名义PUSCH;或者,终端设备采用R15规定的基于时隙的单次传输或基于时隙的重复(slot-based repetition)。从而,在网络设备指示去使能动态指示重复次数后,终端设备可以根据上述方式传输名义PUSCH。

Description

一种发送物理上行共享信道的方法及装置 技术领域
本申请实施例涉及通信领域,尤其涉及一种发送物理上行共享信道的方法及装置。
背景技术
国际电信联盟(international telecommunication union,ITU)为第五代(the fifth generation,5G)移动通信系统以及未来的移动通信系统定义了三大类业务应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)、海量机器类通信(massive machine type communications,mMTC)
5G终端设备可以采用第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)版本15(release 15,R15)传输机制或版本16(release 16,R16)传输机制向网络设备发送物理上行共享信道(physical uplink shared channel,PUSCH)。R15传输机制包括基于时隙的单次传输和基于时隙的重复传输(slot-based repetition)。基于时隙的重复也可以称为时隙聚合(slot aggregation)。R16传输机制可以称为基于微时隙的重复(mini-slot-based repetition)传输。基于微时隙的重复传输是指在一个时隙的时域资源上传输至少一个PUSCH,或者在连续可用的多个时隙的时域资源上横跨(across)时隙边界传输至少一个PUSCH。在网络设备指示去使能动态指示重复次数后,终端设备采用哪种方式传输PUSCH,目前还没有确定的方案。
发明内容
本申请实施例提供一种发送物理上行共享信道的方法及装置,解决了去使能动态指示PUSCH重复类型B的重复次数后,如何传输PUSCH的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供了一种发送物理上行共享信道的方法,该方法可应用于终端设备,或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片系统。该方法包括:终端设备接收到来自网络设备的第一信息后,终端设备使能第一传输方式,若终端设备接收到去使能动态指示重复次数的第二信息后,根据第一传输方式或第二传输方式发送第一名义PUSCH。其中,第一传输方式为在一个时间单元的时域资源上传输M个名义PUSCH、或者在连续多个时间单元的时域资源上传输M个名义PUSCH,M个名义PUSCH包括第一名义PUSCH,M为大于或等于1的整数。第二传输方式为在K个连续时间单元上重复发送K个第一名义PUSCH,一个时间单元发送一个第一名义PUSCH,K为大于或等于1的整数。
本申请实施例提供的发送物理上行共享信道的方法,在终端设备接收到去使能动态指示重复次数的指示后,可以根据第一传输方式或第二传输方式发送第一名义PUSCH,避免了终端设备和网络设备之间对(动态指示PUSCH重复类型B的重复次数)去使能后PUSCH传输理解不一致的情况,提高了传输的可靠性,避免了不必要的重 传。
在一些实施例中,本文所述的时间单元可以指时隙。
在一种可能的设计中,方法还包括:终端设备接收来自网络设备的时域资源分配信息列表和第一控制信息。其中,所述时域资源分配信息列表包括至少一个时域资源分配信息,时域资源分配信息指示偏移值、名义PUSCH的起始符号的编号、名义PUSCH的长度和重复次数,偏移值为传输物理下行共享信道(physical downlink control channel,PDCCH)的时间单元的编号到传输名义PUSCH的时间单元的编号的差值。所述第一控制信息承载于PDCCH中,第一控制信息指示第一时域资源分配信息,时域资源分配信息列表包括第一时域资源分配信息,第一时域资源分配信息指示第一偏移值、第一符号的编号和第一长度,第一名义PUSCH是根据第一符号和第一长度确定的第一个名义PUSCH。
第一名义PUSCH是根据第一符号和第一长度确定的第一个名义PUSCH,还可以替换描述为,第一名义PUSCH是根据第一符号的编号和第一长度确定的第一个名义PUSCH。应理解,终端设备可以先根据第一符号的编号确定第一符号,再根据第一符号和第一长度确定的第一个名义PUSCH。
在一些实施例中,终端设备根据第一控制信息和时域资源分配信息列表确定第一时域资源分配信息,并根据第一偏移值确定发送第一名义PUSCH的第一时间单元。从而,以便于终端设备或网络设备确定传输第一名义PUSCH的时域资源。
接下来,对终端设备根据第一传输方式或第二传输方式发送第一名义PUSCH的可能的实现方式进行详细说明。
在第一种可能的实现方式中,终端设备根据第一传输方式发送第一名义PUSCH,包括:终端设备根据第一符号和第一长度在第一时间单元内向网络设备发送第一PUSCH集合,第一PUSCH集合对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部或部分时域资源,第一名义PUSCH的起始时刻为第一符号,第一时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间。
可选的,终端设备向网络设备还发送第二PUSCH集合,第二PUSCH集合对应的时域资源是根据第一符号和第一长度确定的在第一时间单元的结束时刻之后的时域资源。
在第二种可能的实现方式中,终端设备根据第二传输方式发送第一名义PUSCH,包括:终端设备根据第一符号和第一长度在第一时间单元内对第一名义PUSCH进行单次传输。
在一些实施例中,终端设备根据第一符号和第一长度在第一时间单元内对第一名义PUSCH进行单次传输,包括:终端设备根据第一符号和第一长度在第一时间单元内向网络设备发送第一名义PUSCH,第一名义PUSCH对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部或部分时域资源,第一名义PUSCH的起始时刻为第一符号,第一时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间。
可选的,在第一时间单元的结束时刻之后不发送第一名义PUSCH。
在另一种可能的设计中,方法还包括:终端设备接收来自网络设备的第三信息, 第三信息指示K。
在第三种可能的实现方式中,终端设备根据第二传输方式向网络设备发送第一名义PUSCH,包括:终端设备根据第一符号和第一长度在M个时间单元的每个时间单元内向网络设备发送第一名义PUSCH,第一名义PUSCH对应的时域资源为在每个时间单元内第一名义PUSCH对应的全部或部分时域资源,第一名义PUSCH的起始时刻为第一符号,时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间,M个时间单元包括第一时间单元。
可选的,方法还包括:在M个时间单元的结束时刻之后不发送第一名义PUSCH。
在第四种可能的实现方式中,终端设备根据第一传输方式发送名义PUSCH,包括:终端设备根据第一符号和第一长度发送K个名义PUSCH,K个名义PUSCH包括第一名义PUSCH。
第二方面,本申请实施例提供了一种接收物理上行共享信道的方法,该方法可应用于网络设备,或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片系统。该方法包括:网络设备向终端设备发送第一信息和第二信息后,可以根据第一传输方式或第二传输方式接收来自终端设备的第一名义PUSCH。其中,第一信息使能第一传输方式。第二信息去使能动态指示重复次数。第一传输方式为在一个时间单元的时域资源上传输M个名义PUSCH、或者在连续多个时间单元的时域资源上传输M个名义PUSCH,M个名义PUSCH包括第一名义PUSCH,M为大于或等于1的整数。第二传输方式为在K个连续时间单元上重复发送K个第一名义PUSCH,一个时间单元发送一个第一名义PUSCH,其中,K为大于或等于1的整数。
在一种可能的设计中,方法还包括:网络设备向终端设备发送时域资源分配信息列表和第一控制信息。其中,时域资源分配信息列表包括至少一个时域资源分配信息,时域资源分配信息指示偏移值、名义PUSCH的起始符号的编号、名义PUSCH的长度和重复次数,偏移值为传输PDCCH的时间单元的编号到传输名义PUSCH的时间单元的编号的差值。第一控制信息承载于PDCCH中,第一控制信息指示第一时域资源分配信息,时域资源分配信息列表包括第一时域资源分配信息,第一时域资源分配信息指示第一偏移值、第一符号的编号和第一长度,第一名义PUSCH是根据第一符号和第一长度确定的第一个名义PUSCH。
在一些实施例中,网络设备根据第一偏移值确定接收第一名义PUSCH的第一时间单元。
接下来,对网络设备根据第一传输方式或第二传输方式接收第一名义PUSCH的可能的实现方式进行详细说明。
在第一种可能的实现方式中,网络设备根据第一传输方式接收来自终端设备的第一名义PUSCH,包括:网络设备根据第一符号和第一长度在第一时间单元内接收来自终端设备的第一PUSCH集合,第一PUSCH集合对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部或部分时域资源,第一名义PUSCH的起始时刻为第一符号,第一时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间。
可选的,网络设备还接收来自终端设备的第二PUSCH集合,第二PUSCH集合对 应的时域资源是根据第一符号和第一长度确定的在第一时间单元的结束时刻之后的时域资源。
在第二种可能的实现方式中,网络设备根据第二传输方式接收来自终端设备的第一名义PUSCH,包括:网络设备根据第一符号和第一长度在第一时间单元内对第一名义PUSCH进行单次接收。
在一些实施例中,网络设备根据第一符号和第一长度在第一时间单元内对第一名义PUSCH进行单次接收,包括:网络设备根据第一符号和第一长度在第一时间单元内接收来自终端设备的第一名义PUSCH,第一名义PUSCH对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部或部分时域资源,第一名义PUSCH的起始时刻为第一符号,第一时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间。
在另一种可能的设计中,方法还包括:网络设备向终端设备发送第三信息,第三信息指示K。
在第三种可能的实现方式中,网络设备根据第二传输方式接收来自终端设备的第一名义PUSCH,包括:网络设备根据第一符号和第一长度在M个时间单元的每个时间单元内接收来自终端设备的第一名义PUSCH,第一名义PUSCH对应的时域资源为在每个时间单元内第一名义PUSCH对应的全部或部分时域资源,第一名义PUSCH的起始时刻为第一符号,时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间,M个时间单元包括第一时间单元。
在第四种可能的实现方式中,网络设备根据第一传输方式接收来自终端设备的名义PUSCH,包括:网络设备根据第一符号和第一长度接收来自终端设备的K个名义PUSCH,K个名义PUSCH包括第一名义PUSCH。
第三方面,本申请实施例还提供了一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:收发单元和处理单元。所述收发单元,用于接收来自网络设备的第一信息,第一信息使能第一传输方式,第一传输方式为在一个时间单元的时域资源上传输M个名义PUSCH、或者在连续多个时间单元的时域资源上传输M个名义PUSCH,M个名义PUSCH包括第一名义PUSCH,其中,M为大于或等于1的整数;所述收发单元,还用于接收第二信息,第二信息去使能动态指示重复次数;所述处理单元,用于确定第一名义PUSCH;所述收发单元,还用于根据第一传输方式或第二传输方式向网络设备发送第一名义PUSCH,第二传输方式为在K个连续时间单元上重复发送K个第一名义PUSCH,一个时间单元发送一个第一名义PUSCH,其中,K为大于或等于1的整数。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,本申请实施例还提供了一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件 包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:收发单元和处理单元。所述收发单元,用于向终端设备发送第一信息,第一信息使能第一传输方式,第一传输方式为在一个时间单元的时域资源上传输M个名义PUSCH、或者在连续多个时间单元的时域资源上传输M个名义PUSCH,M个名义PUSCH包括第一名义PUSCH,其中,M为大于或等于1的整数。所述收发单元,还用于向终端设备发送第二信息,第二信息去使能动态指示重复次数。所述处理单元,用于确定第一名义PUSCH。所述收发单元,还用于根据第一传输方式或第二传输方式接收终端设备发送的第一名义PUSCH,第二传输方式为在K个连续时间单元上重复发送K个第一名义PUSCH,一个时间单元发送一个第一名义PUSCH,其中,K为大于或等于1的整数。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存 储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法。
本申请中,终端设备、网络设备和通信装置的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
附图说明
图1为一实施例提供的一种移动通信系统的架构示例图;
图2为一实施例提供的一个时隙内的SLIV的示例图;
图3为一实施例提供的一种R15传输机制的传输名义PUSCH示例图;
图4为一实施例提供的一种R16传输机制的传输名义PUSCH示例图;
图5为一实施例提供的一种发送物理上行共享信道的流程图;
图6为一实施例提供的一种发送物理上行共享信道的流程图;
图7为一实施例提供的一种R16传输机制的传输名义PUSCH示例图;
图8为一实施例提供的一种R16传输机制的传输名义PUSCH示例图;
图9为一实施例提供的一种R16传输机制的传输名义PUSCH示例图;
图10为一实施例提供的一种R15传输机制的传输名义PUSCH示例图;
图11为一实施例提供的一种R15传输机制的传输名义PUSCH示例图;
图12为一实施例提供的一种R15传输机制的传输名义PUSCH示例图;
图13为一实施例提供的一种R15传输机制的传输名义PUSCH示例图;
图14为一实施例提供的一种R15传输机制的传输名义PUSCH示例图;
图15为一实施例提供的一种R16传输机制的传输名义PUSCH示例图;
图16为一实施例提供的一种R16传输机制的传输名义PUSCH示例图;
图17为一实施例提供的一种发送物理上行共享信道的流程图;
图18为一实施例提供的一种通信装置的组成示例图;
图19为一实施例提供的一种通信装置的组成示例图。
具体实施方式
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了满足业务的时延要求,5G移动通信系统的资源调度的时域粒度要更加灵活。具体的,5G既支持时隙级别的时域调度粒度,也可以支持微时间单元的时域调度粒度。例如,时间单元粒度的调度主要用于eMBB业务,微时间单元粒度的调度主要用于URLLC业务。需要说明的是,上述时间单元和微时间单元是一般性的说法,具体的一个例子可以为,时间单元可以称为时隙,微时间单元可以称为微时隙、子时隙(sub-slot)、非时隙(non-slot-based)或迷你时隙(mini-slot);或者,时间单元可以称为子帧,微时间单元可以称为微子帧;其他类似的时域资源划分方式都不做限定。本申请以下均 以时间单元为时隙来举例说明,其中,一个时隙比如可以包括14个时域符号,一个微时隙包括的时域符号数小于14,比如2、3、4、5、6或7等等;或者,一个时隙比如可以包括7个时域符号,一个微时隙包括的时域符号数小于7,比如2或4等等,具体取值也不做限定。这里的时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。对于子载波间隔为15千赫兹(kilohertz,kHz)的一个时隙,包括6个或7个时域符号,对应的时间长度为0.5ms;对于子载波间隔为60kHz的一个时隙,对应的时间长度则缩短为0.125ms。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请可以应用于5G新空口(new radio,NR)系统,也可以应用于其它的通信系统,只要该通信系统中存在实体需要发送传输方向指示信息,另一个实体需要接收该指示信息,并根据该指示信息确定一定时间内的传输方向。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授 权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在本申请的各实施例中,时域符号可以是OFDM符号,也可以是单载波频分复用(single carrier-frequency division multiplexing,SC-FDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,PUSCH只是作为上行数据信道的一种举例,在不同的系统和不同的场景中,数据信道可能有不同的名称,本申请的实施例对此并不做限定。
终端设备向网络设备发送数据前,先确定名义PUSCH,采用3GPP R15或R16传输机制传输名义PUSCH,名义PUSCH占用的时域资源上承载有数据。
应理解,所述名义(nominal)PUSCH是由网络设备动态调度(dynamic grant)的,是终端设备根据网络设备发送的上行授权调度信息确定的PUSCH,并不一定为终端设备实际传输的PUSCH。这里的上行授权调度信息可以通过下行控制信息(downlink control information,DCI)承载在物理下行控制信道(physical downlink control channel,PDCCH)中。
在一些实施例中,上行授权调度信息可以指示时域资源分配信息列表中的时域资源分配信息,所述时域资源分配信息指示偏移值、名义PUSCH的起始符号的编号和名义PUSCH的长度。例如,上行授权调度信息包括时域资源分配信息的索引,终端设备根据时域资源分配信息的索引查询时域资源分配信息列表,确定时域资源分配信息。终端设备可以根据名义PUSCH的起始符号和名义PUSCH的长度确定名义PUSCH,根据偏移值确定发送名义PUSCH的时隙,即将PDCCH的时隙的编号与偏移值之和的值确定为传输名义PUSCH的时隙的编号,采用3GPP R15或R16传输机制传输名义PUSCH。偏移值为传输PDCCH的时隙的编号到传输名义PUSCH的时隙的编号的差值。
时域资源分配信息列表是可以网络设备通过高层信令为终端设备配置的。时域资源分配信息列表包括至少一个时域资源分配信息。
例如,时域资源分配信息列表可以是时域资源分配(time domain resource allocation,TDRA)表格。TDRA表格包括N行,N为整数,N≥1,且N不大于64。每行表示一个时域资源分配信息。
应理解,每行取值对应一个时隙内的偏移值和起始和长度指示值(start and length indicator value,SLIV)。SLIV为在时隙内终端设备发送名义PDSCH的时域位置(时域资源),该时域资源可以包括至少一个OFDM符号。SLIV包括名义PUSCH的起始符号的编号和名义PUSCH的长度。
示例的,如图2所示,一个时隙内的SLIV的示例图。一个时隙内包括16个可以发送PUSCH的时域资源。具体地,网络设备可以从TDRA表格中选择一个时域资源位置来承载PUSCH。
可选的,网络设备可以为终端设备配置R15传输机制的TDRA表格和R16传输机 制的TDRA表格。
R15传输机制可以是指在K个连续时隙上重复发送K个名义PUSCH,一个时隙发送一个名义PUSCH,每个时隙内采用相同的时域符号发送名义PUSCH,其中,K为大于或等于1的整数。
可选的,在本文中,所述“连续”可以描述为连续可用的。
可选的,R15传输机制的时隙聚合又可称为PUSCH重复传输类型A。
如图3所示,对R15传输机制举例说明。
当K=1时,基于时隙单次传输名义PUSCH,即在1个时隙上发送1个名义PUSCH。如图3中的(a)所示,假设名义PUSCH的长度为4个符号,名义PUSCH的起始符号为符号4,则在时隙n中的第4个符号和第7个符号上发送名义PUSCH。
当K大于1时,基于时隙聚合传输名义PUSCH,即在K个连续可用的时隙中的每个时隙上发送1个名义PUSCH。如图3中的(b)所示,假设K=2,名义PUSCH的长度为4个符号,名义PUSCH的起始符号为符号4,则在时隙n中的第4个符号和第7个符号上第一次发送名义PUSCH,在时隙n+1中的第4个符号和第7个符号上第二次发送名义PUSCH。
对于基于动态调度的名义PUSCH,如果高层信令配置了PUSCH聚合因子(pusch-AggregationFactor)K,则终端设备在K个连续可用的时隙上重复发送同一个传输块,且在所述连续可用的时隙中的每一个时隙都采用相同的符号分配。例如,时域资源分配信息还可以包括重复次数,该重复次数指示时隙聚合的PUSCH聚合因子(pusch-AggregationFactor)K。例如,K的取值可以是2、4、6、8、10或16。
可选的,R15传输机制的时隙聚合传输的重复次数K也可以通过与R16PUSCH传输机制相同的方式动态指示,即在TDRA表格中加一列用于指示重复次数,该重复次数指示时隙的重复次数,重复次K可以通过上行调度信令(DCI格式(format)0_1/DCI格式)指示K。
R16传输机制为在一个时隙的时域资源上传输M个名义PUSCH、或者在连续可用的多个所述时隙的时域资源上传输M个名义PUSCH,所述M个名义PUSCH包括第一名义PUSCH,其中,所述M为大于或等于1的整数。
需要说明的是,M个名义PUSCH的时域资源分配是背靠背的(back-to-back)。例如第m个名义PUSCH的起始符号为第m-1个名义PUSCH的结束符号的下一个符号。
第m个名义PUSCH的起始时隙表示为
Figure PCTCN2019116895-appb-000001
在所述时隙中的起始符号表示为
Figure PCTCN2019116895-appb-000002
第m个名义PUSCH的结束时隙表示为
Figure PCTCN2019116895-appb-000003
在所述时隙中的结束符号表示为
Figure PCTCN2019116895-appb-000004
其中K s为PUSCH传输起始时隙,
Figure PCTCN2019116895-appb-000005
表示一个时隙中的符号数,一般为14。
M是由网络设备动态指示的。
应理解,如果高层信令配置终端设备支持R16传输机制,TDRA表格中存在一列用于指示重复次数,该重复次数指示重复传输名义PUSCH的次数,重复次数M可以 通过上行调度信令(DCI格式0_1/DCI格式)指示。
可选的,R16传输机制又可以称为PUSCH重复类型B。
对于R16传输机制,针对PUSCH映射类型A,名义PUSCH的起始符号S与名义PUSCH的长度之和的取值范围为{4,14};针对PUSCH映射类型B,名义PUSCH的起始符号S与名义PUSCH的长度之和的取值范围为{1,14}。
对于R16传输机制,名义PUSCH的起始符号S与名义PUSCH的长度之和的取值范围为{1,27}。
如图4所示,对R16传输机制举例说明。
当M=1时,传输1个名义PUSCH。如图4中的(a)所示,假设名义PUSCH的长度为8个符号,名义PUSCH的起始符号为符号9,在时隙n中的第9个符号至第14个符号和时隙n+1中的第1个符号和第2个符号上发送名义PUSCH。但是,名义PUSCH横跨时隙边界,则被时隙边界切分为两个PUSCH,实际传输第一PUSCH和第二PUSCH,第一PUSCH和第二PUSCH上承载相同的传输块。
如图4中的(b)所示,假设名义PUSCH的长度为16个符号,名义PUSCH的起始符号为符号1,在时隙n中的第1个符号至第14个符号和时隙n+1中的第1个符号和第2个符号上发送名义PUSCH。但是,名义PUSCH横跨时隙边界,则被时隙边界切分为两个PUSCH,实际传输第一PUSCH和第二PUSCH,第一PUSCH和第二PUSCH上承载相同的传输块。
当M大于1时,传输至少2个名义PUSCH。如图4中的(c)所示,假设M=3,名义PUSCH的长度为4个符号,名义PUSCH的起始符号为时隙n中的符号4,在时隙n中的第4个符号至第7个符号上第一次发送名义PUSCH(第一PUSCH)。在时隙n中的第8个符号至第11个符号上第二次发送名义PUSCH(第二PUSCH)。在时隙n中的第12个符号至第14个符号和时隙n+1中的第1个符号上第三次发送名义PUSCH。但是,第三次发送的名义PUSCH横跨时隙边界,则被时隙边界切分为两个PUSCH,实际传输第三PUSCH和第四PUSCH,第三PUSCH和第四PUSCH上承载相同的传输块,且与其他没有别切分的名义PUSCH上承载的传输块相同。
为了解决网络设备指示去使能动态指示重复次数M后,终端设备采用哪种方式传输PUSCH的问题,本申请实施例提供了一种发送PUSCH的方法。所述方法包括:在终端设备接收到网络设备发送的去使能动态指示重复次数M的信息后,终端设备采用R16传输机制传输一个名义PUSCH;或者,终端设备采用R16传输机制,根据PUSCH聚合因子K传输K个名义PUSCH;或者,终端设备采用R15规定的基于时隙的单次传输或基于时隙的重复(slot-based repetition)。从而,在网络设备指示去使能动态指示重复次数后,终端设备可以根据上述方式传输名义PUSCH。
下面将结合附图对本申请实施例的实施方式进行详细描述。
图5为本申请实施例提供的一种发送物理上行共享信道的方法流程图。这里以网络设备和终端设备为例进行说明。假设第一传输方式为3GPP R15传输机制。第二传输方式为R15传输机制。如图5所示,该方法可以包括:
S501、网络设备向终端设备发送第一信息。
网络设备可以通过高层信令向终端设备发送第一信息。高层信令可以是指高层协 议层发出的信令。高层协议层为物理层以上的至少一个协议层。其中,高层协议层具体可以包括以下协议层中的至少一个:媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non access stratum,NAS)。
例如,网络设备可以通过RRC信令向终端设备发送第一信息,第一信息使能第一传输方式。
第一传输方式为在一个时间单元的时域资源上传输M个名义PUSCH、或者在连续可用的多个所述时间单元的时域资源上传输M个名义PUSCH,M个名义PUSCH包括第一名义PUSCH,其中,所述M为大于或等于1的整数。
可选的,第一信息还使能第二传输方式。例如,承载第二信息的RRC信令包含两个状态,一个状态指示使能第一传输方式,另一个状态指示使能第二传输方式。这两种状态是对立的,不能同时出现的。所述第二信息是为每个DCI格式独立配置的。例如,DCI格式0_1的第二信息和DCI格式0_2的第二信息是独立配置的。
在本文中,第一信息使能第一传输方式。
S502、终端设备接收网络设备发送的第一信息。
在一些实施例中,网络设备可以通过RRC信令向终端设备发送第一信息,第一信息使能第一传输方式,即终端设备采用第一传输方式发送名义PUSCH。具体的解释可以参考S501的阐述,不予赘述。
S503、网络设备向终端设备发送第二信息。
在一些实施例中,网络设备可以通过RRC信令向终端设备发送第二信息,第二信息去使能动态指示重复次数。
需要说明的是,第二信息为与第一信息不同的RRC信令中的信元(information element,IE)。或者,第二信息为DCI中的字段。或者,第二信息为序列。序列可以是参考信号,如解调参考信号(demodulation reference signal,DMRS)。
S504、终端设备接收网络设备发送的第二信息。
在一些实施例中,网络设备可以通过RRC信令向终端设备发送第二信息,第二信息去使能动态指示重复次数。具体的解释可以参考S503的阐述,不予赘述。
S505、终端设备根据第一传输方式或第二传输方式向网络设备发送第一名义PUSCH。
在一些实施例中,终端设备发送第一名义PUSCH前,可以先确定第一名义PUSCH和传输第一名义PUSCH的时隙。例如,根据上行授权调度信息和TDRA表格确定偏移值和SLIV。如图6所示,该方法还包括S601~S606。
S601、网络设备向终端设备发送时域资源分配信息列表。
S602、终端设备接收网络设备发送的时域资源分配信息列表。
时域资源分配信息列表可以是指TDRA表格。关于TDRA表格的解释可以参考上述阐述。
S603、网络设备向终端设备发送第一控制信息。
S604、终端设备接收网络设备发送的第一控制信息。
第一控制信息可以是上行授权调度信息。第一控制信息承载于PDCCH中。第一控制信息用于指示发送第一名义PUSCH和第一时域资源分配信息,时域资源分配信息列表包括第一时域资源分配信息,第一时域资源分配信息指示第一偏移值、第一符号的编号和第一长度。第一偏移值为传输PDCCH的时隙的编号到传输第一名义PUSCH的时隙的编号的差值。第一符号为发送第一名义PUSCH的起始时刻。第一长度为第一名义PUSCH的长度。
S605、终端设备根据第一控制信息和时域资源分配信息列表确定第一时域资源分配信息。
在一些实施例中,上行授权调度信息包括第一时域资源分配信息的索引,终端设备根据时域资源分配信息的索引查询时域资源分配信息列表,确定第一时域资源分配信息。
S606、终端设备根据第一偏移值确定发送第一名义PUSCH的第一时间单元。
终端设备可以根据第一符号和第一长度确定第一名义PUSCH,根据第一偏移值确定发送第一名义PUSCH的第一时间单元,即将PDCCH的时间单元的编号与第一偏移值之和的值确定为传输第一名义PUSCH的第一时间单元的编号,采用3GPP R15或R16传输机制传输第一名义PUSCH。第一时间单元可以是时隙。
应理解,在采用3GPP R16传输机制传输第一名义PUSCH时,第一名义PUSCH为传输的第一个名义PUSCH。
S506、网络设备根据第一传输方式或第二传输方式接收终端设备发送的第一名义PUSCH。
网络设备可以在上行授权调度信息指示的时域位置上接收终端设备发送的第一名义PUSCH。上行授权调度信息指示的时域位置可以参考上述终端设备确定第一名义PUSCH的阐述,不予赘述。
接下来,结合附图对根据第一传输方式或第二传输方式传输第一名义PUSCH的可能的实现方式进行详细说明。所述“传输第一名义PUSCH”可以是指发送第一名义PUSCH或接收第一名义PUSCH。
在第一种可能的实现方式中,当M=1时,终端设备根据第一传输方式发送1次第一名义PUSCH,即采用R16传输机制发送1次第一名义PUSCH。
具体的,根据第一符号和第一长度在第一时间单元内发送第一PUSCH集合。可理解的,从第一时间单元内的第一符号开始,根据第一长度在第一时间单元的时域资源上发送第一PUSCH集合。第一名义PUSCH的起始时刻为第一符号。第一时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间。第一PUSCH集合包括第一PUSCH和第三PUSCH,其中第一PUSCH对应的时域资源为第一时间单元内从第一名义PUSCH的起始时刻之后的连续有效的上行符号,第三PUSCH对应的时域资源为第一时间单元内、在第一名义PUSCH的起始时刻之后的至少一个非上行符号之后的连续有效上行符号。
在一些实施例中,第一时间单元的结束时刻在第一名义PUSCH的结束时刻之后。第一PUSCH集合对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部时域资源。
示例的,如图7所示。假设第一名义PUSCH的长度L为8个符号,第一名义PUSCH的起始符号为符号3,在时隙n中的第3个符号至第10个符号上发送第一名义PUSCH。
在另一些实施例中,第一时间单元的结束时刻在第一名义PUSCH的结束时刻之前。第一PUSCH集合对应的时域资源为在第一时间单元内第一名义PUSCH对应的部分时域资源。终端设备还可以发送第二PUSCH集合,第二PUSCH集合对应的时域资源是根据第一符号和第一长度确定的在第一时间单元的结束时刻之后的时域资源。
示例的,如图8所示。假设第一名义PUSCH的长度L为8个符号,第一名义PUSCH的起始符号为符号11,在时隙n中的第11个符号至第14个符号和时隙n+1中的第1个符号至第4个符号上映射第一名义PUSCH。由于第一名义PUSCH横跨时隙边界,时隙边界将第一名义PUSCH切分为两个PUSCH,即第一PUSCH和第二PUSCH。第一PUSCH集合包括第一PUSCH。第二PUSCH集合包括第二PUSCH。终端设备在时隙n中的第11个符号至第14个符号上发送第一PUSCH,以及在时隙n+1中的第1个符号至第4个符号上发送第二PUSCH。第一PUSCH和第二PUSCH上承载相同的传输块。网络设备在第一PUSCH集合对应的资源上接收第一PUSCH集合,以及在第二PUSCH集合对应的资源上接收第二PUSCH集合。
需要说明的是,终端设备从第一名义PUSCH的起始时刻开始根据第一名义PUSCH的长度在时域的有效上行符号上映射(或称为虚拟映射)第一名义PUSCH。
所谓有效上行符号是指用于映射PUSCH或上行信息的符号。有效上行符号还可以包括被时隙格式指示器(slot format indicator,SFI)指示为上行的灵活符号。所述上行信息包括上行控制信息和上行数据信息。或者,所述上行信息包括上行控制信息。或者,所述上行信息包括上行数据信息。
所述非上行符号包括下行符号、被SFI指示为下行的灵活符号和短时间间隔内的符号。所述下行符号用于映射PDSCH或下行信息的符号。所述下行信息包括下行控制信息和下行数据信息。或者,所述下行信息包括下行控制信息。或者,所述下行信息包括下行数据信息。
所述短时间间隔可以是指第一时间间隔。短时间间隔小于或不大于第一时间间隔。第一时间间隔的长度可以是指单个符号(Orphan symbol)的长度。
第一控制信息指示的第一名义PUSCH的起始时刻至第一时间单元的结束时刻之间包括至少一个有效上行符号和至少一个非上行符号。
第一名义PUSCH的起始时刻可以在第一时间单元内。第一名义PUSCH映射到至少一个有效上行符号上,且第一名义PUSCH在映射时跳过至少一个非上行符号。
可理解的,用于映射第一名义PUSCH的时域资源包括至少两个上行区域。所述至少两个上行区域各包括至少一个有效上行符号。所述至少两个上行区域中的任意一个上行区域由时间连续的P个有效上行符号组成。至少一个上行区域的时域长度之和对应于第一控制信息指示的第一名义PUSCH的长度,P为正整数。
所述至少两个上行区域中任意两个相邻的上行区域之间包括非上行符号,即不包括有效上行符号。
在另一些实施例中,第一时间单元的结束时刻在第一名义PUSCH的结束时刻之前。第一PUSCH集合对应的时域资源为在第一时间单元内第一名义PUSCH对应的部 分时域资源。示例的,如图9所示。假设第一名义PUSCH的长度L为8个符号,第一名义PUSCH的起始符号为符号5。在时隙n中的第5个符号至第8个符号、时隙n中的第13个符号和第14个符号和时隙n+1中的第1个符号和第2个符号上映射第一名义PUSCH。其中,由于时隙n中的第9个符号至第12个符号是下行符号,所以跳过第9个符号至第12个符号,推迟映射第一名义PUSCH,在下行符号后的第一个上行符号(时隙n的第12个符号)开始继续映射第一个名义PUSCH,即在时隙n中的第13个符号和第14个符号继续映射第一名义PUSCH。
另外,第一名义PUSCH横跨时隙边界,时隙边界将第一名义PUSCH切分为两个PUSCH,映射在时隙n的第13个符号至第14个符号上的PUSCH可以称为第二PUSCH,映射在时隙n+1的第1个符号和第1个符号上的PUSCH可以称为第三PUSCH。第一PUSCH集合包括第一PUSCH和第二PUSCH。第二PUSCH集合包括第三PUSCH。第一PUSCH和第二PUSCH位于同一个上行区域。
终端设备在时隙n中的第5个符号至第8个符号上发送第一PUSCH、在时隙n中的第13个符号至第14个符号上发送第二PUSCH和在时隙n+1中的第1个符号至第2个符号上发送第三PUSCH。第一PUSCH、第二PUSCH和第三PUSCH上承载相同的传输块。网络设备在第一PUSCH集合对应的资源上接收第一PUSCH集合,以及在第二PUSCH集合对应的资源上接收第二PUSCH集合。
在第二种可能的实现方式中,终端设备根据第二传输方式发送第一名义PUSCH,即采用R15规定的基于时隙的单次传输发送第一名义PUSCH。根据第一符号和第一长度在第一时间单元内对第一名义PUSCH进行单次传输。
可理解的,从第一时间单元内的第一符号开始,根据第一长度在第一时间单元的时域资源上发送第一名义PUSCH。第一名义PUSCH的起始时刻为第一符号,第一时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间。
在一些实施例中,第一时间单元的结束时刻在第一名义PUSCH的结束时刻之后。第一名义PUSCH对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部时域资源。
示例的,如图10所示。假设第一名义PUSCH的长度L为8个符号,第一名义PUSCH的起始符号为符号3,在时隙n中的第3个符号至第10个符号上发送第一名义PUSCH。
在另一些实施例中,第一时间单元的结束时刻在第一名义PUSCH的结束时刻之前。第一名义PUSCH对应的时域资源为在第一时间单元内第一名义PUSCH对应的部分时域资源。在第一时间单元的结束时刻之后不发送第一名义PUSCH。
示例的,如图11所示。假设第一名义PUSCH的长度L为18个符号,第一名义PUSCH的起始符号为符号1,在时隙n中的第1个符号至第14个符号上映射第一名义PUSCH。由于第一名义PUSCH横跨时隙边界,时隙边界将第一名义PUSCH切分为两个PUSCH,即第一PUSCH和第二PUSCH。终端设备在时隙n中的第1个符号至第14个符号上发送第一PUSCH,不发送第二PUSCH。网络设备在第一PUSCH对应的资源上接收第一PUSCH。
示例的,如图12所示。假设第一名义PUSCH的长度L为18个符号,第一名义PUSCH的起始符号为符号1。由于时隙n中的第12个符号是下行符号,因此,在时 隙n中的第1个符号至第11个符号上映射第一名义PUSCH。终端设备在时隙n中的第1个符号至第11个符号上发送第一PUSCH。网络设备在第一PUSCH对应的资源上接收第一PUSCH。
在第三种可能的实现方式中,终端设备根据第二传输方式的基于时隙的重复发送第一名义PUSCH,即采用R15规定的基于时隙的重复发送第一名义PUSCH。根据第一符号和第一长度在M个时间单元的每个时间单元内发送第一名义PUSCH。
在一些实施例中,终端设备接收到网络设备发送的第三信息,第三信息指示时隙聚合因子K的取值。若K不等于M,由于M的网络设备动态指示的,是网络设备根据上行信道质量实时确定的,因此终端设备可以根据第二传输方式发送M个第一名义PUSCH,从而,提高数据传输的可靠性和自适应性。
可理解的,从M个时间单元的每个时间单元内的第一符号开始,根据第一长度发送第一名义PUSCH。第一名义PUSCH的起始时刻为第一符号。时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间,M个时间单元包括第一时间单元。
在一些实施例中,时间单元的结束时刻在第一名义PUSCH的结束时刻之后。第一名义PUSCH对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部时域资源。
示例的,如图13所示。假设M=2,第一名义PUSCH的长度L为8个符号,第一名义PUSCH的起始符号为符号7,在时隙n中的第7个符号至第14个符号上第一次发送第一名义PUSCH,在时隙n+1中的第7个符号至第14个符号上第二次发送第一名义PUSCH。
在另一些实施例中,时间单元的结束时刻在第一名义PUSCH的结束时刻之前。第一名义PUSCH对应的时域资源为在第一时间单元内第一名义PUSCH对应的部分时域资源。在M个时间单元的结束时刻之后不发送第一名义PUSCH。
示例的,如图14所示。假设M=2,第一名义PUSCH的长度L为8个符号,第一名义PUSCH的起始符号为符号11。在时隙n中的第11个符号至第14个符号上映射第一名义PUSCH。由于第一名义PUSCH横跨时隙边界,时隙边界将第一名义PUSCH切分为两个PUSCH,即第一PUSCH和第二PUSCH。终端设备在时隙n中的第11个符号至第14个符号上发送第一PUSCH,不发送第二PUSCH。网络设备在时隙n中的第一PUSCH对应的资源上接收第一PUSCH。
同理,在时隙n+1中的第11个符号至第14个符号上映射第一名义PUSCH。由于第一名义PUSCH横跨时隙边界,时隙边界将第一名义PUSCH切分为两个PUSCH,即第一PUSCH和第二PUSCH。终端设备在时隙n+1中的第11个符号至第14个符号上发送第一PUSCH,不发送第二PUSCH。网络设备在时隙n+1中的第一PUSCH对应的资源上接收第一PUSCH。
在另一些实施例中,终端设备接收到网络设备发送的第三信息,第三信息指示时隙聚合因子K的取值。若K等于M,终端设备可以根据第二传输方式发送M个第一名义PUSCH,相当于终端设备可以根据第二传输方式发送K个第一名义PUSCH,与采用R15规定的基于时隙的重复(slot-based repetition)发送第一名义PUSCH的机制 相同。
在第四种可能的实现方式中,终端设备接收到网络设备发送的第三信息,第三信息指示时隙聚合因子K的取值。终端设备根据第一传输方式发送K个第一名义PUSCH,即采用R16传输机制发送K个第一名义PUSCH。
可理解的,从第一时间单元内的第一符号开始,根据第一长度发送K个名义PUSCH,K个名义PUSCH包括第一名义PUSCH。
在本文中,所述名义PUSCH为重复传输第一控制信息指示的第一名义PUSCH中的第i个名义PUSCH,i为整数,1≤i≤K。
当i=1时,K个名义PUSCH中的第一个名义PUSCH的起始时刻对应时域资源分配字段中的名义PUSCH的起始时刻,即第一符号的起始时刻(第一名义PUSCH的起始时刻)。K个名义PUSCH中的第一个名义PUSCH的长度对应时域资源分配字段中的名义PUSCH的长度,即第一长度(第一名义PUSCH的长度)。K个名义PUSCH中的第一个名义PUSCH可以是指第一控制信息所指示的名义PUSCH。第一控制信息所指示的第一名义PUSCH的结束时刻是由第一控制信息所指示的第一名义PUSCH的起始时刻和第一名义PUSCH的长度L确定的。或者,第一控制信息所指示的第一名义PUSCH的结束时刻是由第一控制信息所指示的第一名义PUSCH的起始时刻、第一名义PUSCH的长度L和第一控制信息所指示的第一名义PUSCH的起始时刻之后的非上行符号确定的。
当2≤i≤K时,K个名义PUSCH中的第i个名义PUSCH的起始时刻由第一个名义PUSCH的起始时刻、第一名义PUSCH的长度、第一个名义PUSCH的起始时刻之后的非上行符号确定的。K个名义PUSCH中的第i个名义PUSCH的长度对应上述时域资源分配字段中的第一名义PUSCH的长度。K个名义PUSCH中的第i个名义PUSCH的结束时刻由第一个名义PUSCH的起始时刻、第一名义PUSCH的长度、第一个名义PUSCH的起始时刻之后的非上行符号确定的。
名义PUSCH的结束时刻晚于对应于第一控制信息所指示的第一名义PUSCH的结束时刻。
在一些实施例中,若第一控制信息指示的第一名义PUSCH的起始时刻至第一时间单元的结束时刻之间不包括非上行符号,名义PUSCH的起始时刻S可以表示为S0+(i-1)*L。名义PUSCH的结束时刻可以表示为S0+i*L。其中,S0表示第一控制信息指示的K个名义PUSCH中的第1个名义PUSCH的起始时刻。
在另一些实施例中,若第一控制信息指示的第一名义PUSCH的起始时刻至第一时间单元的结束时刻之间包括至少一个有效上行符号和至少一个非上行符号,名义PUSCH的起始时刻S可以表示为S0+(i-1)*L+N_NUL。名义PUSCH的结束时刻可以表示为S0+i*L+N_NUL_2。N_NUL表示K个名义PUSCH中第一个名义PUSCH的起始时刻与所述名义PUSCH的起始时刻之间的非上行符号数,N_NUL_2表示K个名义PUSCH中第一个名义PUSCH的起始时刻与所述名义PUSCH的结束时刻之间的非上行符号数。
特别的,K个名义PUSCH中第一个名义PUSCH的起始时刻S可表示为S0+N_NUL,S0+N_NUL可以表示所述K个名义PUSCH中的第一个名义PUSCH的起始时刻与所 述第一控制信息指示的起始时刻之间有非上行符号的存在。
可理解的,从第一时间单元内的第一符号开始,根据第一长度在第一时间单元的时域资源上发送第一PUSCH集合。第一名义PUSCH的起始时刻为第一符号。第一时间单元的结束时刻在名义PUSCH的起始时刻与名义PUSCH的结束时刻之间。
在一些实施例中,第一时间单元的结束时刻在名义PUSCH的结束时刻之后。第一PUSCH集合对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部时域资源。示例的,如图15所示。假设K=2,第一名义PUSCH的长度L为4个符号,第一名义PUSCH的起始符号为符号5。在时隙n中的第5个符号至第8个符号上第一次发送第一名义PUSCH。在时隙n中的第9个符号至第12个符号上第二次发送第一名义PUSCH。第一PUSCH集合包括第一PUSCH和第二PUSCH。网络设备在第一PUSCH对应的资源上接收第一PUSCH,以及在第二PUSCH对应的资源上接收第二PUSCH。
在另一些实施例中,第一时间单元的结束时刻在名义PUSCH的结束时刻之前。第一PUSCH集合对应的时域资源为在第一时间单元内第一名义PUSCH对应的部分时域资源。终端设备还可以发送第二PUSCH集合,第二PUSCH集合对应的时域资源是根据第一符号和第一长度确定的在时间单元的结束时刻之后的时域资源。
示例的,如图16所示。假设第一名义PUSCH的长度L为4个符号,第一名义PUSCH的起始符号为符号5。在时隙n中的第5个符号至第8个符号上映射第一名义PUSCH,以及在时隙n中的第13个符号至第14个符号和时隙n+1中的第1个符号至第2个符号上映射第一名义PUSCH。
其中,由于时隙n中的第9个符号至第12个符号是下行符号,所以跳过第9个符号至第12个符号,推迟映射第一名义PUSCH,在下行符号后的第一个上行符号(时隙n的第12个符号)开始继续映射第一个名义PUSCH,即在时隙n中的第13个符号和第14个符号继续映射第一名义PUSCH。
另外,第一名义PUSCH横跨时隙边界,时隙边界将第一名义PUSCH切分为两个PUSCH,映射在时隙n的第13个符号至第14个符号上的PUSCH可以称为第二PUSCH,映射在时隙n+1的第1个符号和第1个符号上的PUSCH可以称为第三PUSCH。第一PUSCH集合包括第一PUSCH和第二PUSCH。第二PUSCH集合包括第三PUSCH。第一PUSCH和第二PUSCH位于同一个上行区域。
终端设备在时隙n中的第5个符号至第8个符号上发送第一PUSCH、在时隙n中的第13个符号至第14个符号上发送第二PUSCH和在时隙n+1中的第1个符号至第2个符号上发送第三PUSCH。第一PUSCH、第二PUSCH和第三PUSCH上承载相同的传输块。网络设备在第一PUSCH集合对应的资源上接收第一PUSCH集合,以及在第二PUSCH集合对应的资源上接收第二PUSCH集合。
在第五种可能的实现方式中,终端设备认为动态指示的R16PUSCH传输重复次数去使能,意味着自己被指示不再支持R16传输机制。同时,网络设备为R16传输机制配置的时域资源分配表格也不可用。此时,网络设备可以为终端设备配置一个支持R15传输机制的时域资源分配表格。或者,终端设备采用配置给DCI格式0_0的时域资源分配分配表格和上行调度授权的控制信息确定PUSCH的时域资源。因为DCI格式0_0称为回退DCI,不支持R16的传输机制,所以配置给回退DCI的时域资源分配表 格中的时域资源都可以用于R15传输。回退DCI(fallback DCI)是指在初始化接入状态时或小区切换时传输的DCI。
所述上行调度授权的控制信息为下行控制信息,该控制信息可以为DCI格式0_1或者DCI格式0_2。该控制信息的循环冗余码校验(cyclic redundancy check,CRC)可以由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、配置调度无线网络临时标识(Configured scheduling-cell radio network temporary identifier,CS-RNTI)和调制编码方式-小区无线网络临时标识(Modulation and coding scheme-Cell-Radio network temporary identifier,MCS-C-RNTI)中的至少一种RNTI加扰。
DCI中的“DCI格式标识”(Identifier for DCI格式s)信息域用于标识DCI格式。所述DCI格式0_1为非回退DCI,非回退DCI不同于回退DCI(DCI格式0_0)。RNTI用于加扰DCI格式0_0。RNTI包括寻呼-无线网络临时标识(Paging-Radio network temporary identifier,P-RNTI)、随机接入-无线网络临时标识(Random access-Radio network temporary identifier,RA-RNTI)、系统消息-无线网络临时标识(System information-Radio network temporary identifier,SI-RNTI)、临时小区无线网络临时标识(Temporary cell-Radio network temporary identifier,TC-RNTI)以及C-RNTI、CS-RNTI和MCS-RNTI。DCI格式0_0可用于调度承载寻呼信息、初始接入响应信息或系统消息的下行共享物理信道(physical downlink shared channel,PDSCH)。而DCI格式0_1用于连接态下调度PDSCH。DCI格式0_1承载的控制信息比DCI格式0_0更多。DCI格式0_1包括载波指示、BWP指示器、下行链路分配指示、SRS资源指示、预编码信息和层数、SRS请求、CSI请求、编码块传输指示、天线端口、速率匹配指示、DMRS序列初始化和UL-SCH指示中至少一个。
DCI格式0_2为紧凑DCI(compact DCI),紧凑DCI不同于另外两种DCI格式的特征在于,其大多数DCI域都可以配置为0比特,用于节省DCI开销,同时提高DCI传输的可靠性。
图17为本申请实施例提供的一种发送物理上行共享信道的方法流程图。这里以网络设备和终端设备为例进行说明。假设第一传输方式为3GPP R15传输机制。第二传输方式为R15传输机制。如图17所示,该方法可以包括:
S1701、网络设备向终端设备发送第一信息。
S1702、终端设备接收网络设备发送的第一信息。
在一些实施例中,第一信息指示第一传输方式或第二传输方式。第一传输方式为在一个时间单元的时域资源上传输M个名义PUSCH、或者在连续可用的多个时间单元的时域资源上传输M个名义PUSCH,M个名义PUSCH包括第一名义PUSCH,第二传输方式为在K个连续可用的时间单元上重复发送K个第一名义PUSCH,一个时间单元发送一个第一名义PUSCH,M为大于或等于1的整数,K为大于或等于1的整数。
当第一信息指示第二传输方式,终端设备认为动态指示的R16PUSCH传输重复次数去使能,意味着自己被指示不再支持R16传输机制。所述方法还包括S1703和S1704。
S1703、终端设备根据第二传输方式向网络设备发送第一名义PUSCH。
在一些实施例中,终端设备从第一时间单元内的第一符号开始,根据第一长度对第一名义PUSCH进行单次传输。具体的,从第一时间单元内的第一符号开始,根据第一长度在第一时间单元的时域资源上发送第一名义PUSCH,第一名义PUSCH对应的时域资源为在第一时间单元内第一名义PUSCH对应的全部或部分时域资源,第一名义PUSCH的起始时刻为第一符号,第一时间单元的结束时刻在第一名义PUSCH的起始时刻与第一名义PUSCH的结束时刻之间。若第一名义PUSCH的长度大于第一时间单元的长度,在第一时间单元的结束时刻之后不发送第一名义PUSCH。
具体的,可以参考图11的阐述。
S1704、网络设备根据第二传输方式接收终端设备发送的第一名义PUSCH。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图18和图19为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图18所示,通信装置1800包括处理单元1810和收发单元1820。通信装置1800用于实现上述图5、图6或图17中所示的方法实施例中终端设备或网络设备的功能。
当通信装置1800用于实现图5所示的方法实施例中终端设备的功能时:收发单元1820用于执行S502、S504和S505。
当通信装置1800用于实现图5所示的方法实施例中网络设备的功能时:收发单元1820用于执行S501、S503和S506。
当通信装置1800用于实现图6所示的方法实施例中终端设备的功能时:收发单元1820用于执行S502、S504、S505、S602和S604;处理单元1810用于S605和S606。
当通信装置1800用于实现图6所示的方法实施例中网络设备的功能时:收发单元1820用于S501、S503、S506、S601和S603。
当通信装置1800用于实现图17所示的方法实施例中终端设备的功能时:收发单元1820用于执行S1702和S1703。
当通信装置1800用于实现图17所示的方法实施例中网络设备的功能时:收发单元1820用于S1701和S1704。
有关上述处理单元1810和收发单元1820更详细的描述可以直接参考图5、图6或图17所示的方法实施例中相关描述直接得到,这里不加赘述。
如图19所示,通信装置1900包括处理器1910和接口电路1919。处理器1910和接口电路1919之间相互耦合。可以理解的是,接口电路1919可以为收发器或输入输出接口。可选的,通信装置1900还可以包括存储器1930,用于存储处理器1910执行的指令或存储处理器1910运行指令所需要的输入数据或存储处理器1910运行指令后 产生的数据。
当通信装置1900用于实现图5、图6或图17所示的方法时,处理器1910用于执行上述处理单元1810的功能,接口电路1919用于执行上述收发单元1820的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如, 数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (26)

  1. 一种发送物理上行共享信道PUSCH的方法,其特征在于,包括:
    接收来自网络设备的第一信息,所述第一信息使能第一传输方式,所述第一传输方式为在一个时间单元的时域资源上传输M个名义PUSCH、或者在连续多个时间单元的时域资源上传输所述M个名义PUSCH,所述M个名义PUSCH包括第一名义PUSCH,其中,所述M为大于或等于1的整数;
    接收来自所述网络设备的第二信息,所述第二信息去使能动态指示重复次数;
    根据所述第一传输方式或第二传输方式发送所述第一名义PUSCH,所述第二传输方式为在K个连续时间单元上重复发送K个所述第一名义PUSCH,一个时间单元发送一个所述第一名义PUSCH,其中,所述K为大于或等于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的时域资源分配信息列表,所述时域资源分配信息列表包括至少一个时域资源分配信息,所述时域资源分配信息指示偏移值、名义PUSCH的起始符号的编号、名义PUSCH的长度和所述重复次数,所述偏移值为传输物理下行控制信道PDCCH的时间单元的编号到传输名义PUSCH的时间单元的编号的差值;
    接收来自所述网络设备的第一控制信息,所述第一控制信息承载于所述PDCCH中,所述第一控制信息指示第一时域资源分配信息,所述时域资源分配信息列表包括所述第一时域资源分配信息,所述第一时域资源分配信息指示第一偏移值、第一符号的编号和第一长度,所述第一名义PUSCH是根据所述第一符号和所述第一长度确定的第一个名义PUSCH。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述第一控制信息和所述时域资源分配信息列表确定所述第一时域资源分配信息;
    根据所述第一偏移值确定发送所述第一名义PUSCH的第一时间单元。
  4. 根据权利要求3所述的方法,其特征在于,根据所述第一传输方式发送所述第一名义PUSCH,包括:
    根据所述第一符号和所述第一长度在所述第一时间单元内发送第一PUSCH集合,所述第一PUSCH集合对应的时域资源为在所述第一时间单元内所述第一名义PUSCH对应的全部或部分时域资源,所述第一名义PUSCH的起始时刻为所述第一符号,所述第一时间单元的结束时刻在所述第一名义PUSCH的起始时刻与所述第一名义PUSCH的结束时刻之间。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    发送第二PUSCH集合,所述第二PUSCH集合对应的时域资源是根据所述第一符号和所述第一长度确定的在所述第一时间单元的结束时刻之后的时域资源。
  6. 根据权利要求3所述的方法,其特征在于,根据所述第二传输方式发送所述第一名义PUSCH,包括:
    根据所述第一符号和所述第一长度在所述第一时间单元内对所述第一名义PUSCH进行单次传输。
  7. 根据权利要求6所述的方法,其特征在于,根据所述第一符号和所述第一长度 在所述第一时间单元内对所述第一名义PUSCH进行单次传输,包括:
    根据所述第一符号和所述第一长度在所述第一时间单元内发送所述第一名义PUSCH,所述第一名义PUSCH对应的时域资源为在所述第一时间单元内所述第一名义PUSCH对应的全部或部分时域资源,所述第一名义PUSCH的起始时刻为所述第一符号,所述第一时间单元的结束时刻在所述第一名义PUSCH的起始时刻与所述第一名义PUSCH的结束时刻之间。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    在所述第一时间单元的结束时刻之后不发送所述第一名义PUSCH。
  9. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三信息,所述第三信息指示K。
  10. 根据权利要求9所述的方法,其特征在于,根据所述第二传输方式发送所述第一名义PUSCH,包括:
    根据所述第一符号和所述第一长度在M个时间单元的每个时间单元内发送第一名义PUSCH,所述第一名义PUSCH对应的时域资源为在每个所述时间单元内所述第一名义PUSCH对应的全部或部分时域资源,所述第一名义PUSCH的起始时刻为所述第一符号,所述时间单元的结束时刻在所述第一名义PUSCH的起始时刻与所述第一名义PUSCH的结束时刻之间,所述M个时间单元包括所述第一时间单元。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述M个时间单元的结束时刻之后不发送所述第一名义PUSCH。
  12. 根据权利要求9所述的方法,其特征在于,根据所述第一传输方式发送所述名义PUSCH,包括:
    根据所述第一符号和所述第一长度发送K个名义PUSCH,所述K个名义PUSCH包括所述第一名义PUSCH。
  13. 一种接收物理上行共享信道PUSCH的方法,其特征在于,包括:
    向终端设备发送第一信息,所述第一信息使能第一传输方式,所述第一传输方式为在一个时间单元的时域资源上传输M个名义PUSCH、或者在连续多个时间单元的时域资源上传输所述M个名义PUSCH,所述M个名义PUSCH包括第一名义PUSCH,其中,所述M为大于或等于1的整数;
    向所述终端设备发送第二信息,所述第二信息去使能动态指示重复次数M;
    根据所述第一传输方式或第二传输方式接收来自所述终端设备的所述第一名义PUSCH,所述第二传输方式为在K个连续时间单元上重复发送K个所述第一名义PUSCH,一个时间单元发送一个所述第一名义PUSCH,其中,所述K为大于或等于1的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送时域资源分配信息列表,所述时域资源分配信息列表包括至少一个时域资源分配信息,所述时域资源分配信息指示偏移值、名义PUSCH的起始符号的编号、名义PUSCH的长度和所述重复次数,所述偏移值为传输物理下行控制信道PDCCH的时间单元的编号到传输名义PUSCH的时间单元的编号的差值;
    向所述终端设备发送第一控制信息,所述第一控制信息承载于所述PDCCH中, 所述第一控制信息指示第一时域资源分配信息,所述时域资源分配信息列表包括所述第一时域资源分配信息,所述第一时域资源分配信息指示第一偏移值、第一符号的编号和第一长度,所述第一名义PUSCH是根据所述第一符号和所述第一长度确定的第一个名义PUSCH。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述第一偏移值确定接收所述第一名义PUSCH的第一时间单元。
  16. 根据权利要求15所述的方法,其特征在于,根据所述第一传输方式接收来自所述终端设备的所述第一名义PUSCH,包括:
    根据所述第一符号和所述第一长度在所述第一时间单元内接收来自所述终端设备的第一PUSCH集合,所述第一PUSCH集合对应的时域资源为在所述第一时间单元内所述第一名义PUSCH对应的全部或部分时域资源,所述第一名义PUSCH的起始时刻为所述第一符号,所述第一时间单元的结束时刻在所述第一名义PUSCH的起始时刻与所述第一名义PUSCH的结束时刻之间。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第二PUSCH集合,所述第二PUSCH集合对应的时域资源是根据所述第一符号和所述第一长度确定的在所述第一时间单元的结束时刻之后的时域资源。
  18. 根据权利要求15所述的方法,其特征在于,根据所述第二传输方式接收来自所述终端设备的所述第一名义PUSCH,包括:
    根据所述第一符号和所述第一长度在所述第一时间单元内对所述第一名义PUSCH进行单次接收。
  19. 根据权利要求18所述的方法,其特征在于,根据所述第一符号和所述第一长度在所述第一时间单元内对所述第一名义PUSCH进行单次接收,包括:
    根据所述第一符号和所述第一长度在所述第一时间单元内接收来自所述终端设备的所述第一名义PUSCH,所述第一名义PUSCH对应的时域资源为在所述第一时间单元内所述第一名义PUSCH对应的全部或部分时域资源,所述第一名义PUSCH的起始时刻为所述第一符号,所述第一时间单元的结束时刻在所述第一名义PUSCH的起始时刻与所述第一名义PUSCH的结束时刻之间。
  20. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三信息,所述第三信息指示K。
  21. 根据权利要求20所述的方法,其特征在于,根据所述第二传输方式接收来自所述终端设备的所述第一名义PUSCH,包括:
    根据所述第一符号和所述第一长度在M个时间单元的每个时间单元内接收来自所述终端设备的第一名义PUSCH,所述第一名义PUSCH对应的时域资源为在每个所述时间单元内所述第一名义PUSCH对应的全部或部分时域资源,所述第一名义PUSCH的起始时刻为所述第一符号,所述时间单元的结束时刻在所述第一名义PUSCH的起始时刻与所述第一名义PUSCH的结束时刻之间,所述M个时间单元包括所述第一时间单元。
  22. 根据权利要求15所述的方法,其特征在于,根据所述第一传输方式接收来自 所述终端设备的所述名义PUSCH,包括:
    根据所述第一符号和所述第一长度接收来自所述终端设备的K个名义PUSCH,所述K个名义PUSCH包括所述第一名义PUSCH。
  23. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至12中任一项所述的方法、或实现如权利要求13至22中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至12中任一项所述的方法、或实现如权利要求13至22中任一项所述的方法。
  25. 一种计算机程序,其特征在于,当所述计算机程序被通信装置执行时,所述通信装置实现如权利要求1至12中任一项所述的方法、或实现如权利要求13至22中任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被通信装置执行时,所述通信装置实现如权利要求1至12中任一项所述的方法、或实现如权利要求13至22中任一项所述的方法。
PCT/CN2019/116895 2019-11-08 2019-11-08 一种发送物理上行共享信道的方法及装置 WO2021088094A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980100779.5A CN114467340A (zh) 2019-11-08 2019-11-08 一种发送物理上行共享信道的方法及装置
PCT/CN2019/116895 WO2021088094A1 (zh) 2019-11-08 2019-11-08 一种发送物理上行共享信道的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116895 WO2021088094A1 (zh) 2019-11-08 2019-11-08 一种发送物理上行共享信道的方法及装置

Publications (1)

Publication Number Publication Date
WO2021088094A1 true WO2021088094A1 (zh) 2021-05-14

Family

ID=75848706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116895 WO2021088094A1 (zh) 2019-11-08 2019-11-08 一种发送物理上行共享信道的方法及装置

Country Status (2)

Country Link
CN (1) CN114467340A (zh)
WO (1) WO2021088094A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190132882A1 (en) * 2017-10-30 2019-05-02 Samsung Electronics Co., Ltd. Method and apparatus for random access design of nr unlicensed

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190132882A1 (en) * 2017-10-30 2019-05-02 Samsung Electronics Co., Ltd. Method and apparatus for random access design of nr unlicensed

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "PUSCH enhancements for URLLC", 3GPP DRAFT; R1-1910187 PUSCH ENHANCEMENTS FOR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051788994 *
INTEL CORPORATION: "Enhancements to configured grants for NR-unlicensed", 3GPP DRAFT; R1-1910643 - INTEL - CONFIGURED GRANT FOR NR-U, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789435 *
SONY: "PUSCH Enhancements for URLLC", 3GPP DRAFT; R1-1910770 - REL-16 EURLLC - PUSCH V02, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 7 October 2019 (2019-10-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789559 *
WILUS INC.: "On PUSCH enhancement for NR URLLC", 3GPP DRAFT; R1-1911317_PUSCH_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051790083 *

Also Published As

Publication number Publication date
CN114467340A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
AU2018409011A1 (en) Sounding reference signal transmission method, terminal device, and network device
CN107113832A (zh) 用于分别发送和接收子帧类型的指示的第一通信装置、第二通信装置以及其中的方法
WO2017025066A1 (zh) 一种数据传输方法及装置
WO2021160162A1 (zh) 发送物理上行共享信道的方法及装置
WO2021017702A1 (zh) 一种信号传输方法及装置
JP7319363B2 (ja) データ伝送方法及び通信装置
CN111866959B (zh) 波束失败上报的方法和装置
US20230063450A1 (en) Positioning Capabilities of Reduced Capability New Radio Devices
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN110505700A (zh) 一种资源分配的方法,终端以及网络设备
WO2021031939A1 (zh) 一种数据传输方法及装置
JP7402327B2 (ja) 情報表示方法及び装置
WO2019158039A1 (zh) 通信方法和通信装置
WO2019029741A1 (zh) 一种无线通信方法及装置
WO2021228068A1 (zh) 一种上行信道的冲突处理方法及装置
WO2021203957A1 (zh) 一种通信方法及装置
EP4277368A1 (en) Method and apparatus for determining transmission timing
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
JP2023517980A (ja) 通信方法および装置
WO2019157903A1 (zh) 一种资源配置方法及装置
WO2021088094A1 (zh) 一种发送物理上行共享信道的方法及装置
WO2022057175A1 (zh) 一种通信方法和装置
JP2022095711A (ja) 通信方法及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951572

Country of ref document: EP

Kind code of ref document: A1