WO2021088025A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021088025A1
WO2021088025A1 PCT/CN2019/116812 CN2019116812W WO2021088025A1 WO 2021088025 A1 WO2021088025 A1 WO 2021088025A1 CN 2019116812 W CN2019116812 W CN 2019116812W WO 2021088025 A1 WO2021088025 A1 WO 2021088025A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
target
uplink resource
trp
terminal
Prior art date
Application number
PCT/CN2019/116812
Other languages
English (en)
French (fr)
Inventor
管鹏
张希
樊波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/116812 priority Critical patent/WO2021088025A1/zh
Publication of WO2021088025A1 publication Critical patent/WO2021088025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication, and in particular to a communication method and device.
  • base stations and terminals In high-frequency communication systems, in order to overcome path loss, base stations and terminals usually use directional, high-gain antenna arrays to form analog beams (or beams) for communication.
  • shape of an analog beam can be described by the direction of the main lobe and the beam width of 3 dB.
  • the terminal can send signals in the direction corresponding to a certain sending beam, and the base station can receive according to the direction of a certain receiving beam. When the direction of the sending beam is aligned with the direction of the receiving beam, normal uplink can be realized. Communication.
  • the base station can configure multiple uplink resources for the terminal, and the uplink resources can be used for the terminal to send uplink signals.
  • the base station can also configure the transmission beam corresponding to each uplink resource to the terminal.
  • the base station needs to indicate the active spatial relationship corresponding to the uplink resource through signaling for each uplink resource. Since there may be multiple uplink resources configured, it is currently configuring the terminal's transmit beam The signaling overhead is relatively large, resulting in a waste of resources. If the same signaling is used to indicate the transmission beams commonly used by multiple uplink resources, it may cause the uplink resources associated with different TRPs to be configured with the same transmission beam in a multi-TRP transmission scenario, resulting in reduced communication efficiency.
  • the present application provides a communication method for optimizing the configuration process of the transmission beam to improve communication efficiency.
  • this application provides a communication method.
  • the communication method can be executed by a terminal such as a mobile phone or a chip in the terminal.
  • the terminal can receive first information from a network device, where the first information includes target grouping information.
  • the terminal may determine the target uplink resource corresponding to the target grouping information according to the first correspondence.
  • the first correspondence includes the correspondence between uplink resources, packet information, and transmission and reception points (TRP).
  • TRP transmission and reception points
  • the uplink resources belonging to the same group correspond to the same TRP, for example, all the uplink resources of the same group correspond to the same TRP.
  • the terminal may also determine the transmission beam corresponding to the target uplink resource, and send a signal to the network device according to the transmission beam.
  • the uplink resource can be a physical uplink control channel (PUCCH) resource, a physical uplink shared channel (PUSCH) resource, or a sounding reference signal (sounding reference signal, SRS) resource, etc. .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • the grouping information may be the grouping information of the uplink resource, and the grouping information may be used to indicate the group to which the uplink resource belongs.
  • the uplink resource is a PUCCH resource
  • the group may be a PUCCH resource group (PUCCH resource group).
  • the TRP information can be used to indicate the TRP associated with the uplink resource.
  • the uplink resources belonging to the same group correspond to the same TRP, or in other words, the uplink resources belonging to the same group are not associated with different TRPs.
  • PUCCH resources belonging to the same PUCCH resource group are not associated with different TRPs (PUCCH resources in a same PUCCH resource group should not be associated with different TRPs).
  • the network device can indicate the target uplink resource to the terminal through the first information, so that the terminal configures the transmission beam corresponding to the target uplink resource. Since in the first correspondence, the uplink resources belonging to the same group correspond to the same TRP, when there are multiple target uplink resources, the multiple target uplink resources indicated by the target group information are associated with the same TRP, thus avoiding the association The uplink resources to different TRPs are configured with the same transmission beam to improve communication efficiency.
  • the grouping information is, for example, the group identifier of the uplink resource.
  • the information of the TRP is, for example, a higher layer index or a CORESET pool index or a control resource collection index, and there is a one-to-one correspondence between the values of the TRP and the higher layer index (or the control resource pool index).
  • the terminal may send the signal to the TRP corresponding to the target uplink resource according to the sending beam.
  • each grouping information may correspond to one or more uplink resources (in other words, one or more uplink resources correspond to one group, or each group contains one or more uplink resources)
  • Each TRP can correspond to one or more grouping information (in other words, one or more groups correspond to one TRP, or each TRP corresponds to one or more group uplink resources).
  • the terminal may receive the first correspondence from the network device.
  • the terminal may receive second information from the network device, and the second information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the terminal may determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the above-mentioned first information and the second information can be carried in the same signaling to save signaling overhead.
  • the third information and the fourth information are carried in beam indication signaling.
  • the beam indication signaling may be a media access control (MAC)-control element (CE) message or downlink control information (download control information, DCI).
  • MAC media access control
  • CE control element
  • DCI download control information
  • an embodiment of the present application provides a communication method.
  • the method can be executed by a network device or a chip in the network device.
  • the network equipment may include access network equipment, such as a base station.
  • the network device can send a first correspondence relationship to the terminal.
  • the first correspondence relationship includes the correspondence relationship between uplink resources, grouping information, and TRP. Resources correspond to the same TRP.
  • the network device may also send first information to the terminal, where the first information includes target grouping information, where the target grouping information is used by the terminal to determine a target uplink resource, and the target uplink resource corresponds to the target grouping information.
  • one or more uplink resources correspond to one group, and one or more groups correspond to one TRP.
  • the network device may also send second information to the terminal, where the second information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the above-mentioned first information and second information may be carried in the same signaling.
  • this application provides a communication method.
  • the communication method can be executed by a terminal such as a mobile phone or a chip in the terminal.
  • the terminal can receive third information from a network device, and the third information includes target grouping information and target TRP information.
  • the terminal determines the target uplink resource corresponding to the target grouping information and the target TRP information according to the second correspondence.
  • the second correspondence is the correspondence between uplink resources, grouping information, and TRP.
  • the terminal determines the transmission beam corresponding to the target uplink resource, and sends a signal to the network device according to the transmission beam.
  • the network device can indicate the target uplink resource to the terminal through the third information, so that the terminal configures the transmission beam corresponding to the target uplink resource.
  • the third information includes the target group identifier and the target TRP information, when there are multiple target uplink resources, the multiple target uplink resources are all associated with the target TRP. Therefore, it is possible to avoid configuring the uplink resources associated with different TRPs as The same transmit beam to improve communication efficiency.
  • the above second correspondence may be received by the terminal from the network device, or defined by a protocol, or pre-configured in the terminal.
  • the terminal may send a signal to the target TRP according to the sending beam.
  • the terminal may also receive fourth information from the network device, where the fourth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the fourth information may include the identifier of the spatial relationship in the active state and/or the identifier of the spatial relationship in the inactive state.
  • the terminal may determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the above third information and fourth information may be carried in the same signaling to save signaling overhead.
  • an embodiment of the present application provides a communication method.
  • the method can be executed by a network device or a chip in the network device.
  • the network equipment may include access network equipment, such as a base station.
  • the third information may be determined by the network device, and the third information may include target packet information and target transmission point TRP information.
  • the network device may send the third information to the terminal, where the third information is used by the terminal to determine a target uplink resource, and the target uplink resource corresponds to the target grouping information and the target transmission point TRP information.
  • the network device may also send a second correspondence relationship to the terminal, where the second correspondence relationship is a correspondence relationship between uplink resources, grouping information, and TRP.
  • the network device may also send fourth information to the terminal, where the fourth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the third information and the fourth information may be carried in the same signaling.
  • this application provides a communication method.
  • the communication method can be executed by a terminal such as a mobile phone or a chip in the terminal.
  • the terminal can receive the fifth information from the network device.
  • the terminal determines the target uplink resource corresponding to the fifth information according to the third correspondence.
  • the third correspondence is the correspondence between uplink resources and grouping information
  • the fifth information includes target grouping information.
  • multiple uplink resources are not associated with different TRPs, or in other words, the example is applicable to A single TRP scenario; or, if the third correspondence is a correspondence between an uplink resource and a TRP, the fifth information includes information about the target TRP.
  • the terminal may determine the transmission beam corresponding to the target uplink resource, and send a signal to the network device according to the transmission beam.
  • the network device can indicate the target uplink resource to the terminal through the fifth information, so that the terminal determines the target uplink resource corresponding to the fifth information according to the third correspondence.
  • the third correspondence is the correspondence between uplink resources and grouping information
  • multiple uplink resources are all associated with the same TRP at this time;
  • the third correspondence is the correspondence between uplink resources and TRP
  • the fifth The information is the information of the target TRP, so the target uplink resources all correspond to the target TRP. Therefore, it is possible to avoid configuring the same transmission beam for uplink resources associated with different TRPs, so as to improve communication efficiency.
  • the above third correspondence can be received by the terminal from the network device.
  • the terminal may determine the fifth information as the target group information. If the third correspondence is the correspondence between the uplink resource and the TRP information, the terminal may determine the fifth information as the target TRP information.
  • the terminal may send the signal to the TRP corresponding to the target uplink resource according to the sending beam.
  • the terminal may also receive sixth information from the network device, where the sixth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the terminal may determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the above-mentioned fifth information and sixth information can be carried in the same signaling to save signaling overhead.
  • an embodiment of the present application provides a communication method.
  • the method can be executed by a network device or a chip in the network device.
  • the network equipment may include access network equipment, such as a base station.
  • the network device can determine the fifth information and send the fifth information to the terminal, so that the terminal determines the target uplink resource according to the third correspondence relationship and the fifth information, where the target uplink resource and the fifth information Information correspondence.
  • the fifth information includes target grouping information; or, if the third correspondence is the correspondence between the uplink resource and the TRP, then The fifth information includes information about the target TRP.
  • the network device may also send the third correspondence to the terminal.
  • the network device may also send sixth information to the terminal, where the sixth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the above-mentioned fifth information and sixth information can be carried in the same signaling to save signaling overhead.
  • this application provides a communication method.
  • the communication method can be executed by a terminal such as a mobile phone or a chip in the terminal.
  • the terminal may receive seventh information from the network device, and the seventh information may include the identifier of the first uplink resource.
  • the terminal may determine the target grouping information and the target TRP corresponding to the identifier of the first uplink resource according to the fourth correspondence, where the fourth correspondence is the correspondence between the uplink resource, the grouping information, and the TRP.
  • the terminal may determine the target uplink resource corresponding to the target grouping information and the target TRP according to the fourth correspondence relationship, where the target uplink resource includes the first uplink resource.
  • the terminal may also determine the transmission beam corresponding to the target uplink resource, and send a signal to the network device according to the transmission beam.
  • the network device can indicate the first uplink resource to the terminal through the seventh information, and the terminal can determine the target uplink resource according to the first uplink resource.
  • the target uplink resource and the group identifier corresponding to the first uplink resource are the same as the TRP information. Therefore, when configuring the transmission beam of the target uplink resource, it is possible to avoid configuring the same transmission beam for uplink resources associated with different TRPs. To improve communication efficiency.
  • the above fourth correspondence can be received by the terminal from the network device.
  • the terminal may send the signal to the target TRP according to the sending beam.
  • the terminal may also receive eighth information from the network device, where the eighth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the terminal may determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the seventh information and the eighth information mentioned above can be carried in the same signaling to save signaling overhead.
  • an embodiment of the present application provides a communication method. This method can be executed by a network device or a chip in the network device.
  • the network equipment may include access network equipment, such as a base station.
  • the network device can determine the seventh information, and the network device sends the seventh information to the terminal.
  • the seventh information includes the identifier of the first uplink resource, so that the terminal can be based on the fourth correspondence relationship and the seventh information.
  • the information determines the target uplink resource, where the target uplink resource includes the first uplink resource, and in the fourth correspondence, the grouping information and TRP information corresponding to the target uplink resource are the same as the grouping information and TRP information corresponding to the first uplink resource .
  • the fourth correspondence is the correspondence between uplink resources, grouping information, and TRP information.
  • the network device may also send the fourth correspondence to the terminal.
  • the network device may also send sixth information to the terminal, where the sixth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the above-mentioned fifth information and sixth information may be carried in the same signaling.
  • an embodiment of the present application provides a communication device.
  • the communication device can be used to implement any possible design of the first aspect or the first aspect, any possible design of the third aspect or the third aspect, any possible design or the first aspect of the fifth aspect or the fifth aspect. Steps executed by the terminal in any possible design of the seventh aspect or the seventh aspect.
  • the communication device can implement each function or step or operation in each of the foregoing methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • a communication device may be provided with functional modules corresponding to the functions or steps or operations in the foregoing methods to support the communication device to execute the foregoing methods.
  • the communication device may include a communication module and a processing module coupled with each other, wherein the communication module may be used to support the communication device to communicate, and the processing module may be used for the communication device to perform processing operations, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the above communication module can be used to perform the sending and/or receiving actions of the terminal in the above method, such as the action of sending information, messages or signaling from the terminal to the network device, or the receiving of information, message or information from the network device.
  • the processing module may be used to perform processing actions of the terminal in the method, such as controlling the communication module to receive and send information, messages or signaling, and to store information.
  • the communication device may be a terminal or a chip in the terminal.
  • an embodiment of the present application provides a communication device.
  • the communication device can be used to implement any possible design of the above-mentioned second aspect or the second aspect, any possible design of the fourth aspect or the fourth aspect, any possible design or the first aspect of the sixth aspect or the sixth aspect.
  • the communication device can implement each function or step or operation in each of the foregoing methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • a communication device may be provided with functional modules corresponding to the functions or steps or operations in the foregoing methods to support the communication device to execute the foregoing methods.
  • the communication device may include a communication module and a processing module coupled with each other, wherein the communication module can be used to support the communication device to communicate, and the processing module can be used for the communication device to perform processing operations, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the above communication module can be used to perform the sending and/or receiving actions of the terminal in the above method, such as the action of sending information, messages or signaling from the terminal to the network device, or the receiving of information, message or information from the network device.
  • the processing module may be used to perform processing actions of the terminal in the method, such as controlling the communication module to receive and send information, messages or signaling, and to store information.
  • the communication device may be a network device or a chip in a network device.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor executes a computer program in a memory, such as the first aspect, the third aspect, the fifth aspect, or the first aspect The method described in the seven aspects is executed.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor.
  • the processor executes the computer program in the memory, such as the second aspect, the fourth aspect, the sixth aspect, or the first aspect
  • the method described in the eight aspects is executed.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer programs or instructions; the processor is used to execute the computer programs stored in the memory Or instructions to make the communication device execute the corresponding method as shown in the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer programs or instructions; the processor is used to execute the computer programs stored in the memory Or an instruction to make the communication device execute the corresponding method as shown in the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive signals or send signals; and the memory is used to store program codes.
  • the processor is configured to call the program code from the memory to execute the method described in the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive signals or send signals; and the memory is used to store program codes.
  • the processor is configured to call the program code from the memory to execute the method described in the second aspect, the fourth aspect, the sixth aspect or the eighth aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive a computer program or instruction and transmit it to the processor; the processor Run the computer program or instruction to execute the corresponding method as shown in the first, third, fifth or seventh aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive a computer program or instruction and transmit it to the processor; the processor Run the computer program or instruction to execute the corresponding method as shown in the second, fourth, sixth or eighth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the first aspect and the first The method described in the third aspect, the fifth aspect, or the seventh aspect is implemented.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program or instruction.
  • the computer program or instruction is executed, the second aspect, the first The method described in the fourth aspect, the sixth aspect or the eighth aspect is implemented.
  • the embodiments of the present application provide a computer program product including a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the first aspect, the third aspect, the fifth aspect, or the seventh aspect The described method is implemented.
  • the embodiments of the present application provide a computer program product including a computer program or instruction.
  • the computer program or instruction is executed, the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect The described method is implemented.
  • this application provides a communication system.
  • the communication system may include the communication device shown in the ninth aspect, the eleventh aspect, the thirteenth aspect, or the fifteenth aspect, and the communication device shown in the tenth, twelfth, fourteenth, or sixteenth aspect ⁇ Communication device.
  • the present application provides a chip and/or a chip system including the chip, and the chip may include a processor.
  • the chip executes the computer program in the memory, the method described in the first, third, fifth or seventh aspect is executed.
  • the chip system may be composed of the above-mentioned chips, or may include the above-mentioned chips and other discrete devices, such as a memory (or storage module) and/or a transceiver (or communication module).
  • the present application provides a chip and/or a chip system including the chip, and the chip may include a processor.
  • the chip executes the computer program in the memory, the method described in the second, fourth, sixth or eighth aspect is executed.
  • the chip system may be composed of the above-mentioned chips, or may include the above-mentioned chips and other discrete devices, such as a memory (or storage module) and/or a transceiver (or communication module).
  • FIG. 1 is a schematic diagram of the architecture of a wireless communication system provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of the architecture of a wireless communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a beam indication signaling provided by an embodiment of this application.
  • 4A is a schematic structural diagram of a beam indication signaling provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication method provided by the embodiment of the present application can be applied to a wireless communication system, and the wireless communication system may include a terminal 101 and a network device 102.
  • wireless communication system can be applied to both low-frequency scenarios (sub 6G) and high-frequency scenarios (above6G).
  • Application scenarios of wireless communication systems include, but are not limited to, fifth-generation systems, new radio (NR) communication systems, or future evolved public land mobile network (PLMN) systems, etc.
  • NR new radio
  • PLMN public land mobile network
  • the terminal 101 shown above may be a user equipment (UE), a terminal (terminal), an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, and a mobile terminal (mobile terminal). terminal), wireless communication equipment, terminal agent or terminal equipment, etc.
  • the terminal 101 may have a wireless transceiver function, which can communicate with one or more network devices of one or more communication systems (such as wireless communication), and accept network services provided by the network devices.
  • the network devices here include but are not limited to The network device 102 is shown.
  • the terminal 101 may be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, and Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or terminal devices in the future evolved PLMN network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal 101 can be deployed on the land, including indoor or outdoor, handheld or vehicle-mounted; the terminal 101 can also be deployed on the water (such as ships, etc.); the terminal 101 can also be deployed in the air (such as airplanes, balloons, and satellites, etc.) .
  • the terminal 101 may specifically be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiving function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) terminal.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the terminal 101 may also be a communication chip with a communication module, or a vehicle with a communication function, or an in-vehicle device (such as an in-vehicle communication device, an in-vehicle communication chip), or the like.
  • the network device 102 may be an access network device (or called an access website point).
  • the access network equipment refers to equipment that provides network access functions, such as a radio access network (RAN) base station and so on.
  • the network device 102 may specifically include a base station (base station, BS), or include a base station and a radio resource management device for controlling the base station, and so on.
  • the network device 102 may also include a relay station (relay device), an access point, and a base station in a future 5G network, a base station in a future evolved PLMN network, or an NR base station, etc.
  • the network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip with a communication module.
  • the network equipment 102 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, and the radio network controller (RNC). , Wireless controller under CRAN system, base station controller (BSC), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU), transmission point (transmitting) and receiving point, TRP), transmitting point (TP) or mobile switching center, etc.
  • the network device 102 may also include a base station in a future 6G or newer mobile communication system.
  • the network device 102 when performing uplink transmission, can configure uplink resources for the terminal 101, and these uplink resources are used to transmit uplink signals.
  • the network device 102 also configures the SR corresponding to each uplink resource to the terminal 101.
  • one or more SR lists are configured for each uplink resource, and each SR list may include multiple SRs.
  • the network device 102 may also configure the active SRs among these SRs to the terminal 101, and these active SRs may be used to determine the transmission beam used to transmit the uplink signal.
  • the uplink signal can be carried on a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH), or the uplink signal can include a sounding reference signal (sounding reference signal, SRS).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • the network device 102 may configure a beam list (or SR list) to the terminal 101 through a radio resource control (RRC) message, where the beam list may include multiple PUCCH resources and PUCCH resources corresponding to each
  • the SR for example, includes the correspondence between the identifier of the PUCCH resource and the SR identifier.
  • the network device 102 can also indicate to the terminal 101 that the SR corresponding to the PUCCH resource is activated through media access control (MAC)-control element (CE) message or downlink control information (DCI) Status of the SR.
  • MAC-CE media access control
  • DCI downlink control information
  • the MAC-CE message may carry the identifier of the PUCCH resource and carry SR indication information for indicating the SR in the active state.
  • the terminal 101 may determine the available uplink resource according to the identifier of the PUCCH resource, and determine the active SR in the PUCCH resource according to the SR indication information. When PUCCH transmission is subsequently performed, the terminal 101 may determine the transmission beam through these active SRs, and transmit the PUCCH through the transmission beam.
  • the network device 102 may communicate with the terminal 101 through multiple TRPs to improve transmission efficiency, where the respective spatial positions of the multiple TRPs are different.
  • the network device 102 can communicate with the terminal 101 through TRP#1 and TRP#2.
  • the network device 102 may send configuration information to the terminal 101 through TRP#1 or TRP#2 for configuring uplink resources, and the configured uplink resources may be used for the transmission of uplink information.
  • the terminal 101 may perform uplink transmission through the TRP (for example, TRP#1 and/or TRP#2) associated with the uplink resource according to the uplink resource configured by the network device 102.
  • the present application provides a communication method that can configure transmission beams for one or more of the uplink resources configured by the network device 102 in a multi-TRP transmission scenario, and at the same time, it can ensure that multiple TRPs associated with different TRPs are not targeted.
  • the two uplink resources are configured with the same transmit beam.
  • the first embodiment of the communication method provided by the embodiments of the present application may include the following steps:
  • the network device 102 sends first information to the terminal 101, where the first information includes target group information. Accordingly, the terminal 101 receives the first information.
  • the terminal 101 determines the target uplink resource corresponding to the target grouping information according to the first correspondence.
  • the first correspondence includes the correspondence between uplink resources, group information, and TRP, where uplink resources belonging to the same group correspond to the same TRP. Or in other words, uplink resources belonging to the same group are not associated with different TRPs.
  • PUCCH resources belonging to the same PUCCH resource group are not associated with different TRPs (PUCCH resources in a same PUCCH resource group should not be associated with different TRPs).
  • the terminal 101 determines the transmission beam corresponding to the target uplink resource.
  • the terminal 101 sends a signal to the network device 102 according to the sending beam.
  • the terminal 101 may send control information, such as uplink control information (UCI), to the network device 102 according to the transmission beam, and the control information is carried on the PUCCH.
  • UCI uplink control information
  • the terminal 101 can send uplink data to the network device 102 according to the transmission beam, and the uplink data is carried on the PUSCH.
  • the uplink resource is a PUSCH resource
  • the terminal 101 can send uplink data to the network device 102 according to the transmission beam, and the uplink data is carried on the PUSCH.
  • the uplink resource may also be an SRS resource, and the terminal 101 may send the SRS according to the transmission beam.
  • the network device 102 can indicate the target uplink resource to the terminal 101 through the first information, so that the terminal 101 configures the transmission beam corresponding to the target uplink resource. Since in the first correspondence, the uplink resources belonging to the same group correspond to the same TRP, when there are multiple target uplink resources, the multiple target uplink resources indicated by the target group information are associated with the same TRP, thus avoiding The uplink resources associated with different TRPs are configured with the same transmission beam to improve communication efficiency.
  • an uplink resource can be represented by the identifier of the uplink resource.
  • the identifier of the uplink resource can be the index of the uplink resource configured by the network device 102 to the terminal 101.
  • the group information can be used to indicate the group to which the uplink resource belongs.
  • the group may be a PUCCH resource group (PUCCH resource group).
  • the group identifiers of the uplink resources are the same, it means that the uplink resources belong to the same uplink resource group.
  • the above grouping information may include a group identification.
  • TRP information may be control resource set (control resource et, CORESET) (or control channel resource set) information associated with uplink resources, such as CORESET resource pool index (CORESET pool index), or high-level index.
  • control resource set control resource et, CORESET
  • CORESET pool index CORESET pool index
  • the value of the CORESET resource pool index of the uplink resource is the same, it means that the uplink resource is associated with the same TRP.
  • the control resource pool index "0" indicates that the uplink resource is associated with TRP#1
  • the control resource pool index "1" indicates that the uplink resource is associated with TRP#2.
  • the target grouping information may include a target group identifier, and the target group identifier may be one of a plurality of group identifiers included in the first correspondence relationship;
  • the target TRP information may include a target control resource collection pool index,
  • the control resource collection pool index may be one of multiple control resource collection pool indexes included in the first correspondence.
  • the maximum value of the number of uplink resource packets in this application may depend on whether multiple TRP transmission is supported. For example, when single TRP transmission is used, the uplink resources can be divided into two groups. When multiple TRP transmission is used, the maximum number of uplink resources can be divided. Divided into four groups. The reason is that the current protocol supports up to 2 TRPs and 4 uplink resource groups. In this case, a most reasonable design is to make the uplink resources in a group use the same transmitting beam, and each TRP can be associated with two groups. There are two packets, that is, when the terminal 101 transmits toward each TRP, there are two packet transmission beams available.
  • Table 1 is the correspondence between the identifier of the uplink resource, the group identifier, and the index of the control resource collection pool.
  • the identifier of the uplink resource can be used to indicate the uplink resource
  • the group identifier can be used to indicate the uplink resource.
  • the control resource collection pool index can be used to represent TRP information.
  • 8 uplink resources are taken as an example in Table 1 for description. In actual implementation, the network device 102 may be configured with other numbers of uplink resources, for example, more than 8 uplink resources.
  • the maximum value of the grouping number of uplink resources depends on whether multiple TRP transmission is supported. For example, for single TRP transmission, the uplink resources can be divided into two groups, and for multiple TRP transmission, the uplink resources can be divided into four at most. group.
  • the uplink resources belonging to the same group are all associated with the same TRP.
  • the group identifier "1" corresponds to the identifiers "1" and “2" of the uplink resource, so the group of uplink resources indicated by the group identifier "1" includes the uplink resource "1" and the uplink resource "2".
  • the identifiers "1" and “2" of the uplink resources correspond to the control resource pool index "0". Therefore, the uplink resource 1 and the uplink resource 2 are both associated with the same TRP, such as TRP#1.
  • the first corresponding relationship may also include a second uplink resource, for example, an uplink resource with a group identifier of "2".
  • a second uplink resource for example, an uplink resource with a group identifier of "2”.
  • the uplink resource with the group ID of "1” and the uplink resource with the group ID of "2” all correspond to the control resource collection pool index "0", and therefore, these uplink resources are all associated with the same TRP.
  • the above first correspondence may be configured by the network device 102 and sent to the terminal 101.
  • the network device 102 may send the first correspondence to the terminal 101 through an RRC message.
  • the first correspondence relationship may also be defined by an agreement or determined in a pre-configured manner.
  • the group identifier and TRP information corresponding to the same uplink resource satisfy the following formula:
  • N 0 represents the value of the group ID of the uplink resource
  • K is the number of TRPs
  • M 0 is the TRP information of the group ID of the uplink resource.
  • mod stands for modulo operation.
  • the information of the TRP corresponding to TRP#1 is "0", and the information of the TRP corresponding to TRP#2 is "1".
  • the group ID and TRP information corresponding to the same uplink resource satisfy the following formula:
  • N 0 represents the value of the group ID of the uplink resource
  • K is the number of TRPs
  • M 0 is the TRP information of the group ID of the uplink resource
  • L represents the offset value
  • L is an integer. mod stands for modulo operation.
  • the group identifier of the uplink resource may be determined by information related to the uplink resource.
  • the group identifier may be determined by the uplink resource identifier.
  • the group identifier is the remainder after the identifier (or index) of the uplink resource modulo the number of groups.
  • CORESET downlink control channel resource set
  • the group identity can be jointly determined by the TRP information and the uplink resource identity.
  • the control resource pool index is used as the first bit of the group identifier
  • the second bit of the group identifier is determined according to the parity of the uplink resource identifier, where 1 represents an odd number, 0 represents an even number, and two bits correspond to each other.
  • the decimal value is the group identifier of the uplink resource.
  • the terminal 101 may determine the target uplink resource according to the first correspondence. Taking Table 1 as an example, if the target group identifier indicated by the first information is "1", the terminal 101 can determine the target uplink resource identifiers as "1" and "2" according to Table 1.
  • the network device 102 may also send second information to the terminal 101, where the second information is used to indicate a beam to be sent.
  • the second information may be used to determine the spatial relationship in the activated state in the spatial relationship corresponding to the target uplink resource, and the spatial relationship in the activated state may be used to determine the transmission beam corresponding to the target uplink resource.
  • the network device 102 may configure a spatial relationship list corresponding to each uplink resource to the terminal 101, and the spatial relationship list may include k spatial relationship indexes to indicate k spatial relationships corresponding to the uplink resource, and k is a positive integer .
  • the SR list in this application may be configured for each BWP of each carrier component (CC) of the terminal 101, and the SR list is applicable to each BWP of each CC; or, SR The list may be configured for one or more CCs that the terminal 101 works; or, the SR list may be configured for multiple BWPs of one CC that the terminal 101 works. In this way, the spatial relationship of the uplink resources can be configured flexibly with multiple granularities.
  • the second information may include the index of the spatial relationship in the active state, and the terminal 101 can determine the transmission beam according to the spatial relationship in the active state; or, the second information may include the index of the spatial relationship in the inactive state. 101 can determine that other spatial relationships in the spatial relationship list are in the active state according to these spatial relationships that are not in the active state, and determine the transmission beam according to the spatial relationship in the active state.
  • the above second information can be used to determine a group of spatial relationships in the active state, and accordingly, the group of spatial relationships in the active state can be configured for the target uplink resource.
  • the same transmission beam may be configured for the multiple target uplink resources.
  • the above-mentioned first information and second information may be carried in the same beam indication signaling.
  • the beam indication signaling may be a MAC-CE message or DCI.
  • the field “grouping info” can be used to carry the first information.
  • the field “spatial relationship information” can be used to carry second information.
  • the field “R” in FIG. 4 represents a reserved field.
  • the field “R” is a bit with a value of 0.
  • the beam indication signaling may also include a serving cell (serving cell) identifier and a bandwidth part (bandwidth part, BWP) identifier, which are used to indicate the cell and bandwidth range to which the beam indication signaling applies.
  • the terminal 101 can update the spatial relationship list of the target uplink resource according to the first information and the second information, and then can determine the transmission beam corresponding to the target uplink resource according to the updated spatial relationship list in S103. . Subsequent in S104, when the terminal 101 transmits an uplink signal, it can transmit according to the transmission beam.
  • the network device 102 may also instruct the terminal 101 to update the SR of the target uplink resource through the beam indication signaling shown in FIG. 4A, so as to implement the configuration of the transmission beam of the terminal 101.
  • the number of target uplink resources can be multiple, so the signaling overhead when configuring the transmission beams of multiple uplink resources can be saved.
  • the beam indication signaling described in FIG. 4A may be a MAC-CE message.
  • the field "Pi" (ie, P0, P1, P2, etc.) can be used to indicate the uplink resources for which the spatial relationship needs to be updated.
  • Updating means that the terminal sets the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource according to the second information.
  • the field "spatial relationship information" in FIG. 4A can be used to carry second information.
  • the field “R” in FIG. 4A represents a reserved field.
  • the field “R” is a bit with a value of 0.
  • the beam indication signaling shown in FIG. 4A may also include a serving cell identifier and a bandwidth part identifier, which are used to indicate the cell and bandwidth range to which the beam indication signaling applies.
  • the beam indication signaling may also carry a serving cell group identifier, which is used to indicate one or more serving cell groups, and each serving cell group may include one or more serving cells.
  • the MAC-CE message shown in FIG. 4 or FIG. 4A may also include a serving cell group identity.
  • the terminal 101 can determine the serving cell group according to the serving cell group identifier, and according to the second information, update the SR of the uplink resources in the specific uplink resource group in one or more serving cells in the serving cell group, where these specific The uplink resource grouping is determined according to the first information.
  • the manner of determining the specific uplink resource grouping refer to any manner of determining the uplink resource grouping according to the first information provided in this application. Thereby, the efficiency of configuring the transmission beam can be improved.
  • the terminal 101 can determine the target uplink resource according to the first correspondence and the first information from the network device 102, and configure the transmission beam of the target uplink resource.
  • the first correspondence includes the correspondence between uplink resources, group information, and TRP, and in this embodiment, multiple uplink resources belonging to the same group should be associated with the same TRP.
  • the first information may include target grouping information. Since multiple uplink resources belonging to the same group in the first correspondence are associated with the same TRP, the target uplink resources determined by the terminal 101 according to the first correspondence and the first information are all associated with the same TRP.
  • the terminal 101 can configure the transmission beam of the target uplink resource associated with the same TRP as the same transmission beam, which can avoid the transmission beam configuration of multiple uplink resources respectively associated with different TRPs. It is the same transmission beam to improve communication efficiency.
  • the second embodiment of the communication method provided by the embodiment of the present application may include the following steps:
  • the network device 102 sends third information to the terminal 101, where the third information includes target grouping information and target TRP information. Accordingly, the terminal 101 receives the third information.
  • the terminal 101 determines the target uplink resource corresponding to the target grouping information and the target TRP information according to the second correspondence.
  • the second correspondence is the correspondence between uplink resources, grouping information, and TRP.
  • the grouping information can be used to indicate the grouping of uplink resources.
  • TRP information is used to distinguish TRPs associated with uplink resources.
  • the uplink resource in the second correspondence relationship includes the target uplink resource
  • the grouping information includes the target grouping information
  • the TRP includes the target TRP
  • S203 The terminal 101 determines the transmission beam corresponding to the target uplink resource.
  • S204 The terminal 101 sends a signal to the network device 102 according to the sending beam.
  • the network device 102 can indicate the target uplink resource to the terminal 101 through the third information, so that the terminal 101 configures the transmission beam corresponding to the target uplink resource.
  • the third information includes the target group identifier and the target TRP information, when there are multiple target uplink resources, the multiple target uplink resources are all associated with the target TRP, avoiding that uplink resource configurations associated with different TRPs have the same transmission. Beam to improve communication efficiency.
  • the above second correspondence can be represented by Table 2, where Table 2 is the correspondence between the identifier of the uplink resource, the group identifier, and the high-level index.
  • Table 2 is the correspondence between the identifier of the uplink resource, the group identifier, and the high-level index.
  • 16 uplink resources are taken as an example for description.
  • the network device 102 may be configured with other numbers of uplink resources, for example, more than 16 uplink resources.
  • Uplink resource identification Group ID High-level index 1 1 0 2 1 1 3 1 0 4 1 1 5 2 0 6 2 1 7 2 0 8 2 1 9 3 0 10 3 1 11 3 0 12 3 1 13 4 0 14 4 1 15 4 0 16 4 1
  • the above second correspondence may be configured by the network device 102 and sent to the terminal 101.
  • the network device 102 may send the second correspondence to the terminal 101 through an RRC message.
  • the second correspondence relationship may also be defined by an agreement, or determined in a pre-configured manner.
  • the terminal 101 may determine the target uplink resource according to the second correspondence. Taking Table 2 as an example, if the target group identifier indicated by the third information is "1" and the high-level index is "0", the terminal 101 can determine the target uplink resource identifiers as "1" and "3" according to Table 2.
  • the network device 102 may also send fourth information to the terminal 101, and the fourth information may be used to indicate beam transmission.
  • the fourth information may be used to determine the spatial relationship in the activated state in the spatial relationship corresponding to the target uplink resource, and the spatial relationship in the activated state may be used to determine the transmission beam corresponding to the target uplink resource.
  • the fourth information may be used to indicate whether each spatial relationship is in the active state in the spatial relationship list corresponding to the uplink resource, or to indicate the active spatial relationship in the spatial relationship list, or to indicate the spatial relationship Spatial relationships that are not active in the list.
  • the fourth information refer to the introduction about the second information in the first embodiment.
  • the above third information and fourth information can be carried in the same signaling.
  • the third information and the fourth information may be carried in beam indication signaling.
  • the beam indication signaling may be a MAC-CE message or DCI.
  • the field "group information" can be used to carry third information.
  • the field "spatial relationship identifier" can be used to carry the fourth information. Therefore, based on the signaling shown in FIG. 4, the terminal 101 can update the spatial relationship list of the target uplink resource according to the third information and the fourth information, and can determine the transmission beam corresponding to the target uplink resource according to the updated spatial relationship list in S203. . Subsequent in S204, when the terminal 101 transmits an uplink signal, it can transmit according to the transmission beam.
  • the terminal 101 can determine the target uplink resource according to the second correspondence and the third information from the network device 102, and configure the transmission beam of the target uplink resource.
  • the second correspondence includes the correspondence between uplink resources, grouping information, and TRP.
  • multiple uplink resources that belong to a group can be associated with the same TRP, or can be associated with multiple different TRPs, without limitation.
  • the third information may include target grouping information and target TRP information. Since the second correspondence includes the correspondence between uplink resources, grouping information, and TRP, the target uplink resources determined by the terminal 101 according to the second correspondence and the third information are all associated with the same TRP, that is, the target TRP.
  • the transmit beams of the target uplink resource associated with the same TRP can be configured as the same transmit beam, which can avoid configuring the transmit beams of multiple uplink resources respectively associated with different TRPs to be the same Transmission beam to improve communication efficiency.
  • the third embodiment of the communication method provided by the embodiment of the present application may include the following steps:
  • the network device 102 sends target grouping information to the terminal 101. Accordingly, the terminal 101 receives target grouping information.
  • the terminal 101 determines the target uplink resource corresponding to the target grouping information according to the corresponding relationship between the uplink resource and the grouping information.
  • the network device 102 will not configure an associated TRP for the uplink resource of the terminal 101.
  • multiple uplink resources can be divided into different groups, or in other words, the uplink resources in all uplink resource groups are associated with the same TRP.
  • the terminal 101 determines the transmission beam corresponding to the target uplink resource.
  • S304 The terminal 101 sends a signal to the network device 102 according to the sending beam.
  • the network device 102 can indicate the target uplink resource to the terminal 101 through the target grouping information, so that the terminal 101 determines the target uplink resource corresponding to the target grouping information according to the corresponding relationship between the uplink resource and the grouping information, and configures the target The transmit beam corresponding to the uplink resource.
  • the multiple target uplink resources indicated by the target grouping information will not be associated with different TRPs, so it can avoid configuring the same transmit beam for uplink resources associated with different TRPs to improve communication efficiency .
  • the identifier of the uplink resource may be used to indicate the uplink resource
  • the group identifier may be used to indicate the grouping of the uplink resource.
  • 8 uplink resources are taken as an example in Table 3 for description.
  • the network device 102 may be configured with other numbers of uplink resources, for example, more than 8 uplink resources.
  • the correspondence between the above uplink resources and the grouping information may be configured by the network device 102 and sent to the terminal 101.
  • the network device 102 may send the corresponding relationship between the uplink resource and the grouping information to the terminal 101 through an RRC message.
  • the corresponding relationship between the uplink resources and the grouping information can also be defined by a protocol, or determined in a pre-configuration manner.
  • the network device 102 may also send beam indication information to the terminal 101, where the beam indication information is used to indicate to send a beam.
  • the beam indication information may be used to determine the spatial relationship in the active state in the spatial relationship corresponding to the target uplink resource, and the spatial relationship in the active state may be used to determine the transmission beam corresponding to the target uplink resource.
  • the beam indication information may be used to indicate whether each spatial relationship is in the active state in the spatial relationship list corresponding to the uplink resource, or it may be used to indicate the active spatial relationship in the spatial relationship list, or it may be used to indicate the spatial relationship. Spatial relationships that are not active in the list. For the specific configuration of the above beam indication information, refer to the introduction about the second information in the first embodiment.
  • the foregoing target grouping information and beam indication information may be carried in the same beam indication signaling.
  • the beam indication signaling may be a MAC-CE message or DCI.
  • the field "group information" can be used to carry target grouping information.
  • the field "spatial relationship identifier" can be used to carry beam indication information. Therefore, based on the signaling shown in FIG. 4, the terminal 101 can update the spatial relationship list of the target uplink resource according to the target grouping information and the beam indication information, and can determine the transmission beam corresponding to the target uplink resource according to the updated spatial relationship list in S303. . Subsequent in S304, when the terminal 101 transmits an uplink signal, it can transmit according to the transmission beam.
  • the terminal 101 can determine the target uplink resource according to the correspondence between the uplink resource and the grouping information and the target grouping information from the network device 102, and configure the transmission beam of the target uplink resource.
  • the uplink resources can be associated with the same TRP (or the terminal 101 adopts a single TRP transmission), so the target uplink resources determined by the terminal 101 according to the third correspondence and the target grouping information are all associated with the same TRP.
  • the fourth embodiment of the communication method provided by the embodiments of the present application may include the following steps:
  • the network device 102 sends the target TRP information to the terminal 101, where the target TRP information includes the target TRP information. Accordingly, the terminal 101 receives the information of the target TRP.
  • the terminal 101 determines the target uplink resource corresponding to the target TRP information according to the correspondence between the uplink resource and the TRP information.
  • the correspondence between the uplink resource and the TRP information is the correspondence between the uplink resource and the TRP information.
  • the network device 102 does not configure grouping information for the terminal 101.
  • the terminal 101 determines the transmission beam corresponding to the target uplink resource.
  • S404 The terminal 101 sends a signal to the network device 102 according to the sending beam.
  • the network device 102 can indicate the target uplink resource to the terminal 101 through the target TRP information, so that the terminal 101 determines the target uplink resource according to the correspondence between the uplink resource and the TRP information, and configures the target uplink resource corresponding to the target uplink resource.
  • Send beam When there are multiple target uplink resources, the multiple target uplink resources indicated by the target grouping information are associated with the target TRP, thus avoiding the terminal 101 from configuring the same transmission beam for uplink resources associated with different TRPs to improve communication effectiveness.
  • the corresponding relationship between the above uplink resource and TRP information can be shown in Table 4, where Table 4 is the corresponding relationship between the identifier of the uplink resource and the high-level index, where the identifier of the uplink resource can be used to indicate the uplink resource, and the high-level index is available Yu represents TRP information.
  • 8 uplink resources are taken as an example in Table 4 for description.
  • the network device 102 may be configured with other numbers of uplink resources, for example, more than 8 uplink resources.
  • Uplink resource identification High-level index 1 0 2 0 3 0 4 0 5 1 6 1 7 1 8 1
  • the corresponding relationship between the above uplink resources and TRP information may be configured by the network device 102 and sent to the terminal 101.
  • the network device 102 may send the corresponding relationship to the terminal 101 through an RRC message.
  • the corresponding relationship may also be defined by an agreement, or determined in a pre-configured manner.
  • the network device 102 may also send beam indication information to the terminal 101, where the beam indication information is used to indicate to send a beam.
  • the beam indication information may be used to determine the spatial relationship in the active state in the spatial relationship corresponding to the target uplink resource, and the spatial relationship in the active state may be used to determine the transmission beam corresponding to the target uplink resource.
  • the beam indication information may be used to indicate whether each spatial relationship is in the active state in the spatial relationship list corresponding to the uplink resource, or it may be used to indicate the active spatial relationship in the spatial relationship list, or it may be used to indicate the spatial relationship. Spatial relationships that are not active in the list. For the specific configuration of the above beam indication information, refer to the introduction about the second information in the first embodiment.
  • the above-mentioned target TRP information and beam indication information may be carried in the same beam indication signaling.
  • the beam indication signaling may be a MAC-CE message or DCI.
  • the field "group information" can be used to carry information about the target TRP.
  • the field "spatial relationship identifier" can be used to carry beam indication information. Therefore, based on the signaling shown in FIG. 4, the terminal 101 can update the spatial relationship list of the target uplink resource according to the target TRP information and the beam indication information, and then can determine the transmission corresponding to the target uplink resource according to the updated spatial relationship list in S303. Beam. Subsequent in S304, when the terminal 101 transmits an uplink signal, it can transmit according to the transmission beam.
  • the terminal 101 can determine the target uplink resource according to the correspondence between the uplink resource and TRP information and the target TRP information from the network device 102, and configure the transmission beam of the target uplink resource. Since the corresponding relationship includes the corresponding relationship between the uplink resource and the TRP information, the target uplink resources determined by the terminal 101 according to the corresponding relationship and the target TRP information are all associated with the same TRP (that is, the target TRP).
  • the terminal 101 may select the network device 102 to execute the method shown in the third embodiment or execute the method shown in the fourth embodiment.
  • the terminal 101 may send instruction information to the network device 102 to indicate whether the terminal 101 supports the configuration of the transmission beam using the method shown in the third embodiment.
  • the steps shown in FIG. 6 may be performed.
  • the terminal 101 may also send instruction information to the network device 102, which is used to indicate whether the terminal 101 supports using the method shown in the fourth embodiment to configure the transmission beam.
  • the steps shown in the fourth embodiment can be performed.
  • the terminal 101 when the terminal 101 sends a first indication (such as a "0" bit) to the network device 102, it means that the terminal 101 supports the process shown in the third embodiment.
  • the network device 102 After receiving the first instruction, the network device 102 may send the target grouping information to the terminal 101, and execute the process shown in the third embodiment.
  • the terminal 101 sends a second indication (such as a "1" bit) to the network device 102, it indicates that the terminal 101 supports the process shown in the fourth embodiment.
  • the network device 102 may send the target TRP information to the terminal 101 after receiving the first instruction, and execute the process shown in the fourth embodiment.
  • the network device 102 may also instruct the terminal 101 to use the process shown in the third embodiment or the fourth embodiment to configure the transmission beam through the configuration of the corresponding relationship.
  • the network device 102 configures the terminal 101 with the above-mentioned correspondence between the uplink resource and the packet information, it means that the process shown in the third embodiment is adopted, and the subsequent network device 102 can send the target packet to the terminal 101
  • the information is used for the terminal 101 to determine the target uplink resource; when the network device 102 configures the terminal 101 with the corresponding relationship between the uplink resource and the TRP, it means that the process shown in the fourth embodiment is adopted, and the subsequent network device 102 can
  • the target TRP information is sent to the terminal 101 for the terminal 101 to determine the target uplink resource.
  • the network device 102 may send fifth information to the terminal 101 for the terminal 101 to determine the target uplink resource according to the third correspondence and the fifth information, and configure the transmission beam of the target uplink resource.
  • the fifth information includes target grouping information, and the terminal 101 can determine the target uplink resource according to the method described in the third embodiment.
  • the fifth information includes information about the target TRP, and the terminal 101 may determine the target uplink resource according to the method described in the fourth embodiment.
  • the network device 102 may use beam indication signaling of the same structure to perform beam indication to the terminal 101.
  • the beam indication signaling shown in FIG. 4 as an example, if the third embodiment is adopted, or if the third correspondence is the correspondence between the uplink resource and the group identifier, then the beam indication signaling shown in FIG. 4
  • the field "group information" of can be used to carry target grouping information. After analyzing this field, the terminal 101 can determine the target uplink resource corresponding to the target grouping information according to the correspondence between the uplink resource and the group identifier.
  • the field "group information" in the beam indication signaling shown in FIG. 4 can be used to carry the target TRP After analyzing this field, the terminal 101 can determine the target uplink resource corresponding to the target TRP information according to the correspondence between the uplink resource and the TRP information.
  • the terminal 101 may also determine the activated spatial relationship among the spatial relationships corresponding to the target uplink resource according to the sixth information from the network device 102.
  • the sixth information refer to the description of the beam indication information in the third final embodiment or the fourth type.
  • the fifth embodiment of the communication method provided by the embodiments of the present application may include the following steps:
  • the network device 102 sends seventh information to the terminal 101, where the seventh information may include the identifier of the first uplink resource. Accordingly, the terminal 101 receives the seventh information.
  • the terminal 101 determines the target group information and target TRP information corresponding to the identifier of the first uplink resource according to the fourth correspondence relationship.
  • the fourth correspondence includes the correspondence between uplink resources, grouping information, and TRP. It should be understood that the uplink resource in the fourth correspondence includes the first uplink resource, the grouping information includes the target grouping information, and the TRP includes the target TRP.
  • the terminal 101 determines the target uplink resource corresponding to the target grouping information and the target TRP information according to the fourth correspondence. It should be understood that the target uplink resource includes the first uplink resource.
  • the terminal 101 determines the transmission beam corresponding to the target uplink resource.
  • S505 The terminal 101 sends a signal to the network device 102 according to the sending beam.
  • the network device 102 can indicate the first uplink resource to the terminal 101 through the seventh information, and the terminal 101 can determine the target uplink resource according to the first uplink resource, where the target uplink resource corresponds to the first uplink resource
  • the group ID is the same as the TRP information. Therefore, when configuring the transmission beam of the target uplink resource, it is possible to avoid configuring the same transmission beam for the uplink resources associated with different TRPs, so as to improve communication efficiency.
  • Table 5 shows the correspondence between the identifier of the uplink resource, the group identifier, and the high-level index.
  • the identifier of the upstream resource can be used to indicate the uplink resource
  • the group identifier can be used to indicate grouping information
  • the high-level index can be used to indicate TRP information.
  • 12 uplink resources are taken as an example for description.
  • the network device 102 may be configured with other numbers of uplink resources, for example, more than 12 uplink resources.
  • Uplink resource identification Group ID High-level index 1 1 0 2 1 1 3 2 0 4 2 1 5 3 0 6 3 1 7 4 0 8 4 1 9 1 0 10 1 1 11 2 0 12 2 1
  • the terminal 101 can determine according to Table 1 that the target group identifier is "1" and the target high-level index is "0", so that the terminal 101 Further, according to the target group identifier and the target high-level index lookup table 5, it is determined that the identifiers of the target uplink resources are "1" and "9".
  • the maximum value of the number of uplink resource groupings in the fourth correspondence depends on whether multiple TRP transmission is supported. For example, in the case of single TRP transmission, the uplink resources can be divided into two groups, and in the case of multiple TRP transmission, the maximum value can be Uplink resources are divided into four groups.
  • the above fourth correspondence can be configured by the network device 102 and sent to the terminal 101.
  • the network device 102 may send the fourth correspondence to the terminal 101 through an RRC message.
  • the fourth correspondence relationship may also be defined by an agreement or determined in a pre-configured manner.
  • the network device 102 may also send eighth information to the terminal 101, where the eighth information is used to indicate beam transmission.
  • the eighth information may be used to determine the spatial relationship in the activated state in the spatial relationship corresponding to the target uplink resource, and the spatial relationship in the activated state may be used to determine the transmission beam corresponding to the target uplink resource.
  • the eighth information may be used to indicate whether each spatial relationship is in the active state in the spatial relationship list corresponding to the uplink resource, or to indicate the active spatial relationship in the spatial relationship list, or to indicate the spatial relationship Spatial relationships that are not active in the list.
  • the eighth information refer to the introduction about the second information in the first embodiment.
  • the seventh information and the eighth information may be carried in the same beam indication signaling.
  • the beam indication signaling may be a MAC-CE message or DCI.
  • the field "group information" can be used to carry seventh information.
  • the field "spatial relationship identifier" can be used to carry eighth information. Therefore, based on the signaling shown in FIG. 4, the terminal 101 can update the spatial relationship list of the target uplink resource according to the seventh information and the eighth information, and can determine the transmission beam corresponding to the target uplink resource according to the updated spatial relationship list in S503. . Subsequent in S504, when the terminal 101 transmits an uplink signal, it can transmit according to the transmission beam.
  • the terminal 101 can determine the target group identifier and target TRP information based on the fourth correspondence and the first information from the network device 102, and further query the fourth correspondence based on the target group identifier and the target TRP information Determine the target uplink resource, and then configure the transmission beam of the target uplink resource.
  • multiple uplink resources that belong to a group in the fourth correspondence relationship can be associated with the same TRP, or can be associated with multiple different TRPs, without limitation. Since the target uplink resources determined by the above method are all associated with the target TRP, the terminal 101 can configure the transmit beams of the target uplink resources associated with the target TRP to the same transmit beam, which can avoid multiple uplinks that are respectively associated with different TRPs.
  • the transmission beams of the resources are configured as the same transmission beam to improve communication efficiency.
  • the method provided in the embodiments of the present application is introduced from the perspective of the functions implemented by the terminal.
  • the terminal may include a hardware structure and/or a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • a communication device may include a communication module 901 and a processing module 902, and the communication module 901 and the processing module 902 are coupled with each other.
  • the communication device 900 can be used to perform the steps performed by the terminal 101 in the above method embodiments.
  • the communication module 901 may be used to support the communication device 900 to communicate, and the communication module 901 may also be referred to as a communication unit, a communication interface, a transceiver module, or a transceiver unit.
  • the communication module 901 may have a wireless communication function, such as being able to communicate with other communication devices through wireless communication.
  • the processing module 902 can also be referred to as a processing unit, and can be used to support the communication device 900 to perform the processing actions of the terminal device in the foregoing method embodiments, including but not limited to: generating information and messages sent by the communication module 901, and/or, The signal received by the communication module 901 is demodulated, decoded, and so on.
  • the above communication module 901 can be used to perform the sending and/or receiving actions of the terminal in the above method embodiment, for example, it is used to perform the terminal sending information, messages or messages to the network device. Command, or to perform an action to receive information, messages, or signaling from a network device.
  • the processing module 902 can be used to perform processing actions of the terminal in the foregoing method embodiments, such as controlling the communication module 901 to receive and send information, messages, or signaling, and to store information.
  • the communication module 901 may be configured to receive first information from a network device, where the first information includes target grouping information.
  • the processing module 902 may be configured to determine the target uplink resource corresponding to the target grouping information according to the first corresponding relationship, where the first corresponding relationship includes the corresponding relationship between the uplink resource, the grouping information, and the TRP.
  • the uplink resources of the group correspond to the same TRP.
  • the processing module 902 may also be used to determine the transmission beam corresponding to the target uplink resource.
  • the communication module 901 may also be configured to send a signal to the network device according to the sending beam.
  • the communication module 901 may specifically send the signal to the TRP corresponding to the target uplink resource according to the sending beam.
  • one or more uplink resources correspond to one group, and one or more groups correspond to one TRP.
  • the communication module 901 may also be configured to receive the first correspondence from the network device.
  • the communication module 901 may also be configured to receive second information from the network device, where the second information is used to determine a spatial relationship corresponding to the target uplink resource, which is in an activated state. Then, the processing module 902 may specifically determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the above-mentioned first information and second information may be carried in the same signaling.
  • the communication module 901 may be used to receive third information from a network device, where the third information includes target packet information and target transmission point TRP information.
  • the processing module 902 may be configured to determine the target uplink resource corresponding to the target grouping information and the target TRP information according to a second correspondence, and the second correspondence is the correspondence between the uplink resource, the grouping information, and the TRP. relationship.
  • the processing module 902 may also be used to determine the transmission beam corresponding to the target uplink resource.
  • the communication module 901 may also be configured to send a signal to the network device according to the sending beam.
  • the communication module 901 may also be configured to receive the second correspondence from the network device.
  • the communication module 901 may be specifically configured to send the signal to the target TRP according to the sending beam.
  • the communication module 901 also receives fourth information from the network device, where the fourth information is used to determine the spatial relationship corresponding to the target uplink resource, which is in an active state.
  • the processing module 902 may specifically determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • third information and fourth information may be carried in the same signaling.
  • the communication module 901 may receive the fifth information from the network device.
  • the processing module 902 may determine the target uplink resource corresponding to the fifth information according to the third correspondence. Wherein, if the third correspondence is the correspondence between uplink resources and grouping information, the fifth information includes target grouping information. At this time, multiple uplink resources are not associated with different TRPs, or in other words, the example is applicable to A single TRP scenario; or, if the third correspondence is a correspondence between an uplink resource and a TRP, the fifth information includes information about the target TRP.
  • the processing module 902 may also determine the transmission beam corresponding to the target uplink resource.
  • the communication module 901 may also send a signal to the network device according to the sending beam.
  • the above third correspondence can be received by the communication module 901 from the network device.
  • the processing module 902 may determine the fifth information as the target group information. If the third correspondence is the correspondence between the uplink resource and the TRP information, the terminal may determine the fifth information as the target TRP information.
  • the communication module 901 may specifically send the signal to the TRP corresponding to the target uplink resource according to the sending beam.
  • the communication module 901 may also receive sixth information from the network device, where the sixth information is used to determine the spatial relationship corresponding to the target uplink resource, which is in an active state.
  • the processing module 902 may determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the above-mentioned fifth information and sixth information can be carried in the same signaling to save signaling overhead.
  • the communication module 901 may receive seventh information from the network device, and the seventh information may include the identifier of the first uplink resource.
  • the processing module 902 may determine the target grouping information and the target TRP corresponding to the identifier of the first uplink resource according to the fourth correspondence, where the fourth correspondence is the correspondence between the uplink resource, the grouping information, and the TRP.
  • the processing module 902 may also determine a target uplink resource corresponding to the target grouping information and the target TRP according to the fourth correspondence, where the target uplink resource includes the first uplink resource.
  • the communication module 901 may also determine the transmission beam corresponding to the target uplink resource, and send a signal to the network device according to the transmission beam.
  • the above fourth correspondence can be received by the communication module 901 from the network device.
  • the communication module 901 may send the signal to the target TRP according to the sending beam.
  • the communication module 901 may also receive eighth information from the network device, where the eighth information is used to determine a spatial relationship corresponding to the target uplink resource, which is in an active state.
  • the processing module 902 may determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the seventh information and the eighth information mentioned above can be carried in the same signaling to save signaling overhead.
  • the communication device may also be composed of hardware components. It is easy to understand and easy to illustrate.
  • a mobile phone is taken as an example to illustrate the structure of the communication device 1000 composed of hardware components.
  • the communication device 1000 may include a processor 1001, a memory 1002, and a transceiver 1003.
  • the processor 1001, the transceiver 1003, and the memory 1002 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 1002 is used to store computer programs, and the processor 1001 is used to download from the memory 1002. Call and run the computer program to control the transceiver 1003 to send and receive signals.
  • the above processor 1001 may be used to process the communication protocol and communication data, and to control the communication device 1000, execute programs, process program data, and so on.
  • the memory 1002 may be used to store programs and data, and the processor 1001 may execute the method executed by the receiving end device in the embodiments of the present application based on the program.
  • the above-mentioned transceiver 1003 may correspond to the communication module 901 in FIG. 9 and may also be referred to as a transceiver unit.
  • the transceiver 1003 may include a receiver (or called a receiver, a receiving circuit) and a transmitter (or called a transmitter, a transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the transceiver 1003 may specifically include a radio frequency unit and an antenna. Among them, the radio frequency unit can be used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals. The antenna can be used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the radio frequency unit can also be regarded as the transceiver 1003, then the communication device 1000 can include a processor 1001, a memory 1002, a transceiver 1003, and an antenna at this time.
  • the communication device 1000 may further include an input and output device 1004, such as a touch screen, a display screen, or a keyboard, etc., which can be used to receive data input by the user and output data to the user. It should be noted that some types of communication devices may not have input and output devices.
  • the foregoing processor 1001 and the memory 1002 may be combined into one processing device, and the processor 1001 is configured to execute a computer program or instruction stored in the memory 1002 to implement the foregoing functions.
  • the memory 1002 may also be integrated in the processor 1001 or independent of the processor 1001.
  • the processor 1001 may correspond to the processing module 902 shown in FIG. 9.
  • the above communication module 901 may have the structure shown in the transceiver 1003, that is, include a radio frequency unit and an antenna; or, the communication module 901 may include the above radio frequency unit.
  • the above processing module 902 may include a processor 1001, or include a processor 1001 and a memory 1002.
  • the above communication device 1000 may also be constituted by a chip.
  • the chip includes a processor 1001.
  • the chip may also include a memory 1002 and a transceiver 1003, wherein any two of the memory 1002, the transceiver 1003, and the processor 1001 can be coupled to each other.
  • the transceiver 1003 may be used to receive first information from a network device, where the first information includes target grouping information.
  • the processor 1001 may be configured to determine the target uplink resource corresponding to the target grouping information according to the first corresponding relationship, where the first corresponding relationship includes the corresponding relationship between the uplink resource, the grouping information, and the TRP.
  • the uplink resources of the group correspond to the same TRP.
  • the processor 1001 may also be configured to determine a transmission beam corresponding to the target uplink resource.
  • the transceiver 1003 may also be used to send a signal to the network device according to the sending beam.
  • the transceiver 1003 may specifically send the signal to the TRP corresponding to the target uplink resource according to the sending beam.
  • one or more uplink resources correspond to one group, and one or more groups correspond to one TRP.
  • the transceiver 1003 may also be configured to receive the first correspondence from the network device.
  • the transceiver 1003 may also be used to receive second information from the network device, where the second information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource. Then, the processor 1001 may specifically determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the above-mentioned first information and second information may be carried in the same signaling.
  • the transceiver 1003 may be used to receive third information from a network device, where the third information includes target packet information and target transmission point TRP information.
  • the processor 1001 may be configured to determine the target uplink resource corresponding to the target grouping information and the target TRP information according to a second correspondence, where the second correspondence is the correspondence between the uplink resource, the grouping information, and the TRP relationship.
  • the processor 1001 may also be configured to determine a transmission beam corresponding to the target uplink resource.
  • the transceiver 1003 may also be used to send a signal to the network device according to the sending beam.
  • the transceiver 1003 may also be used to receive the second correspondence from the network device.
  • the transceiver 1003 may be specifically configured to send the signal to the target TRP according to the sending beam.
  • the transceiver 1003 also receives fourth information from the network device, where the fourth information is used to determine the spatial relationship corresponding to the target uplink resource, which is in an active state.
  • the processor 1001 may specifically determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • third information and fourth information may be carried in the same signaling.
  • the transceiver 1003 can receive the fifth information from the network device.
  • the processor 1001 may determine the target uplink resource corresponding to the fifth information according to the third correspondence. Wherein, if the third correspondence is the correspondence between uplink resources and grouping information, the fifth information includes target grouping information. At this time, multiple uplink resources are not associated with different TRPs, or in other words, the example is applicable to A single TRP scenario; or, if the third correspondence is a correspondence between an uplink resource and a TRP, the fifth information includes information about the target TRP.
  • the processor 1001 may also determine the transmission beam corresponding to the target uplink resource.
  • the transceiver 1003 may also send a signal to the network device according to the sending beam.
  • the above third correspondence can be received by the transceiver 1003 from the network device.
  • the processor 1001 may determine the fifth information as the target group information. If the third correspondence is the correspondence between the uplink resource and the TRP information, the terminal may determine the fifth information as the target TRP information.
  • the transceiver 1003 may specifically send the signal to the TRP corresponding to the target uplink resource according to the sending beam.
  • the transceiver 1003 may also receive sixth information from the network device, where the sixth information is used to determine the spatial relationship corresponding to the target uplink resource, which is in an active state.
  • the processor 1001 may determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the above-mentioned fifth information and sixth information can be carried in the same signaling to save signaling overhead.
  • the transceiver 1003 may receive seventh information from the network device, and the seventh information may include the identifier of the first uplink resource.
  • the processor 1001 may determine the target grouping information and the target TRP corresponding to the identifier of the first uplink resource according to a fourth correspondence, where the fourth correspondence is the correspondence between the uplink resource, the grouping information, and the TRP.
  • the processor 1001 may also determine a target uplink resource corresponding to the target grouping information and the target TRP according to the fourth correspondence, where the target uplink resource includes the first uplink resource.
  • the transceiver 1003 may also determine the transmission beam corresponding to the target uplink resource, and send a signal to the network device according to the transmission beam.
  • the above fourth correspondence can be received by the transceiver 1003 from the network device.
  • the transceiver 1003 may send the signal to the target TRP according to the sending beam.
  • the transceiver 1003 may also receive eighth information from the network device, where the eighth information is used to determine the spatial relationship corresponding to the target uplink resource, which is in an active state.
  • the processor 1001 may determine the transmission beam corresponding to the target uplink resource according to the spatial relationship in the activated state.
  • the seventh information and the eighth information mentioned above can be carried in the same signaling to save signaling overhead.
  • a communication device may include a communication module 1101 and a processing module 1102, and the communication module 1101 and the processing module 1102 are coupled with each other.
  • the communication device 1100 can be used to perform the steps performed by the network device in the above method embodiments.
  • the communication module 1101 can be used to support the communication device 1100 to communicate.
  • the communication module 1101 can also be referred to as a communication unit, a communication interface, a transceiver module, or a transceiver unit.
  • the communication module 1101 may have a wireless communication function, for example, it can communicate with other communication devices (such as a terminal) through a wireless communication method.
  • the processing module 1102 may also be referred to as a processing unit, and may be used to support the communication device 1100 to perform the processing actions of the terminal device in the foregoing method embodiment, including but not limited to: generating information and messages sent by the communication module 1101, and/or, The signal received by the communication module 1101 is demodulated and decoded.
  • the communication module 1101 can be used to send a first correspondence to the terminal.
  • the first correspondence includes the correspondence between uplink resources, grouping information, and TRP.
  • the uplink resources of the same group correspond to the same TRP.
  • the communication module 1101 may also send first information to the terminal.
  • the first information includes target grouping information.
  • the target grouping information is used by the terminal to determine a target uplink resource, and the target uplink resource corresponds to the target grouping information.
  • one or more uplink resources correspond to one group, and one or more groups correspond to one TRP.
  • the communication module 1101 may also send second information to the terminal, where the second information is used to determine the spatial relationship that is in the active state among the spatial relationships corresponding to the target uplink resource.
  • the above-mentioned first information and second information may be carried in the same signaling.
  • the processing module 1102 may be used to determine third information, and the third information may include target grouping information and target transmission point TRP information.
  • the communication module 1101 may be configured to send the third information to the terminal, where the third information is used by the terminal to determine a target uplink resource, and the target uplink resource corresponds to the target grouping information and the target transmission point TRP information.
  • the communication module 1101 may also send a second correspondence relationship to the terminal, where the second correspondence relationship is a correspondence relationship between uplink resources, grouping information, and TRP.
  • the communication module 1101 may also send fourth information to the terminal, where the fourth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the third information and the fourth information may be carried in the same signaling.
  • the processing module 1102 may be used to determine the fifth information.
  • the communication module 1101 may be configured to send fifth information to the terminal, so that the terminal determines the target uplink resource according to the third correspondence and the fifth information, where the target uplink resource corresponds to the fifth information.
  • the fifth information includes target grouping information; or, if the third correspondence is the correspondence between the uplink resource and the TRP, then The fifth information includes information about the target TRP.
  • the communication module 1101 may also send the third correspondence to the terminal.
  • the communication module 1101 may also send sixth information to the terminal, where the sixth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the above-mentioned fifth information and sixth information can be carried in the same signaling to save signaling overhead.
  • the processing module 1102 may be used to determine the seventh information.
  • the communication module 1101 may be configured to send seventh information to the terminal.
  • the seventh information includes the identifier of the first uplink resource, so that the terminal determines the target uplink resource according to the fourth correspondence and the seventh information, where the target uplink resource includes the first uplink resource,
  • the grouping information and TRP information corresponding to the target uplink resource are the same as the grouping information and TRP information corresponding to the first uplink resource.
  • the fourth correspondence is the correspondence between uplink resources, grouping information, and TRP information.
  • the communication module 1101 may also send the fourth correspondence to the terminal.
  • the communication module 1101 may also send sixth information to the terminal, where the sixth information is used to determine the spatial relationship corresponding to the target uplink resource, which is in an active state.
  • the above-mentioned fifth information and sixth information may be carried in the same signaling.
  • the communication device 1200 includes one or more remote radio units (RRU) 1210 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1220.
  • RRU 1210 may be referred to as a communication module, which may correspond to the communication module 1101 in FIG. 11, and is used to perform the above steps performed by the communication module 1101.
  • the RRU 1210 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1211 and a radio frequency unit 1212.
  • the RRU 1210 may be used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending resource indications to terminal equipment. It should be understood that the RRU 1210 can be regarded as a transceiver, and the video unit 1812 can also be regarded as a transceiver. Optionally, the RRU 1210 may include a receiving unit and a transmitting unit. The receiving unit may correspond to a receiver (or receiver or receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the BBU 1220 can be used to perform baseband processing, such as channel coding, multiplexing, modulation, spread spectrum, etc., and to control the base station.
  • the RRU 1210 and the BBU 1220 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1220 is the control center of the base station, and may also be referred to as a processing module, a processing unit, etc., which may correspond to the processing module 1102 in FIG. 11, and is used to perform the steps performed by the processing module 1702 above.
  • the BBU 1220 can also be used to perform baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU 1220 may be used to control the network device to execute the operation process of the network device in the foregoing method embodiment, for example, to generate first information.
  • the BBU 1220 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1220 also includes a memory 1221 and a processor 1222.
  • the memory 1221 is used to store necessary computer programs or instructions and data.
  • the processor 1222 is used to control the network device to perform necessary actions, for example, to control the network device to execute the operation procedure executed by the CU and/or the CU in the foregoing method embodiment.
  • the above steps executed by the processing module 1702 may be executed by the processor 1222.
  • the memory 1221 and the processor 1222 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network equipment is not limited to the above forms, and may also be in other forms: for example, including BBU and adaptive radio unit (ARU), or BBU and active antenna unit (AAU); or Customer premises equipment (CPE) may also be in other forms, which is not limited in this application.
  • ARU BBU and adaptive radio unit
  • AAU BBU and active antenna unit
  • CPE Customer premises equipment
  • the above-mentioned BBU 1220 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 1210 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the transceiver can be used to send a first correspondence to the terminal.
  • the first correspondence includes the correspondence between uplink resources, grouping information, and TRP.
  • the uplink resources of a group correspond to the same TRP.
  • the transceiver may also send first information to the terminal, where the first information includes target grouping information, where the target grouping information is used by the terminal to determine a target uplink resource, and the target uplink resource corresponds to the target grouping information.
  • one or more uplink resources correspond to one group, and one or more groups correspond to one TRP.
  • the transceiver may also send second information to the terminal, where the second information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the above-mentioned first information and second information may be carried in the same signaling.
  • the processor 1222 may be used to determine third information, and the third information may include target grouping information and target transmission point TRP information.
  • the transceiver RRU 1810 or radio frequency unit 181
  • RRU 1810 or radio frequency unit 181 can be used to send the third information to the terminal, and the third information is used by the terminal to determine the target uplink resource, the target uplink resource, the target grouping information, and the target transmission point TRP Corresponding to the information.
  • the transceiver may also send a second correspondence relationship to the terminal, where the second correspondence relationship is a correspondence relationship between uplink resources, grouping information, and TRP.
  • the transceiver may also send fourth information to the terminal, where the fourth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the third information and the fourth information may be carried in the same signaling.
  • the processor 1222 may be used to determine the fifth information.
  • the transceiver may be used to send fifth information to the terminal, so that the terminal determines the target uplink resource according to the third correspondence and the fifth information, where the target uplink resource corresponds to the fifth information.
  • the fifth information includes target grouping information; or, if the third correspondence is the correspondence between the uplink resource and the TRP, then The fifth information includes information about the target TRP.
  • the transceiver can also send the third correspondence to the terminal.
  • the transceiver may further send sixth information to the terminal, where the sixth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the above-mentioned fifth information and sixth information can be carried in the same signaling to save signaling overhead.
  • the processor 1222 may be used to determine the seventh information.
  • the transceiver can be used to send seventh information to the terminal.
  • the seventh information includes the identifier of the first uplink resource, so that the terminal determines the target uplink resource according to the fourth correspondence and the seventh information, where the target uplink resource includes the first uplink resource, and
  • the grouping information and TRP information corresponding to the target uplink resource are the same as the grouping information and TRP information corresponding to the first uplink resource.
  • the fourth correspondence is the correspondence between uplink resources, grouping information, and TRP information.
  • the transceiver may also send the fourth correspondence to the terminal.
  • the transceiver may further send sixth information to the terminal, where the sixth information is used to determine the spatial relationship in the active state among the spatial relationships corresponding to the target uplink resource.
  • the above-mentioned fifth information and sixth information may be carried in the same signaling.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, the computer executes the above method embodiment and method implementation. Examples of operations performed by a terminal or network device in any possible implementation manner.
  • this application also provides a computer program product, which may include a computer program or instruction, which when invoked and executed by a computer, enables the computer to implement the above method embodiment and method implementation Examples of operations performed by a terminal or network device in any possible implementation manner.
  • the present application also provides a chip or a chip system, and the chip may include a processor.
  • the chip may also include a memory (or storage module) and/or a transceiver (or communication module), or the chip may be coupled with a memory (or storage module) and/or a transceiver (or communication module), wherein the transceiver ( (Or communication module) can be used to support the chip for wired and/or wireless communication, the memory (or storage module) can be used to store a program, and the processor can call the program to implement any one of the above method embodiments and method embodiments.
  • the chip system may include the above chips, or may include the above chips and other discrete devices, such as a memory (or storage module) and/or a transceiver (or communication module).
  • the present application also provides a communication system, which may include the above terminal and/or network device.
  • the communication system may be used to implement operations performed by a terminal or a network device in any possible implementation manner of the foregoing method embodiment and method embodiment.
  • the communication system may have a structure as shown in FIG. 1 or FIG. 2.
  • the processing module may be a chip.
  • the processing module may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.
  • the network equipment in the foregoing device embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • the functions of specific units refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • These computer programs or instructions can be provided to the processor of a general-purpose computer, a dedicated computer, an embedded processor, or other programmable data processing equipment to produce a machine, so that the computer can be executed by the processor of the computer or other programmable data processing equipment
  • the program or instruction generates a device for realizing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer programs or instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the computer programs or instructions stored in the computer-readable memory produce the manufacturing of the instruction device.
  • the instruction device realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置,用于优化终端的发送波束的配置过程。本申请中网络设备通过第一信息,向终端指示目标上行资源,从而由终端配置目标上行资源对应的发送波束。由于第一对应关系中,属于同一个分组的上行资源对应同一个TRP,当目标上行资源为多个时,通过目标分组信息指示的多个目标上行资源关联至同一个TRP,因此可避免对于关联至不同的TRP的上行资源配置有相同的发送波束,以提高通信效率。

Description

一种通信方法及装置 技术领域
本申请涉及通信领域,特别涉及一种通信方法及装置。
背景技术
在高频通信系统中,为了克服路损,基站和终端通常都会使用具有方向性的、高增益的天线阵列形成模拟波束(或称波束),用于通信。一般来说,可以通过主瓣方向和3dB的波束宽度来描述一个模拟波束的形状(beam pattern)。以上行通信为例,终端可朝向某个发送波束对应的方向进行信号发送,基站可根据某个接收波束的方向进行接收,当发送波束的方向和接收波束的方向对齐时,能够实现正常的上行通信。
目前,可由基站向终端配置多个上行资源,上行资源可用于终端发送上行信号。此外,还可由基站向终端配置每个上行资源对应的发送波束。在配置发送波束时,基站需要针对每一个上行资源,分别通过信令指示该上行资源对应的处于激活状态的空间关系,由于配置的上行资源可能有多个,因此目前在配置终端的发送波束时的信令开销较大,造成资源浪费。如果采用同一个信令来指示多个上行资源共同采用的发送波束,则可能造成多TRP传输场景下,与不同的TRP关联的上行资源配置有相同的发送波束,导致通信效率降低。
发明内容
本申请提供一种通信方法,用于优化发送波束的配置过程,以提高通信效率。
第一方面,本申请提供一种通信方法。该通信方法可由手机等终端或终端中的芯片执行。
以终端为例,根据该方法,终端可接收来自网络设备的第一信息,该第一信息包括目标分组信息。终端可根据第一对应关系,确定该目标分组信息对应的目标上行资源。其中,第一对应关系包括上行资源、分组信息以及传输接收点(transmission and reception point,TRP)三者之间的对应关系。第一对应关系中,属于同一个分组的上行资源对应同一个TRP,例如,同一个分组的全部上行资源均对应于同一个TRP。终端还可确定所述目标上行资源对应的发送波束,并根据所述发送波束,向所述网络设备发送信号。
其中,上行资源可以是物理上行控制信道(physical uplink control channel,PUCCH)资源(resource)、物理上行共享信道(physical uplink shared channel,PUSCH)资源或者、探测参考信号(sounding reference signal,SRS)资源等。
分组信息可以是上行资源的分组信息,分组信息可用于表示上行资源所属的分组。例如,若上行资源为PUCCH资源,则分组可以是PUCCH资源分组(PUCCH resource group)。TRP的信息可用于指示上行资源所关联的TRP。
上述第一对应关系中,属于同一个分组的上行资源对应于同一个TRP,或者说,属于同一个分组的上行资源不关联到不同的TRP。例如,属于同一个PUCCH资源分组的PUCCH资源不关联到不同的TRP(PUCCH resources in a same PUCCH resource group should not be associated with different TRPs)。
采用以上方法,可由网络设备通过第一信息,向终端指示目标上行资源,从而由终端 配置目标上行资源对应的发送波束。由于第一对应关系中,属于同一个分组的上行资源对应同一个TRP,当目标上行资源为多个时,通过目标分组信息指示的多个目标上行资源关联至同一个TRP,因此可避免对于关联至不同的TRP的上行资源配置有相同的发送波束,以提高通信效率。
在本申请中,分组信息例如上行资源的组标识。TRP的信息例如高层索引(higher layer index)或控制资源集合池索引(CORESET pool index)或控制资源集合索引,TRP与高层索引(或控制资源集合池索引)的取值之间一一对应。
示例性的,终端可根据所述发送波束,向所述目标上行资源对应的TRP发送所述信号。
可选地,上述第一对应关系中,每个分组信息可对应一个或多个上行资源(或者说,一个或多个上行资源对应于一个分组,或每个分组包含一个或多个上行资源),每个TRP可对应一个或多个分组信息(或者说,一个或多个分组对应于一个TRP,或每个TRP对应于一个或多个分组的上行资源)。
示例性的,终端可从网络设备接收该第一对应关系。
此外,终端可从该网络设备接收第二信息,第二信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。终端可根据处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述第一信息以及所述第二信息可承载于同一个信令,以节省信令开销。例如,第三信息以及第四信息承载于波束指示信令。波束指示信令可以是媒体访问控制(media access control,MAC)-控制元素(control element,CE)消息或下行控制信息(download control information,DCI)。
第二方面,本申请实施例提供一种通信方法。该方法可由网络设备或网络设备中的芯片执行。其中,网络设备可包括接入网设备,如基站等。
以网络设备为例,根据该方法,可由网络设备向终端发送第一对应关系,该第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP。网络设备还可向终端发送第一信息,第一信息包括目标分组信息,所述目标分组信息用于终端确定目标上行资源,目标上行资源与目标分组信息对应。
上述第一对应关系中,所述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
示例性的,所述网络设备还可向终端发送第二信息,第二信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
上述第一信息以及第二信息可承载于同一个信令。
以上第二方面所示方法的有益效果,可参照第一方面所示方法部分对于有益效果的说明。
第三方面,本申请提供一种通信方法。该通信方法可由手机等终端或终端中的芯片执行。
以终端为例,根据该方法,终端可接收来自网络设备的第三信息,该第三信息包括目标分组信息以及目标TRP的信息。终端根据第二对应关系,确定目标分组信息以及目标TRP的信息对应的目标上行资源。其中,第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。终端确定目标上行资源对应的发送波束,并根据所述发送波束,向网络设备发送信号。
采用该方法,可由网络设备通过第三信息,向终端指示目标上行资源,从而由终端配置目标上行资源对应的发送波束。并且,由于第三信息包括目标组标识以及目标TRP的信息,当目标上行资源为多个时,多个目标上行资源均关联到目标TRP,因此能够避免将关联至不同的TRP的上行资源配置为相同的发送波束,以提高通信效率。
应理解,以上第二对应关系可由终端从网络设备接收,或由协议定义,或预配置于终端。
在一种可能的示例中,终端可根据该发送波束,向目标TRP发送信号。
此外,终端还可从网络设备接收第四信息,该第四信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。例如,第四信息可包括处于激活状态的空间关系的标识和/或非处于激活状态的空间关系的标识。终端可根据处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
示例性的,以上第三信息以及第四信息可承载于同一信令,以节省信令开销。
第四方面,本申请实施例提供一种通信方法。该方法可由网络设备或网络设备中的芯片执行。其中,网络设备可包括接入网设备,如基站等。
以网络设备为例,根据该方法,可由网络设备确定第三信息,该第三信息可包括目标分组信息以及目标传输点TRP的信息。网络设备可向终端发送该第三信息,该第三信息用于所述终端确定目标上行资源,所述目标上行资源与所述目标分组信息以及目标传输点TRP的信息对应。
示例性的,所述网络设备还可向该终端发送第二对应关系,该第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。
此外,网络设备还可向所述终端发送第四信息,该第四信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
示例性的,该第三信息以及该第四信息可承载于同一个信令。
以上第四方面所示方法的有益效果,可参照第三方面所示方法部分对于有益效果的说明。
第五方面,本申请提供一种通信方法。该通信方法可由手机等终端或终端中的芯片执行。
以终端为例,根据该方法,终端可接收来自网络设备的第五信息。终端根据第三对应关系,确定所述第五信息对应的目标上行资源。其中,若第三对应关系为上行资源与分组信息之间的对应关系,则所述第五信息包括目标分组信息,此时不将多个上行资源关联到不同的TRP,或者说,示例适用于单TRP场景;或者,若第三对应关系为上行资源与TRP之间的对应关系,则所述第五信息包括目标TRP的信息。终端可确定目标上行资源对应的发送波束,并根据所述发送波束,向所述网络设备发送信号。
采用以上方法,可由网络设备通过第五信息,向终端指示目标上行资源,从而由终端根据第三对应关系确定第五信息对应的目标上行资源。其中,当第三对应关系为上行资源与分组信息之间的对应关系,此时多个上行资源均关联到同一个TRP;当第三对应关系为上行资源与TRP之间的对应关系,第五信息为目标TRP的信息,因此目标上行资源均对应于目标TRP。从而可避免对于关联至不同的TRP的上行资源配置有相同的发送波束,以提高通信效率。
以上第三对应关系,可由终端从所述网络设备接收。示例性的,若第三对应关系为上 行资源与分组信息之间的对应关系,则终端可将第五信息确定为目标组信息。若第三对应关系为上行资源与TRP的信息之间的对应关系,则终端可将第五信息确定为目标TRP的信息。
示例性的,终端可根据所述发送波束,向所述目标上行资源对应的TRP发送所述信号。
此外,终端还可接收来自所述网络设备的第六信息,所述第六信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。终端可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述所述第五信息以及第六信息可承载于同一个信令,以节省信令开销。
第六方面,本申请实施例提供一种通信方法。该方法可由网络设备或网络设备中的芯片执行。其中,网络设备可包括接入网设备,如基站等。
以网络设备为例,根据该方法,可由网络设备确定第五信息,并向终端发送第五信息,使得终端根据第三对应关系以及第五信息确定目标上行资源,其中,目标上行资源与第五信息对应。其中,若第三对应关系为上行资源与分组信息之间的对应关系,则所述第五信息包括目标分组信息;或者,若第三对应关系为上行资源与TRP之间的对应关系,则所述第五信息包括目标TRP的信息。
此外,网络设备还可向终端发送该第三对应关系。
示例性的,所述网络设备还可向终端发送第六信息,第六信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
上述第五信息以及第六信息可承载于同一个信令,以节省信令开销。
以上第六方面所示方法的有益效果,可参照第五方面所示方法部分对于有益效果的说明。
第七方面,本申请提供一种通信方法。该通信方法可由手机等终端或终端中的芯片执行。
以终端为例,根据该方法,终端可接收来自网络设备的第七信息,该第七信息可包括第一上行资源的标识。终端可根据第四对应关系,确定该第一上行资源的标识对应的目标分组信息以及目标TRP,该第四对应关系为上行资源、分组信息以及TRP三者之间的对应关系。终端可根据所述第四对应关系,确定与该目标分组信息以及该目标TRP对应的目标上行资源,所述目标上行资源包括所述第一上行资源。终端还可确定所述目标上行资源对应的发送波束,并根据所述发送波束,向所述网络设备发送信号。
采用以上方法,可由网络设备通过第七信息,向终端指示第一上行资源,并由终端根据该第一上行资源,确定目标上行资源。其中,目标上行资源与第一上行资源所对应的组标识和TRP的信息相同,因此当配置目标上行资源的发送波束时,能够避免对于关联至不同的TRP的上行资源配置有相同的发送波束,以提高通信效率。
以上第四对应关系,可由终端从所述网络设备接收。
示例性的,终端可根据所述发送波束,向所述目标TRP发送所述信号。
此外,终端还可接收来自所述网络设备的第八信息,所述第八信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。终端可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述所述第七信息以及第八信息可承载于同一个信令,以节省信令开销。
第八方面,本申请实施例提供一种通信方法。该方法可由网络设备或网络设备中的芯 片执行。其中,网络设备可包括接入网设备,如基站等。
以网络设备为例,根据该方法,可由网络设备确定第七信息,并由网络设备向终端发送第七信息,第七信息包括第一上行资源的标识,使得终端根据第四对应关系以及第七信息确定目标上行资源,其中,目标上行资源包括第一上行资源,且第四对应关系中,目标上行资源对应的分组信息以及TRP的信息,与第一上行资源对应的分组信息以及TRP的信息相同。其中,若第四对应关系为上行资源、分组信息以及TRP的信息三者之间的对应关系。
此外,网络设备还可向终端发送该第四对应关系。
示例性的,所述网络设备还可向终端发送第六信息,第六信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
上述第五信息以及第六信息可承载于同一个信令。
以上第八方面所示方法的有益效果,可参照第七方面所示方法部分对于有益效果的说明。
第九方面,本申请实施例提供一种通信装置。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计、第三方面或第三方面的任一可能的设计、第五方面或第五方面的任一可能的设计或第七方面或第七方面的任一可能的设计中由终端执行的步骤。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能或步骤或操作。比如,在通信装置中可以设置与上述各方法中的功能或步骤或操作相对应的功能模块来支持所述通信装置执行上述方法。
在通过软件模块实现第九方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
以上通信模块可用于执行上述方法中终端的发送和/或接收的动作,如用于执行终端向网络设备发送信息、消息或信令的动作,或用于执行从网络设备接收信息、消息或信令的动作。和/或,处理模块可用于执行所述方法中终端的处理动作,如用于控制通信模块进行信息、消息或信令的接收和或发送,以及信息的存储等操作。
示例性的,该通信装置可以是终端或终端中的芯片。
第十方面,本申请实施例提供一种通信装置。该通信装置可用于执行上述第二方面或第二方面的任一可能的设计、第四方面或第四方面的任一可能的设计、第六方面或第六方面的任一可能的设计或第八方面或第八方面的任一可能的设计中由网络设备执行的步骤。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能或步骤或操作。比如,在通信装置中可以设置与上述各方法中的功能或步骤或操作相对应的功能模块来支持所述通信装置执行上述方法。
在通过软件模块实现第十方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
以上通信模块可用于执行上述方法中终端的发送和/或接收的动作,如用于执行终端向网络设备发送信息、消息或信令的动作,或用于执行从网络设备接收信息、消息或信令的 动作。和/或,处理模块可用于执行所述方法中终端的处理动作,如用于控制通信模块进行信息、消息或信令的接收和或发送,以及信息的存储等操作。
示例性的,该通信装置可以是网络设备或网络设备中的芯片。
第十一方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序时,如第一方面、第三方面、第五方面或第七方面所述的方法被执行。
第十二方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序时,如第二方面、第四方面、第六方面或第八方面所述的方法被执行。
第十三方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第一方面、第三方面、第五方面或第七方面中所示的相应的方法。
第十四方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第二方面、第四方面、第六方面或第八方面中所示的相应的方法。
第十五方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面、第三方面、第五方面或第七方面中所述的方法。
第十六方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第二方面、第四方面、第六方面或第八方面中所述的方法。
第十七方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收计算机程序或指令并传输至所述处理器;所述处理器运行所述计算机程序或指令以执行如第一方面、第三方面、第五方面或第七方面所示的相应的方法。
第十八方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收计算机程序或指令并传输至所述处理器;所述处理器运行所述计算机程序或指令以执行如第二方面、第四方面、第六方面或第八方面所示的相应的方法。
第十九方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当所述计算机程序或指令被执行时,使得第一方面、第三方面、第五方面或第七方面所述的方法被实现。
第二十方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当所述计算机程序或指令被执行时,使得第二方面、第四方面、第六方面或第八方面所述的方法被实现。
第二十一方面,本申请实施例提供一种包括计算机程序或指令的计算机程序产品,当所述计算机程序或指令被执行时,使得第一方面、第三方面、第五方面或第七方面所述的方法被实现。
第二十二方面,本申请实施例提供一种包括计算机程序或指令的计算机程序产品,当所述计算机程序或指令被执行时,使得第二方面、第四方面、第六方面或第八方面所述的方法被实现。
第二十三方面,本申请提供一种通信系统。该通信系统可以包括第九方面、第十一方面、第十三方面或第十五方面所示的通信装置,以及第十方面、第十二方面、第十四方面或第十六方面所示的通信装置。
第二十四方面,本申请提供一种芯片和/或包含芯片的芯片系统,该芯片可包括处理器。当所述芯片执行存储器中的计算机程序时,如第一方面、第三方面、第五方面或第七方面所述的方法被执行。该芯片系统可以由上述芯片构成,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
第二十五方面,本申请提供一种芯片和/或包含芯片的芯片系统,该芯片可包括处理器。当所述芯片执行存储器中的计算机程序时,如第二方面、第四方面、第六方面或第八方面所述的方法被执行。该芯片系统可以由上述芯片构成,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
附图说明
图1为本申请实施例提供的一种无线通信系统的架构示意图;
图2为本申请实施例提供的一种无线通信系统的架构示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种波束指示信令的结构示意图;
图4A为本申请实施例提供的一种波束指示信令的结构示意图;
图5为本申请实施例提供的一种通信方法的流程示意图;
图6为本申请实施例提供的一种通信方法的流程示意图;
图7为本申请实施例提供的一种通信方法的流程示意图;
图8为本申请实施例提供的一种通信方法的流程示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的一种通信装置的结构示意图;
图12为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
如图1所示,本申请实施例提供的通信方法可应用于无线通信系统,该无线通信系统可以包括终端101以及网络设备102。
应理解,以上无线通信系统既可适用于低频场景(sub 6G),也可适用于高频场景(above6G)。无线通信系统的应用场景包括但不限于第五代系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示终端101可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、 终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该终端101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,终端101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端装置或者未来演进的PLMN网络中的终端装置等。
另外,终端101可以部署在陆地上,包括室内或室外、手持或车载;终端101也可以部署在水面上(如轮船等);终端101还可以部署在空中(例如飞机、气球和卫星上等)。所述终端101具体可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端101也可以是具有通信模块的通信芯片,也可以是具有通信功能的车辆,或者车载设备(如车载通信装置,车载通信芯片)等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(g nodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、CRAN系统下的无线控制器、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。网络设备102还可包括未来6G或更新的移动通信系统中的基站。
基于图1所示架构,在进行上行传输时,网络设备102可为终端101配置上行资源,这些上行资源用于传输上行信号。此外,网络设备102还向终端101配置每个上行资源对应的SR,例如,针对每个上行资源配置一个或多个SR列表,每个SR列表可包括多个SR。网络设备102还可向终端101配置这些SR中处于激活状态的SR,这些处于激活状态的SR可用于确定发送上行信号所采用的发送波束。
示例性的,上行信号可用于承载于物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH),或者,上行信号可包括探测参考信号(sounding reference signal,SRS)。
以PUCCH为例,网络设备102可通过无线资源控制(radio resource control,RRC)消息向终端101配置波束列表(或称SR列表),其中,波束列表可包括多个PUCCH资源 以及PUCCH资源分别对应的SR,例如,包括PUCCH资源的标识与SR标识之间的对应关系。网络设备102还可通过媒体访问控制(media access control,MAC)-控制元素(control element,CE)消息或下行控制信息(download control information,DCI),向终端101指示PUCCH资源对应的SR中处于激活状态的SR。以MAC-CE为例,该MAC-CE消息可携带PUCCH资源的标识,以及携带SR指示信息,用于指示处于激活状态的SR。终端101在接收到MAC-CE消息后,可根据PUCCH资源的标识确定可用的上行资源,并根据SR指示信息确定该PUCCH资源中处于激活状态的SR。后续在进行PUCCH发送时,终端101可通过这些处于激活状态的SR确定发送波束,并通过发送波束发送PUCCH。
示例性的,网络设备102可通过多个TRP与终端101之间进行通信,以提高传输效率,其中,多个TRP各自的空间位置是不同的。以图2为例,网络设备102可通过TRP#1以及TRP#2与终端101进行通信。以上行通信为例,网络设备102可通过TRP#1或TRP#2向终端101发送配置信息,用于配置上行资源,配置的上行资源可用于上行信息的传输。此后,终端101可根据网络设备102配置的上行资源,通过上行资源关联的TRP(如,TRP#1和/或TRP#2),进行上行传输。
本申请提供一种通信方法,可在多TRP传输场景下,对网络设备102配置的上行资源中的一个或多个上行资源配置发送波束,同时,可确保不会针对关联到不同的TRP的多个上行资源配置相同的发送波束。
如图3所示,本申请实施例提供的通信方法的第一种实施例,可包括以下步骤:
S101:网络设备102向终端101发送第一信息,该第一信息包括目标分组信息。相应地,终端101接收第一信息。
S102:终端101根据第一对应关系,确定与目标分组信息对应的目标上行资源。
其中,第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP。或者换句话说,属于同一个分组的上行资源不关联到不同的TRP。
例如,属于同一个PUCCH资源分组的PUCCH资源不关联到不同的TRP(PUCCH resources in a same PUCCH resource group should not be associated with different TRPs)。
S103:终端101确定目标上行资源对应的发送波束。
S104:终端101根据发送波束,向网络设备102发送信号。具体的,若上行资源为PUCCH资源,则终端101可根据发送波束,向网络设备102发送控制信息,如上行控制信息(uplink control information,UCI),该控制信息承载于PUCCH。若上行资源为PUSCH资源,则终端101可根据发送波束,向网络设备102发送上行数据,该上行数据承载于PUSCH。若上行资源为PUSCH资源,则终端101可根据发送波束,向网络设备102发送上行数据,该上行数据承载于PUSCH。此外,上行资源还可以是SRS的资源,则终端101可根据该发送波束发送SRS。
采用以上方法,可由网络设备102通过第一信息,向终端101指示目标上行资源,从而由终端101配置目标上行资源对应的发送波束。由于第一对应关系中,属于同一个分组的上行资源对应于同一个TRP,当目标上行资源为多个时,通过目标分组信息指示的多个目标上行资源关联至同一个TRP,因此可避免对于关联至不同的TRP的上行资源配置有相同的发送波束,以提高通信效率。
在本申请中,可通过上行资源的标识表示一个上行资源,例如,上行资源的标识可以 是网络设备102向终端101配置的上行资源的索引。
此外,分组信息可用于表示上行资源所属的分组。例如,若上行资源为PUCCH资源,则分组可以是PUCCH资源分组(PUCCH resource group)。示例性的,若上行资源的组标识相同,则表示上行资源属于同一个上行资源的分组。上述分组信息可包括组标识。
TRP的信息可以是上行资源关联的控制资源集合(control resource et,CORESET)(或称控制信道资源集合)的信息,例如CORESET资源池索引(CORESET pool index),或称高层索引。
应理解,CORESET资源池索引的取值与TRP之间一一对应,因此若上行资源的CORESET资源池索引的取值相同,则表示上行资源关联于同一个TRP。例如,控制资源集合池索引“0”表示上行资源与TRP#1关联,控制资源集合池索引“1”表示上行资源与TRP#2关联。相应地,第一信息中,目标分组信息可包括目标组标识,目标组标识可以是第一对应关系包括的多个组标识中的一个;目标TRP的信息可包括目标控制资源集合池索引,目标控制资源集合池索引可以是第一对应关系包括的多个控制资源集合池索引中的一个。
此外,本申请中上行资源的分组数目的最大取值,可取决于是否支持多TRP传输,例如,单TRP传输时,可将上行资源分为两组,多TRP传输时,最多可以将上行资源分为四组。原因在于,目前协议最大支持2个TRP和4个上行资源分组,在这种情况下,一种最合理的设计是令一个组内的上行资源使用同一个发波束,同时每个TRP可以关联两个分组,也就是说,终端101朝向每个TRP发送时有两个分组的发送波束可用。
以上第一对应关系可由表1表示,其中,表1为上行资源的标识、组标识以及控制资源集合池索引之间的对应关系,其中,上行资源的标识可用于表示上行资源,组标识可用于表示分组信息,控制资源集合池索引可用于表示TRP的信息。其中,表1中以8个上行资源为例进行说明,实际实施中网络设备102可能配置其他数量的上行资源,例如,大于8个上行资源。
示例性的,上行资源的分组数目的最大取值取决于是否支持多TRP传输,例如,单TRP传输时,可将上行资源分为两组,多TRP传输时,最多可以将上行资源分为四组。
Figure PCTCN2019116812-appb-000001
表1
根据表1可知,属于同一个分组的上行资源,均关联到同一个TRP。例如,组标识“1”对应于上行资源的标识“1”以及“2”,因此组标识“1”表示的上行资源的分组包括上行资源“1”以及上行资源“2”。此外,上行资源的标识“1”以及“2”均对应于控制资源 集合池索引“0”,因此,上行资源1以及上行资源2均关联到同一个TRP,如TRP#1。
此外,根据表1可知,第一对应关系中还可包括第二上行资源,例如组标识为“2”的上行资源。其中,组标识为“1”的上行资源以及组标识为“2”的上行资源,均与控制资源集合池索引“0”对应,因此,这些上行资源均关联到同一个TRP。
示例性的,以上第一对应关系可由网络设备102配置并发送至终端101。例如,网络设备102可通过RRC消息向终端101发送第一对应关系。此外,第一对应关系也可由协议定义,或者采用预配置的方式确定。
下面举例几种第一对应关系的设置方式。
在一种具体的示例中,第一对应关系中,同一上行资源对应的组标识与TRP的信息满足以下公式:
N 0modK=M 0;(公式一)
其中,N 0表示上行资源的组标识的取值,K为TRP数目,M 0为上行资源的组标识的TRP的信息。mod表示求模运算。
例如,当TRP数目为2时,其中,TRP#1对应的TRP的信息为“0”,TRP#2对应的TRP的信息为“1”。若上行资源对应的组标识为“1”,则根据公式一,1mod 2=1,因此该上行资源对应的TRP的信息为“1”,该上行资源关联的TRP为TRP#1。若上行资源对应的组标识为“2”,则根据公式一,2mod 2=0,因此该上行资源对应的TRP的信息为“0”,该上行资源关联的TRP为TRP#2。
在另一种具体的示例中,同一上行资源对应的组标识与TRP的信息满足以下公式:
N 0modK+L=M 0;(公式一)
其中,N 0表示上行资源的组标识的取值,K为TRP数目,M 0为上行资源的组标识的TRP的信息,L表示偏移值,L为整数。mod表示求模运算。
此外,第一对应关系中,上行资源的组标识可以由与该上行资源相关的信息确定。
一种具体的示例中,组标识可以由上行资源标识确定。例如,组标识取上行资源的标识(或索引)对分组数目求模后的余数。
另一种具体的示例中,组标识可以由上行资源关联的下行控制信道资源集合(CORESET)的标识确定。例如,上行资源关联于CORESET S(S为该CORESET的标识),则上行资源的组标识可以是S’,S=S’;或者,S=S’+S 0,S 0为偏移值,S 0为整数。
另外,组标识可以由TRP的信息和上行资源的标识联合确定。例如,控制资源集合池索引作为组标识的第一比特位,并根据上行资源的标识的奇偶,确定组标识的第二比特位,其中,1表示奇数,0表示偶数,两个比特位对应的十进制数值为上行资源的组标识。
在接收到第一信息后,终端101可根据第一对应关系确定目标上行资源。以表1为例,若第一信息表示的目标组标识为“1”,则终端101可根据表1确定目标上行资源的标识为“1”和“2”。
在一种可能的示例中,网络设备102还可向终端101发送第二信息,该第二信息用于指示发送波束。具体的,第二信息可用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系,该处于激活状态的空间关系可用于确定目标上行资源对应的发送波束。
示例性的,网络设备102可向终端101配置每个上行资源对应的空间关系列表,该空间关系列表可包括k个空间关系的索引,以表示上行资源对应的k个空间关系,k为正整数。第二信息可通过k个二进制比特值指示每个索引对应的空间关系是否处于激活状态, 其中,每个比特位可记为Si。例如,Si=1,表示第i个空间关系处于激活状态,Si=0表示第i个空间关系未处于激活状态,其中,i=1、2、…、k。又例如,Si=1,表示第i+1个空间关系处于激活状态,Si=0表示第i+1个空间关系未处于激活状态,其中,i=0、2、…、k-1。第二信息也可通过长度为N的二进制比特流标识k个空间关系的索引。例如
Figure PCTCN2019116812-appb-000002
如果N=4,0010表示第2个空间关系处于激活状态,或者0010表示第2+1个空间关系处于激活状态。应理解,本申请中的SR列表可以是针对终端101工作的每个载波分量(carrier component,CC)的每个BWP配置的,则该SR列表适用于每个CC的每个BWP;或者,SR列表可以是针对终端101工作的一个或多个CC配置的;或者,SR列表可以是针对终端101工作的一个CC的多个BWP配置的。从而可对上行资源的空间关系进行多粒度的灵活配置。
此外,第二信息可包括处于激活状态的空间关系的索引,终端101即可根据这些处于激活状态的空间关系确定发送波束;或者,第二信息可包括非处于激活状态的空间关系的索引,终端101可根据这些非处于激活状态的空间关系,确定空间关系列表中的其他空间关系处于激活状态,并根据处于激活状态的空间关系确定发送波束。
应理解,以上第二信息可用于确定一组处于激活状态的空间关系,据此可针对目标上行资源配置该组处于激活状态的空间关系。当目标上行资源为多个时,可针对该多个目标上行资源配置相同的发送波束。
在一种具体的示例中,上述第一信息以及第二信息可承载于同一波束指示信令。示例性的,该波束指示信令可以是MAC-CE消息或DCI。
以MAC-CE消息为例,如图4所示,字段“组信息(grouping info)”可用于携带第一信息。字段“空间关系信息”可用于携带第二信息。此外,图4中的字段“R”表示预留(reserved)字段。例如,字段“R”为取值为0的比特。波束指示信令还可包括服务小区(serving cell)标识、带宽部分(bandwidth part,BWP)标识,用于指示该波束指示信令所适用的小区和带宽范围。
从而基于图4所示信令,终端101可根据第一信息以及第二信息更新目标上行资源的空间关系列表,进而可在S103中可根据更新后的空间关系列表确定目标上行资源对应的发送波束。后续在S104中,当终端101发送上行信号时,即可根据发送波束进行发送。
可选的,网络设备102还可通过图4A所示的波束指示信令,指示终端101更新目标上行资源的SR,以实现终端101的发送波束的配置。其中,目标上行资源的数量可以为多个,因此可节省配置多个上行资源的发送波束时的信令开销。图4A所述的波束指示信令可以是一个MAC-CE消息。
如图4A所示,字段“Pi”(即P0、P1、P2……等)可用于指示需要更新空间关系的上行资源。其中,Pi与第i个或第i+1个上行资源对应(或者说,Pi与标识为i或i+1的上行资源对应),Pi的取值用于表示是否需要更新该上行资源的空间关系,i=0、1、2、…。更新是指,终端按照第二信息,设置目标上行资源对应的空间关系中,处于激活状态的空间关系。
示例性的,若Pi=1,则表示第i个或第i+1个上行资源的空间关系信息需要根据第二信息进行更新,例如,P1=1,则表示需要更新第1个上行资源(如标识为“1”的上行资源)的空间关系。若Pi=0,则表示第i个或第i+1个上行资源的空间关系信息不需要根据第二信息进行更新,例如,P1=1,则表示不需要更新第1个上行资源(如标识为“1”的 上行资源)的空间关系。此外,图4A中的字段“空间关系信息”可用于携带第二信息,具体可参照图4中的字段“空间关系信息”。此外,图4A中的字段“R”表示预留字段。例如,字段“R”为取值为0的比特。图4A所示的波束指示信令还可包括服务小区标识、带宽部分标识,用于指示该波束指示信令所适用的小区和带宽范围。
可选的,Pi=1的所有上行资源可关联到同一个TRP,因此不会将分别属于不同TRP的上行资源的发送波束配置为相同的发送波束。
此外,Pi=1的所有上行资源配置的空间关系信息相同(或者说,字段“空间关系信息”携带一个第二信息,终端101可根据该第二信息,更新Pi=1的所有上行资源的空间关系),以便针对多个上行资源配置相同的发送波束,提高配置效率。
此外,波束指示信令还可携带服务小区组标识,用于指示一个或多个服务小区组,每个服务小区组可包括一个或多个服务小区。例如,如图4或图4A所示的MAC-CE消息中还可以包括服务小区组标识。终端101可根据服务小区组标识确定服务小区组,并根据第二信息,更新该服务小区组中的一个或多个服务小区内,特定的上行资源分组内的上行资源的SR,其中,这些特定的上行资源分组根据第一信息确定。确定特定的上行资源分组的方式,可参照本申请提供的根据第一信息确定上行资源分组的任一方式。从而可提高配置发送波束的效率。
采用以上第二种实施例,可由终端101根据第一对应关系以及来自网络设备102的第一信息确定目标上行资源,并配置目标上行资源的发送波束。其中,第一对应关系中包括上行资源、分组信息以及TRP三者之间的对应关系,并且该实施例中,属于同一个分组的多个上行资源应关联到同一个TRP。第一信息可包括目标分组信息。由于第一对应关系中属于同一个分组的多个上行资源关联到同一个TRP,因此终端101根据第一对应关系以及第一信息所确定的目标上行资源均关联到同一TRP。后续在确定目标上行资源的发送波束时,终端101可将关联到同一TRP的目标上行资源的发送波束配置为相同的发送波束,能够避免将多个分别关联到不同TRP的上行资源的发送波束配置为相同的发送波束,以提高通信效率。
如图5所示,本申请实施例提供的通信方法的第二种实施例,可包括以下步骤:
S201:网络设备102向终端101发送第三信息,该第三信息包括目标分组信息以及目标TRP的信息。相应地,终端101接收第三信息。
S202:终端101根据第二对应关系,确定与目标分组信息以及目标TRP的信息对应的目标上行资源。
其中,第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。本申请中,分组信息可用于指示上行资源的分组。TRP的信息用于区分上行资源所关联的TRP。
应理解,第二对应关系中的上行资源包括该目标上行资源,分组信息包括该目标分组信息,TRP包括该目标TRP。
S203:终端101确定目标上行资源对应的发送波束。
S204:终端101根据发送波束,向网络设备102发送信号。
采用以上方法,可由网络设备102通过第三信息,向终端101指示目标上行资源,从而由终端101配置目标上行资源对应的发送波束。并且,由于第三信息包括目标组标识以及目标TRP的信息,当目标上行资源为多个时,多个目标上行资源均关联到目标TRP,避免关联至不同的TRP的上行资源配置有相同的发送波束,以提高通信效率。
以上第二对应关系可由表2表示,其中,表2为上行资源的标识、组标识以及高层索引之间的对应关系。其中,表2中以16个上行资源为例进行说明,实际实施中网络设备102可能配置其他数量的上行资源,例如,大于16个上行资源。
上行资源的标识 组标识 高层索引
1 1 0
2 1 1
3 1 0
4 1 1
5 2 0
6 2 1
7 2 0
8 2 1
9 3 0
10 3 1
11 3 0
12 3 1
13 4 0
14 4 1
15 4 0
16 4 1
表2
示例性的,以上第二对应关系可由网络设备102配置并发送至终端101。例如,网络设备102可通过RRC消息向终端101发送第二对应关系。此外,第二对应关系也可由协议定义,或者采用预配置的方式确定。
在接收到第三信息后,终端101可根据第二对应关系确定目标上行资源。以表2为例,若第三信息表示的目标组标识为“1”、高层索引为“0”,则终端101可根据表2确定目标上行资源的标识为“1”和“3”。
在一种可能的示例中,网络设备102还可向终端101发送第四信息,第四信息可用于指示发送波束。具体的,第四信息可用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系,该处于激活状态的空间关系可用于确定目标上行资源对应的发送波束。
具体的,第四信息可用于指示上行资源对应的空间关系列表中,每个空间关系是否处于激活状态,或者,用于指示空间关系列表中处于激活状态的空间关系,或者,用于指示空间关系列表中非处于激活状态的空间关系。以上第四信息的具体配置方式,可参照第一种实施例中关于第二信息的介绍。
为节约信令开销,以上第三信息以及第四信息可承载于同一个信令。
示例性的,第三信息以及第四信息可承载于波束指示信令。该波束指示信令可以是MAC-CE消息或DCI。
以MAC-CE消息为例,如图4所示,字段“组信息”可用于携带第三信息。字段“空间关系标识”可用于携带第四信息。从而基于图4所示信令,终端101可根据第三信息以 及第四信息更新目标上行资源的空间关系列表,进而可在S203中可根据更新后的空间关系列表确定目标上行资源对应的发送波束。后续在S204中,当终端101发送上行信号时,即可根据发送波束进行发送。
采用以上第一种实施例,可由终端101根据第二对应关系以及来自网络设备102的第三信息确定目标上行资源,并配置目标上行资源的发送波束。其中,第二对应关系中包括上行资源、分组信息以及TRP三者之间的对应关系。该实施例中,属于通过一个分组的多个上行资源可关联到同一个TRP,或者关联到多个不同TRP,不予进行限制。第三信息可包括目标分组信息以及目标TRP的信息。由于第二对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,因此终端101根据第二对应关系以及第三信息所确定的目标上行资源均关联到同一TRP,即目标TRP。后续在确定目标上行资源的发送波束时,可将关联到同一TRP的目标上行资源的发送波束配置为相同的发送波束,能够避免将多个分别关联到不同TRP的上行资源的发送波束配置为相同的发送波束,以提高通信效率。
如图6所示,本申请实施例提供的通信方法的第三种实施例,可包括以下步骤:
S301:网络设备102向终端101发送目标分组信息。相应地,终端101接收目标分组信息。
S302:终端101根据上行资源以及分组信息之间的对应关系,确定与目标分组信息对应的目标上行资源。
该示例中,网络设备102不会针对终端101的上行资源配置关联的TRP。例如,在单TRP传输场景中,可将多个上行资源划分到不同的分组,或者换句话说,全部上行资源分组中的上行资源均关联至同一个TRP。
S303:终端101确定目标上行资源对应的发送波束。
S304:终端101根据发送波束,向网络设备102发送信号。
采用以上方法,可由网络设备102通过目标分组信息,向终端101指示目标上行资源,从而由终端101根据上行资源以及分组信息之间的对应关系,确定目标分组信息对应的目标上行资源,并配置目标上行资源对应的发送波束。当目标上行资源为多个时,通过目标分组信息指示的多个目标上行资源不会关联不同的TRP,因此可避免对于关联至不同的TRP的上行资源配置有相同的发送波束,以提高通信效率。
以上上行资源以及分组信息之间的对应关系可由表3表示。其中,上行资源的标识可用于表示上行资源,组标识可用于表示上行资源的分组。其中,表3中以8个上行资源为例进行说明,实际实施中网络设备102可能配置其他数量的上行资源,例如,大于8个上行资源。
上行资源的标识 组标识
1 1
2 1
3 2
4 2
5 3
6 3
7 4
8 4
表3
在配置表3所示的上行资源以及分组信息之间的对应关系时,若终端101关联的TRP数量为1,则可将多个上行资源分为多组,每组上行资源所关联的TRP相同,因此可避免针对多个关联到不同TRP的上行资源配置相同的发送波束,以提高通信效率。
示例性的,以上上行资源以及分组信息之间的对应关系可由网络设备102配置并发送至终端101。例如,网络设备102可通过RRC消息向终端101发送上行资源以及分组信息之间的对应关系。此外,上行资源以及分组信息之间的对应关系也可由协议定义,或者采用预配置的方式确定。
在一种可能的示例中,网络设备102还可向终端101发送波束指示信息,该波束指示信息用于指示发送波束。具体的,波束指示信息可用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系,该处于激活状态的空间关系可用于确定目标上行资源对应的发送波束。
具体的,波束指示信息可用于指示上行资源对应的空间关系列表中,每个空间关系是否处于激活状态,或者,用于指示空间关系列表中处于激活状态的空间关系,或者,用于指示空间关系列表中非处于激活状态的空间关系。以上波束指示信息的具体配置方式,可参照第一种实施例中关于第二信息的介绍。
在一种具体的示例中,上述目标分组信息以及波束指示信息可承载于同一波束指示信令。示例性的,该波束指示信令可以是MAC-CE消息或DCI。
以MAC-CE消息为例,如图4所示,字段“组信息”可用于携带目标分组信息。字段“空间关系标识”可用于携带波束指示信息。从而基于图4所示信令,终端101可根据目标分组信息以及波束指示信息更新目标上行资源的空间关系列表,进而可在S303中可根据更新后的空间关系列表确定目标上行资源对应的发送波束。后续在S304中,当终端101发送上行信号时,即可根据发送波束进行发送。
采用以上第三种实施例,可由终端101根据上行资源与分组信息之间的对应关系以及来自网络设备102的目标分组信息,确定目标上行资源,并配置目标上行资源的发送波束。其中,上行资源可关联至同一个TRP(或者说,终端101采用单TRP传输),因此终端101根据第三对应关系以及目标分组信息所确定的目标上行资源均关联到同一TRP。
如图7所示,本申请实施例提供的通信方法的第四种实施例,可包括以下步骤:
S401:网络设备102向终端101发送目标TRP的信息,该目标TRP的信息包括目标TRP的信息。相应地,终端101接收目标TRP的信息。
S402:终端101根据上行资源以及TRP的信息之间的对应关系,确定与目标TRP的 信息对应的目标上行资源。
其中,上行资源以及TRP的信息之间的对应关系为上行资源以及TRP的信息之间的对应关系。
该示例中,网络设备102不会针对终端101配置分组信息。
S403:终端101确定目标上行资源对应的发送波束。
S404:终端101根据发送波束,向网络设备102发送信号。
采用以上方法,可由网络设备102通过目标TRP的信息,向终端101指示目标上行资源,从而由终端101根据上行资源以及TRP的信息之间的对应关系确定目标上行资源,并配置目标上行资源对应的发送波束。当目标上行资源为多个时,通过目标分组信息指示的多个目标上行资源之关联到该目标TRP,因此可避免终端101对于关联至不同的TRP的上行资源配置相同的发送波束,以提高通信效率。
以上上行资源以及TRP的信息之间的对应关系可由表4表示,其中,表4为上行资源的标识与高层索引之间的对应关系,其中,上行资源的标识可用于表示上行资源,高层索引可用于表示TRP的信息。其中,表4中以8个上行资源为例进行说明,实际实施中网络设备102可能配置其他数量的上行资源,例如,大于8个上行资源。
上行资源的标识 高层索引
1 0
2 0
3 0
4 0
5 1
6 1
7 1
8 1
表4
示例性的,以上上行资源以及TRP的信息之间的对应关系可由网络设备102配置并发送至终端101。例如,网络设备102可通过RRC消息向终端101发送该对应关系。此外,该对应关系也可由协议定义,或者采用预配置的方式确定。
在一种可能的示例中,网络设备102还可向终端101发送波束指示信息,该波束指示信息用于指示发送波束。具体的,波束指示信息可用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系,该处于激活状态的空间关系可用于确定目标上行资源对应的发送波束。
具体的,波束指示信息可用于指示上行资源对应的空间关系列表中,每个空间关系是否处于激活状态,或者,用于指示空间关系列表中处于激活状态的空间关系,或者,用于指示空间关系列表中非处于激活状态的空间关系。以上波束指示信息的具体配置方式,可参照第一种实施例中关于第二信息的介绍。
在一种具体的示例中,上述目标TRP的信息以及波束指示信息可承载于同一波束指示信令。示例性的,该波束指示信令可以是MAC-CE消息或DCI。
以MAC-CE消息为例,如图4所示,字段“组信息”可用于携带目标TRP的信息。字段“空间关系标识”可用于携带波束指示信息。从而基于图4所示信令,终端101可根 据目标TRP的信息以及波束指示信息更新目标上行资源的空间关系列表,进而可在S303中可根据更新后的空间关系列表确定目标上行资源对应的发送波束。后续在S304中,当终端101发送上行信号时,即可根据发送波束进行发送。
采用以上第四种实施例,可由终端101根据上行资源以及TRP的信息之间的对应关系以及来自网络设备102的目标TRP的信息,确定目标上行资源,并配置目标上行资源的发送波束。由于该对应关系中包括上行资源与TRP的信息之间的对应关系,因此终端101根据该对应关系以及目标TRP的信息所确定的目标上行资源均关联到同一TRP(即目标TRP)。
在一种具体的实例中,以上第三种实施例以及第四种实施例可结合实施。例如,可由终端101向网络设备102选择执行第三种实施例所示方法或执行第四种实施例所示方法。示例性的,在第三种实施例所示方法执行之前,可由终端101向网络设备102发送指示信息,用于指示终端101是否支持采用第三种实施例所示方法配置发送波束。当终端101支持采用第三种实施例所示方法配置发送波束时,可执行图6所示步骤。此外,也可由终端101向网络设备102发送指示信息,用于指示终端101是否支持采用第四种实施例所示方法配置发送波束。当终端101支持采用第四种实施例所示方法配置发送波束时,可执行第四种实施例所示步骤。
示例性的,当终端101向网络设备102发送第一指示(如“0”比特)时,表示终端101支持采用第三种实施例所示流程。网络设备102可在接收第一指示后,向终端101发送目标分组信息,并执行第三种实施例所示流程。当终端101向网络设备102发送第二指示(如“1”比特)时,表示终端101支持采用第四种实施例所示流程。网络设备102可在接收第一指示后,向终端101发送目标TRP的信息,并执行第四种实施例所示流程。
此外,还可由网络设备102通过对应关系的配置,指示终端101采用第三种实施例或第四种实施例所示的流程配置发送波束。示例性的,当网络设备102向终端101配置的是上述上行资源与分组信息之间的对应关系时,则表示采用第三种实施例所示流程,后续网络设备102可向终端101发送目标分组信息,用于终端101确定目标上行资源;当网络设备102向终端101配置的是上述上行资源与TRP之间的对应关系时,则表示采用第四种实施例所示流程,后续网络设备102可向终端101发送目标TRP的信息,用于终端101确定目标上行资源。
示例性的,网络设备102可向终端101发送第五信息,用于终端101根据第三对应关系以及第五信息确定目标上行资源,并配置目标上行资源的发送波束。其中,若第三对应关系为上行资源与分组信息之间的对应关系,则所述第五信息包括目标分组信息,终端101可根据上述第三种实施例所述方法确定目标上行资源。或者,若第三对应关系为上行资源与TRP之间的对应关系,则所述第五信息包括目标TRP的信息,终端101可根据上述第四种实施例所述方法确定目标上行资源。
此外,当以上第三种实施例以及第四种实施例结合实施时,网络设备102可采用同一结构的波束指示信令,向终端101进行波束指示。以图4所示波束指示信令为例,若采用第三种实施例,或者说,若第三对应关系为上行资源与组标识之间的对应关系,则图4所示波束指示信令中的字段“组信息”可用于携带目标分组信息,终端101在解析该字段后,可按照上行资源与组标识之间的对应关系确定该目标分组信息对应的目标上行资源。若采用第四种实施例,或者说,若第三对应关系为上行资源与TRP的信息之间的对应关系,则 图4所示波束指示信令中的字段“组信息”可用于携带目标TRP的信息,终端101在解析该字段后,可按照上行资源与TRP的信息之间的对应关系确定该目标TRP的信息对应的目标上行资源。
此后,终端101还可根据来自网络设备102的第六信息,确定目标上行资源对应的空间关系中,处于激活状态的空间关系。该第六信息的设置方式,可参照上述第三终实施例或第四种中对于波束指示信息的说明。
如图8所示,本申请实施例提供的通信方法的第五种实施例,可包括以下步骤:
S501:网络设备102向终端101发送第七信息,该第七信息可包括第一上行资源的标识。相应地,终端101接收第七信息。
S502:终端101根据第四对应关系,确定与第一上行资源的标识对应的目标分组信息以及目标TRP的信息。
其中,第四对应关系包括上行资源、分组信息以及TRP三者之间的对应关系。应理解,第四对应关系中的上行资源包括该第一上行资源,分组信息包括该目标分组信息,TRP包括该目标TRP。
S503:终端101根据第四对应关系,确定与所述目标分组信息以及所述目标TRP的信息对应的目标上行资源。应理解,目标上行资源包括第一上行资源。
S504:终端101确定目标上行资源对应的发送波束。
S505:终端101根据发送波束,向网络设备102发送信号。
采用以上方法,可由网络设备102通过第七信息,向终端101指示第一上行资源,并由终端101根据该第一上行资源,确定目标上行资源,其中,目标上行资源与第一上行资源所对应的组标识和TRP的信息相同。因此当配置目标上行资源的发送波束时,能够避免对于关联至不同的TRP的上行资源配置有相同的发送波束,以提高通信效率。
以上第四对应关系可参照表5。其中,表5为上行资源的标识、组标识以及高层索引之间的对应关系,其中,上行资源的标识可用于表示上行资源,组标识可用于表示分组信息,高层索引可用于表示TRP的信息。其中,表5中以12个上行资源为例进行说明,实际实施中网络设备102可能配置其他数量的上行资源,例如,大于12个上行资源。
上行资源的标识 组标识 高层索引
1 1 0
2 1 1
3 2 0
4 2 1
5 3 0
6 3 1
7 4 0
8 4 1
9 1 0
10 1 1
11 2 0
12 2 1
表5
以表1为例,若第七信息指示的第一上行资源的标识为“1”,则终端101可根据表1确定目标组标识为“1”,目标高层索引为“0”,从而终端101进一步可根据目标组标识以及目标高层索引查询表5,确定目标上行资源的标识为“1”以及“9”。
示例性的,第四对应关系中上行资源的分组数目的最大取值取决于是否支持多TRP传输,例如,单TRP传输时,可将上行资源分为两组,多TRP传输时,最多可以将上行资源分为四组。
以上第四对应关系可由网络设备102配置并发送至终端101。例如,网络设备102可通过RRC消息向终端101发送第四对应关系。此外,第四对应关系也可由协议定义,或者采用预配置的方式确定。
在一种可能的示例中,网络设备102还可向终端101发送第八信息,该第八信息用于指示发送波束。具体的,第八信息可用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系,该处于激活状态的空间关系可用于确定目标上行资源对应的发送波束。
具体的,第八信息可用于指示上行资源对应的空间关系列表中,每个空间关系是否处于激活状态,或者,用于指示空间关系列表中处于激活状态的空间关系,或者,用于指示空间关系列表中非处于激活状态的空间关系。以上第八信息的具体配置方式,可参照第一种实施例中关于第二信息的介绍。
在一种具体的示例中,上述第七信息以及第八信息可承载于同一波束指示信令。示例性的,该波束指示信令可以是MAC-CE消息或DCI。
以MAC-CE消息为例,如图4所示,字段“组信息”可用于携带第七信息。字段“空间关系标识”可用于携带第八信息。从而基于图4所示信令,终端101可根据第七信息以及第八信息更新目标上行资源的空间关系列表,进而可在S503中可根据更新后的空间关系列表确定目标上行资源对应的发送波束。后续在S504中,当终端101发送上行信号时,即可根据发送波束进行发送。
采用以上第五种实施例,可由终端101根据第四对应关系以及来自网络设备102的第就信息确定目标组标识以及目标TRP的信息,进一步根据目标组标识以及目标TRP的信 息查询第四对应关系确定目标上行资源,后续可配置目标上行资源的发送波束。该实施例中,第四对应关系中属于通过一个分组的多个上行资源可关联到同一个TRP,或者关联到多个不同TRP,不予进行限制。由于采用上述方法确定的目标上行资源均关联至目标TRP,因此终端101可将关联到目标TRP的目标上行资源的发送波束配置为相同的发送波束,可避免将多个分别关联到不同TRP的上行资源的发送波束配置为相同的发送波束,以提高通信效率。
上述本申请提供的实施例中,从终端所实现的功能的角度对本申请实施例提供的方法即方法流程进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图9所示,本申请实施例提供的一种通信装置可以包括通信模块901以及处理模块902,以上通信模块901以及处理模块902之间相互耦合。该通信装置900可用于执行以上方法实施例中由终端101执行的步骤。该通信模块901可用于支持通信装置900进行通信,通信模块901也可被称为通信单元、通信接口、收发模块或收发单元。通信模块901可具备无线通信功能,例如能够通过无线通信方式与其他通信装置进行通信。处理模块902也可被称为处理单元,可用于支持该通信装置900执行上述方法实施例中终端设备的处理动作,包括但不限于:生成由通信模块901发送的信息、消息,和/或,对通信模块901接收的信号进行解调解码等等。
在执行上述方法实施例中由终端执行的步骤时,以上通信模块901可用于执行上述方法实施例中终端的发送和/或接收的动作,如用于执行终端向网络设备发送信息、消息或信令的动作,或用于执行从网络设备接收信息、消息或信令的动作。和/或,处理模块902可用于执行上述方法实施例中终端的处理动作,如用于控制通信模块901进行信息、消息或信令的接收和或发送,以及信息的存储等操作。
具体的,在执行本申请提供的第一种实施例时,通信模块901可用于接收来自网络设备的第一信息,所述第一信息包括目标分组信息。处理模块902可用于根据第一对应关系,确定所述目标分组信息对应的目标上行资源,其中,第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP。处理模块902还可用于确定所述目标上行资源对应的发送波束。通信模块901还可用于根据所述发送波束,向所述网络设备发送信号。
所述通信模块901具体可根据所述发送波束,向所述目标上行资源对应的TRP发送所述信号。
可选地,上述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
示例性的,通信模块901还可用于接收来自所述网络设备的所述第一对应关系。
此外,通信模块901还可用于接收来自所述网络设备的第二信息,所述第二信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。则处理模块902具体可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述第一信息以及第二信息可承载于同一个信令。
在执行本申请提供的第二种实施例时,通信模块901可用于接收来自网络设备的第三 信息,所述第三信息包括目标分组信息以及目标传输点TRP的信息。处理模块902可用于根据第二对应关系,确定所述目标分组信息以及所述目标TRP的信息对应的目标上行资源,所述第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。处理模块902还可用于确定所述目标上行资源对应的发送波束。通信模块901还可用于根据所述发送波束,向所述网络设备发送信号。
示例性的,通信模块901还可用于接收来自所述网络设备的所述第二对应关系。
此外,通信模块901具体可用于根据所述发送波束,向所述目标TRP发送所述信号。
在一种可能的示例中,通信模块901还接收来自所述网络设备的第四信息,所述第四信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。处理模块902具体可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述第三信息以及第四信息可承载于同一个信令。
在执行本申请提供的第三/第四种实施例时,通信模块901可接收来自网络设备的第五信息。处理模块902可根据第三对应关系,确定所述第五信息对应的目标上行资源。其中,若第三对应关系为上行资源与分组信息之间的对应关系,则所述第五信息包括目标分组信息,此时不将多个上行资源关联到不同的TRP,或者说,示例适用于单TRP场景;或者,若第三对应关系为上行资源与TRP之间的对应关系,则所述第五信息包括目标TRP的信息。处理模块902还可确定目标上行资源对应的发送波束。通信模块901还可根据所述发送波束,向所述网络设备发送信号。
以上第三对应关系,可由通信模块901从所述网络设备接收。示例性的,若第三对应关系为上行资源与分组信息之间的对应关系,则处理模块902可将第五信息确定为目标组信息。若第三对应关系为上行资源与TRP的信息之间的对应关系,则终端可将第五信息确定为目标TRP的信息。
示例性的,通信模块901具体可根据所述发送波束,向所述目标上行资源对应的TRP发送所述信号。
此外,通信模块901还可接收来自所述网络设备的第六信息,所述第六信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。处理模块902可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述所述第五信息以及第六信息可承载于同一个信令,以节省信令开销。
在执行本申请提供的第五种实施例时,通信模块901可接收来自网络设备的第七信息,该第七信息可包括第一上行资源的标识。处理模块902可根据第四对应关系,确定该第一上行资源的标识对应的目标分组信息以及目标TRP,该第四对应关系为上行资源、分组信息以及TRP三者之间的对应关系。处理模块902还可根据所述第四对应关系,确定与该目标分组信息以及该目标TRP对应的目标上行资源,所述目标上行资源包括所述第一上行资源。通信模块901还可确定所述目标上行资源对应的发送波束,并根据所述发送波束,向所述网络设备发送信号。
以上第四对应关系,可由通信模块901从所述网络设备接收。
示例性的,通信模块901可根据所述发送波束,向所述目标TRP发送所述信号。
此外,通信模块901还可接收来自所述网络设备的第八信息,所述第八信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。处理模块902可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述所述第七信息以及第八信息可承载于同一个信令,以节省信令开销。
在实现上述终端101时,通信装置还可由硬件组件构成。便于理解和图示方便,图10中,以手机为例说明由硬件组件构成的通信装置1000的结构。如图10所示,通信装置1000可包括处理器1001、存储器1002以及收发器1003。
其中,处理器1001、收发器1003和存储器1002之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1002用于存储计算机程序,该处理器1001用于从该存储器1002中调用并运行该计算机程序,以控制该收发器1003收发信号。
以上处理器1001可用于对通信协议以及通信数据进行处理,以及对通信装置1000进行控制,执行程序,处理程序的数据等。存储器1002可用于存储程序和数据,处理器1001可基于该程序执行本申请实施例中由接收端设备执行的方法。
上述收发器1003可以与图9中的通信模块901对应,也可以称为收发单元。收发器1003可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。收发器1003具体可包括射频单元以及天线。其中,射频单元可用于基带信号与射频信号的转换以及对射频信号的处理。天线可用于收发电磁波形式的射频信号。另外,也可将射频单元视为收发器1003,则此时通信装置1000可包括处理器1001、存储器1002、收发器1003以及天线。
另外,该通信装置1000还可包括输入输出装置1004,如触摸屏、显示屏或者键盘等可用于接收用户输入的数据以及对用户输出数据的组件。需要说明的是,有些种类的通信装置可以不具有输入输出装置。
示例性的,上述处理器1001和存储器1002可以合成一个处理装置,处理器1001用于执行存储器1002中存储的计算机程序或指令来实现上述功能。具体实现时,该存储器1002也可以集成在处理器1001中,或者独立于处理器1001。该处理器1001可以与图9所示的处理模块902对应。
以上通信模块901可具备收发器1003所示结构,即包括射频单元以及天线;或者,通信模块901可包括以上射频单元。以上处理模块902可包括处理器1001,或包括处理器1001以及存储器1002。
以上通信装置1000也可由芯片构成。例如,该芯片包含处理器1001。另外,该芯片还可包括存储器1002以及收发器1003,其中,存储器1002、收发器1003以及处理器1001三者中,任意两者之间可相互耦合。
基于图10所示结构,在执行本申请提供的第一种实施例时,收发器1003可用于接收来自网络设备的第一信息,所述第一信息包括目标分组信息。处理器1001可用于根据第一对应关系,确定所述目标分组信息对应的目标上行资源,其中,第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP。处理器1001还可用于确定所述目标上行资源对应的发送波束。收发器1003还可用于根据所述发送波束,向所述网络设备发送信号。
所述收发器1003具体可根据所述发送波束,向所述目标上行资源对应的TRP发送所述信号。
可选地,上述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
示例性的,收发器1003还可用于接收来自所述网络设备的所述第一对应关系。
此外,收发器1003还可用于接收来自所述网络设备的第二信息,所述第二信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。则处理器1001具体可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述第一信息以及第二信息可承载于同一个信令。
在执行本申请提供的第二种实施例时,收发器1003可用于接收来自网络设备的第三信息,所述第三信息包括目标分组信息以及目标传输点TRP的信息。处理器1001可用于根据第二对应关系,确定所述目标分组信息以及所述目标TRP的信息对应的目标上行资源,所述第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。处理器1001还可用于确定所述目标上行资源对应的发送波束。收发器1003还可用于根据所述发送波束,向所述网络设备发送信号。
示例性的,收发器1003还可用于接收来自所述网络设备的所述第二对应关系。
此外,收发器1003具体可用于根据所述发送波束,向所述目标TRP发送所述信号。
在一种可能的示例中,收发器1003还接收来自所述网络设备的第四信息,所述第四信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。处理器1001具体可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述第三信息以及第四信息可承载于同一个信令。
在执行本申请提供的第三/第四种实施例时,收发器1003可接收来自网络设备的第五信息。处理器1001可根据第三对应关系,确定所述第五信息对应的目标上行资源。其中,若第三对应关系为上行资源与分组信息之间的对应关系,则所述第五信息包括目标分组信息,此时不将多个上行资源关联到不同的TRP,或者说,示例适用于单TRP场景;或者,若第三对应关系为上行资源与TRP之间的对应关系,则所述第五信息包括目标TRP的信息。处理器1001还可确定目标上行资源对应的发送波束。收发器1003还可根据所述发送波束,向所述网络设备发送信号。
以上第三对应关系,可由收发器1003从所述网络设备接收。示例性的,若第三对应关系为上行资源与分组信息之间的对应关系,则处理器1001可将第五信息确定为目标组信息。若第三对应关系为上行资源与TRP的信息之间的对应关系,则终端可将第五信息确定为目标TRP的信息。
示例性的,收发器1003具体可根据所述发送波束,向所述目标上行资源对应的TRP发送所述信号。
此外,收发器1003还可接收来自所述网络设备的第六信息,所述第六信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。处理器1001可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述所述第五信息以及第六信息可承载于同一个信令,以节省信令开销。
在执行本申请提供的第五种实施例时,收发器1003可接收来自网络设备的第七信息,该第七信息可包括第一上行资源的标识。处理器1001可根据第四对应关系,确定该第一上行资源的标识对应的目标分组信息以及目标TRP,该第四对应关系为上行资源、分组信息以及TRP三者之间的对应关系。处理器1001还可根据所述第四对应关系,确定与该目标分组信息以及该目标TRP对应的目标上行资源,所述目标上行资源包括所述第一上行资源。收发器1003还可确定所述目标上行资源对应的发送波束,并根据所述发送波束,向所述网络设备发送信号。
以上第四对应关系,可由收发器1003从所述网络设备接收。
示例性的,收发器1003可根据所述发送波束,向所述目标TRP发送所述信号。
此外,收发器1003还可接收来自所述网络设备的第八信息,所述第八信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系。处理器1001可根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
上述所述第七信息以及第八信息可承载于同一个信令,以节省信令开销。
如图11所示,本申请实施例提供的一种通信装置可以包括通信模块1101以及处理模块1102,以上通信模块1101以及处理模块1102之间相互耦合。该通信装置1100可用于执行以上方法实施例中由网络设备执行的步骤。该通信模块1101可用于支持通信装置1100进行通信,通信模块1101也可被称为通信单元、通信接口、收发模块或收发单元。通信模块1101可具备无线通信功能,例如能够通过无线通信方式与其他通信装置(如终端)进行通信。处理模块1102也可被称为处理单元,可用于支持该通信装置1100执行上述方法实施例中终端设备的处理动作,包括但不限于:生成由通信模块1101发送的信息、消息,和/或,对通信模块1101接收的信号进行解调解码等等。
在执行本申请提供的第一种实施例时,通信模块1101可用于向终端发送第一对应关系,该第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP。通信模块1101还可向终端发送第一信息,第一信息包括目标分组信息,所述目标分组信息用于终端确定目标上行资源,目标上行资源与目标分组信息对应。
上述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
示例性的,所述通信模块1101还可向终端发送第二信息,第二信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
上述第一信息以及第二信息可承载于同一个信令。
在执行本申请提供的第二种实施例时,处理模块1102可用于确定第三信息,该第三信息可包括目标分组信息以及目标传输点TRP的信息。通信模块1101可用于向终端发送该第三信息,该第三信息用于所述终端确定目标上行资源,所述目标上行资源与所述目标分组信息以及目标传输点TRP的信息对应。
示例性的,通信模块1101还可向该终端发送第二对应关系,该第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。
此外,通信模块1101还可向所述终端发送第四信息,该第四信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
示例性的,该第三信息以及该第四信息可承载于同一个信令。
在执行本申请提供的第三/第四种实施例时,处理模块1102可用于确定第五信息。通信模块1101可用于向终端发送第五信息,使得终端根据第三对应关系以及第五信息确定目标上行资源,其中,目标上行资源与第五信息对应。其中,若第三对应关系为上行资源与分组信息之间的对应关系,则所述第五信息包括目标分组信息;或者,若第三对应关系为上行资源与TRP之间的对应关系,则所述第五信息包括目标TRP的信息。
此外,通信模块1101还可向终端发送该第三对应关系。
示例性的,通信模块1101还可向终端发送第六信息,第六信息用于确定目标上行资源 对应的空间关系中,处于激活状态的空间关系。
上述第五信息以及第六信息可承载于同一个信令,以节省信令开销。
在执行本申请提供的第五种实施例时,处理模块1102可用于确定第七信息。通信模块1101可用于向终端发送第七信息,第七信息包括第一上行资源的标识,使得终端根据第四对应关系以及第七信息确定目标上行资源,其中,目标上行资源包括第一上行资源,且第四对应关系中,目标上行资源对应的分组信息以及TRP的信息,与第一上行资源对应的分组信息以及TRP的信息相同。其中,若第四对应关系为上行资源、分组信息以及TRP的信息三者之间的对应关系。
此外,通信模块1101还可向终端发送该第四对应关系。
示例性的,所述通信模块1101还可向终端发送第六信息,第六信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
上述第五信息以及第六信息可承载于同一个信令。
另外,当本实施例中的通信装置为网络设备时,该通信装置可以具备如图12所示结构。其中,通信装置1200包括一个或多个远端射频单元(remote radio unit,RRU)1210和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1220。所述RRU 1210可以称为通信模块,其可与图11中的通信模块1101对应,用于执行以上由通信模块1101执行的步骤。该RRU 1210还可以称为收发机、收发电路或者收发器等等,其可以包括至少一个天线1211和射频单元1212。所述RRU 1210可用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送资源指示。应理解,可将RRU1210视为收发器,也可将视频单元1812视为收发器。可选地,RRU 1210可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。
所述BBU 1220可用于进行基带处理,如信道编码,复用,调制,扩频等等,以及对基站进行控制等。所述RRU 1210与BBU 1220可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述BBU 1220为基站的控制中心,也可以称为处理模块、处理单元等,其可以与图11中的处理模块1102对应,用于执行以上由处理模块1702执行的步骤。BBU 1220还可用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU 1220可以用于控制网络设备执行上述方法实施例中关于网络设备的操作流程,例如,生成第一信息等。
在一个示例中,所述BBU 1220可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1220还包括存储器1221和处理器1222。所述存储器1221用以存储必要的计算机程序或指令,以及数据。所述处理器1222用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述方法实施例中由CU和/或CU执行的操作流程。
示例性的,可由处理器1222执行以上由处理模块1702执行的步骤。所述存储器1221和处理器1222可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括BBU和自适应无 线单元(adaptive radio unit,ARU),或BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
上述BBU 1220可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 1210可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。
在执行本申请提供的第一种实施例时,收发器可用于向终端发送第一对应关系,该第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP。收发器还可向终端发送第一信息,第一信息包括目标分组信息,所述目标分组信息用于终端确定目标上行资源,目标上行资源与目标分组信息对应。
上述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
示例性的,所述收发器还可向终端发送第二信息,第二信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
上述第一信息以及第二信息可承载于同一个信令。
在执行本申请提供的第二种实施例时,处理器1222可用于确定第三信息,该第三信息可包括目标分组信息以及目标传输点TRP的信息。收发器(RRU 1810或射频单元181)可用于向终端发送该第三信息,该第三信息用于所述终端确定目标上行资源,所述目标上行资源与所述目标分组信息以及目标传输点TRP的信息对应。
示例性的,收发器还可向该终端发送第二对应关系,该第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。
此外,收发器还可向所述终端发送第四信息,该第四信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
示例性的,该第三信息以及该第四信息可承载于同一个信令。
在执行本申请提供的第三/第四种实施例时,处理器1222可用于确定第五信息。收发器可用于向终端发送第五信息,使得终端根据第三对应关系以及第五信息确定目标上行资源,其中,目标上行资源与第五信息对应。其中,若第三对应关系为上行资源与分组信息之间的对应关系,则所述第五信息包括目标分组信息;或者,若第三对应关系为上行资源与TRP之间的对应关系,则所述第五信息包括目标TRP的信息。
此外,收发器还可向终端发送该第三对应关系。
示例性的,收发器还可向终端发送第六信息,第六信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
上述第五信息以及第六信息可承载于同一个信令,以节省信令开销。
在执行本申请提供的第五种实施例时,处理器1222可用于确定第七信息。收发器可用于向终端发送第七信息,第七信息包括第一上行资源的标识,使得终端根据第四对应关系以及第七信息确定目标上行资源,其中,目标上行资源包括第一上行资源,且第四对应关系中,目标上行资源对应的分组信息以及TRP的信息,与第一上行资源对应的分组信息以及TRP的信息相同。其中,若第四对应关系为上行资源、分组信息以及TRP的信息三者之间的对应关系。
此外,收发器还可向终端发送该第四对应关系。
示例性的,所述收发器还可向终端发送第六信息,第六信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
上述第五信息以及第六信息可承载于同一个信令。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,使该计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,该计算机程序产品可包括计算机程序或指令,当其在被计算机调用执行时,可以使得计算机实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片可包括处理器。该芯片还可包括存储器(或存储模块)和/或收发器(或通信模块),或者,该芯片与存储器(或存储模块)和/或收发器(或通信模块)耦合,其中,收发器(或通信模块)可用于支持该芯片进行有线和/或无线通信,存储器(或存储模块)可用于存储程序,该处理器调用该程序可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。该芯片系统可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
基于与上述方法实施例相同构思,本申请还提供一种通信系统,该通信系统可包括以上终端和/或网络设备。该通信系统可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。示例性的,该通信系统可具有如图1或图2所示结构。
应理解,上述处理模块可以是一个芯片。例如,该处理模块可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM, EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
本申请实施例是参照实施例所涉及的方法、装置、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序或指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序或指令到通用计算机、专用计机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的计算机程序或指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序或指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的计算机程序或指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序或指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的计算机程序或指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (62)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一信息,所述第一信息包括目标分组信息;
    根据第一对应关系,确定所述目标分组信息对应的目标上行资源,其中,第一对应关系包括上行资源、分组信息以及传输接收点TRP三者之间的对应关系,其中,属于同一个分组的多个上行资源对应同一个TRP;
    确定所述目标上行资源对应的发送波束;
    根据所述发送波束,向所述网络设备发送信号。
  2. 如权利要求1所述的方法,其特征在于,根据所述发送波束,向所述网络设备发送信号,包括:
    根据所述发送波束,向所述目标上行资源对应的TRP发送所述信号。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
  4. 如权利要求1-3中任一所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的所述第一对应关系。
  5. 如权利要求1-4中任一所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二信息,所述第二信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系;
    确定所述目标上行资源对应的发送波束,包括:
    根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
  6. 如权利要求5所述的方法,其特征在于,所述第一信息以及所述第二信息承载于同一个信令。
  7. 一种通信方法,其特征在于,包括:
    向终端发送第一对应关系,所述第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP;
    向所述终端发送第一信息,所述第一信息包括目标分组信息,所述目标分组信息用于所述终端确定目标上行资源,所述目标上行资源与所述目标分组信息对应。
  8. 如权利要求7所述的方法,其特征在于,所述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
  9. 如权利要求7或8中任一所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二信息,所述第二信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
  10. 如权利要求9所述的方法,其特征在于,所述第一信息以及所述第二信息承载于同一个信令。
  11. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第三信息,所述第三信息包括目标分组信息以及目标TRP的信息;
    根据第二对应关系,确定所述目标分组信息以及所述目标TRP的信息对应的目标上行资源,所述第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系;
    确定所述目标上行资源对应的发送波束;
    根据所述发送波束,向所述网络设备发送信号。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的所述第二对应关系。
  13. 如权利要求11或12所述的方法,其特征在于,根据所述发送波束,向所述网络设备发送信号,包括:
    根据所述发送波束,向所述目标TRP发送所述信号。
  14. 如权利要求11-13中任一所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第四信息,所述第四信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系;
    确定所述目标上行资源对应的发送波束,包括:
    根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
  15. 如权利要求14所述的方法,其特征在于,所述第三信息以及所述第四信息承载于同一个信令。
  16. 一种通信方法,其特征在于,包括:
    确定第三信息,所述第三信息包括目标分组信息以及目标传输点TRP的信息;
    向终端发送所述第三信息,所述第三信息用于确定目标上行资源,所述目标上行资源与所述目标分组信息以及目标传输点TRP的信息对应。
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二对应关系,所述第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。
  18. 如权利要求16或17所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第四信息,所述第四信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
  19. 如权利要求18所述的方法,其特征在于,所述第三信息以及所述第四信息承载于同一个信令。
  20. 一种通信装置,其特征在于,包括通信模块以及处理模块:
    所述通信模块,用于接收来自网络设备的第一信息,所述第一信息包括目标分组信息;
    所述处理模块,用于根据第一对应关系,确定所述目标分组信息对应的目标上行资源,其中,第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP;
    所述处理模块,还用于确定所述目标上行资源对应的发送波束;
    所述通信模块,还用于根据所述发送波束,向所述网络设备发送信号。
  21. 如权利要求20所述的通信装置,其特征在于,所述通信模块具体用于:
    根据所述发送波束,向所述目标上行资源对应的TRP发送所述信号。
  22. 如权利要求20或21所述的通信装置,其特征在于,所述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
  23. 如权利要求20-22中任一所述的通信装置,其特征在于,所述通信模块还用于:
    接收来自所述网络设备的所述第一对应关系。
  24. 如权利要求20-23中任一所述的通信装置,其特征在于,所述通信模块还用于:
    接收来自所述网络设备的第二信息,所述第二信息用于确定所述目标上行资源对应的 空间关系中,处于激活状态的空间关系;
    所述处理模块具体用于:
    根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
  25. 如权利要求24所述的通信装置,其特征在于,所述第一信息以及所述第二信息承载于同一个信令。
  26. 一种通信装置,其特征在于,包括通信模块:
    所述通信模块,用于向终端发送第一对应关系,所述第一对应关系包括上行资源、分组信息以及TRP三者之间的对应关系,其中,属于同一个分组的上行资源对应同一个TRP;
    所述通信模块,还用于所述网络设备向所述终端发送第一信息,所述第一信息包括目标分组信息,所述目标分组信息用于所述终端确定目标上行资源,所述目标上行资源与所述目标分组信息对应。
  27. 如权利要求26所述的通信装置,其特征在于,所述第一对应关系中,一个或多个上行资源对应于一个分组,一个或多个分组对应于一个TRP。
  28. 如权利要求26或27所述的通信装置,其特征在于,所述通信模块还用于:
    向所述终端发送第二信息,所述第二信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
  29. 如权利要求28所述的通信装置,其特征在于,所述第一信息以及所述第二信息承载于同一个信令。
  30. 一种通信装置,其特征在于,包括通信模块以及处理模块:
    所述通信模块,用于接收来自网络设备的第三信息,所述第三信息包括目标分组信息以及目标传输点TRP的信息;
    所述处理模块,用于根据第二对应关系,确定所述目标分组信息以及所述目标TRP的信息对应的目标上行资源,所述第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系;
    所述处理模块,还用于确定所述目标上行资源对应的发送波束;
    所述通信模块,还用于根据所述发送波束,向所述网络设备发送信号。
  31. 如权利要求30所述的通信装置,其特征在于,所述通信模块还用于:
    接收来自所述网络设备的所述第二对应关系。
  32. 如权利要求30或31所述的通信装置,其特征在于,所述通信模块具体用于:
    根据所述发送波束,向所述目标TRP发送所述信号。
  33. 如权利要求30-32中任一所述的通信装置,其特征在于,所述通信模块还用于:
    接收来自所述网络设备的第四信息,所述第四信息用于确定所述目标上行资源对应的空间关系中,处于激活状态的空间关系;
    所述处理模块具体用于:
    根据所述处于激活状态的空间关系,确定所述目标上行资源对应的发送波束。
  34. 如权利要求33所述的通信装置,其特征在于,所述第三信息以及所述第四信息承载于同一个信令。
  35. 一种通信装置,其特征在于,包括通信模块以及处理模块:
    所述处理模块,用于确定第三信息,所述第三信息包括目标分组信息以及目标传输点TRP的信息;
    所述通信模块,用于向终端发送所述第三信息,所述第三信息用于所述终端确定目标上行资源,所述目标上行资源与所述目标分组信息以及目标传输点TRP的信息对应。
  36. 如权利要求35所述的通信装置,其特征在于,所述处理模块还用于:
    向所述终端发送第二对应关系,所述第二对应关系为上行资源、分组信息以及TRP三者之间的对应关系。
  37. 如权利要求35或36所述的通信装置,其特征在于,所述处理模块还用于:
    向所述终端发送第四信息,所述第四信息用于确定目标上行资源对应的空间关系中,处于激活状态的空间关系。
  38. 如权利要求37所述的通信装置,其特征在于,所述第三信息以及所述第四信息承载于同一个信令。
  39. 一种通信装置,其特征在于,包括处理器;
    当所述处理器执行存储器中的计算机程序时,如权利要求1-6中任一所述的方法被执行。
  40. 一种通信装置,其特征在于,包括处理器;
    当所述处理器执行存储器中的计算机程序时,如权利要求7-10中任一所述的方法被执行。
  41. 一种通信装置,其特征在于,包括处理器;
    当所述处理器执行存储器中的计算机程序时,如权利要求11-15中任一所述的方法被执行。
  42. 一种通信装置,其特征在于,包括处理器;
    当所述处理器执行存储器中的计算机程序时,如权利要求16-19中任一所述的方法被执行。
  43. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序或指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1-6中任一所述的方法。
  44. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序或指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求7-10中任一所述的方法。
  45. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序或指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求11-15中任一所述的方法。
  46. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序或指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求16-19中任一所述的方法。
  47. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用 于从所述存储器调用所述程序代码执行如权利要求1-6中任一所述的方法。
  48. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如权利要求7-10中任一所述的方法。
  49. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如权利要求11-15中任一所述的方法。
  50. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如权利要求16-19中任一所述的方法。
  51. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收计算机程序或指令并传输至所述处理器;
    所述处理器用于运行所述计算机程序或指令,执行如权利要求1-6中任一所述的方法。
  52. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收计算机程序或指令并传输至所述处理器;
    所述处理器用于运行所述计算机程序或指令,执行如权利要求7-10中任一所述的方法。
  53. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收计算机程序或指令并传输至所述处理器;
    所述处理器用于运行所述计算机程序或指令,执行如权利要求11-15中任一所述的方法。
  54. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收计算机程序或指令并传输至所述处理器;
    所述处理器用于运行所述计算机程序或指令,执行如权利要求16-19中任一所述的方法。
  55. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求1-6中任一所述的方法被实现。
  56. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求7-10中任一所述的方法被实现。
  57. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求11-15中任一所述的方法被实现。
  58. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求16-19中任一所述的方法被实现。
  59. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求1-6中任一所述的方法被实现。
  60. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求7-10中任一所述的方法被实现。
  61. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求11-15中任一所述的方法被实现。
  62. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求16-19中任一所述的方法被实现。
PCT/CN2019/116812 2019-11-08 2019-11-08 一种通信方法及装置 WO2021088025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116812 WO2021088025A1 (zh) 2019-11-08 2019-11-08 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116812 WO2021088025A1 (zh) 2019-11-08 2019-11-08 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021088025A1 true WO2021088025A1 (zh) 2021-05-14

Family

ID=75849434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116812 WO2021088025A1 (zh) 2019-11-08 2019-11-08 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2021088025A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842436A (zh) * 2017-11-27 2019-06-04 电信科学技术研究院 一种上行信号传输方法、终端和网络侧设备
WO2019134128A1 (en) * 2018-01-05 2019-07-11 Nec Corporation Method and devices for uplink signal transmitting and receiving in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842436A (zh) * 2017-11-27 2019-06-04 电信科学技术研究院 一种上行信号传输方法、终端和网络侧设备
WO2019134128A1 (en) * 2018-01-05 2019-07-11 Nec Corporation Method and devices for uplink signal transmitting and receiving in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER IIS, FRAUNHOFER HHI: "Enhancements on Multi-TRP/Panel Transmission", 3GPP DRAFT; R1-1907054_MULTI-TRP, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 5, XP051709087 *
LG ELECTRONICS: "Enhancements on Multi-TRP/Panel Transmission", 3GPP DRAFT; R1-1910582, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 23, XP051789378 *

Similar Documents

Publication Publication Date Title
US11569949B2 (en) Communication method and communications apparatus
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
US11206635B2 (en) Paging indication transmission method and apparatus
EP3955678A1 (en) Data receiving and transmitting method and apparatus
CN110999477B (zh) 信息指示方法及相关设备
WO2019154090A1 (zh) 信号传输的方法和装置
WO2022147720A1 (zh) 波束指示方法、装置及通信设备
WO2020221321A1 (zh) 通信方法以及通信装置
WO2020244393A1 (zh) 一种数据传输方法及装置
WO2019096232A1 (zh) 通信方法和通信装置
WO2021134616A1 (zh) 一种资源配置方法和装置
WO2021254482A1 (zh) 一种覆盖增强等级的确定方法及装置
WO2018201919A1 (zh) 一种数据传输的方法和装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2021179268A1 (zh) 一种通信方法及装置
WO2021159497A1 (zh) 载波调度的方法及装置
WO2021168635A1 (zh) 反馈资源的确定方法和装置
WO2022161487A1 (zh) 参考信号图案的确定方法及装置
WO2021088025A1 (zh) 一种通信方法及装置
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
WO2021062795A1 (zh) 一种通信方法及装置
WO2023030144A1 (zh) 一种频域资源配置方法以及相关装置
WO2024026832A1 (zh) 无线通信的方法及装置
WO2023116746A1 (zh) 一种波束确定方法及其装置
WO2023197201A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952051

Country of ref document: EP

Kind code of ref document: A1