WO2021087781A1 - 目标物位置的检测方法、可移动平台、设备和存储介质 - Google Patents

目标物位置的检测方法、可移动平台、设备和存储介质 Download PDF

Info

Publication number
WO2021087781A1
WO2021087781A1 PCT/CN2019/115823 CN2019115823W WO2021087781A1 WO 2021087781 A1 WO2021087781 A1 WO 2021087781A1 CN 2019115823 W CN2019115823 W CN 2019115823W WO 2021087781 A1 WO2021087781 A1 WO 2021087781A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
antenna
antenna array
rotation
angle
Prior art date
Application number
PCT/CN2019/115823
Other languages
English (en)
French (fr)
Inventor
陈文平
王俊喜
王春明
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/115823 priority Critical patent/WO2021087781A1/zh
Priority to CN201980039549.2A priority patent/CN112400117A/zh
Publication of WO2021087781A1 publication Critical patent/WO2021087781A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves

Definitions

  • the present invention relates to the field of radar, in particular to a method for detecting the position of a target, a movable platform, equipment and a storage medium.
  • Movable platforms have been widely used in many fields. In different fields, mobile platforms need to detect the location of the target in the operating environment, so as to realize the obstacle avoidance function according to the detection result. In practical applications, the above-mentioned target may especially be an obstacle.
  • the transmitted signal of the transmitting antenna and the received signal of the receiving antenna in the rotating antenna array are usually analyzed to realize the detection of the position of the target object, wherein the antenna array is configured in a movable platform.
  • the movement of the antenna array will affect the parameters of the received signal, such as amplitude and phase, which will further lead to inaccurate signal analysis results. Therefore, how to ensure the accuracy of the analysis result and further improve the accuracy of position detection becomes an urgent problem to be solved.
  • the invention provides a method for detecting the position of a target, a movable platform, equipment and a storage medium, which are used to improve the accuracy of position detection.
  • the first aspect of the present invention is to provide a method for detecting the position of a target, the method comprising:
  • the second aspect of the present invention is to provide a movable platform that includes: a body, a power system, and a control device;
  • the power system is arranged on the body and used to provide power for the movable platform
  • the control device includes a memory and a processor
  • the memory is used to store a computer program
  • the processor is configured to run a computer program stored in the memory to realize: measuring a first angle between a target object and an antenna array configured in a movable platform;
  • the third aspect of the present invention is to provide an equipment for detecting the position of a target, and the control device includes:
  • Memory used to store computer programs
  • the fourth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used in the first aspect.
  • the method for detecting the position of the target object, the movable platform, the equipment and the storage medium provided by the present invention can accurately detect the angle between the target object and the antenna array in the movable platform, thereby obtaining the position between the target object and the movable platform relationship.
  • FIG. 1 is a schematic flowchart of a method for detecting the position of a target provided by an embodiment of the present invention
  • step S103 is a flowchart of a specific implementation manner of step S103 according to an embodiment of the present invention.
  • FIG. 3a is a schematic flowchart of a first angle determination method according to an embodiment of the present invention.
  • FIG. 3b is a schematic flowchart of a second angle determination method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an antenna array provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a first speed determination method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a second speed determination method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an apparatus for detecting the position of a target provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a detection device for the position of a target provided by an embodiment of the present invention.
  • the first angle between the target object and the antenna array configured in the movable platform is first measured. Then, the first velocity generated by the antenna array during the movement is obtained. Finally, phase compensation is performed on the first angle according to the first speed to obtain a phase compensation result, and the position of the target object is obtained according to the phase compensation result.
  • the detection method provided by the present invention is essentially a method of angle correction through phase compensation to obtain the compensated phase result, and use the compensated phase result to obtain the position of the target, that is, to improve the target The accuracy of location detection.
  • the detection method provided by the present invention uses the velocity generated by the antenna array during the movement process in the process of correcting the first angle. By taking the movement of the antenna array into consideration, it can be avoided that the movement of the antenna array mentioned in the background art will affect the result of the position detection, thereby improving the accuracy of the position detection of the target object.
  • an embodiment of the present invention provides a method for detecting the position of a target, the method including:
  • the embodiment of the present invention also provides a movable platform, which at least includes: a body, a power system, and a control device;
  • the power system is arranged on the body and used to provide power for the movable platform
  • the control device includes a memory and a processor
  • the memory is used to store a computer program
  • the processor is configured to run a computer program stored in the memory to realize: measuring a first angle between a target object and an antenna array configured in a movable platform;
  • the embodiment of the present invention also provides a device for detecting the position of a target, the device including:
  • Memory used to store computer programs
  • a processor configured to run a computer program stored in the memory to realize: measuring a first angle between the target object and the antenna array configured in the movable platform;
  • the embodiment of the present invention also provides a computer-readable storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used to execute the above-mentioned target location Detection method.
  • FIG. 1 is a schematic flowchart of a method for detecting the position of a target provided by an embodiment of the present invention.
  • the execution subject of the method for detecting the position of the target is a detection device. It can be understood that the detection device can be implemented as software or a combination of software and hardware. When the detection device executes the method for detecting the position of the target, the detection of the position of the target can be realized.
  • the detection equipment in this embodiment and the following embodiments may specifically be any movable platforms such as unmanned aerial vehicles, unmanned vehicles, and unmanned ships. Specifically, the method may include:
  • S101 Measure a first angle between a target object and an antenna array configured in a movable platform.
  • the movable platform may be equipped with an antenna array, and the angle measurement can be realized by analyzing the relationship between the signal transmitted by the transmitting antenna in the antenna array and the signal received by the receiving antenna.
  • the antenna array is specifically a multiple-input multiple-output (MIMO) rotating antenna array.
  • MIMO multiple-input multiple-output
  • the commonly used angle measurement methods using this antenna array can include phase angle measurement and amplitude measurement angle and so on.
  • the transmitted signal can be received by the receiving antenna in the antenna array after passing through the target.
  • the phase difference between the transmitted signal and the received signal can be calculated , And calculate the first angle between the target and the antenna array based on this phase difference.
  • the rotating antenna array can scan at a constant speed within a certain sector or circle.
  • the receiving antenna can receive the received signal corresponding to this direction, and at the same time can know the amplitude of the received signal.
  • is the scanning direction
  • is the scanning angular velocity
  • T is the signal emission period.
  • an alternative way is to determine the target received signal with the largest amplitude among the received multiple received signals, and determine the scanning direction corresponding to this target received signal as the first One angle.
  • the above method is also the maximum signal method in the amplitude method.
  • This method is also the intermediate value method in the amplitude method of angle measurement.
  • S102 Acquire a first velocity generated by the antenna array during movement.
  • the antenna array has a movement process during the scanning process, and this movement may specifically include translation caused by the movement of the movable platform and rotation caused by the rotation of the radar. At this time, the antenna array will have a translational speed caused by translational motion and a rotation speed caused by rotation. At this time, the combined speed of the translational speed and the rotation speed can be determined as the first speed.
  • S103 Perform phase compensation on the first angle according to the first speed, and obtain the position of the target object according to the phase compensation result.
  • phase compensation can be realized by corresponding calculation of the first speed.
  • Fig. 2 For the specific process, refer to the following steps as shown in Fig. 2:
  • S1031 Calculate the second speed of the first speed in the first angular direction.
  • S1032 Determine a second angle between the target and the antenna array according to the second speed to obtain the position of the target, and the second angle is determined according to the compensation value corresponding to the phase compensation result.
  • the second speed of the first speed in the first angular direction can be calculated according to the following formula:
  • v 2 is the second speed
  • v 1 is the first speed
  • v 1x is the speed component of the first speed on the X axis in the antenna rotation coordinate system
  • v 1y is the first speed on the Y axis in the antenna rotation coordinate system
  • the velocity component of, ⁇ is the first angle.
  • the aforementioned antenna rotating coordinate system can be a radar coordinate system or a rotating coordinate system.
  • the second speed obtained at this time has already taken into account the influence of the movement of the antenna array, that is, translation and rotation on the received signal. Therefore, according to this second speed, the first angle can be corrected to obtain an accurate second speed. angle. In practical applications, this second angle can be used to describe the position between the target and the movable platform, and therefore, it is also used to determine the position of the target.
  • the process of correcting the first angle according to the second speed can be implemented by digital beamforming (Digital BeamForming, DBF for short) technology.
  • DBF Digital BeamForming
  • the specific process of using this DBF technology to determine the angle can refer to the related description in the following embodiment as shown in FIG. 3b.
  • a compensation value is first obtained, and then the phase compensation result is further obtained.
  • the second angle between the target and the antenna array can be determined according to the compensation result.
  • the first angle between the target and the antenna array configured in the movable platform is first measured. Then, the first speed generated by the antenna array during the movement process is obtained, and the first angle is phase compensated according to the first speed to obtain the phase compensation result, and finally, the position of the target object is determined according to the phase compensation result. It can be seen that there is a process of performing phase compensation on the first angle in this embodiment, and the velocity generated by the movement of the antenna array is also considered in the compensation process. Therefore, the accuracy of target position detection can be improved through the above-mentioned processing methods.
  • step S101 may also be used to determine the first angle between the target object and the antenna array, that is, another optional implementation manner of step S101 may be:
  • S1011 Determine a first path value of a propagation path corresponding to each of the multiple transmission signals, where the propagation paths of the multiple transmission signals are paths generated by multiple transmitting antennas in the antenna array and received by multiple receiving antennas in the antenna array. ,
  • the antenna array is in motion.
  • an antenna array usually consists of multiple transmitting antennas and multiple receiving antennas.
  • the number and positional relationship of the transmitting antennas and receiving antennas in the antenna array can be shown in FIG. 3.
  • the antenna array may include m transmitting antennas and n receiving antennas, and the transmission signal generated by each transmitting antenna can be received by each receiving antenna.
  • the transmitted signal propagates in space and is finally received by the receiving antenna.
  • the propagation path is the corresponding propagation path of the transmitted signal.
  • the length of this propagation path is the first path value. This first path value can also be considered as the first path value of the received signal.
  • the receive signal received by the receive antenna Rxj can be expressed as:
  • i is any integer from 1 to m
  • m is the number of transmitting antennas
  • j is any integer from 1 to n
  • n is the number of receiving antennas
  • is the wavelength of the transmitted signal
  • a ij is the preset The coefficient
  • d ij is the first path value corresponding to the transmitted signal generated by the antenna Txi.
  • t ij is the time elapsed when the transmitting signal generated by the transmitting antenna Txi collected by the movable platform is received by the receiving antenna Rxj
  • C is the speed of light.
  • the antenna array When the antenna array is in a translational and rotating state, according to the above formula, it is possible to determine the first path value of the multiple transmission signals when the multiple transmission signals generated by the multiple transmission antennas are received by the receiving antenna.
  • S1012 Perform frequency domain conversion on the received signals of the multiple receiving antennas, and the received signals correspond to the first path value.
  • the multiple received signals can also be subjected to frequency domain conversion.
  • multiple received signals can be expressed in a matrix form:
  • the first angle [theta] of the crude, [lambda] is the wavelength of the received signal, d is adjacent receiving antennas or the distance between adjacent antenna transmission, refer to FIG. 4.
  • the above process is actually the process of realizing angle measurement based on DBF technology. It should be noted that, compared to the angle measurement method provided in the embodiment shown in FIG. 1, as shown in FIG. 3a, multiple received signals will participate in the angle calculation process instead of using only one received signal. Therefore, this angle measurement method also has higher accuracy.
  • step S1032 can be:
  • S10321 Correct the first path value of the propagation path corresponding to each of the multiple transmission signals according to the compensation value to obtain the second path value, where the propagation paths of the multiple transmission signals are generated by the multiple transmission antennas in the antenna array and respectively The path received by multiple receiving antennas in the antenna array, and the antenna array is in a non-moving state.
  • the antenna array When the antenna array is in a non-moving state, that is, a non-translational and rotating state, after the transmitting antenna generates a transmitted signal, the transmitted signal propagates in space and is finally received by the receiving antenna.
  • the path of propagation is the corresponding propagation of the transmitted signal Path, the length of this propagation path is also the second path value.
  • this second path value also corresponds to the received signal.
  • the path transmitted by the transmitted signal from the transmitting antenna to the receiving antenna is called the transmission path of the transmitted signal, and this path is of course also the transmission path of the received signal.
  • the difference in path value can be embodied as: the antenna array is in translational and rotating states, the transmitted signal and the received signal correspond to the first path value; the antenna array is in non-translational motion In the state of rotation and rotation, both the transmitted signal and the received signal correspond to the second path value.
  • the change of the path value is caused by the movement of the antenna array.
  • This second path value can also be understood as the phase compensation result.
  • the receive signal of the receive antenna Rxj can be expressed as:
  • i is any integer from 1 to m
  • m is the number of transmitting antennas
  • j is any integer from 1 to n
  • n is the number of receiving antennas
  • is the wavelength of the transmitted signal
  • a ij is the preset coefficient
  • ⁇ d ij is a compensation value
  • the first speed, the first angle, and the second speed can be used directly or indirectly in the process of determining the compensation value ⁇ d ij.
  • the specific method for determining the compensation value ⁇ d ij can be referred to the following embodiments shown in Figs. 5-6
  • d ij is the first path value corresponding to the transmitted signal generated by the antenna Txi
  • the calculation method of the first path value can be found in The relevant description in the embodiment shown in Figure 3a.
  • the second path value corresponding to each of the multiple transmission signals when the multiple transmission signals generated by the transmission antenna are received by the reception antenna can be determined.
  • S10322 Perform frequency domain conversion on the received signals of the multiple receiving antennas, and the received signals correspond to the second path value.
  • frequency domain conversion can be performed on the received signal received by the receiving antenna.
  • the obtained multiple received signals can be expressed in a matrix form:
  • ⁇ finish of the second angle ⁇ is the wavelength of the received signal
  • d is adjacent receiving antennas or the distance between adjacent antenna.
  • the above two embodiments both use DBF technology to measure angles, but the two embodiments respectively correspond to different motion states of the antenna array.
  • the translation and rotation states of the antenna array correspond to the first path value. In this state, the translation and rotation of the antenna array will affect the received signal, so that the first angle determined according to the first path value cannot accurately reflect the positional relationship between the target and the antenna array.
  • the non-translational and rotating state of the antenna array corresponds to the second path value.
  • the second path value obtained in this state can correctly reflect the positional relationship between the target and the antenna array. Therefore, according to the second path value
  • the correction of the first angle makes the obtained second angle accurate.
  • the compensation value ⁇ d ij is used in the process of determining the second angle.
  • the above-mentioned first speed, first angle, and second speed need to be used. Then, the methods for determining the first speed, the first angle, the second speed, and the compensation value ⁇ d ij will be respectively introduced below.
  • the transmitting antenna and the receiving antenna may have the same translation speed and their corresponding rotation speeds.
  • the rotation speeds of the transmitting antenna and the receiving antenna may also be equal or different. Since it has been disclosed in the embodiment shown in FIG. 1 that the first speed may be the combined speed of the rotation speed and the translation speed, correspondingly, the first speeds of the transmitting antenna and the receiving antenna may also be equal or different.
  • the first speed may be determined in the following manner, that is, an optional implementation manner of step S102:
  • the movable platform can automatically collect the velocity v g of the antenna array in the geodetic coordinate system. Then, the speed v g in the geodetic coordinate system can be converted into the speed v b in the body coordinate system of the movable platform with the help of a preset conversion matrix. Then, according to the preset conversion matrix, the velocity v b in the airframe coordinate system is converted into the translational velocity v br in the antenna rotation coordinate system.
  • v gx , v gy , and v gz are the velocity components of the velocity v g on the X-axis, Y-axis and Z-axis of the geodetic coordinate system, respectively.
  • v bx , v by , and v bz are the velocity components of the speed v b on the X-axis, Y-axis and Z-axis of the body coordinate system, respectively.
  • the velocity v br in the antenna rotation coordinate system can be expressed as:
  • v brx , v bry , and v brz are the velocity components of the velocity v br on the X-axis, Y-axis and Z-axis of the antenna rotation coordinate system, respectively, and C p is the preset conversion matrix, ⁇ p is the minimum angle of the grating scale configured on the movable platform.
  • the geodetic coordinate system takes the center of the earth as the origin of the coordinate system, the Z axis points to the Conventional Terrestrial Pole (CTP) direction, and the Y axis and the X and Z axes constitute a right-handed coordinate system.
  • CTP Conventional Terrestrial Pole
  • the body coordinate system of the movable platform conforms to the right-hand rule
  • the origin of the coordinate system is the center of gravity of the movable platform
  • the X axis points to the forward direction of the movable platform
  • the Y axis points from the origin to the right side of the movable platform
  • the Z axis direction is based on X, Y
  • the axis is determined by the right-hand rule.
  • the antenna rotation coordinate system corresponds to the direction the antenna array faces during the rotation process. When the antenna array does not rotate and translate, the antenna rotation coordinate system coincides with the body coordinate system.
  • each receiving antenna and each transmitting antenna in the antenna array have an equal translational velocity, that is, v br determined above.
  • multiple transmitting antennas in the antenna array have the same rotation speed, and multiple receiving antennas have the same rotation speed, but the distance between the transmitting antenna and the receiving antenna is the same.
  • the speed of rotation is different. Therefore, it is necessary to determine the respective rotation speeds of the transmitting antenna and the receiving antenna.
  • the mobile platform can obtain the rotation angular velocity of the antenna array. Then, the rotational speed of the transmitting antenna in the antenna array is determined according to the rotational angular velocity and the distance between the target transmitting antenna and the center of rotation of the antenna array. Among the multiple transmitting antennas in the antenna array, the transmitting antenna with the smallest distance from the center of rotation is determined. Transmit antenna for the target.
  • i is any integer from 1 to m
  • m is the number of transmitting antennas
  • r m is the distance between the target transmitting antenna Txm and the rotation center O of the antenna array.
  • an optional way is to determine the receiving antenna in the antenna array according to the rotation angular velocity and the distance between the target receiving antenna and the rotation center of the antenna array after the rotation angular velocity of the antenna array is obtained.
  • Rotation speed where the receiving antenna with the largest distance from the center of rotation among the multiple receiving antennas in the antenna array is the target receiving antenna.
  • the rotational angular velocity of the antenna array is ⁇
  • j is any integer from 1 to n
  • n is the number of receiving antennas
  • r n is the distance between the target receiving antenna Rxn and the rotation center O of the antenna array.
  • the respective rotation speeds of each transmitting antenna and each receiving antenna can be determined.
  • S1023 Determine the combined speed of the translation speed and the rotation speed as the first speed.
  • the combined velocity of the translational velocity and the rotational velocity of the transmitting antenna may be determined as the first velocity of the transmitting antenna.
  • the combined speed of the translational speed and the rotational speed of the receiving antenna may be determined as the first speed of Rxj of the receiving antenna.
  • the respective first speed of each transmitting antenna and each receiving antenna can be determined.
  • the second speed after the first speeds of the transmitting antenna and the receiving antenna are respectively determined according to the method shown in FIG. 5, as shown in FIG. 6, in an optional manner, the second speed may also be determined in the following manner: That is, an optional implementation manner of step S1031:
  • S10311 Determine the second speed of the transmitting antenna according to the first angle and the speed of the first speed of the transmitting antenna in the X-axis and Y-axis directions of the antenna rotation coordinate system, respectively.
  • This v i ⁇ corresponds to v 2 in the embodiment shown in FIG. 1.
  • S10312 Determine the second speed of the receiving antenna according to the first angle and the speed of the first speed of the receiving antenna in the X-axis and Y-axis directions of the antenna rotation coordinate system, respectively.
  • the first angle [theta] is a crude, a first velocity v v jx j to receive antenna RXJ the rotational speed of the coordinates in the X-axis of the antenna, a first velocity v v jy Rxj antenna j to receive antenna rotating coordinate system Y The speed on the shaft.
  • This v j ⁇ corresponds to v 2 in the embodiment shown in FIG. 1.
  • the multiple transmitting antennas in the antenna array have the same second speed, and the multiple receiving antennas have the same second speed.
  • the second speed of the transmitting antenna and the receiving antenna may be calculated.
  • the second speed determines the compensation value ⁇ d ij in the embodiment shown in Fig. 3b.
  • v i ⁇ is the second speed of the transmitting antenna
  • v j ⁇ is the second speed of the receiving antenna
  • T p is the signal transmission period of the transmitting antenna, which corresponds to T in the embodiment shown in FIG. 1.
  • this compensation value ⁇ d ij to determine a second value of the transmission path corresponding to each signal in the manner shown in Figure 3b, the second angle ⁇ and then further refined between the object and the antenna array, i.e. Is to determine the location of the target. It is because of taking into account the rotation and translation of the second antenna array at the angle ⁇ is determined in the fine process, therefore, is determined such that the position of the object more accurately.
  • FIG. 7 is a schematic structural diagram of a device for detecting the position of a target provided by an embodiment of the present invention. As shown in FIG. 7, this embodiment provides a detection device for the position of a target object, which can execute the above-mentioned detection method for the position of the target object; specifically, the detection device includes:
  • the measurement module 11 is used to determine the first angle between the target and the antenna array configured in the movable platform.
  • the obtaining module 12 is used to obtain the first speed generated by the antenna array during translation and rotation.
  • the compensation module 13 is configured to perform phase compensation on the first angle according to the first speed, and obtain the position of the target object according to the phase compensation result.
  • the device shown in FIG. 7 can also execute the methods of the embodiments shown in FIGS. 1 to 6.
  • FIGS. 1 to 6 For parts that are not described in detail in this embodiment, reference may be made to the related descriptions of the embodiments shown in FIGS. 1 to 6.
  • the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 1 to FIG. 6, which will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention. referring to FIG. 8, an embodiment of the present invention provides a movable platform, and the movable platform is at least one of the following: Aircraft, unmanned ships, unmanned vehicles; specifically, the movable platform includes: a body 21, a power system 22, and a control device 23.
  • the power system 22 is arranged on the body and used to provide power for the movable platform.
  • the control device 23 includes a memory 231 and a processor 232.
  • the memory is used to store a computer program
  • the processor is configured to run a computer program stored in the memory to realize:
  • processor 232 is further configured to: calculate a second speed of the first speed in the first angular direction;
  • the second angle between the target and the antenna array is determined according to the second speed to obtain the position of the target, wherein the second angle is according to the compensation value corresponding to the phase compensation result determine.
  • the processor 232 is further configured to determine a first path value of a propagation path corresponding to each of the plurality of transmission signals, wherein the propagation path of the plurality of transmission signals is generated by the plurality of transmission antennas in the antenna array. And the paths respectively received by the multiple receiving antennas in the antenna array, and the antenna array is in a moving state;
  • the first angle is determined according to the result of the frequency domain conversion.
  • processor 232 is further configured to: obtain the translational velocity generated by the antenna array during the translational process;
  • processor 232 is further configured to: obtain the speed of the antenna array in the geodetic coordinate system;
  • the speed in the body coordinate system is converted into the translational speed in the antenna rotation coordinate system, the antenna rotation coordinate system and the direction the antenna array faces during the rotation One-to-one correspondence.
  • the processor 232 is further configured to: obtain the rotational angular velocity of the antenna array;
  • the rotational speed of the transmitting antenna in the antenna array is determined according to the rotational angular velocity and the distance between the target transmitting antenna and the center of rotation of the antenna array, wherein the multiple transmitting antennas in the antenna array are The transmitting antenna with the smallest distance from the center of rotation is the target transmitting antenna;
  • the rotational speed of the receiving antenna in the antenna array is determined according to the rotational angular velocity and the distance between the target receiving antenna and the center of rotation of the antenna array, wherein the multiple receiving antennas in the antenna array
  • the receiving antenna with the largest distance from the center of rotation is the target receiving antenna.
  • processor 232 is further configured to: determine the combined speed of the translational speed and the rotation speed of the transmitting antenna as the first speed of the transmitting antenna;
  • the combined speed of the translation speed and the rotation speed of the receiving antenna is determined as the first speed of the receiving antenna.
  • the processor 232 is further configured to: determine the second angle of the transmitting antenna according to the speed of the first angle and the first speed of the transmitting antenna in the X-axis and Y-axis directions of the antenna rotation coordinate system. speed;
  • the second speed of the receiving antenna is determined according to the speeds of the first angle and the first speed of the receiving antenna in the X-axis and Y-axis directions of the antenna rotation coordinate system, respectively.
  • the processor 232 is further configured to: determine a compensation value corresponding to the motion of the antenna array according to the second speed of the transmitting antenna and the second speed of the receiving antenna;
  • the second angle between the target object and the antenna array is determined according to the compensation value.
  • the processor 232 is further configured to: modify the first path value of the propagation path corresponding to each of the plurality of transmission signals according to the compensation value to obtain a second path value, wherein the plurality of transmission signals
  • the propagation path of is a path generated by multiple transmitting antennas in the antenna array and received by multiple receiving antennas in the antenna array, and the antenna array is in a non-moving state;
  • the second angle is determined according to the result of the frequency domain conversion.
  • the movable platform shown in FIG. 8 can execute the methods of the embodiments shown in FIGS. 1 to 6.
  • parts that are not described in detail in this embodiment please refer to the related descriptions of the embodiments shown in FIGS. 1 to 6.
  • the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 1 to FIG. 6, which will not be repeated here.
  • the structure of the device for detecting the position of the target shown in FIG. 9 can be implemented as an electronic device, which can be a drone.
  • the electronic device may include: one or more processors 31 and one or more memories 32.
  • the memory 32 is used to store a program supporting the electronic device to execute the method for detecting the position of the target provided in the embodiments shown in FIGS.
  • the processor 31 is configured to execute a program stored in the memory 32.
  • the program includes one or more computer instructions, where one or more computer instructions can implement the following steps when executed by the processor 31:
  • the structure of the device for detecting the position of the target may also include a communication interface 33 for the electronic device to communicate with other devices or a communication network.
  • the processor 31 is further configured to: calculate a second speed of the first speed in the first angular direction;
  • the second angle between the target and the antenna array is determined according to the second speed to obtain the position of the target, wherein the second angle is according to the compensation value corresponding to the phase compensation result determine.
  • the processor 31 is further configured to: determine a first path value of a propagation path corresponding to each of the multiple transmission signals, wherein the propagation paths of the multiple transmission signals are generated by multiple transmission antennas in the antenna array. And the paths respectively received by the multiple receiving antennas in the antenna array, and the antenna array is in a moving state;
  • the first angle is determined according to the result of the frequency domain conversion.
  • processor 31 is further configured to: obtain the translational velocity generated by the antenna array during the translational process;
  • the processor 31 is further configured to: obtain the speed of the antenna array in the geodetic coordinate system;
  • the speed in the body coordinate system is converted into the translational speed in the antenna rotation coordinate system, the antenna rotation coordinate system and the direction the antenna array faces during the rotation One-to-one correspondence.
  • the processor 31 is further configured to: obtain the rotational angular velocity of the antenna array;
  • the rotational speed of the transmitting antenna in the antenna array is determined according to the rotational angular velocity and the distance between the target transmitting antenna and the center of rotation of the antenna array, wherein the multiple transmitting antennas in the antenna array are The transmitting antenna with the smallest distance from the center of rotation is the target transmitting antenna;
  • the rotational speed of the receiving antenna in the antenna array is determined according to the rotational angular velocity and the distance between the target receiving antenna and the center of rotation of the antenna array, wherein the multiple receiving antennas in the antenna array
  • the receiving antenna with the largest distance from the center of rotation is the target receiving antenna.
  • processor 31 is further configured to: determine the combined speed of the translational speed and the rotation speed of the transmitting antenna as the first speed of the transmitting antenna;
  • the combined speed of the translation speed and the rotation speed of the receiving antenna is determined as the first speed of the receiving antenna.
  • the processor 31 is further configured to: determine the second angle of the transmitting antenna according to the speed of the first angle and the first speed of the transmitting antenna in the X-axis and Y-axis directions of the antenna rotation coordinate system. speed;
  • the second speed of the receiving antenna is determined according to the speeds of the first angle and the first speed of the receiving antenna in the X-axis and Y-axis directions of the antenna rotation coordinate system, respectively.
  • the processor 31 is further configured to: determine a compensation value corresponding to the motion of the antenna array according to the second speed of the transmitting antenna and the second speed of the receiving antenna;
  • the second angle between the target object and the antenna array is determined according to the compensation value.
  • the processor 31 is further configured to: modify the first path value of the propagation path corresponding to each of the plurality of transmission signals according to the compensation value to obtain a second path value, wherein the plurality of transmission signals
  • the propagation path of is a path generated by multiple transmitting antennas in the antenna array and received by multiple receiving antennas in the antenna array, and the antenna array is in a non-moving state;
  • the second angle is determined according to the result of the frequency domain conversion.
  • the device shown in FIG. 9 can execute the methods of the embodiments shown in FIGS. 1 to 6.
  • parts that are not described in detail in this embodiment refer to the related descriptions of the embodiments shown in FIGS. 1 to 6.
  • the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 1 to FIG. 6, which will not be repeated here.
  • an embodiment of the present invention provides a computer-readable storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used to achieve the goals of FIGS. 1 to 6 above. Detection method of object position.
  • the related detection device for example: IMU
  • the method disclosed may be implemented in other ways.
  • the embodiments of the remote control device described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units or components. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, remote control devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • the aforementioned storage media include: U disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种目标物位置的检测方法、可移动平台、设备和存储介质。该方法包括:先测定目标物与可移动平台中配置的天线阵列之间的第一角度(S101)。然后,获取天线阵列在平动和转动过程中产生的第一速度(S102)。最后,根据第一速度对第一角度进行相位补偿,并根据相位补偿结果得到目标物的位置(S103)。其中,通过相位补偿能够准确检测出目标物与可移动平台中天线阵列之间的角度,从而得到目标物与可移动平台之间的位置关系。

Description

目标物位置的检测方法、可移动平台、设备和存储介质 技术领域
本发明涉及雷达领域,尤其涉及一种目标物位置的检测方法、可移动平台、设备和存储介质。
背景技术
可移动平台目前已经广泛使用到众多领域中。在不同领域中可移动平台都存在需要对运行环境中目标物所在位置进行检测的需求,从而根据检测结果实现避障功能,在实际应用中,上述的目标物尤其可以是障碍物。
在现有技术中,通常会对旋转天线阵列中发射天线的发射信号和接收天线的接收信号进行分析,以实现目标物位置的检测,其中,天线阵列配置于可移动平台中。当发射信号发射出去后,天线阵列的运动都会对接收信号如振幅、相位等的参数产生影响,这种影响又会进一步导致信号分析结果不准确。因此,如何保证分析结果的准确,从而进一步提高位置检测的准确性就成为一个亟待解决的问题。
发明内容
本发明提供了一种目标物位置的检测方法、可移动平台、设备和存储介质,用于提高位置检测的准确性。
本发明的第一方面是为了提供一种目标物位置的检测方法,所述方法包括:
测定目标物与可移动平台中配置的天线阵列之间的第一角度;
获取所述天线阵列在运动过程中产生的第一速度;
根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。本发明的第二方面是为了提供一种可移动平台,所述移动平台包括:机体、动力系统以及控制装置;
所述动力系统,设置于所述机体上,用于为所述可移动平台提供动力;
所述控制装置包含存储器和处理器;
所述存储器,用于存储计算机程序;
所述处理器,用于运行所述存储器中存储的计算机程序以实现:测定目标物与可移动平台中配置的天线阵列之间的第一角度;
获取所述天线阵列在运动过程中产生的第一速度;
根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
本发明的第三方面是为了提供一种目标物位置的检测设备,所述控制装置包括:
存储器,用于存储计算机程序;
处理器,用于测定目标物与可移动平台中配置的天线阵列之间的第一角度;
获取所述天线阵列在运动过程中产生的第一速度;
根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
本发明的第四方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于第一方面所述的目标物位置的检测方法。
本发明提供的目标物位置的检测方法、可移动平台、设备和存储介质,能够准确检测出目标物与可移动平台中天线阵列之间的角度,从而得到目标物与可移动平台之间的位置关系。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种目标物位置的检测方法的流程示意图;
图2为本发明实施例提供的一种步骤S103具体实现方式的流程图;
图3a为本发明实施例提供的一种第一角度确定方式的流程示意图;
图3b为本发明实施例提供的一种第二角度确定方式的流程示意图;
图4为本发明实施例提供的一种天线阵列的示意图;
图5为本发明实施例提供的一种第一速度确定方式的流程示意图;
图6为本发明实施例提供的一种第二速度确定方式的流程示意图;
图7为本发明实施例提供的一种目标物位置的检测装置的结构示意图;
图8为本发明实施例提供的一种可移动平台的结构示意图;
图9为本发明实施例提供的一种目标物位置的检测设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面结合附图,对本发明提供的一些实施方式作详细说明。并且在各实施例之间不冲突的情况下,下述各实施例及各实施例中的特征可以相互组合。
本发明提供的目标物位置的检测方法、可移动平台、设备和存储介质,先测定目标物与可移动平台中配置的天线阵列之间的第一角度。然后,获取天线阵列在运动过程中产生的第一速度。最终,根据此第一速度对第一角度进行相位补偿,以得到相位补偿并结果,并根据此相位补偿结果得到目标物的位置。
可见,本发明提供的检测方法,一方面,其实质上是一个通过相位补偿进行角度修正的方法,以得到补偿相位结果,以用补偿相位结果来得到目标物的位置,也即是提高目标物位置检测的准确性。另一方面,本发明提供的检测方法在对第一角度进行修正的过程中使用到了天线阵列在运动过程中产生的速度。通过将天线阵列的运动考虑进来,则可以避免出现背景技术中提及的天线阵列的运动会对位置检测的结果造成影响,从而提高目标物位置检测的准确性。
基于上述描述,本发明实施例提供一种目标物位置的检测方法,该方法包括:
测定目标物与可移动平台中配置的天线阵列之间的第一角度;
获取所述天线阵列在运动过程中产生的第一速度;
根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
本发明实施例还提供一种可移动平台,该平台至少包括:机体、动力系统以及控制装置;
所述动力系统,设置于所述机体上,用于为所述可移动平台提供动力;
所述控制装置包括存储器和处理器;
所述存储器,用于存储计算机程序;
所述处理器,用于运行所述存储器中存储的计算机程序以实现:测定目标物与可移动平台中配置的天线阵列之间的第一角度;
获取所述天线阵列在运动过程中产生的第一速度;
根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
本发明实施例还提供一种目标物位置的检测设备,该设备包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:测定目标物与可移动平台中配置的天线阵列之间的第一角度;
获取所述天线阵列在运动过程中产生的第一速度;
根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
本发明实施例还提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于执行上述的目标物位置的检测方法。
图1为本发明实施例提供的一种目标物位置的检测方法的流程示意图。该目标物位置的检测方法的执行主体是检测设备。可以理解的是,该检测设备可以实现为软件、或者软件和硬件的组合。检测设备执行该目标物位置的检测方法,则可以实现对目标物位置的检测。本实施例以及下述各实施例中的检测设备具体来说可以是如无人机、无人车、无人船等的任意一种可移动平台。具体的,该方法可以包括:
S101,测定目标物与可移动平台中配置的天线阵列之间的第一角度。
可移动平台中可以配置有天线阵列,通过分析天线阵列中的发射天线发射的信号与接收天线接收到的信号之间的关系来实现角度的测量。在实际应用中,可选地,天线阵列具体为多输入多输出(Multiple-Input Multiple-Output,简称MIMO)旋转天线阵列。利用此天线阵列常用的测角方法可以包括相位法测角和振幅测法角等等。
对于相位法测角,天线阵列中的接收天线产生发射信号后,此发射信号可以经过目标物后被天线阵列中的接收天线接收到,此时,可以计算发射信号与接收信号之间的相位差,并根据此相位差计算出目标物与天线阵列之间的第一角度。
与相位测角方相似的,对于振幅测法角,旋转天线阵列可以在一定扇形范围内或者圆周内进行匀速扫描。当天线阵列扫描到不同方向时,接收天线便可以接收到对应于此方向的接收信号,同时也可知晓此接收信号的幅值。上述的扫描方向可以理解为一个角度,其可以用天线阵列的扫描角速度和发射信号的发射周期的乘积表示,即θ=ω*T。其中,θ为扫描方向,ω为扫描角速度,T为信号的发射周期。
当天线阵列完成一个周期的扫描后,一种可选地方式,可以确定出接收到的多个接收信号中具有最大幅值的目标接收信号,并将此目标接收信号对应的扫描方向确定为第一角度。上述方式也即是振幅法测角中的最大信号法。另一种可选地方式,还可以从多个接收信号中筛选出幅值大于预设阈值的接收信号,并按照幅值对筛选出的接收信号进行排序,将幅值为中间值的接收信号确定为目标接收信号,此目标接收信号对应的扫描方向确定为第一角度。这种方法也即是振幅法测角中的中间值法。
S102,获取天线阵列在运动过程中产生的第一速度。
实际应用中,天线阵列在扫描过程中存在运动过程,这种运动具体可以包括由可移动平台移动引起的平动以及由雷达旋转引起的转动。此时,天线阵列会具有因平动产生的平动速度以及因转动产生的转动速度,此时,可以将此平动速度和此转动速度的合速度确定为第一速度。
S103,根据第一速度对第一角度进行相位补偿,并根据相位补偿结果得到目标物的位置。
基于上述第一速度,一种可选地方式,可以通过对第一速度相应计算来 实现相位补偿,具体流程可以参见如图2所示的以下步骤:
S1031,计算第一速度在第一角度方向上的第二速度。
S1032,根据第二速度确定目标物与天线阵列之间的第二角度,以得到目标物的位置,第二角度根据对应于相位补偿结果的补偿值确定。
具体来说,可以根据下式计算第一速度在第一角度方向上的第二速度:
v 2=v 1x*cosθ+v 1y*sinθ
其中,v 2为第二速度,v 1为第一速度,v 1x为第一速度在天线转动坐标系下X轴上的速度分量,v 1y为第一速度在天线转动坐标系下Y轴上的速度分量,θ为第一角度。前述的天线转动坐标系可以成为雷达坐标系或者旋转坐标系。
此时得到的第二速度已经是考虑到了因天线阵列的运动即平动和转动对接收信号产生的影响,因此,根据此第二速度可以实现对第一角度的修正,以得到精确的第二角度。在实际应用中,此第二角度可以用于描述目标物与可移动平台之间的位置,因此,也即是用于确定目标物的位置。
并且对于根据第二速度修正第一角度的过程,可选地,可以通过数字波束成形(Digital BeamForming,简称DBF)技术来实现。利用此DBF技术确定角度的具体过程可以参见下述如图3b所示实施例中的相关描述。大致来说,在使用此技术修正角度的过程中会先得到一个补偿值,再进一步得到相位补偿结果,最终即可根据补偿结果确定出目标物与天线阵列之间的第二角度。
在本实施例中,先测定目标物与可移动平台中配置的天线阵列之间的第一角度。然后,获取天线阵列在运动过程中产生的第一速度,再根据此第一速度对第一角度进行相位补偿,以得到相位补偿结果,最终,根据此相位补偿结果确定目标物的位置。可见,本实施例中存在将对第一角度进行相位补偿的过程,并且在补偿过程中还考虑了因天线阵列运动而产生的速度。因此,通过上述处理方式均可以提高目标物位置检测的准确性。
上述实施例中已经提到了几种第一角度的确定方式。除此之外,如图3a所示,还可采用以下方式来确定目标物与天线阵列之间的第一角度,也即是步骤S101的另一种可选实现方式可以为:
S1011,确定多个发射信号各自对应的传播路径的第一路径值,其中,多个发射信号的传播路径为天线阵列中多个发射天线产生并分别被天线阵列中的多个接收天线接收的路径,天线阵列处于运动状态。
具体来说,一个天线阵列中通常由多个发射天线和多个接收天线组成。天线阵列中各发射天线和接收天线的数量以及位置关系可以图3所示。根据图3可知,天线阵列中可以包含m个发射天线和n个接收天线,且每个发射天线产生的发射信号都可以被每个接收天线接收到。其中,可选地,m≥2,n≥4。
当天线阵列处于运动状态即处于平动和转动状态时,发射天线产生发射信号后,此发射信号在空间中传播并最终被接收天线接收到时所传播的路径即为此发射信号对应的传播路径,此传播路径的长度即为第一路径值。此第一路径值也可以认为是接收信号的第一路径值。
假设,发射天线Txi产生的发射信号被接收天线Rxj接收到时,接收天线Rxj接收到的接收信号可以表示为:
Figure PCTCN2019115823-appb-000001
其中,i为1~m中的任一整数,m为发射天线的数量,j为1~n中的任一整数,n为接收天线的数量,λ为发射信号的波长,a ij为预设系数,d ij为天线Txi产生的发射信号对应的第一路径值。
此第一路径值又可以表示为:d ij=t ij*C。其中,t ij为可移动平台采集的发射天线Txi产生的发射信号被接收天线Rxj接收到时所经过的时间,C为光速。
当天线阵列处于平动和转动状态时,根据上面公式则可以确定出多个发射天线产生的多个发射信号在被接收天线接收到时,多个发射信号各自对应的第一路径值。
S1012,对多个接收天线的接收信号进行频域转换,接收信号对应于第一路径值。
S1013,根据频域转换的结果确定第一角度。
在接收天线接收到多个接收信号后,还可以对这多个接收信号进行频域转换。一种可选地方式,首先,可以将多个接收信号表示为矩阵形式:
Figure PCTCN2019115823-appb-000002
此式中相关参数的含义可以参见步骤S1011中对公式的相关描述,在此不再赘述。
然后,再对矩阵
Figure PCTCN2019115823-appb-000003
进行快速傅里叶变换,以得到转换结果F。最后,根 据下式计算出第一角度:
Figure PCTCN2019115823-appb-000004
其中,θ 为第一角度,λ为接收信号的波长,d为相邻接收天线或者相邻发射天线之间的距离,可以参考图4所示。
上述流程实际上是基于DBF技术实现测角的过程。需要说明的有,相较于图1所示实施例中提供的测角方式,如图3a所示的方式,多个接收信号都会参与到角度计算的过程中,而不是仅仅使用了一个接收信号,因此,这种测角方式也具有更高的准确性。
与图3a所示方式相似,如图3b所示,还可以采用以下方式确定目标物与天线阵列之间的第二角度,也即是步骤S1032的一种可选实现方式可以为:
S10321,根据补偿值对多个发射信号各自对应的传播路径的第一路径值进行修正,以得到第二路径值,其中,多个发射信号的传播路径为天线阵列中多个发射天线产生并分别被天线阵列中的多个接收天线接收的路径,天线阵列处于非运动状态。
当天线阵列处于非运动状态即非平动和转动状态时,发射天线产生发射信号后,此发射信号在空间中传播并最终被接收天线接收到时所传播的路径即为此发射信号对应的传播路径,此传播路径的长度也即是第二路径值。当然此第二路径值也对应于接收信号。
需要说明的是,无论天线阵列的运动状态如何,发射信号从被发射天线发射到被接收天线接收到过程中所传输的路径都会称为发射信号的传输路径,此路径当然也是接收信号的传输路径。
但当天线阵列的运动状态不同时,此传输路径会具有不同的路径值。综合图3a和图3b所示实施例中的描述,路径值的不同可以体现为:天线阵列处于平动和转动状态,发射信号和接收信号均对应于第一路径值;天线阵列处于非平动和转动状态时,发射信号和接收信号均对应于第二路径值。而路径值的变化正是由于天线阵列的运动造成的。此第二路径值也可以理解成相位补偿结果。
则继续承接上述图3a中的假设,发射天线Txi产生的发射信号被接收天线Rxj接收到时,此时,接收天线Rxj的接收信号可以表示为:
Figure PCTCN2019115823-appb-000005
其中,i为1~m中的任一整数,m为发射天线的数量,j为1~n中的任一整数, n为接收天线的数量,λ为发射信号的波长,a ij为预设系数,
Figure PCTCN2019115823-appb-000006
为天线Txi产生的发射信号对应的第二路径值。此第二路径值可以表示为:
Figure PCTCN2019115823-appb-000007
其中,Δd ij为补偿值,确定此补偿值Δd ij的过程中可以直接或间接使用第一速度、第一角度和第二速度。此补偿值Δd ij具体的确定方式可以参见下述如图5~图6所示的实施例,d ij为天线Txi产生的发射信号对应的第一路径值,第一路径值的计算方式可以参见如图3a所示实施例中的相关描述。
同样的,当天线阵列处于非运动状态时,根据上面公式可以确定出发射天线产生的多个发射信号在被接收天线接收到时,多个发射信号各自对应的第二路径值。
S10322,对多个接收天线的接收信号进行频域转换,接收信号对应于第二路径值。
S10323,根据频域转换的结果确定第二角度。
在得到接收信号后,可以对接收天线接收到的接收信号进行频域转换。一种可选地方式,可以将获取到的多个接收信号表示为矩阵形式:
Figure PCTCN2019115823-appb-000008
此式中参数的相关含义可以参见步骤S1011中公式的相关描述,在此不再赘述。
然后,再对矩阵
Figure PCTCN2019115823-appb-000009
进行快速傅里叶变换,以得到转换结果F'。最后,根据下式计算出第二角度:
Figure PCTCN2019115823-appb-000010
其中,θ 为第二角度,λ为接收信号的波长,d为相邻接收天线或者相邻发射天线之间的距离。
综上所述,上述两个实施例均是利用DBF技术来测量角度的方案,只不过两个实施例分别对应于天线阵列不同的运动状态。天线阵列的平动和转动状态对应于第一路径值。此种状态下,天线阵列的平动和转动会对接收信号产生影响,使得根据第一路径值确定出的第一角度并不能正确反映目标物与天线阵列之间的位置关系。天线阵列的非平动和转动状态对应于第二路径值,在此种状态下得到的第二路径值才能够正确反映目标物与天线阵列之间的位 置关系,因此,根据第二路径值对第一角度的修正,使得得到的第二角度是准确的。
根据图3b所示实施例中的描述可知,在确定第二角度的过程中使用到了补偿值Δd ij。而在确定此补偿值Δd ij的过程中需要使用到上述的第一速度、第一角度和第二速度。则下面会分别对第一速度、第一角度、第二速度以及补偿值Δd ij的确定方式进行介绍。
对于第一速度,在天线阵列的运动即平动和转动过程中,发射天线和接收天线可以具有相同的平动速度以及各自对应的转动速度。当然在实际应用中,根据天线阵列中天线的布局不同,发射天线和接收天线的转动速度也可以相等或者不等。由于如图1所示实施例中已经公开了第一速度可以为转动速度和平动速度的合速度,因此,相应的,发射天线和接收天线具有的第一速度也可以相等或者不等。
基于上述描述,如图5所示,可以采用以下方式确定第一速度,也即是步骤S102一种可选地实现方式:
S1021,获取天线阵列在平动过程中产生的平动速度。
一种可选地方式,在天线阵列平动的过程中,可移动平台可以自动采集到天线阵列在大地坐标系下的速度v g。然后,可以借助预设的转换矩阵,将在大地坐标系下的速度v g转换为在可移动平台的机体坐标系下的速度v b。然后,再根据预设的转换矩阵,将在机体坐标系下的速度v b转换为在天线转动坐标系下的平动速度v br
具体地,在大地坐标系系下的速度v g可以表示为:v g=[v gx v gy v gz] T
其中,v gx、v gy、v gz分别为速度v g在大地坐标系X轴、Y轴和Z轴上的速度分量。
在机体坐标系下的速度v b可以表示为:v b=[v bx v by v bz] T
其中,v bx、v by、v bz分别为速度v b在机体坐标系X轴、Y轴和Z轴上的速度分量。
在天线转动坐标系下的速度v br可以表示为:
v br=[v brx v bry v brz] T=C p*[v bx v by v bz] T
其中,v brx、v bry、v brz分别为速度v br在天线转动坐标系X轴、Y轴和Z轴上的 速度分量,C p为预设转换矩阵,
Figure PCTCN2019115823-appb-000011
θ p为可移动平台配置的光栅度盘的最小角度。
下面再对上述提及的多个坐标系进行介绍。
大地坐标系以地心为坐标系原点,Z轴指向协议地极(Conventional Terrestrial Pole,简称CTP)方向,Y轴与X、Z轴构成右手坐标系。
可移动平台的机体坐标系符合右手法则,坐标系原点为可移动平台的重心,X轴指向可移动平台的前进方向,Y轴由原点指向可移动平台的右侧,Z轴方向根据X、Y轴由右手法则确定。
天线转动坐标系,与天线阵列在转动过程中所面向的方向一一对应。当天线阵列未发生转动和平动时,此天线转动坐标系和机体坐标系重合。
需要说明的有,在天线阵列平动的过程中,天线阵列中的每个接收天线和每个发射天线均具有相等的平动速度,即为上述确定出的v br
S1022,获取天线阵列在转动过程中产生的转动速度。
与平动速度不同的是,在天线阵列转动的过程中,天线阵列中多个发射天线均具有相同的转动速度,多个接收天线均具有相同的转动速度,但发射天线和接收天线之间的转动速度不同。因此,需要分别确定出发射天线和接收天线各自的转动速度。
对于发射天线的转动速度,一种可选地方式,移动平台可以获取到天线阵列的转动角速度。然后,再根据转动角速度以及目标发射天线与天线阵列的旋转中心之间的距离确定天线阵列中的发射天线的转动速度,其中,天线阵列中的多个发射天线中与旋转中心距离最小的发射天线为目标发射天线。
具体来说,天线阵列的转动角速度为ω,则可以根据下式确定发射天线Txi的转动速度v si=[ωr m 0 0] T
其中,i为1~m中的任一整数,m为发射天线的数量,r m为目标发射天线Txm到天线阵列的旋转中心O之间的距离,可以参见图3中所示的内容。
对于接收天线的转动速度,一种可选地方式,在获取到天线阵列的转动角速度后,可以根据转动角速度以及目标接收天线与天线阵列的旋转中心之间的距离确定天线阵列中的接收天线的转动速度,其中,天线阵列中的多个接收天线中与旋转中心距离最大的接收天线为目标接收天线。
具体来说,天线阵列的转动角速度为ω,然后,根据下式确定接收天线 Rxj的转动速度v sj=[ωr n 0 0] T
其中,j为1~n中的任一整数,n为接收天线的数量,r n为目标接收天线Rxn到天线阵列的旋转中心O之间的距离,可以参见图4中所示的内容。
通过上述方式能够确定出每个发射天线和每个接收天线各自的转动速度。
S1023,确定平动速度和转动速度的合速度为第一速度。
基于上述得到的平动速度和转动速度,一种可选地方式,可以将平动速度和发射天线的转动速度的合速度确定为发射天线的第一速度。此时,发射天线Txi的第一速度表示为:v i=v br+v si。此v i对应于图1所示实施例中的v 1
一种可选地方式,可以将平动速度和接收天线的转动速度的合速度确定为接收天线的Rxj的第一速度。此时,接收天线Rxj的第一速度表示为:v j=v br+v sj。此v j也对应于图1所示实施例中的v 1
通过上述方式能够确定出每个发射天线和每个接收天线各自的第一速度。
对于第二速度,在根据图5所示的方式分别确定出发射天线和接收天线的第一速度后,如图6所示,一种可选地方式,还可以采用以下方式确定第二速度,也即是步骤S1031一种可选地实现方式:
S10311,根据第一角度、发射天线的第一速度分别在天线转动坐标系X轴、Y轴方向上的速度确定发射天线的第二速度。
具体地,发射天线Txi的第二速度可以表示为:v =v ixcosθ +v iysinθ
其中,θ 为第一角度,v ix为发射天线Txi的第一速度v i在天线转动坐标系X轴上的速度,v iy为发射天线Txi的第一速度v i在天线转动坐标系Y轴上的速度。此v 对应于图1所示实施例中的v 2
S10312,根据第一角度、接收天线的第一速度分别在天线转动坐标系X轴、Y轴方向上的速度确定接收天线的第二速度。
具体地,接收天线Rxj的第二速度可以表示为:v =v jxcosθ +v jysinθ
其中,θ 为第一角度,v jx为接收天线Rxj的第一速度v j在天线转动坐标系X轴上的速度,v jy为接收天线Rxj的第一速度v j在天线转动坐标系Y轴上的速度。此v 对应于图1所示实施例中的v 2
需要说明的有,天线阵列中的多个发射天线具有相同的第二速度,多个接收天线具有相同的第二速度。
对于补偿值,在根据图3a、图5~图6所示的实施例依次计算出第一速度、 第一角度和第二速度之后,可选地,可以根据发射天线的第二速度和接收天线的第二速度确定图3b所示实施例中的补偿值Δd ij
一种可选地方式,补偿值Δd ij可以采用下式确定:Δd ij=(i-1)(v +v )T p
其中,v 为发射天线的第二速度,v 为接收天线的第二速度,T p为发射天线的信号发射周期,对应于图1所示实施例中的T。
在确定出此补偿值Δd ij后,即可根据图3b中所示的方式确定发射信号各自对应的第二路径值,再进一步得到目标物与天线阵列之间的第二角度θ ,也即是确定出目标物的位置。正是由于在确定第二角度θ 的过程中考虑到了天线阵列的转动和平动,因此,使得目标物位置的确定更加准确。
图7为本发明实施例提供的一种目标物位置的检测装置的结构示意图。如图7所示,本实施例提供了一种目标物位置的检测装置,该检测装置可以执行上述的目标物位置的检测方法;具体的,检测装置包括:
测量模块11,用于测定目标物与可移动平台中配置的天线阵列之间的第一角度。
获取模块12,用于获取所述天线阵列在平动和转动过程中产生的第一速度。
补偿模块13,用于根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
图7所示装置还可以执行图1~图6所示实施例的方法,本实施例未详细描述的部分,可参考对图1~图6所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1~图6所示实施例中的描述,在此不再赘述。
图8为本发明实施例提供的一种可移动平台的结构示意图;参考附图8所示,本发明实施例的提供了一种可移动平台,该可移动平台为以下至少之一:无人飞行器、无人船、无人车;具体的,该可移动平台包括:机体21、动力系统22以及控制装置23。
所述动力系统22,设置于所述机体上,用于为所述可移动平台提供动力。
所述控制装置23包括存储器231和处理器232。
所述存储器,用于存储计算机程序;
所述处理器,用于运行所述存储器中存储的计算机程序以实现:
测定目标物与可移动平台中配置的天线阵列之间的第一角度;
获取所述天线阵列在运动过程中产生的第一速度;
根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
进一步的,处理器232还用于:计算所述第一速度在所述第一角度方向上的第二速度;
根据所述第二速度确定所述目标物与所述天线阵列之间的第二角度,以得到所述目标物的位置,其中,所述第二角度根据对应于所述相位补偿结果的补偿值确定。
进一步的,处理器232还用于:确定所述多个发射信号各自对应的传播路径的第一路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于运动状态;
对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第一路径值;
根据频域转换的结果确定所述第一角度。
进一步的,处理器232还用于:获取所述天线阵列在平动过程中产生的平动速度;
获取所述天线阵列在转动过程中产生的转动速度;
确定所述平动速度和所述转动速度的合速度为所述第一速度。
进一步的,处理器232还用于:获取所述天线阵列在大地坐标系下的速度;
将在所述大地坐标系下的速度转换为在可移动平台的机体坐标系下的速度;
根据预设转换矩阵,将在所述机体坐标系下的速度转换为在天线转动坐标系下的所述平动速度,所述天线转动坐标系与所述天线阵列在转动过程中所面向的方向一一对应。
进一步的,处理器232还用于:获取所述天线阵列的转动角速度;
根据所述转动角速度以及目标发射天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的发射天线的转动速度,其中,所述天线阵列中的多个发射天线中与所述旋转中心距离最小的发射天线为所述目标发射天线;
根据所述转动角速度以及所述目标接收天线与所述天线阵列的旋转中心 之间的距离确定所述天线阵列中的接收天线的转动速度,其中,所述天线阵列中的多个接收天线中与所述旋转中心距离最大的接收天线为所述目标接收天线。
进一步的,处理器232还用于:将所述平动速度和所述发射天线的转动速度的合速度确定为所述发射天线的第一速度;
将所述平动速度和所述接收天线的转动速度的合速度确定为所述接收天线的第一速度。
进一步的,处理器232还用于:根据所述第一角度、所述发射天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述发射天线的第二速度;
根据所述第一角度、所述接收天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述接收天线的第二速度。
进一步的,处理器232还用于:根据所述发射天线的第二速度和所述接收天线的第二速度确定对应于所述天线阵列运动的补偿值;
根据所述补偿值确定所述目标物与所述天线阵列之间的第二角度。
进一步的,处理器232还用于:根据所述补偿值对所述多个发射信号各自对应的传播路径的第一路径值进行修正,以得到第二路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于非运动状态;
对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第二路径值;
根据频域转换的结果确定所述第二角度。
图8所示的可移动平台可以执行图1~图6所示实施例的方法,本实施例未详细描述的部分,可参考对图1~图6所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1~图6所示实施例中的描述,在此不再赘述。
在一个可能的设计中,图9所示目标物位置的检测设备的结构可实现为一电子设备,该电子设备可以是无人机。如图9所示,该电子设备可以包括:一个或多个处理器31和一个或多个存储器32。其中,存储器32用于存储支持电子设备执行上述图1~图6所示实施例中提供的目标物位置的检测方法的程序。处理器31被配置为用于执行存储器32中存储的程序。
具体的,程序包括一条或多条计算机指令,其中,一条或多条计算机指令被处理器31执行时能够实现如下步骤:
测定目标物与可移动平台中配置的天线阵列之间的第一角度;
获取所述天线阵列在运动过程中产生的第一速度;
根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
其中,该目标物位置的检测设备的结构中还可以包括通信接口33,用于电子设备与其他设备或通信网络通信。
进一步的,处理器31还用于:计算所述第一速度在所述第一角度方向上的第二速度;
根据所述第二速度确定所述目标物与所述天线阵列之间的第二角度,以得到所述目标物的位置,其中,所述第二角度根据对应于所述相位补偿结果的补偿值确定。
进一步的,处理器31还用于:确定所述多个发射信号各自对应的传播路径的第一路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于运动状态;
对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第一路径值;
根据频域转换的结果确定所述第一角度。
进一步的,处理器31还用于:获取所述天线阵列在平动过程中产生的平动速度;
获取所述天线阵列在转动过程中产生的转动速度;
确定所述平动速度和所述转动速度的合速度为所述第一速度。
进一步的,处理器31还用于:获取所述天线阵列在大地坐标系下的速度;
将在所述大地坐标系下的速度转换为在可移动平台的机体坐标系下的速度;
根据预设转换矩阵,将在所述机体坐标系下的速度转换为在天线转动坐标系下的所述平动速度,所述天线转动坐标系与所述天线阵列在转动过程中所面向的方向一一对应。
进一步的,处理器31还用于:获取所述天线阵列的转动角速度;
根据所述转动角速度以及目标发射天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的发射天线的转动速度,其中,所述天线阵列中的多个发射天线中与所述旋转中心距离最小的发射天线为所述目标发射天线;
根据所述转动角速度以及所述目标接收天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的接收天线的转动速度,其中,所述天线阵列中的多个接收天线中与所述旋转中心距离最大的接收天线为所述目标接收天线。
进一步的,处理器31还用于:将所述平动速度和所述发射天线的转动速度的合速度确定为所述发射天线的第一速度;
将所述平动速度和所述接收天线的转动速度的合速度确定为所述接收天线的第一速度。
进一步的,处理器31还用于:根据所述第一角度、所述发射天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述发射天线的第二速度;
根据所述第一角度、所述接收天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述接收天线的第二速度。
进一步的,处理器31还用于:根据所述发射天线的第二速度和所述接收天线的第二速度确定对应于所述天线阵列运动的补偿值;
根据所述补偿值确定所述目标物与所述天线阵列之间的第二角度。
进一步的,处理器31还用于:根据所述补偿值对所述多个发射信号各自对应的传播路径的第一路径值进行修正,以得到第二路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于非运动状态;
对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第二路径值;
根据频域转换的结果确定所述第二角度。
图9所示设备可以执行图1~图6所示实施例的方法,本实施例未详细描述的部分,可参考对图1~图6所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1~图6所示实施例中的描述,在此不再赘述。
另外,本发明实施例提供了一种计算机可读存储介质,存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于 实现上述图1~图6的目标物位置的检测方法。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关检测装置(例如:IMU)和方法,可以通过其它的方式实现。例如,以上所描述的遥控装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,遥控装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间 接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (31)

  1. 一种目标物位置的检测方法,其特征在于,
    测定目标物与可移动平台中配置的天线阵列之间的第一角度;
    获取所述天线阵列在运动过程中产生的第一速度;
    根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置,包括:
    计算所述第一速度在所述第一角度方向上的第二速度;
    根据所述第二速度确定所述目标物与所述天线阵列之间的第二角度,以得到所述目标物的位置,其中,所述第二角度根据对应于所述相位补偿结果的补偿值确定。
  3. 根据权利要求1所述的方法,其特征在于,所述测定目标物与可移动平台中配置的天线阵列之间的第一角度,包括:
    确定所述多个发射信号各自对应的传播路径的第一路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于运动状态;
    对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第一路径值;
    根据频域转换的结果确定所述第一角度。
  4. 根据权利要求2所述的方法,其特征在于,所述获取所述天线阵列在运动过程中产生的第一速度,包括:
    获取所述天线阵列在平动过程中产生的平动速度;
    获取所述天线阵列在转动过程中产生的转动速度;
    确定所述平动速度和所述转动速度的合速度为所述第一速度。
  5. 根据权利要求4所述的方法,其特征在于,所述获取所述天线阵列在平动过程中产生的平动速度,包括:
    获取所述天线阵列在大地坐标系下的速度;
    将在所述大地坐标系下的速度转换为在可移动平台的机体坐标系下的速度;
    根据预设转换矩阵,将在所述机体坐标系下的速度转换为在天线转动坐标系下的所述平动速度,所述天线转动坐标系与所述天线阵列在转动过程中所面向的方向一一对应。
  6. 根据权利要求4所述的方法,其特征在于,所述获取所述天线阵列在转动过程中产生的转动速度,包括:
    获取所述天线阵列的转动角速度;
    根据所述转动角速度以及目标发射天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的发射天线的转动速度,其中,所述天线阵列中的多个发射天线中与所述旋转中心距离最小的发射天线为所述目标发射天线;
    根据所述转动角速度以及所述目标接收天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的接收天线的转动速度,其中,所述天线阵列中的多个接收天线中与所述旋转中心距离最大的接收天线为所述目标接收天线。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述平动速度和所述转动速度的合速度为所述第一速度,包括:
    将所述平动速度和所述发射天线的转动速度的合速度确定为所述发射天线的第一速度;
    将所述平动速度和所述接收天线的转动速度的合速度确定为所述接收天线的第一速度。
  8. 根据权利要求7所述的方法,其特征在于,所述计算所述第一速度在所述第一角度方向上的第二速度,包括:
    根据所述第一角度、所述发射天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述发射天线的第二速度;
    根据所述第一角度、所述接收天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述接收天线的第二速度。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第二速度确定所述目标物与所述天线阵列之间的第二角度,包括:
    根据所述发射天线的第二速度和所述接收天线的第二速度确定对应于所述天线阵列运动的补偿值;
    根据所述补偿值确定所述目标物与所述天线阵列之间的第二角度。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述补偿值确定 所述目标物与所述天线阵列之间的第二角度,包括:
    根据所述补偿值对所述多个发射信号各自对应的传播路径的第一路径值进行修正,以得到第二路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于非运动状态;
    对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第二路径值;
    根据频域转换的结果确定所述第二角度。
  11. 一种可移动平台,其特征在于,至少包括:机体、动力系统以及控制装置;
    所述动力系统,设置于所述机体上,用于为所述可移动平台提供动力;
    所述控制装置包括存储器和处理器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于运行所述存储器中存储的计算机程序以实现:
    测定目标物与可移动平台中配置的天线阵列之间的第一角度;
    获取所述天线阵列在平动和转动过程中产生的第一速度;
    计算所述第一速度在所述第一角度方向上的第二速度;
    根据所述第二速度确定所述目标物与所述天线阵列之间的第二角度,以得到所述目标物的位置。
  12. 根据权利要求10所述的平台,其特征在于,所述处理器还用于:
    计算所述第一速度在所述第一角度方向上的第二速度;
    根据所述第二速度确定所述目标物与所述天线阵列之间的第二角度,以得到所述目标物的位置,其中,所述第二角度根据对应于所述相位补偿结果的补偿值确定。
  13. 根据权利要求10所述的平台,其特征在于,所述处理器还用于:
    确定所述多个发射信号各自对应的传播路径的第一路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于运动状态;
    对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第一路径值;
    根据频域转换的结果确定所述第一角度。
  14. 根据权利要求12所述的平台,其特征在于,所述处理器还用于:
    获取所述天线阵列在平动过程中产生的平动速度;
    获取所述天线阵列在转动过程中产生的转动速度;
    确定所述平动速度和所述转动速度的合速度为所述第一速度。
  15. 根据权利要求14所述的平台,其特征在于,所述处理器还用于:
    获取所述天线阵列在大地坐标系下的速度;
    将在所述大地坐标系下的速度转换为在可移动平台的机体坐标系下的速度;
    根据预设转换矩阵,将在所述机体坐标系下的速度转换为在天线转动坐标系下的所述平动速度,所述天线转动坐标系与所述天线阵列在转动过程中所面向的方向一一对应。
  16. 根据权利要求14所述的平台,其特征在于,所述处理器还用于:
    获取所述天线阵列的转动角速度;
    根据所述转动角速度以及目标发射天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的发射天线的转动速度,其中,所述天线阵列中的多个发射天线中与所述旋转中心距离最小的发射天线为所述目标发射天线;
    根据所述转动角速度以及所述目标接收天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的接收天线的转动速度,其中,所述天线阵列中的多个接收天线中与所述旋转中心距离最大的接收天线为所述目标接收天线。
  17. 根据权利要求16所述的平台,其特征在于,所述处理器还用于:
    将所述平动速度和所述发射天线的转动速度的合速度确定为所述发射天线的第一速度;
    将所述平动速度和所述接收天线的转动速度的合速度确定为所述接收天线的第一速度。
  18. 根据权利要求17所述的平台,其特征在于,所述处理器还用于:
    根据所述第一角度、所述发射天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述发射天线的第二速度;
    根据所述第一角度、所述接收天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述接收天线的第二速度。
  19. 根据权利要求18所述的平台,其特征在于,所述处理器还用于:
    根据所述发射天线的第二速度和所述接收天线的第二速度确定对应于所述天线阵列运动的补偿值;
    根据所述补偿值确定所述目标物与所述天线阵列之间的第二角度。
  20. 根据权利要求19所述的平台,其特征在于,所述处理器还用于:
    根据所述补偿值对所述多个发射信号各自对应的传播路径的第一路径值进行修正,以得到第二路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于非运动状态;
    对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第二路径值;
    根据频域转换的结果确定所述第二角度。
  21. 一种目标物位置的检测设备,其特征在于,所述检测设备包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    测定目标物与可移动平台中配置的天线阵列之间的第一角度;
    获取所述天线阵列在运动过程中产生的第一速度;
    根据所述第一速度对所述第一角度进行相位补偿,并根据所述相位补偿结果得到所述目标物的位置。
  22. 根据权利要求21所述的设备,其特征在于,所述处理器还用于:
    计算所述第一速度在所述第一角度方向上的第二速度;
    根据所述第二速度确定所述目标物与所述天线阵列之间的第二角度,以得到所述目标物的位置,其中,所述第二角度根据对应于所述相位补偿结果的补偿值确定。
  23. 根据权利要求21所述的设备,其特征在于,所述处理器还用于:
    确定所述多个发射信号各自对应的传播路径的第一路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于运动状态;
    对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第一路径值;
    根据频域转换的结果确定所述第一角度。
  24. 根据权利要求22所述的装置,其特征在于,所述处理器还用于:
    获取所述天线阵列在平动过程中产生的平动速度;
    获取所述天线阵列在转动过程中产生的转动速度;
    确定所述平动速度和所述转动速度的合速度为所述第一速度。
  25. 根据权利要求24所述的设备,其特征在于,所述处理器还用于:
    获取所述天线阵列在大地坐标系下的速度;
    将在所述大地坐标系下的速度转换为在可移动平台的机体坐标系下的速度;
    根据预设转换矩阵,将在所述机体坐标系下的速度转换为在天线转动坐标系下的所述平动速度,所述天线转动坐标系与所述天线阵列在转动过程中所面向的方向一一对应。
  26. 根据权利要求24所述的设备,其特征在于,所述处理器还用于:
    获取所述天线阵列的转动角速度;
    根据所述转动角速度以及目标发射天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的发射天线的转动速度,其中,所述天线阵列中的多个发射天线中与所述旋转中心距离最小的发射天线为所述目标发射天线;
    根据所述转动角速度以及所述目标接收天线与所述天线阵列的旋转中心之间的距离确定所述天线阵列中的接收天线的转动速度,其中,所述天线阵列中的多个接收天线中与所述旋转中心距离最大的接收天线为所述目标接收天线。
  27. 根据权利要求26所述的设备,其特征在于,所述处理器还用于:
    将所述平动速度和所述发射天线的转动速度的合速度确定为所述发射天线的第一速度;
    将所述平动速度和所述接收天线的转动速度的合速度确定为所述接收天线的第一速度。
  28. 根据权利要求27所述的设备,其特征在于,所述处理器还用于:
    根据所述第一角度、所述发射天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述发射天线的第二速度;
    根据所述第一角度、所述接收天线的第一速度分别在所述天线转动坐标系X轴、Y轴方向上的速度确定所述接收天线的第二速度。
  29. 根据权利要求28所述的设备,其特征在于,所述处理器还用于:
    根据所述发射天线的第二速度和所述接收天线的第二速度确定对应于所 述天线阵列运动的补偿值;
    根据所述补偿值确定所述目标物与所述天线阵列之间的第二角度。
  30. 根据权利要求29所述的设备,其特征在于,所述处理器还用于:
    根据所述补偿值对所述多个发射信号各自对应的传播路径的第一路径值进行修正,以得到第二路径值,其中,所述多个发射信号的传播路径为所述天线阵列中多个发射天线产生并分别被所述天线阵列中的多个接收天线接收的路径,所述天线阵列处于非运动状态;
    对所述多个接收天线的接收信号进行频域转换,所述接收信号对应于所述第二路径值;
    根据频域转换的结果确定所述第二角度。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1至10中任一项所述的目标物位置的检测方法。
PCT/CN2019/115823 2019-11-05 2019-11-05 目标物位置的检测方法、可移动平台、设备和存储介质 WO2021087781A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/115823 WO2021087781A1 (zh) 2019-11-05 2019-11-05 目标物位置的检测方法、可移动平台、设备和存储介质
CN201980039549.2A CN112400117A (zh) 2019-11-05 2019-11-05 目标物位置的检测方法、可移动平台、设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115823 WO2021087781A1 (zh) 2019-11-05 2019-11-05 目标物位置的检测方法、可移动平台、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021087781A1 true WO2021087781A1 (zh) 2021-05-14

Family

ID=74603059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115823 WO2021087781A1 (zh) 2019-11-05 2019-11-05 目标物位置的检测方法、可移动平台、设备和存储介质

Country Status (2)

Country Link
CN (1) CN112400117A (zh)
WO (1) WO2021087781A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633253B2 (en) * 2001-04-02 2003-10-14 Thomas J. Cataldo Dual synthetic aperture radar system
CN106443671A (zh) * 2016-08-30 2017-02-22 西安电子科技大学 基于调频连续波的sar雷达动目标检测与成像方法
CN106526583A (zh) * 2016-10-21 2017-03-22 北京无线电测量研究所 一种基于天线方向图信息的地面运动目标定位方法
CN108549081A (zh) * 2018-05-02 2018-09-18 北京空间飞行器总体设计部 一种高轨合成孔径雷达动目标速度检测方法
CN108693511A (zh) * 2018-05-25 2018-10-23 中国人民解放军国防科技大学 时分复用mimo雷达的运动目标角度计算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591575B2 (en) * 2015-04-22 2020-03-17 Hisep Technology Ltd. Direction finding system device and method
CN109521426B (zh) * 2017-09-18 2022-01-07 比亚迪股份有限公司 基于汽车雷达获取目标的角度的方法及其装置
CN109917390A (zh) * 2017-12-12 2019-06-21 比亚迪股份有限公司 基于雷达的车辆检测方法和系统
CN108387883A (zh) * 2018-05-25 2018-08-10 中国人民解放军国防科技大学 切换天线阵列调频连续波雷达的运动目标角度计算方法
KR101962398B1 (ko) * 2018-10-01 2019-03-26 엘아이지넥스원 주식회사 레이더의 표적 정보 오차 보상 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633253B2 (en) * 2001-04-02 2003-10-14 Thomas J. Cataldo Dual synthetic aperture radar system
CN106443671A (zh) * 2016-08-30 2017-02-22 西安电子科技大学 基于调频连续波的sar雷达动目标检测与成像方法
CN106526583A (zh) * 2016-10-21 2017-03-22 北京无线电测量研究所 一种基于天线方向图信息的地面运动目标定位方法
CN108549081A (zh) * 2018-05-02 2018-09-18 北京空间飞行器总体设计部 一种高轨合成孔径雷达动目标速度检测方法
CN108693511A (zh) * 2018-05-25 2018-10-23 中国人民解放军国防科技大学 时分复用mimo雷达的运动目标角度计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHOU, FENG ET AL.: "(A Method of Motion Compensation for Unmanned Aerial Vehicles Borne SAR", ACTA ELECTRONICA SINICA, vol. 34, no. 6, 30 June 2006 (2006-06-30), pages 1002 - 1007, XP055810306 *
ZHOU, FENG ET AL.: "A Method of Motion Compensation for Unmanned Aerial Vehicles Borne SAR", ACTA ELECTRONICA SINICA, vol. 34, no. 6, 30 June 2006 (2006-06-30), pages 1002 - 1007, XP055810306 *

Also Published As

Publication number Publication date
CN112400117A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN107064861B (zh) 用于估计到达角的设备以及用于波束成形的设备
US10768288B2 (en) Azimuth determination with the aid of a radar sensor
CN104007413B (zh) 考虑信源方位误差的阵列位置误差校正方法
CN112612020B (zh) 一种新型毫米波雷达信号处理方法
CN111273224A (zh) 一种基于可视化阵列天线的测量方法
CN112505644A (zh) 传感器测量校正方法、装置、终端设备及存储介质
CN106569180B (zh) 一种基于Prony方法的方位估计算法
US8816901B2 (en) Calibration to improve weather radar positioning determination
JP4019149B2 (ja) 電波到来方向特定システム
WO2021087781A1 (zh) 目标物位置的检测方法、可移动平台、设备和存储介质
EP3900229A1 (en) System and method for alignment measurement of an array antenna system
CN110515066B (zh) 一种车载毫米波雷达及其目标高度测量方法
US8933836B1 (en) High speed angle-to-target estimation for a multiple antenna system and method
CN113892037A (zh) 接收装置以及具备该接收装置的雷达装置、车辆及通信系统
US20220120854A1 (en) Methods and Systems for Calibrating a Radar Sensor
KR101957291B1 (ko) 전자전 지원 시스템(Warfare Support System)의 신호도래방위각 측정 장치 및 그 방법
CN113835072B (zh) 一种毫米波雷达校准方法、装置及电子设备
CN112198473B (zh) 基于均匀圆阵测向仪的相位解模糊方法和电子设备
CN112737644A (zh) 无人机蜂群的自定位方法及装置
KR101610051B1 (ko) 방위 오차 보정 방법 및 장치
Shcherbyna et al. Accuracy characteristics of radio monitoring antennas
JP6980570B2 (ja) 目標検出装置および信号処理方法
KR20130094165A (ko) 하이브리드 방향 파악 장치 및 방법
JP5724548B2 (ja) 方位測定装置、方位測定方法及び方位測定プログラム
CN113406580A (zh) Mimo雷达低截获性能评估方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951785

Country of ref document: EP

Kind code of ref document: A1