WO2021086048A2 - Liquid medicine flow rate regulating device - Google Patents

Liquid medicine flow rate regulating device Download PDF

Info

Publication number
WO2021086048A2
WO2021086048A2 PCT/KR2020/014901 KR2020014901W WO2021086048A2 WO 2021086048 A2 WO2021086048 A2 WO 2021086048A2 KR 2020014901 W KR2020014901 W KR 2020014901W WO 2021086048 A2 WO2021086048 A2 WO 2021086048A2
Authority
WO
WIPO (PCT)
Prior art keywords
chemical liquid
valve
control device
flow path
liquid flow
Prior art date
Application number
PCT/KR2020/014901
Other languages
French (fr)
Korean (ko)
Other versions
WO2021086048A3 (en
Inventor
김용현
Original Assignee
김용현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200041584A external-priority patent/KR102472316B1/en
Application filed by 김용현 filed Critical 김용현
Priority to EP20880587.9A priority Critical patent/EP4052740A4/en
Priority to IL292619A priority patent/IL292619A/en
Priority to US17/772,460 priority patent/US20220355027A1/en
Priority to JP2022525393A priority patent/JP7420934B2/en
Priority to CN202080076437.7A priority patent/CN114641326B/en
Publication of WO2021086048A2 publication Critical patent/WO2021086048A2/en
Publication of WO2021086048A3 publication Critical patent/WO2021086048A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body

Definitions

  • the present disclosure relates to an apparatus for regulating a flow rate of a chemical liquid.
  • a drug solution injection device for injecting a liquid drug solution (for example, an injection solution) to a patient.
  • a liquid drug solution for example, an injection solution
  • the chemical solution in a predetermined storage space passes through a passage connected to the patient (eg, a chemical solution injection tube and an inner space of an injection needle), and flows into the patient's body.
  • a device including a drug delivery tube that forms a capillary flow path so that a drug solution is prevented from being injected into the body of a patient at a time and the drug is gradually injected into the body for a considerable time.
  • the conventional chemical injection device having a capillary flow path is configured to reduce the flow rate of the chemical solution, but is not configured to control the flow rate of the chemical solution administered to the patient. Therefore, it is difficult to control the flow rate of the drug solution administered to the patient according to the patient's condition or the type of disease.
  • Embodiments of the present disclosure improve or solve at least some of the problems of a conventional chemical injection device.
  • a plurality of embodiments provide an apparatus for controlling a flow rate of a chemical solution configured to adjust the flow rate of the chemical solution when injecting the chemical solution into the human body.
  • Embodiments according to an aspect of the present disclosure relate to a chemical liquid flow rate control device.
  • the chemical liquid flow control device having a chemical liquid flow path for guiding the flow of the chemical liquid, the chemical liquid flow path is joined by an inflow flow path into which the chemical liquid flows, a plurality of branch flow paths branching from the inflow flow path, and a plurality of branch flow paths, and the chemical liquid flows out Includes outflow flow paths.
  • a chemical liquid flow control apparatus includes: a plurality of transfer pipes configured to correspond to a plurality of branch flow paths, each forming a capillary flow path constituting at least a part of one of the plurality of branch flow paths; And a valve member configured to selectively open and close the plurality of branch flow paths to control a flow rate of the chemical liquid flowing out through the flow path.
  • the plurality of transfer pipes may include at least two transfer pipes configured to flow the chemical liquid at different flow rates.
  • the chemical liquid flow control device may further include a plurality of pressing members configured to correspond to a plurality of branch flow paths, and each configured to be movable.
  • the valve member may be configured to be pressed or released as the pressing member moves, so as to selectively open and close a plurality of branch flow paths.
  • the chemical liquid flow rate control device may further include an operation member configured to move the pressing member.
  • a plurality of recesses formed to be spaced apart from each other so as to accommodate a plurality of pressing members may be formed in the operation member.
  • the valve member is elastically restored and may be configured to urge the pressing member in the recessed direction of the recess.
  • the actuating member may be configured to operate by moving the recess in a direction transverse to the recessed direction of the recess. As the operation member operates, a plurality of pressing members may be selectively received in the plurality of recesses.
  • valve member may be configured to open a corresponding branch flow path while the pressing member is accommodated in the recess.
  • the chemical liquid flow control device may further include a guide member disposed between the valve member and the plurality of pressing members and guiding the movement of the plurality of pressing members.
  • the chemical liquid flow rate control device is configured to correspond to a plurality of branch flow paths, a plurality of pressing members configured to be movable, respectively; An operation member configured to move the pressing member; And an operation member detachably engaged with the operation member and configured to operate the operation member in a state engaged with the operation member.
  • the operation member may be formed with an engaging portion, and the operation member may be formed with a corresponding engaging portion in which the engaging portion is received.
  • valve member may be configured to be elastically deformed by being pressed, and to be elastically restored by being released from the pressure.
  • the chemical liquid flow control device may further include a valve housing covered by a valve member and formed with a plurality of valve spaces each forming a part of a corresponding one of the plurality of branch flow paths.
  • a plurality of valve holes may be formed in the valve housing to communicate with each of the plurality of valve spaces and capillary passages of the plurality of transfer pipes.
  • the chemical liquid flow rate control device may further include a plurality of pressing members configured to correspond to a plurality of branch flow paths and configured to be movable, respectively.
  • the valve member may be configured to close the valve hole when pressed by the pressing member.
  • connection hole constituting a part of the outlet flow path may be formed in any one of the plurality of valve spaces.
  • a communication flow path for communicating two adjacent valve spaces among a plurality of valve spaces may be formed.
  • a connection hole constituting a part of the outlet flow path may be formed in any one of the plurality of valve spaces. In a state in which the valve member opens the valve hole and in a state in which the valve member closes the valve hole, the connection hole and the communication flow path may be configured to remain open.
  • the valve member may include a plurality of protrusions that protrude toward a plurality of valve spaces and are configured to close corresponding branch flow paths, respectively.
  • the chemical liquid flow control device may further include a plurality of pressing members configured to correspond to a plurality of branch flow paths, and each configured to be movable.
  • the valve member may be provided with a plurality of seating portions disposed opposite the plurality of protrusions and on which the plurality of pressing members are seated.
  • the chemical liquid flow rate control device may further include an air passing filter disposed in the inlet passage or the outlet passage.
  • a medical staff such as a doctor may conveniently adjust the flow rate (ie, flow rate) of the drug solution administered to a patient.
  • the flow rate (ie, flow rate) of the drug solution administered to the patient may be adjusted to various values.
  • FIG. 1 is a perspective view of a chemical liquid flow control device according to an embodiment of the present disclosure.
  • FIG. 2 is a plan view of the chemical liquid flow rate control device shown in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line III-III shown in FIG. 2 and shows an example of a direction in which a chemical solution flows.
  • FIG. 4 is a cross-sectional view taken along the line III-III shown in FIG. 2 and shows another example of a direction in which a chemical liquid flows.
  • FIG. 5 is an exploded perspective view of the chemical liquid flow control device shown in FIG. 1.
  • FIG. 6 is an exploded perspective view showing the chemical liquid flow rate control device shown in FIG. 3 from a different angle.
  • FIG. 7 is an exploded perspective view showing the chemical liquid flow rate control device shown in FIG. 3 from another angle.
  • FIG. 8 is a perspective view showing a cross section taken along line VIII-VIII shown in FIG. 2.
  • FIG. 9 is a cross-sectional view taken along the line VIII-VIII shown in FIG. 2.
  • FIGS. 5 to 7 are bottom perspective views showing the operation member shown in FIGS. 5 to 7;
  • FIG. 12 is a view showing an example of flow rate control according to the operation of the chemical liquid flow rate control device according to an embodiment of the present disclosure.
  • FIG. 13 is a view showing another example of flow rate control according to the operation of the chemical liquid flow rate control device of FIG. 12.
  • FIG. 14 is a diagram showing still another example of flow rate control according to the operation of the chemical liquid flow rate control device of FIG. 12.
  • FIG. 15 is a diagram showing still another example of flow rate control according to the operation of the chemical liquid flow rate control device of FIG. 12.
  • FIG. 16 is a diagram showing still another example of flow rate control according to the operation of the chemical liquid flow rate control device of FIG. 12.
  • Embodiments of the present disclosure are illustrated for the purpose of describing the technical idea of the present disclosure.
  • the scope of the rights according to the present disclosure is not limited to the embodiments presented below or specific descriptions of these embodiments.
  • a component when referred to as being "connected” or “connected” to another component, a component can be directly connected to or can be connected to another component, or a new other component It is to be understood that it may or may be connected via an element.
  • FIG. 1 is a perspective view of a chemical liquid flow control device according to an embodiment of the present disclosure.
  • 2 is a plan view of the chemical liquid flow rate control device shown in FIG. 1.
  • the chemical liquid flow control apparatus 100 has a chemical liquid flow path 10 for guiding the flow of the chemical liquid.
  • the drug solution is a drug that can be administered to a patient for treatment of the patient and is made of a liquid.
  • the drug solution flow rate control device 100 is configured to adjust the flow rate of the drug solution to be administered to the patient.
  • the chemical liquid flow rate control device 100 may include cases 20 and 30.
  • the chemical liquid flow control device 100 may include housings 181 and 170 forming at least a part of the chemical liquid flow path 10.
  • the cases 20 and 30 may include a first case 20 and a second case 30 coupled to each other.
  • the housings 181 and 170 may include a flow path-forming housing 181 and a valve housing 170 that are coupled to each other.
  • the housings 181 and 170 are formed with a hole 11a that is one end of the chemical liquid flow path 10 and a hole 13a that is the other end of the chemical liquid flow path 10.
  • 3 is a cross-sectional view taken along the line III-III shown in FIG. 2 and shows an example of a direction in which a chemical solution flows.
  • 4 is a cross-sectional view taken along the line III-III shown in FIG. 2 and shows another example of a direction in which a chemical liquid flows.
  • the chemical liquid flow path 10 includes a first flow path 11, a second flow path 13, and a plurality of branches connecting the first flow path 11 and the second flow path 13. It includes a flow path 12.
  • the first flow path 11 is an inflow flow path through which the chemical liquid is introduced
  • the second flow path 13 is an outflow flow path through which the chemical liquid flows out.
  • the chemical liquid flows in through the first flow path 11 and flows out through the second flow path 13 through at least one of the plurality of branch flow paths 12.
  • the second flow path 13 is an inflow flow path through which the chemical liquid is introduced
  • the first flow path 11 is an outflow flow path through which the chemical liquid flows out.
  • the chemical liquid flows in through the second flow path 13 and flows out through the first flow path 11 through at least one of the plurality of branch flow paths 12. That is, a flow path through which the chemical solution flows may be understood as an inflow channel, and a flow channel through which the chemical solution flows out may be understood as an outflow channel.
  • the plurality of branch flow paths 12 diverge from the inflow flow path, and the chemical liquid joined from the plurality of branch flow paths 12 flows out through the outflow flow path.
  • the number of the plurality of branch flow paths may be n.
  • 'N' referred to throughout this description means'a natural number greater than or equal to 2'.
  • the number of the plurality of pressing members 130 to be described later may be n, and the plurality of branch flow paths may be opened and closed by each of the pressing members 130.
  • the hole 11a formed outside the flow path forming housing 181 may form a part of the first flow path 11.
  • the first flow path 11 may be configured by a filter mechanism 180 to be described later.
  • the first flow path 11 is formed by sequentially connecting the hole 11a and the flow path formed in the filter mechanism 180.
  • the hole 13a formed outside the valve housing 170 may form a part of the second flow path 13.
  • the connection hole 173 to be described later may constitute a part of the second flow path 13.
  • the second flow path 13 is formed by sequentially connecting the connection hole 173 and the hole 13a.
  • the n holes 14a, 14b, and 14c of the sealer 14 may each form a part of any one of the n branch flow paths.
  • Each of the capillary flow paths 110p of the n transfer pipes 110a, 110b, and 110c may form a part of any one corresponding to each of the n branch flow paths.
  • Each of the n holes 175a, 175b, and 175c of the connector 175 may form a part of any one corresponding to each of the n branch flow paths.
  • each of the n valve holes 172a, 172b, and 172c may form a part of any one corresponding to each of the n branch flow paths.
  • Each of the n valve spaces 171a, 171b, and 171c may form a part of any one corresponding to each of the n branch flow paths.
  • Each of the n-1 communication flow paths 174a and 174b to be described later may form a part of any one of the n-1 branch flow paths that are part of the n branch flow channels.
  • the plurality of branch flow paths 12 include a first branch flow path, a second branch flow path, and a third branch flow path.
  • the first branch flow path is a first hole 14a of the sealer 14, a capillary flow path 110p formed in the first transfer pipe 110a, and a first hole 175a of the connection pipe 175 ,
  • the first valve hole 172a, the first valve space 171a, and the first communication flow path 174a may be sequentially connected to each other to be formed.
  • the second branch flow path includes a second hole 14b of the sealer 14, a capillary flow path 110p formed in the second transfer pipe 110b, a second hole 175b of the connection pipe 175, and a second valve.
  • the hole 172b and the second valve space 171b may be sequentially connected to each other to be formed.
  • the third branch flow path includes a third hole 14c of the sealer 14, a capillary flow path 110p formed in the third transfer pipe 110c, a third hole 175c of the connection pipe 175, and a third valve.
  • the hole 172c, the third valve space 171c, and the second communication passage 174b may be sequentially connected to each other to be formed.
  • each of the plurality of holes of the flow path forming housing 181 may constitute a part of each of the first branch flow path, the second branch flow path, and the third branch flow path.
  • the chemical liquid flow rate control device 100 may further include a sealer 14 disposed between the first flow path 11 and the branch flow path 12.
  • the sealer 14 may be formed of a material such as rubber.
  • the sealer 14 may be a rubber packing, and a passage branching from the first passage 11 to the branch passage 12 may be formed in the sealer 14.
  • the chemical solution may be guided to pass through the capillary flow path 110p of the branch flow path 12 through the sealer 14.
  • FIG. 5 is an exploded perspective view of the chemical liquid flow control device shown in FIG. 1.
  • 6 is an exploded perspective view showing the chemical liquid flow rate control device shown in FIG. 3 from a different angle.
  • 7 is an exploded perspective view showing the chemical liquid flow rate control device shown in FIG. 3 from another angle.
  • the chemical liquid flow rate control apparatus 100 includes a plurality of transfer pipes 110 and a valve member 120.
  • the plurality of transfer pipes 110 are configured to correspond to the plurality of branch flow paths 12.
  • the plurality of transfer pipes 110 form a capillary flow path 110p constituting at least a part of a corresponding one of the plurality of branch flow paths 12.
  • the transfer pipe 110 may include a polymer microtube.
  • the plurality of transfer pipes 110 may be n.
  • the n number of transfer pipes 110 may have capillary flow paths 110p having different inner diameters (or cross-sectional areas).
  • the number of the plurality of transfer pipes 110 may be variously determined according to the precision of the flow rate control of the chemical liquid flow rate control device 100.
  • each of the capillary flow paths 110p corresponding to the plurality of transfer pipes 110 may be determined differently according to the precision of the flow rate control of the chemical liquid flow control device 100.
  • the plurality of conveying pipes 110 may have an inner diameter of about 0.04mm to 0.08mm. Accordingly, by selectively opening and closing a plurality of capillary flow paths 110p set to different flow rates, flow rate control is facilitated and various flow rates can be adjusted.
  • the plurality of transfer pipes 110 may include at least two transfer pipes configured to flow the chemical liquid at different flow rates.
  • the plurality of branch flow paths 12 are composed of a first branch flow path, a second branch flow path, and a third branch flow path
  • the plurality of transfer pipes 110 are the first transfer pipes 110a. ), a second transfer pipe (110b), and a third transfer pipe (110c).
  • the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c may be configured to pass 1.5cc, 1.0cc, and 0.5cc of chemicals per hour, respectively.
  • the valve member 120 is configured to selectively open and close the plurality of branch flow paths 12 to control the flow rate of the chemical liquid flowing out through the second flow path 13.
  • the valve member 120 functions as a valve mechanism connecting the branch passage 12 and the second passage 13.
  • FIG. 8 is a perspective view showing a cross section taken along line VIII-VIII shown in FIG. 2.
  • 9 is a cross-sectional view taken along the line VIII-VIII shown in FIG. 2.
  • the chemical liquid flow rate control device 100 is configured to correspond to a plurality of branch flow paths 12, and a plurality of pressing members 130 configured to be movable, respectively. ) May be further included.
  • the pressing member 130 has a spherical shape and follows a direction perpendicular to the longitudinal direction RL of the plurality of conveying pipes 110 (ie, branch flow paths) (for example, the vertical direction UD in FIG. 3 ). It is configured to change the relative distance to the valve member 120 as it moves.
  • the pressing member 130 may have a rod shape having a hemispherical shape at both ends.
  • the plurality of pressing members 130 may include a first pressing member 130a, a second pressing member 130a corresponding to each of the first conveying pipe 110a, the second conveying pipe 110b, and the third conveying pipe 110c. It may include a pressing member (130b) and a third pressing member (130c).
  • the chemical liquid flow rate control device 100 may further include an operation member 140 configured to move the plurality of pressing members 130.
  • the operation member 140 may be located on the opposite side of the valve member 120 with respect to the pressing member 130.
  • the operation member 140 has a plate shape and is configured to rotate along a rotation center along a direction perpendicular to the longitudinal direction RL of the plurality of conveying pipes 110 (eg, the vertical direction UD). As the operation member 140 rotates, at least one of the plurality of pressing members 130 may move relative to the valve member 120.
  • the operation member 140 is described and illustrated as having a disk shape, the operation member 140 may have a polygonal plate shape.
  • FIGS. 5 to 7 are bottom perspective views showing the operation member shown in FIGS. 5 to 7;
  • the operation member 140 is formed with a plurality of recesses 141 spaced apart from each other so that a plurality of pressing members 130 are accommodated, and the valve member 120 ) Is elastically restored and may be configured to press the pressing member 130 in the recessed direction (eg, upward direction) of the recess 141.
  • the plurality of recesses 141 are formed on the bottom surface of the operation member 140 and are concave in the opposite direction (eg, upward direction) of the valve member 120 with respect to the pressing member 130.
  • the plurality of recesses 141 may be arranged to be spaced apart from each other along the circumferential direction along the rotation center.
  • the number and formation position of the plurality of recesses 141 may be determined according to the number of the plurality of transfer pipes 110 and the precision of the flow rate control of the chemical liquid flow control device 100.
  • the operation member 140 is configured to be operated by moving the recess 141 in a direction transverse to the recessed direction of the recess 141, and as the operation member 140 operates, a plurality of The pressing member 130 may be selectively accommodated in the plurality of recesses 141.
  • the recessed direction of the recess 141 means an upper direction among the vertical directions (UD), and the direction crossing the recessed direction of the recess 141 is the longitudinal direction (RL) and the plurality of conveying pipes 110 It may mean a direction along a plane formed by the arranged front and rear directions FR. That is, as the plate-shaped operation member 140 rotates along the rotation center, the plurality of pressing members 130 are selectively accommodated in the plurality of recesses 141 to open and close the plurality of branch flow paths 12. I can.
  • the valve member 120 may be configured to open a corresponding branch flow path 12 in a state in which the pressing member 130 is accommodated in the recess 141. That is, the valve member 120 is configured to open the branch flow path 12 corresponding to the pressing member 130 accommodated in the recess 141 among the plurality of pressing members 130. On the contrary, the valve member 120 closes the branch flow path 12 corresponding to the pressing member 130 not accommodated in the recess 141 in a state where the pressing member 130 is not accommodated in the recess 141. It is composed.
  • the valve member 120 is depressurized and the branch flow path 12 is opened, and the pressing member 130 is accommodated in the recess 141.
  • the branch flow path 12 is closed.
  • the chemical liquid flow rate control device 100 is disposed between the valve member 120 and the plurality of pressing members 130, and further includes a guide member 150 for guiding the movement of the plurality of pressing members 130.
  • the guide member 150 is configured to cover the valve member 120 and is coupled to the valve housing 170.
  • the guide member 150 serves to guide the pressing member 130 to move in the vertical direction (UD), and to space the plurality of pressing members 130 from each other along the front-rear direction FR.
  • a plurality of guide holes 151 are formed in the guide member 150 to be spaced apart from each other along the front-rear direction FR and hold the plurality of pressing members 130.
  • the guide member 150 is a vertical direction (UD) equal to or greater than the distance in which the plurality of pressing members 130 move in the vertical direction (UD) between the pressing state and the pressing state of the valve member 120 It can have a thickness along the line.
  • the plurality of guide holes 151 may be n.
  • the plurality of guide holes 151 may include a first guide hole 151a and a second pressure corresponding to each of the first pressing member 130a, the second pressing member 130b, and the third pressing member 130c.
  • a guide hole 151b and a third guide hole 151c may be included.
  • the chemical liquid flow rate control device 100 may further include an operation member 140 and an operation member 160.
  • the operation member 140 may be configured to move the pressing member 130 or may be configured to operate the valve member 120.
  • the operation member 160 is configured to operate the operation member 140 in a state engaged with the operation member 140.
  • the operation member 160 may be configured to adjust the flow rate of the chemical solution by rotating the operation member 140.
  • a shaft hole 140a for supporting rotation of the operation member 140 is formed in the center of the operation member 140.
  • an engaging portion 161 is formed on the operation member 160, and a corresponding engaging portion 142 may be formed in the operation member 140 by receiving the engaging portion 161. That is, the corresponding engaging portion 142 may be formed to be concave so that the engaging portion 161 can be accommodated.
  • the engaging portion 161 and the corresponding engaging portion 142 may have a shape complementary to each other.
  • the engaging portion 161 may have a star-shaped or polygonal planar shape, and the corresponding engaging portion 142 may be formed to be concave downward to correspond to the planar shape of the engaging portion 161.
  • the operation member 160 may further include a handle portion 162 protruding upward from the engaging portion 161. The user can easily rotate the operation member 140 by gripping and rotating the handle part 162.
  • the operation member 160 may be detachably coupled from a part of the operation member 140 of the chemical liquid flow rate control device 100.
  • a doctor in charge or a nurse in charge may be used in combination with the chemical liquid flow control device 100 when the operation member 160 is carried or stored in a certain place and then the flow rate of the chemical liquid needs to be adjusted. Accordingly, it is possible to prevent a patient or an unauthorized user from arbitrarily manipulating the operation member 160 to adjust the flow rate of the chemical solution. That is, the operation member 160 may function as a key configured to rotate the operation member 140 by being coupled to the chemical liquid flow control device 100 when it is necessary to adjust the flow rate of the chemical liquid.
  • the valve member 120 may be configured to be elastically deformed by being pressed, and to be elastically restored by being released from the pressure.
  • the valve member 120 may be made of a material capable of elastic deformation and restoration of elasticity, such as a rubber material.
  • the valve member 120 is configured to be elastically deformed by the pressing of the pressing member 130 to close the corresponding branch flow path 12, and the pressing member 130 is When accommodated in the recess 141, it may be configured to open the corresponding branch flow path 12 by providing an elastic restoring force to move the pressing member 130 upward.
  • the chemical liquid flow rate control device 100 may further include a valve housing 170 in which a plurality of valve spaces 171 are formed.
  • the plurality of valve spaces 171 are configured to be covered by the valve member 120.
  • the valve member 120 functions as a cover or sealing member that prevents the chemical liquid held in the valve space 171 from flowing upward.
  • Each of the plurality of valve spaces 171 constitutes a part of a corresponding one of the plurality of branch flow paths 12.
  • the plurality of valve spaces 171 are formed to be concave in the lower direction of the vertical direction UD and are arranged in a row in the front-rear direction FR.
  • the plurality of concave valve spaces 171 form a space closed by the valve member 120 as a sealing member to be included in a part of the corresponding branch flow path 12 among the plurality of branch flow paths 12.
  • the plurality of valve spaces 171 may be n.
  • the plurality of valve spaces 171 may include a first valve space 171a and a second valve corresponding to each of the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c. It may include a valve space 171b and a third valve space 171c.
  • the valve housing 170 may include a plurality of connection pipes 175 to which a plurality of transfer pipes 110 forming the capillary flow path 110p are connected.
  • a plurality of transfer pipes 110 may be connected to be inserted into the plurality of connection pipes 175 or a plurality of connection pipes may be inserted into the plurality of transfer pipes 110.
  • the plurality of connection pipes 175 may be n.
  • the plurality of connection pipes 175 may include a first hole 175a and a second hole into which each of the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c is inserted. It may include (175b) and a third hole (175c).
  • a plurality of valve holes 172 communicating with each of the plurality of valve spaces 171 and the capillary flow paths 110p of the plurality of transfer pipes 110 may be formed in the valve housing 170.
  • the plurality of valve holes 172 may be formed at the bottom of the corresponding plurality of valve spaces 171.
  • the plurality of valve holes 172 communicate with each of the plurality of connection pipes 175.
  • the chemical liquid introduced through the plurality of connection pipes 175 is temporarily held in the valve space 171 through the valve hole 172, or the chemical liquid temporarily held in the valve space 171 is through the valve hole 172 It may flow through a plurality of connection pipes 175.
  • the plurality of valve holes 172 may be n.
  • the plurality of valve holes 172 may include a first valve hole 172a, a second valve communicating with the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c. It may include a hole 172b, and a third valve hole 172c.
  • each of the first valve hole 172a, the second valve hole 172b, and the third valve hole 172c may be opened or closed. Accordingly, the flow rate of the chemical liquid flowing in the chemical liquid flow path 10 may be adjusted.
  • the valve member 120 may be configured to close the valve hole 172 when pressed by the pressing member 130.
  • the valve member 120 is made of an elastically deformable material such as rubber, when the pressing member 130 moves downward and presses the valve member 120 downward, the valve member 120 It is elastically deformed within (171). Accordingly, the elastically deformed portion of the valve member 120 may contact the valve hole 172 to close the valve hole 172.
  • a connection hole 173 to which the second flow path 13 is connected may be formed in any one of the plurality of valve spaces 171.
  • the plurality of valve spaces 171 communicate with the second flow path 13 through the connection hole 173, and the plurality of branch flow paths 12 join through the connection hole 173.
  • the chemical liquid flowing from the second flow path 13 is temporarily held in the valve space 171 through the connection hole 173, or the chemical liquid temporarily held in the valve space 171 is the second through the connection hole 173 It flows through the flow path 13.
  • a communication flow path 174 communicating two valve spaces 171 adjacent to each other among the plurality of valve spaces 171 may be formed.
  • the plurality of valve holes 172 and the connection holes 173 are in communication with each other through a communication flow path 174. That is, the valve hole 172 of the valve space 171 in which the connection hole 173 is not formed communicates with the connection hole 173 via the communication flow path 174, and the valve space in which the connection hole 173 is formed ( The valve hole 172 of the 171 is directly communicated with the connection hole 173 without passing through the communication flow path 174.
  • the plurality of communication flow paths 174 may be n-1.
  • the communication channel 174 is formed by covering the groove formed in the valve housing 170 by the valve member 120, but in another embodiment not shown, the communication channel 174 is formed in the valve housing 170. It can also be configured alone.
  • the chemicals located in each of the n valve spaces 171a, 171b, and 171c may be collected into one valve space 171b by a communication flow path 174.
  • the communication flow path 174 is formed to connect between the first valve space 171a and the second valve space 171b, the first communication flow path 174a, the second valve space 171b, and the third A second communication flow path 174b formed to connect between the valve spaces 171c may be included.
  • the connection hole 173 and the communication flow path 174 Can be configured to remain open. That is, regardless of the state in which the valve member 120 opens or closes the valve hole 172, the connection hole 173 and the communication flow passage 174 are configured to always remain open. Accordingly, the valve hole 172 of the valve space 171 in which the connection hole 173 is not formed is closed, and the valve hole 172 of the valve space 171 in which the connection hole 173 is not formed is opened. Also, the valve hole 172 of the valve space 171 in which the connection hole 173 is not formed may communicate with the connection hole 173 through the communication flow path 174. As a result, the chemical liquid can flow along the communicated path.
  • the valve member 120 may include a plurality of protrusions 121 configured to protrude toward the plurality of valve spaces 171 and close corresponding branch flow paths 12, respectively. At least some of the plurality of protrusions 121 protrude toward the plurality of valve spaces 171 and are accommodated in the valve space 171. Therefore, by reducing the moving distance of the pressing member 130 along the vertical direction UD, it is possible to achieve a downsizing of the chemical liquid flow rate control device 100. In addition, since the flow rate of the chemical liquid temporarily held by the valve space 171 can be kept low due to the plurality of protrusions 121, the initial time for administering the chemical liquid can be shortened.
  • the plurality of protrusions 121 may be n.
  • the plurality of protrusions 121 may include a first protrusion 121a and a second protrusion corresponding to each of the first pressing member 130a, the second pressing member 130b, and the third pressing member 130c. 121b), and a third protrusion 121c.
  • each of the first protrusion 121a, the second protrusion 121b, and the third protrusion 121c is a first valve hole 172a, a second valve hole 172b, and a third valve hole 172c.
  • Each can be configured to open or close.
  • the valve member 120 may be provided with a plurality of seating portions 122 disposed opposite the plurality of protrusions 121 and on which the plurality of pressing members 130 are seated. Since the plurality of pressing members 130 are seated on the plurality of seating portions 122, each of the plurality of pressing members 130 is accurately positioned in each of the plurality of valve spaces 171, so that the valve hole 172 is surely closed. It is composed.
  • the plurality of seating portions 122 may be formed to be concave in the downward direction.
  • the plurality of pressing members 130 may be configured such that the radius of curvature of the plurality of pressing members 130 coincide with the radius of curvature of the plurality of receiving parts 122 so that the plurality of pressing members 130 are accurately mounted on the plurality of receiving parts 122.
  • the plurality of seating portions 122 may be n.
  • the plurality of seating portions 122 may include a first seating portion 122a, a second seating portion 122a corresponding to each of the first pressing member 130a, the second pressing member 130b, and the third pressing member 130c. It may include a seating portion (122b) and a third seating portion (122c).
  • the chemical liquid flow control device 100 may include a first case 20 and a second case 30 configured to cover the plurality of transfer pipes 110 and the valve member 120. .
  • the first case 20 and the second case 30 may be configured to be coupled to each other.
  • a plurality of transfer pipes 110 and valve housing 170 are configured to be fixed to the first case 20.
  • the first flow path 11 and the second flow path 13 are configured to protrude outward from the first case 20 and the second case 30 and are fixed by the first case 20 and the second case 30.
  • a manipulation hole 30a may be formed in the second case 30 to expose the manipulation member 160. After the operation member 160 is coupled with the operation member 140 by inserting the operation member 160 through the operation hole 30a, the position of the operation member 140 may be changed.
  • the operation member 140 may be configured to change its position by rotating, or may be configured to change its position through movement other than rotation (eg, sliding).
  • the chemical liquid flow rate control device may further include an air passing filter (eg, filter mechanism 180) disposed in the first flow path 11.
  • the filter mechanism 180 removes gas contained in the chemical liquid flowing along the chemical liquid flow path 10 and residual gas dissolved in the chemical liquid. Accordingly, it is possible to prevent the capillary flow path from being blocked by microscopic air bubbles.
  • the filter mechanism 180 includes a flow path forming housing 181; Boundary filter 182; Filter cap 183; And at least one air passing filter.
  • the flow path forming housing 181 may be referred to as a filter housing.
  • the flow path forming housing 181 may be disposed on the chemical liquid flow path 10 and may form at least a part of the first flow path 11.
  • the chemical liquid flowing through the first flow path 11 (for example, the embodiment of FIG. 3) or the chemical liquid flowing through the first flow path 11 (for example, the embodiment of FIG. 4) is a flow path forming housing ( 181).
  • An inner hole 181b may be formed in the flow path forming housing 181.
  • a portion where n branch flow paths start may be formed in the inner hole 181b, and a portion where n branch flow paths start may be formed by the sealer 14.
  • the sealer 14 is inserted into the inner hole 181b.
  • the first flow path 11 may include a filter flow path 181c.
  • the filter flow path 181c may be disposed inside the flow path forming housing 181.
  • the chemical liquid may sequentially flow through the hole 11a and the filter flow passage 181c, or sequentially flow through the filter flow passage 181c and the hole 11a.
  • the boundary filter 182 may be disposed on the first flow path 11.
  • the boundary filter 182 may be disposed in the flow path forming housing 181.
  • the boundary filter 182 may be made of a hydrophilic material.
  • the boundary filter 182 is configured such that the boundary filter 182 acts as a pressure boundary surface between an upstream channel portion and a downstream channel portion based on the boundary filter 182 when the chemical solution is wetted.
  • the boundary filter 182 may have different internal pressures.
  • the boundary filter 182 may be configured in at least one of a mesh structure and a fiber structure.
  • the boundary filter 182 may additionally have a function of filtering impurities.
  • the filter cap 183 is air-tight and water-tight coupled to the flow path-forming housing 181.
  • the filter cap 183 forms a passage through which air contained in the chemical liquid introduced through the first passage 11 flows out.
  • the filter cap 183 may form at least one vent hole (not shown) positioned at a point where the air passage is connected to the external space.
  • At least one air passing filter is made of a hydrophobic material and is configured to filter air in the chemical liquid flow path 10.
  • the air passing filter blocks the passage of the chemical liquid and serves to pass air.
  • the air passing filter may be disposed on the filter cap 183.
  • the air passing filter may include a first air passing filter 184 disposed at a boundary between the air passage and the filter passage 181c.
  • the air passing filter may further include a second air passing filter 185 disposed on the air passage.
  • the air passing filter includes a first air passing filter 184 and a second air passing filter 185 which are sequentially disposed on a passage of air from the flow path forming housing 181 toward the filter cap 183 can do.
  • the first air passing filter 184 is disposed inside the filter cap 183
  • the second air passing filter 185 is disposed on the opposite side of the first air passing filter 184 based on the filter cap 183. I can.
  • the second air passing filter 185 is configured to pass air that has passed through the first air passing filter 184. Accordingly, the second air passing filter 185 serves to prevent the internal chemical liquid from flowing out even when the pores or adhesive portions of the first air passing filter 184 are damaged.
  • the second air passing filter 185 may be formed by processing the same material as the first air passing filter 184 or a porous plastic material.
  • the second air passing filter 185 may be formed such that a hydrophobic porous plastic resin material fills a partial cross-sectional area of the air passage.
  • the material of the second air pass filter 185 is from Porex Corporation (Website: https://www.porex.com) of Fairburn, GA 30213, GA, USA. Can be obtained. There is a product available under the name Porex Hydrophobic Vents of forex Corporation, which is made from a material of polyethyle polytetrafluoroethylene.
  • the filter spacer 186 is disposed inside the filter cap 183 to contact the first air passing filter 184.
  • the filter spacer 186 is configured to suppress or prevent the first air passing filter 184 from bending toward the flow path forming housing 181 due to the pressure of the chemical solution.
  • a plurality of protrusions may be formed on a surface of the filter spacer 186 facing the first air passing filter 184 (eg, a surface facing the flow path forming housing 181). Accordingly, the air passing through the first air passing filter 184 may flow through the gap between the plurality of protrusions.
  • the protrusion of the filter spacer 186 may have an embossed shape or a pleated shape.
  • a plurality of protrusions having an embossed shape or a pleat shape are formed on the side opposite to the side where the filter spacer 186 faces the first air passing filter 184 (for example, the side facing the filter cap 183). Can be.
  • An arrangement groove into which the filter spacer 186 is inserted may be formed in the filter cap 183.
  • the filter cap 183 may include a protrusion that separates the side surface of the filter spacer 186 from the inner surface of the filter cap 183.
  • the filter cap 183 may include a protrusion that separates the rear surface of the filter spacer 186 from the inner surface of the filter cap 183. Through this, air may smoothly flow between the filter spacer 186 and the inner surface of the filter cap 183.
  • An air hole constituting a part of the air passage may be formed in the filter cap 183.
  • the chemical liquid flow rate control device 100 may further include a shaft 190.
  • the shaft 190 serves to support the operation member 140 to rotate with respect to the valve housing 170 and the flow path forming housing 181.
  • a first shaft guide part 176 may be formed in the valve housing 170
  • a second shaft guide part 181a may be formed in the flow path forming housing 181.
  • the first shaft guide portion 176 and the second shaft guide portion 181a are coupled to each other to form a circular groove.
  • a portion of the shaft 190 is configured to pass through the shaft hole 140a of the operation member 140 and be coupled to the first shaft guide portion 176 and the second shaft guide portion 181a.
  • the first shaft guide portion 176 and the second shaft guide portion 181a may have a complementary shape so as to be relatively rotatable by engaging with each other.
  • 12 to 16 are views showing an example of flow rate control according to the operation of the chemical liquid flow rate control device according to an embodiment of the present disclosure. 12 to 16 together show a plan view and a cross-sectional view according to the operation of the chemical liquid flow control device, and a plurality of recesses 141 formed on the bottom surface of the operation member 140 are hidden around the operation member 160 It is shown as.
  • first conveying pipe (110a), the second conveying pipe (110b), and the third conveying pipe (110c) are described as an example of a case where the chemical solution of 1.5cc, 1.0cc, and 0.5cc per hour passes. do.
  • the operation member 160 when the operation member 160 is positioned, the first pressing member 130a is accommodated in the recess 141 of the operation member 140, and the second pressing member 130b and the second pressing member 130b are 3
  • the pressing member 130c abuts against the bottom surface 143 of the operation member 140.
  • the first protrusion 121a is spaced apart from the first valve hole 172a, and the first valve hole 172a is opened.
  • the second pressing member 130b and the third pressing member 130c elastically deform the second protruding portion 121b and the third protruding portion 121c of the valve member 120, so that the second valve hole 172b and the third The valve hole 172c is closed.
  • the first transfer pipe 110a communicates with the connection hole 173 through the opened first valve hole 172a.
  • the flow rate of the chemical liquid that can flow through the chemical liquid flow rate control device 100 becomes 0.5 cc per hour corresponding to the flow rate of the first transfer pipe 110a.
  • the second pressing member 130b is accommodated in the recess 141 of the operation member 140, and the first pressing member 130a and the first 3
  • the pressing member 130c abuts against the bottom surface 143 of the operation member 140.
  • the second protrusion 121b of the valve member 120 is spaced apart from the second valve hole 172b, and the second valve hole 172b is opened.
  • the first pressing member 130a and the third pressing member 130c elastically deform the first protrusion 121a and the third protrusion 121c of the valve member 120, so that the first valve hole 172a and the third The valve hole 172c is closed.
  • the second transfer pipe 110b communicates with the connection hole 173 through the opened second valve hole 172b.
  • the flow rate of the chemical liquid that can flow through the chemical liquid flow rate control device 100 becomes 1.0 cc per hour corresponding to the flow rate of the second transfer pipe 110b.
  • the third pressing member 130c is accommodated in the recess 141 of the operation member 140, and the first pressing member 130a and the first 2 The pressing member 130b abuts against the bottom surface 143 of the operation member 140.
  • the third protrusion 121c of the valve member 120 is spaced apart from the third valve hole 172c, and the third valve hole 172c is opened.
  • the first pressing member 130a and the second pressing member 130b elastically deform the first protrusion 121a and the second protrusion 121b of the valve member 120, so that the first valve hole 172a and the second The valve hole 172b is closed.
  • the third transfer pipe 110c communicates with the connection hole 173 through the opened third valve hole 172c.
  • the flow rate of the chemical liquid that can flow through the chemical liquid flow rate control device 100 becomes 1.5 cc per hour corresponding to the flow rate of the third transfer pipe 110c.
  • the first pressing member 130a and the third pressing member 130c are accommodated in the recess 141 of the operation member 140, and 2
  • the pressing member 130b abuts against the bottom surface 143 of the operation member 140.
  • Each of the first protrusion 121a and the third protrusion 121c of the valve member 120 is spaced apart from the first valve hole 172a and the third valve hole 172c, 3
  • the valve hole 172c is opened.
  • the second pressing member 130b elastically deforms the second protruding portion 121b of the valve member 120, so that the second valve hole 172b is closed.
  • each of the first transfer pipe 110a and the third transfer pipe 110c communicates with the connection hole 173 through the opened first valve hole 172a and the third valve hole 172c, respectively.
  • the flow rate of the chemical solution that can flow through the chemical solution flow rate control device 100 becomes 2.0 cc per hour corresponding to the total flow rate of the first transfer pipe 110a and the third transfer pipe 110c.
  • the first pressing member 130a, the second pressing member 130b, and the third pressing member 130c are It is received in the recess 141.
  • Each of the first protrusion 121a, the second protrusion 121b, and the third protrusion 121c of the valve member 120 is a first valve hole 172a, a second valve hole 172b, and a third valve hole ( 172c), the first valve hole 172a, the second valve hole 172b, and the third valve hole 172c are opened. Accordingly, the first valve hole 172a, the second valve hole 172b, and the third valve each of the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c are opened.
  • the flow rate of the chemical liquid that can flow through the chemical liquid flow rate control device 100 is 3.0 per hour corresponding to the total flow rate of the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c. becomes cc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Supply Of Fluid Materials To The Packaging Location (AREA)

Abstract

Embodiments according to one aspect of the present disclosure relate to a liquid medicine flow rate regulating device. The liquid medicine flow rate regulating device has a liquid medicine flow path for guiding the flow of liquid medicine, wherein the liquid medicine flow path includes an inlet flow path through which the liquid medicine flows in, a plurality of branch flow paths which branch out from the inflow flow path, and an outlet flow path through which the liquid medicine flows out after converging from the plurality of branch flow paths. The liquid medicine flow rate regulating device according to a representative embodiment includes: a plurality of conveyance pipes which respectively correspond to the plurality of branch flow paths, and which each form a capillary flow path that constitutes at least a portion of a corresponding path among the plurality of branch flow paths; and a valve member configured to selectively open or close the plurality of branch flow paths to regulate the flow rate of the liquid medicine that flows out through the outlet flow path.

Description

약액 유량 조절 장치Chemical liquid flow control device
본 개시는 약액의 유량 조절 장치에 관한 것이다.The present disclosure relates to an apparatus for regulating a flow rate of a chemical liquid.
환자에게 약물을 공급하기 위해, 환자에게 액상의 약액(예를 들어, 주사액)을 주입하는 약액 주입 장치가 알려져 있다. 이러한 약액 주입 장치를 이용하여, 소정의 저장 공간 내에 있는 약액이 환자와 연결되는 통로(예를 들어, 약액 주입관 및 주사 바늘의 내부 공간)를 통과하여, 환자의 체내로 유입된다.In order to supply a drug to a patient, a drug solution injection device is known for injecting a liquid drug solution (for example, an injection solution) to a patient. Using such a chemical solution injection device, the chemical solution in a predetermined storage space passes through a passage connected to the patient (eg, a chemical solution injection tube and an inner space of an injection needle), and flows into the patient's body.
의료 목적 상, 환자의 체내로 일시에 약액이 주입되는 것을 방지하고 상당 시간 동안 서서히 체내로 약물이 주입되도록 모세 유로를 형성하는 약물 이송관이 포함된 장치가 알려져 있다. 약액이 약물 이송관을 통과하게 함으로써, 이 약액 주입 장치의 통로를 따라 흐르는 약액의 시간당 유량을 감소시킨다.For medical purposes, there is known a device including a drug delivery tube that forms a capillary flow path so that a drug solution is prevented from being injected into the body of a patient at a time and the drug is gradually injected into the body for a considerable time. By allowing the chemical liquid to pass through the drug delivery pipe, the hourly flow rate of the chemical liquid flowing along the passage of the chemical liquid injection device is reduced.
모세 유로가 형성된 종래의 약액 주입 장치는 약액의 유량을 감소시키도록 구성되지만 환자에게 투여되는 약액의 유량을 조절하도록 구성되어 있지 않다. 따라서, 환자의 상태나 병환의 종류에 따라 환자에게 투여되는 약액의 유량을 조절하기 어렵다.The conventional chemical injection device having a capillary flow path is configured to reduce the flow rate of the chemical solution, but is not configured to control the flow rate of the chemical solution administered to the patient. Therefore, it is difficult to control the flow rate of the drug solution administered to the patient according to the patient's condition or the type of disease.
본 개시의 실시예들은, 종래의 약액 주입 장치의 적어도 일부 문제점들을 개선 또는 해결한다. 이를 위하여, 복수의 실시예들은 약액을 인체에 주입할 때 약액의 유량을 조절하도록 구성되는 약액의 유량 조절 장치를 제공한다.Embodiments of the present disclosure improve or solve at least some of the problems of a conventional chemical injection device. To this end, a plurality of embodiments provide an apparatus for controlling a flow rate of a chemical solution configured to adjust the flow rate of the chemical solution when injecting the chemical solution into the human body.
본 개시의 일 측면에 따른 실시예들은 약액 유량 조절 장치에 관련된다. 약액의 흐름을 안내하는 약액 유로를 가진 약액 유량 조절 장치에 있어서, 약액 유로는, 약액이 유입되는 유입 유로, 유입 유로로부터 분기하는 복수의 분기 유로, 및 복수의 분기 유로로부터 합류되어 약액이 유출되는 유출 유로를 포함한다. 대표적 실시예에 따른 약액 유량 조절 장치는, 복수의 분기 유로에 대응되게 구성되고, 각각 복수의 분기 유로 중 대응되는 어느 하나의 적어도 일부를 구성하는 모세 유로를 형성하는 복수의 이송관; 및 복수의 분기 유로를 선택적으로 개폐함으로써 유출 유로를 통해 유출되는 약액의 유량을 조절하도록 구성되는 밸브 부재를 포함한다.Embodiments according to an aspect of the present disclosure relate to a chemical liquid flow rate control device. In the chemical liquid flow control device having a chemical liquid flow path for guiding the flow of the chemical liquid, the chemical liquid flow path is joined by an inflow flow path into which the chemical liquid flows, a plurality of branch flow paths branching from the inflow flow path, and a plurality of branch flow paths, and the chemical liquid flows out Includes outflow flow paths. A chemical liquid flow control apparatus according to an exemplary embodiment includes: a plurality of transfer pipes configured to correspond to a plurality of branch flow paths, each forming a capillary flow path constituting at least a part of one of the plurality of branch flow paths; And a valve member configured to selectively open and close the plurality of branch flow paths to control a flow rate of the chemical liquid flowing out through the flow path.
일 실시예에 있어서, 복수의 이송관은 약액이 서로 다른 유량으로 흐르도록 구성된 적어도 2개의 이송관을 포함할 수 있다.In one embodiment, the plurality of transfer pipes may include at least two transfer pipes configured to flow the chemical liquid at different flow rates.
일 실시예에 있어서, 약액 유량 조절 장치는 복수의 분기 유로에 대응되게 구성되고, 각각 이동 가능하게 구성되는 복수의 가압 부재를 더 포함할 수 있다. 밸브 부재는, 가압 부재가 이동함에 따라 가압되거나 가압 해제되어, 복수의 분기 유로를 선택적으로 개폐하도록 구성될 수 있다.In one embodiment, the chemical liquid flow control device may further include a plurality of pressing members configured to correspond to a plurality of branch flow paths, and each configured to be movable. The valve member may be configured to be pressed or released as the pressing member moves, so as to selectively open and close a plurality of branch flow paths.
일 실시예에 있어서, 약액 유량 조절 장치는 가압 부재를 이동시키도록 구성되는 작동 부재를 더 포함할 수 있다.In one embodiment, the chemical liquid flow rate control device may further include an operation member configured to move the pressing member.
일 실시예에 있어서, 작동 부재에는 복수의 가압 부재가 수용되도록 서로 이격되어 형성되는 복수의 리세스가 형성될 수 있다. 밸브 부재는 탄성 복원하며 가압 부재를 리세스의 함몰된 방향으로 가압하도록 구성될 수 있다.In one embodiment, a plurality of recesses formed to be spaced apart from each other so as to accommodate a plurality of pressing members may be formed in the operation member. The valve member is elastically restored and may be configured to urge the pressing member in the recessed direction of the recess.
일 실시예에 있어서, 작동 부재는 리세스가 리세스의 함몰된 방향을 가로지르는 방향으로 이동하여 작동되도록 구성될 수 있다. 작동 부재가 작동함에 따라 복수의 가압 부재가 복수의 리세스에 선택적으로 수용될 수 있다.In one embodiment, the actuating member may be configured to operate by moving the recess in a direction transverse to the recessed direction of the recess. As the operation member operates, a plurality of pressing members may be selectively received in the plurality of recesses.
일 실시예에 있어서, 밸브 부재는 가압 부재가 리세스에 수용된 상태에서 대응되는 분기 유로를 개방하도록 구성될 수 있다.In one embodiment, the valve member may be configured to open a corresponding branch flow path while the pressing member is accommodated in the recess.
일 실시예에 있어서, 약액 유량 조절 장치는 밸브 부재와 복수의 가압 부재의 사이에 배치되고 복수의 가압 부재의 이동을 가이드하는 가이드 부재를 더 포함할 수 있다.In one embodiment, the chemical liquid flow control device may further include a guide member disposed between the valve member and the plurality of pressing members and guiding the movement of the plurality of pressing members.
일 실시예에 있어서, 약액 유량 조절 장치는 복수의 분기 유로에 대응되게 구성되고, 각각 이동 가능하게 구성되는 복수의 가압 부재; 가압 부재를 이동시키도록 구성되는 작동 부재; 및 작동 부재에 분리 가능하도록 맞물리고, 작동 부재와 맞물린 상태에서 작동 부재를 작동시키도록 구성되는 조작 부재를 더 포함할 수 있다In one embodiment, the chemical liquid flow rate control device is configured to correspond to a plurality of branch flow paths, a plurality of pressing members configured to be movable, respectively; An operation member configured to move the pressing member; And an operation member detachably engaged with the operation member and configured to operate the operation member in a state engaged with the operation member.
일 실시예에 있어서, 조작 부재에는 맞물림부가 형성되고, 작동 부재에는 맞물림부가 수용되는 대응 맞물림부가 형성될 수 있다.In one embodiment, the operation member may be formed with an engaging portion, and the operation member may be formed with a corresponding engaging portion in which the engaging portion is received.
일 실시예에 있어서, 밸브 부재는 가압되어 탄성 변형되고 가압 해제되어 탄성 복원되도록 구성될 수 있다.In one embodiment, the valve member may be configured to be elastically deformed by being pressed, and to be elastically restored by being released from the pressure.
일 실시예에 있어서, 약액 유량 조절 장치는 밸브 부재에 의해 덮이고 각각 복수의 분기 유로 중 대응되는 하나의 일부를 구성하는 복수의 밸브 공간이 형성되는 밸브 하우징을 더 포함할 수 있다.In one embodiment, the chemical liquid flow control device may further include a valve housing covered by a valve member and formed with a plurality of valve spaces each forming a part of a corresponding one of the plurality of branch flow paths.
일 실시예에 있어서, 밸브 하우징에는, 복수의 밸브 공간과 복수의 이송관의 모세 유로 각각을 연통하는 복수의 밸브 구멍이 형성될 수 있다.In one embodiment, a plurality of valve holes may be formed in the valve housing to communicate with each of the plurality of valve spaces and capillary passages of the plurality of transfer pipes.
일 실시예에 있어서, 약액 유량 조절 장치는 복수의 분기 유로에 대응되게 구성되고 각각 이동 가능하게 구성되는 복수의 가압 부재를 더 포함할 수 있다. 밸브 부재는 가압 부재에 의해 가압되면 밸브 구멍을 폐쇄하도록 구성될 수 있다.In one embodiment, the chemical liquid flow rate control device may further include a plurality of pressing members configured to correspond to a plurality of branch flow paths and configured to be movable, respectively. The valve member may be configured to close the valve hole when pressed by the pressing member.
일 실시예에 있어서, 복수의 밸브 공간 중 어느 하나에는 유출 유로의 일부를 구성하는 연결 구멍이 형성될 수 있다.In one embodiment, a connection hole constituting a part of the outlet flow path may be formed in any one of the plurality of valve spaces.
일 실시예에 있어서, 복수의 밸브 공간 중 서로 인접하는 2개의 밸브 공간을 연통하는 연통 유로가 형성될 수 있다.In one embodiment, a communication flow path for communicating two adjacent valve spaces among a plurality of valve spaces may be formed.
일 실시예에 있어서, 복수의 밸브 공간 중 어느 하나에는 유출 유로의 일부를 구성하는 연결 구멍이 형성될 수 있다. 밸브 부재가 밸브 구멍을 개방한 상태와 밸브 부재가 밸브 구멍을 폐쇄한 상태에서, 연결 구멍 및 연통 유로는 개방된 상태를 유지하도록 구성될 수 있다.In one embodiment, a connection hole constituting a part of the outlet flow path may be formed in any one of the plurality of valve spaces. In a state in which the valve member opens the valve hole and in a state in which the valve member closes the valve hole, the connection hole and the communication flow path may be configured to remain open.
일 실시예에 있어서, 밸브 부재는 복수의 밸브 공간을 향해 돌출하고, 각각 대응되는 분기 유로를 폐쇄 가능하게 구성되는 복수의 돌출부를 포함할 수 있다.In one embodiment, the valve member may include a plurality of protrusions that protrude toward a plurality of valve spaces and are configured to close corresponding branch flow paths, respectively.
일 실시예에 있어서, 약액 유량 조절 장치는 복수의 분기 유로에 대응되게 구성되고, 각각 이동 가능하게 구성되는 복수의 가압 부재를 더 포함할 수 있다. 밸브 부재에는 복수의 돌출부의 반대쪽에 배치되고 복수의 가압 부재가 안착되는 복수의 안착부가 형성될 수 있다.In one embodiment, the chemical liquid flow control device may further include a plurality of pressing members configured to correspond to a plurality of branch flow paths, and each configured to be movable. The valve member may be provided with a plurality of seating portions disposed opposite the plurality of protrusions and on which the plurality of pressing members are seated.
일 실시예에 있어서, 약액 유량 조절 장치는 유입 유로 또는 유출 유로에 배치되는 공기 통과 필터를 더 포함할 수 있다.In one embodiment, the chemical liquid flow rate control device may further include an air passing filter disposed in the inlet passage or the outlet passage.
본 개시의 일 실시예에 의하면, 환자에게 투여되는 약액의 유량(즉, flow rate)을 의사 등의 의료진이 편리하게 조절할 수 있다.According to an embodiment of the present disclosure, a medical staff such as a doctor may conveniently adjust the flow rate (ie, flow rate) of the drug solution administered to a patient.
본 개시의 일 실시예에 의하면, 환자에게 투여되는 약액의 유량(즉, flow rate)을 다양한 값으로 조절할 수 있다.According to an embodiment of the present disclosure, the flow rate (ie, flow rate) of the drug solution administered to the patient may be adjusted to various values.
본 개시의 일 실시예에 의하면, 약물 이송관 내의 공기 방울에 의해 약액의 유동이 멈추거나 유속이 기설정된 수준보다 현저히 느려지는 것을 방지할 수 있다.According to an exemplary embodiment of the present disclosure, it is possible to prevent the flow of the chemical solution from being stopped or the flow rate significantly slower than a preset level due to air bubbles in the drug delivery pipe.
도 1은 본 개시의 일 실시예에 따른 약액 유량 조절 장치의 사시도이다.1 is a perspective view of a chemical liquid flow control device according to an embodiment of the present disclosure.
도 2는 도 1에 도시된 약액 유량 조절 장치의 평면도이다.2 is a plan view of the chemical liquid flow rate control device shown in FIG. 1.
도 3은 도 2에 도시된 Ⅲ-Ⅲ 선을 따라 취한 단면도로서 약액이 흐르는 방향의 일 예를 도시한다.3 is a cross-sectional view taken along the line III-III shown in FIG. 2 and shows an example of a direction in which a chemical solution flows.
도 4는 도 2에 도시된 Ⅲ-Ⅲ 선을 따라 취한 단면도로서 약액이 흐르는 방향의 다른 예를 도시한다.4 is a cross-sectional view taken along the line III-III shown in FIG. 2 and shows another example of a direction in which a chemical liquid flows.
도 5는 도 1에 도시된 약액 유량 조절 장치의 분해 사시도이다.5 is an exploded perspective view of the chemical liquid flow control device shown in FIG. 1.
도 6은 도 3에 도시된 약액 유량 조절 장치를 다른 각도에서 도시하는 분해 사시도이다.6 is an exploded perspective view showing the chemical liquid flow rate control device shown in FIG. 3 from a different angle.
도 7은 도 3에 도시된 약액 유량 조절 장치를 또 다른 각도에서 도시하는 분해 사시도이다.7 is an exploded perspective view showing the chemical liquid flow rate control device shown in FIG. 3 from another angle.
도 8은 도 2에 도시된 Ⅷ-Ⅷ 선을 따라 취한 단면을 보여주는 사시도이다.FIG. 8 is a perspective view showing a cross section taken along line VIII-VIII shown in FIG. 2.
도 9는 도 2에 도시된 Ⅷ-Ⅷ 선을 따라 취한 단면도이다.9 is a cross-sectional view taken along the line VIII-VIII shown in FIG. 2.
도 10은 도 5 내지 도 7에 도시된 작동 부재를 도시하는 저면 사시도이다.10 is a bottom perspective view showing the operation member shown in FIGS. 5 to 7;
도 11은 도 5 내지 도 7에 도시된 밸브 하우징을 도시하는 사시도이다.11 is a perspective view illustrating the valve housing shown in FIGS. 5 to 7.
도 12는 본 개시의 일 실시예에 따른 약액 유량 조절 장치의 조작에 따른 유량 조절의 예를 도시하는 도면이다.12 is a view showing an example of flow rate control according to the operation of the chemical liquid flow rate control device according to an embodiment of the present disclosure.
도 13은 도 12의 약액 유량 조절 장치의 조작에 따른 유량 조절의 다른 예를 도시하는 도면이다.13 is a view showing another example of flow rate control according to the operation of the chemical liquid flow rate control device of FIG. 12.
도 14는 도 12의 약액 유량 조절 장치의 조작에 따른 유량 조절의 또 다른 예를 도시하는 도면이다.FIG. 14 is a diagram showing still another example of flow rate control according to the operation of the chemical liquid flow rate control device of FIG. 12.
도 15는 도 12의 약액 유량 조절 장치의 조작에 따른 유량 조절의 또 다른 예를 도시하는 도면이다.FIG. 15 is a diagram showing still another example of flow rate control according to the operation of the chemical liquid flow rate control device of FIG. 12.
도 16은 도 12의 약액 유량 조절 장치의 조작에 따른 유량 조절의 또 다른 예를 도시하는 도면이다.FIG. 16 is a diagram showing still another example of flow rate control according to the operation of the chemical liquid flow rate control device of FIG. 12.
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.Embodiments of the present disclosure are illustrated for the purpose of describing the technical idea of the present disclosure. The scope of the rights according to the present disclosure is not limited to the embodiments presented below or specific descriptions of these embodiments.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.All technical terms and scientific terms used in the present disclosure, unless otherwise defined, have meanings generally understood by those of ordinary skill in the art to which the present disclosure belongs. All terms used in the present disclosure are selected for the purpose of more clearly describing the present disclosure, and are not selected to limit the scope of the rights according to the present disclosure.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.Expressions such as "comprising", "having", "having" and the like used in the present disclosure are open terms that imply the possibility of including other embodiments, unless otherwise stated in the phrase or sentence in which the expression is included. It should be understood as (open-ended terms).
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.Expressions in the singular form described in the present disclosure may include the meaning of the plural form unless otherwise stated, and the same applies to the expression in the singular form described in the claims.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.Expressions such as "first" and "second" used in the present disclosure are used to distinguish a plurality of elements from each other, and do not limit the order or importance of the corresponding elements.
본 개시에서, 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 경우, 어떤 구성요소가 다른 구성요소에 직접적으로 연결될 수 있거나 접속될 수 있는 것으로, 또는 새로운 다른 구성요소를 매개로 하여 연결될 수 있거나 접속될 수 있는 것으로 이해되어야 한다.In the present disclosure, when a component is referred to as being "connected" or "connected" to another component, a component can be directly connected to or can be connected to another component, or a new other component It is to be understood that it may or may be connected via an element.
이하, 첨부한 도면들을 참조하여, 본 개시의 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. In the accompanying drawings, the same or corresponding elements are denoted with the same reference numerals. In addition, in the description of the following embodiments, overlapping descriptions of the same or corresponding components may be omitted. However, even if description of a component is omitted, it is not intended that such component is not included in any embodiment.
도 1은 본 개시의 일 실시예에 따른 약액 유량 조절 장치의 사시도이다. 도 2는 도 1에 도시된 약액 유량 조절 장치의 평면도이다.1 is a perspective view of a chemical liquid flow control device according to an embodiment of the present disclosure. 2 is a plan view of the chemical liquid flow rate control device shown in FIG. 1.
도 1 및 도 2에 도시된 바와 같이, 본 개시의 일 실시예에 따른 약액 유량 조절 장치(100)는 약액의 흐름을 안내하는 약액 유로(10)를 가진다. 여기서, 약액은 환자의 치료를 위해 환자에게 투여될 수 있는 약물로서 액체로 이루어진다. 약액 유량 조절 장치(100)는 통해 환자에게 투여되는 약액의 유량을 조절하도록 구성된다.As shown in FIGS. 1 and 2, the chemical liquid flow control apparatus 100 according to an embodiment of the present disclosure has a chemical liquid flow path 10 for guiding the flow of the chemical liquid. Here, the drug solution is a drug that can be administered to a patient for treatment of the patient and is made of a liquid. The drug solution flow rate control device 100 is configured to adjust the flow rate of the drug solution to be administered to the patient.
약액 유량 조절 장치(100)는 케이스(20, 30)를 포함할 수 있다. 약액 유량 조절 장치(100)는 약액 유로(10)의 적어도 일부를 형성하는 하우징(181, 170)을 포함할 수 있다. 케이스(20, 30)는 서로 결합되는 제1 케이스(20)와 제2 케이스(30)를 포함할 수 있다. 하우징(181, 170)은 서로 결합되는 유로 형성 하우징(181)과 밸브 하우징(170)을 포함할 수 있다. 하우징(181, 170)에는 약액 유로(10)의 일단인 홀(11a)과 약액 유로(10)의 타단인 홀(13a)이 형성된다.The chemical liquid flow rate control device 100 may include cases 20 and 30. The chemical liquid flow control device 100 may include housings 181 and 170 forming at least a part of the chemical liquid flow path 10. The cases 20 and 30 may include a first case 20 and a second case 30 coupled to each other. The housings 181 and 170 may include a flow path-forming housing 181 and a valve housing 170 that are coupled to each other. The housings 181 and 170 are formed with a hole 11a that is one end of the chemical liquid flow path 10 and a hole 13a that is the other end of the chemical liquid flow path 10.
도 3은 도 2에 도시된 Ⅲ-Ⅲ 선을 따라 취한 단면도로서 약액이 흐르는 방향의 일 예를 도시한다. 도 4는 도 2에 도시된 Ⅲ-Ⅲ 선을 따라 취한 단면도로서 약액이 흐르는 방향의 다른 예를 도시한다.3 is a cross-sectional view taken along the line III-III shown in FIG. 2 and shows an example of a direction in which a chemical solution flows. 4 is a cross-sectional view taken along the line III-III shown in FIG. 2 and shows another example of a direction in which a chemical liquid flows.
도 3에 도시된 바와 같이, 약액 유로(10)는 제1 유로(11), 제2 유로(13), 및 제1 유로(11)와 제2 유로(13)의 사이를 연결하는 복수의 분기 유로(12)를 포함한다. 도 3에 도시된 실시예에 있어서, 제1 유로(11)는 약액이 유입되는 유입 유로이고, 제2 유로(13)는 약액이 유출되는 유출 유로이다. 도 3에 도시된 화살표와 같이, 약액은 제1 유로(11)를 통해 유입되고 복수의 분기 유로(12) 중 적어도 하나를 거쳐 제2 유로(13)를 통해 유출된다. 도 4에 도시된 실시예에 있어서, 제2 유로(13)는 약액이 유입되는 유입 유로이고, 제1 유로(11)는 약액이 유출되는 유출 유로이다. 도 4에 도시된 화살표와 같이, 약액은 제2 유로(13)를 통해 유입되고 복수의 분기 유로(12) 중 적어도 하나를 거쳐 제1 유로(11)를 통해 유출된다. 즉, 약액이 유입되는 유로가 유입 유로로 이해되고, 약액이 유출되는 유로가 유출 유로로 이해될 수 있다. 복수의 분기 유로(12)는 유입 유로로부터 분기하고, 유출 유로를 통해 복수의 분기 유로(12)로부터 합류된 약액이 유출된다.As shown in FIG. 3, the chemical liquid flow path 10 includes a first flow path 11, a second flow path 13, and a plurality of branches connecting the first flow path 11 and the second flow path 13. It includes a flow path 12. In the embodiment shown in FIG. 3, the first flow path 11 is an inflow flow path through which the chemical liquid is introduced, and the second flow path 13 is an outflow flow path through which the chemical liquid flows out. As shown in the arrow shown in FIG. 3, the chemical liquid flows in through the first flow path 11 and flows out through the second flow path 13 through at least one of the plurality of branch flow paths 12. In the embodiment shown in FIG. 4, the second flow path 13 is an inflow flow path through which the chemical liquid is introduced, and the first flow path 11 is an outflow flow path through which the chemical liquid flows out. As shown in the arrow shown in FIG. 4, the chemical liquid flows in through the second flow path 13 and flows out through the first flow path 11 through at least one of the plurality of branch flow paths 12. That is, a flow path through which the chemical solution flows may be understood as an inflow channel, and a flow channel through which the chemical solution flows out may be understood as an outflow channel. The plurality of branch flow paths 12 diverge from the inflow flow path, and the chemical liquid joined from the plurality of branch flow paths 12 flows out through the outflow flow path.
여기서, 복수의 분기 유로의 개수는 n개일 수 있다. 본 설명 전체에서 언급하는 'n'은 '2 이상의 자연수'를 의미한다. 후술하는 복수의 가압 부재(130)의 개수는 n개일 수 있고, 복수의 분기 유로는 각각의 가압 부재(130)에 의해 개폐될 수 있다.Here, the number of the plurality of branch flow paths may be n. 'N' referred to throughout this description means'a natural number greater than or equal to 2'. The number of the plurality of pressing members 130 to be described later may be n, and the plurality of branch flow paths may be opened and closed by each of the pressing members 130.
도 3 내지 7을 참고하여, 유로 형성 하우징(181)의 외부에 형성된 홀(11a)은 제1 유로(11)의 일부를 구성할 수 있다. 후술하는 필터 기구(180)에 의해 제1 유로(11)가 구성될 수 있다. 본 실시예에서, 제1 유로(11)는 홀(11a) 및 필터 기구(180)에 형성된 유로가 순차적으로 연결되어 형성된다.3 to 7, the hole 11a formed outside the flow path forming housing 181 may form a part of the first flow path 11. The first flow path 11 may be configured by a filter mechanism 180 to be described later. In this embodiment, the first flow path 11 is formed by sequentially connecting the hole 11a and the flow path formed in the filter mechanism 180.
도 3 내지 7을 참고하여, 밸브 하우징(170)의 외부에 형성된 홀(13a)은 제2 유로(13)의 일부를 구성할 수 있다. 후술하는 연결 구멍(173)은 제2 유로(13)의 일부를 구성할 수 있다. 본 실시예에서, 제2 유로(13)는 연결 구멍(173)과 홀(13a)이 순차적으로 연결되어 형성된다.3 to 7, the hole 13a formed outside the valve housing 170 may form a part of the second flow path 13. The connection hole 173 to be described later may constitute a part of the second flow path 13. In this embodiment, the second flow path 13 is formed by sequentially connecting the connection hole 173 and the hole 13a.
도 3 내지 7을 참고하여, 실러(14)의 n개의 홀(14a, 14b, 14c)은 각각 n개의 분기 유로 중 대응되는 어느 하나의 일부를 구성할 수 있다. n개의 이송관(110a, 110b, 110c)의 모세 유로(110p)는 각각 n개의 분기 유로 중 대응되는 어느 하나의 일부를 구성할 수 있다. 연결관(175)의 n개의 홀(175a, 175b, 175c)은 각각 n개의 분기 유로 중 대응되는 어느 하나의 일부를 구성할 수 있다. 도 10을 참고하여, n개의 밸브 구멍(172a, 172b, 172c)은 각각 n개의 분기 유로 중 대응되는 어느 하나의 일부를 구성할 수 있다. n개의 밸브 공간(171a, 171b, 171c)은 각각 n개의 분기 유로 중 대응되는 어느 하나의 일부를 구성할 수 있다. 후술하는 n-1개의 연통 유로(174a, 174b)는 각각 'n개의 분기 유로의 일부인 n-1개의 분기 유로' 중 대응하는 어느 하나의 일부를 구성할 수 있다.3 to 7, the n holes 14a, 14b, and 14c of the sealer 14 may each form a part of any one of the n branch flow paths. Each of the capillary flow paths 110p of the n transfer pipes 110a, 110b, and 110c may form a part of any one corresponding to each of the n branch flow paths. Each of the n holes 175a, 175b, and 175c of the connector 175 may form a part of any one corresponding to each of the n branch flow paths. Referring to FIG. 10, each of the n valve holes 172a, 172b, and 172c may form a part of any one corresponding to each of the n branch flow paths. Each of the n valve spaces 171a, 171b, and 171c may form a part of any one corresponding to each of the n branch flow paths. Each of the n-1 communication flow paths 174a and 174b to be described later may form a part of any one of the n-1 branch flow paths that are part of the n branch flow channels.
본 실시예에서, 복수의 분기 유로(12)는 제1 분기 유로, 제2 분기 유로, 및 제3 분기 유로를 포함한다. 예를 들어, 제1 분기 유로는, 실러(14)의 제1 홀(14a), 제1 이송관(110a)에 형성되는 모세 유로(110p), 연결관(175)의 제1 홀(175a), 제1 밸브 구멍(172a), 제1 밸브 공간(171a), 및 제1 연통 유로(174a)가 순차적으로 연결되어 형성될 수 있다. 제2 분기 유로는, 실러(14)의 제2 홀(14b), 제2 이송관(110b)에 형성되는 모세 유로(110p), 연결관(175)의 제2 홀(175b), 제2 밸브 구멍(172b), 및 제2 밸브 공간(171b)이 순차적으로 연결되어 형성될 수 있다. 제3 분기 유로는, 실러(14)의 제3 홀(14c), 제3 이송관(110c)에 형성되는 모세 유로(110p), 연결관(175)의 제3 홀(175c), 제3 밸브 구멍(172c), 제3 밸브 공간(171c), 및 제2 연통 유로(174b)가 순차적으로 연결되어 형성될 수 있다. 유로 형성 하우징(181)의 내에서 복수의 홀이 형성되는 실시예에 있어서, 실러(14)의 제1 홀(14a), 제2 홀(14b), 및 제3 홀(14c)의 각각에 대응하는 유로 형성 하우징(181)의 복수의 홀 각각은 제1 분기 유로, 제2 분기 유로, 및 제3 분기 유로 각각의 일부를 구성할 수 있다.In this embodiment, the plurality of branch flow paths 12 include a first branch flow path, a second branch flow path, and a third branch flow path. For example, the first branch flow path is a first hole 14a of the sealer 14, a capillary flow path 110p formed in the first transfer pipe 110a, and a first hole 175a of the connection pipe 175 , The first valve hole 172a, the first valve space 171a, and the first communication flow path 174a may be sequentially connected to each other to be formed. The second branch flow path includes a second hole 14b of the sealer 14, a capillary flow path 110p formed in the second transfer pipe 110b, a second hole 175b of the connection pipe 175, and a second valve. The hole 172b and the second valve space 171b may be sequentially connected to each other to be formed. The third branch flow path includes a third hole 14c of the sealer 14, a capillary flow path 110p formed in the third transfer pipe 110c, a third hole 175c of the connection pipe 175, and a third valve. The hole 172c, the third valve space 171c, and the second communication passage 174b may be sequentially connected to each other to be formed. In the embodiment in which a plurality of holes are formed in the flow path forming housing 181, corresponding to each of the first hole 14a, the second hole 14b, and the third hole 14c of the sealer 14 Each of the plurality of holes of the flow path forming housing 181 may constitute a part of each of the first branch flow path, the second branch flow path, and the third branch flow path.
약액 유량 조절 장치(100)는 제1 유로(11)와 분기 유로(12)의 사이에 배치되는 실러(14)를 더 포함할 수 있다. 실러(14)는 고무 등의 재질로 형성될 수 있다. 예를 들어, 실러(14)는 고무 패킹일 수 있고, 실러(14)내에는 제1 유로(11)로부터 분기 유로(12)로 분기되는 유로가 형성될 수 있다. 약액은 실러(14)를 통해 분기 유로(12)의 모세 유로(110p)를 통과하도록 유도될 수 있다.The chemical liquid flow rate control device 100 may further include a sealer 14 disposed between the first flow path 11 and the branch flow path 12. The sealer 14 may be formed of a material such as rubber. For example, the sealer 14 may be a rubber packing, and a passage branching from the first passage 11 to the branch passage 12 may be formed in the sealer 14. The chemical solution may be guided to pass through the capillary flow path 110p of the branch flow path 12 through the sealer 14.
도 5는 도 1에 도시된 약액 유량 조절 장치의 분해 사시도이다. 도 6은 도 3에 도시된 약액 유량 조절 장치를 다른 각도에서 도시하는 분해 사시도이다. 도 7은 도 3에 도시된 약액 유량 조절 장치를 또 다른 각도에서 도시하는 분해 사시도이다.5 is an exploded perspective view of the chemical liquid flow control device shown in FIG. 1. 6 is an exploded perspective view showing the chemical liquid flow rate control device shown in FIG. 3 from a different angle. 7 is an exploded perspective view showing the chemical liquid flow rate control device shown in FIG. 3 from another angle.
도 5 내지 도 7에 도시된 바와 같이, 본 개시의 일 실시예에 따른 약액 유량 조절 장치(100)는 복수의 이송관(110) 및 밸브 부재(120)를 포함한다.5 to 7, the chemical liquid flow rate control apparatus 100 according to an embodiment of the present disclosure includes a plurality of transfer pipes 110 and a valve member 120.
복수의 이송관(110)은 복수의 분기 유로(12)에 대응되게 구성된다. 복수의 이송관(110)은 복수의 분기 유로(12) 중 대응되는 어느 하나의 적어도 일부를 구성하는 모세 유로(110p)를 형성한다. 이송관(110)은 고분자 마이크로튜브(microtube)를 포함할 수 있다. 복수의 이송관(110)은 n개일 수 있다. n개의 이송관(110)은 서로 다른 내경(또는 단면적)을 가진 모세 유로(110p)를 가질 수 있다. 복수의 이송관(110)의 개수는 약액 유량 조절 장치(100)의 유량 조절의 정밀도에 따라 다양하게 정해질 수 있다. 또한, 복수의 이송관(110)에 대응하는 모세 유로(110p) 각각의 길이 및/또는 내경은 약액 유량 조절 장치(100)의 유량 조절의 정밀도에 따라 서로 다르게 정해질 수 있다. 예를 들어, 복수의 이송관(110)은 약 0.04mm 내지 0.08mm의 내경을 가질 수 있다. 따라서, 서로 다른 유량으로 설정된 복수의 모세 유로(110p)를 선택적으로 개폐함으로써 유량 조절이 용이해지고 다양한 유량으로 조절될 수 있다. 일 실시예에 있어서, 복수의 이송관(110)은 약액이 서로 다른 유량으로 흐르도록 구성된 적어도 2개의 이송관을 포함할 수 있다. 이하에서 설명되는 실시예에 있어서, 복수의 분기 유로(12)가 제1 분기 유로, 제2 분기 유로, 및 제3 분기 유로로 구성되고, 복수의 이송관(110)이 제1 이송관(110a), 제2 이송관(110b), 및 제3 이송관(110c)을 포함한다. 예를 들어, 제1 이송관(110a), 제2 이송관(110b), 및 제3 이송관(110c)은 각각 시간당 1.5cc, 1.0cc, 및 0.5cc의 약액이 통과하도록 구성될 수 있다.The plurality of transfer pipes 110 are configured to correspond to the plurality of branch flow paths 12. The plurality of transfer pipes 110 form a capillary flow path 110p constituting at least a part of a corresponding one of the plurality of branch flow paths 12. The transfer pipe 110 may include a polymer microtube. The plurality of transfer pipes 110 may be n. The n number of transfer pipes 110 may have capillary flow paths 110p having different inner diameters (or cross-sectional areas). The number of the plurality of transfer pipes 110 may be variously determined according to the precision of the flow rate control of the chemical liquid flow rate control device 100. In addition, the length and/or the inner diameter of each of the capillary flow paths 110p corresponding to the plurality of transfer pipes 110 may be determined differently according to the precision of the flow rate control of the chemical liquid flow control device 100. For example, the plurality of conveying pipes 110 may have an inner diameter of about 0.04mm to 0.08mm. Accordingly, by selectively opening and closing a plurality of capillary flow paths 110p set to different flow rates, flow rate control is facilitated and various flow rates can be adjusted. In one embodiment, the plurality of transfer pipes 110 may include at least two transfer pipes configured to flow the chemical liquid at different flow rates. In the embodiment described below, the plurality of branch flow paths 12 are composed of a first branch flow path, a second branch flow path, and a third branch flow path, and the plurality of transfer pipes 110 are the first transfer pipes 110a. ), a second transfer pipe (110b), and a third transfer pipe (110c). For example, the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c may be configured to pass 1.5cc, 1.0cc, and 0.5cc of chemicals per hour, respectively.
밸브 부재(120)는 복수의 분기 유로(12)를 선택적으로 개폐함으로써 제2 유로(13)를 통해 유출되는 약액의 유량을 조절하도록 구성된다. 예를 들어, 밸브 부재(120)는 분기 유로(12)와 제2 유로(13)를 연결하는 밸브 기구로서 기능을 한다.The valve member 120 is configured to selectively open and close the plurality of branch flow paths 12 to control the flow rate of the chemical liquid flowing out through the second flow path 13. For example, the valve member 120 functions as a valve mechanism connecting the branch passage 12 and the second passage 13.
도 8은 도 2에 도시된 Ⅷ-Ⅷ 선을 따라 취한 단면을 보여주는 사시도이다. 도 9는 도 2에 도시된 Ⅷ-Ⅷ 선을 따라 취한 단면도이다.FIG. 8 is a perspective view showing a cross section taken along line VIII-VIII shown in FIG. 2. 9 is a cross-sectional view taken along the line VIII-VIII shown in FIG. 2.
도 8 및 도 9에 도시된 바와 같이, 일 실시예에 있어서, 약액 유량 조절 장치(100)는 복수의 분기 유로(12)에 대응되게 구성되고, 각각 이동 가능하게 구성되는 복수의 가압 부재(130)를 더 포함할 수 있다. 가압 부재(130)는 구 형상을 가지고 복수의 이송관(110)(즉, 분기 유로)의 길이 방향(RL)에 대하여 수직한 방향(예를 들어, 도 3에서 상하 방향(UD))을 따라 이동함에 따라 밸브 부재(120)에 대한 상대적인 거리가 변하도록 구성된다. 다른 예로서, 가압 부재(130)는 양 단부가 반구 형상을 가지는 막대 형상을 가질 수도 있다. 예를 들어, 복수의 가압 부재(130)는 제1 이송관(110a), 제2 이송관(110b), 및 제3 이송관(110c) 각각에 대응하는 제1 가압 부재(130a), 제2 가압 부재(130b), 및 제3 가압 부재(130c)를 포함할 수 있다.8 and 9, in one embodiment, the chemical liquid flow rate control device 100 is configured to correspond to a plurality of branch flow paths 12, and a plurality of pressing members 130 configured to be movable, respectively. ) May be further included. The pressing member 130 has a spherical shape and follows a direction perpendicular to the longitudinal direction RL of the plurality of conveying pipes 110 (ie, branch flow paths) (for example, the vertical direction UD in FIG. 3 ). It is configured to change the relative distance to the valve member 120 as it moves. As another example, the pressing member 130 may have a rod shape having a hemispherical shape at both ends. For example, the plurality of pressing members 130 may include a first pressing member 130a, a second pressing member 130a corresponding to each of the first conveying pipe 110a, the second conveying pipe 110b, and the third conveying pipe 110c. It may include a pressing member (130b) and a third pressing member (130c).
일 실시예에 있어서, 약액 유량 조절 장치(100)는 복수의 가압 부재(130)를 이동시키도록 구성되는 작동 부재(140)를 더 포함할 수 있다. 작동 부재(140)는 가압 부재(130)를 기준으로 밸브 부재(120)의 반대쪽에 위치할 수 있다. 작동 부재(140)는 판 형상을 가지며 복수의 이송관(110)의 길이 방향(RL)에 대하여 수직한 방향(예를 들어, 상하 방향(UD))을 따르는 회전 중심을 따라 회전하도록 구성된다. 작동 부재(140)가 회전함에 따라 복수의 가압 부재(130) 중 적어도 하나가 밸브 부재(120)에 대하여 상대적으로 이동할 수 있다. 이 실시예에서는 작동 부재(140)가 원판 형상을 가지는 것으로 설명되고 도시되어 있지만, 작동 부재(140)는 다각형 판 형상을 가질 수도 있다.In one embodiment, the chemical liquid flow rate control device 100 may further include an operation member 140 configured to move the plurality of pressing members 130. The operation member 140 may be located on the opposite side of the valve member 120 with respect to the pressing member 130. The operation member 140 has a plate shape and is configured to rotate along a rotation center along a direction perpendicular to the longitudinal direction RL of the plurality of conveying pipes 110 (eg, the vertical direction UD). As the operation member 140 rotates, at least one of the plurality of pressing members 130 may move relative to the valve member 120. In this embodiment, although the operation member 140 is described and illustrated as having a disk shape, the operation member 140 may have a polygonal plate shape.
도 10은 도 5 내지 도 7에 도시된 작동 부재를 도시하는 저면 사시도이다.10 is a bottom perspective view showing the operation member shown in FIGS. 5 to 7;
도 10에 도시된 바와 같이, 일 실시예에 있어서, 작동 부재(140)에는 복수의 가압 부재(130)가 수용되도록 서로 이격되어 형성되는 복수의 리세스(141)가 형성되고, 밸브 부재(120)는 탄성 복원하며 가압 부재(130)를 리세스(141)의 함몰된 방향(예를 들어, 상측 방향)으로 가압하도록 구성될 수 있다. 복수의 리세스(141)는 작동 부재(140)의 저면에 형성되고 가압 부재(130)를 기준으로 밸브 부재(120)의 반대 방향(예를 들어, 상측 방향)으로 오목하게 형성된다. 복수의 리세스(141)는 회전 중심을 따라 둘레 방향을 따라 서로 이격되도록 배열될 수 있다. 복수의 리세스(141)의 개수 및 형성 위치는 복수의 이송관(110)의 개수 및 약액 유량 조절 장치(100)의 유량 조절의 정밀도에 따라 정해질 수 있다.10, in one embodiment, the operation member 140 is formed with a plurality of recesses 141 spaced apart from each other so that a plurality of pressing members 130 are accommodated, and the valve member 120 ) Is elastically restored and may be configured to press the pressing member 130 in the recessed direction (eg, upward direction) of the recess 141. The plurality of recesses 141 are formed on the bottom surface of the operation member 140 and are concave in the opposite direction (eg, upward direction) of the valve member 120 with respect to the pressing member 130. The plurality of recesses 141 may be arranged to be spaced apart from each other along the circumferential direction along the rotation center. The number and formation position of the plurality of recesses 141 may be determined according to the number of the plurality of transfer pipes 110 and the precision of the flow rate control of the chemical liquid flow control device 100.
일 실시예에 있어서, 작동 부재(140)는 리세스(141)가 리세스(141)의 함몰된 방향을 가로지르는 방향으로 이동하여 작동되도록 구성되고, 작동 부재(140)가 작동함에 따라 복수의 가압 부재(130)가 복수의 리세스(141)에 선택적으로 수용될 수 있다. 리세스(141)의 함몰된 방향은 상하 방향(UD) 중 상측 방향을 의미하고, 리세스(141)의 함몰된 방향을 가로지르는 방향은 길이 방향(RL)과 복수의 이송관(110)이 배열되는 전후 방향(FR)에 의해 형성되는 평면을 따르는 방향을 의미할 수 있다. 즉, 판상의 작동 부재(140)는 회전 중심을 따라 회전함에 따라, 복수의 가압 부재(130)가 복수의 리세스(141)에 선택적으로 수용됨으로써 복수의 분기 유로(12)를 개폐하도록 구성될 수 있다.In one embodiment, the operation member 140 is configured to be operated by moving the recess 141 in a direction transverse to the recessed direction of the recess 141, and as the operation member 140 operates, a plurality of The pressing member 130 may be selectively accommodated in the plurality of recesses 141. The recessed direction of the recess 141 means an upper direction among the vertical directions (UD), and the direction crossing the recessed direction of the recess 141 is the longitudinal direction (RL) and the plurality of conveying pipes 110 It may mean a direction along a plane formed by the arranged front and rear directions FR. That is, as the plate-shaped operation member 140 rotates along the rotation center, the plurality of pressing members 130 are selectively accommodated in the plurality of recesses 141 to open and close the plurality of branch flow paths 12. I can.
일 실시예에 있어서, 밸브 부재(120)는 가압 부재(130)가 리세스(141)에 수용된 상태에서 대응되는 분기 유로(12)를 개방하도록 구성될 수 있다. 즉, 밸브 부재(120)는 복수의 가압 부재(130) 중 리세스(141)에 수용된 가압 부재(130)에 대응되는 분기 유로(12)를 개방하도록 구성된다. 반대로, 밸브 부재(120)는 가압 부재(130)가 리세스(141)에 수용되지 않은 상태에서 리세스(141)에 수용되지 않은 가압 부재(130)에 대응되는 분기 유로(12)를 폐쇄하도록 구성된다. 예를 들어, 가압 부재(130)가 리세스(141)에 수용된 상태는 밸브 부재(120)가 가압 해제되어 분기 유로(12)가 개방되고, 가압 부재(130)가 리세스(141)에 수용되지 않은 상태는 밸브 부재(120)가 가압되어 분기 유로(12)가 폐쇄된다.In one embodiment, the valve member 120 may be configured to open a corresponding branch flow path 12 in a state in which the pressing member 130 is accommodated in the recess 141. That is, the valve member 120 is configured to open the branch flow path 12 corresponding to the pressing member 130 accommodated in the recess 141 among the plurality of pressing members 130. On the contrary, the valve member 120 closes the branch flow path 12 corresponding to the pressing member 130 not accommodated in the recess 141 in a state where the pressing member 130 is not accommodated in the recess 141. It is composed. For example, in a state in which the pressing member 130 is accommodated in the recess 141, the valve member 120 is depressurized and the branch flow path 12 is opened, and the pressing member 130 is accommodated in the recess 141. In a state in which the valve member 120 is not pressed, the branch flow path 12 is closed.
일 실시예에 있어서, 약액 유량 조절 장치(100)는 밸브 부재(120)와 복수의 가압 부재(130) 사이에 배치되고 복수의 가압 부재(130)의 이동을 가이드하는 가이드 부재(150)를 더 포함할 수 있다. 가이드 부재(150)는 밸브 부재(120)를 덮도록 구성되고, 밸브 하우징(170)에 결합된다. 가이드 부재(150)는, 가압 부재(130)가 상하 방향(UD)으로 이동하는 것을 가이드하고, 복수의 가압 부재(130)를 전후 방향(FR)을 따라 서로 이격하는 역할을 한다. 이를 위해, 가이드 부재(150)에는 전후 방향(FR)을 따라 서로 이격되어 배치되고 복수의 가압 부재(130)가 보유되는 복수의 가이드 홀(151)이 형성된다. 가이드 부재(150)는 복수의 가압 부재(130)가 밸브 부재(120)를 가압 상태 및 가압 해제 상태의 사이에서 상하 방향(UD)으로 이동하는 거리와 같거나 그 거리보다 큰 상하 방향(UD)을 따른 두께를 가질 수 있다. 복수의 가이드 홀(151)은 n개일 수 있다. 예를 들어, 복수의 가이드 홀(151)은 제1 가압 부재(130a), 제2 가압 부재(130b), 및 제3 가압 부재(130c) 각각에 대응하는 제1 가이드 홀(151a), 제2 가이드 홀(151b), 및 제3 가이드 홀(151c)을 포함할 수 있다.In one embodiment, the chemical liquid flow rate control device 100 is disposed between the valve member 120 and the plurality of pressing members 130, and further includes a guide member 150 for guiding the movement of the plurality of pressing members 130. Can include. The guide member 150 is configured to cover the valve member 120 and is coupled to the valve housing 170. The guide member 150 serves to guide the pressing member 130 to move in the vertical direction (UD), and to space the plurality of pressing members 130 from each other along the front-rear direction FR. To this end, a plurality of guide holes 151 are formed in the guide member 150 to be spaced apart from each other along the front-rear direction FR and hold the plurality of pressing members 130. The guide member 150 is a vertical direction (UD) equal to or greater than the distance in which the plurality of pressing members 130 move in the vertical direction (UD) between the pressing state and the pressing state of the valve member 120 It can have a thickness along the line. The plurality of guide holes 151 may be n. For example, the plurality of guide holes 151 may include a first guide hole 151a and a second pressure corresponding to each of the first pressing member 130a, the second pressing member 130b, and the third pressing member 130c. A guide hole 151b and a third guide hole 151c may be included.
일 실시예에 있어서, 약액 유량 조절 장치(100)는 작동 부재(140)와 조작 부재(160)를 더 포함할 수 있다. 상술한 바와 같이, 작동 부재(140)는 가압 부재(130)를 이동시키도록 구성되거나 밸브 부재(120)를 작동시키도록 구성될 수 있다. 조작 부재(160)는 작동 부재(140)와 맞물린 상태에서 작동 부재(140)를 작동시키도록 구성된다. 예를 들어, 조작 부재(160)는 작동 부재(140)를 회전시킴으로써 약액의 유량 조절을 행하도록 구성될 수 있다. 작동 부재(140)의 중앙에는 작동 부재(140)의 회전을 지지하기 위한 샤프트 홀(140a)이 형성된다.In one embodiment, the chemical liquid flow rate control device 100 may further include an operation member 140 and an operation member 160. As described above, the operation member 140 may be configured to move the pressing member 130 or may be configured to operate the valve member 120. The operation member 160 is configured to operate the operation member 140 in a state engaged with the operation member 140. For example, the operation member 160 may be configured to adjust the flow rate of the chemical solution by rotating the operation member 140. A shaft hole 140a for supporting rotation of the operation member 140 is formed in the center of the operation member 140.
일 실시예에 있어서, 조작 부재(160)에는 맞물림부(161)가 형성되고, 작동 부재(140)에는 맞물림부(161)가 수용되어 맞물리는 대응 맞물림부(142)가 형성될 수 있다. 즉, 대응 맞물림부(142)는 맞물림부(161)가 수용될 수 있도록 오목하게 형성될 수 있다. 맞물림부(161)와 대응 맞물림부(142)는 서로 상보적인 형상을 가질 수 있다. 예를 들어, 맞물림부(161)는 별 모양 또는 다각형의 평면 형상을 가지고, 대응 맞물림부(142)는 맞물림부(161)의 평면 형상에 대응하도록 하방으로 오목하게 형성될 수 있다. 조작 부재(160)는 맞물림부(161)로부터 상방으로 돌출하는 손잡이부(162)를 더 포함할 수 있다. 사용자는 손잡이부(162)를 파지하여 회전시킴으로써 작동 부재(140)를 용이하게 회전시킬 수 있다.In one embodiment, an engaging portion 161 is formed on the operation member 160, and a corresponding engaging portion 142 may be formed in the operation member 140 by receiving the engaging portion 161. That is, the corresponding engaging portion 142 may be formed to be concave so that the engaging portion 161 can be accommodated. The engaging portion 161 and the corresponding engaging portion 142 may have a shape complementary to each other. For example, the engaging portion 161 may have a star-shaped or polygonal planar shape, and the corresponding engaging portion 142 may be formed to be concave downward to correspond to the planar shape of the engaging portion 161. The operation member 160 may further include a handle portion 162 protruding upward from the engaging portion 161. The user can easily rotate the operation member 140 by gripping and rotating the handle part 162.
일 실시예에 있어서, 조작 부재(160)는 약액 유량 조절 장치(100)의 작동 부재(140)의 일부로부터 분리가능하게 결합될 수 있다. 예를 들어, 담당 의사 또는 담당 간호사는 조작 부재(160)를 휴대하고 있거나 일정한 장소에 보관하다가 약액의 유량 조절이 필요한 경우에 약액 유량 조절 장치(100)에 결합하여 사용할 수 있다. 따라서, 환자 또는 권한이 없는 사용자가 조작 부재(160)를 임의로 조작하여 약액의 유량을 조절하는 것을 방지할 수 있다. 즉, 조작 부재(160)는 약액의 유량 조절이 필요한 경우에 약액 유량 조절 장치(100)에 결합되어 작동 부재(140)를 회전시키도록 구성되는 열쇠(key)로서 기능을 할 수 있다.In an embodiment, the operation member 160 may be detachably coupled from a part of the operation member 140 of the chemical liquid flow rate control device 100. For example, a doctor in charge or a nurse in charge may be used in combination with the chemical liquid flow control device 100 when the operation member 160 is carried or stored in a certain place and then the flow rate of the chemical liquid needs to be adjusted. Accordingly, it is possible to prevent a patient or an unauthorized user from arbitrarily manipulating the operation member 160 to adjust the flow rate of the chemical solution. That is, the operation member 160 may function as a key configured to rotate the operation member 140 by being coupled to the chemical liquid flow control device 100 when it is necessary to adjust the flow rate of the chemical liquid.
일 실시예에 있어서, 밸브 부재(120)는 가압되어 탄성 변형되고 가압 해제되어 탄성 복원되도록 구성될 수 있다. 예를 들어, 밸브 부재(120)는 고무 재질과 같이 탄성 변형 및 탄성 복원이 가능한 재질로 이루어질 수 있다. 이 실시예에 있어서, 밸브 부재(120)는, 가압 부재(130)의 가압에 의해 탄성 변형되어 대응되는 분기 유로(12)를 폐쇄하도록 구성되고, 가압 부재(130)가 작동 부재(140)의 리세스(141)에 수용될 때 가압 부재(130)를 상방으로 이동하도록 탄성 복원력을 제공하여 대응되는 분기 유로(12)를 개방하도록 구성될 수 있다.In one embodiment, the valve member 120 may be configured to be elastically deformed by being pressed, and to be elastically restored by being released from the pressure. For example, the valve member 120 may be made of a material capable of elastic deformation and restoration of elasticity, such as a rubber material. In this embodiment, the valve member 120 is configured to be elastically deformed by the pressing of the pressing member 130 to close the corresponding branch flow path 12, and the pressing member 130 is When accommodated in the recess 141, it may be configured to open the corresponding branch flow path 12 by providing an elastic restoring force to move the pressing member 130 upward.
도 11은 도 5 내지 도 7에 도시된 밸브 하우징을 도시하는 사시도이다.11 is a perspective view illustrating the valve housing shown in FIGS. 5 to 7.
도 11에 도시된 바와 같이, 일 실시예에 있어서, 약액 유량 조절 장치(100)는 복수의 밸브 공간(171)이 형성되는 밸브 하우징(170)을 더 포함할 수 있다. 복수의 밸브 공간(171)은 밸브 부재(120)에 의해 덮이도록 구성된다. 밸브 부재(120)는 밸브 공간(171) 내에 보유되는 약액이 상방으로 흐르지 않도록 방지하는 덮개 또는 실링 부재로서의 기능을 한다. 복수의 밸브 공간(171)은 각각 복수의 분기 유로(12) 중 대응되는 하나의 일부를 구성한다. 복수의 밸브 공간(171)은 수직 방향(UD) 중 하측 방향으로 오목하게 형성되고 전후 방향(FR)으로 일렬로 배열된다. 즉, 오목하게 형성되는 복수의 밸브 공간(171)은 실링 부재로서의 밸브 부재(120)에 의해 폐쇄된 공간을 형성하여 복수의 분기 유로(12) 중 대응되는 분기 유로(12)의 일부에 포함되는 것으로 이해될 수 있다. 복수의 밸브 공간(171)은 n개일 수 있다. 예를 들어, 복수의 밸브 공간(171)은 제1 이송관(110a), 제2 이송관(110b), 및 제3 이송관(110c) 각각에 대응하는 제1 밸브 공간(171a), 제2 밸브 공간(171b), 및 제3 밸브 공간(171c)을 포함할 수 있다.As shown in FIG. 11, in one embodiment, the chemical liquid flow rate control device 100 may further include a valve housing 170 in which a plurality of valve spaces 171 are formed. The plurality of valve spaces 171 are configured to be covered by the valve member 120. The valve member 120 functions as a cover or sealing member that prevents the chemical liquid held in the valve space 171 from flowing upward. Each of the plurality of valve spaces 171 constitutes a part of a corresponding one of the plurality of branch flow paths 12. The plurality of valve spaces 171 are formed to be concave in the lower direction of the vertical direction UD and are arranged in a row in the front-rear direction FR. That is, the plurality of concave valve spaces 171 form a space closed by the valve member 120 as a sealing member to be included in a part of the corresponding branch flow path 12 among the plurality of branch flow paths 12. Can be understood as. The plurality of valve spaces 171 may be n. For example, the plurality of valve spaces 171 may include a first valve space 171a and a second valve corresponding to each of the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c. It may include a valve space 171b and a third valve space 171c.
밸브 하우징(170)은 모세 유로(110p)를 형성하는 복수의 이송관(110)이 연결되는 복수의 연결관(175)을 포함할 수 있다. 복수의 이송관(110)이 복수의 연결관(175)에 삽입되거나 복수의 연결관이 복수의 이송관(110)에 삽입되도록 연결될 수 있다. 복수의 연결관(175)은 n개일 수 있다. 예를 들어, 복수의 연결관(175)은 제1 이송관(110a), 제2 이송관(110b), 및 제3 이송관(110c) 각각이 삽입되는 제1 홀(175a), 제2 홀(175b), 및 제3 홀(175c)을 포함할 수 있다.The valve housing 170 may include a plurality of connection pipes 175 to which a plurality of transfer pipes 110 forming the capillary flow path 110p are connected. A plurality of transfer pipes 110 may be connected to be inserted into the plurality of connection pipes 175 or a plurality of connection pipes may be inserted into the plurality of transfer pipes 110. The plurality of connection pipes 175 may be n. For example, the plurality of connection pipes 175 may include a first hole 175a and a second hole into which each of the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c is inserted. It may include (175b) and a third hole (175c).
일 실시예에 있어서, 밸브 하우징(170)에는 복수의 밸브 공간(171)과 복수의 이송관(110)의 모세 유로(110p) 각각을 연통하는 복수의 밸브 구멍(172)이 형성될 수 있다. 복수의 밸브 구멍(172)은 대응되는 복수의 밸브 공간(171)의 저부에 형성될 수 있다. 복수의 밸브 구멍(172)은 복수의 연결관(175) 각각에 연통한다. 복수의 연결관(175)을 통해 유입되는 약액이 밸브 구멍(172)을 통해 밸브 공간(171) 내에 일시적으로 보유되거나, 밸브 공간(171) 내에 일시적으로 보유된 약액이 밸브 구멍(172)을 통해 복수의 연결관(175)으로 흐를 수 있다. 복수의 밸브 구멍(172)은 n개일 수 있다. 예를 들어, 복수의 밸브 구멍(172)은 제1 이송관(110a), 제2 이송관(110b), 및 제3 이송관(110c)에 연통하는 제1 밸브 구멍(172a), 제2 밸브 구멍(172b), 및 제3 밸브 구멍(172c)을 포함할 수 있다. 이 경우, 밸브 부재(120)의 탄성 변형에 의해, 제1 밸브 구멍(172a), 제2 밸브 구멍(172b), 및 제3 밸브 구멍(172c) 각각이 개방되거나 폐쇄될 수 있다. 이에 따라, 약액 유로(10) 내를 흐르는 약액의 유량이 조절될 수 있다.In an embodiment, a plurality of valve holes 172 communicating with each of the plurality of valve spaces 171 and the capillary flow paths 110p of the plurality of transfer pipes 110 may be formed in the valve housing 170. The plurality of valve holes 172 may be formed at the bottom of the corresponding plurality of valve spaces 171. The plurality of valve holes 172 communicate with each of the plurality of connection pipes 175. The chemical liquid introduced through the plurality of connection pipes 175 is temporarily held in the valve space 171 through the valve hole 172, or the chemical liquid temporarily held in the valve space 171 is through the valve hole 172 It may flow through a plurality of connection pipes 175. The plurality of valve holes 172 may be n. For example, the plurality of valve holes 172 may include a first valve hole 172a, a second valve communicating with the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c. It may include a hole 172b, and a third valve hole 172c. In this case, due to the elastic deformation of the valve member 120, each of the first valve hole 172a, the second valve hole 172b, and the third valve hole 172c may be opened or closed. Accordingly, the flow rate of the chemical liquid flowing in the chemical liquid flow path 10 may be adjusted.
일 실시예에 있어서, 밸브 부재(120)는 가압 부재(130)에 의해 가압되면 밸브 구멍(172)을 폐쇄하도록 구성될 수 있다. 예를 들어, 밸브 부재(120)가 고무와 같은 탄성 변형 가능한 재질로 이루어지는 경우, 가압 부재(130)가 하방으로 이동하여 밸브 부재(120)를 하방으로 가압하면, 밸브 부재(120)가 밸브 공간(171) 내에서 탄성 변형된다. 따라서, 밸브 부재(120)의 탄성 변형된 부분이 밸브 구멍(172)에 맞닿아 밸브 구멍(172)을 폐쇄시킬 수 있다.In one embodiment, the valve member 120 may be configured to close the valve hole 172 when pressed by the pressing member 130. For example, when the valve member 120 is made of an elastically deformable material such as rubber, when the pressing member 130 moves downward and presses the valve member 120 downward, the valve member 120 It is elastically deformed within (171). Accordingly, the elastically deformed portion of the valve member 120 may contact the valve hole 172 to close the valve hole 172.
일 실시예에 있어서, 복수의 밸브 공간(171) 중 어느 하나에는 제2 유로(13)가 연결되는 연결 구멍(173)이 형성될 수 있다. 복수의 밸브 공간(171)은 연결 구멍(173)을 통해 제2 유로(13)와 연통하고, 복수의 분기 유로(12)는 연결 구멍(173)을 통해 합류된다. 제2 유로(13)로부터 유입되는 약액이 연결 구멍(173)을 통해 밸브 공간(171) 내에 일시적으로 보유되거나, 밸브 공간(171) 내에 일시적으로 보유된 약액은 연결 구멍(173)을 통해 제2 유로(13)로 흐른다.In one embodiment, a connection hole 173 to which the second flow path 13 is connected may be formed in any one of the plurality of valve spaces 171. The plurality of valve spaces 171 communicate with the second flow path 13 through the connection hole 173, and the plurality of branch flow paths 12 join through the connection hole 173. The chemical liquid flowing from the second flow path 13 is temporarily held in the valve space 171 through the connection hole 173, or the chemical liquid temporarily held in the valve space 171 is the second through the connection hole 173 It flows through the flow path 13.
일 실시예에 있어서, 복수의 밸브 공간(171) 중 서로 인접하는 2개의 밸브 공간(171)을 연통하는 연통 유로(174)가 형성될 수 있다. 복수의 밸브 구멍(172)과 연결 구멍(173)은 연통 유로(174)를 통해 서로 연통되어 있다. 즉, 연결 구멍(173)이 형성되지 않은 밸브 공간(171)의 밸브 구멍(172)은 연통 유로(174)를 경유하여 연결 구멍(173)에 연통하고, 연결 구멍(173)이 형성된 밸브 공간(171)의 밸브 구멍(172)은 연통 유로(174)를 경유하지 않고 직접 연결 구멍(173)에 연통된다. 복수의 연통 유로(174)는 n-1개일 수 있다. 본 실시예에서 연통 유로(174)가 밸브 하우징(170)에 형성된 홈을 밸브 부재(120)가 덮어주어 형성되나, 도시되지 않은 다른 실시예에서 연통 유로(174)가 밸브 하우징(170)에 형성된 홀로 구성될 수도 있다. n개의 밸브 공간(171a, 171b, 171c) 각각에 위치한 약액은 연통 유로(174)에 의해 하나의 밸브 공간(171b)으로 모여질 수 있다. 본 실시예에서, 연통 유로(174)는 제1 밸브 공간(171a)과 제2 밸브 공간(171b) 사이를 연결하도록 형성되는 제1 연통 유로(174a) 및 제2 밸브 공간(171b)과 제3 밸브 공간(171c) 사이를 연결하도록 형성되는 제2 연통 유로(174b)를 포함할 수 있다.In one embodiment, a communication flow path 174 communicating two valve spaces 171 adjacent to each other among the plurality of valve spaces 171 may be formed. The plurality of valve holes 172 and the connection holes 173 are in communication with each other through a communication flow path 174. That is, the valve hole 172 of the valve space 171 in which the connection hole 173 is not formed communicates with the connection hole 173 via the communication flow path 174, and the valve space in which the connection hole 173 is formed ( The valve hole 172 of the 171 is directly communicated with the connection hole 173 without passing through the communication flow path 174. The plurality of communication flow paths 174 may be n-1. In this embodiment, the communication channel 174 is formed by covering the groove formed in the valve housing 170 by the valve member 120, but in another embodiment not shown, the communication channel 174 is formed in the valve housing 170. It can also be configured alone. The chemicals located in each of the n valve spaces 171a, 171b, and 171c may be collected into one valve space 171b by a communication flow path 174. In this embodiment, the communication flow path 174 is formed to connect between the first valve space 171a and the second valve space 171b, the first communication flow path 174a, the second valve space 171b, and the third A second communication flow path 174b formed to connect between the valve spaces 171c may be included.
일 실시예에 있어서, 밸브 부재(120)가 밸브 구멍(172)을 개방한 상태와 밸브 부재(120)가 밸브 구멍(172)을 폐쇄한 상태에서, 연결 구멍(173) 및 연통 유로(174)는 개방된 상태를 유지하도록 구성될 수 있다. 즉, 밸브 부재(120)가 밸브 구멍(172)을 개방한 상태 또는 폐쇄한 상태와는 관계없이, 연결 구멍(173) 및 연통 유로(174)는 항상 개방된 상태를 유지하도록 구성된다. 따라서, 연결 구멍(173)이 형성되지 않은 밸브 공간(171)의 밸브 구멍(172)이 폐쇄되고, 연결 구멍(173)이 형성되지 않은 밸브 공간(171)의 밸브 구멍(172)이 개방된 상태에서도, 연결 구멍(173)이 형성되지 않은 밸브 공간(171)의 밸브 구멍(172)은 연통 유로(174)를 통해 연결 구멍(173)에 연통될 수 있다. 그 결과, 약액은 연통된 경로를 따라 흐를 수 있다.In one embodiment, in a state in which the valve member 120 opens the valve hole 172 and the valve member 120 closes the valve hole 172, the connection hole 173 and the communication flow path 174 Can be configured to remain open. That is, regardless of the state in which the valve member 120 opens or closes the valve hole 172, the connection hole 173 and the communication flow passage 174 are configured to always remain open. Accordingly, the valve hole 172 of the valve space 171 in which the connection hole 173 is not formed is closed, and the valve hole 172 of the valve space 171 in which the connection hole 173 is not formed is opened. Also, the valve hole 172 of the valve space 171 in which the connection hole 173 is not formed may communicate with the connection hole 173 through the communication flow path 174. As a result, the chemical liquid can flow along the communicated path.
일 실시예에 있어서, 밸브 부재(120)는 복수의 밸브 공간(171)을 향해 돌출하고 각각 대응되는 분기 유로(12)를 폐쇄 가능하게 구성되는 복수의 돌출부(121)를 포함할 수 있다. 복수의 돌출부(121)의 적어도 일부는 복수의 밸브 공간(171)을 향해 돌출하여 밸브 공간(171)에 수용된다. 따라서, 가압 부재(130)의 상하 방향(UD)을 따른 이동 거리를 축소함으로써 약액 유량 조절 장치(100)의 소형화를 달성할 수 있다. 또한, 복수의 돌출부(121)로 인해 밸브 공간(171)이 일시적으로 보유하는 약액의 유량을 적게 유지할 수 있으므로, 약액을 투여하는 초기 시간을 단축할 수 있다. 또한, 약액의 투여가 종료된 이후에 약액 유량 조절 장치(100) 내에 잔류하는 약액의 유량을 감소시켜, 사용되지 않고 폐기되는 약액의 양을 줄일 수 있다. 복수의 돌출부(121)는 n개일 수 있다. 예를 들어, 복수의 돌출부(121)는 제1 가압 부재(130a), 제2 가압 부재(130b), 및 제3 가압 부재(130c) 각각에 대응하는 제1 돌출부(121a), 제2 돌출부(121b), 및 제3 돌출부(121c)를 포함할 수 있다. 이 경우, 제1 돌출부(121a), 제2 돌출부(121b), 및 제3 돌출부(121c) 각각은 제1 밸브 구멍(172a), 제2 밸브 구멍(172b), 및 제3 밸브 구멍(172c) 각각을 개방하거나 폐쇄하도록 구성될 수 있다.In one embodiment, the valve member 120 may include a plurality of protrusions 121 configured to protrude toward the plurality of valve spaces 171 and close corresponding branch flow paths 12, respectively. At least some of the plurality of protrusions 121 protrude toward the plurality of valve spaces 171 and are accommodated in the valve space 171. Therefore, by reducing the moving distance of the pressing member 130 along the vertical direction UD, it is possible to achieve a downsizing of the chemical liquid flow rate control device 100. In addition, since the flow rate of the chemical liquid temporarily held by the valve space 171 can be kept low due to the plurality of protrusions 121, the initial time for administering the chemical liquid can be shortened. In addition, by reducing the flow rate of the chemical liquid remaining in the chemical liquid flow rate control device 100 after the administration of the chemical liquid is terminated, the amount of the chemical liquid that is not used and discarded can be reduced. The plurality of protrusions 121 may be n. For example, the plurality of protrusions 121 may include a first protrusion 121a and a second protrusion corresponding to each of the first pressing member 130a, the second pressing member 130b, and the third pressing member 130c. 121b), and a third protrusion 121c. In this case, each of the first protrusion 121a, the second protrusion 121b, and the third protrusion 121c is a first valve hole 172a, a second valve hole 172b, and a third valve hole 172c. Each can be configured to open or close.
일 실시예에 있어서, 밸브 부재(120)에는 복수의 돌출부(121)의 반대쪽에 배치되고 복수의 가압 부재(130)가 안착되는 복수의 안착부(122)가 형성될 수 있다. 복수의 가압 부재(130)가 복수의 안착부(122)에 안착됨으로써, 복수의 가압 부재(130) 각각이 복수의 밸브 공간(171) 각각에 정확하게 위치하여, 밸브 구멍(172)을 확실히 폐쇄하도록 구성된다. 복수의 안착부(122)는 하측 방향으로 오목하게 형성될 수 있다. 복수의 가압 부재(130)가 복수의 안착부(122)에 정확하게 안착하도록, 복수의 가압 부재(130)의 곡률 반경이 복수의 안착부(122)의 곡률 반경에 일치하도록 구성될 수 있다. 복수의 안착부(122)는 n개일 수 있다. 예를 들어, 복수의 안착부(122)는 제1 가압 부재(130a), 제2 가압 부재(130b), 및 제3 가압 부재(130c) 각각에 대응하는 제1 안착부(122a), 제2 안착부(122b), 및 제3 안착부(122c)를 포함할 수 있다.In one embodiment, the valve member 120 may be provided with a plurality of seating portions 122 disposed opposite the plurality of protrusions 121 and on which the plurality of pressing members 130 are seated. Since the plurality of pressing members 130 are seated on the plurality of seating portions 122, each of the plurality of pressing members 130 is accurately positioned in each of the plurality of valve spaces 171, so that the valve hole 172 is surely closed. It is composed. The plurality of seating portions 122 may be formed to be concave in the downward direction. The plurality of pressing members 130 may be configured such that the radius of curvature of the plurality of pressing members 130 coincide with the radius of curvature of the plurality of receiving parts 122 so that the plurality of pressing members 130 are accurately mounted on the plurality of receiving parts 122. The plurality of seating portions 122 may be n. For example, the plurality of seating portions 122 may include a first seating portion 122a, a second seating portion 122a corresponding to each of the first pressing member 130a, the second pressing member 130b, and the third pressing member 130c. It may include a seating portion (122b) and a third seating portion (122c).
일 실시예에 있어서, 약액 유량 조절 장치(100)는 복수의 이송관(110) 및 밸브 부재(120)를 덮도록 구성되는 제1 케이스(20) 및 제2 케이스(30)를 포함할 수 있다. 제1 케이스(20)와 제2 케이스(30)는 서로 결합되도록 구성될 수 있다. 제1 케이스(20)에는 복수의 이송관(110) 및 밸브 하우징(170)이 고정되도록 구성된다. 제1 유로(11) 및 제2 유로(13)는 제1 케이스(20) 및 제2 케이스(30)로부터 외측으로 돌출하도록 구성되고 제1 케이스(20) 및 제2 케이스(30)에 의해 고정될 수 있다. 제2 케이스(30)에는 조작 부재(160)가 노출되도록 조작 홀(30a)이 형성될 수 있다. 조작 홀(30a)을 통해 조작 부재(160)를 삽입하여 조작 부재(160)를 작동 부재(140)와 결합된 다음, 작동 부재(140)의 위치를 변경시킬 수 있다. 예를 들어, 작동 부재(140)는 회전하여 그 위치가 변경되도록 구성될 수도 있고, 회전이 아닌 다른 이동(예를 들어, 슬라이딩)을 통해 그 위치가 변경되도록 구성될 수도 있다.In one embodiment, the chemical liquid flow control device 100 may include a first case 20 and a second case 30 configured to cover the plurality of transfer pipes 110 and the valve member 120. . The first case 20 and the second case 30 may be configured to be coupled to each other. A plurality of transfer pipes 110 and valve housing 170 are configured to be fixed to the first case 20. The first flow path 11 and the second flow path 13 are configured to protrude outward from the first case 20 and the second case 30 and are fixed by the first case 20 and the second case 30. Can be. A manipulation hole 30a may be formed in the second case 30 to expose the manipulation member 160. After the operation member 160 is coupled with the operation member 140 by inserting the operation member 160 through the operation hole 30a, the position of the operation member 140 may be changed. For example, the operation member 140 may be configured to change its position by rotating, or may be configured to change its position through movement other than rotation (eg, sliding).
일 실시예에 있어서, 약액 유량 조절 장치는 제1 유로(11)에 배치되는 공기 통과 필터(예컨대, 필터 기구(180))를 더 포함할 수 있다. 필터 기구(180)는 약액 유로(10)를 따라 흘러가는 약액에 포함된 기체 및 약액에 용해된 잔류 기체를 제거한다. 이에 따라 미세 공기 방울에 의한 모세 유로의 막힘 현상을 방지할 수 있다.In one embodiment, the chemical liquid flow rate control device may further include an air passing filter (eg, filter mechanism 180) disposed in the first flow path 11. The filter mechanism 180 removes gas contained in the chemical liquid flowing along the chemical liquid flow path 10 and residual gas dissolved in the chemical liquid. Accordingly, it is possible to prevent the capillary flow path from being blocked by microscopic air bubbles.
도 5 내지 도 7을 다시 참조하면, 일 실시예에 따른 필터 기구(180)는 유로 형성 하우징(181); 경계 필터(182); 필터 캡(183); 적어도 하나의 공기 통과 필터를 포함한다. 필터 기구(180)가 구비되는 일 실시예에서, 유로 형성 하우징(181)은 필터 하우징으로 지칭될 수 있다.5 to 7 again, the filter mechanism 180 according to an embodiment includes a flow path forming housing 181; Boundary filter 182; Filter cap 183; And at least one air passing filter. In an embodiment in which the filter mechanism 180 is provided, the flow path forming housing 181 may be referred to as a filter housing.
유로 형성 하우징(181)은 약액 유로(10) 상에 배치되고 제1 유로(11)의 적어도 일부를 형성할 수 있다. 제1 유로(11)를 통해 유입되는 약액(예를 들어, 도 3의 실시예) 또는 제1 유로(11)를 통해 유출되는 약액(예를 들어, 도 4의 실시예)은 유로 형성 하우징(181)을 통해 흐르도록 구성된다. 유로 형성 하우징(181)에는 이너 홀(181b)이 형성될 수 있다. 이너 홀(181b)의 내부에는 n개의 분기 유로가 시작되는 부분이 형성될 수도 있고, n개의 분기 유로가 시작되는 부분은 실러(14)에 의해 형성될 수도 있다. 실러(14)가 이너 홀(181b)에 삽입된다.The flow path forming housing 181 may be disposed on the chemical liquid flow path 10 and may form at least a part of the first flow path 11. The chemical liquid flowing through the first flow path 11 (for example, the embodiment of FIG. 3) or the chemical liquid flowing through the first flow path 11 (for example, the embodiment of FIG. 4) is a flow path forming housing ( 181). An inner hole 181b may be formed in the flow path forming housing 181. A portion where n branch flow paths start may be formed in the inner hole 181b, and a portion where n branch flow paths start may be formed by the sealer 14. The sealer 14 is inserted into the inner hole 181b.
제1 유로(11)는 필터 유로(181c)를 포함할 수 있다. 필터 유로(181c)는 유로 형성 하우징(181)의 내부에 배치될 수 있다. 이 경우, 약액은 홀(11a)과 필터 유로(181c)를 순차로 흐르거나 필터 유로(181c) 및 홀(11a)을 순차로 흐를 수 있다.The first flow path 11 may include a filter flow path 181c. The filter flow path 181c may be disposed inside the flow path forming housing 181. In this case, the chemical liquid may sequentially flow through the hole 11a and the filter flow passage 181c, or sequentially flow through the filter flow passage 181c and the hole 11a.
경계 필터(182)는 제1 유로(11) 상에 배치될 수 있다. 경계 필터(182)는 유로 형성 하우징(181)에 배치될 수 있다. 경계 필터(182)는 친수성(hydrophilic) 재질로 이루어질 수 있다. 경계 필터(182)는 경계 필터(182)는 약액이 적셔진 경우 경계 필터(182)를 기준으로 상류측의 유로 부분과 하류측의 유로 부분의 압력 경계면으로 작용하도록 구성된다. 경계 필터(182)에 의해 상류측의 유로 부분과 하류측의 유로 부분이 서로 다른 내부 압력을 가질 수 있다. 예를 들어, 경계 필터(182)는 그물망 구조 및 화이버(fiber) 구조 중 적어도 하나의 방식으로 구성될 수 있다. 경계 필터(182)는 불순물을 필터링하는 기능을 추가적으로 가질 수 있다.The boundary filter 182 may be disposed on the first flow path 11. The boundary filter 182 may be disposed in the flow path forming housing 181. The boundary filter 182 may be made of a hydrophilic material. The boundary filter 182 is configured such that the boundary filter 182 acts as a pressure boundary surface between an upstream channel portion and a downstream channel portion based on the boundary filter 182 when the chemical solution is wetted. By the boundary filter 182, the flow path portion on the upstream side and the flow path portion on the downstream side may have different internal pressures. For example, the boundary filter 182 may be configured in at least one of a mesh structure and a fiber structure. The boundary filter 182 may additionally have a function of filtering impurities.
필터 캡(183)은 유로 형성 하우징(181)에 기밀(air-tight)하고 수밀(water-tight)하게 결합된다. 필터 캡(183)은 제1 유로(11)를 통해 유입되는 약액에 포함된 공기가 유출되는 통로를 형성한다. 필터 캡(183)은 공기의 통로가 외부 공간과 연결되는 지점에 위치하는 적어도 하나의 벤트(vent) 홀(미도시)을 형성할 수 있다.The filter cap 183 is air-tight and water-tight coupled to the flow path-forming housing 181. The filter cap 183 forms a passage through which air contained in the chemical liquid introduced through the first passage 11 flows out. The filter cap 183 may form at least one vent hole (not shown) positioned at a point where the air passage is connected to the external space.
적어도 하나의 공기 통과 필터는 소수성(hydrophobic) 재질로 이루어져 약액 유로(10) 내의 공기를 필터링하도록 구성된다. 공기 통과 필터는 약액의 통과를 차단하고 공기를 통과시키는 역할을 한다. 공기 통과 필터는 필터 캡(183)에 배치될 수 있다. 공기 통과 필터는 공기의 통로와 필터 유로(181c)의 경계에 배치되는 제1 공기 통과 필터(184)를 포함할 수 있다. 공기 통과 필터는 공기의 통로 상에 배치되는 제2 공기 통과 필터(185)를 더 포함할 수 있다.At least one air passing filter is made of a hydrophobic material and is configured to filter air in the chemical liquid flow path 10. The air passing filter blocks the passage of the chemical liquid and serves to pass air. The air passing filter may be disposed on the filter cap 183. The air passing filter may include a first air passing filter 184 disposed at a boundary between the air passage and the filter passage 181c. The air passing filter may further include a second air passing filter 185 disposed on the air passage.
예를 들어, 공기 통과 필터는 유로 형성 하우징(181)으로부터 필터 캡(183)을 향하는 공기의 통로 상에 순차적으로 배치되는 제1 공기 통과 필터(184)와 제2 공기 통과 필터(185)를 포함할 수 있다. 제1 공기 통과 필터(184)는 필터 캡(183)의 내부에 배치되고, 제2 공기 통과 필터(185)는 필터 캡(183)을 기준으로 제1 공기 통과 필터(184)의 반대쪽에 배치될 수 있다. 제2 공기 통과 필터(185)는 제1 공기 통과 필터(184)를 통과한 공기가 통과하도록 구성된다. 따라서, 제2 공기 통과 필터(185)는 제1 공기 통과 필터(184)의 기공이나 접착 부위 등이 손상된 경우에도 내부의 약액이 외부로 흘러나가는 것을 방지하는 역할을 한다.For example, the air passing filter includes a first air passing filter 184 and a second air passing filter 185 which are sequentially disposed on a passage of air from the flow path forming housing 181 toward the filter cap 183 can do. The first air passing filter 184 is disposed inside the filter cap 183, and the second air passing filter 185 is disposed on the opposite side of the first air passing filter 184 based on the filter cap 183. I can. The second air passing filter 185 is configured to pass air that has passed through the first air passing filter 184. Accordingly, the second air passing filter 185 serves to prevent the internal chemical liquid from flowing out even when the pores or adhesive portions of the first air passing filter 184 are damaged.
제2 공기 통과 필터(185)는 제1 공기 통과 필터(184)와 동일한 재질 또는 다공질의 플라스틱 소재가 가공되어 형성될 수 있다. 일 예로서, 제2 공기 통과 필터(185)는 소수성의 다공질의 플라스틱 수지 재료가 공기의 통로를 일부의 단면적을 채우도록 형성될 수 있다. 예를 들어, 제2 공기 통과 필터(185)의 재료는 미국 조지아주 페어번(Fairburn, GA 30213) 소재의 포렉스코포레이션(Porex Corporation)(웹사이트: https://www.porex.com)으로부터 입수할 수 있다. 포렉스코포레이션의 포렉스 하이드로포빅 벤트(Porex Hydrophobic Vents)라는 이름으로 나오는 제품을 사용할 수 있는데, 이 제품은 폴리에틸 폴리테트라플루오르에틸렌(polyethyle polytetrafluoroethylene)의 재료로 만든 것이다.The second air passing filter 185 may be formed by processing the same material as the first air passing filter 184 or a porous plastic material. As an example, the second air passing filter 185 may be formed such that a hydrophobic porous plastic resin material fills a partial cross-sectional area of the air passage. For example, the material of the second air pass filter 185 is from Porex Corporation (Website: https://www.porex.com) of Fairburn, GA 30213, GA, USA. Can be obtained. There is a product available under the name Porex Hydrophobic Vents of Forex Corporation, which is made from a material of polyethyle polytetrafluoroethylene.
필터 스페이서(186)는 제1 공기 통과 필터(184)와 접촉하도록 필터 캡(183)의 내부에 배치된다. 필터 스페이서(186)는 제1 공기 통과 필터(184)가 약액의 압력에 의해 유로 형성 하우징(181) 쪽으로 휘어지는 현상을 억제하거나 방지하도록 구성된다. 필터 스페이서(186)가 제1 공기 통과 필터(184)에 대향하는 면(예를 들어, 유로 형성 하우징(181)을 향하는 면)에는 다수의 돌기부를 형성될 수 있다. 따라서, 제1 공기 통과 필터(184)를 통과한 공기가 다수의 돌기부 사이의 틈을 통해 흐를 수 있다. 예를 들어, 필터 스페이서(186)의 돌기부는 엠보싱 형상 또는 주름 형상을 가질 수 있다. 또한, 필터 스페이서(186)가 제1 공기 통과 필터(184)에 대향하는 면의 반대쪽 면(예를 들어, 필터 캡(183)을 향하는 면)에도 엠보싱 형상 또는 주름 형상을 가지는 다수의 돌기부가 형성될 수 있다.The filter spacer 186 is disposed inside the filter cap 183 to contact the first air passing filter 184. The filter spacer 186 is configured to suppress or prevent the first air passing filter 184 from bending toward the flow path forming housing 181 due to the pressure of the chemical solution. A plurality of protrusions may be formed on a surface of the filter spacer 186 facing the first air passing filter 184 (eg, a surface facing the flow path forming housing 181). Accordingly, the air passing through the first air passing filter 184 may flow through the gap between the plurality of protrusions. For example, the protrusion of the filter spacer 186 may have an embossed shape or a pleated shape. In addition, a plurality of protrusions having an embossed shape or a pleat shape are formed on the side opposite to the side where the filter spacer 186 faces the first air passing filter 184 (for example, the side facing the filter cap 183). Can be.
필터 캡(183)에는 필터 스페이서(186)가 삽입되는 배치 홈이 형성될 수 있다. 필터 캡(183)은 필터 스페이서(186)의 측면을 필터 캡(183)의 내측면으로부터 이격시키는 돌기를 포함할 수 있다. 필터 캡(183)은 필터 스페이서(186)의 배면을 필터 캡(183)의 내측면으로부터 이격시키는 돌기를 포함할 수 있다. 이를 통해, 필터 스페이서(186)와 필터 캡(183)의 내측면 사이로 공기가 원활하게 흐를 수 있다. 필터 캡(183)에는 공기의 통로의 일부를 구성하는 공기 홀이 형성될 수 있다.An arrangement groove into which the filter spacer 186 is inserted may be formed in the filter cap 183. The filter cap 183 may include a protrusion that separates the side surface of the filter spacer 186 from the inner surface of the filter cap 183. The filter cap 183 may include a protrusion that separates the rear surface of the filter spacer 186 from the inner surface of the filter cap 183. Through this, air may smoothly flow between the filter spacer 186 and the inner surface of the filter cap 183. An air hole constituting a part of the air passage may be formed in the filter cap 183.
일 실시예에 있어서, 약액 유량 조절 장치(100)는 샤프트(190)를 더 포함할 수 있다. 샤프트(190)는 작동 부재(140)가 밸브 하우징(170) 및 유로 형성 하우징(181)에 대하여 회전하도록 지지하는 역할을 한다. 이를 위해, 밸브 하우징(170)에는 제1 샤프트 가이드부(176)가 형성되고, 유로 형성 하우징(181)에는 제2 샤프트 가이드부(181a)가 형성될 수 있다. 제1 샤프트 가이드부(176)와 제2 샤프트 가이드부(181a)는 서로 결합되어 원형의 그루브(groove)를 형성한다. 샤프트(190)의 일부가 작동 부재(140)의 샤프트 홀(140a)을 관통하여 제1 샤프트 가이드부(176)와 제2 샤프트 가이드부(181a)에 결합되도록 구성된다. 제1 샤프트 가이드부(176) 및 제2 샤프트 가이드부(181a)는 서로 맞물려서 상대적으로 회전가능하도록 상보적인 형상을 가질 수 있다.In one embodiment, the chemical liquid flow rate control device 100 may further include a shaft 190. The shaft 190 serves to support the operation member 140 to rotate with respect to the valve housing 170 and the flow path forming housing 181. To this end, a first shaft guide part 176 may be formed in the valve housing 170, and a second shaft guide part 181a may be formed in the flow path forming housing 181. The first shaft guide portion 176 and the second shaft guide portion 181a are coupled to each other to form a circular groove. A portion of the shaft 190 is configured to pass through the shaft hole 140a of the operation member 140 and be coupled to the first shaft guide portion 176 and the second shaft guide portion 181a. The first shaft guide portion 176 and the second shaft guide portion 181a may have a complementary shape so as to be relatively rotatable by engaging with each other.
도 12 내지 도 16은 본 개시의 일 실시예에 따른 약액 유량 조절 장치의 조작에 따른 유량 조절의 예를 도시하는 도면이다. 도 12 내지 도 16은, 약액 유량 조절 장치의 조작에 따른 평면도 및 단면도를 함께 도시하며, 작동 부재(140)의 저면에 형성된 복수의 리세스(141)를 조작 부재(160)의 주변에 숨은선으로 도시하고 있다.12 to 16 are views showing an example of flow rate control according to the operation of the chemical liquid flow rate control device according to an embodiment of the present disclosure. 12 to 16 together show a plan view and a cross-sectional view according to the operation of the chemical liquid flow control device, and a plurality of recesses 141 formed on the bottom surface of the operation member 140 are hidden around the operation member 160 It is shown as.
이하에서는, 도 12 내지 도 16을 참조하여, 본 개시의 일 실시예에 따른 약액 유량 조절 장치의 유량 조절 방법을 설명한다. 또한, 제1 이송관(110a), 제2 이송관(110b), 및 제3 이송관(110c)은 각각 시간당 1.5cc, 1.0cc, 및 0.5cc의 약액이 통과하도록 구성되는 경우를 예로 들어 설명한다.Hereinafter, with reference to FIGS. 12 to 16, a flow rate control method of the chemical liquid flow rate control device according to an embodiment of the present disclosure will be described. In addition, the first conveying pipe (110a), the second conveying pipe (110b), and the third conveying pipe (110c) are described as an example of a case where the chemical solution of 1.5cc, 1.0cc, and 0.5cc per hour passes. do.
도 12에 도시된 바와 같이, 조작 부재(160)가 위치하는 경우, 제1 가압 부재(130a)가 작동 부재(140)의 리세스(141) 내에 수용되고, 제2 가압 부재(130b) 및 제3 가압 부재(130c)가 작동 부재(140)의 저면(143)에 맞닿는다. 제1 돌출부(121a)가 제1 밸브 구멍(172a)으로부터 이격되어, 제1 밸브 구멍(172a)이 개방된다. 제2 가압 부재(130b) 및 제3 가압 부재(130c)가 밸브 부재(120)의 제2 돌출부(121b) 및 제3 돌출부(121c)를 탄성 변형시켜, 제2 밸브 구멍(172b) 및 제3 밸브 구멍(172c)이 폐쇄된다. 따라서, 제1 이송관(110a)이 개방된 제1 밸브 구멍(172a)을 통해 연결 구멍(173)에 연통한다. 그 결과, 약액 유량 조절 장치(100)를 통해 흐를 수 있는 약액의 유량은 제1 이송관(110a)의 유량에 해당하는 시간당 0.5cc가 된다.As shown in FIG. 12, when the operation member 160 is positioned, the first pressing member 130a is accommodated in the recess 141 of the operation member 140, and the second pressing member 130b and the second pressing member 130b are 3 The pressing member 130c abuts against the bottom surface 143 of the operation member 140. The first protrusion 121a is spaced apart from the first valve hole 172a, and the first valve hole 172a is opened. The second pressing member 130b and the third pressing member 130c elastically deform the second protruding portion 121b and the third protruding portion 121c of the valve member 120, so that the second valve hole 172b and the third The valve hole 172c is closed. Accordingly, the first transfer pipe 110a communicates with the connection hole 173 through the opened first valve hole 172a. As a result, the flow rate of the chemical liquid that can flow through the chemical liquid flow rate control device 100 becomes 0.5 cc per hour corresponding to the flow rate of the first transfer pipe 110a.
도 13에 도시된 바와 같이, 조작 부재(160)가 위치하는 경우, 제2 가압 부재(130b)가 작동 부재(140)의 리세스(141) 내에 수용되고, 제1 가압 부재(130a) 및 제3 가압 부재(130c)가 작동 부재(140)의 저면(143)에 맞닿는다. 밸브 부재(120)의 제2 돌출부(121b)가 제2 밸브 구멍(172b)으로부터 이격되어, 제2 밸브 구멍(172b)이 개방된다. 제1 가압 부재(130a) 및 제3 가압 부재(130c)가 밸브 부재(120)의 제1 돌출부(121a) 및 제3 돌출부(121c)를 탄성 변형시켜, 제1 밸브 구멍(172a) 및 제3 밸브 구멍(172c)이 폐쇄된다. 따라서, 제2 이송관(110b)이 개방된 제2 밸브 구멍(172b)을 통해 연결 구멍(173)에 연통한다. 그 결과, 약액 유량 조절 장치(100)를 통해 흐를 수 있는 약액의 유량은 제2 이송관(110b)의 유량에 해당하는 시간당 1.0cc가 된다.13, when the operation member 160 is positioned, the second pressing member 130b is accommodated in the recess 141 of the operation member 140, and the first pressing member 130a and the first 3 The pressing member 130c abuts against the bottom surface 143 of the operation member 140. The second protrusion 121b of the valve member 120 is spaced apart from the second valve hole 172b, and the second valve hole 172b is opened. The first pressing member 130a and the third pressing member 130c elastically deform the first protrusion 121a and the third protrusion 121c of the valve member 120, so that the first valve hole 172a and the third The valve hole 172c is closed. Accordingly, the second transfer pipe 110b communicates with the connection hole 173 through the opened second valve hole 172b. As a result, the flow rate of the chemical liquid that can flow through the chemical liquid flow rate control device 100 becomes 1.0 cc per hour corresponding to the flow rate of the second transfer pipe 110b.
도 14에 도시된 바와 같이, 조작 부재(160)가 위치하는 경우, 제3 가압 부재(130c)가 작동 부재(140)의 리세스(141) 내에 수용되고, 제1 가압 부재(130a) 및 제2 가압 부재(130b)가 작동 부재(140)의 저면(143)에 맞닿는다. 밸브 부재(120)의 제3 돌출부(121c)가 제3 밸브 구멍(172c)으로부터 이격되어, 제3 밸브 구멍(172c)이 개방된다. 제1 가압 부재(130a) 및 제2 가압 부재(130b)가 밸브 부재(120)의 제1 돌출부(121a) 및 제2 돌출부(121b)를 탄성 변형시켜, 제1 밸브 구멍(172a) 및 제2 밸브 구멍(172b)이 폐쇄된다. 따라서, 제3 이송관(110c)이 개방된 제3 밸브 구멍(172c)을 통해 연결 구멍(173)에 연통한다. 그 결과, 약액 유량 조절 장치(100)를 통해 흐를 수 있는 약액의 유량은 제3 이송관(110c)의 유량에 해당하는 시간당 1.5cc가 된다.14, when the operation member 160 is positioned, the third pressing member 130c is accommodated in the recess 141 of the operation member 140, and the first pressing member 130a and the first 2 The pressing member 130b abuts against the bottom surface 143 of the operation member 140. The third protrusion 121c of the valve member 120 is spaced apart from the third valve hole 172c, and the third valve hole 172c is opened. The first pressing member 130a and the second pressing member 130b elastically deform the first protrusion 121a and the second protrusion 121b of the valve member 120, so that the first valve hole 172a and the second The valve hole 172b is closed. Accordingly, the third transfer pipe 110c communicates with the connection hole 173 through the opened third valve hole 172c. As a result, the flow rate of the chemical liquid that can flow through the chemical liquid flow rate control device 100 becomes 1.5 cc per hour corresponding to the flow rate of the third transfer pipe 110c.
도 15에 도시된 바와 같이, 조작 부재(160)가 위치하는 경우, 제1 가압 부재(130a) 및 제3 가압 부재(130c)가 작동 부재(140)의 리세스(141) 내에 수용되고, 제2 가압 부재(130b)가 작동 부재(140)의 저면(143)에 맞닿는다. 밸브 부재(120)의 제1 돌출부(121a) 및 제3 돌출부(121c) 각각이 제1 밸브 구멍(172a) 및 제3 밸브 구멍(172c) 각각으로부터 이격되어, 제1 밸브 구멍(172a) 및 제3 밸브 구멍(172c)이 개방된다. 제2 가압 부재(130b)가 밸브 부재(120)의 제2 돌출부(121b)를 탄성 변형시켜, 제2 밸브 구멍(172b)이 폐쇄된다. 따라서, 제1 이송관(110a) 및 제3 이송관(110c) 각각이 개방된 제1 밸브 구멍(172a) 및 제3 밸브 구멍(172c) 각각을 통해 연결 구멍(173)에 연통한다. 그 결과, 약액 유량 조절 장치(100)를 통해 흐를 수 있는 약액의 유량은 제1 이송관(110a) 및 제3 이송관(110c)의 합계 유량에 해당하는 시간당 2.0cc가 된다.15, when the operation member 160 is positioned, the first pressing member 130a and the third pressing member 130c are accommodated in the recess 141 of the operation member 140, and 2 The pressing member 130b abuts against the bottom surface 143 of the operation member 140. Each of the first protrusion 121a and the third protrusion 121c of the valve member 120 is spaced apart from the first valve hole 172a and the third valve hole 172c, 3 The valve hole 172c is opened. The second pressing member 130b elastically deforms the second protruding portion 121b of the valve member 120, so that the second valve hole 172b is closed. Accordingly, each of the first transfer pipe 110a and the third transfer pipe 110c communicates with the connection hole 173 through the opened first valve hole 172a and the third valve hole 172c, respectively. As a result, the flow rate of the chemical solution that can flow through the chemical solution flow rate control device 100 becomes 2.0 cc per hour corresponding to the total flow rate of the first transfer pipe 110a and the third transfer pipe 110c.
도 16에 도시된 바와 같이, 조작 부재(160)가 위치하는 경우, 제1 가압 부재(130a), 제2 가압 부재(130b), 및 제3 가압 부재(130c)가 작동 부재(140)의 리세스(141) 내에 수용된다. 밸브 부재(120)의 제1 돌출부(121a), 제2 돌출부(121b), 및 제3 돌출부(121c) 각각이 제1 밸브 구멍(172a), 제2 밸브 구멍(172b) 및 제3 밸브 구멍(172c) 각각으로부터 이격되어, 제1 밸브 구멍(172a), 제2 밸브 구멍(172b) 및 제3 밸브 구멍(172c)이 개방된다. 따라서, 제1 이송관(110a), 제2 이송관(110b), 및 제3 이송관(110c) 각각이 개방된 제1 밸브 구멍(172a), 제2 밸브 구멍(172b), 및 제3 밸브 구멍(172c) 각각을 통해 연결 구멍(173)에 연통한다. 그 결과, 약액 유량 조절 장치(100)를 통해 흐를 수 있는 약액의 유량은 제1 이송관(110a), 제2 이송관(110b) 및 제3 이송관(110c)의 합계 유량에 해당하는 시간당 3.0cc가 된다.As shown in FIG. 16, when the operation member 160 is positioned, the first pressing member 130a, the second pressing member 130b, and the third pressing member 130c are It is received in the recess 141. Each of the first protrusion 121a, the second protrusion 121b, and the third protrusion 121c of the valve member 120 is a first valve hole 172a, a second valve hole 172b, and a third valve hole ( 172c), the first valve hole 172a, the second valve hole 172b, and the third valve hole 172c are opened. Accordingly, the first valve hole 172a, the second valve hole 172b, and the third valve each of the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c are opened. It communicates with the connection hole 173 through each of the holes 172c. As a result, the flow rate of the chemical liquid that can flow through the chemical liquid flow rate control device 100 is 3.0 per hour corresponding to the total flow rate of the first transfer pipe 110a, the second transfer pipe 110b, and the third transfer pipe 110c. becomes cc.
이상 일부 실시예들과 첨부된 도면에 도시된 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.Although the technical idea of the present disclosure has been described with reference to some embodiments and examples shown in the accompanying drawings above, it does not depart from the technical idea and scope of the present disclosure that can be understood by those of ordinary skill in the art to which the present disclosure belongs. It will be appreciated that various substitutions, modifications and changes may be made in the range. In addition, such substitutions, modifications and changes are to be considered as falling within the scope of the appended claims.

Claims (20)

  1. 약액의 흐름을 안내하는 약액 유로를 가진 약액 유량 조절 장치이며,It is a chemical liquid flow control device with a chemical liquid flow path that guides the flow of the chemical liquid,
    상기 약액 유로는, 약액이 유입되는 유입 유로, 상기 유입 유로로부터 분기하는 복수의 분기 유로, 및 상기 복수의 분기 유로로부터 합류되어 상기 약액이 유출되는 유출 유로를 포함하고,The chemical liquid flow path includes an inflow flow path into which the chemical liquid flows, a plurality of branch flow paths branching from the inflow flow path, and an outflow flow path through which the chemical liquid flows out of the plurality of branch flow paths,
    상기 복수의 분기 유로에 대응되게 구성되고, 각각 상기 복수의 분기 유로 중 대응되는 어느 하나의 적어도 일부를 구성하는 모세 유로를 형성하는 복수의 이송관; 및A plurality of transfer pipes configured to correspond to the plurality of branch flow paths and each forming a capillary flow path constituting at least a part of any one of the plurality of branch flow paths; And
    상기 복수의 분기 유로를 선택적으로 개폐함으로써 상기 유출 유로를 통해 유출되는 상기 약액의 유량을 조절하도록 구성되는 밸브 부재A valve member configured to selectively open and close the plurality of branch flow paths to control the flow rate of the chemical liquid flowing out through the flow path
    를 포함하는 약액 유량 조절 장치.Chemical liquid flow control device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수의 이송관은 상기 약액이 서로 다른 유량으로 흐르도록 구성된 적어도 2개의 이송관을 포함하는,The plurality of transfer pipes comprises at least two transfer pipes configured to flow the chemical liquid at different flow rates,
    약액 유량 조절 장치.Chemical liquid flow control device.
  3. 제1항에 있어서,The method of claim 1,
    상기 복수의 분기 유로에 대응되게 구성되고, 각각 이동 가능하게 구성되는 복수의 가압 부재를 더 포함하고,Further comprising a plurality of pressing members configured to correspond to the plurality of branch flow paths, each configured to be movable,
    상기 밸브 부재는, 상기 가압 부재가 이동함에 따라 가압되거나 가압 해제되어, 상기 복수의 분기 유로를 선택적으로 개폐하도록 구성되는,The valve member is configured to be pressed or released as the pressing member moves, so as to selectively open and close the plurality of branch flow paths,
    약액 유량 조절 장치.Chemical liquid flow control device.
  4. 제3항에 있어서,The method of claim 3,
    상기 가압 부재를 이동시키도록 구성되는 작동 부재를 더 포함하는, Further comprising an operation member configured to move the pressing member,
    약액 유량 조절 장치.Chemical liquid flow control device.
  5. 제4항에 있어서,The method of claim 4,
    상기 작동 부재에는 상기 복수의 가압 부재가 수용되도록 서로 이격되어 형성되는 복수의 리세스가 형성되고,The operation member has a plurality of recesses formed to be spaced apart from each other to accommodate the plurality of pressing members,
    상기 밸브 부재는 탄성 복원하며 상기 가압 부재를 상기 리세스의 함몰된 방향으로 가압하도록 구성되는, The valve member is configured to elastically restore and press the pressing member in the recessed direction of the recess,
    약액 유량 조절 장치.Chemical liquid flow control device.
  6. 제5항에 있어서,The method of claim 5,
    상기 작동 부재는 상기 리세스가 상기 리세스의 함몰된 방향을 가로지르는 방향으로 이동하여 작동되도록 구성되고,The operation member is configured to operate by moving the recess in a direction transverse to the recessed direction of the recess,
    상기 작동 부재가 작동함에 따라 상기 복수의 가압 부재가 상기 복수의 리세스에 선택적으로 수용되는, The plurality of pressing members are selectively accommodated in the plurality of recesses as the operation member operates,
    약액 유량 조절 장치.Chemical liquid flow control device.
  7. 제6항에 있어서,The method of claim 6,
    상기 밸브 부재는 상기 가압 부재가 상기 리세스에 수용된 상태에서 대응되는 상기 분기 유로를 개방하도록 구성되는, The valve member is configured to open the corresponding branch flow path in a state in which the pressing member is accommodated in the recess,
    약액 유량 조절 장치.Chemical liquid flow control device.
  8. 제3항에 있어서,The method of claim 3,
    상기 밸브 부재와 상기 복수의 가압 부재의 사이에 배치되고 상기 복수의 가압 부재의 이동을 가이드하는 가이드 부재를 더 포함하는, Further comprising a guide member disposed between the valve member and the plurality of pressing members and guiding the movement of the plurality of pressing members,
    약액 유량 조절 장치.Chemical liquid flow control device.
  9. 제1항에 있어서,The method of claim 1,
    상기 복수의 분기 유로에 대응되게 구성되고, 각각 이동 가능하게 구성되는 복수의 가압 부재;A plurality of pressing members configured to correspond to the plurality of branch flow paths and configured to be movable, respectively;
    상기 가압 부재를 이동시키도록 구성되는 작동 부재; 및An operation member configured to move the pressing member; And
    상기 작동 부재에 분리 가능하도록 맞물리고, 상기 작동 부재와 맞물린 상태에서 상기 작동 부재를 작동시키도록 구성되는 조작 부재를 더 포함하는, Further comprising an operation member detachably engaged with the operation member and configured to operate the operation member in a state engaged with the operation member,
    약액 유량 조절 장치.Chemical liquid flow control device.
  10. 제9항에 있어서,The method of claim 9,
    상기 조작 부재에는 맞물림부가 형성되고,An engaging portion is formed in the operation member,
    상기 작동 부재에는 상기 맞물림부가 수용되는 대응 맞물림부가 형성되는, The operation member is provided with a corresponding engaging portion in which the engaging portion is received,
    약액 유량 조절 장치.Chemical liquid flow control device.
  11. 제1항에 있어서,The method of claim 1,
    상기 밸브 부재는 가압되어 탄성 변형되고 가압 해제되어 탄성 복원되도록 구성되는,The valve member is configured to be elastically deformed by being pressed and released to be elastically restored,
    약액 유량 조절 장치.Chemical liquid flow control device.
  12. 제1항에 있어서,The method of claim 1,
    상기 밸브 부재에 의해 덮이고 각각 복수의 분기 유로 중 대응되는 하나의 일부를 구성하는 복수의 밸브 공간이 형성되는 밸브 하우징을 더 포함하는,Further comprising a valve housing covered by the valve member and formed with a plurality of valve spaces each forming a part of a corresponding one of the plurality of branch flow paths,
    약액 유량 조절 장치.Chemical liquid flow control device.
  13. 제12항에 있어서,The method of claim 12,
    상기 밸브 하우징에는, 상기 복수의 밸브 공간과 상기 복수의 이송관의 상기 모세 유로 각각을 연통하는 복수의 밸브 구멍이 형성되는, In the valve housing, a plurality of valve holes for communicating each of the plurality of valve spaces and the capillary flow paths of the plurality of transfer pipes are formed,
    약액 유량 조절 장치.Chemical liquid flow control device.
  14. 제13항에 있어서,The method of claim 13,
    상기 복수의 분기 유로에 대응되게 구성되고 각각 이동 가능하게 구성되는 복수의 가압 부재를 더 포함하고,Further comprising a plurality of pressing members configured to correspond to the plurality of branch flow paths and each configured to be movable,
    상기 밸브 부재는 상기 가압 부재에 의해 가압되면 상기 밸브 구멍을 폐쇄하도록 구성되는, The valve member is configured to close the valve hole when pressed by the pressing member,
    약액 유량 조절 장치.Chemical liquid flow control device.
  15. 제12항에 있어서,The method of claim 12,
    상기 복수의 밸브 공간 중 어느 하나에는 상기 유출 유로의 일부를 구성하는 연결 구멍이 형성되는, In any one of the plurality of valve spaces, a connection hole constituting a part of the outlet flow path is formed,
    약액 유량 조절 장치.Chemical liquid flow control device.
  16. 제12항에 있어서,The method of claim 12,
    상기 복수의 밸브 공간 중 서로 인접하는 2개의 밸브 공간을 연통하는 연통 유로가 형성되는, A communication flow path for communicating two adjacent valve spaces among the plurality of valve spaces is formed,
    약액 유량 조절 장치.Chemical liquid flow control device.
  17. 제16항에 있어서,The method of claim 16,
    상기 복수의 밸브 공간 중 어느 하나에는 상기 유출 유로의 일부를 구성하는 연결 구멍이 형성되고,In any one of the plurality of valve spaces, a connection hole constituting a part of the outlet flow path is formed,
    상기 밸브 부재가 상기 밸브 구멍을 개방한 상태와 상기 밸브 부재가 상기 밸브 구멍을 폐쇄한 상태에서, 상기 연결 구멍 및 상기 연통 유로는 개방된 상태를 유지하도록 구성되는,In a state in which the valve member opens the valve hole and in a state in which the valve member closes the valve hole, the connection hole and the communication flow path are configured to maintain an open state,
    약액 유량 조절 장치.Chemical liquid flow control device.
  18. 제12항에 있어서,The method of claim 12,
    상기 밸브 부재는 상기 복수의 밸브 공간을 향해 돌출하고, 각각 대응되는 상기 분기 유로를 폐쇄 가능하게 구성되는 복수의 돌출부를 포함하는, The valve member protrudes toward the plurality of valve spaces, and includes a plurality of protrusions configured to close the corresponding branch flow paths, respectively,
    약액 유량 조절 장치.Chemical liquid flow control device.
  19. 제18항에 있어서,The method of claim 18,
    상기 복수의 분기 유로에 대응되게 구성되고, 각각 이동 가능하게 구성되는 복수의 가압 부재를 더 포함하고,Further comprising a plurality of pressing members configured to correspond to the plurality of branch flow paths, each configured to be movable,
    상기 밸브 부재에는 상기 복수의 돌출부의 반대쪽에 배치되고 상기 복수의 가압 부재가 안착되는 복수의 안착부가 형성되는, The valve member has a plurality of seating portions disposed opposite the plurality of protrusions and on which the plurality of pressing members are seated,
    약액 유량 조절 장치.Chemical liquid flow control device.
  20. 제1항에 있어서,The method of claim 1,
    상기 유입 유로 또는 상기 유출 유로에 배치되는 공기 통과 필터를 더 포함하는, Further comprising an air passing filter disposed in the inlet passage or the outlet passage,
    약액 유량 조절 장치.Chemical liquid flow control device.
PCT/KR2020/014901 2019-11-01 2020-10-29 Liquid medicine flow rate regulating device WO2021086048A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20880587.9A EP4052740A4 (en) 2019-11-01 2020-10-29 Liquid medicine flow rate regulating device
IL292619A IL292619A (en) 2019-11-01 2020-10-29 Medicinal liquid flow control apparatus
US17/772,460 US20220355027A1 (en) 2019-11-01 2020-10-29 Medicinal liquid flow control apparatus
JP2022525393A JP7420934B2 (en) 2019-11-01 2020-10-29 Chemical liquid flow control device
CN202080076437.7A CN114641326B (en) 2019-11-01 2020-10-29 Liquid medicine flow regulator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0138896 2019-11-01
KR20190138896 2019-11-01
KR1020200041584A KR102472316B1 (en) 2019-11-01 2020-04-06 Apparatus of regulating flow rate of medicinal liquid
KR10-2020-0041584 2020-04-06

Publications (2)

Publication Number Publication Date
WO2021086048A2 true WO2021086048A2 (en) 2021-05-06
WO2021086048A3 WO2021086048A3 (en) 2021-08-26

Family

ID=75716061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014901 WO2021086048A2 (en) 2019-11-01 2020-10-29 Liquid medicine flow rate regulating device

Country Status (1)

Country Link
WO (1) WO2021086048A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026373A1 (en) * 2002-09-19 2004-04-01 I-Flow Corporation Device for selectively regulating the flow rate of a fluid
KR101068806B1 (en) * 2008-09-26 2011-10-04 에이스메디칼 주식회사 equipment system to supply liquid medicine with a supply amount controller of the fixed type and a supply amount controller of the freed type
KR20140049836A (en) * 2012-10-18 2014-04-28 주식회사 우영메디칼 Medical fluid flow rate controlling apparatus
KR20140111245A (en) * 2014-08-27 2014-09-18 주식회사 우영메디칼 Medical Fluid Flow Rate Controlling Apparatus
KR101638969B1 (en) * 2014-09-30 2016-07-12 주식회사 우영메디칼 Multi-Type Medical Fluid Flow Rate Controlling Apparatus and Medical Fluid Injector Having the Same
KR102085515B1 (en) * 2018-02-27 2020-03-05 주식회사 이화메디텍 Device for regulating liquid medicine supply and medicine injection apparatus comprising the same

Also Published As

Publication number Publication date
WO2021086048A3 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2010087677A2 (en) Drug solution dose controller
WO2016052976A1 (en) Multi-type medicinal fluid flow rate control apparatus and medicinal fluid injector comprising same
WO2018194256A1 (en) Menstrual cup capable of being easily removed
WO2014062013A1 (en) Apparatus for controlling flow of chemical liquid
WO2017007124A1 (en) Selector
WO2015037832A1 (en) Capillary device comprising internal filter, and injection fluid injection device comprising same
WO2005120630A1 (en) Connector
SE463849B (en) MEDICAL CONTAINER
WO2021086048A2 (en) Liquid medicine flow rate regulating device
WO2022197126A1 (en) Needle assembly mountable to container
WO2020072230A2 (en) Pooling device for single or multiple medical containers
WO2016111402A1 (en) Infusion set
WO2010085063A2 (en) Apparatus for regulating the injection of a drug solution with a fine regulation function
WO2018199592A1 (en) Cranial implant-type automatic fluid drain device
WO2011031052A2 (en) Apparatus for precisely regulating a liquid medicine injection dose
WO2016111401A1 (en) Three-way valve for infusion and infusion set comprising same
KR102472316B1 (en) Apparatus of regulating flow rate of medicinal liquid
CA3224140A1 (en) Systems and methods for directing fluid flow
WO2017007125A1 (en) Drug injection device
WO2021006536A1 (en) Cover for drug delivery tube device and drug delivery tube device set comprising same
WO2020116778A1 (en) Liquid medicine injector comprising bolus counter
KR102367650B1 (en) Medicinal liquid supply regulating apparatus and medicinal liquid injection apparatus including the same
CN114641326B (en) Liquid medicine flow regulator
WO2020085588A1 (en) Stopcock
WO2018093147A1 (en) Infusion set having function of preventing blood leakage and backflow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880587

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2022525393

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 292619

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020880587

Country of ref document: EP

Effective date: 20220601