WO2021085746A1 - Apparatus for decomposing and immobilizing greenhouse gas including cement firing furnace - Google Patents

Apparatus for decomposing and immobilizing greenhouse gas including cement firing furnace Download PDF

Info

Publication number
WO2021085746A1
WO2021085746A1 PCT/KR2019/018313 KR2019018313W WO2021085746A1 WO 2021085746 A1 WO2021085746 A1 WO 2021085746A1 KR 2019018313 W KR2019018313 W KR 2019018313W WO 2021085746 A1 WO2021085746 A1 WO 2021085746A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
greenhouse gas
cement kiln
plasma
combustion reactor
Prior art date
Application number
PCT/KR2019/018313
Other languages
French (fr)
Korean (ko)
Inventor
김희섭
이선동
이재윤
문영범
박영기
이재형
Original Assignee
성신양회 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성신양회 주식회사 filed Critical 성신양회 주식회사
Publication of WO2021085746A1 publication Critical patent/WO2021085746A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/11Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/125Fuels from renewable energy sources, e.g. waste or biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • the present invention relates to a greenhouse gas decomposition and immobilization apparatus including a cement kiln, and more particularly, gasification and combustion through pyrolysis of waste plastics discarded using a plasma combustion system. It is possible to increase the temperature of the cement kiln by supplying a heat source, and accordingly relates to a greenhouse gas decomposition and immobilization device including a cement kiln capable of pyrolyzing greenhouse gases.
  • Plastic is a kind of polymer compound that is produced by combining raw materials extracted from petroleum, mainly refers to a macromolecule in which several functional groups including hydrogen are bonded around a carbon skeleton.
  • synthetic resin a phenolic resin (bakelite) developed to replace ivory used for billiard balls, and was manufactured in 1907 by polymerizing phenol and formaldehyde.
  • These early plastics were considered only as a substitute for ivory or children's toys, but recently, plastics are recognized as an indispensable and important material in all industries.
  • engineering plastics that have solved the strength problem, which is a disadvantage of conventional plastics, are in the spotlight as a substitute for steel materials, and plastics are used in most products that are concerned about breakage because they have superior stability compared to glass or iron when damaged.
  • thermoplastic resins are plastics that have fluidity due to loosening bonds between polymer chains when heat is applied. However, they are easily recycled and are widely used in household goods fields.
  • Thermosetting resins are plastics that increase strength by strengthening the bonds between polymer chains when heat is applied.Before curing, they are liquids or solids with fluidity that are easy to process.However, after curing, they do not deteriorate in fluidity due to heat, so recycling is almost impossible. Have. However, since these thermosetting plastics have higher strength and better heat resistance than thermoplastic plastics, they are mainly used in industrial sites such as engineering plastics that require high strength.
  • plastics are easy to process, they can be manufactured in a desired shape and color, and have the advantage that natural decomposition hardly appears, so that they have a long lifespan and can easily manufacture desired properties.However, in the natural state, it takes a very long time to decompose and after use.
  • the treatment of plastics is a problem. In general, plastics after use are buried, but there is a limitation because it takes a lot of time to decompose when buried. Therefore, as a method to solve this problem, a method of recycling plastic raw materials has been proposed, but only thermoplastic resins can be recycled, and there is a difficulty in separating millions of plastics by type, so the recycling rate is not significantly improved. to be.
  • Biodegradable plastics are being developed to solve the disadvantages of these plastics.
  • it is difficult to use for a long period of time and is not only used in a limited field because of its physical properties compared to general plastics, and it is difficult to use it unlimitedly because the impact of the environment after decomposition has not been fully understood.
  • plastics are petroleum-derived materials and polymer materials having a basic carbon-based skeleton, so methods of using them as fuel are also being developed.
  • Plastics can generate heat similar to fossil fuels of the same weight, so if they are used as fuel, it is expected to be able to replace part of fossil fuels.
  • plastic is a material with a high molecular weight, and incomplete combustion occurs during combustion and often generates toxic gases, and various additives added to reinforce the physical properties of plastics are also pointed out as a source of large amounts of toxic gases, so they are used as fuel. It has been limitedly practiced.
  • a kiln-type reactor is mainly used.
  • This kiln is a kind of kiln that can be used for cement firing, and rotary type kiln is mainly used for continuous operation.
  • the rotary kiln it is composed of a pipe-shaped reactor having a certain angle with the ground, and raw materials are supplied from one side of the reactor, which is reacted while moving to the other side of the reactor as the pipe-shaped reactor rotates. At this time, the raw material is mixed by repeatedly rising to a certain height by the rotation of the reactor and then falling downward by gravity, and bituminous coal is used as a heating means at the end of the reactor to maintain the reactor at a constant temperature.
  • Such a rotary kiln has a characteristic that mixing is repeated by rotation, and the production amount can be adjusted according to the diameter and rotation speed of the reactor. At this time, in order to maintain the kiln at a constant temperature, a large amount of heat is required, and accordingly, a large amount of fossil fuel is used, and thus an effort to reduce this is required.
  • Patent Document 0001 Korean Registered Patent No. 10-1201426
  • Patent Document 0002 Republic of Korea Patent Publication No. 10-2012-0000940
  • the present invention gasifies and combusts through pyrolysis of discarded plastics using a plasma combustion system, so that an additional heat source is supplied to the preheating tower attached to the cement kilns to increase the temperature of the cement kilns. Accordingly, it is intended to provide an apparatus for decomposing and fixing greenhouse gases including a cement kiln capable of pyrolyzing greenhouse gases.
  • the present invention provides a greenhouse gas decomposition and immobilization apparatus including a cement kiln (a) a combustion reactor; (b) 4 to 20 plasma combustion means for supplying plasma to the combustion reactor; (c) a plasma combustion system including fuel supply means connected to the upper half of the combustion reactor and supplying waste plastic in the direction of the combustion reactor, and the high-temperature gas discharged from the plasma combustion system is attached to the cement kilns. It provides a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that it is supplied by mixing with fuel for heating the preheating tower, and pyrolyzing by injecting greenhouse gas into the cement kiln.
  • the cement kiln may pyrolyze greenhouse gases at a temperature of 1500 to 3000°C.
  • the greenhouse gases may be SF6 or HFCs.
  • the greenhouse gas can be converted to CaF2.
  • the fuel supply means may be connected to an upper side, and a gas outlet may be formed at a lower side of the other side.
  • An auxiliary combustion means for additionally supplying air or oxygen may be installed at an inner lower portion of the combustion reactor.
  • auxiliary combustion means 2 to 100 perforated portions are arranged at regular intervals, and air or oxygen may be supplied through the perforated portions.
  • the combustion reactor may have an internal temperature of 500 to 2000°C, and a temperature of the discharged gas may be 800 to 2000°C.
  • the plasma combustion means may be arranged at regular intervals on both sides of the combustion reactor along a direction horizontal to the bottom of the combustion reactor.
  • Each of the plasma combustion means may have an output of 10 to 50 kW, and a discharge temperature of the plasma may be 5000 to 7000 K.
  • the fuel supply means may include a fuel transfer means including one or more screws or a pressure feeding device rotating in opposite directions to each other therein.
  • a fuel dispersing means capable of uniformly supplying the waste plastic into the combustion reactor may be installed between the fuel supply means and the combustion reactor.
  • the fuel dispersing means may include a mesh net, a structure at regular intervals arranged in multiple layers, a rotating circular plate, or a rotating blade.
  • Some or all of the heated air generated inside the kiln may be mixed with air and then supplied to the plasma combustion system.
  • the apparatus for decomposing and fixing greenhouse gases including a cement kiln introduces a plasma combustion system to convert greenhouse gases at a high temperature that cannot be reached in a conventional kiln, and can greatly improve the temperature in the kiln.
  • CaF2 generated at the same time by converting high-concentration greenhouse gas to CaF2 to be detoxified can be expected to improve the physical properties of cement, and the plasma combustion system uses waste plastic as fuel, thereby detoxifying high-concentration greenhouse gas, It has the advantage of being able to improve the physical properties of cement and treat waste plastics at the same time.
  • greenhouse gases can be converted to CaF2 and CaSO4 after pyrolysis.
  • the sintering temperature is lowered by about 100°C during limestone decarboxylation, thereby reducing energy consumption.
  • CaSO4 it is an essential auxiliary material in cement manufacturing, delaying condensation, increasing short-term strength, reducing drying shrinkage, and improving chemical resistance. There are effects such as letting go.
  • FIG. 1 is a schematic view showing the concept of an alternative fuel gasification apparatus and a cement kiln including a plasma combustion system according to an embodiment of the present invention.
  • FIG. 2 is a view showing a combination of a plasma combustion system and a cement kiln according to an embodiment of the present invention.
  • FIG. 3 is a photograph showing the plasma generation of the plasma combustion means according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a combination of a combustion reactor and a plasma combustion means according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method of operating a combustion reactor according to an embodiment of the present invention.
  • FIG. 6 is a view showing a raw material supply means according to an embodiment of the present invention.
  • FIG. 7 is a view showing a means for supplying high-temperature waste gas air generated in the kiln according to an embodiment of the present invention.
  • thermocouple thermometer 8 schematically shows the shape of the combustion reactor and the location of the thermocouple thermometer according to an embodiment of the present invention.
  • FIG. 11 is a photograph of the collected combustion reactor residue according to an embodiment of the present invention.
  • the present invention provides a greenhouse gas decomposition and immobilization apparatus including a cement kiln (a) a combustion reactor; (b) 4 to 20 plasma combustion means for supplying plasma to the combustion reactor; (c) a plasma combustion system including fuel supply means connected to the upper half of the combustion reactor and supplying waste plastic in the direction of the combustion reactor, and the high-temperature gas discharged from the plasma combustion system is attached to the cement kilns. It relates to a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that the preheating tower is mixed with fuel for heating and supplied, and thermally decomposed by injecting a greenhouse gas into the cement kiln.
  • the combustion reactor is a device that gasifies and supplies waste plastic supplied from the fuel supply means, and is manufactured in a square or circular pipe shape, and a fuel supply means is installed on one side of the axial direction, and a gas discharge means is installed on the other side.
  • the combustion reactor may also be manufactured in a vertical cylindrical shape or a square column shape.
  • a fuel supply means may be connected to an upper side, and a gas discharge means may be installed on the other side of the lower side. That is, it is preferable that the fuel supply means is installed at the upper end of one side of the combustion reactor, and the gas discharge means is installed at the lower end of the other side. Accordingly, the waste plastic supplied by the fuel supply means passes through the combustion reactor and is discharged toward the gas discharge port on the other side, and the generated gas may also be discharged toward the gas discharge port.
  • the combustion reactor may be manufactured as a combustor having a single combustion unit, and may be composed of two stages of an upper portion 100 and a lower portion 110 in order to increase combustion efficiency (see FIG. 4 ).
  • a plasma combustion means 200 is installed at the upper end, and an air supply nozzle for combustion may be positioned at the lower end to perform combustion more smoothly.
  • the air supplied from the combustion air supply nozzle additionally oxidizes the first combustion gas at the upper end of the combustion reactor and is supplied to the gas discharge means, and at the same time, part of the air is supplied to the upper end of the combustion reactor to perform primary combustion. You can do it.
  • the combustion reactor is operated by dividing the combustion reactor into an upper part and a lower part, since the waste plastic is gasified and completely combusted, the amount of ash and tar generated can be remarkably reduced (see FIG. 5).
  • An auxiliary combustion means capable of supplying air or oxygen may be installed at an inner lower portion of the combustion reactor.
  • the combustion reactor as air and combustibles are supplied from the upper portion, in the case of the alternative fuel (waste plastic) stacked at the lower portion, the supply of oxygen is not smooth, and incomplete combustion may occur. Therefore, it is desirable to smoothly supply oxygen by installing auxiliary combustion means for supplying additional gas in the combustion reactor. At this time, the auxiliary combustion means may simply supply external air, and it is also possible to supply pure oxygen.
  • 2 to 100 perforated portions are arranged at regular intervals, and air or oxygen may be supplied through the perforated portions.
  • the combustion reactor may include 4 to 20 plasma combustion means for supplying plasma (see FIG. 4).
  • plasma combustion means for supplying plasma
  • fossil fuels were used to perform combustion.
  • the flame temperature is operated at a low temperature, and thus the temperature inside the combustion reactor is not significantly increased. Accordingly, in the present invention, the same combustion reaction can be performed while increasing the temperature inside the combustion reactor using the plasma combustion means, minimizing the amount of fossil fuel used, and minimizing the amount of heat used due to the high temperature.
  • the plasma combustion means may be arranged at regular intervals on both sides of the combustion reactor along a direction horizontal to the bottom of the combustion reactor (see FIG. 4). In the case of the plasma combustion means, it is preferable to uniformly supply plasma into the combustion reactor. In particular, when the waste plastic accumulates on the bottom of the combustion reactor due to the fall of the waste plastic, it is preferable to be arranged at regular intervals on both sides of the combustion reactor along a direction horizontal to the bottom of the combustion reactor in order to burn it uniformly. However, when the combustion reactor is composed of two stages at an upper end and a lower end, 2 to 16 plasma combustion means are disposed at the upper end, and 2 to 4 are disposed at the lower end to prevent waste plastic falling on the upper end. It is desirable to burn intensively (see Figs. 4 and 5).
  • the combustion reactor may have an internal temperature of 500 to 2000°C, and a temperature of the discharged gas may be 800 to 2000°C.
  • the internal temperature is about 900 to 1400°C, and the temperature has not been reached enough to completely burn the plastic and gasify it.
  • combustion can be performed at a high temperature using a plasma combustion means, and the internal temperature can be maintained at 500 to 2000°C by preventing temperature drop as much as possible.
  • This internal temperature is very different depending on the type of plastic supplied, but in general, the higher the carbon ratio and the lower the average molecular weight of the polymer, the higher the temperature may be.
  • the temperature inside the combustion reactor when the temperature inside the combustion reactor is lowered to less than 500° C., tar may be deposited inside the combustion reactor due to an incomplete reaction of plastics. Therefore, it is preferable that the temperature inside the combustion reactor be 500°C or higher.
  • the combustion reactor since the combustion reactor has an inlet temperature as low as possible, and the exhausted gas is exhausted from the combustion reactor, a gas having a temperature higher than 500°C, which is the minimum temperature of the combustion reactor, may be discharged. Therefore, the temperature of the discharged gas may be 800 ⁇ 2000 °C.
  • the temperature of the discharged gas is less than 800°C, tar may be deposited at the gas outlet, and if it exceeds 2000°C, the gas outlet is overheated, so additional heat dissipation equipment must be provided, so economical efficiency may be degraded.
  • the high-temperature gas discharged as described above may serve to increase the temperature of the preheating tower and the temperature of the kiln while being supplied to the preheating tower attached to the cement kiln.
  • the maximum temperature is 1500°C or less, but in this case, it is difficult for the greenhouse gas to reach around 2000°C, which is the temperature at which the maximum pyrolysis efficiency is achieved.
  • the greenhouse gas can be pyrolyzed at an optimum temperature.
  • the greenhouse gas may be SF6 or HFCs.
  • SF6 or HFCs are limited as a representative material exhibiting a greenhouse effect
  • a large amount is used as a cleaning agent or other additives.
  • their decomposition temperature is high and there is a problem in treatment cost, so they are recovered and reused rather than decomposed and detoxified. Therefore, when the greenhouse gas is converted to CaF2, it can be used as an additive that not only removes the high-concentration greenhouse gas, but also enhances the physical properties of the cement to be fired.
  • the decomposition of SF6 or HFCs may be performed through a chemical reaction as follows.
  • the SF6 or HFCs react with calcium oxide in limestone to convert to CaF2, and the CaF2 is used as an additive in cement to enhance the physical properties of the cement.
  • a chemical reaction is efficient at a high temperature (1500°C) or higher, a high-temperature cement kiln is required, and accordingly, an additional heat source such as the present invention may be required.
  • greenhouse gases can be converted to CaF2 and CaSO4 after pyrolysis.
  • the sintering temperature is lowered by about 100°C during limestone decarboxylation, thereby reducing energy consumption.
  • CaSO4 it is an essential auxiliary material in cement manufacturing, delaying condensation, increasing short-term strength, reducing drying shrinkage, and improving chemical resistance. There are effects such as letting go.
  • the fuel supply means may include a fuel transfer means including one or more screws or a pressure feeding device rotating in opposite directions to each other therein (FIG. 6).
  • a fuel transfer means including one or more screws or a pressure feeding device rotating in opposite directions to each other therein FIG. 6
  • a fuel transfer means including one or more screws rotating in opposite directions or a pressure feeding device is installed inside the fuel supply means to continuously supply waste plastic at a constant speed to lower the temperature inside the combustion reactor. It is desirable to prevent it.
  • a fuel dispersing means capable of uniformly supplying the waste plastic into the combustion reactor is installed between the combustion reactor and the combustion reactor.
  • the fuel dispersing means uniformly supplies the waste plastic supplied by the fuel supply means to the inside of the combustion reactor, thereby preventing a temperature drop, enabling a uniform combustion reaction, and preventing the generation of tar as much as possible.
  • the fuel dispersing means can be used without limitation as long as it is capable of uniformly distributing the waste plastic in the combustion reactor, but dispersing the waste plastic using a mesh net, a structure at regular intervals arranged in multiple layers, or rotating blades desirable.
  • the cement kilns supply the gas generated from the alternative fuel gasification device to a preheating tower, and supply the same as fuel for heating the kilns for combustion, and supply some or all of the heated air generated in the kilns to the alternative fuel gasification device. have.
  • the preheating tower attached to the cement kiln the existing fossil fuel is used to supply the heat required for firing, but efforts to reduce the emission of carbon dioxide are continuing, so there is a limit to improving the heat quantity. Therefore, in the present invention, the waste plastic is incinerated using the alternative fuel gasification device and the gas generated after incineration is supplied to the preheating tower attached to the cement kilns to perform additional combustion, thereby supplying additional heat without generating carbon dioxide. This is possible.
  • the optimum decomposition temperature of the greenhouse gas can be reached due to the amount of heat added in this way.
  • the combustion efficiency of the combustion reactor by supplying high-temperature waste gas air generated in the cement kiln to the combustion reactor.
  • the sintering of the cement by heat is continuously performed inside the sintering furnace, and internal air is also discharged as the fired cement is discharged.
  • High-temperature waste gas air is generated in the process of cooling the clinker, a semi-finished cement product produced through this.
  • combustion efficiency can be greatly increased.
  • the heated air generated inside the kiln may be partially or entirely supplied to the combustion reactor depending on the amount of oxygen consumed in the combustion reactor, and externally supplied to the combustion reactor in order to maintain the optimum temperature inside the combustion reactor.
  • the heated air generated inside the kiln may have a temperature of 500 to 1000°C.
  • unreacted greenhouse gases can be recycled and treated as well, so the conversion rate of greenhouse gases can also be increased.
  • the cement kiln may detoxify harmful gases contained in the gas supplied from the alternative fuel gasifier. Since the preheating tower attached to the cement kilns burns the gas supplied from the alternative fuel gasification device once more to supply heat, it is possible to oxidize and remove various harmful gases contained in the gas supplied from the alternative fuel gasification device. In particular, in the case of dioxins, HCN, CO, or NOx, which are frequently generated during the incineration of waste plastics, most of the harmful gases generated from the existing waste plastic incinerators can be removed by using additional incineration and prevention facilities owned by the kiln. At this time, the harmful gas may be converted into the form of N2, CO2 or H2O and removed.
  • waste plastic fuel was added at appropriate intervals. It was found that the temperature (TC6) of the gas generated from the alternative fuel gasification combustion device was maintained at about 800 ⁇ 1400°C. In addition, the temperature of the air supplied from the cement kiln (TC8) is maintained at 400 ⁇ 600 °C, and is supplied to the alternative fuel gasification combustion device, it was found that it contributes to the increase in the temperature of the exhaust gas. In the present invention, the amount of waste plastic is input in the range of 10 to 75 (kg/hr), and the average temperature of the kiln is maintained at a maximum of 2500°C.
  • the temperature (TC6) of the gas generated from the alternative fuel gasification combustion device is 750 ⁇ 1050°C, so when the air from the cement kiln is mixed and used, the efficiency of the kiln preheating tower is improved. Not only can it be improved further, it has also been shown that the efficiency of the alternative fuel gasification combustion device is also increased.
  • Example 1 The residue after treatment in Example 1 was analyzed.
  • the remnant was confirmed to have porosity, and thus it was predicted that it could be used as a building material or a covering material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

The present invention relates to an apparatus which is for decomposing and immobilizing a greenhouse gas and includes a cement firing furnace, wherein a plasma combustion system can be used to perform gasification and combustion through the thermal decomposition of plastic waste to provide an additional heat source to a preheating tower attached to the cement firing furnace and elevate the temperature of the cement firing furnace, and thereby thermally decompose the greenhouse gas. The present invention provides an apparatus which is for decomposing and immobilizing a greenhouse gas and includes a cement firing furnace, the apparatus comprising a plasma combustion system including: (a) a combustion reactor; 4-20 plasma combustion means for supplying plasma to the combustion reactor; and (c) a fuel supplying means which is connected to the upper portion of the combustion reactor and supplies plastic waste in the direction of the combustion reactor, wherein high-temperature gas discharged from the plasma combustion system is supplied by being mixed with fuel for heating a preheating tower attached to the cement firing furnace, and the greenhouse gas is injected into the cement firing furnace and thermally decomposed.

Description

시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치Greenhouse gas decomposition and immobilization device including cement kiln
본 발명은 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치에 관한 것으로, 더욱 상세하게는 플라즈마 연소시스템을 이용하여 버려지는 폐플라스틱의 열분해를 통하여 가스화 및 연소시키는 것으로 시멘트 소성로에 부속된 예열탑에 추가적인 열원을 공급하여 시멘트 소성로의 온도를 높일 수 있으며, 이에 따라 온실가스를 열분해 할 수 있는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치에 관한 것이다.The present invention relates to a greenhouse gas decomposition and immobilization apparatus including a cement kiln, and more particularly, gasification and combustion through pyrolysis of waste plastics discarded using a plasma combustion system. It is possible to increase the temperature of the cement kiln by supplying a heat source, and accordingly relates to a greenhouse gas decomposition and immobilization device including a cement kiln capable of pyrolyzing greenhouse gases.
플라스틱은 석유에서 추출되는 원료를 결합하여 생성되는 고분자 화합물의 일종으로 주로 탄소골격을 중심으로 수소를 비롯한 여러 작용기가 결합되어 있는 거대분자를 의미한다. 초기에는 천연수지인 고무나 송진을 대체하기 위하여 주로 개발되어 합성수지라고 불리지만 현재에는 다양한 성질을 가지는 수백만가지의 플라스틱이 개발되어 있으며, 천연수지의 사용량에 비하여 압도적인 비율로서 사용되고 있다. 최초 개발된 플라스틱은 당구공으로 사용되는 상아를 대체하기 위하여 개발된 페놀수지(베이클라이트)로서 페놀과 포름알데히드를 중합하여 1907년에 제조되었다. 이러한 초기의 플라스틱은 상아의 대체재나 아이들의 장난감수준으로 밖에 여겨지지 않았지만, 최근 들어 플라스틱은 모든 산업에서 없어서는 안되는 중요한 소재로 인식되고 있다. 특히 기존의 플라스틱의 단점인 강도문제를 해결한 엔지니어링 플라스틱의 경우 철강재의 대체재로서 각광을 받고 있으며, 파손시 유리나 철에 비하여 안정성이 뛰어나므로 파손이 우려되는 제품 대부분에 플라스틱이 사용되고 있다.Plastic is a kind of polymer compound that is produced by combining raw materials extracted from petroleum, mainly refers to a macromolecule in which several functional groups including hydrogen are bonded around a carbon skeleton. Initially, it was mainly developed to replace natural resins such as rubber or rosin, and is called synthetic resin, but nowadays, millions of plastics having various properties have been developed, and are used at an overwhelming ratio compared to the amount of natural resin. The first plastic developed was a phenolic resin (bakelite) developed to replace ivory used for billiard balls, and was manufactured in 1907 by polymerizing phenol and formaldehyde. These early plastics were considered only as a substitute for ivory or children's toys, but recently, plastics are recognized as an indispensable and important material in all industries. In particular, engineering plastics that have solved the strength problem, which is a disadvantage of conventional plastics, are in the spotlight as a substitute for steel materials, and plastics are used in most products that are concerned about breakage because they have superior stability compared to glass or iron when damaged.
플라스틱은 크게 열에 의한 연화 가능여부에 따라 열가소성 수지와 열경화성 수지로 나뉜다. 열가소성 수지는 열을 가하면 고분자 사슬간 결합이 느슨해져 유동성을 가지는 플라스틱으로 강도는 떨어지지만 재활용이 용이하여 다량 소비되는 생활용품 분야에 많이 사용되고 있다. 열경화성 수지는 열을 가하면 고분자 사슬간의 결합이 더욱 단단해져 강도가 올라가는 플라스틱으로 경화이전에는 액체 또는 유동성을 가지는 고체로서 가공이 용이하지만, 경화이후에는 열에 의한 유동성 저하가 나타나지 않아 재활용이 거의 불가능하다는 단점을 가진다. 하지만 이러한 열경화성 플라스틱은 열가소성 플라스틱에 비하여 강도가 높고 내열성이 우수하므로 고강도가 필요한 엔지니어링 플라스틱과 같은 산업현장에 주로 사용되고 있다.Plastics are largely divided into thermoplastic resins and thermosetting resins depending on whether they can be softened by heat. Thermoplastic resins are plastics that have fluidity due to loosening bonds between polymer chains when heat is applied. However, they are easily recycled and are widely used in household goods fields. Thermosetting resins are plastics that increase strength by strengthening the bonds between polymer chains when heat is applied.Before curing, they are liquids or solids with fluidity that are easy to process.However, after curing, they do not deteriorate in fluidity due to heat, so recycling is almost impossible. Have. However, since these thermosetting plastics have higher strength and better heat resistance than thermoplastic plastics, they are mainly used in industrial sites such as engineering plastics that require high strength.
이러한 플라스틱은 가공이 용이함에 따라 원하는 형상 및 색상으로 제작가능함과 더불어 자연분해가 거의 나타나지 않아 수명이 길고 원하는 물성을 손쉽게 제작할 수 있다는 장점을 가지지만, 자연상태에서는 분해되는 기간이 매우 오래 걸려 사용 후 플라스틱의 처리가 문제시 되고 있다. 일반적으로 사용이후의 플라스틱은 매립 처리되지만, 매립시 분해에 많은 시간이 소요되므로 그 한계를 가지고 있다. 따라서 이를 해결하기 위한 방법으로 플라스틱 원료를 재활용하는 방법이 제시되고 있지만, 열가소성 수지만을 재활용할 수 있으며, 수백만 종의 플라스틱을 종류별로 분리하는 것에 대한 어려움이 있어 재활용율이 크게 향상되지는 못하는 실정이다. As these plastics are easy to process, they can be manufactured in a desired shape and color, and have the advantage that natural decomposition hardly appears, so that they have a long lifespan and can easily manufacture desired properties.However, in the natural state, it takes a very long time to decompose and after use. The treatment of plastics is a problem. In general, plastics after use are buried, but there is a limitation because it takes a lot of time to decompose when buried. Therefore, as a method to solve this problem, a method of recycling plastic raw materials has been proposed, but only thermoplastic resins can be recycled, and there is a difficulty in separating millions of plastics by type, so the recycling rate is not significantly improved. to be.
이런 플라스틱의 단점을 해결하기 위하여 생분해성 플라스틱이 개발되고 있다. 하지만 이러한 생분해성 플라스틱의 경우 장기간 사용이 어렵고 일반적인 플라스틱에 비하여 물성이 떨어져 제한된 분야에서만 사용되고 있을 뿐만 아니라 분해이후 환경이 미치는 영향이 아직까지 완전히 파악되지 않아 무제한적으로 사용하기에는 어려움을 가지고 있다.Biodegradable plastics are being developed to solve the disadvantages of these plastics. However, in the case of such biodegradable plastics, it is difficult to use for a long period of time and is not only used in a limited field because of its physical properties compared to general plastics, and it is difficult to use it unlimitedly because the impact of the environment after decomposition has not been fully understood.
하지만 플라스틱의 경우 대부분이 석유 유래 물질이며 탄소계의 기본 골격을 가지고 있는 고분자 물질이므로 이를 연료로 활용하는 방법 또한 개발되고 있다. 플라스틱의 경우 동일중량의 화석연료와 비슷한 열량을 발생시킬 수 있어 이를 연료로 사용하는 경우 화석연료의 일부를 대체할 수 있을 것으로 기대된다. 하지만 플라스틱은 분자량이 큰 물질로서 연소시 불완전연소가 발생하여 유독가스를 발생시키는 경우가 많으며, 플라스틱의 물성을 강화하기 위하여 첨가되는 각종 첨가물 역시 다량의 유독가스의 발생원으로 지목되고 있어 이를 연료로 사용하는 것은 제한적으로 수행되어 왔다. However, in the case of plastics, most of them are petroleum-derived materials and polymer materials having a basic carbon-based skeleton, so methods of using them as fuel are also being developed. Plastics can generate heat similar to fossil fuels of the same weight, so if they are used as fuel, it is expected to be able to replace part of fossil fuels. However, plastic is a material with a high molecular weight, and incomplete combustion occurs during combustion and often generates toxic gases, and various additives added to reinforce the physical properties of plastics are also pointed out as a source of large amounts of toxic gases, so they are used as fuel. It has been limitedly practiced.
한편 시멘트 소성로의 경우 킬른형 반응기를 주로 사용하고 있다. 이러한 킬른은 시멘트 소성에 가용되는 가마의 일종으로 연속적인 운전을 위하여 로터리 Type의 킬른이 주로 사용한다. 로터리 킬른의 경우 지면과 일정한 각도를 가지는 파이프 형상의 반응기로 구성되어 있으며, 반응기의 일측면에서 원료를 공급하며, 이는 파이프 형상의 반응기가 회전함에 따라, 반응기의 타측으로 이동하면서 반응이 이루어진다. 이때 원료는 반응기의 회전에 의하여 일정높이까지 상승했다가 중력에 의하여 아래쪽으로 떨어지는 것을 반복하면서 혼합되며, 반응기의 끝부분에는 가열수단으로 유연탄이 사용되어 반응기를 일정온도로 유지하게 된다. 이러한 로터리 킬른은 회전에 의하여 혼합이 반복되는 특성을 가지며, 반응기의 직경 및 회전속도에 따라 생산량이 조절할 수 있다. 이때 상기 킬른을 일정온도로 유지하기 위해서는 많은 열량을 필요로 하며, 이에따라 다량의 화석연료를 사용하고 있어 이를 저감하기 위한 노력이 필요로 한다. Meanwhile, in the case of a cement kiln, a kiln-type reactor is mainly used. This kiln is a kind of kiln that can be used for cement firing, and rotary type kiln is mainly used for continuous operation. In the case of the rotary kiln, it is composed of a pipe-shaped reactor having a certain angle with the ground, and raw materials are supplied from one side of the reactor, which is reacted while moving to the other side of the reactor as the pipe-shaped reactor rotates. At this time, the raw material is mixed by repeatedly rising to a certain height by the rotation of the reactor and then falling downward by gravity, and bituminous coal is used as a heating means at the end of the reactor to maintain the reactor at a constant temperature. Such a rotary kiln has a characteristic that mixing is repeated by rotation, and the production amount can be adjusted according to the diameter and rotation speed of the reactor. At this time, in order to maintain the kiln at a constant temperature, a large amount of heat is required, and accordingly, a large amount of fossil fuel is used, and thus an effort to reduce this is required.
GWP가 높은 불소계 가스 사용량의 지속적 증가로 불소계 가스 처리기술의 필요성 대두되고 있으며, 저농도 SF6 및 HFCs 회수, 분해 및 처리기술의 연구개발 시도는 현재까지 많이 수행되어 왔으나, 고농도 및 대용량 SF6 및 HFCs 분해 및 처리기술 전무한 상태이다. 또한 최근들어 환경보호 측면에서 이산화탄소 발생량 저감을 위하여 지구 온난화 방지를 위한 협약(교토 의정서)이 채결됨에 따라 온실가스의 저감이 사회 전체적인 이슈로 대두되고 있어 이러한 고농도 온실가스의 제거 및 무해화를 달성할 수 있는 공정이 필요하다.The need for fluorine-based gas treatment technology is emerging due to the continuous increase in the use of fluorine-based gas with high GWP, and research and development of low-concentration SF6 and HFCs recovery, decomposition, and treatment technologies have been carried out a lot. It has no processing technology. In addition, with the recent signing of the Convention (Kyoto Protocol) to prevent global warming in order to reduce the amount of carbon dioxide generated in terms of environmental protection, the reduction of greenhouse gases has emerged as a general issue of society, thus achieving the removal and harmlessness of these high-concentration greenhouse gases. You need a process that can be done.
(특허문헌 0001) 대한민국 등록특허 제10-1201426호(Patent Document 0001) Korean Registered Patent No. 10-1201426
(특허문헌 0002) 대한민국 공개특허 제10-2012-0000940호(Patent Document 0002) Republic of Korea Patent Publication No. 10-2012-0000940
전술한 문제를 해결하기 위하여, 본 발명은 플라즈마 연소시스템을 이용하여 버려지는 폐플라스틱의 열분해를 통하여 가스화 및 연소시키는 것으로 시멘트 소성로에 부속된 예열탑에 추가적인 열원을 공급하여 시멘트 소성로의 온도를 높일 수 있으며, 이에 따라 온실가스를 열분해 할 수 있는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치를 제공하고자 한다.In order to solve the above-described problem, the present invention gasifies and combusts through pyrolysis of discarded plastics using a plasma combustion system, so that an additional heat source is supplied to the preheating tower attached to the cement kilns to increase the temperature of the cement kilns. Accordingly, it is intended to provide an apparatus for decomposing and fixing greenhouse gases including a cement kiln capable of pyrolyzing greenhouse gases.
상술한 문제를 해결하기 위해, 본 발명은 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치에 있어서 (a) 연소반응기; (b) 상기 연소반응기에 플라즈마를 공급하는 4~20개의 플라스마 연소수단; (c) 상기 연소반응기의 상반부에 연결되어 상기 연소반응기 방향으로 폐플라스틱을 공급하는 연료공급수단을 포함하는 플라즈마 연소시스템을 포함하며, 상기 플라즈마 연소시스템에서 배출되는 고온의 가스를 상기 시멘트 소성로에 부속된 예열탑 가열용 연료와 혼합하여 공급하며, 상기 시멘트 소성로에 온실가스를 주입하여 열분해하는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치를 제공한다.In order to solve the above problems, the present invention provides a greenhouse gas decomposition and immobilization apparatus including a cement kiln (a) a combustion reactor; (b) 4 to 20 plasma combustion means for supplying plasma to the combustion reactor; (c) a plasma combustion system including fuel supply means connected to the upper half of the combustion reactor and supplying waste plastic in the direction of the combustion reactor, and the high-temperature gas discharged from the plasma combustion system is attached to the cement kilns. It provides a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that it is supplied by mixing with fuel for heating the preheating tower, and pyrolyzing by injecting greenhouse gas into the cement kiln.
상기 시멘트 소성로는 1500~3000℃의 온도에서 온실가스를 열분해할 수 있다.The cement kiln may pyrolyze greenhouse gases at a temperature of 1500 to 3000°C.
상기 온실가스는 SF6 또는 HFCs일 수 있다.The greenhouse gases may be SF6 or HFCs.
상기 온실가스는 CaF2로 전환될 수 있다.The greenhouse gas can be converted to CaF2.
상기 연소반응기는 상기 연료공급수단이 일측 상방향에 연결되어 있으며, 타측 하방으로 가스 배출구가 형성될 수 있다.In the combustion reactor, the fuel supply means may be connected to an upper side, and a gas outlet may be formed at a lower side of the other side.
상기 연소반응기의 내측 하부에는 공기 또는 산소를 추가적으로 공급하는 보조연소 수단이 설치될 수 있다.An auxiliary combustion means for additionally supplying air or oxygen may be installed at an inner lower portion of the combustion reactor.
상기 보조연소수단은 2~100개의 타공부가 일정간격으로 배열되어 있으며, 상기 타공부를 통하여 공기 또는 산소가 공급될 수 있다.In the auxiliary combustion means, 2 to 100 perforated portions are arranged at regular intervals, and air or oxygen may be supplied through the perforated portions.
상기 연소반응기는 내부 온도가 500~2000℃이며, 배출되는 가스의 온도가 800~2000℃일 수 있다.The combustion reactor may have an internal temperature of 500 to 2000°C, and a temperature of the discharged gas may be 800 to 2000°C.
상기 플라스마 연소수단은 상기 연소반응기의 바닥과 수평한 방향을 따라 연소반응기의 양측면에 일정간격으로 배열될 수 있다.The plasma combustion means may be arranged at regular intervals on both sides of the combustion reactor along a direction horizontal to the bottom of the combustion reactor.
상기 플라즈마 연소수단은 각각 10~50kW의 출력을 가지며, 플라즈마의 토출온도가 5000~7000K일 수 있다.Each of the plasma combustion means may have an output of 10 to 50 kW, and a discharge temperature of the plasma may be 5000 to 7000 K.
상기 연료공급수단은 내부에 서로 반대방향으로 회전하는 한 개 이상의 스크류 또는 압송 장치를 포함하는 연료이송수단을 포함할 수 있다.The fuel supply means may include a fuel transfer means including one or more screws or a pressure feeding device rotating in opposite directions to each other therein.
상기 연료공급수단과 상기 연소반응기 사이에는 상기 폐플라스틱을 연소반응기 내부에 균일하게 공급할 수 있는 연료분산수단이 설치될 수 있다.A fuel dispersing means capable of uniformly supplying the waste plastic into the combustion reactor may be installed between the fuel supply means and the combustion reactor.
상기 연료분산수단은 메쉬망, 다층으로 배열된 일정간격의 구조물, 회전하는 원형판 또는 회전하는 날개를 포함할 수 있다.The fuel dispersing means may include a mesh net, a structure at regular intervals arranged in multiple layers, a rotating circular plate, or a rotating blade.
상기 소성로 내부에서 발생한 가열된 공기의 일부 또는 전부를 공기와 혼합한 다음, 상기 플라즈마 연소 시스템으로 공급할 수 있다.Some or all of the heated air generated inside the kiln may be mixed with air and then supplied to the plasma combustion system.
본 발명에 의한 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치는 기존의 소성로에서는 도달할 수 없는 고온에서 온실가스를 전환하기 위하여 플라즈마 연소시스템을 도입하는 것으로 소성로 내의 온도를 크게 향상시킬 수 있음과 더불어 고농도의 온실가스를 CaF2로 전환하여 무해화 함과 동시에 발생되는 CaF2는 시멘트의 물성을 개선시키는 효과를 기대할 수 있으며, 상기 플라즈마 연소시스템은 폐 플라스틱을 연료로 사용함에 따라 고농도 온실가스의 무해화, 시멘트의 물성 향상 및 폐플라스틱의 처리를 동시에 수행할 수 있는 장점을 가진다.The apparatus for decomposing and fixing greenhouse gases including a cement kiln according to the present invention introduces a plasma combustion system to convert greenhouse gases at a high temperature that cannot be reached in a conventional kiln, and can greatly improve the temperature in the kiln. CaF2 generated at the same time by converting high-concentration greenhouse gas to CaF2 to be detoxified can be expected to improve the physical properties of cement, and the plasma combustion system uses waste plastic as fuel, thereby detoxifying high-concentration greenhouse gas, It has the advantage of being able to improve the physical properties of cement and treat waste plastics at the same time.
본 발명 상에서 온실가스는 열분해 후에 CaF2 및 CaSO4로 전환될 수 있다. CaF2의 경우는 석회석 탈탄산시 소성 온도를 약 100℃ 낮춤으로써 에너지 절감 효과가 있고, CaSO4의 경우는 시멘트 제조시 필수적인 부원료로써, 응결을 지연시키며 단기 강도를 높이고 건조 수축을 감소시키고 화학적 저항성을 향상시키는 등의 효과가 있다.In the present invention, greenhouse gases can be converted to CaF2 and CaSO4 after pyrolysis. In the case of CaF2, the sintering temperature is lowered by about 100℃ during limestone decarboxylation, thereby reducing energy consumption. In the case of CaSO4, it is an essential auxiliary material in cement manufacturing, delaying condensation, increasing short-term strength, reducing drying shrinkage, and improving chemical resistance. There are effects such as letting go.
도 1은 본 발명의 일 실시예에 의한 플라즈마 연소시스템을 포함하는 대체연료 가스화 장치 및 시멘트 소성로의 개념을 간략히 나타낸 것이다.1 is a schematic view showing the concept of an alternative fuel gasification apparatus and a cement kiln including a plasma combustion system according to an embodiment of the present invention.
도 2은 본 발명의 일 실시예에 의한 플라즈마 연소시스템과 시멘트 소성로의 결합을 나타낸 도면이다.2 is a view showing a combination of a plasma combustion system and a cement kiln according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 의한 플라즈마연소수단의 플라즈마 발생을 나타낸 사진이다.3 is a photograph showing the plasma generation of the plasma combustion means according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 의한 연소반응기 및 플라즈마 연소수단의 결합모습을 간략히 나타낸 도면이다.4 is a schematic view showing a combination of a combustion reactor and a plasma combustion means according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 의한 연소반응기의 작동방법은 간략히 나타낸 것이다.5 is a schematic diagram of a method of operating a combustion reactor according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 의한 원료공급수단을 나타낸 도면이다.6 is a view showing a raw material supply means according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 의한 소성로에서 발생된 고온의 폐가스 공기를 공급하는 수단을 나타낸 도면이다.7 is a view showing a means for supplying high-temperature waste gas air generated in the kiln according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 의한 연소반응기의 형상 및 열전쌍온도계의 위치를 간력히 나타낸 것이다.8 schematically shows the shape of the combustion reactor and the location of the thermocouple thermometer according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 의한 소성로 발생가스를 사용한 연소반응기 각부위의 온도를 측정한 결과이다.9 is a result of measuring the temperature of each part of the combustion reactor using the kilns generated gas according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 의한 소성로 발생가스를 사용하지 않은 연소반응기 각부위의 온도를 측정한 결과이다.10 is a result of measuring the temperature of each part of the combustion reactor that does not use the kilns generated gas according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 의한 수거된 연소반응기 잔류물의 사진이다.11 is a photograph of the collected combustion reactor residue according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 의한 수거된 연소반응기 잔류물의 FE-SEM 사진이다.12 is an FE-SEM photograph of the collected combustion reactor residue according to an embodiment of the present invention.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, a preferred embodiment of the present invention will be described in detail. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise stated.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention is intended to illustrate specific embodiments and to be described in detail in the detailed description, since various transformations may be applied and various embodiments may be provided. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, or substitutes included in the spirit and scope of the present invention.
발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are used only to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, terms such as include or have are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination of them described in the specification, and one or more other features, numbers, and steps. It is to be understood that it does not preclude the possibility of the presence or addition of, operations, components, parts, or combinations thereof.
본 발명은 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치에 있어서 (a) 연소반응기; (b) 상기 연소반응기에 플라즈마를 공급하는 4~20개의 플라스마 연소수단; (c) 상기 연소반응기의 상반부에 연결되어 상기 연소반응기 방향으로 폐플라스틱을 공급하는 연료공급수단을 포함하는 플라즈마 연소시스템을 포함하며, 상기 플라즈마 연소시스템에서 배출되는 고온의 가스를 상기 시멘트 소성로에 부속된 예열탑 가열용 연료와 혼합하여 공급하며, 상기 시멘트 소성로에 온실가스를 주입하여 열분해하는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치에 관한 것이다.The present invention provides a greenhouse gas decomposition and immobilization apparatus including a cement kiln (a) a combustion reactor; (b) 4 to 20 plasma combustion means for supplying plasma to the combustion reactor; (c) a plasma combustion system including fuel supply means connected to the upper half of the combustion reactor and supplying waste plastic in the direction of the combustion reactor, and the high-temperature gas discharged from the plasma combustion system is attached to the cement kilns. It relates to a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that the preheating tower is mixed with fuel for heating and supplied, and thermally decomposed by injecting a greenhouse gas into the cement kiln.
상기 연소반응기는 상기 연료 공급수단에서 공급된 폐플라스틱을 가스화하여 공급하는 장치로 사각 또는 원형의 파이프 형상으로 제작되고 축방향의 일 측면에는 연료공급 수단이 설치되며 타 측면에는 가스 배출수단이 설치될 수 있다. 상기 연소반응기는 또한 수직의 원통형 또는 사각 기둥형으로 제작될 수도 있으며, 이 경우 상부 일측면에는 연료공급수단이 연결되며, 하부의 타측면에는 가스 배출 수단이 설치될 수 있다. 즉 상기 연소반응기의 일측면 상단에는 상기 연료공급수단이 설치되며, 타측면의 하단에는 가스 배출수단이 설치되는 것이 바람직하다. 이에 따라 상기 연료 공급수단에 의하여 공급된 폐플라스틱은 연소반응기를 지나 타측면의 가스배출구 방향으로 배출되며 생성되는 가스 역시 가스배출구 방향으로 배출될 수 있다. The combustion reactor is a device that gasifies and supplies waste plastic supplied from the fuel supply means, and is manufactured in a square or circular pipe shape, and a fuel supply means is installed on one side of the axial direction, and a gas discharge means is installed on the other side. I can. The combustion reactor may also be manufactured in a vertical cylindrical shape or a square column shape. In this case, a fuel supply means may be connected to an upper side, and a gas discharge means may be installed on the other side of the lower side. That is, it is preferable that the fuel supply means is installed at the upper end of one side of the combustion reactor, and the gas discharge means is installed at the lower end of the other side. Accordingly, the waste plastic supplied by the fuel supply means passes through the combustion reactor and is discharged toward the gas discharge port on the other side, and the generated gas may also be discharged toward the gas discharge port.
또한 상기 연소반응기는 단일 연소부를 가지는 연소기로 제작될 수 있으며, 연소효율을 높이기 위하여 상단부(100)와 하단부(110)의 두 개의 단으로 구성될 수 있다(도 4참조). 이때 상기 상단부에는 플라즈마 연소수단(200)이 설치되며, 하단부에는 연소를 더욱 원활하게 수행하기 위하여 연소용 공기 공급 노즐이 위치할 수 있다. 이 경우 상기 연소용 공기 공급노즐에서 공급된 공기는 상기 연소반응기의 상단부에서 1차 연소된 가스를 추가적으로 산화시켜 가스 배출수단방향으로 공급함과 동시에 일부가 상기 연소반응기의 상단부로 공급되어 1차 연소를 수행할 수 있다. 이렇게 상기 연소반응기를 상단부와 하단부로 구분하여 가동하는 경우 상기 폐플라스틱을 가스화 및 완전 연소하기 때문에 재 및 타르의 발생량이 현저하게 줄어들 수 있다(도 5 참조).In addition, the combustion reactor may be manufactured as a combustor having a single combustion unit, and may be composed of two stages of an upper portion 100 and a lower portion 110 in order to increase combustion efficiency (see FIG. 4 ). At this time, a plasma combustion means 200 is installed at the upper end, and an air supply nozzle for combustion may be positioned at the lower end to perform combustion more smoothly. In this case, the air supplied from the combustion air supply nozzle additionally oxidizes the first combustion gas at the upper end of the combustion reactor and is supplied to the gas discharge means, and at the same time, part of the air is supplied to the upper end of the combustion reactor to perform primary combustion. You can do it. When the combustion reactor is operated by dividing the combustion reactor into an upper part and a lower part, since the waste plastic is gasified and completely combusted, the amount of ash and tar generated can be remarkably reduced (see FIG. 5).
상기 연소반응기의 내측 하부에는 공기 또는 산소를 공급할 수 있는 보조연소수단이 설치될 수 있다. 상기 연소반응기의 경우 상부에서 공기와 연소물이 공급됨에 따라 하부에 적치되어 있는 대체연료(폐플라스틱)의 경우 산소의 공급이 원활하지 못하여 불완전 연소가 일어날 수 있다. 따라서 연소반응기의 내부에 추가적인 상소를 공급하기 위한 보조연소수단을 설치하여 산소의 공급을 원활하게 하는 것이 바람직하다. 이때 상기 보조연소수단은 단순히 외부의 공기를 공급할 수 있으며, 순수한 산소를 공급하는 것도 가능하다. 아울러 상기 보조연소수단은 2~100개의 타공부가 일정간격으로 배열되어 있으며, 상기 타공부를 통하여 공기 또는 산소가 공급될 수 있다.An auxiliary combustion means capable of supplying air or oxygen may be installed at an inner lower portion of the combustion reactor. In the case of the combustion reactor, as air and combustibles are supplied from the upper portion, in the case of the alternative fuel (waste plastic) stacked at the lower portion, the supply of oxygen is not smooth, and incomplete combustion may occur. Therefore, it is desirable to smoothly supply oxygen by installing auxiliary combustion means for supplying additional gas in the combustion reactor. At this time, the auxiliary combustion means may simply supply external air, and it is also possible to supply pure oxygen. In addition, in the auxiliary combustion means, 2 to 100 perforated portions are arranged at regular intervals, and air or oxygen may be supplied through the perforated portions.
상기 연소반응기에는 플라즈마를 공급하는 4~20개의 플라스마 연소수단을 포함할 수 있다(도 4참조). 기존의 폐플라스틱용 연소기의 경우 화석연료를 사용하여 연소를 수행하였다. 하지만 화석연료의 경우 자체적인 유독가스를 발생시킬 수 있을 뿐만아니라 이산화탄소 발생량도 늘어나게 되어 그 사용이 제한적이다. 또한 상기 화석연료를 이용한 연소기의 경우 그 불꽃온도가 낮게 운영되어 상기 연소반응기 내부의 온도를 획기적으로 상승시키지 못하고 있다. 이에 본 발명에서는 플라즈마 연소수단을 이용하여 상기 연소반응기 내부의 온도를 상승시킴과 동시에 화석연료의 사용량을 최소화 하고 또한 높은 온도로 인하여 사용되는 열량도 최소화 하면서도 동일한 연소반응을 수행할 수 있다.The combustion reactor may include 4 to 20 plasma combustion means for supplying plasma (see FIG. 4). In the case of conventional waste plastic combustors, fossil fuels were used to perform combustion. However, in the case of fossil fuels, not only can it generate its own toxic gas, but also the amount of carbon dioxide generated increases, so its use is limited. In addition, in the case of the combustor using the fossil fuel, the flame temperature is operated at a low temperature, and thus the temperature inside the combustion reactor is not significantly increased. Accordingly, in the present invention, the same combustion reaction can be performed while increasing the temperature inside the combustion reactor using the plasma combustion means, minimizing the amount of fossil fuel used, and minimizing the amount of heat used due to the high temperature.
상기 플라스마 연소수단은 상기 연소반응기의 바닥과 수평한 방향을 따라 연소반응기의 양측면에 일정간격으로 배열될 수 있다(도 4 참조). 상기 플라즈마 연소수단의 경우 상기 연소반응기 내부에 균일하게 플라즈마를 공급하는 것이 바람직하다. 특히 상기 폐플라스틱의 낙하에 따라 폐플라스틱이 연소반응기의 바닥부분에 쌓이는 경우 이를 균일하게 연소하기 위하여 상기 연소반응기의 바닥과 수평한 방향을 따라 연소반응기의 양측면에 일정간격으로 배열되는 것이 바람직하다. 다만 상기 연소반응기가 상단부와 하단부의 두 개의 단으로 구성되는 경우 상기 상단부에는 상기 플라즈마 연소수단을 2~16개를 배치하며, 상기 하단부에는 2~4개를 배치하여 상기 상단부에 낙하하는 폐플라스틱을 중점적으로 연소시키는 것이 바람직하다(도 4 및 도 5 참조).The plasma combustion means may be arranged at regular intervals on both sides of the combustion reactor along a direction horizontal to the bottom of the combustion reactor (see FIG. 4). In the case of the plasma combustion means, it is preferable to uniformly supply plasma into the combustion reactor. In particular, when the waste plastic accumulates on the bottom of the combustion reactor due to the fall of the waste plastic, it is preferable to be arranged at regular intervals on both sides of the combustion reactor along a direction horizontal to the bottom of the combustion reactor in order to burn it uniformly. However, when the combustion reactor is composed of two stages at an upper end and a lower end, 2 to 16 plasma combustion means are disposed at the upper end, and 2 to 4 are disposed at the lower end to prevent waste plastic falling on the upper end. It is desirable to burn intensively (see Figs. 4 and 5).
상기 연소반응기는 내부 온도가 500~2000℃이며, 배출되는 가스의 온도가 800~2000℃일 수 있다. 기존의 화석 연료를 이용한 플라스틱 소각로의 경우 내부온도가 900~1400℃정도로 플라스틱을 완전 연소하여 가스화하기에는 충분한 온도에 도달하지 못하였다. 하지만 본원 발명의 경우 플라스마 연소수단을 이용하여 고온에서 연소를 수행할 수 있으며, 온도 강하를 최대한 막음에 따라 내부온도를 500~2000℃로 유지할 수 있다. 이러한 내부온도는 공급되는 플라스틱의 종류에 따라 매우 상이하지만, 일반적으로 탄소의 비율이 높으며 고분자의 평균분자량이 낮을수록 높은 온도를 나타낼 수 있다. 아울러 상기 연소반응기 내부의 온도가 500℃미만으로 낮아지는 경우 플라스틱의 불완전 반응으로 인하여 상기 연소반응기 내부에 타르가 침착될 수 있다. 따라서 연소반응기 내부의 온도는 500℃이상으로 하는 것이 바람직하다. 또한 상기 연소반응기는 입구부분의 온도가 가능 낮으며, 배출되는 가스는 연소반응기 내부에서 연소가 완료된 가스가 배출되므로, 상기 연소반응기의 최저온도인 500℃보다 높은 온도의 가스가 배출될 수 있다. 따라서 상기 배출되는 가스의 온도는 800~2000℃일 수 있다. 상기 배출되는 가스의 온도가 800℃미만인 경우 가스 배출구에 타르가 침착될 수 있으며 2000℃를 초과하는 경우 가스배출구가 과열됨에 따라 추가적인 방열설비를 해야 하므로 경제성이 떨어질 수 있다.The combustion reactor may have an internal temperature of 500 to 2000°C, and a temperature of the discharged gas may be 800 to 2000°C. In the case of conventional plastic incinerators using fossil fuels, the internal temperature is about 900 to 1400°C, and the temperature has not been reached enough to completely burn the plastic and gasify it. However, in the case of the present invention, combustion can be performed at a high temperature using a plasma combustion means, and the internal temperature can be maintained at 500 to 2000°C by preventing temperature drop as much as possible. This internal temperature is very different depending on the type of plastic supplied, but in general, the higher the carbon ratio and the lower the average molecular weight of the polymer, the higher the temperature may be. In addition, when the temperature inside the combustion reactor is lowered to less than 500° C., tar may be deposited inside the combustion reactor due to an incomplete reaction of plastics. Therefore, it is preferable that the temperature inside the combustion reactor be 500°C or higher. In addition, since the combustion reactor has an inlet temperature as low as possible, and the exhausted gas is exhausted from the combustion reactor, a gas having a temperature higher than 500°C, which is the minimum temperature of the combustion reactor, may be discharged. Therefore, the temperature of the discharged gas may be 800 ~ 2000 ℃. If the temperature of the discharged gas is less than 800°C, tar may be deposited at the gas outlet, and if it exceeds 2000°C, the gas outlet is overheated, so additional heat dissipation equipment must be provided, so economical efficiency may be degraded.
아울러 상기와 같이 배출되는 고온의 가스는 시멘트 소성로에 부속된 예열탑으로 공급됨과 더불어 예열탑의 온도 및 소성로의 온도를 상승시키는 역할을 할 수있다. 기존의 시멘트 소성로의 경우 최대온도가 1500℃이하에서 운전되지만 이 경우 온실가스가 최대 열분해효율을 가지는 온도인 2000℃내외를 도달하기는 어렵다. 하지만 본원 발명의 경우 상기 플라즈마 연소시스템을 이용하여 추가적인 열량을 공급하므로 최적의 온도에서 온실가스를 열분해 할 수 있다.In addition, the high-temperature gas discharged as described above may serve to increase the temperature of the preheating tower and the temperature of the kiln while being supplied to the preheating tower attached to the cement kiln. In the case of the existing cement kiln, the maximum temperature is 1500℃ or less, but in this case, it is difficult for the greenhouse gas to reach around 2000℃, which is the temperature at which the maximum pyrolysis efficiency is achieved. However, in the case of the present invention, since an additional amount of heat is supplied using the plasma combustion system, the greenhouse gas can be pyrolyzed at an optimum temperature.
이때 상기 온실가스는 SF6 또는 HFCs일 수 있다. 상기 SF6 또는 HFCs는 온실효과를 나타내는 대표적인 물질로서 사용이 제한적으로 되고 있기는 하지만 고농도의 SF6 또는 HFCs의 경우 세척제나 기타 첨가제로 많은 양이 사용되고 있다. 하지만 이러한 고농도의 SF6 또는 HFCs의 경우 그 분해 온도가 높고 처리비용상의 문제가 있어 분해되어 무해화되기 보다는 회수되어 재사용되는 것에 그치고 있다. 따라서 상기 온실가스를 CaF2로 전환하는 경우 고농도의 온실가스를 제거할 수 있을 뿐만 아니라 소성되는 시멘트의 물성을 높여주는 첨가제로의 사용이 가능하다.At this time, the greenhouse gas may be SF6 or HFCs. Although the use of SF6 or HFCs is limited as a representative material exhibiting a greenhouse effect, in the case of high concentration SF6 or HFCs, a large amount is used as a cleaning agent or other additives. However, in the case of such high concentration SF6 or HFCs, their decomposition temperature is high and there is a problem in treatment cost, so they are recovered and reused rather than decomposed and detoxified. Therefore, when the greenhouse gas is converted to CaF2, it can be used as an additive that not only removes the high-concentration greenhouse gas, but also enhances the physical properties of the cement to be fired.
이때 상기 SF6 또는 HFCs의 분해는 하기와 같은 화학반응을 통하여 수행될 수 있다.At this time, the decomposition of SF6 or HFCs may be performed through a chemical reaction as follows.
SF6 + 4CaO → 3CaF2 + CaSO4 SF 6 + 4CaO → 3CaF 2 + CaSO 4
2CHF3 + CaO → CaF2 + 2CF2 + H2O2CHF 3 + CaO → CaF 2 + 2CF 2 + H 2 O
즉 상기 SF6 또는 HFCs의 경우 석회석 내의 산화칼슘과 반응하여 CaF2로 전환됨과 더불어 상기 CaF2는 시멘트에 첨가제로 사용되어 시멘트의 물성을 높여주는 역할을 수행하게 된다. 다만 이러한 화학반응은 고온(1500℃)이상에서 효율적이기 때문에 고온의 시멘트 소성로가 필요하게 되며, 이에따라 본원발명과 같은 추가적인 열원을 필요로 할 수 있다.That is, the SF6 or HFCs react with calcium oxide in limestone to convert to CaF2, and the CaF2 is used as an additive in cement to enhance the physical properties of the cement. However, since such a chemical reaction is efficient at a high temperature (1500°C) or higher, a high-temperature cement kiln is required, and accordingly, an additional heat source such as the present invention may be required.
본 발명 상에서 온실가스는 열분해 후에 CaF2 및 CaSO4로 전환될 수 있다. CaF2의 경우는 석회석 탈탄산시 소성 온도를 약 100℃ 낮춤으로써 에너지 절감 효과가 있고, CaSO4의 경우는 시멘트 제조시 필수적인 부원료로써, 응결을 지연시키며 단기 강도를 높이고 건조 수축을 감소시키고 화학적 저항성을 향상시키는 등의 효과가 있다.In the present invention, greenhouse gases can be converted to CaF2 and CaSO4 after pyrolysis. In the case of CaF2, the sintering temperature is lowered by about 100℃ during limestone decarboxylation, thereby reducing energy consumption. In the case of CaSO4, it is an essential auxiliary material in cement manufacturing, delaying condensation, increasing short-term strength, reducing drying shrinkage, and improving chemical resistance. There are effects such as letting go.
상기 연료공급수단은 내부에 서로 반대방향으로 회전하는 한 개 이상의 스크류 또는 압송 장치를 포함하는 연료이송수단을 포함할 수 있다(도 6). 기존의 플라스틱 소각로의 경우 호퍼를 이용하여 폐플라스틱을 일정하게 공급하는 방식을 사용했다 하지만 이러한 호퍼를 이용하는 방법은 폐플라스틱의 일제 공급으로 인한 연소 반응기 내부의 온도강하가 필연적으로 발생하여 연소반응기의 내면에 타르가 침착되는 결과를 가져왔다. 이에 본 발명에서는 상기 연료공급수단의 내부에 서로 반대방향으로 회전하는 한 개 이상의 스크류 또는 압송 장치를 포함하는 연료이송수단을 설치하여 폐플라스틱을 일정한 속도로 연속적으로 공급하여 상기 연소반응기 내부의 온도강하를 막는 것이 바람직하다. 또한 상기와 같이 연료이송수단을 이용하여 폐플라스틱을 공급하더라도 상기 폐플라스틱이 연소반응기 내부의 일정공간에만 집중적으로 공급되는 경우 균일한 연소가 불가능할 뿐만 아니라 국지적인 온도 강하가 발생할 수 있으므로 상기 연료공급수단과 상기 연소반응기 사이에는 상기 폐플라스틱을 연소반응기 내부에 균일하게 공급할 수 있는 연료분산수단이 설치되는 것이 바람직하다. 상기 연료 분산수단은 상기 연료공급수단에 의하여 공급되는 폐플라스틱을 상기 연소 반응기의 내부에 균일하게 공급해줌으로써 온도강하를 막아 균일한 연소반응이 가능하도록 함과 동시에 타르의 생성을 최대한 방지할 수 있다. 상기 연료분산수단은 상기 연소반응기 내부에 폐플라스틱을 균일하게 분산할 수 있는 것이라면 제한 없이 사용가능하지만 메쉬망, 다층으로 배열된 일정간격의 구조물 또는 회전하는 날개를 이용하여 상기 폐 플라스틱을 분산시키는 것이 바람직하다. The fuel supply means may include a fuel transfer means including one or more screws or a pressure feeding device rotating in opposite directions to each other therein (FIG. 6). In the case of the existing plastic incinerator, a method of constantly supplying waste plastic using a hopper was used. However, this method of using a hopper inevitably causes a temperature drop inside the combustion reactor due to the simultaneous supply of the waste plastic. The result was that the tar was settled. Accordingly, in the present invention, a fuel transfer means including one or more screws rotating in opposite directions or a pressure feeding device is installed inside the fuel supply means to continuously supply waste plastic at a constant speed to lower the temperature inside the combustion reactor. It is desirable to prevent it. In addition, even if the waste plastic is supplied using the fuel transfer means as described above, when the waste plastic is intensively supplied only to a certain space inside the combustion reactor, uniform combustion is not possible and a local temperature drop may occur. It is preferable that a fuel dispersing means capable of uniformly supplying the waste plastic into the combustion reactor is installed between the combustion reactor and the combustion reactor. The fuel dispersing means uniformly supplies the waste plastic supplied by the fuel supply means to the inside of the combustion reactor, thereby preventing a temperature drop, enabling a uniform combustion reaction, and preventing the generation of tar as much as possible. The fuel dispersing means can be used without limitation as long as it is capable of uniformly distributing the waste plastic in the combustion reactor, but dispersing the waste plastic using a mesh net, a structure at regular intervals arranged in multiple layers, or rotating blades desirable.
상기 시멘트 소성로는 상기 대체연료 가스화 장치에서 발생한 가스를 예열탑으로 공급하여 소성로 가열용 연료와 같이 공급하여 연소시키며, 상기 소성로 내부에서 발생한 가열된 공기의 일부 또는 전부를 상기 대체연료 가스화 장치로 공급할 수 있다. 시멘트 소성로에 부속된 예열탑의 경우 기존의 화석연료를 사용하여 소성에 필요한 열량을 공급하고 있지만, 이산화탄소의 배출량을 줄이기 위한 노력이 지속되고 있어 그 열량을 향상시키는 것에 한계를 가지고 있다. 따라서 본 발명에서는 상기 대체연료 가스화 장치를 이용하여 폐 플라스틱을 소각함과 동시에 소각이후 발생하는 가스를 상기 시멘트 소성로에 부속된 예열탑에 공급하여 추가연소를 수행하는 것으로 이산화탄소의 발생 없이 추가적인 열량의 공급이 가능하다. 아울러 이와같이 추가되는 열량으로 인하여 온실가스의 최적 분해온도에 도달할 수 있는 것은 위에서 살펴본 바와 같다.The cement kilns supply the gas generated from the alternative fuel gasification device to a preheating tower, and supply the same as fuel for heating the kilns for combustion, and supply some or all of the heated air generated in the kilns to the alternative fuel gasification device. have. In the case of the preheating tower attached to the cement kiln, the existing fossil fuel is used to supply the heat required for firing, but efforts to reduce the emission of carbon dioxide are continuing, so there is a limit to improving the heat quantity. Therefore, in the present invention, the waste plastic is incinerated using the alternative fuel gasification device and the gas generated after incineration is supplied to the preheating tower attached to the cement kilns to perform additional combustion, thereby supplying additional heat without generating carbon dioxide. This is possible. In addition, it is as described above that the optimum decomposition temperature of the greenhouse gas can be reached due to the amount of heat added in this way.
또한 상기 시멘트 소성로에서 발생되는 고온의 폐가스 공기를 상기 연소반응기로 공급하여 상기 연소반응기의 연소효율을 높일 수 있다. 이를 구체적으로 살펴보면 상기 소성로 내부에서는 열에 의한 시멘트의 소성이 지속적으로 이루어지며 상기 소성된 시멘트의 배출에 따라 내부의 공기도 배출된다. 이를 통해 생성된 시멘트 반제품인 클링커를 냉각시키는 과정에서 고온의 폐가스 공기가 발생된다. 이를 상기 연소반응기로 공급하여 연소용 공기로 사용하는 경우 연소효율을 크게 상승시킬 수 있다. 이 경우 상기 소성로 내부에서 발생하는 가열된 공기는 상기 연소반응기의 산소소모량에 따라 일부 또는 전부가 상기 연소반응기로 공급될 수 있으며, 연소반응기 내부를 최적의 온도를 유지하기 위하여 연소반응기에 공급되는 외부공기와 혼합되는 형태로 공급될 수 있다. 이때 상기 소성로의 내부에서 발생한 가열된 공기는 500~1000℃의 온도를 가질 수 있다. 도한 상기와 같이 소성로 내부의 공기를 재순환 하는 경우 미반응된 온실가스역시 재순환되어 처리될 수 있으므로 온실가스 전환율역시 높일 수 있다.In addition, it is possible to increase the combustion efficiency of the combustion reactor by supplying high-temperature waste gas air generated in the cement kiln to the combustion reactor. Looking at this in detail, the sintering of the cement by heat is continuously performed inside the sintering furnace, and internal air is also discharged as the fired cement is discharged. High-temperature waste gas air is generated in the process of cooling the clinker, a semi-finished cement product produced through this. When this is supplied to the combustion reactor and used as combustion air, combustion efficiency can be greatly increased. In this case, the heated air generated inside the kiln may be partially or entirely supplied to the combustion reactor depending on the amount of oxygen consumed in the combustion reactor, and externally supplied to the combustion reactor in order to maintain the optimum temperature inside the combustion reactor. It can be supplied in a form mixed with air. In this case, the heated air generated inside the kiln may have a temperature of 500 to 1000°C. In addition, when the air inside the kiln is recycled as described above, unreacted greenhouse gases can be recycled and treated as well, so the conversion rate of greenhouse gases can also be increased.
상기 시멘트 소성로는 대체연료 가스화 장치에서 공급된 가스에 포함된 유해가스를 무해화할 수 있다. 상기 시멘트 소성로에 부속된 예열탑은 상기 대체연료 가스화 장치에서 공급된 가스를 한번 더 연소시켜 열량을 공급하므로 상기 대체연료 가스화 장치에서 공급된 가스에 포함된 각종 유해가스를 산화시켜 제거할 수 있다. 특히 폐플라스틱의 소각시 많이 발생하는 다이옥신, HCN, CO 또는 NOx의 경우 추가적인 소각과 소성로 자체 보유하고 있는 방지시설을 이용하므로 기존의 폐플라스틱 소각로에서 발생하는 유해가스 대부분 제거할 수 있다. 이때 상기 유해가스는 N2, CO2 또는 H2O의 형태로 전환되어 제거될 수 있다.The cement kiln may detoxify harmful gases contained in the gas supplied from the alternative fuel gasifier. Since the preheating tower attached to the cement kilns burns the gas supplied from the alternative fuel gasification device once more to supply heat, it is possible to oxidize and remove various harmful gases contained in the gas supplied from the alternative fuel gasification device. In particular, in the case of dioxins, HCN, CO, or NOx, which are frequently generated during the incineration of waste plastics, most of the harmful gases generated from the existing waste plastic incinerators can be removed by using additional incineration and prevention facilities owned by the kiln. At this time, the harmful gas may be converted into the form of N2, CO2 or H2O and removed.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement them. In addition, in describing the present invention, when it is determined that a detailed description of a related known function or a known configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, certain features shown in the drawings are enlarged or reduced or simplified for ease of description, and the drawings and their components are not necessarily drawn to scale. However, those skilled in the art will readily understand these details.
실시예 1Example 1
본 발명에 의한 플라즈마 연소시스템을 포함하는 대체연료 가스화 연소 장치의 효과를 측정하기 위한 실험을 실시하였다, 도 8에 나타난 것과 동일하게 대체연료 가스화 연소 장치를 제작한 다음, T1~T7의 부위에 열전대를 설치하여 온도를 측정하였다. T8은 시멘트 소성로에서 대체연료 가스화 연소 장치로 공급되는 공기의 온도이다.An experiment was conducted to measure the effect of the alternative fuel gasification combustion apparatus including the plasma combustion system according to the present invention. After manufacturing the alternative fuel gasification combustion apparatus as shown in FIG. Was installed to measure the temperature. T8 is the temperature of the air supplied from the cement kiln to the alternative fuel gasification combustion unit.
도 9에 나타난 바와 같이 적절한 간격으로 폐플라스틱(연료)를 투입하였다. 대체연료 가스화 연소 장치에서 발생한 가스의 온도(TC6)는 약 800~1400℃를 유지하고 있는 것으로 나타났다. 또한 시멘트 소성로에서 공급되는 공기의 온도(TC8)는 400~600℃를 유지하며 상기 대체연료 가스화 연소 장치에 공급되어 배출가스의 온도 상승에 큰 기여를 하고 있는 것으로 나타났다. 본 발명 상에서 폐플라스틱의 투입량은 10~75(kg/hr) 범위로 가능하고, 소성로 평균 온도는 최대 2500℃를 유지한다.As shown in Fig. 9, waste plastic (fuel) was added at appropriate intervals. It was found that the temperature (TC6) of the gas generated from the alternative fuel gasification combustion device was maintained at about 800~1400℃. In addition, the temperature of the air supplied from the cement kiln (TC8) is maintained at 400 ~ 600 ℃, and is supplied to the alternative fuel gasification combustion device, it was found that it contributes to the increase in the temperature of the exhaust gas. In the present invention, the amount of waste plastic is input in the range of 10 to 75 (kg/hr), and the average temperature of the kiln is maintained at a maximum of 2500°C.
시멘트 소성로의 공기를 혼합하여 사용하지 않은 도 10의 경우 대체연료 가스화 연소 장치에서 발생한 가스의 온도(TC6)가 750~1050℃로 나타나 시멘트 소성로의 공기를 혼합하여 사용하는 경우 소성로 예열탑의 효율을 더욱 향상시킬 수 있을 뿐만 아니라 대체연료 가스화 연소 장치의 효율도 상승하는 것으로 나타났다.In the case of Fig. 10, in which the air from the cement kiln is not mixed and used, the temperature (TC6) of the gas generated from the alternative fuel gasification combustion device is 750~1050℃, so when the air from the cement kiln is mixed and used, the efficiency of the kiln preheating tower is improved. Not only can it be improved further, it has also been shown that the efficiency of the alternative fuel gasification combustion device is also increased.
실시예 2Example 2
상기 실시예 1에서 처리후 잔류물을 분석하였다.The residue after treatment in Example 1 was analyzed.
도 11에 나타난 바와 같이 잔류물을 수거한 다음, 5개의 분석시료를 채취하여 분석하였으며, 그 결과는 표 1과 같다As shown in FIG. 11, after collecting the residue, five analysis samples were collected and analyzed, and the results are shown in Table 1.
sample 1sample 1 sample 2sample 2 sample 3sample 3 sample 4sample 4 sample 5sample 5 평균 Average
CC 00 00 00 3.213.21 4.314.31 1.5041.504
OO 29.9529.95 37.1437.14 39.4139.41 38.9138.91 40.6240.62 37.20637.206
NaNa 6.176.17 4.424.42 6.986.98 5.835.83 4.844.84 5.6485.648
Mg Mg 00 0.830.83 0.890.89 0.870.87 0.910.91 0.70.7
AlAl 1.771.77 22 1.341.34 1.541.54 1.931.93 1.7161.716
SiSi 20.220.2 25.2825.28 27.4827.48 28.3428.34 2828 25.8625.86
ClCl 10.0210.02 4.94.9 0.980.98 3.063.06 2.182.18 4.2284.228
KK 2.672.67 1.251.25 00 00 00 0.7840.784
CaCa 27.5627.56 24.1824.18 14.5614.56 18.2418.24 17.2117.21 20.3520.35
FeFe 1.661.66 00 3.353.35 00 00 1.0021.002
Cu Cu 00 00 5.015.01 00 00 1.0021.002
합계 Sum 100100 100100 100100 100100 100100 100100
표 1에 나타난 바와 같이 플라스틱의 주요성분이면서 연소가 가능한 탄소는 대부분 가스화되어 제거된 것을 확인하였다. 즉 본원 발명의 경우 플라스틱의 80~95중량%를 차지하는 탄소를 연소 및 가스화 하여 제거할 수 있으며, 이에따라 공급된 폐플라스틱의 80~95중량%를 연소 또는 가스화하여 제거할 수 있는 것으로 확인되었다.As shown in Table 1, it was confirmed that most of the carbon, which is a major component of plastic and which can be burned, was gasified and removed. That is, in the case of the present invention, it was confirmed that carbon, which accounts for 80 to 95% by weight of plastic, can be removed by combustion and gasification, and accordingly, 80 to 95% by weight of the supplied waste plastic can be removed by combustion or gasification.
또한 도 12에 나타난 바와 같이 잔유물은 다공성을 가지는 것으로 확인되어 건축자재, 복토재등으로 활용 가능성이 있을 것으로 예측되었다.In addition, as shown in FIG. 12, the remnant was confirmed to have porosity, and thus it was predicted that it could be used as a building material or a covering material.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it will be apparent to those of ordinary skill in the art that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (14)

  1. 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치에 있어서In the greenhouse gas decomposition and immobilization device including a cement kiln
    (a) 연소반응기;(a) a combustion reactor;
    (b) 상기 연소반응기에 플라즈마를 공급하는 4~20개의 플라스마 연소수단;(b) 4 to 20 plasma combustion means for supplying plasma to the combustion reactor;
    (c) 상기 연소반응기의 상단부에 연결되어 상기 연소반응기 방향으로 폐플라스틱을 공급하는 연료공급수단;(c) fuel supply means connected to an upper end of the combustion reactor to supply waste plastic to the combustion reactor;
    을 포함하는 플라즈마 연소시스템을 포함하며,It includes a plasma combustion system comprising a,
    상기 플라즈마 연소시스템에서 배출되는 고온의 가스를 상기 시멘트 소성로에 부속된 예열탑 가열용 연료와 혼합하여 공급하며,The high-temperature gas discharged from the plasma combustion system is mixed with fuel for heating a preheating tower attached to the cement kiln and supplied,
    상기 시멘트 소성로에 온실가스를 주입하여 열분해하는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.Greenhouse gas decomposition and immobilization apparatus comprising a cement kiln, characterized in that thermal decomposition by injecting greenhouse gas into the cement kiln.
  2. 제1항에 있어서, The method of claim 1,
    상기 시멘트 소성로는 1500~3000℃의 온도에서 온실가스를 열분해하는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The apparatus for decomposing and fixing greenhouse gases including a cement kiln, characterized in that the cement kiln pyrolyzes greenhouse gases at a temperature of 1500 to 3000°C.
  3. 제1항에 있어서, The method of claim 1,
    상기 온실가스는 SF6 또는 HFCs인 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The greenhouse gas decomposition and immobilization apparatus comprising a cement kiln, characterized in that the greenhouse gas is SF6 or HFCs.
  4. 제3항에 있어서, The method of claim 3,
    상기 온실가스는 CaF2로 전환되는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The greenhouse gas decomposition and immobilization apparatus comprising a cement kiln, characterized in that the greenhouse gas is converted to CaF2.
  5. 제1항에 있어서, The method of claim 1,
    상기 연소반응기는 상기 연료공급수단이 일측 상방향에 연결되어 있으며, 타측 하방으로 가스 배출구가 형성되어 있는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The combustion reactor is a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that the fuel supply means is connected in an upper direction on one side and a gas outlet is formed in a lower direction on the other side.
  6. 제1항에 있어서, The method of claim 1,
    상기 연소반응기의 내측 하부에는 공기 또는 산소를 추가적으로 공급하는 보조연소 수단이 설치되어 있는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.Greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that an auxiliary combustion means for additionally supplying air or oxygen is installed at an inner lower portion of the combustion reactor.
  7. 제6항에 있어서, The method of claim 6,
    상기 보조연소수단은 2~100개의 타공부가 일정간격으로 배열되어 있으며, 상기 타공부를 통하여 공기 또는 산소가 공급되는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The auxiliary combustion means is a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that 2 to 100 perforated portions are arranged at regular intervals, and air or oxygen is supplied through the perforated portions.
  8. 제1항에 있어서, The method of claim 1,
    상기 연소반응기는 내부 온도가 500~2000℃이며, 배출되는 가스의 온도가 800~2000℃인 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The combustion reactor is a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that the internal temperature is 500 ~ 2000 ℃, the temperature of the discharged gas 800 ~ 2000 ℃.
  9. 제1항에 있어서, The method of claim 1,
    상기 플라스마 연소수단은 상기 연소반응기의 바닥과 수평한 방향을 따라 연소반응기의 양측면에 일정간격으로 배열되어 있는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The plasma combustion means is a greenhouse gas decomposition and immobilization apparatus comprising a cement kiln, characterized in that arranged at regular intervals on both sides of the combustion reactor along a direction horizontal to the bottom of the combustion reactor.
  10. 제1항에 있어서, The method of claim 1,
    상기 플라즈마 연소수단은 각각 10~50kW의 출력을 가지며, 플라즈마의 토출온도가 5000~7000K인 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.Each of the plasma combustion means has an output of 10 to 50 kW, and a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that the discharge temperature of the plasma is 5000 to 7000 K.
  11. 제1항에 있어서, The method of claim 1,
    상기 연료공급수단은 내부에 서로 반대방향으로 회전하는 한 개 이상의 스크류 또는 압송 장치를 포함하는 연료이송수단을 포함하는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The fuel supply means is a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that it comprises a fuel transfer means including at least one screw or a pressure feeding device rotating in opposite directions to each other therein.
  12. 제1항에 있어서, The method of claim 1,
    상기 연료공급수단과 상기 연소반응기 사이에는 상기 폐플라스틱을 연소반응기 내부에 균일하게 공급할 수 있는 연료분산수단이 설치되어 있는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.Between the fuel supply means and the combustion reactor, a fuel dispersing means for uniformly supplying the waste plastic into the combustion reactor is installed.
  13. 제12항에 있어서, The method of claim 12,
    상기 연료분산수단은 메쉬망, 다층으로 배열된 일정간격의 구조물, 회전하는 원형판 또는 회전하는 날개를 포함하는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.The fuel dispersing means is a greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that it comprises a mesh net, a structure at regular intervals arranged in multiple layers, a rotating circular plate or a rotating blade.
  14. 제1항에 있어서, The method of claim 1,
    상기 소성로 내부에서 발생한 가열된 공기의 일부 또는 전부를 공기와 혼합한 다음, 상기 플라즈마 연소 시스템으로 공급하는 것을 특징으로 하는 시멘트 소성로를 포함하는 온실가스 분해 및 고정화 장치.A greenhouse gas decomposition and immobilization apparatus including a cement kiln, characterized in that after mixing part or all of the heated air generated inside the kiln with air and supplying it to the plasma combustion system.
PCT/KR2019/018313 2019-10-31 2019-12-23 Apparatus for decomposing and immobilizing greenhouse gas including cement firing furnace WO2021085746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0137502 2019-10-31
KR1020190137502A KR20210051791A (en) 2019-10-31 2019-10-31 Greenhouse Gas Decomposition and Immobilization System Including Cement Kiln

Publications (1)

Publication Number Publication Date
WO2021085746A1 true WO2021085746A1 (en) 2021-05-06

Family

ID=75716421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018313 WO2021085746A1 (en) 2019-10-31 2019-12-23 Apparatus for decomposing and immobilizing greenhouse gas including cement firing furnace

Country Status (2)

Country Link
KR (1) KR20210051791A (en)
WO (1) WO2021085746A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090131864A (en) * 2008-06-19 2009-12-30 (주)플라즈마텍 Treatment-equipment of infectious waste
KR20130114092A (en) * 2010-10-21 2013-10-16 카와사키 주코교 카부시키 카이샤 Waste-processing apparatus
KR101546815B1 (en) * 2014-09-29 2015-08-25 인하대학교 산학협력단 Apparatus and method for waste gasification process using the plasma
KR101553475B1 (en) * 2014-04-22 2015-09-16 전주대학교 산학협력단 A recovering method of valuable metals from copper-containing waste using steam plasma
KR20190094680A (en) * 2018-02-05 2019-08-14 성신양회 주식회사 Greenhouse gas emission management system according to using fluorine-containing gas raw materials in cement production process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266920B1 (en) 2010-06-28 2013-05-28 (주)금오전자 Combustion apparatus for green house gases
KR101201426B1 (en) 2012-03-30 2012-11-14 대한민국 Apparatus for reducing greenhouse gas of a ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090131864A (en) * 2008-06-19 2009-12-30 (주)플라즈마텍 Treatment-equipment of infectious waste
KR20130114092A (en) * 2010-10-21 2013-10-16 카와사키 주코교 카부시키 카이샤 Waste-processing apparatus
KR101553475B1 (en) * 2014-04-22 2015-09-16 전주대학교 산학협력단 A recovering method of valuable metals from copper-containing waste using steam plasma
KR101546815B1 (en) * 2014-09-29 2015-08-25 인하대학교 산학협력단 Apparatus and method for waste gasification process using the plasma
KR20190094680A (en) * 2018-02-05 2019-08-14 성신양회 주식회사 Greenhouse gas emission management system according to using fluorine-containing gas raw materials in cement production process

Also Published As

Publication number Publication date
KR20210051791A (en) 2021-05-10

Similar Documents

Publication Publication Date Title
KR101304154B1 (en) Autothermic method for the continuous gasification of substances rich in carbon
US11352284B2 (en) System for urban organic solid waste pyrolysis-gasification coupled with drying
RU2554970C2 (en) Method and device for processing of wastes
JP4413494B2 (en) Material heat treatment plant and its operation process
WO2009136737A2 (en) Combustible waste pyrolysis system and pyrolysis method
WO2000024671A1 (en) Waste carbonizing method
WO2013094879A1 (en) Apparatus for pyrolysis using molten metal
JPH11290810A (en) Method and apparatus for waste disposal
WO2013094878A1 (en) Pyrolysis apparatus using liquid metal
CN113357929B (en) Cement decomposition kiln coupled with grate and process for cooperatively disposing household garbage
US20140065028A1 (en) Cement clinker manufacturing plant
WO2021085746A1 (en) Apparatus for decomposing and immobilizing greenhouse gas including cement firing furnace
JP4061633B2 (en) Gasification processing equipment for organic waste
KR102353717B1 (en) Cement kiln with alternative fuel gasification combustion device
DE3807249C1 (en) A process for the thermal utilisation of organic wastes
JP3224692B2 (en) Method and apparatus for producing carbon black from waste
KR101293272B1 (en) Apparatus for continuous pyrolysis and method thereof
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
KR102353693B1 (en) Alternative fuel gasifier including plasma combustion system
WO2016200143A1 (en) Plasma processing device for incineration and gasification process exhaust gas
JP2008018371A (en) Method for using organic waste
WO2021085747A1 (en) Apparatus for decomposing and fixing greenhouse gases using waste-derived liquid fuel
JPH11270824A (en) Waste treatment and facility therefor
JPH11270823A (en) Equipment and method for waste disposal
JPH11281032A (en) Waste-treating method and facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950564

Country of ref document: EP

Kind code of ref document: A1