WO2021085650A1 - Vaccine - Google Patents

Vaccine Download PDF

Info

Publication number
WO2021085650A1
WO2021085650A1 PCT/JP2020/041112 JP2020041112W WO2021085650A1 WO 2021085650 A1 WO2021085650 A1 WO 2021085650A1 JP 2020041112 W JP2020041112 W JP 2020041112W WO 2021085650 A1 WO2021085650 A1 WO 2021085650A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
protein
vaccine
domain
cells
Prior art date
Application number
PCT/JP2020/041112
Other languages
French (fr)
Japanese (ja)
Inventor
国昭 根路銘
繁夫 杉田
Original Assignee
有限会社根路銘生物資源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社根路銘生物資源研究所 filed Critical 有限会社根路銘生物資源研究所
Priority to JP2021553752A priority Critical patent/JPWO2021085650A1/ja
Publication of WO2021085650A1 publication Critical patent/WO2021085650A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins

Definitions

  • the present invention relates to a novel vaccine.
  • influenza vaccines The quantitative transition of influenza vaccines is symbolically summarized as an increase in live attenuated vaccines or live low temperature adaptive vaccines. Their primary purpose is regional immunity, which can play an important role in the prevention of respiratory infections through mucosal immunity.
  • regional immunity which can play an important role in the prevention of respiratory infections through mucosal immunity.
  • influenza virus-like particle (VLP) vaccine containing the H5 type HA protein of influenza virus produced by Bombyx mori was developed (see Patent Document 1).
  • inactivated influenza vaccines have been developed using various techniques such as cell culture-derived vaccines; DNA vaccines; influenza virus-like particle (VLP) vaccines.
  • VLP influenza virus-like particle
  • the silkworm frogs for the H5 subtype VLP vaccine and the H7 subtype VLP vaccine of triinfluenza are the production levels of the H5 VLP vaccine or the H7HA VLP vaccine, and per frog.
  • We have developed a silkworm worm that exhibits a production level exceeding millions of HA titers see Patent Document 1).
  • These silk moth pupae can be used in chickens via partially purified products, but in the case of human vaccines, we must confirm their safety and efficacy in detail.
  • inactivated vaccines in recent years are required to provide high HI antibody titers through appropriate techniques.
  • interleukin 12 interleukin 12
  • the present inventors have conducted intensive studies, and interleukin 12, the M2 protein of influenza A virus associated with the interleukin 12, and the neurominidase.
  • a virus-like particle having an immunomodulator molecule (hereinafter, also referred to as M2 / N / IL12 molecule or IL12 / N / M2 molecule) containing a protein, and to apply the virus-like particle having this immunomodulator molecule to a vaccine.
  • the present inventors disclose the production and protective efficacy of HI antibody by a vaccine containing virus-like particles containing M2, N, and IL12 molecules.
  • M2 ⁇ N ⁇ IL12 molecule The design drawing of M2 ⁇ N ⁇ IL12 molecule is shown.
  • the M2, N, and IL12 molecules are Interleukin-12 (interleukin 12), NA Starks (NA Stark), NA Transmembrane (TM) Domein (NA transmembrane domain), NA Cytoplasmic Domein (NA cytoplasmic domain), and Flaglinker. (Flag linker), M2 Cytoplasmic Domain (M2 cytoplasmic domain), M2 Transmembrane Domain (TM) Domein (M2 cytoplasmic domain), and M2 Small Ectodomein (M2 small extracellular domain).
  • a schematic diagram of IL / N / M2 molecules is shown.
  • FIG. 1 indicates an H5HA protein
  • 2 indicates an M2 / N / IL12 molecule
  • 3 indicates an H7HA protein.
  • M2, N, and IL12 molecules are expressed in Sf9 cells.
  • FkH5 protein is expressed in Sf9 cell.
  • AnH7 protein is expressed in Sf9 cell.
  • PBS control
  • M2 ⁇ N ⁇ IL12 M2 ⁇ N ⁇ IL12 molecule
  • VLP containing M2 ⁇ IL12 and FkH5 protein VLP containing M2 ⁇ IL12 and AnH7 protein.
  • M2 ⁇ N ⁇ IL12 M2 ⁇ N ⁇ IL12 molecule
  • VLP containing M2 ⁇ IL12 and FkH5 protein VLP containing M2 ⁇ IL12 and AnH7 protein.
  • Interleukin-12 is a protein identified in 1989 as a factor that activates NK cells from EBV-transformed cells. It consists of subunits of p40 and p35, and p40 has a subunit in common with IL-23. IL is thought to coordinate various actions by combining subunits in this way.
  • the immune system of mammals includes acquired immunity by B cells and T cells and innate immunity centered on natural killer cells (Natural Ki11er Tce11, hereinafter abbreviated as NK cells).
  • axons have only innate immunity, and acquired immunity has been achieved since becoming a vertebrate, but acquired immunity has a very short history in evolution, and organisms other than vertebrates are innate immunized. Has been responsible for immunity.
  • NH cells have been discovered by Shigeo Koyasu's group as cells involved in the innate immunity of the lymphocyte system, and three types of innate immune cells, NK cells, lymphoid tissue inducer (LTi) cells, and natural helper (NH) cells, have been identified. It has become clear. In this way, the acquired immune system consists of Th1 cells corresponding to NK cells, Th2 cells corresponding to NH cells, and Th17 cells corresponding to Lti cells, and innate immunity is differentiated and developed to be acquired immunity. I have come to understand.
  • NKT cells mouse
  • MAIT cells human
  • innate immunity and acquired immunity are closely proliferating and responsible for immunity.
  • the research so far has focused on acquired immunity, and the research on innate immunity that supports them has been delayed due to the difficulty of research.
  • Speaking of immunity research on acquired immunity by T cells and B cells is the main focus. It has been considered that how to activate antibody production by B cells and how to activate cytotoxic T cells are the key to immunity.
  • there is a foundation of innate immunity and it is considered that activating acquired immunity as well as activating innate immunity is closer to the actual immune response.
  • NK cells are the key to innate immunity.
  • NK cells are known to be enhanced by 1FN- ⁇ / ⁇ , 1FN-1, 1L-2, 1L-4, lL-12, 1L-15, 1L-18, but the most NK cells among them.
  • APCs antigen-presenting cells
  • dendritic cells dendritic cells
  • macrophages / monomorphic cells and B cells
  • only dendritic cells turn naive T cells into activated T cells (effector T cells). And can show the strongest antigen presenting ability.
  • the vaccine containing M2, NA, and IL12 as one molecule aims at the vaccine effect by presenting the antigen of the M2 protein of influenza virus in dendritic cells. While the 23 amino acids in the N-terminal region of the M2 protein are exposed on the surface of the virus as antigens, they are well preserved and because they are the entrance to the ion channels of the virus, the antibody against this part has a neutralizing activity of the virus. It is believed that.
  • the 23 amino acids in the N-terminal region of the M2 protein are attracting attention as a universal vaccine that is effective against all influenza viruses regardless of subtype because of their good storage stability.
  • a 19-amino acid transmembrane region following the region exposed on the surface of the 23-amino acid lipid bilayer of M2 and a 54-amino acid lipid two
  • the IL-12 protein was placed behind the transmembrane region of the NA protein and the stalk region of the NA protein by binding to the inner region of the layer and the N-terminal region inside the lipid bilayer of the NA protein via the FLAG sequence. .. This allowed the IL-12 protein to float freely on top of the stalk and outside the lipid bilayer in a stalk-bound form.
  • the M2 protein of influenza virus and IL-12 are always in a close positional relationship, and NK cell phagocytosis of M2 protein and antigen presentation by dendritic cells can be expected.
  • membrane glycoproteins such as HA proteins
  • HA vaccines prepared by the same baculovirus expression system are mixed and mixed with the lipid double layer of baculovirus or an oil layer such as artificially added sesame oil by ultrasonic treatment or the like.
  • IL-12 and the antigen protein can be coordinated on the same artificial membrane, and the effects of both innate immunity and acquired immunity activated based on innate immunity are linked to all antigens. It can be used as a vaccine antigen.
  • the vaccine in the present invention is a vaccine characterized by containing an immune modulator molecule.
  • the immune modulator molecule comprises an IL-12 protein, an NA domain region derived from a neuraminidase (NA) protein, and an M2 protein domain region derived from an influenza virus.
  • the NA domain region includes an extracellular domain, a transmembrane domain, and an intracytoplasmic domain
  • the M2 protein domain region includes an extracellular domain, a transmembrane domain, and an intracytoplasmic domain.
  • the immunomodulator molecule the IL-12 protein is bound to the extracellular domain in the NA domain region, and the cytoplasmic domain in the M2 protein domain region is bound to the cytoplasmic domain in the NA domain region by a linker.
  • influenza virus-like particles containing a hemagglutinin (HA) protein derived from a virus classified into influenza virus H5 type and / or (ii) influenza virus H7 type. It may contain influenza virus-like particles containing hemagglutinin (HA) protein from the classified virus.
  • the influenza virus-like particles contained in the vaccine according to the present invention are classified into influenza virus H5 type hemagglutinin (HA) protein (hereinafter, also referred to as H5 protein) and / or influenza virus H7 type.
  • the vaccine of the present invention can provide a survival rate equivalent to that of an animal that has been vaccinated with an inactivated influenza virus H1N1 type and infected with the influenza virus H1N1 type.
  • at least one selected from virus-like particles containing immune modulator molecules, influenza virus-like particles (i), and influenza virus-like particles (ii) is produced by Sf9 cells or Eri silkworms by the method described later. It is preferable to let it. Further, it is preferable that the virus classified into influenza virus H5 type is H5N1 type virus and / or the virus classified into influenza virus H7 type is H7N9 type virus.
  • the virus-like particle of the present invention may have a virus-like particle structure containing only the chimeric cytokine M2, N, IL12, or may have a virus-like particle structure containing HA protein and M2, N, IL12. ..
  • the virus-like particles contain the HA protein of the virus, which does not contain RNA derived from influenza virus, and the structure of the virus-like particles is preferably particles having a diameter of 50 to 150 nm, more preferably 60 nm to 120 nm. It has a structure in which distinct spikes (eg, HA spikes) are densely arranged on the surface of the virus, and is morphologically very similar to a virus particle.
  • virus-like particles of the present invention are expressed by the silk moth, they may have lipids or sugar chain modifications derived from the silk moth.
  • the lipid include glyceroglycolipid, glycosphingolipid, cholesterol, phospholipid and the like.
  • glyceroglycolipids examples include sulfoxyribosylglyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride and the like.
  • glycosphingolipids include galactosyl cerebroside, lactosyl cerebroside, and ganglioside.
  • Examples of phospholipids include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylic acid, phosphatidylglycerol, phosphatidylinositol, lysophosphatidylcholine, sphingomyelin and the like.
  • fatty acids and the like induced by hydrolysis and the like may be contained.
  • the fatty acid include myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linolenic acid and the like.
  • the vaccine containing virus-like particles of the present invention has a structure in which spikes of recombinant virus membrane proteins having immunogenicity are densely provided, so that an unprecedentedly high immunogenicity can be achieved without using an adjuvant. It becomes possible to show the sex. Since no adjuvant is used, side effects such as allergies and anaphylactic shock can be reduced.
  • the virus-like particles of the present invention containing the virus-like particles of the present invention have high immunogenicity. Therefore, even if a commonly used adjuvant is not used, an unprecedented high immunogenicity is obtained. It is possible to show sex. Moreover, since a commonly used adjuvant is not used, side effects such as allergies and anaphylactic shock can be reduced. Further, as a matter of course, since the nucleic acid derived from the virus does not exist inside the hollow of the spherical outer shell of the virus-like particle of the present invention, it is non-pathogenic.
  • the vaccine of the present invention can effectively prevent viral infections in animals including humans.
  • the vaccine of the present invention can significantly shorten the period required for production as compared with the conventional production method using chicken eggs. Therefore, in the event of an epidemic of viral infections such as influenza, vaccines can be procured in a short period of time, and it is possible to make a great contribution to protecting people from infectious diseases and maintaining their health. Furthermore, in the production of a vaccine using conventional chicken eggs, it is necessary to have a highly safe facility such as a P3 facility in order to handle the seed virus used for the vaccine, and it is necessary to produce a large amount of vaccine because the immunogenicity of the vaccine is low. While a huge manufacturing cost is required for some reason such as the above, the manufacturing method of the present invention can significantly reduce the manufacturing cost.
  • the invention is a method of inoculating an animal with a vaccine against viral infection, the effective amount of a vaccine comprising the polypeptide according to the invention or produced according to the production method according to the invention. Is a method comprising administering to the animal.
  • the animal is not particularly limited as long as it is a homeothermic animal, and may be a non-human animal such as a bird, a pig, a cow, a dog, or a cat.
  • the invention is a method of inducing an immune response against a virus to an animal, the efficacy of a vaccine comprising the polypeptide according to the invention or produced by the production method according to the invention. A method comprising administering an amount to the animal.
  • the invention in another aspect, relates to a vaccine composition.
  • the vaccine composition may contain additional components and a pharmaceutically acceptable carrier.
  • additional component include an adjuvant and a component that enhances the anti-influenza virus action such as an anti-influenza virus agent.
  • the adjuvant include aluminum hydroxide, aluminum phosphate, saponin, water-in-oil emulsion, oil-in-water emulsion, emulsion in water-in-oil, acrylic or methacrylic acid polymer, maleic anhydride, alkenyl derivative, carbomer, and block copolymer. ..
  • antiviral agent examples include neuromitase inhibitors such as zanamivir, oseltamivir, peramivir, and laninamivir, amantadine, rimantadine, and RNA polymerase inhibitors.
  • the pharmaceutically acceptable carriers contained in the vaccine composition of the present invention include solvents, dispersants, coating agents, stabilizers (albumin, ethylenediamine tetraacetate alkali salt), and diluents that are permitted to be used as pharmaceuticals.
  • the vaccine composition of the present invention can be in a dosage form suitable for parenteral administration or oral administration.
  • the composition for parenteral administration include injections, nasal drops and the like, and injections include intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, drip injections and the like. Includes the dosage form of.
  • Such injections can be prepared according to known methods, for example, by dissolving, suspending or emulsifying the antigenic protein in a sterile aqueous or oily solution usually used for injections. The prepared injection solution is usually filled in a suitable ampoule, vial or syringe.
  • the parenteral pharmaceutical composition is prepared in a dosage form of a dosage unit suitable for the dose of the active ingredient.
  • An effective amount of a vaccine is an amount sufficient to achieve a biological effect such as inducing sufficient humoral or cell-mediated immunity against the virus.
  • administration methods include inhalation, intranasal, oral, parenteral (eg, intradermal, intramuscular, intravenous, intraperitoneal, and subcutaneous administration). The effective amount and method of administration may depend on the age, sex, condition and body weight of the person being administered.
  • influenza vaccine in general, a vaccine containing 15 ⁇ g or more of HA protein per strain in 1 ml, 0.25 ml subcutaneously for those aged 6 months or more and less than 3 years old, and those aged 3 to 13 years old 0.5 ml is injected subcutaneously twice at intervals of approximately 2-4 weeks. For persons 13 years and older, 0.5 ml is injected subcutaneously once or twice at intervals of approximately 1 to 4 weeks.
  • ⁇ Method for producing virus-like particles containing immunomodulator molecules> it is preferable to produce virus-like particles using a protein expression system using Sf9 cells or Eri silkworm.
  • the amino acid sequence of the protein of the encoded immunomodulator molecule does not change as compared with the corresponding mammalian amino acid sequence.
  • a step of modifying the codon of the DNA fragment to obtain a codon-optimized DNA fragment for expression a step of inserting the obtained codon-optimized DNA fragment into a vector, the obtained vector, and a baculovirus-derived DNA.
  • the step of co-transfecting Sf9 cells the step of obtaining a baculovirus recombinant containing a codon-optimized DNA fragment from the obtained Sf9 cells, and infecting the eri silkworm with the baculovirus recombinant to produce the eri silkworm. It is preferable to include a step of breeding and a step of isolating the immunomodulator molecule from the Eri silkworm.
  • an amino acid sequence corresponding to the NA domain region, IL-12 protein, and NA domain region used in the present invention is obtained from an amino acid sequence registered in Genbank or the like in a mouse, and is a basis for nucleic acid design. And.
  • the virus-like particle gene sequence is determined, and the virus-like particle gene sequence is modified in consideration of optimizing the codon usage frequency of the silk moth.
  • a codon-optimized DNA fragment for expression of Eri silkworm of M2, N, IL12 molecule is obtained.
  • the obtained codon-optimized DNA fragment is inserted into a known vector suitable for baculovirus by using any known method, and the obtained vector and the linearized baculovirus-derived DNA are obtained.
  • a step of co-transfecting Sf9 cells a step of obtaining a baculovirus recombinant obtained by recombining a codon-optimized DNA fragment from the obtained Sf9 cells, infecting Eri silkworm with the baculovirus recombinant to produce Eri silkworm.
  • Virus-like particles may be obtained through a step of breeding and a step of isolating virus-like particles from the Eri silkworm.
  • an optimized DNA fragment for expressing influenza virus-like particles containing hemagglutinin (HA) protein derived from a virus classified into influenza virus H5 type which is obtained by the same method as described above.
  • An optimized DNA fragment for expressing influenza virus-like particles containing a hemagglutinin (HA) protein derived from a virus classified into influenza virus H7 was prepared, and the same operation was performed to prepare the above-mentioned in Eri silkworm.
  • (I) and / or (ii) above may be expressed, or these optimized DNA fragments may be co-expressed together with a codon-optimized DNA fragment for the expression of Eri silkworms of M2, N, IL12 molecules. Good.
  • the time of introduction (inoculation) of the baculovirus recombinant into the silk moth is not particularly limited as long as it is in the silk moth stage, but it is preferably early in the silk moth stage, specifically, on the day of molting (molting 1).
  • the day) to the 4th day (5th day of molting) is preferable, and the next day (2nd day of molting) to the day after next (3rd day of molting) is more preferable.
  • these pupae are bred for a predetermined period, and the temperature conditions at that time are preferably 20 ° C. to 30 ° C., more preferably 22 ° C.
  • the period of pupal breeding is not particularly limited as long as it is the period from after the above inoculation to before the pupae metamorphose into adults (moths), but 2 to 6 days after the above inoculation is preferable, and 2 to 4 days is more preferable. It is preferable, and 3 days is more preferable. Any method well known to those skilled in the art can be used for the recovery of virus-like particles from Eri silkworm.
  • Eri silkworm can be homogenized in an isotonic buffer solution and then recovered using immobilized erythrocytes or a sialic acid column (fetin column). It is also possible to obtain a fraction contained in the form of virus-like particles by using a fractionation method such as a sucrose density gradient centrifugation method.
  • a fractionation method such as a sucrose density gradient centrifugation method.
  • Ac NPV recombinant (hereinafter, also referred to as Ac M2 / N / IL12 recombinant) in which a DNA sequence encoding M2 / N / IL12 molecule is incorporated into Autographa California nuclear polymorphic disease virus (Ac NPV), FkH5HA protein in Ac NPV.
  • Ac NPV recombinant (hereinafter, also referred to as Ac FkH5 recombinant) incorporating a DNA sequence encoding AnH7HA protein
  • Ac NPV recombinant (hereinafter, also referred to as Ac AnH7 recombinant) incorporating a DNA sequence encoding AnH7HA protein in Ac NPV.
  • a / PR / 8/34 (H1N1) strain (PR8H1) of influenza virus was cultured and PR8H1 was infected with mice in order to restore the virulence in the mice.
  • HKH5 RG-A / BarnSwallow / HongKong / 1161/2010-A / PR / 8/34 [R] (6 + 2) (H5N1)
  • AnH7 RG-A
  • Anhui / 1/2013-A / PR / 8/34 [R] (6 + 2) (H7N9) will be sold to Dr. RG Webster of St Jude Chicken's Research Hospital, Memphis, TN, USA. It was propagated in 10-day-old fertilized chicken eggs and MDCK cells.
  • the M2, N, and IL12 genes were also synthesized by Japan Genewith Co., Ltd.
  • the M2, N, and IL12 genes include glycine linker (L1), M2 small extracellular domain (23 amino acids), M2 transmembrane domain (19 amino acids), M2 cytoplasmic domain (54 amino acids), Flag linker (11 amino acids), and NA cytoplasm.
  • L1 glycine linker
  • M2 small extracellular domain 23 amino acids
  • M2 cytoplasmic domain 54 amino acids
  • Flag linker 11 amino acids
  • NA cytoplasm Designed to encode a membrane protein constructed by combining two subsystems of IL12 (p35 and p40) with a domain (6 amino acids), an NA transmembrane domain (31 amino acids), and NA Stoke (41 amino acids). It was.
  • the synthesized gene was inserted downstream of the pFast Bac1 (pFast Bact) polyhedrosis promoter, and the results and plasmid were used to introduce into DH10Bac.
  • pFast Bac1 pFast Bact
  • the results and plasmid were used to introduce into DH10Bac.
  • VLP vaccine Preparation of VLP Vaccine in Eli silk moth
  • the pupa of Eli silk moth was used to prepare the VLP vaccine.
  • tussah pupae were infected with the Ac NPV recombinant described above.
  • Inoculation of baculovirus into pupae and preparation of each VLP vaccine are performed by Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U.Z, et al.
  • Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018; 163 (10): 2787-2797.
  • Blood cell adsorption test Sf9 cells infected with the Ac NPV recombinant described above were washed once with PBS, and Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like. particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018; 163 (10): 2787-2797. A blood cell adsorption test was performed using 0.5% chicken erythrocytes.
  • the anti-Flag mouse monoclonal antibody M2 and the anti-DYKDDDDK tag mouse monoclonal antibody were purchased from Sigma Aldrich (St. Louis, MO, USA) and Fujifilm Wako Pure Chemical Industries, Ltd. (Osaka, Japan), respectively.
  • Antisera against HKH5 virus, PRHA virus, and AnH7 virus were prepared in mice immunized with each purified virus (HA titer of 2,048-4,096) three times.
  • a series of mouse groups including 5 mice each, were subjected to VLP, FkH5 protein and M2 containing inactivated PRH1, M2, N, IL12 molecules in PBS.
  • mice were infected with the virus by antigen administration with challenge virus via the nasal route, and the health status and survival of the mice immunized with the above three vaccines were observed daily for 9 days. Mice that died during the course of the experiment were autopsied for lung removal and collection of whole blood. The viral load in the removed lung was measured by the plaque method for homogenates in all the removed lungs. For infection with antigen virus, undiluted virus stock solutions of pathogenic PRH1 virus and FkH5 virus were used.
  • VLPs containing M2 ⁇ N ⁇ IL12 molecules and FkH5 protein and / or M2 ⁇ N ⁇ IL12 molecules and AnH7 protein When VLPs were prepared, it was predicted that monovalent VLP vaccines and divalent VLP vaccines associated with M2, N, and IL12 molecules could be synthesized.
  • Sf9 cells were subjected to their Ac NPV recombinants. Double infected. This result is shown in the FA test of FIG. Expression of the M2, N, and IL12 molecules was confirmed in FIG. 3A (red) treated with the IL12 monoclonal antibody.
  • Sf9 cells infected with Ac M2 ⁇ N ⁇ IL12 were determined to be green labeled with anti-mouse IL12 antibody (FIG. 3B).
  • the purpose was to observe the neutral colors showing expression (FIG. 3D).
  • Figures 3E and 3F highlighted a much more diverse neutral color, indicating co-expression between VLP antigens containing M2, N, IL12 molecules and FkH5 and AnH7 proteins.
  • FIGS. 3A to 3F Hemagglutinin adsorption activity of double-infected cells
  • the present inventors were able to confirm that a large number of cells were capable of co-expression of the above three recombinants.
  • co-expression by the above three Ac NPV recombinants was confirmed by exposure on infected cells by a blood cell adsorption test of FkH5 VLP antigen or AnH7 VLP antigen.
  • FIG. 4A showed negative hemodsorption in cells infected with the Ac M2 ⁇ N ⁇ IL12 recombinant, and as a result, the expressed M2 ⁇ N ⁇ IL12 molecules contained hemagglutination molecules. It was shown not to.
  • mice M2, N, IL12 molecules (abbreviated as "M2, IL12” in FIG. 5) are possible immunodefensive M2 proteins of influenza A virus. Since it contains an M2 protein showing a very high degree of homology between influenza A viruses, the protective activity of a vaccine containing virus-like particles containing an immune modulator molecule was examined in mice. The vaccine showed 80% and 60% survival against infection with PRbH1 and HKH5 viruses, indicating protection against the above two viruses (FIG. 5A). Since the H7 virus did not show pathogenicity in mice, no effective mortality and survival data could be obtained from this experiment.
  • a vaccine containing a virus-like particle containing an immunomodulator molecule and an FkH5 protein or a virus-like particle containing an immunomodulator molecule and an H7 protein is effective against infection with a highly pathogenic PR8H1 virus. , 90-100%, which is extremely high protection (Fig. 5B).
  • immunization of mice with virus-like particles containing only immunomodulator molecules showed a 20% mortality rate, suggesting a weak but protective protection (Fig. 5B).
  • HkH5, AnH7, and PR8H1 challenge virus
  • mice treated with PBS showed 60% and 20% survival rates for HkH5 virus and PR8H1 virus, respectively, but 100% survival rates for AnH7 virus ().
  • FIG. 6C control mice treated with PBS
  • FIG. 6C control mice treated with PBS
  • FIG. 6D the protective activity of the simple inactivated vaccine (PR8 vaccine) against the PR8H1, HkH5, and AnH7 challenge viruses was 100%, 60%, and 100%, respectively.
  • mice immunized with VLP containing M2 ⁇ N ⁇ IL12 molecule Fig. 6E
  • mice immunized with VLP containing FkH5 protein and M2 ⁇ N ⁇ IL12 molecule Fig. 6F
  • AnH7 protein All mice immunized with VLP containing M2, N, and IL12 molecules (FIG. 6G) were shown to have improved survival rates as compared to FIGS. 6C and 6D.
  • Each experimental group consisted of 10 mice.
  • virus-like particles containing an immunomodulator molecule (M2, N, IL12 molecule) and FkH5 protein, and a virus containing an immunomodulator molecule (M2, N, IL12 molecule) and AnH7 protein As can be seen in Table 1, virus-like particles containing an immunomodulator molecule (M2, N, IL12 molecule) and FkH5 protein, and a virus containing an immunomodulator molecule (M2, N, IL12 molecule) and AnH7 protein.
  • the divalent H5 and H7 VLP vaccines inhibited mouse PR8H1 (H1 subtype), HKH5 (H5 subtype) and AnH7 (H7 subtype).
  • H1 subtype mouse PR8H1
  • H5 subtype H5 subtype
  • AnH7 H7 subtype
  • co-administration of VLP vaccines containing M2, N, IL12 molecules with H5 and H7 proteins could protect animals from completely different PR8H1 belonging to the HA subtype, and protected them from mutual infection.
  • the numbers in parentheses in the column of protective activity represent the mortality rate (%) due to challenge virus infection, and the molecule (left) is immunized with the vaccine and killed mice when infected with the virus. It shows the rate.
  • the denominator (right) shows the mouse mortality rate when immunized with a negative control PBS and infected with the virus.
  • mice vaccinated with PBS as a negative control of the vaccine were immunized with the M2 ⁇ N ⁇ IL12 + HKH5 VLP vaccine when the survival rate was 20%, followed by a significantly different subtype of PR8H1 virus. It was interesting to find that the survival rate of the mice fed was 90% (Fig. 5B). Not surprisingly, the same vaccine showed 100% protective activity against each of the AnH7 and HKH5 viruses.
  • Table 3 summarizes the cross-protective activity of the VLP vaccine according to the invention evaluated in mice immunized with various vaccines and infected with the challenge virus.
  • the present inventors succeeded in constructing the M2 peptide and the stalk peptide of the neuraminidase protein of IL-12, which is an immune reaction modulator, and the neuraminidase protein of influenza A virus, based on the molecular design of each structural gene. did.
  • the DNA encoding all the above proteins which is 2,130 nucleotides in length, is recombinant DNA (M2 ⁇ N) by the Autographa California nuclear polyhedrosis virus (Ac NPV). -The preparation of IL12) was carried out.
  • the chimeric cytokine (immune modulator molecule) system may be useful in the field of other infectious viruses, including the broad viral family.
  • the present inventors have already developed the DPT vaccine, which is a vaccine for measles, mumps and rubella virus, and the ZIKA and mad dog disease VLP vaccines in Kaiko, and these vaccines have also been developed as chimeric cytokines. We are promoting.
  • GGGGTGGGGSGGGGTGGGG (16) Amino acid sequence of p35 subunit (193 amino acids) of murine IL12 (SEQ ID NO: 16) RVIPVSGPARCLSQSRNLLKTTDDMVKTAREKLKHYSCTAEDIDHEDITRDQTSTLKTCLPLELHKNESCLATRETSSTTRGSCLPPQKTSLMMTLCLGSIYEDLKMYQTEFQAINAALQNHNHQQIILDKGMLVAIDELMQSLNHNGETLRQKPPVGEADPYRVKM

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The objective is to provide a novel, highly effective vaccine. The present invention relates to a vaccine comprising a virus-like particle containing an immunomodulator molecule, wherein: the immunomodulator molecule includes interleukin-12 protein, a neuraminidase (NA) domain region originating from NA protein, and an M2 protein domain region originating from an influenza virus; the NA domain region includes an extramembrane domain, a transmembrane domain, and an intracellular domain; the M2 protein domain region includes an extramembrane domain, a transmembrane domain, and an intracellular domain; the interleukin-12 protein is bound to the extramembrane domain in the NA domain region; and the intracellular domain in the M2 protein domain region is bound to the intracellular domain in the NA domain region via a linker.

Description

ワクチンvaccine
 本発明は、新規のワクチンに関する。 The present invention relates to a novel vaccine.
 インフルエンザワクチン開発の実質的な道筋が、1933年に、スペイン型パンデミック呼吸器疾患として同定された、A型インフルエンザの原因ウイルスの単離に由来することは、疑いの余地がない。実際、この原因ウイルスは、インフルエンザワクチンについての最初の試験のために使用された。結果として、米国での、緊急開発、米国軍人の甚大な被害を背景として、最初の不活化ワクチンが作製された。周知の通り、スペイン型インフルエンザパンデミックは、世界中で、歴史上最悪の被害を記録し、全世界で、2000~4000万人の死者をもたらし、欧州戦線後期に従軍した米国軍人のうちの80%を超える軍人が、戦死者として報告されたが、この背景が、米国におけるインフルエンザワクチンの緊急開発をもたらした。それ以来、フルスケールの不活化ワクチンの開発は、効能を増大させ、70~80%の有効性を記録した。このような背景では、ワクチン開発において使用されるウイルスの抗原性は、スペイン型インフルエンザウイルスに由来する流行性ウイルスの抗原性と極めて類似しうるであろう。 There is no doubt that the practical path to influenza vaccine development comes from the isolation of the causative virus of influenza A, which was identified as a Spanish-type pandemic respiratory disease in 1933. In fact, this causative virus was used for the first trial of an influenza vaccine. As a result, the first inactivated vaccine was created against the backdrop of urgent development in the United States and the devastating damage to US military personnel. As we all know, the Spanish influenza pandemic has recorded the worst damage in history worldwide, causing 20-40 million deaths worldwide and 80% of US military personnel who served in the late European front. More than two military personnel were reported dead in the war, a background that led to the urgent development of influenza vaccines in the United States. Since then, the development of full-scale inactivated vaccines has increased efficacy and recorded 70-80% efficacy. Against this background, the antigenicity of the virus used in vaccine development could be very similar to the antigenicity of epidemic viruses derived from the Spanish influenza virus.
 しかし、それ以来、ワクチンの生命である有効性は、抗原シフト及び抗原ドリフトを原因として、激しく揺れ動いている。実際、抗原シフト及び抗原ドリフトからなる、上記の2つの機構により引き起こされる抗原性の変化は、多数のヒト死者をもたらしており、これは、公衆衛生当局において、超過死亡として、明確に表された。例えば、スペイン型インフルエンザウイルスに由来するH1N1ウイルスは、1950年代中葉まで、ヒト領域において、常時維持されていたが、この期間中に、H1N1ウイルスの抗原ドリフトにより引き起こされた、3つの顕著な超過死亡が確認された。例えば、1934年以来の、H1N1ウイルスの蔓延期間中に、H1N1ウイルスと関連する、9回の超過死亡が記録された。この記録では、超過死亡の大きなピークが、新たに出現したアジア型H2N2インフルエンザウイルスであって、抗原シフトとして、初めて検出されたウイルスを原因として、1957年に突然現れた。その後、第1のH1N1ウイルスに由来する、第2の抗原シフトウイルスであって、トリインフルエンザウイルスに由来するウイルスが、ヒト領域に再び広まった。米国では、多数の超過死亡が生じたが、10を超える、顕著な超過死亡を、日本における著者のうちの1人が推定した。 However, since then, the vital efficacy of vaccines has been shaken violently due to antigen shift and antigen drift. In fact, the antigenic changes caused by the above two mechanisms, consisting of antigen shift and antigen drift, have resulted in a large number of human deaths, which was clearly represented by public health authorities as excess death. .. For example, the H1N1 virus derived from the Spanish influenza virus was constantly maintained in the human region until the mid-1950s, during which time there were three significant excess deaths caused by antigen drift of the H1N1 virus. Was confirmed. For example, nine excess deaths associated with the H1N1 virus have been recorded during the H1N1 virus epidemic since 1934. In this record, a major peak of mortality was the newly emerged Asian H2N2 influenza virus, which suddenly appeared in 1957 due to the first virus detected as an antigen shift. After that, the second antigen-shifted virus derived from the first H1N1 virus, which was derived from the avian influenza virus, spread again to the human region. In the United States, there were numerous excess mortality, but more than 10 significant excess mortality were estimated by one of the authors in Japan.
 1980年以来、ワクチンが低減された年は、日本では10年間で4回であった。この証拠は、超過死亡として、明確に記録された。抗原変異により引き起こされた被害は、A型インフルエンザウイルスによる被害だけでなく、日本では、B型インフルエンザウイルスの抗原変異により引き起こされる、象徴的な被害も出現した。公知の通り、1962年以来、日本では、全社会的なインフルエンザ大流行をコントロールするために、学童のための集団免疫化プログラムが実施されていたが、1987年の4月及び5月に、異常な症例が、西日本の学校で発生した。学童の100%が、B型インフルエンザウイルス株及びA/Hong Kong(H3N2)型ウイルス株を含有する、市販の二価ワクチンをワクチン接種されていた。実際、1987年4月の中頃、西日本(四国地方)の中学校における、インフルエンザの大流行の発生が、国立インフルエンザセンターへと報告された。B型原因ウイルスが、抗原性及びゲノムの観点から特徴づけられた。B/Ibaraki/2/85(ワクチン株)と、B/Yamagata/16/88(新規の変異株)との、ヌクレオチド配列及びアミノ酸配列の相同性は、それぞれ、93.2及び90.7%であった。血清型検査に基づき、登録された生徒515例のうち、386例が、典型的なインフルエンザ疾患を示す、疫学的探索がなされた。ワクチンの失効及びインフルエンザの尺度である超過死亡について考慮すると、人間と、抗原変異との戦いと言っても過言ではない。この問題を克服するために、ワクチンの品質及び数量の改善に焦点を当てた、幾多の取組みがなされた。 Since 1980, the number of years that vaccines have been reduced has been four in 10 years in Japan. This evidence was clearly recorded as mortality. The damage caused by the antigenic variation is not only the damage caused by influenza A virus, but also the symbolic damage caused by the antigenic variation of influenza B virus has appeared in Japan. As is known, since 1962, a herd immunity program for school children has been implemented in Japan to control the influenza pandemic throughout the society, but in April and May 1987, it became abnormal. Case occurred in a school in western Japan. 100% of the school children were vaccinated with a commercially available bivalent vaccine containing an influenza B virus strain and an A / Hong Kong (H3N2) virus strain. In fact, in mid-April 1987, an outbreak of influenza pandemic in a junior high school in western Japan (Shikoku region) was reported to the National Influenza Center. Type B causative virus was characterized in terms of antigenicity and genome. The homology of the nucleotide sequence and amino acid sequence between B / Ibaraki / 2/85 (vaccine strain) and B / Yamagata / 16/88 (new mutant strain) was 93.2 and 90.7%, respectively. there were. Based on serotyping, 386 of the 515 enrolled students were epidemiologically searched for typical influenza disease. Considering vaccine lapse and mortality, which is a measure of influenza, it is no exaggeration to say that humans are fighting antigenic variation. Numerous efforts have been made to overcome this problem, focusing on improving the quality and quantity of vaccines.
 インフルエンザワクチンの数量的推移は、象徴的に、生弱毒化ワクチン又は生低温適応型ワクチンの増大としてまとめられる。それらの主要な目的は、粘膜による免疫を介する呼吸器感染の防止において重要な役割を果たしうる、地域内免疫である。しかし、本発明者らは、ヒトが、過去において、多種多様な流行性ウイルス変異株に曝露されており、これらの流行性プロファイルを反映する結果として、全ての年齢群は、多種多様な抗体を有することを理解している。上記の背景を考慮すると、流行性ウイルス変異株は、生弱毒化ウイルスの固定化を退けうる可能性が存在する。 The quantitative transition of influenza vaccines is symbolically summarized as an increase in live attenuated vaccines or live low temperature adaptive vaccines. Their primary purpose is regional immunity, which can play an important role in the prevention of respiratory infections through mucosal immunity. However, we have exposed humans to a wide variety of epidemic virus variants in the past, and as a result of reflecting these epidemic profiles, all age groups have a wide variety of antibodies. I understand that I have. Given the above background, epidemic virus mutants have the potential to reject immobilization of live attenuated viruses.
 このような背景にあって、ボンビュクス・モリ(Bombyx mori)で産生するインフルエンザウイルスのH5型のHAタンパク質を含むインフルエンザウイルス様粒子(VLP)ワクチンが開発された(特許文献1参照)。 Against this background, an influenza virus-like particle (VLP) vaccine containing the H5 type HA protein of influenza virus produced by Bombyx mori was developed (see Patent Document 1).
特許第6205359号公報Japanese Patent No. 6205359
 定量的手法として、細胞培養物由来のワクチン;DNAワクチン;インフルエンザウイルス様粒子(VLP)ワクチンなどの様々な技術を使用する、不活化インフルエンザワクチンの開発がなされている。実際、本発明者らは、近年、トリインフルエンザのH5亜型VLPワクチン及びH7亜型VLPワクチンのためのカイコ蛹であって、H5 VLPワクチン又はH7HA VLPワクチンの産生レベルであり、蛹1つ当たり数百万HA力価を超える産生レベルを示すカイコ蛹を開発した(特許文献1参照)。これらのカイコ蛹は、ニワトリでは、部分精製生成物を介して使用されうるが、ヒトワクチンの場合、本発明者らは、その安全性及び有効性を、詳細に確認しなければならない。いずれにせよ、近年の不活化ワクチンは、適切な技術を介して、高度なHI抗体力価をもたらすことが要求されている。 As a quantitative method, inactivated influenza vaccines have been developed using various techniques such as cell culture-derived vaccines; DNA vaccines; influenza virus-like particle (VLP) vaccines. In fact, in recent years, we have found that the silkworm frogs for the H5 subtype VLP vaccine and the H7 subtype VLP vaccine of triinfluenza are the production levels of the H5 VLP vaccine or the H7HA VLP vaccine, and per frog. We have developed a silkworm worm that exhibits a production level exceeding millions of HA titers (see Patent Document 1). These silk moth pupae can be used in chickens via partially purified products, but in the case of human vaccines, we must confirm their safety and efficacy in detail. In any case, inactivated vaccines in recent years are required to provide high HI antibody titers through appropriate techniques.
 近年、本発明者らが、インターロイキン12分子を、インフルエンザVLPワクチンと組み合わせてワクチンとして使用することを試みたところ、このワクチンは、トリインフルエンザウイルスに対する防御効能を上昇させる傾向を示した。そこで、本発明者らは、インターロイキン12(IL12)のアジュバントとしての機能を向上させるために、鋭意研究を重ね、インターロイキン12と、これに会合する、A型インフルエンザウイルスのM2タンパク質と、ノイラミニダーゼタンパク質とを含む、免疫モジュレーター分子(以下、M2・N・IL12分子又はIL12・N・M2分子とも呼ぶ)を有するウイルス様粒子を開発し、この免疫モジュレーター分子を有するウイルス様粒子をワクチンに応用できることを発見した。本発明者らは、M2・N・IL12分子を含有するウイルス様粒子を含むワクチンによる、HI抗体の作製及び防御効能について、以下開示する。 In recent years, the present inventors have attempted to use 12 molecules of interleukin as a vaccine in combination with an influenza VLP vaccine, and this vaccine has shown a tendency to increase the protective efficacy against avian influenza virus. Therefore, in order to improve the function of interleukin 12 (IL12) as an adjuvant, the present inventors have conducted intensive studies, and interleukin 12, the M2 protein of influenza A virus associated with the interleukin 12, and the neurominidase. To develop a virus-like particle having an immunomodulator molecule (hereinafter, also referred to as M2 / N / IL12 molecule or IL12 / N / M2 molecule) containing a protein, and to apply the virus-like particle having this immunomodulator molecule to a vaccine. I found. The present inventors disclose the production and protective efficacy of HI antibody by a vaccine containing virus-like particles containing M2, N, and IL12 molecules.
M2・N・IL12分子の設計図を示す。なお、M2・N・IL12分子はInterleukin-12(インターロイキン12)、NA Stalks(NAスターク)、NA Transmembrane(TM) Domein(NA膜貫通ドメイン)、NA Cytoplasmic Domein(NA細胞質内ドメイン)、Flag linker(フラッグリンカー)、M2 Cytoplasmic Domein(M2細胞質内ドメイン)、M2 Transmemblene (TM) Domein(M2細胞質内ドメイン)、及びM2 Small Ectodomein(M2小型細胞外ドメイン)で構成されている。The design drawing of M2 ・ N ・ IL12 molecule is shown. The M2, N, and IL12 molecules are Interleukin-12 (interleukin 12), NA Starks (NA Stark), NA Transmembrane (TM) Domein (NA transmembrane domain), NA Cytoplasmic Domein (NA cytoplasmic domain), and Flaglinker. (Flag linker), M2 Cytoplasmic Domain (M2 cytoplasmic domain), M2 Transmembrane Domain (TM) Domein (M2 cytoplasmic domain), and M2 Small Ectodomein (M2 small extracellular domain). IL・N・M2分子の模式図を示す。A schematic diagram of IL / N / M2 molecules is shown. 本発明に係るウイルス様粒子の作製のための遺伝子操作プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the gene manipulation process for the production of the virus-like particle which concerns on this invention. 本発明に係るウイルス様粒子の一例の模式図を示す。図中、1はH5HAタンパク質を示し、2はM2・N・IL12分子を示し、3はH7HAタンパク質を示す。A schematic diagram of an example of a virus-like particle according to the present invention is shown. In the figure, 1 indicates an H5HA protein, 2 indicates an M2 / N / IL12 molecule, and 3 indicates an H7HA protein. M2・N・IL12分子がSf9細胞内で発現することを示す図である。It is a figure which shows that M2, N, and IL12 molecules are expressed in Sf9 cells. FkH5タンパク質がSf9細胞内で発現することを示す図である。It is a figure which shows that FkH5 protein is expressed in Sf9 cell. AnH7タンパク質がSf9細胞内で発現することを示す図である。It is a figure which shows that AnH7 protein is expressed in Sf9 cell. Sf9細胞におけるM2・N・IL12分子の発現を、抗IL12モノクローナル抗体で処理して確認したFA試験の結果を示す図である。It is a figure which shows the result of the FA test which confirmed the expression of M2, N, and IL12 molecules in Sf9 cells by treating with an anti-IL12 monoclonal antibody. Sf9細胞におけるM2・N・IL12分子の発現を、抗マウスIL12抗体で処理して確認したFA試験の結果を示す図である。It is a figure which shows the result of the FA test which confirmed the expression of M2, N, and IL12 molecules in Sf9 cells by treating with the anti-mouse IL12 antibody. Sf9細胞におけるM2・N・IL12分子とFkH5タンパク質を含むVLPの共発現を、抗IL12モノクローナル抗体及び抗H5HA抗体で処理して確認したFA試験の結果を示す図である。It is a figure which shows the result of the FA test which confirmed the co-expression of VLP containing M2, N, IL12 molecule and FkH5 protein in Sf9 cell by treating with anti-IL12 monoclonal antibody and anti-H5HA antibody. Sf9細胞におけるM2・N・IL12分子とAnH7タンパク質を含むVLPの共発現を、抗IL12モノクローナル抗体及び抗H7HA抗体で処理して確認したFA試験の結果を示す図である。It is a figure which shows the result of the FA test which confirmed the co-expression of VLP containing M2, N, IL12 molecule and AnH7 protein in Sf9 cell by treating with anti-IL12 monoclonal antibody and anti-H7HA antibody. Sf9細胞におけるM2・N・IL12分子とFkH5タンパク質とAnH7タンパク質を含むVLPの共発現を、抗IL12モノクローナル抗体で処理して確認したFA試験の結果を示す図である。It is a figure which shows the result of the FA test which confirmed the co-expression of VLP containing M2, N, IL12 molecule, FkH5 protein and AnH7 protein in Sf9 cell by treating with the anti-IL12 monoclonal antibody. Sf9細胞におけるM2・N・IL12分子とFkH5タンパク質とAnH7タンパク質を含むVLPの共発現を、抗H5HA抗体と抗H7HA抗体で処理して確認したFA試験の結果を示す図である。It is a figure which shows the result of the FA test which confirmed the co-expression of VLP containing M2, N, IL12 molecule, FkH5 protein and AnH7 protein in Sf9 cell by treating with anti-H5HA antibody and anti-H7HA antibody. Ac M2・N・IL12組換体を感染させたSf9細胞の血球吸着試験の結果を示す図である。It is a figure which shows the result of the blood cell adsorption test of the Sf9 cell infected with the Ac M2 / N / IL12 recombinant. Ac M2・N・IL12組換体とAc FkH5組換体を感染させたSf9細胞の血球吸着試験の結果を示す図である。It is a figure which shows the result of the blood cell adsorption test of the Sf9 cell infected with the Ac M2 / N / IL12 recombinant and the Ac FkH5 recombinant. Ac M2・N・IL12組換体とAc AnH7組換体を感染させたSf9細胞の血球吸着試験の結果を示す図である。It is a figure which shows the result of the blood cell adsorption test of the Sf9 cell infected with the Ac M2 / N / IL12 recombinant and the Ac AnH7 recombinant. ワクチンとして、PBS(コントロール)、M2・N・IL12分子(図中、「M2・IL12」と略記される)、M2・IL12とFkH5タンパク質を含むVLP、又はM2・IL12とAnH7タンパク質を含むVLPを投与したマウスにHKH5チャレンジウイルスを感染させた際の生存率を経時的に示す図である。As a vaccine, PBS (control), M2 ・ N ・ IL12 molecule (abbreviated as “M2 ・ IL12” in the figure), VLP containing M2 ・ IL12 and FkH5 protein, or VLP containing M2 ・ IL12 and AnH7 protein. It is a figure which shows the survival rate at the time of infecting the administered mouse with HKH5 challenge virus with time. ワクチンとして、PBS(コントロール)、M2・N・IL12分子(図中、「M2・IL12」と略記される)、M2・IL12とFkH5タンパク質を含むVLP、又はM2・IL12とAnH7タンパク質を含むVLPを投与したマウスにPR8チャレンジウイルスを感染させた際の生存率を経時的に示す図である。As a vaccine, PBS (control), M2 ・ N ・ IL12 molecule (abbreviated as “M2 ・ IL12” in the figure), VLP containing M2 ・ IL12 and FkH5 protein, or VLP containing M2 ・ IL12 and AnH7 protein. It is a figure which shows the survival rate at the time of infecting the administered mouse with PR8 challenge virus with time. は、PFU(plaque-forming unit)の測定結果を示す図である。Is a diagram showing the measurement result of PFU (plaque-forming unit). ワクチンとして、PBS(コントロール)を投与したマウスにチャレンジウイルス(PR8H1、HKH5、AnH7)を感染させた際の体重変化を経時的に示す図である。It is a figure which shows the time-dependent change of the body weight when the challenge virus (PR8H1, HKH5, AnH7) was infected to the mouse which administered PBS (control) as a vaccine. ワクチンとして、免疫モジュレーター分子(M2・N・IL12)とFkH5タンパク質を含むVLPを投与したマウスにチャレンジウイルス(PR8H1、HKH5、AnH7)を感染させた際の体重変化を経時的に示す図である。It is a figure which shows the weight change at the time of infecting the challenge virus (PR8H1, HKH5, AnH7) in the mouse which administered VLP containing an immune modulator molecule (M2, N, IL12) and FkH5 protein as a vaccine with time. ワクチンとして、PBS(コントロール)を投与したマウスにチャレンジウイルス(PR8H1、HKH5、AnH7)を感染させた際のです生存率を経時的に示す図である。It is a figure which shows the survival rate at the time of infecting the challenge virus (PR8H1, HKH5, AnH7) in the mouse which administered PBS (control) as a vaccine with time. ワクチンとして、不活化させたPR8H1ワクチンを投与したマウスにチャレンジウイルス(PR8H1、HKH5、AnH7)を感染させた際のです生存率を経時的に示す図である。It is a figure which shows the survival rate at the time of infecting the challenge virus (PR8H1, HKH5, AnH7) in the mouse which administered the inactivated PR8H1 vaccine as a vaccine with time. ワクチンとして、免疫モジュレーター分子(M2・N・IL12)を含むVLPを投与したマウスにチャレンジウイルス(PR8H1、HKH5、AnH7)を感染させた際のです生存率を経時的に示す図である。It is a figure which shows the survival rate at the time of infecting a mouse which administered VLP containing an immune modulator molecule (M2, N, IL12) as a vaccine with a challenge virus (PR8H1, HKH5, AnH7) with time. ワクチンとして、免疫モジュレーター分子(M2・N・IL12)とFkH5タンパク質を含むVLPを投与したマウスにチャレンジウイルス(PR8H1、HKH5、AnH7)を感染させた際のです生存率を経時的に示す図である。It is a figure which shows the survival rate when the challenge virus (PR8H1, HKH5, AnH7) was infected to the mouse which administered VLP containing an immune modulator molecule (M2, N, IL12) and FkH5 protein as a vaccine with time. .. ワクチンとして、免疫モジュレーター分子(M2・N・IL12)とAnH7タンパク質を含むVLPを投与したマウスにチャレンジウイルス(PR8H1、HKH5、AnH7)を感染させた際のです生存率を経時的に示す図である。It is a figure which shows the survival rate at the time of infecting a mouse which administered VLP containing an immune modulator molecule (M2, N, IL12) and AnH7 protein as a vaccine with a challenge virus (PR8H1, HKH5, AnH7) with time. .. 本発明に係るM2・N・IL12分子に関する配列情報をまとめた図である。It is a figure which summarized the sequence information about the M2, N, IL12 molecule which concerns on this invention.
<ワクチン>
 インターロイキン-12(Interleukin-12、以下IL-12又はIL12と略す)は、EBVで形質転換した細胞からNK細胞を活性化するファクターとして1989年に同定されたタンパク質である。p40とp35のサブユニットからなり、p40は、IL-23と共通のサブユニットがある。ILは、このようにサブユニットの組みあわせで多様な作用を調整していると考えられている。ところで、哺乳動物の免疫系には、B細胞やT細胞による獲得免疫とナチュラルキラ一細胞(Natural Ki11er T ce11、以下NK細胞と略す)を中心とする自然免疫がある。軸索動物は自然免疫しかなく、脊推動物になってから獲得免疫ができてきたことが知られているが、獲得免疫は進化上非常に歴史が浅く、脊椎動物以外の生物は自然免疫によって免疫を担ってきた。近年、小安重夫のグループによりリンパ球系の自然免疫に関与する細胞として、NH細胞が発見され、NK細胞、リンパ組織誘導(LTi)細胞、ナチュラルヘルパー(NH)細胞の3種類の自然免疫細胞が明らかになっている。このように獲得免疫システムは、NK細胞に相当するTh1細胞、NH細胞に相当するTh2細胞、Lti細胞に相当するTh17細胞から成り立っており、自然免疫が分化、発展したものが獲得免疫であることがわかってきた。
<Vaccine>
Interleukin-12 (Interleukin-12, hereinafter abbreviated as IL-12 or IL12) is a protein identified in 1989 as a factor that activates NK cells from EBV-transformed cells. It consists of subunits of p40 and p35, and p40 has a subunit in common with IL-23. IL is thought to coordinate various actions by combining subunits in this way. By the way, the immune system of mammals includes acquired immunity by B cells and T cells and innate immunity centered on natural killer cells (Natural Ki11er Tce11, hereinafter abbreviated as NK cells). It is known that axons have only innate immunity, and acquired immunity has been achieved since becoming a vertebrate, but acquired immunity has a very short history in evolution, and organisms other than vertebrates are innate immunized. Has been responsible for immunity. In recent years, NH cells have been discovered by Shigeo Koyasu's group as cells involved in the innate immunity of the lymphocyte system, and three types of innate immune cells, NK cells, lymphoid tissue inducer (LTi) cells, and natural helper (NH) cells, have been identified. It has become clear. In this way, the acquired immune system consists of Th1 cells corresponding to NK cells, Th2 cells corresponding to NH cells, and Th17 cells corresponding to Lti cells, and innate immunity is differentiated and developed to be acquired immunity. I have come to understand.
 また、自然免疫と獲得免疫の中間的な細胞であるNKT細胞(マウス)、MAIT細胞(ヒト)の存在が明らかになり、自然免疫と獲得免疫は密接に繁がって免疫を担っていることが明らかになってきた。しかしながら、これまでの研究は獲得免疫が中心であり、それらを支えている自然免疫の研究は研究の困難さもあり遅れており、免疫と言えばT細胞、B細胞による獲得免疫の研究が中心となってきたこともあり、いかにB細胞による抗体産生を活性化するか、細胞障害性T細胞を活性化するかが免疫の要であるかのように考えられてきた。
 しかし、実際には、自然免疫の土台があり、自然免疫の活性化と共に獲得免疫を活性化させることの方が実際の免疫反応に近いと考えられる。
In addition, the existence of NKT cells (mouse) and MAIT cells (human), which are intermediate cells between innate immunity and acquired immunity, has been clarified, and innate immunity and acquired immunity are closely proliferating and responsible for immunity. Has become clear. However, the research so far has focused on acquired immunity, and the research on innate immunity that supports them has been delayed due to the difficulty of research. Speaking of immunity, research on acquired immunity by T cells and B cells is the main focus. It has been considered that how to activate antibody production by B cells and how to activate cytotoxic T cells are the key to immunity.
However, in reality, there is a foundation of innate immunity, and it is considered that activating acquired immunity as well as activating innate immunity is closer to the actual immune response.
 そこで、本発明者らは自然免疫の要であるNK細胞を活性化することを考えた。NK細胞は、1FN-α/β、1FN-1、1L-2、1L-4、lL-12、1L-15、1L-18によって増強されることが知られているが、中でも最もNK細胞を活性化するのは、IL-12とIL-18であり、とりわけ、IL-12がNK細胞の活性化の最初のキーであるサイトカインであると考えられている。
 抗原提示細胞(APC:antigen presenting cell)には、樹状細胞、マクロファージ・単級、B細胞の3種類があり、樹状細胞だけがナイーブT細胞を活性化T細胞(エフェクターT細胞)にすることができ、最も強力な抗原提示能力を示すことができる。しかし、従来の不活化ワクチンは、獲得免疫のTh2系のB細胞を活性化し、抗体産生を刺激することが期待されて開発されてきたが、細胞性免疫が弱いということで、Th1系のCTL細胞を活性化させるためにアジュバントなども開発されてきたが、腫れるなどの副作用が強く開発は困難であった。一方、生ワクチンは自然な感染に近いので細胞性免疫も期待できるが、逆に、すでに免疫があると生ワクチンウイルスそのものが増殖できないなどにより、ワクチン効果が得られないなどの間題点があった。それに対して、IL-12を用いたワクチンは、NK細胞の活性化を狙い、樹状細胞による抗原提示を活性化することで、自然免疫、獲得免疫の総合的な免疫作用を活性化することを狙えるというメリットがある。
Therefore, the present inventors considered activating NK cells, which are the key to innate immunity. NK cells are known to be enhanced by 1FN-α / β, 1FN-1, 1L-2, 1L-4, lL-12, 1L-15, 1L-18, but the most NK cells among them. It is IL-12 and IL-18 that are activated, and in particular, IL-12 is believed to be the first key cytokine in the activation of NK cells.
There are three types of antigen-presenting cells (APCs): dendritic cells, macrophages / monomorphic cells, and B cells, and only dendritic cells turn naive T cells into activated T cells (effector T cells). And can show the strongest antigen presenting ability. However, conventional inactivated vaccines have been developed with the expectation that they activate Th2-type B cells of acquired immunity and stimulate antibody production. However, due to weak cell-mediated immunity, Th1-type CTLs have been developed. Although adjuvants have been developed to activate cells, development has been difficult due to strong side effects such as swelling. On the other hand, since live vaccines are close to natural infections, cell-mediated immunity can be expected, but on the contrary, if there is already immunity, the live vaccine virus itself cannot propagate, so there are problems such as the vaccine effect not being obtained. It was. On the other hand, the vaccine using IL-12 aims at activation of NK cells and activates antigen presentation by dendritic cells to activate the comprehensive immune action of innate immunity and acquired immunity. There is a merit that you can aim for.
 しかしながら、サイトカインは局所的な免疫活性化が大切であり、単品での投与の場合、副作用が大きくなる。そこで、抗原とIL-12を1つの分子で結びつけたワクチンを開発することにした。M2・NA・IL12を1つの分子にしたワクチンは、インフルエンザウイルスのM2タンパク質の抗原提示を樹状細胞で行うことでワクチン効果を狙うものである。M2タンパク質のN末領域の23アミノ酸は、抗原としてウイルス表面に露出している一方、保存性がよく、また、ウイルスのイオンチャンネルの入り口であるためこの部分に対する抗体はウイルスの中和活性があると考えられている。さらに、M2タンパクのN末領域の23アミノ酸は、保存性のよいことからも、亜型によらないすべてのインフルエンザウイルスに効果があるユニバーサルワクチンとしても注目されている。このM2タンパクのN末領域の23アミノ酸を含むM2全体を用いることで、M2の23アミノ酸の脂質二重層の表面に出ている領域に続く19アミノ酸の膜貫通領域、さらに、54アミノ酸の脂質二重層の内側の領域とNAタンパク質の脂質二重層の内側にあるN末領域にFLAG配列を介して結合し、NAタンパク質の膜貫通領域、NAタンパク質のストーク領域の後ろにIL-12タンパク質を配した。このことで、IL-12タンパク質は、ストークの上に自由に、かつ、ストークで結ばれる形で脂質二重層の外側に浮かべられるように設計した。 However, local immune activation is important for cytokines, and side effects increase when administered as a single product. Therefore, we decided to develop a vaccine that combines the antigen and IL-12 with a single molecule. The vaccine containing M2, NA, and IL12 as one molecule aims at the vaccine effect by presenting the antigen of the M2 protein of influenza virus in dendritic cells. While the 23 amino acids in the N-terminal region of the M2 protein are exposed on the surface of the virus as antigens, they are well preserved and because they are the entrance to the ion channels of the virus, the antibody against this part has a neutralizing activity of the virus. It is believed that. Furthermore, the 23 amino acids in the N-terminal region of the M2 protein are attracting attention as a universal vaccine that is effective against all influenza viruses regardless of subtype because of their good storage stability. By using the entire M2 containing 23 amino acids in the N-terminal region of the M2 protein, a 19-amino acid transmembrane region following the region exposed on the surface of the 23-amino acid lipid bilayer of M2, and a 54-amino acid lipid two The IL-12 protein was placed behind the transmembrane region of the NA protein and the stalk region of the NA protein by binding to the inner region of the layer and the N-terminal region inside the lipid bilayer of the NA protein via the FLAG sequence. .. This allowed the IL-12 protein to float freely on top of the stalk and outside the lipid bilayer in a stalk-bound form.
 この構造により、インフルエンザウイルスのM2タンパク質とIL-12とは常に近い位置関係にあり、M2タンパク質に対するNK細胞の貪食作用と樹状細胞による抗原提示が期待できる。更に、HAタンパク質などの膜糖タンパク質の場合、同じバキュロウイルスの発現系により作製したHAワクチンを混ぜて、超音波処理などによりバキュロウイルスの脂質二重層または人工的に加えたゴマ油などの油層と混和することで、同一の人工膜にIL-12と抗原タンパク質を配位することもでき、あらゆる抗原に対しても自然免疫をベースに活性化させた自然免疫、獲得免疫の両方の効果が結びついたワクチン抗原に用いることができる。 Due to this structure, the M2 protein of influenza virus and IL-12 are always in a close positional relationship, and NK cell phagocytosis of M2 protein and antigen presentation by dendritic cells can be expected. Furthermore, in the case of membrane glycoproteins such as HA proteins, HA vaccines prepared by the same baculovirus expression system are mixed and mixed with the lipid double layer of baculovirus or an oil layer such as artificially added sesame oil by ultrasonic treatment or the like. By doing so, IL-12 and the antigen protein can be coordinated on the same artificial membrane, and the effects of both innate immunity and acquired immunity activated based on innate immunity are linked to all antigens. It can be used as a vaccine antigen.
 以上から、本発明におけるワクチンは、免疫モジュレーター分子を含有することを特徴とするワクチンである。免疫モジュレーター分子は、IL-12タンパク質と、ノイラミニダーゼ(NA)タンパク質由来のNAドメイン領域と、インフルエンザウイルス由来のM2タンパク質ドメイン領域とを含む。そして、NAドメイン領域は、細胞膜外ドメインと、細胞膜貫通ドメインと、細胞質内ドメインとを含み、M2タンパク質ドメイン領域は、細胞膜外ドメインと、細胞膜貫通ドメインと、細胞質内ドメインとを含む。
 そして、免疫モジュレーター分子において、IL-12タンパク質が、NAドメイン領域における、細胞膜外ドメインに結合され、M2タンパク質ドメイン領域における細胞質内ドメインが、NAドメイン領域における細胞質内ドメインとリンカーで結合されている。
From the above, the vaccine in the present invention is a vaccine characterized by containing an immune modulator molecule. The immune modulator molecule comprises an IL-12 protein, an NA domain region derived from a neuraminidase (NA) protein, and an M2 protein domain region derived from an influenza virus. The NA domain region includes an extracellular domain, a transmembrane domain, and an intracytoplasmic domain, and the M2 protein domain region includes an extracellular domain, a transmembrane domain, and an intracytoplasmic domain.
Then, in the immunomodulator molecule, the IL-12 protein is bound to the extracellular domain in the NA domain region, and the cytoplasmic domain in the M2 protein domain region is bound to the cytoplasmic domain in the NA domain region by a linker.
 また、本発明に係るワクチンは、さらに、(i)インフルエンザウイルスH5型に分類されるウイルス由来のヘマグルチニン(HA)タンパク質を含有するインフルエンザウイルス様粒子、及び/又は、(ii)インフルエンザウイルスH7型に分類されるウイルス由来のヘマグルチニン(HA)タンパク質を含有するインフルエンザウイルス様粒子を含んでいてもよい。
 本発明に係るワクチンに含まれるインフルエンザウイルス様粒子においては、インフルエンザウイルスH5型に分類されるウイルス由来のヘマグルチニン(HA)タンパク質(以下、H5タンパク質とも呼ぶ)、及び/又は、インフルエンザウイルスH7型に分類されるウイルス由来のヘマグルチニン(HA)タンパク質(以下、H7タンパク質とも呼ぶ)に加え、M2・N・IL12分子も共発現していることを特徴とする。
 また、本発明のワクチンは、不活化インフルエンザウイルスH1N1型を含むワクチン接種をし、インフルエンザウイルスH1N1型に感染させた動物と同等の生存率を提供することができる。
 また、免疫モジュレーター分子を含有するウイルス様粒子、インフルエンザウイルス様粒子(i)、及び、インフルエンザウイルス様粒子(ii)から選択される少なくとも1種が、Sf9細胞又はエリ蚕蛹によって、後述する方法で産生させることが好ましい。
 また、インフルエンザウイルスH5型に分類されるウイルスがH5N1型ウイルスであり、及び/又は、インフルエンザウイルスH7型に分類されるウイルスがH7N9型ウイルスであることが好ましい。
Further, the vaccine according to the present invention further comprises (i) influenza virus-like particles containing a hemagglutinin (HA) protein derived from a virus classified into influenza virus H5 type, and / or (ii) influenza virus H7 type. It may contain influenza virus-like particles containing hemagglutinin (HA) protein from the classified virus.
The influenza virus-like particles contained in the vaccine according to the present invention are classified into influenza virus H5 type hemagglutinin (HA) protein (hereinafter, also referred to as H5 protein) and / or influenza virus H7 type. In addition to the virus-derived hemagglutinin (HA) protein (hereinafter, also referred to as H7 protein), M2, N, and IL12 molecules are co-expressed.
In addition, the vaccine of the present invention can provide a survival rate equivalent to that of an animal that has been vaccinated with an inactivated influenza virus H1N1 type and infected with the influenza virus H1N1 type.
In addition, at least one selected from virus-like particles containing immune modulator molecules, influenza virus-like particles (i), and influenza virus-like particles (ii) is produced by Sf9 cells or Eri silkworms by the method described later. It is preferable to let it.
Further, it is preferable that the virus classified into influenza virus H5 type is H5N1 type virus and / or the virus classified into influenza virus H7 type is H7N9 type virus.
<ウイルス様粒子>
 本発明のウイルス様粒子は、キメラサイトカインのM2・N・IL12のみを含むウイルス様粒子構造であってもよいし、HAタンパク質とM2・N・IL12とを含むウイルス様粒子構造であってもよい。ウイルス様粒子は、その中にインフルエンザウイルス由来のRNAを含まない、ウイルスのHAタンパク質を含むもので当該ウイルス様粒子の構造は、好ましくは50~150nm、さらに好ましくは60nm~120nmの直径を有する粒子の表面に明瞭なスパイク(例えばHAスパイク)が密に配置した構造を有し、形態的にウイルス粒子に酷似している。
 本発明のウイルス様粒子は、エリ蚕蛹によって発現されるため、エリ蚕由来の脂質や糖鎖修飾を有していてもよい。
 上記脂質としては、グリセロ糖脂質、スフィンゴ糖脂質、コレステロール、リン脂質等が挙げられる。
<Virus-like particles>
The virus-like particle of the present invention may have a virus-like particle structure containing only the chimeric cytokine M2, N, IL12, or may have a virus-like particle structure containing HA protein and M2, N, IL12. .. The virus-like particles contain the HA protein of the virus, which does not contain RNA derived from influenza virus, and the structure of the virus-like particles is preferably particles having a diameter of 50 to 150 nm, more preferably 60 nm to 120 nm. It has a structure in which distinct spikes (eg, HA spikes) are densely arranged on the surface of the virus, and is morphologically very similar to a virus particle.
Since the virus-like particles of the present invention are expressed by the silk moth, they may have lipids or sugar chain modifications derived from the silk moth.
Examples of the lipid include glyceroglycolipid, glycosphingolipid, cholesterol, phospholipid and the like.
 グリセロ糖脂質としては、例えば、スルホキシリボシルグリセリド、ジグリコシルジクリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリド、グリコシルジクリセリド等が挙げられる。
 スフィンゴ糖脂質としては、例えば、ガラクトシルセレブロシド、ラクトシルセレブシド、ガングリオシド等が挙げられる。
 リン脂質としては、例えば、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、リゾホスファチジルコリン、スフィンゴミエリン等が挙げられる。
 上記の脂質から、加水分解等によって誘導される脂肪酸等を含んでもよい。上記脂肪酸としては、例えば、ミリスチン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、オレイン酸、リノレン酸等が挙げられる。
 本発明のウイルス様粒子を含有するワクチンは、免疫原性を備える組換えウイルス膜タンパク質のスパイクを密に備える構造をしていることにより、アジュバントを用いなくても、従来にはない高い免疫原性を示すことが可能となる。アジュバントを用いないため、アレルギーやアナフィラキシショック等の副作用も低減することができる。
Examples of glyceroglycolipids include sulfoxyribosylglyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride and the like.
Examples of glycosphingolipids include galactosyl cerebroside, lactosyl cerebroside, and ganglioside.
Examples of phospholipids include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylic acid, phosphatidylglycerol, phosphatidylinositol, lysophosphatidylcholine, sphingomyelin and the like.
From the above lipids, fatty acids and the like induced by hydrolysis and the like may be contained. Examples of the fatty acid include myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linolenic acid and the like.
The vaccine containing virus-like particles of the present invention has a structure in which spikes of recombinant virus membrane proteins having immunogenicity are densely provided, so that an unprecedentedly high immunogenicity can be achieved without using an adjuvant. It becomes possible to show the sex. Since no adjuvant is used, side effects such as allergies and anaphylactic shock can be reduced.
 本発明のワクチンは、上記本発明のウイルス様粒子を含有する本発明のウイルス様粒子は高い免疫原性を備えるため、一般的に使用されるアジュバントを用いなくとも、従来にはない高い免疫原性を示すことが可能である。また、一般的に使用されるアジュバントを用いないため、アレルギーやアナフィラキシショック等の副作用も低減することができる。また、当然のことながら、本発明のウイルス様粒子の上記球状外殻の中空の内部にはウイルス由来の核酸は存在しないため、非病原性である。本発明のワクチンはヒトを含む動物のウイルス感染を、効果的に防ぐことができる。また、本発明のワクチンは、従来の鶏卵を用いた製造方法等に比較して、製造に必要な期間を著しく短縮することができる。そのため、インフルエンザ等のウイルス感染症の流行の際に、短期間でワクチンの調達をすることができ、人々を感染症から守り健康を維持させることに多大な貢献を果たすことができる。さらに、従来の鶏卵を用いるワクチンの製造においては、ワクチンに用いる種ウイルスを扱うため、P3施設等の高度安全施設を必要とすること、ワクチンの免疫原性が低いため大量のワクチンを製造する必要があること等の理由により莫大な製造コストが必要であるのに対し、本発明の製造方法によると製造コストを著しく低減することができる。 In the vaccine of the present invention, the virus-like particles of the present invention containing the virus-like particles of the present invention have high immunogenicity. Therefore, even if a commonly used adjuvant is not used, an unprecedented high immunogenicity is obtained. It is possible to show sex. Moreover, since a commonly used adjuvant is not used, side effects such as allergies and anaphylactic shock can be reduced. Further, as a matter of course, since the nucleic acid derived from the virus does not exist inside the hollow of the spherical outer shell of the virus-like particle of the present invention, it is non-pathogenic. The vaccine of the present invention can effectively prevent viral infections in animals including humans. In addition, the vaccine of the present invention can significantly shorten the period required for production as compared with the conventional production method using chicken eggs. Therefore, in the event of an epidemic of viral infections such as influenza, vaccines can be procured in a short period of time, and it is possible to make a great contribution to protecting people from infectious diseases and maintaining their health. Furthermore, in the production of a vaccine using conventional chicken eggs, it is necessary to have a highly safe facility such as a P3 facility in order to handle the seed virus used for the vaccine, and it is necessary to produce a large amount of vaccine because the immunogenicity of the vaccine is low. While a huge manufacturing cost is required for some reason such as the above, the manufacturing method of the present invention can significantly reduce the manufacturing cost.
 1つの実施態様において、本発明は、ウイルスの感染に対するワクチンを、動物に接種する方法であって、本発明に係るポリペプチドを含むか又は本発明に係る生産方法に従って生産されるワクチンの有効量を、前記動物に投与することを含む方法である。
 前記動物は、恒温動物であれば特に限定されず、非ヒト動物、例えば、トリ、ブタ、ウシ、イヌ、ネコなどであってもよい。
 1つの実施態様において、本発明は、ウイルスに対する免疫応答を、動物に誘導する方法であって、本発明に係るポリペプチドを含むか又は本発明に係る記載の生産方法により生産されるワクチンの有効量を、前記動物に投与することを含む方法である。
 別の態様において、本発明は、ワクチン組成物に関する。本ワクチン組成物は、前記ウイルス様粒子の他、追加成分、及び医薬的に許容される担体を含んでもよい。追加成分としては、アジュバント、及び抗インフルエンザウイルス剤等の抗インフルエンザウイルス作用を増強させる成分を挙げることができる。アジュバントとしては、水酸化アルミニウム、リン酸アルミニウム、サポニン、油中水エマルション、水中油エマルション、水中油中エマルション、アクリル又はメタクリル酸ポリマー、無水マレイン酸、アルケニル誘導体、カルボマー、ブロックコポリマーを挙げることができる。また、抗ウイルス剤としては、ザナミビル、オセルタミビル、ペラミビル、及びラニナミビル等のノイラミターゼ阻害剤、アマンタジン、リマンタジン、RNAポリメラーゼ阻害剤等を挙げることができる。本発明のワクチン組成物が含有する医薬的に許容される担体としては、医薬品として用いることが許可されている溶媒、分散剤、コーティング剤、安定剤(アルブミン、エチレンジアミン四酢酸アルカリ塩)、希釈剤(水、生理食塩水、デキストロース、エタノール、グリセロール等)、保存剤、賦形剤、抗菌剤、抗真菌剤、等張剤(塩化ナトリウム、デキストロース、マンニトール、ソルビトール、ラクトース等)、吸収遅延剤を含む。
In one embodiment, the invention is a method of inoculating an animal with a vaccine against viral infection, the effective amount of a vaccine comprising the polypeptide according to the invention or produced according to the production method according to the invention. Is a method comprising administering to the animal.
The animal is not particularly limited as long as it is a homeothermic animal, and may be a non-human animal such as a bird, a pig, a cow, a dog, or a cat.
In one embodiment, the invention is a method of inducing an immune response against a virus to an animal, the efficacy of a vaccine comprising the polypeptide according to the invention or produced by the production method according to the invention. A method comprising administering an amount to the animal.
In another aspect, the invention relates to a vaccine composition. In addition to the virus-like particles, the vaccine composition may contain additional components and a pharmaceutically acceptable carrier. Examples of the additional component include an adjuvant and a component that enhances the anti-influenza virus action such as an anti-influenza virus agent. Examples of the adjuvant include aluminum hydroxide, aluminum phosphate, saponin, water-in-oil emulsion, oil-in-water emulsion, emulsion in water-in-oil, acrylic or methacrylic acid polymer, maleic anhydride, alkenyl derivative, carbomer, and block copolymer. .. Examples of the antiviral agent include neuromitase inhibitors such as zanamivir, oseltamivir, peramivir, and laninamivir, amantadine, rimantadine, and RNA polymerase inhibitors. The pharmaceutically acceptable carriers contained in the vaccine composition of the present invention include solvents, dispersants, coating agents, stabilizers (albumin, ethylenediamine tetraacetate alkali salt), and diluents that are permitted to be used as pharmaceuticals. (Water, saline, dextrose, ethanol, glycerol, etc.), preservatives, excipients, antibacterial agents, antifungal agents, isotonic agents (sodium chloride, dextrose, mannitol, sorbitol, lactose, etc.), absorption retarders Including.
 例えば、本発明のワクチン組成物は、非経口投与又は経口に適する剤形とすることができる。非経口投与のための組成物としては、例えば、注射剤、点鼻剤などが挙げられ、注射剤には、静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤などの剤形が含まれる。このような注射剤は、公知の方法に従って、例えば、上記抗原タンパク質を通常注射剤に用いられる無菌の水性もしくは油性液に溶解、懸濁又は乳化することによって調製することができる。調製された注射液は、通常、適当なアンプル、バイアル、シリンジに充填される。また、非経口用医薬組成物は、活性成分の投与量に適合するような投薬単位の剤形に調製される。
 ワクチンの有効量は、ウイルスに対する十分な体液性免疫又は細胞性免疫を誘発するなどの生物学的効果を達成するのに十分な量をいう。また、投与方法は、吸入、鼻腔内、経口、非経口(例えば皮内、筋肉内、静脈内、腹腔内、及び皮下投与)の投与が含まれる。有効量及び投与方法は、投与されるヒトの年齢、性別、状態、体重に依存してよい。例えばインフルエンザワクチンの場合、一般には、1ml中に一株あたり15μg以上のHAタンパク質を含むワクチンを、6ヶ月以上3歳未満の者には0.25mlを皮下に、3歳以上13歳未満の者には0.5mlを皮下に、およそ2~4週間の間隔をおいて2回注射する。13歳以上の者については、0.5mlを皮下に、1回、又は、およそ1~4週間の間隔をおいて2回注射する。
For example, the vaccine composition of the present invention can be in a dosage form suitable for parenteral administration or oral administration. Examples of the composition for parenteral administration include injections, nasal drops and the like, and injections include intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, drip injections and the like. Includes the dosage form of. Such injections can be prepared according to known methods, for example, by dissolving, suspending or emulsifying the antigenic protein in a sterile aqueous or oily solution usually used for injections. The prepared injection solution is usually filled in a suitable ampoule, vial or syringe. In addition, the parenteral pharmaceutical composition is prepared in a dosage form of a dosage unit suitable for the dose of the active ingredient.
An effective amount of a vaccine is an amount sufficient to achieve a biological effect such as inducing sufficient humoral or cell-mediated immunity against the virus. In addition, administration methods include inhalation, intranasal, oral, parenteral (eg, intradermal, intramuscular, intravenous, intraperitoneal, and subcutaneous administration). The effective amount and method of administration may depend on the age, sex, condition and body weight of the person being administered. For example, in the case of influenza vaccine, in general, a vaccine containing 15 μg or more of HA protein per strain in 1 ml, 0.25 ml subcutaneously for those aged 6 months or more and less than 3 years old, and those aged 3 to 13 years old 0.5 ml is injected subcutaneously twice at intervals of approximately 2-4 weeks. For persons 13 years and older, 0.5 ml is injected subcutaneously once or twice at intervals of approximately 1 to 4 weeks.
<免疫モジュレーター分子を含有するウイルス様粒子の製造方法>
 本発明においては、Sf9細胞又はエリ蚕蛹によるタンパク質発現系を使用して、ウイルス様粒子を製造するのが好ましい。本発明のワクチンの製造方法の一態様としては、免疫モジュレーター分子をコードするDNA断片において、コードされる免疫モジュレーター分子のタンパク質のアミノ酸配列が、対応する哺乳動物のアミノ酸配列と比べて変異が起こらないように、前記DNA断片のコドンを改変して、発現用のコドン最適化DNA断片を得る工程、得られたコドン最適化DNA断片をベクターに挿入する工程、得られたベクターと、バキュロウイルス由来DNAとを、Sf9細胞にコトランスフェクションする工程、得られたSf9細胞から、コドン最適化DNA断片を含むバキュロウイルス組換体を得る工程、エリ蚕蛹を前記バキュロウイルス組換体に感染させて、エリ蚕蛹を飼育する工程、及び前記エリ蚕蛹から、免疫モジュレーター分子を単離する工程を含むことが好ましい。
<Method for producing virus-like particles containing immunomodulator molecules>
In the present invention, it is preferable to produce virus-like particles using a protein expression system using Sf9 cells or Eri silkworm. In one aspect of the method for producing a vaccine of the present invention, in a DNA fragment encoding an immunomodulator molecule, the amino acid sequence of the protein of the encoded immunomodulator molecule does not change as compared with the corresponding mammalian amino acid sequence. As described above, a step of modifying the codon of the DNA fragment to obtain a codon-optimized DNA fragment for expression, a step of inserting the obtained codon-optimized DNA fragment into a vector, the obtained vector, and a baculovirus-derived DNA. The step of co-transfecting Sf9 cells, the step of obtaining a baculovirus recombinant containing a codon-optimized DNA fragment from the obtained Sf9 cells, and infecting the eri silkworm with the baculovirus recombinant to produce the eri silkworm. It is preferable to include a step of breeding and a step of isolating the immunomodulator molecule from the Eri silkworm.
 本発明においてはカイコを用いたタンパク質発現量の向上を目的として、Nerome K, Sugita S, Kuroda K, Hirose T, Matsuda S, Majima K, et al. The large-scale production of an artificial influenza virus-like particle vaccine in silkworm pupae. Vaccine 2015;33:117-25に記載の方法と同様の手法を用いて、コドン最適化を行うことができる。
 例えば、マウスにおける、Genbank等に登録されているアミノ酸配列から、本発明において使用されるNAドメイン領域と、IL-12タンパク質と、NAドメイン領域とに対応するアミノ酸配列を得て、核酸設計の基とする。得られたアミノ酸配列を基に、ウイルス様粒子遺伝子配列を決定し、エリ蚕のコドン使用頻度の最適化を考慮し、当該ウイルス様粒子遺伝子配列を改変する。このような手順により、M2・N・IL12分子のエリ蚕の発現用のコドン最適化DNA断片を得る。
In the present invention, for the purpose of improving the protein expression level using silk moth, Nerome K, Sugita S, Kuroda K, Hirose T, Matsuda S, Majima K, et al. The large-scale production of an artificial influenza virus-like Codon optimization can be performed using a technique similar to that described in particle vaccine in silkworm pupae. Vaccine 2015; 33: 117-25.
For example, an amino acid sequence corresponding to the NA domain region, IL-12 protein, and NA domain region used in the present invention is obtained from an amino acid sequence registered in Genbank or the like in a mouse, and is a basis for nucleic acid design. And. Based on the obtained amino acid sequence, the virus-like particle gene sequence is determined, and the virus-like particle gene sequence is modified in consideration of optimizing the codon usage frequency of the silk moth. By such a procedure, a codon-optimized DNA fragment for expression of Eri silkworm of M2, N, IL12 molecule is obtained.
 その後、得られたコドン最適化DNA断片を、周知の任意の方法を利用して、バキュロウイルスにおいて適した公知のベクターに挿入し、得られたベクターと、線状化したバキュロウイルス由来DNAとを、Sf9細胞にコトランスフェクションする工程、得られたSf9細胞から、コドン最適化DNA断片を組換えたバキュロウイルス組換体を得る工程、エリ蚕蛹に前記バキュロウイルス組換体に感染させて、エリ蚕蛹を飼育する工程、及び前記エリ蚕蛹から、ウイルス様粒子を単離する工程を経て、ウイルス様粒子を得てもよい。 Then, the obtained codon-optimized DNA fragment is inserted into a known vector suitable for baculovirus by using any known method, and the obtained vector and the linearized baculovirus-derived DNA are obtained. , A step of co-transfecting Sf9 cells, a step of obtaining a baculovirus recombinant obtained by recombining a codon-optimized DNA fragment from the obtained Sf9 cells, infecting Eri silkworm with the baculovirus recombinant to produce Eri silkworm. Virus-like particles may be obtained through a step of breeding and a step of isolating virus-like particles from the Eri silkworm.
 本発明においては、上記と同様の方法によって得られる、(i)インフルエンザウイルスH5型に分類されるウイルス由来のヘマグルチニン(HA)タンパク質を含有するインフルエンザウイルス様粒子を発現するための最適化DNA断片、及び/又は(ii)インフルエンザウイルスH7型に分類されるウイルス由来のヘマグルチニン(HA)タンパク質を含有するインフルエンザウイルス様粒子を発現するための最適化DNA断片を作製し、同様の動作によりエリ蚕で上記(i)及び/又は上記(ii)を発現させてもよいし、これらの最適化DNA断片を、M2・N・IL12分子のエリ蚕の発現用のコドン最適化DNA断片と共に共発現させてもよい。 In the present invention, (i) an optimized DNA fragment for expressing influenza virus-like particles containing hemagglutinin (HA) protein derived from a virus classified into influenza virus H5 type, which is obtained by the same method as described above. And / or (ii) An optimized DNA fragment for expressing influenza virus-like particles containing a hemagglutinin (HA) protein derived from a virus classified into influenza virus H7 was prepared, and the same operation was performed to prepare the above-mentioned in Eri silkworm. (I) and / or (ii) above may be expressed, or these optimized DNA fragments may be co-expressed together with a codon-optimized DNA fragment for the expression of Eri silkworms of M2, N, IL12 molecules. Good.
 バキュロウイルス組換体のエリ蚕への導入(接種)時期は蚕蛹期であれば特に限定されないが、蚕蛹期のうちの早期であることが好ましく、具体的には、蛹になった当日(脱皮1日目)~4日目(脱皮5日目)が好ましく、翌日(脱皮2日目)~翌々日(脱皮3日目)がより好ましい。
 上記バキュロウイルス組換体をエリ蚕蛹に接種後、これらの蛹を所定の期間飼育するが、その際の温度条件は、20℃~30℃が好ましく、22℃~28℃がより好ましく、24℃~27℃がさらに好ましく、26℃が特に好ましい。上詑飼育の期間は、上記接種後から蛹が成虫(蛾)に変態する前までの時期であれば特に限定されないが、上記接種後2日間~6日間が好ましく、2日間~4日間がより好ましく、3日間がさらに好ましい。
 エリ蚕蛹からのウイルス様粒子の回収は、本技術分野における当業者に周知の任意の方法を用いることができる。例えば、エリ蚕蛹を等張緩衝溶液中にてホモゲナイズ後、固定化赤血球あるいはシアル酸カラム(フェツインカラム)を用いて回収することができる。また、ショ糖密度勾配遠心法等の分画方法を用いてウイルス様粒子の形状で含む分画を得ることもできる。
 次に、本発明を実施例により詳細に説明するが、これに限定されるものではない。
The time of introduction (inoculation) of the baculovirus recombinant into the silk moth is not particularly limited as long as it is in the silk moth stage, but it is preferably early in the silk moth stage, specifically, on the day of molting (molting 1). The day) to the 4th day (5th day of molting) is preferable, and the next day (2nd day of molting) to the day after next (3rd day of molting) is more preferable.
After inoculating the baculovirus recombinant into Eri silkworm pupae, these pupae are bred for a predetermined period, and the temperature conditions at that time are preferably 20 ° C. to 30 ° C., more preferably 22 ° C. to 28 ° C., and 24 ° C. to 24 ° C. 27 ° C. is more preferable, and 26 ° C. is particularly preferable. The period of pupal breeding is not particularly limited as long as it is the period from after the above inoculation to before the pupae metamorphose into adults (moths), but 2 to 6 days after the above inoculation is preferable, and 2 to 4 days is more preferable. It is preferable, and 3 days is more preferable.
Any method well known to those skilled in the art can be used for the recovery of virus-like particles from Eri silkworm. For example, Eri silkworm can be homogenized in an isotonic buffer solution and then recovered using immobilized erythrocytes or a sialic acid column (fetin column). It is also possible to obtain a fraction contained in the form of virus-like particles by using a fractionation method such as a sucrose density gradient centrifugation method.
Next, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
1.材料及び方法
1.1.細胞及びウイルス
 Sporodoptera fulgiperda(sporodoptera fulgiperda)の卵巣組織に由来するSf9細胞(Sigma-Aldrich、日本、東京)は、10%ウシ胎仔血清(FBS)を添加した、グレース昆虫培地(Thermo Fisher Scientic)中で培養した。メイディン-ダービーイヌ腎臓(MDCK)細胞は、10%FBSを含有する、イーグル最小必須培地(MEM)中で培養した。
 Autographa California核多角体病ウイルス(Ac NPV)にM2・N・IL12分子をコードするDNA配列を組み入れたAc NPV組換体(以下、Ac M2・N・IL12組換体とも呼ぶ)、Ac NPVにFkH5HAタンパク質をコードするDNA配列を組み入れたAc NPV組換体(以下、Ac FkH5組換体とも呼ぶ)、及びAc NPVにAnH7HAタンパク質をコードするDNA配列を組み入れたAc NPV組換体(以下、Ac AnH7組換体とも呼ぶ)を後述する方法で得た。
 インフルエンザウイルスのA/PR/8/34(H1N1)株(PR8H1)を培養し、PR8H1を、マウスにおける病原性(virulency)が回復させるためにマウスに感染させた。また、組換え(弱毒化)インフルエンザウイルスである、HKH5(RG-A/BarnSwallow/HongKong/1161/2010-A/PR/8/34〔R〕(6+2)(H5N1)、及びAnH7(RG-A/Anhui/1/2013-A/PR/8/34〔R〕(6+2)(H7N9)は、St Jude Children’s Research Hospital、Memphis、TN、USAのR.G.Webster博士に分譲してもらい、10日齢のニワトリ受精卵及びMDCK細胞において繁殖させた。
1. 1. Materials and methods 1.1. Cells and virus Sf9 cells (Sigma-Aldrich, Japan, Tokyo) derived from the ovarian tissue of Sporodoptera fulgiperda (Sporodoptera fulgiperda) were added with 10% fetal bovine serum (FBS) in Grace Insect Medium (Thermo Fisher). It was cultured. Maidin-Derby canine kidney (MDCK) cells were cultured in Eagle's Minimal Essential Medium (MEM) containing 10% FBS.
Ac NPV recombinant (hereinafter, also referred to as Ac M2 / N / IL12 recombinant) in which a DNA sequence encoding M2 / N / IL12 molecule is incorporated into Autographa California nuclear polymorphic disease virus (Ac NPV), FkH5HA protein in Ac NPV. Ac NPV recombinant (hereinafter, also referred to as Ac FkH5 recombinant) incorporating a DNA sequence encoding AnH7HA protein, and Ac NPV recombinant (hereinafter, also referred to as Ac AnH7 recombinant) incorporating a DNA sequence encoding AnH7HA protein in Ac NPV. ) Was obtained by the method described later.
A / PR / 8/34 (H1N1) strain (PR8H1) of influenza virus was cultured and PR8H1 was infected with mice in order to restore the virulence in the mice. In addition, HKH5 (RG-A / BarnSwallow / HongKong / 1161/2010-A / PR / 8/34 [R] (6 + 2) (H5N1), and AnH7 (RG-A), which are recombinant (attenuated) influenza viruses. / Anhui / 1/2013-A / PR / 8/34 [R] (6 + 2) (H7N9) will be sold to Dr. RG Webster of St Jude Chicken's Research Hospital, Memphis, TN, USA. It was propagated in 10-day-old fertilized chicken eggs and MDCK cells.
1.2.Ac NPV組換体の作出
 FkH5遺伝子及びAnH7遺伝子の合成は、日本ジーンウィズ株式会社(日本、埼玉)によりなされた。これらのHA遺伝子及びM2・N・IL12遺伝子を含有するAc NPV組換体の作出については、Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018;163(10):2787-2797. doi:10.1007/s00705-018-3941-4に記載されたとおりである。M2・N・IL12遺伝子も、同様に、日本ジーンウィズ株式会社により合成された。M2・N・IL12遺伝子は、グリシンリンカー(L1)、M2小型細胞外ドメイン(23アミノ酸)、M2膜貫通ドメイン(19アミノ酸)、M2細胞質ドメイン(54アミノ酸)、Flagリンカー(11アミノ酸)、NA細胞質ドメイン(6アミノ酸)、NA膜貫通ドメイン(31アミノ酸)、及びNAストーク(41アミノ酸)により、IL12の2つのサブユニット(p35及びp40)を組み合わせることにより構築した膜タンパク質をコードするように設計された。合成された遺伝子を、pFast Bac1(pFast Bact)多角体プロモーターの下流に挿入し、この結果及びプラスミドを使用して、DH10Bacへと導入した。その後、Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018;163(10):2787-2797. doi:10.1007/s00705-018-3941-4.に記載された通りに、Ac NPV組換体を精製し、Sf9細胞に導入するのに使用した。
 なお、本実施例で用いた各DNA配列及び各アミノ酸配列は、本明細書の最後にまとめた。
1.2. Creation of Ac NPV recombinant The synthesis of FkH5 gene and AnH7 gene was performed by Japan Genewith Co., Ltd. (Saitama, Japan). Regarding the production of Ac NPV recombinants containing these HA genes and M2 ・ N ・ IL12 genes, Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018; 163 (10): 2787-2797. .. Similarly, the M2, N, and IL12 genes were also synthesized by Japan Genewith Co., Ltd. The M2, N, and IL12 genes include glycine linker (L1), M2 small extracellular domain (23 amino acids), M2 transmembrane domain (19 amino acids), M2 cytoplasmic domain (54 amino acids), Flag linker (11 amino acids), and NA cytoplasm. Designed to encode a membrane protein constructed by combining two subsystems of IL12 (p35 and p40) with a domain (6 amino acids), an NA transmembrane domain (31 amino acids), and NA Stoke (41 amino acids). It was. The synthesized gene was inserted downstream of the pFast Bac1 (pFast Bact) polyhedrosis promoter, and the results and plasmid were used to introduce into DH10Bac. After that, Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol. 2018; 163 (10): 2787-2797. As described in doi: 10.1007 / s00705-018-3941-4., The Ac NPV recombinant was purified and used to introduce into Sf9 cells.
In addition, each DNA sequence and each amino acid sequence used in this Example are summarized at the end of this specification.
1.3.エリ蚕蛹におけるVLPワクチンの作製
 VLPワクチンを作製するために、エリ蚕の蛹を使用した。この手順に取り組むために、エリ蚕の蛹に、上述したAc NPV組換体を感染させた。蛹へのバキュロウイルスの接種及び各VLPワクチンの調製は、Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018;163(10):2787-2797. doi:10.1007/s00705-018-3941-4に記載された通りに実施した。
1.4.血球凝集試験及び血球凝集阻害(HI)試験
 血球凝集試験及びHI試験については、Nerome K, Sugita S, Kuroda K, Hirose T, Matsuda S, Majima K, et al. The large-scale production of an artificial influenza virus-like particle vaccine in silkworm pupae. Vaccine 2015;33:117-25.に記載された通り行った。
1.3. Preparation of VLP Vaccine in Eli silk moth The pupa of Eli silk moth was used to prepare the VLP vaccine. To address this procedure, tussah pupae were infected with the Ac NPV recombinant described above. Inoculation of baculovirus into pupae and preparation of each VLP vaccine are performed by Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U.Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018; 163 (10): 2787-2797. Doi: 10.1007 / s00705-018-3941-4.
1.4. Hemagglutination test and inhibition of blood cell aggregation (HI) For the hemagglutination test and HI test, see Nerome K, Sugita S, Kuroda K, Hirose T, Matsuda S, Majima K, et al. The large-scale production of an artificial influenza. virus-like particle vaccine in silkworm pupae. Vaccine 2015; 33: 117-25.
1.5.血球吸着試験
 上述したAc NPV組換体に感染したSf9細胞を、PBSにより、1回洗浄し、Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018;163(10):2787-2797. doi:10.1007/s00705-018-3941-4.に記載された通りに、0.5%ニワトリ赤血球を使用して、血球吸着試験を実施した。
1.5. Blood cell adsorption test Sf9 cells infected with the Ac NPV recombinant described above were washed once with PBS, and Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like. particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018; 163 (10): 2787-2797. A blood cell adsorption test was performed using 0.5% chicken erythrocytes.
1.6.蛍光抗体(FA)試験及び抗体
 Sf9細胞に、上述した各Ac NPV組換体を感染させ、10%FBSを添加した、グレース昆虫培地中、27℃で、1日間にわたり維持した。後続のFA試験は、Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018;163(10):2787-2797. doi:10.1007/s00705-018-3941-4.に記載された通りに行った。抗Flagマウスモノクローナル抗体M2及び抗DYKDDDDKタグマウスモノクローナル抗体は、それぞれ、Sigma Aldrich(St.Louis、MO、USA)及び富士フイルム和光純薬株式会社(日本、大阪)から購入した。HKH5ウイルス、PRHAウイルス、及びAnH7ウイルスに対する抗血清は、精製した各ウイルス(2,048~4,096のHA力価)を3回にわたって免疫したマウスにおいて調製した。
1.6. Fluorescent antibody (FA) test and antibody Sf9 cells were infected with each of the above Ac NPV recombinants and maintained at 27 ° C. for 1 day in Grace insect medium supplemented with 10% FBS. Subsequent FA trials included Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range. expansion. Arch Virol 2018; 163 (10): 2787-2797. Doi: 10.1007 / s00705-018-3941-4. The anti-Flag mouse monoclonal antibody M2 and the anti-DYKDDDDK tag mouse monoclonal antibody were purchased from Sigma Aldrich (St. Louis, MO, USA) and Fujifilm Wako Pure Chemical Industries, Ltd. (Osaka, Japan), respectively. Antisera against HKH5 virus, PRHA virus, and AnH7 virus were prepared in mice immunized with each purified virus (HA titer of 2,048-4,096) three times.
1.7.抗原投与用インフルエンザウイルスによる鼻腔内感染に対する防御効能
 5匹ずつのマウスを含む、一連のマウス群を、PBS中の、不活化させたPRH1、M2・N・IL12分子を含むVLP、FkH5タンパク質とM2・N・IL12分子とを含むVLP、AnH7タンパク質とM2・N・IL12分子とを含むVLP、又は、FkH5タンパク質とAnH7タンパク質とM2・N・IL12分子とを含むVLPを含むワクチンであって、4,000~16,800のHA力価を保有するワクチンにより、腹腔内を介して免疫化した。2週間後、同じ免疫化を、同じ腹腔内経路を介して繰り返した。6週間後、マウスにおいて、経鼻経路を介してチャレンジウイルスによる抗原投与でウイルス感染させて、上記の3つのワクチンにより免疫されたマウスの健康状態及び生存を、9日間にわたり、毎日観察した。
 実験の経過中に死亡したマウスは、肺の摘出及び全血の回収のために、剖検にかけられた。摘出した肺に於けるウイルス量は、摘出した全ての肺のホモジネートについて、プラーク法により測定した。抗原ウイルスによる感染では、病原性PRH1ウイルス及びFkH5ウイルスの非希釈のウイルス原液を使用した。
1.7. Protective effect against intranasal infection by influenza virus for antigen administration A series of mouse groups, including 5 mice each, were subjected to VLP, FkH5 protein and M2 containing inactivated PRH1, M2, N, IL12 molecules in PBS. A VLP containing N. IL12 molecule, a VLP containing AnH7 protein and M2.N. IL12 molecule, or a vaccine containing VLP containing FkH5 protein, AnH7 protein and M2.N. IL12 molecule, 4 Vaccines with HA titers of 000 to 16,800 were immunized via the abdomen. Two weeks later, the same immunization was repeated via the same intraperitoneal route. After 6 weeks, mice were infected with the virus by antigen administration with challenge virus via the nasal route, and the health status and survival of the mice immunized with the above three vaccines were observed daily for 9 days.
Mice that died during the course of the experiment were autopsied for lung removal and collection of whole blood. The viral load in the removed lung was measured by the plaque method for homogenates in all the removed lungs. For infection with antigen virus, undiluted virus stock solutions of pathogenic PRH1 virus and FkH5 virus were used.
2.結果
2.1.免疫モジュレーター分子の設計
 インフルエンザVLPワクチンの免疫応答をブーストするために、本発明者らは、IL-12分子と、A型インフルエンザウイルスの一連の構造タンパク質とを、カイコ由来のVLPワクチンへと組み入れようと試みた。この戦略に接近するために、本発明者らは、主に、サイトカインであるIL-12、ノイラミニダーゼの部分領域、及びインフルエンザウイルスのM2タンパク質を選択した。これらの6つのポリペプチドを、「材料及び方法」節で記載した通り(図1A~1C)、M2~IL-12分子の順序に従い、タンデムに連結した。最後に、Sf9細胞又はエリ蚕蛹宿主を用いたタンパク質発現によって、インフルエンザVLPの表面上に提示されるように(図1D)、上記の免疫モジュレーター分子(図1B)を配置した。
2. Result 2.1. Design of Immunomodulator Molecules To boost the immune response of influenza VLP vaccines, we will incorporate IL-12 molecules and a series of structural proteins of influenza A virus into silkworm-derived VLP vaccines. I tried. To approach this strategy, we primarily selected the cytokine IL-12, a partial region of neuraminidase, and the influenza virus M2 protein. These six polypeptides were tandemly linked according to the order of M2-IL-12 molecules as described in the "Materials and Methods" section (FIGS. 1A-1C). Finally, the immune modulator molecule (FIG. 1B) was placed as presented on the surface of influenza VLPs by protein expression using Sf9 cells or Eli silkworm hosts (FIG. 1D).
2.2.免疫モジュレーター分子及びVLP抗原をコードする組換えDNAの発現
 710アミノ酸の全ペプチドをコードする全DNA遺伝子(2,130ヌクレオチド)を合成し、pFast Bac1多角体(polyhedrosis)プロモーターの下流に挿入した。結果として得られるプラスミドを使用して、DH10Bacを形質転換した。最後に、Ac M2・N・IL12組換体を、Sf9及びエリ蚕蛹に感染させた(図2A)。Ac FkH5組換体及びAc AnH7組換体についても、Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U. Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018;163(10):2787-2797. doi:10.1007/s00705-018-3941-4.に記載したとおりの方法で作製した。各Ac NPV組換体は、Sf9細胞に、単独感染又は二重感染させた。図2Aに示される通り、約100,000の分子サイズが確認されたので、M2・N・IL12分子は、Sf9細胞内で発現することが支持された(矢印により指し示される)。なお、この分子量は、炭水化物鎖により影響されうる。図2B及び図2Cに示されるバンド(矢印により指し示される)は、それぞれ、FkH5タンパク質を含有するVLP、及び、AnH7タンパク質を含有するVLPが、Sf9細胞内において発現することを支持した。また、エリ蚕の蛹に、このAc M2・N・IL12組換体を、Ac FkH5組換体及びAc AnH7組換体と併せて、二重感染させた。また、Ac M2・N・IL12組換体を、Ac FkH5組換体又はAc AnH7組換体と混合し、エリ蚕蛹に感染させた。
2.2. Expression of recombinant DNA encoding immunomodulator molecule and VLP antigen A total DNA gene (2,130 nucleotides) encoding a total peptide of 710 amino acids was synthesized and inserted downstream of the pFast Bac1 polyhedrosis promoter. The resulting plasmid was used to transform DH10Bac. Finally, the Ac M2 / N / IL12 recombinant was infected with Sf9 and Eri silkworm (Fig. 2A). Maegawa K, Shibata T, Yamaguchi R, Hiroike K, Izzati U.Z, et al. Overexpression of a virus-like particke influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear Polyhedrosis virus and host-range expansion. Arch Virol 2018; 163 (10): 2787-2797. Doi: 10.1007 / s00705-018-3941-4. Each Ac NPV recombinant allowed Sf9 cells to be single-infected or double-infected. As shown in FIG. 2A, a molecular size of about 100,000 was confirmed, so that the M2, N, and IL12 molecules were supported to be expressed in Sf9 cells (pointed by arrows). It should be noted that this molecular weight can be influenced by the carbohydrate chain. The bands shown in FIGS. 2B and 2C (pointed by arrows) supported the expression of VLPs containing the FkH5 protein and VLPs containing the AnH7 protein, respectively, in Sf9 cells. In addition, the pupae of the silk moth were double-infected with this Ac M2 / N / IL12 recombinant in combination with the Ac FkH5 recombinant and the Ac AnH7 recombinant. In addition, the Ac M2 / N / IL12 recombinant was mixed with the Ac FkH5 recombinant or the Ac AnH7 recombinant to infect the Eri silkworm.
2.3.FA試験による、二重感染させた昆虫細胞についての解析
 本発明者らは、M2・N・IL12分子とFkH5タンパク質とを含むVLP、及び/又は、M2・N・IL12分子とAnH7タンパク質とを含むVLPを作製した場合、M2・N・IL12分子と会合させた、一価VLPワクチン及び二価VLPワクチンを合成できるのではないかと予測し、まず、Sf9細胞に、それらのAc NPV組換体を、二重感染させた。この結果を、図3のFA試験に示した。M2・N・IL12分子の発現は、IL12モノクローナル抗体で処理した図3A(赤色)において確認した。対照的に、Ac M2・N・IL12を感染させたSf9細胞は、抗マウスIL12抗体で標識された緑色として決定した(図3B)。これらに対し、赤色と緑色との間の、異なる中間色であって、M2・N・IL12と、FkH5 VLP抗原との共発現(図3C)、又はM2・N・IL12とAnH7 VLP抗原との共発現(図3D)を示す中間色を観察することが目的であった。図3E及び図3Fは、はるかに多様な中間色を際立たせたことから、M2・N・IL12分子とFkH5タンパク質とAnH7タンパク質とを含むVLP抗原の間の共発現が指し示された。
2.3. Analysis of double-infected insect cells by FA test We include VLPs containing M2 · N · IL12 molecules and FkH5 protein and / or M2 · N · IL12 molecules and AnH7 protein. When VLPs were prepared, it was predicted that monovalent VLP vaccines and divalent VLP vaccines associated with M2, N, and IL12 molecules could be synthesized. First, Sf9 cells were subjected to their Ac NPV recombinants. Double infected. This result is shown in the FA test of FIG. Expression of the M2, N, and IL12 molecules was confirmed in FIG. 3A (red) treated with the IL12 monoclonal antibody. In contrast, Sf9 cells infected with Ac M2 · N · IL12 were determined to be green labeled with anti-mouse IL12 antibody (FIG. 3B). On the other hand, they are different neutral colors between red and green, and co-expression of M2 ・ N ・ IL12 and FkH5 VLP antigen (Fig. 3C), or co-expression of M2 ・ N ・ IL12 and AnH7 VLP antigen. The purpose was to observe the neutral colors showing expression (FIG. 3D). Figures 3E and 3F highlighted a much more diverse neutral color, indicating co-expression between VLP antigens containing M2, N, IL12 molecules and FkH5 and AnH7 proteins.
2.4.二重感染細胞のヘマグルチニン吸着活性
 図3Aから図3Fに示す通り、本発明者らは、多数の細胞が、上記の3つの組換体の共発現が可能であることを確認することができた。次に、上記の3つのAc NPV組換体による共発現を、FkH5 VLP抗原又はAnH7 VLP抗原の、血球吸着試験により、感染細胞上の露出によって確認した。図4Aは、Ac M2・N・IL12組換体を感染させた細胞において、陰性の血球吸着(hemodsorption)を示したので、結果として、この発現したM2・N・IL12分子が、血球凝集分子を含有しないことが示された。これは、図4B及び4Cにおいて観察される、典型的な血球吸着プロファイルと、著しく対照的であった。細胞に、Ac M2・N・IL12組換体とAc FkH5組換体又はAc AnH7組換体とを感染させた場合、VLP抗原の感染細胞の表面上の、露出状態としての存在が示された。
2.4. Hemagglutinin adsorption activity of double-infected cells As shown in FIGS. 3A to 3F, the present inventors were able to confirm that a large number of cells were capable of co-expression of the above three recombinants. Next, co-expression by the above three Ac NPV recombinants was confirmed by exposure on infected cells by a blood cell adsorption test of FkH5 VLP antigen or AnH7 VLP antigen. FIG. 4A showed negative hemodsorption in cells infected with the Ac M2 ・ N ・ IL12 recombinant, and as a result, the expressed M2 ・ N ・ IL12 molecules contained hemagglutination molecules. It was shown not to. This was in sharp contrast to the typical blood cell adsorption profile observed in FIGS. 4B and 4C. When cells were infected with the Ac M2 / N / IL12 recombinant and the Ac FkH5 or Ac AnH7 recombinant, the presence of the VLP antigen on the surface of the infected cells was shown as an exposed state.
2.5.マウスにおける、3つの異なるVLPワクチンの防御効能
 M2・N・IL12分子(図5中、「M2・IL12」と略記される)は、A型インフルエンザウイルスの、可能な免疫防御的M2タンパク質であって、A型インフルエンザウイルスの間で、極めて高度な相同性を示すM2タンパク質を含有するので、免疫モジュレーター分子を含有するウイルス様粒子を含むワクチンの防御活性をマウスにおいて検討した。当該ワクチンは、PRbH1ウイルス及びHKH5ウイルスの感染に対する、80%及び60%の生存を示したことから、上記の2つのウイルスにおける防御が示された(図5A)。H7ウイルスは、マウスにおいて、病原性を示さなかったので、この実験からは、有効な死亡率及び生存率のデータを得ることができなかった。これに対し、注目すべきことに、免疫モジュレーター分子とFkH5タンパク質とを含むウイルス様粒子又は免疫モジュレーター分子とAnH7タンパク質とを含むウイルス様粒子を含むワクチンは、高病原性PR8H1ウイルスの感染に対して、90~100%と極めて高く防御することが明らかにされた(図5B)。これに対し、免疫モジュレーター分子のみを含むウイルス様粒子によるマウスの免疫化は20%の死亡率を示したことから、弱いながらも防御することが示唆された(図5B)。
2.5. The protective efficacy of three different VLP vaccines in mice M2, N, IL12 molecules (abbreviated as "M2, IL12" in FIG. 5) are possible immunodefensive M2 proteins of influenza A virus. Since it contains an M2 protein showing a very high degree of homology between influenza A viruses, the protective activity of a vaccine containing virus-like particles containing an immune modulator molecule was examined in mice. The vaccine showed 80% and 60% survival against infection with PRbH1 and HKH5 viruses, indicating protection against the above two viruses (FIG. 5A). Since the H7 virus did not show pathogenicity in mice, no effective mortality and survival data could be obtained from this experiment. On the other hand, it should be noted that a vaccine containing a virus-like particle containing an immunomodulator molecule and an FkH5 protein or a virus-like particle containing an immunomodulator molecule and an H7 protein is effective against infection with a highly pathogenic PR8H1 virus. , 90-100%, which is extremely high protection (Fig. 5B). In contrast, immunization of mice with virus-like particles containing only immunomodulator molecules showed a 20% mortality rate, suggesting a weak but protective protection (Fig. 5B).
 また、マウスにおける、3つの異なるVLPワクチンの防御効能に関し、追試を行った。上記1.7に記載したのと同様に、PBS(コントロール)、不活化させたPR8H1、M2・N・IL12分子を含むVLP、FkH5タンパク質とM2・N・IL12分子とを含むVLP、又は、AnH7タンパク質とM2・N・IL12分子とを含むVLPを含むワクチンで免疫化したマウスに対し、チャレンジウイルス(HkH5、AnH7、およびPR8H1)感染後、毎日のマウスの健康状態及び体重の変化(%)を調べた。図6Aの矢印で示すように、PBSコントロール処理の後にPR8ウイルス感染させたマウスでは感染後6日で体重が減少した。対照的に、HkH5およびAnH7ウイルス感染させたマウス群の体重の顕著な変化は確認されなかった(図6A)。また、HkH5およびAnH7ウイルスに感染したFkH5タンパク質とM2・N・IL12分子とを含むVLPを含むワクチン接種マウス群における同様の体重減少は確認されなかった(図6B)。対照的に、FkH5タンパク質とM2・N・IL12分子とを含むVLPを含むワクチンマウス群は、予想外に体重の減少を示した(図6Bの矢印参照)。但し、この結果は、免疫されていない対照マウスの結果(図6Aの矢印参照)と一致せず、高病原性鳥インフルエンザウイルスを使用した結果のさらなる分析が必要であることが示唆された。
 また、PBS(コントロール)で処理した対照マウスは、HkH5ウイルスとPR8H1ウイルスに対してそれぞれ60%と20%の生存率を示したが、AnH7ウイルスに対しては100%の生存率を示した(図6C)。また、PR8H1、HkH5、およびAnH7チャレンジウイルスに対する単味不活化ワクチン(PR8ワクチン)の防御活性は、それぞれ100%、60%、および100%であった(図6D)。
 これに対し、M2・N・IL12分子を含むVLPで免疫化したマウス(図6E)、FkH5タンパク質とM2・N・IL12分子とを含むVLPで免疫化したマウス(図6F)、及び、AnH7タンパク質とM2・N・IL12分子とを含むVLPで免疫化したマウス(図6G)は、いずれも、図6Cや図6Dと比較して生存率が向上することが示された。
 なお、各実験グループは10匹のマウスで構成した。
In addition, a follow-up study was conducted on the protective efficacy of three different VLP vaccines in mice. PBS (control), inactivated PR8H1, VLP containing M2 ・ N ・ IL12 molecule, VLP containing FkH5 protein and M2 ・ N ・ IL12 molecule, or AnH7 as described in 1.7 above. Daily changes in mouse health and body weight (%) after infection with the challenge virus (HkH5, AnH7, and PR8H1) in mice immunized with a vaccine containing VLPs containing proteins and M2, N, IL12 molecules. Examined. As shown by the arrows in FIG. 6A, mice infected with PR8 virus after PBS control treatment lost body weight 6 days after infection. In contrast, no significant changes in body weight were observed in the HkH5 and AnH7 virus-infected mice (Fig. 6A). In addition, similar weight loss was not confirmed in the vaccinated mouse group containing VLPs containing FkH5 protein infected with HkH5 and AnH7 viruses and M2, N, IL12 molecules (Fig. 6B). In contrast, a group of vaccine mice containing VLPs containing FkH5 protein and M2, N, IL12 molecules showed unexpected weight loss (see arrow in FIG. 6B). However, this result was inconsistent with that of non-immune control mice (see arrow in FIG. 6A), suggesting that further analysis of the results using the highly pathogenic avian influenza virus is needed.
In addition, control mice treated with PBS (control) showed 60% and 20% survival rates for HkH5 virus and PR8H1 virus, respectively, but 100% survival rates for AnH7 virus (). FIG. 6C). In addition, the protective activity of the simple inactivated vaccine (PR8 vaccine) against the PR8H1, HkH5, and AnH7 challenge viruses was 100%, 60%, and 100%, respectively (Fig. 6D).
In contrast, mice immunized with VLP containing M2 ・ N ・ IL12 molecule (Fig. 6E), mice immunized with VLP containing FkH5 protein and M2 ・ N ・ IL12 molecule (Fig. 6F), and AnH7 protein. All mice immunized with VLP containing M2, N, and IL12 molecules (FIG. 6G) were shown to have improved survival rates as compared to FIGS. 6C and 6D.
Each experimental group consisted of 10 mice.
2.6.免疫化及び後続のチャレンジ抗原投与感染において使用されたマウスにおける、HI抗体力価と防御効果の確認
 表1に示す通り、免疫モジュレーター分子(M2・N・IL12分子)を含むウイルス様粒子だけで免疫化され、その後、HKH5、AnH7、及びPRbH1の抗原投与用ウイルスを感染させたマウスは、抗原投与ウイルスだけに対するHI力価を示した。興味深いことに、AnH7ウイルス及びPR8H1ウイルスに対する、より高いHI抗体力価が、1週間にわたる抗原投与による感染期間中に示されたことから、免疫モジュレーター分子のアジュバント効果が示唆された。表1に見られる通り、免疫モジュレーター分子(M2・N・IL12分子)とFkH5タンパク質とを含有するウイルス様粒子、及び、免疫モジュレーター分子(M2・N・IL12分子)とAnH7タンパク質とを含有するウイルス様粒子によるワクチン免疫化、ならびにその後における相同なHKH5株又はAnH7株の抗原投与による感染が、相同な抗体に対する、低レベルのHI抗体力価をもたらしたことから、64~1024のHI力価が示された。これに対し、VLPワクチンによる免疫化、ならびに後続のホモウイルス感染及びヘテロウイルス感染において使用されたマウスにおけるHI免疫応答は、免疫モジュレーター分子(M2・N・IL12分子)を含むウイルス様粒子による免疫化の後における、単一のウイルス抗原を伴う、単独感染による免疫化における免疫応答と、ほぼ同等であった。例えば、抗原投与用ウイルスに対するHI抗体力価が、第1のワクチン免疫化から得られたHI抗体力価より、比較的高度であったことから、アジュバント効果が示唆された。
2.6. Confirmation of HI antibody titer and protective effect in mice used for immunization and subsequent challenge antigen-administered infection As shown in Table 1, immunization with only virus-like particles containing immunomodulator molecules (M2, N, IL12 molecules) Mice that were subsequently infected with the antigen-administering viruses of HKH5, AnH7, and PRbH1 exhibited HI titers for the antigen-administered virus only. Interestingly, higher HI antibody titers against AnH7 and PR8H1 viruses were shown during the infection period with antigen administration over a week, suggesting an adjuvant effect of the immune modulator molecule. As can be seen in Table 1, virus-like particles containing an immunomodulator molecule (M2, N, IL12 molecule) and FkH5 protein, and a virus containing an immunomodulator molecule (M2, N, IL12 molecule) and AnH7 protein. Vaccine immunization with virus-like particles, followed by infection by antigen administration of homologous HKH5 or AnH7 strains, resulted in low levels of HI antibody titers against homologous antibodies, resulting in a HI titer of 64-1024. Shown. In contrast, immunization with the VLP vaccine, as well as the HI immune response in mice used in subsequent homoviral and heteroviral infections, was immunized with virus-like particles containing immunomodulator molecules (M2, N, IL12). Later, it was about the same as the immune response in immunization by single infection with a single viral antigen. For example, the HI antibody titer against the virus for antigen administration was relatively higher than the HI antibody titer obtained from the first vaccine immunization, suggesting an adjuvant effect.
 また、表1に示すように、二価のH5およびH7 VLPワクチンは、マウスのPR8H1(H1サブタイプ)、HKH5(H5サブタイプ)およびAnH7(H7サブタイプ)を阻害した。また、M2・N・IL12分子とH5タンパク質およびH7タンパク質を含有するVLPワクチンの共投与によって、HAサブタイプに属するまったく異なるPR8H1からも動物を防御できることを支持し、相互の感染から防御できた。 Also, as shown in Table 1, the divalent H5 and H7 VLP vaccines inhibited mouse PR8H1 (H1 subtype), HKH5 (H5 subtype) and AnH7 (H7 subtype). We also supported that co-administration of VLP vaccines containing M2, N, IL12 molecules with H5 and H7 proteins could protect animals from completely different PR8H1 belonging to the HA subtype, and protected them from mutual infection.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、防御活性の欄に於けるカッコ内の数字は、チャレンジウイルス感染による死亡率(%)を表し、分子(左)は当該ワクチンで免疫し、当該ウイルスを感染させた時のマウス死亡率を示している。また、分母(右)は、陰性対照のPBSで免疫し、当該ウイルスを感染させた時のマウス死亡率を示している。 In Table 1, the numbers in parentheses in the column of protective activity represent the mortality rate (%) due to challenge virus infection, and the molecule (left) is immunized with the vaccine and killed mice when infected with the virus. It shows the rate. The denominator (right) shows the mouse mortality rate when immunized with a negative control PBS and infected with the virus.
 上記2.6に関し、マウスに対し同様の実験を再度行った。結果を表2に示す。表2に結果からも、本発明に係るワクチンが、様々な抗原に対する防御性能を有することが分かった。 Regarding 2.6 above, the same experiment was performed again on mice. The results are shown in Table 2. From the results shown in Table 2, it was found that the vaccine according to the present invention has a protective ability against various antigens.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2.7.相互作用的な3つの異なるVLPワクチンの、交差防御効能
 免疫モジュレーター分子(M2・N・IL12分子)とFkH5タンパク質とを含むウイルス様粒子を含むワクチン、免疫モジュレーター分子(M2・N・IL12分子)とAnH7ワクチンタンパク質とを含むウイルス様粒子を含むワクチン、及び、免疫モジュレーター分子(M2・N・IL12分子)を含むワクチンの防御効能を、顕著に異なるHA亜型H1及びH5又はH7のヘマグルチニンの間における、それらによる完全な防御への相互作用について査定した。図5Cに示す通り、免疫モジュレーター分子(M2・N・IL12分子)単独を含むワクチンによる免疫は、FkH5感染に対して防御しなかったが、免疫モジュレーター分子(M2・N・IL12分子)とFkH5タンパク質とを含むウイルス様粒子を含むワクチン、及び、免疫モジュレーター分子(M2・N・IL12分子)とAnH7タンパク質とを含むウイルス様粒子を含むワクチンは、互いに対して、完全に防御した。既に記載した通り、AnH7ウイルスの病原性は、極めて低度であるので、この系は、ワクチン効能の比較を可能としないが、ともあれ、全ての被験マウスは、100%の生存を示した(図5B)。これに対し、ワクチンの陰性対照としてPBSを接種されたマウスの生存率が、20%を示すときに、M2・N・IL12+HKH5 VLPワクチンで免疫され、その後、PR8H1ウイルスの顕著に異なる亜型を感染させたマウスの生存率は90%であることが分かったことは興味深いものであった(図5B)。当然ながら、同じワクチンは、AnH7ウイルス及びHKH5ウイルスのそれぞれに対して、100%の防御活性を示した。
2.7. Cross-defense efficacy of three different interactive VLP vaccines Vaccine containing virus-like particles containing immunomodulator molecule (M2 ・ N ・ IL12 molecule) and FkH5 protein, immunomodulator molecule (M2 ・ N ・ IL12 molecule) The protective efficacy of vaccines containing virus-like particles containing AnH7 vaccine protein and vaccines containing immunomodulator molecules (M2, N, IL12 molecules) is significantly different between HA subtypes H1 and H5 or H7 hemagglutinin. , Assessed their interaction with full defense. As shown in FIG. 5C, immunization with a vaccine containing an immunomodulator molecule (M2, N, IL12 molecule) alone did not protect against FkH5 infection, but an immunomodulator molecule (M2, N, IL12 molecule) and an FkH5 protein. Vaccines containing virus-like particles containing and and vaccines containing virus-like particles containing immunomodulator molecules (M2, N, IL12 molecules) and AnH7 protein completely defended against each other. As already mentioned, the pathogenicity of the AnH7 virus is so low that this system does not allow comparison of vaccine efficacy, but in any case, all test mice showed 100% survival (Figure). 5B). In contrast, mice vaccinated with PBS as a negative control of the vaccine were immunized with the M2 ・ N ・ IL12 + HKH5 VLP vaccine when the survival rate was 20%, followed by a significantly different subtype of PR8H1 virus. It was interesting to find that the survival rate of the mice fed was 90% (Fig. 5B). Not surprisingly, the same vaccine showed 100% protective activity against each of the AnH7 and HKH5 viruses.
 下記の表3は、様々なワクチンでの免疫化及びチャレンジウイルス感染を受けたマウスで評価された本発明に係るVLPワクチンの交差防御活性を要約したものである。表3中、+または-の後の数字は、チャレンジウイルス感染を受けたマウスで観察された防御活性の%を表す。 Table 3 below summarizes the cross-protective activity of the VLP vaccine according to the invention evaluated in mice immunized with various vaccines and infected with the challenge virus. In Table 3, the number after + or-represents the percentage of protective activity observed in mice infected with the challenge virus.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果をまとめると、下記のとおりである。
 免疫支持分子の構造として、本発明者らは、各構造遺伝子の分子デザインに基づき、免疫反応モジュレーターであるIL-12、A型インフルエンザウイルスのノイラミニダーゼタンパク質のM2ペプチド及びストークペプチドを構築することに成功した。上記の戦略への接近法として、2,130ヌクレオチドの長さである、上記の全タンパク質をコードするDNAを、Auto grapha California核多角体病ウイルス(Ac NPV)による、組換えDNA(M2・N・IL12)の調製にかけた。本研究では、本発明者らまた、Ac NPVベクター内で作出された、2つの組換えDNAであって、異なるインフルエンザウイルス様粒子(VLP)ワクチンのための、Fukushima H5(FkH5)及びAnhui H7(AnH7)を含む組換えDNAも調製した。それらの発現は、Sf9細胞内の単独感染又は二重感染において確認した。ウェスタンブロット解析が、それらの発現を指し示したことから、それらの適切な分子サイズが示される。同様に、また、エリ蚕蛹における、それらの大スケールの作製も、血球凝集(HA)、血球凝集阻害(HI)、及びウェスタンブロット解析により検討することができた。M2・N・IL12、FkH5、及びAnH7による組換えウイルスの二重感染は、同じ感染Sf9細胞内の、上記の3つの抗原の共発現を結果としてもたらした。エリ蚕の蛹の中で増殖させた、それらのVLP抗原を、マウスにおける免疫実験にかけ、この免疫学的試験を、免疫後におけるHI反応(3つの抗原投与用ウイルスを使用する、マウスにおける、後続の抗原投与による感染及び防御効能)へと分けた。正常な結果として、免疫及び後続の抗原感染の後で、マウスにおいて産生されたHI抗体は、各亜型特異的なHA抗原と反応することが明らかであった。亜型特異的HI反応にもかかわらず、M2・N・IL12と会合させたFkH5又はANH7に対するインフルエンザVLPワクチンによる免疫は、A型インフルエンザウイルスのHA亜型にわたる防御効能を示したことから、この種類のワクチンは、抗原ドリフトにより引き起こされる失効を克服しうることが示唆される。この結果は、免疫分子のさらなる導入を介して、将来のユニバーサルワクチンを垣間見るための一段階となりうる。
 インフルエンザウイルスにおける広範な防御活性の役割を確認した後、キメラサイトカイン(免疫モジュレーター分子)システムは、広範なウイルスファミリーを含む他の伝染性ウイルスの分野で役立つ可能性がある。実際に、本発明者らは、麻疹、おたふく風邪及び風疹ウイルスのワクチンである三種混合VLPワクチン、並びに、ZIKA、狂犬病VLPワクチンもカイコで既に開発しており、これらのワクチンもキメラサイトカインとしての開発を進めている。
The above results can be summarized as follows.
As the structure of the immune support molecule, the present inventors succeeded in constructing the M2 peptide and the stalk peptide of the neuraminidase protein of IL-12, which is an immune reaction modulator, and the neuraminidase protein of influenza A virus, based on the molecular design of each structural gene. did. As an approach to the above strategy, the DNA encoding all the above proteins, which is 2,130 nucleotides in length, is recombinant DNA (M2 · N) by the Autographa California nuclear polyhedrosis virus (Ac NPV). -The preparation of IL12) was carried out. In this study, we also found two recombinant DNAs in the Ac NPV vector, Fukushima H5 (FkH5) and Anhui H7 (FkH5) for different influenza virus-like particle (VLP) vaccines. Recombinant DNA containing AnH7) was also prepared. Their expression was confirmed in single or double infection in Sf9 cells. Western blot analysis pointed to their expression, indicating their appropriate molecular size. Similarly, their large-scale production in Eli silkworms could also be investigated by hemagglutination (HA), hemagglutination inhibition (HI), and Western blot analysis. Double infection of the recombinant virus with M2, N, IL12, FkH5, and AnH7 resulted in co-expression of the above three antigens within the same infected Sf9 cells. These VLP antigens grown in Eli silkworm frogs were subjected to immunological experiments in mice, and this immunological test was performed after immunization with a post-immunization HI response (using three antigen-administering viruses, in mice). Infection and protective efficacy by antigen administration). As a normal result, it was clear that the HI antibody produced in mice after immunization and subsequent antigen infection reacts with each subtype-specific HA antigen. Despite the subtype-specific HI response, immunization with the influenza VLP vaccine against FkH5 or ANH7 associated with M2, N, and IL12 showed protective efficacy across the HA subtype of influenza A virus. It is suggested that this vaccine can overcome the ineffectiveness caused by antigen drift. This result could be a step towards a glimpse of future universal vaccines through the further introduction of immune molecules.
After confirming the role of broad protective activity in influenza virus, the chimeric cytokine (immune modulator molecule) system may be useful in the field of other infectious viruses, including the broad viral family. In fact, the present inventors have already developed the DPT vaccine, which is a vaccine for measles, mumps and rubella virus, and the ZIKA and mad dog disease VLP vaccines in Kaiko, and these vaccines have also been developed as chimeric cytokines. We are promoting.
 以下に、実施例において、用いた配列についての情報を記載する。
(1)FkH5遺伝子の配列
Influenza A virus (A/tufted duck/Fukushima/16/2011(H5N1)) viral cRNA, segment 4, complete sequence
ACCESSION AB629698
Information about the sequences used in the examples is described below.
(1) Sequence of FkH5 gene
Influenza A virus (A / tufted duck / Fukushima / 16/2011 (H5N1)) viral cRNA, segment 4, complete sequence
ACCESSION AB629698
(2)発現用に最適化したFkH5遺伝子のDNA配列(配列番号1)
ATGGAAAAAATCGTGCTGCTGTTCACAACAATCGGTCTGGTGAAATCAGACCACATCTGCATCGGTTACCACGCTAACAACTCAACAGAACAAGTGGACACAATCATGGAAAAAAACGTGACAGTGACACACGCTCAAGACATCCTGGAAAAAACACACAACGGTAAACTGTGCGACCTGAACGGTGTGAAACCTCTGATCCTGAAAGACTGCTCAGTGGCTGGTTGGCTGCTGGGTAACCCTCTGTGCGACGAATTCATCAACGTGCCTGAATGGTCATACATCGTGGAAAAAGCTAACCCTGCTAACGACCTGTGCTACCCTGGTAACTTCAACGACTACGAAGAACTGAAACACCTGCTGTCAAGAATCAACCACTTCGAAAAAATCCAAATCATCCCTAAAGACTCATGGTCAGACCACGAAGCTTCACTGGGTGTGTCAGCTGCTTGCTCATACCAAGGTAACTCATCATTCTTCAGAAACGTGGTGTGGCTGATCAAAAAAGACAACGCTTACCCTACAATCAAAAAAGGTTACAACAACACAAACCAAGAAGACCTGCTGGTGCTGTGGGGTATCCACCACCCTAACGACGAAGCTGAACAAACAAGACTGTACCAAAACCCTACAACATACATCTCAATCGGTACATCAACACTGAACCAAAGACTGGTGCCTAAAATCGCTACAAGATCAAAAATCAACGGTCAAAGAGGTAGAATCGACTTCTTCTGGACAATCCTGAAACCTAACGACGCTATCCACTTCGAATCAAACGGTAACTTCATCGCTCCTGAATACGCTTACAAAATCGTGAAAAAAGGTGACTCAACAATCATGAAATCAGAAGTGGAATACGGTAACTGCAACACAAGATGCCAAACACCTATCGGTGCTATCAACTCATCAATGCCTTTCCACAACATCCACCCTCTGACAATCGGTGAATGCCCTAAATACGTGAAATCAAACAAACTGGTGCTGGCTACAGGTCTGAGAAACTCACCTCAAAGAGAAACAAGAGGTCTGTTCGGTGCTATCGCTGGTTTCATCGAAGGTGGTTGGCAAGGTATGGTGGACGGTTGGTACGGTTACCACCACTCAAACGAACAAGGTTCAGGTTACGCTGCTGACAAAGAATCAACACAAAAAGCTATCGACGGTGTGACAAACAAAGTGAACTCAATCATCGACAAAATGAACACACAATTCGAAGCTGTGGGTAGAGAATTCAACAACCTGGAAAGAAGAATCGAAAACCTGAACAAAAAAATGGAAGACGGTTTCCTGGACGTGTGGACATACAACGCTGAACTGCTGGTGCTGATGGAAAACGAAAGAACACTGGACTTCCACGACTCAAACGTGAAAAACCTGTACGACAAAGTGAGACTGCAACTGAAAGACAACGCTAAAGAACTGGGTAACGGTTGCTTCGAATTCTACCACAAATGCAACAACGAATGCATGGAATCAGTGAGAAACGGTACATACGACTACCCTCAATACTCAGAAGAAGCTAGACTGAAAAGAGAAGAAATCTCAGGTGTGAAACTGGAATCAATCGGTATCTACCAAATCCTGTCAATCTACTCAACAGTGGCTTCATCACTGGTGCTGGCTATCATGATGGCTGGTCTGTCACTGTGGATGTGCTCAAACGGTTCACTGCAATGCAGAATCTGCATCGACTACAAAGACGACGACGACAAATAA
(2) DNA sequence of FkH5 gene optimized for expression (SEQ ID NO: 1)
ATGGAAAAAATCGTGCTGCTGTTCACAACAATCGGTCTGGTGAAATCAGACCACATCTGCATCGGTTACCACGCTAACAACTCAACAGAACAAGTGGACACAATCATGGAAAAAAACGTGACAGTGACACACGCTCAAGACATCCTGGAAAAAACACACAACGGTAAACTGTGCGACCTGAACGGTGTGAAACCTCTGATCCTGAAAGACTGCTCAGTGGCTGGTTGGCTGCTGGGTAACCCTCTGTGCGACGAATTCATCAACGTGCCTGAATGGTCATACATCGTGGAAAAAGCTAACCCTGCTAACGACCTGTGCTACCCTGGTAACTTCAACGACTACGAAGAACTGAAACACCTGCTGTCAAGAATCAACCACTTCGAAAAAATCCAAATCATCCCTAAAGACTCATGGTCAGACCACGAAGCTTCACTGGGTGTGTCAGCTGCTTGCTCATACCAAGGTAACTCATCATTCTTCAGAAACGTGGTGTGGCTGATCAAAAAAGACAACGCTTACCCTACAATCAAAAAAGGTTACAACAACACAAACCAAGAAGACCTGCTGGTGCTGTGGGGTATCCACCACCCTAACGACGAAGCTGAACAAACAAGACTGTACCAAAACCCTACAACATACATCTCAATCGGTACATCAACACTGAACCAAAGACTGGTGCCTAAAATCGCTACAAGATCAAAAATCAACGGTCAAAGAGGTAGAATCGACTTCTTCTGGACAATCCTGAAACCTAACGACGCTATCCACTTCGAATCAAACGGTAACTTCATCGCTCCTGAATACGCTTACAAAATCGTGAAAAAAGGTGACTCAACAATCATGAAATCAGAAGTGGAATACGGTAACTGCAACACAAGATGCCAAACACCTATCGGTGCTATCAACTCATCAATGCCTTTCCACAACATCCACCCTCTGACAATCGGTGAATGCCCTAAATACGTGAAATCAAACAAACTGGTGCTGGCTACAGGTCTGA GAAACTCACCTCAAAGAGAAACAAGAGGTCTGTTCGGTGCTATCGCTGGTTTCATCGAAGGTGGTTGGCAAGGTATGGTGGACGGTTGGTACGGTTACCACCACTCAAACGAACAAGGTTCAGGTTACGCTGCTGACAAAGAATCAACACAAAAAGCTATCGACGGTGTGACAAACAAAGTGAACTCAATCATCGACAAAATGAACACACAATTCGAAGCTGTGGGTAGAGAATTCAACAACCTGGAAAGAAGAATCGAAAACCTGAACAAAAAAATGGAAGACGGTTTCCTGGACGTGTGGACATACAACGCTGAACTGCTGGTGCTGATGGAAAACGAAAGAACACTGGACTTCCACGACTCAAACGTGAAAAACCTGTACGACAAAGTGAGACTGCAACTGAAAGACAACGCTAAAGAACTGGGTAACGGTTGCTTCGAATTCTACCACAAATGCAACAACGAATGCATGGAATCAGTGAGAAACGGTACATACGACTACCCTCAATACTCAGAAGAAGCTAGACTGAAAAGAGAAGAAATCTCAGGTGTGAAACTGGAATCAATCGGTATCTACCAAATCCTGTCAATCTACTCAACAGTGGCTTCATCACTGGTGCTGGCTATCATGATGGCTGGTCTGTCACTGTGGATGTGCTCAAACGGTTCACTGCAATGCAGAATCTGCATCGACTACAAAGACGACGACGACAAATAA
(3)AnH7遺伝子のDNA配列(配列番号2)
(GISAID’s EpiFluTM Database:SegmentID: EPI439507)
ATGAACACTCAAATCCTGGTATTCGCTCTGATTGCGATCATTCCAACAAATGCAGACAAAATCTGCCTCGGACATCATGCCGTGTCAAACGGAACCAAAGTAAACACATTAACTGAAAGAGGAGTGGAAGTCGTCAATGCAACTGAAACAGTGGAACGAACAAACATCCCCAGGATCTGCTCAAAAGGGAAAAGGACAGTTGACCTCGGTCAATGTGGACTCCTGGGGACAATCACTGGACCACCTCAATGTGACCAATTCCTAGAATTTTCAGCCGATTTAATTATTGAGAGGCGAGAAGGAAGTGATGTCTGTTATCCTGGGAAATTCGTGAATGAAGAAGCTCTGAGGCAAATTCTCAGAGAATCAGGCGGAATTGACAAGGAAGCAATGGGATTCACATACAGTGGAATAAGAACTAATGGAGCAACCAGTGCATGTAGGAGATCAGGATCTTCATTCTATGCAGAAATGAAATGGCTCCTGTCAAACACAGATAATGCTGCATTCCCGCAGATGACTAAGTCATATAAAAATACAAGAAAAAGCCCAGCTCTAATAGTATGGGGGATCCATCATTCCGTATCAACTGCAGAGCAAACCAAGCTATATGGGAGTGGAAACAAACTGGTGACAGTTGGGAGTTCTAATTATCAACAATCTTTTGTACCGAGTCCAGGAGCGAGACCACAAGTTAATGGTCTATCTGGAAGAATTGACTTTCATTGGCTAATGCTAAATCCCAATGATACAGTCACTTTCAGTTTCAATGGGGCTTTCATAGCTCCAGACCGTGCAAGCTTCCTGAGAGGAAAATCTATGGGAATCCAGAGTGGAGTACAGGTTGATGCCAATTGTGAAGGGGACTGCTATCATAGTGGAGGGACAATAATAAGTAACTTGCCATTTCAGAACATAGATAGCAGGGCAGTTGGAAAATGTCCGAGATATGTTAAGCAAAGGAGTCTGCTGCTAGCAACAGGGATGAAGAATGTTCCTGAGATTCCAAAGGGAAGAGGCCTATTTGGTGCTATAGCGGGTTTCATTGAAAATGGATGGGAAGGCCTAATTGATGGTTGGTATGGTTTCAGACACCAGAATGCACAGGGAGAGGGAACTGCTGCAGATTACAAAAGCACTCAATCGGCAATTGATCAAATAACAGGAAAATTAAACCGGCTTATAGAAAAAACCAACCAACAATTTGAGTTGATAGACAATGAATTCAATGAGGTAGAGAAGCAAATCGGTAATGTGATAAATTGGACCAGAGATTCTATAACAGAAGTGTGGTCATACAATGCTGAACTCTTGGTAGCAATGGAGAACCAGCATACAATTGATCTGGCTGATTCAGAAATGGACAAACTGTACGAACGAGTGAAAAGACAGCTGAGAGAGAATGCTGAAGAAGATGGCACTGGTTGCTTTGAAATATTTCACAAGTGTGATGATGACTGTATGGCCAGTATTAGAAATAACACCTATGATCACAGCAAATACAGGGAAGAGGCAATGCAAAATAGAATACAGATTGACCCAGTCAAACTAAGCAGCGGCTACAAAGATGTGATACTTTGGTTTAGCTTCGGGGCATCATGTTTCATACTTCTAGCCATTGTAATGGGCCTTGTCTTCATATGTGTAAAGAATGGAAACATGCGGTGCACTATTTGTATATAA
(3) DNA sequence of AnH7 gene (SEQ ID NO: 2)
(GISAID's EpiFlu TM Database: SegmentID: EPI439507)
ATGAACACTCAAATCCTGGTATTCGCTCTGATTGCGATCATTCCAACAAATGCAGACAAAATCTGCCTCGGACATCATGCCGTGTCAAACGGAACCAAAGTAAACACATTAACTGAAAGAGGAGTGGAAGTCGTCAATGCAACTGAAACAGTGGAACGAACAAACATCCCCAGGATCTGCTCAAAAGGGAAAAGGACAGTTGACCTCGGTCAATGTGGACTCCTGGGGACAATCACTGGACCACCTCAATGTGACCAATTCCTAGAATTTTCAGCCGATTTAATTATTGAGAGGCGAGAAGGAAGTGATGTCTGTTATCCTGGGAAATTCGTGAATGAAGAAGCTCTGAGGCAAATTCTCAGAGAATCAGGCGGAATTGACAAGGAAGCAATGGGATTCACATACAGTGGAATAAGAACTAATGGAGCAACCAGTGCATGTAGGAGATCAGGATCTTCATTCTATGCAGAAATGAAATGGCTCCTGTCAAACACAGATAATGCTGCATTCCCGCAGATGACTAAGTCATATAAAAATACAAGAAAAAGCCCAGCTCTAATAGTATGGGGGATCCATCATTCCGTATCAACTGCAGAGCAAACCAAGCTATATGGGAGTGGAAACAAACTGGTGACAGTTGGGAGTTCTAATTATCAACAATCTTTTGTACCGAGTCCAGGAGCGAGACCACAAGTTAATGGTCTATCTGGAAGAATTGACTTTCATTGGCTAATGCTAAATCCCAATGATACAGTCACTTTCAGTTTCAATGGGGCTTTCATAGCTCCAGACCGTGCAAGCTTCCTGAGAGGAAAATCTATGGGAATCCAGAGTGGAGTACAGGTTGATGCCAATTGTGAAGGGGACTGCTATCATAGTGGAGGGACAATAATAAGTAACTTGCCATTTCAGAACATAGATAGCAGGGCAGTTGGAAAATGTCCGAGATATGTTAAGCAAAGGAGTCTGCTGCTAGCAACAGGGATGAAGAATGTTCCTG AGATTCCAAAGGGAAGAGGCCTATTTGGTGCTATAGCGGGTTTCATTGAAAATGGATGGGAAGGCCTAATTGATGGTTGGTATGGTTTCAGACACCAGAATGCACAGGGAGAGGGAACTGCTGCAGATTACAAAAGCACTCAATCGGCAATTGATCAAATAACAGGAAAATTAAACCGGCTTATAGAAAAAACCAACCAACAATTTGAGTTGATAGACAATGAATTCAATGAGGTAGAGAAGCAAATCGGTAATGTGATAAATTGGACCAGAGATTCTATAACAGAAGTGTGGTCATACAATGCTGAACTCTTGGTAGCAATGGAGAACCAGCATACAATTGATCTGGCTGATTCAGAAATGGACAAACTGTACGAACGAGTGAAAAGACAGCTGAGAGAGAATGCTGAAGAAGATGGCACTGGTTGCTTTGAAATATTTCACAAGTGTGATGATGACTGTATGGCCAGTATTAGAAATAACACCTATGATCACAGCAAATACAGGGAAGAGGCAATGCAAAATAGAATACAGATTGACCCAGTCAAACTAAGCAGCGGCTACAAAGATGTGATACTTTGGTTTAGCTTCGGGGCATCATGTTTCATACTTCTAGCCATTGTAATGGGCCTTGTCTTCATATGTGTAAAGAATGGAAACATGCGGTGCACTATTTGTATATAA
(4)発現用に最適化したAnH7遺伝子のDNA配列(配列番号3)
ATGAACACACAAATCCTGGTGTTCGCTCTGATCGCTATCATCCCTACAAACGCTGACAAAATCTGCCTGGGTCACCACGCTGTGTCAAACGGTACAAAAGTGAACACACTGACAGAAAGAGGTGTGGAAGTGGTGAACGCTACAGAAACAGTGGAAAGAACAAACATCCCTAGAATCTGCTCAAAAGGTAAAAGAACAGTGGACCTGGGTCAATGCGGTCTGCTGGGTACAATCACAGGTCCTCCTCAATGCGACCAATTCCTGGAATTCTCAGCTGACCTGATCATCGAAAGAAGAGAAGGTTCAGACGTGTGCTACCCTGGTAAATTCGTGAACGAAGAAGCTCTGAGACAAATCCTGAGAGAATCAGGTGGTATCGACAAAGAAGCTATGGGTTTCACATACTCAGGTATCAGAACAAACGGTGCTACATCAGCTTGCAGAAGATCAGGTTCATCATTCTACGCTGAAATGAAATGGCTGCTGTCAAACACAGACAACGCTGCTTTCCCTCAAATGACAAAATCATACAAAAACACAAGAAAATCACCTGCTCTGATCGTGTGGGGTATCCACCACTCAGTGTCAACAGCTGAACAAACAAAACTGTACGGTTCAGGTAACAAACTGGTGACAGTGGGTTCATCAAACTACCAACAATCATTCGTGCCTTCACCTGGTGCTAGACCTCAAGTGAACGGTCTGTCAGGTAGAATCGACTTCCACTGGCTGATGCTGAACCCTAACGACACAGTGACATTCTCATTCAACGGTGCTTTCATCGCTCCTGACAGAGCTTCATTCCTGAGAGGTAAATCAATGGGTATCCAATCAGGTGTGCAAGTGGACGCTAACTGCGAAGGTGACTGCTACCACTCAGGTGGTACAATCATCTCAAACCTGCCTTTCCAAAACATCGACTCAAGAGCTGTGGGTAAATGCCCTAGATACGTGAAACAAAGATCACTGCTGCTGGCTACAGGTATGAAAAACGTGCCTGAAATCCCTAAAGGTAGAGGTCTGTTCGGTGCTATCGCTGGTTTCATCGAAAACGGTTGGGAAGGTCTGATCGACGGTTGGTACGGTTTCAGACACCAAAACGCTCAAGGTGAAGGTACAGCTGCTGACTACAAATCAACACAATCAGCTATCGACCAAATCACAGGTAAACTGAACAGACTGATCGAAAAAACAAACCAACAATTCGAACTGATCGACAACGAATTCAACGAAGTGGAAAAACAAATCGGTAACGTGATCAACTGGACAAGAGACTCAATCACAGAAGTGTGGTCATACAACGCTGAACTGCTGGTGGCTATGGAAAACCAACACACAATCGACCTGGCTGACTCAGAAATGGACAAACTGTACGAAAGAGTGAAAAGACAACTGAGAGAAAACGCTGAAGAAGACGGTACAGGTTGCTTCGAAATCTTCCACAAATGCGACGACGACTGCATGGCTTCAATCAGAAACAACACATACGACCACTCAAAATACAGAGAAGAAGCTATGCAAAACAGAATCCAAATCGACCCTGTGAAACTGTCATCAGGTTACAAAGACGTGATCCTGTGGTTCTCATTCGGTGCTTCATGCTTCATCCTGCTGGCTATCGTGATGGGTCTGGTGTTCATCTGCGTGAAAAACGGTAACATGAGATGCACAATCTGCATCGACTACAAAGACGACGACGACAAATAA
(4) DNA sequence of AnH7 gene optimized for expression (SEQ ID NO: 3)
ATGAACACACAAATCCTGGTGTTCGCTCTGATCGCTATCATCCCTACAAACGCTGACAAAATCTGCCTGGGTCACCACGCTGTGTCAAACGGTACAAAAGTGAACACACTGACAGAAAGAGGTGTGGAAGTGGTGAACGCTACAGAAACAGTGGAAAGAACAAACATCCCTAGAATCTGCTCAAAAGGTAAAAGAACAGTGGACCTGGGTCAATGCGGTCTGCTGGGTACAATCACAGGTCCTCCTCAATGCGACCAATTCCTGGAATTCTCAGCTGACCTGATCATCGAAAGAAGAGAAGGTTCAGACGTGTGCTACCCTGGTAAATTCGTGAACGAAGAAGCTCTGAGACAAATCCTGAGAGAATCAGGTGGTATCGACAAAGAAGCTATGGGTTTCACATACTCAGGTATCAGAACAAACGGTGCTACATCAGCTTGCAGAAGATCAGGTTCATCATTCTACGCTGAAATGAAATGGCTGCTGTCAAACACAGACAACGCTGCTTTCCCTCAAATGACAAAATCATACAAAAACACAAGAAAATCACCTGCTCTGATCGTGTGGGGTATCCACCACTCAGTGTCAACAGCTGAACAAACAAAACTGTACGGTTCAGGTAACAAACTGGTGACAGTGGGTTCATCAAACTACCAACAATCATTCGTGCCTTCACCTGGTGCTAGACCTCAAGTGAACGGTCTGTCAGGTAGAATCGACTTCCACTGGCTGATGCTGAACCCTAACGACACAGTGACATTCTCATTCAACGGTGCTTTCATCGCTCCTGACAGAGCTTCATTCCTGAGAGGTAAATCAATGGGTATCCAATCAGGTGTGCAAGTGGACGCTAACTGCGAAGGTGACTGCTACCACTCAGGTGGTACAATCATCTCAAACCTGCCTTTCCAAAACATCGACTCAAGAGCTGTGGGTAAATGCCCTAGATACGTGAAACAAAGATCACTGCTGCTGGCTACAGGTATGAAAAACGTGCCTG AAATCCCTAAAGGTAGAGGTCTGTTCGGTGCTATCGCTGGTTTCATCGAAAACGGTTGGGAAGGTCTGATCGACGGTTGGTACGGTTTCAGACACCAAAACGCTCAAGGTGAAGGTACAGCTGCTGACTACAAATCAACACAATCAGCTATCGACCAAATCACAGGTAAACTGAACAGACTGATCGAAAAAACAAACCAACAATTCGAACTGATCGACAACGAATTCAACGAAGTGGAAAAACAAATCGGTAACGTGATCAACTGGACAAGAGACTCAATCACAGAAGTGTGGTCATACAACGCTGAACTGCTGGTGGCTATGGAAAACCAACACACAATCGACCTGGCTGACTCAGAAATGGACAAACTGTACGAAAGAGTGAAAAGACAACTGAGAGAAAACGCTGAAGAAGACGGTACAGGTTGCTTCGAAATCTTCCACAAATGCGACGACGACTGCATGGCTTCAATCAGAAACAACACATACGACCACTCAAAATACAGAGAAGAAGCTATGCAAAACAGAATCCAAATCGACCCTGTGAAACTGTCATCAGGTTACAAAGACGTGATCCTGTGGTTCTCATTCGGTGCTTCATGCTTCATCCTGCTGGCTATCGTGATGGGTCTGGTGTTCATCTGCGTGAAAAACGGTAACATGAGATGCACAATCTGCATCGACTACAAAGACGACGACGACAAATAA
・M2・N・IL12分子を作製するために使用したアミノ酸配列
(5)M2小型細胞外ドメイン(24アミノ酸)のアミノ酸配列(配列番号4)
MSLLTEVETPIRNEWGCRCNDSSD
(6)M2膜貫通ドメイン(19アミノ酸)のアミノ酸配列(配列番号5)
PLVVAASIIGILHLILWIL
(7)M2細胞質ドメイン(54アミノ酸)のアミノ酸配列(配列番号6)
DRLFFKCIYRFFEHGLKRGPSTEGVPESMREEYRKEQQSAVDADDSHFVSIELE
(7)M2-Flag間のリンカー(1アミノ酸)のアミノ酸配列(配列番号7)
G
(8)Flag(7アミノ酸)のアミノ酸配列(配列番号8)
DYKDDDDK
(9)Flag-NA細胞質ドメイン間のリンカー(2アミノ酸)のアミノ酸配列(配列番号9)
GG
(10)NA細胞質ドメイン(6アミノ酸)のアミノ酸配列(配列番号10)
MNPNQK
(11)NA膜貫通ドメイン(31アミノ酸)のアミノ酸配列(配列番号11)
IITIGSVSLTIATVCFLMQIAILVTTVTLHF
(12)NAストーク(39アミノ酸)のアミノ酸配列(配列番号12)
KQYECDSPASNQVMPCEPIIIERNITEIVYLNNTTIEKE
(13)NAストーク-murine IL12p40サブユニット間のリンカー(2アミノ酸)のアミノ酸配列(配列番号13)
GG
(14)murine IL12のp40サブユニット(313アミノ酸)のアミノ酸配列(配列番号14)
MWELEKDVYVVEVDWTPDAPGETVNLTCDTPEEDDITWTSDQRHGVIGSGKTLTITVKEFLDAGQYTCHKGGETLSHSHLLLHKKENGIWSTEILKNFKNKTFLKCEAPNYSGRFTCSWLVQRNMDLKFNIKSSSSSPDSRAVTCGTASLSAEKVTLDQRDYEKYSVSCQEDVTCPTAEETLPIELALEARQQNKYENYSTSFFIRDIIKPDPPKNLQMKPLKNSQVEVSWEYPDSWSTPHSYFSLKFFVRIQRKKEKMKETEEGCNQKGALLVEKTSTEVQCKGGNVCVQAQDRYYNSSCSKWACVPCRVRS
(15)murine IL12のp40サブユニットとmurine IL12のp35サブユニットの間のリンカー(配列番号15)
GGGGTGGGGSGGGGTGGGG
(16)murine IL12のp35サブユニット(193アミノ酸)のアミノ酸配列(配列番号16)
RVIPVSGPARCLSQSRNLLKTTDDMVKTAREKLKHYSCTAEDIDHEDITRDQTSTLKTCLPLELHKNESCLATRETSSTTRGSCLPPQKTSLMMTLCLGSIYEDLKMYQTEFQAINAALQNHNHQQIILDKGMLVAIDELMQSLNHNGETLRQKPPVGEADPYRVKMKLCILLHAFSTRVVTINRVMGYLSSA
-Amino acid sequence used to prepare M2, N, IL12 molecules (5) Amino acid sequence of M2 small extracellular domain (24 amino acids) (SEQ ID NO: 4)
MSLLTEVETPIRNEWGCRCNDSSD
(6) Amino acid sequence of M2 transmembrane domain (19 amino acids) (SEQ ID NO: 5)
PLVVAASIIGILHLILWIL
(7) Amino acid sequence of M2 cytoplasmic domain (54 amino acids) (SEQ ID NO: 6)
DRLFFKCIYRFFEHGLKRGPSTEGVPESMREEYRKEQQSAVDADDSHFVSIELE
(7) Amino acid sequence of the linker (1 amino acid) between M2-Flag (SEQ ID NO: 7)
G
(8) Amino acid sequence of Flag (7 amino acids) (SEQ ID NO: 8)
DYKDDDDK
(9) Amino acid sequence of linker (2 amino acids) between Flag-NA cytoplasmic domain (SEQ ID NO: 9)
GG
(10) Amino acid sequence of NA cytoplasmic domain (6 amino acids) (SEQ ID NO: 10)
MNPNQK
(11) Amino acid sequence of NA transmembrane domain (31 amino acids) (SEQ ID NO: 11)
IITIGSVSLTIATVCFLMQIAILVTTVTLHF
(12) Amino acid sequence of NA Stoke (39 amino acids) (SEQ ID NO: 12)
KQYECDSPASNQVMPCEPIIIERNITEIVYLNNTTIEKE
(13) Amino acid sequence of linker (2 amino acids) between NA Stoke-murine IL12p40 subunit (SEQ ID NO: 13)
GG
(14) Amino acid sequence of p40 subunit (313 amino acids) of murine IL12 (SEQ ID NO: 14)
MWELEKDVYVVEVDWTPDAPGETVNLTCDTPEEDDITWTSDQRHGVIGSGKTLTITVKEFLDAGQYTCHKGGETLSHSHLLLHKKENGIWSTEILKNFKNKTFLKCEAPNYSGRFTCSWLVQRNMDLKFNIKSSSSSPDSRAVTCGTASLSAEKVTLDQRDYEKYSVSCQEDVTCPTAEETLPIELALEARQQNKYENYSTSFFIRDIIKPDPPKNLQMKPLKNSQVEVSWEYPDSWSTPHSYFSLKFFVRIQRKKEKMKETEEGCNQKGALLVEKTSTEVQCKGGNVCVQAQDRYYNSSCSKWACVPCRVRS
(15) Linker between the p40 subunit of Murine IL12 and the p35 subunit of Murine IL12 (SEQ ID NO: 15).
GGGGTGGGGSGGGGTGGGG
(16) Amino acid sequence of p35 subunit (193 amino acids) of murine IL12 (SEQ ID NO: 16)
RVIPVSGPARCLSQSRNLLKTTDDMVKTAREKLKHYSCTAEDIDHEDITRDQTSTLKTCLPLELHKNESCLATRETSSTTRGSCLPPQKTSLMMTLCLGSIYEDLKMYQTEFQAINAALQNHNHQQIILDKGMLVAIDELMQSLNHNGETLRQKPPVGEADPYRVKM
・公知のDNA配列
(17)M2タンパク質のDNA配列
A/Aichi/2/1968(H3N2)のMP遺伝子の配列を基にM2遺伝子を下記の通りにつないだものがM2遺伝子に配列になる。
ACCESSION CY121118
CDS join(14..39,728..995)
 /gene="M2"
(18)M2タンパク質のアミノ酸配列
ACCESSION AFM71859
(19)NA遺伝子の配列
A/Aichi/2/1968(H3N2)
ACCESSION CY121119
上記に配列より、NA膜貫通ドメイン(31アミノ酸)の配列およびNAストーク(41アミノ酸)の配列を基に設計した。
(20)マウスのIL12の2つのサブユニット(p35及びp40)のDNA配列
murine IL12のp40サブユニット(313アミノ酸)は、以下の配列の23番目から335番目までの配列を用いた。
ACCESSION AAF22555
murine IL12のp35サブユニット(193アミノ酸)のアミノ酸配列は、以下の配列の23番目から215番目までの配列を用いた。
ACCESSION AAA39292
-Known DNA sequence (17) DNA sequence of M2 protein
Based on the sequence of the MP gene of A / Aichi / 2/1968 (H3N2), the M2 gene is connected as follows to form the sequence of the M2 gene.
ACCESSION CY121118
CDS join (14..39,728..995)
/ gene = "M2"
(18) Amino acid sequence of M2 protein
ACCESSION AFM71859
(19) Sequence of NA gene
A / Aichi / 2/1968 (H3N2)
ACCESSION CY121119
Based on the above sequence, it was designed based on the sequence of the NA transmembrane domain (31 amino acids) and the sequence of NA stalk (41 amino acids).
(20) DNA sequence of two subunits (p35 and p40) of mouse IL12 As the p40 subunit (313 amino acids) of Murine IL12, the sequences from the 23rd to the 335th of the following sequences were used.
ACCESSION AAF22555
As the amino acid sequence of the p35 subunit (193 amino acids) of murine IL12, the sequences from the 23rd to the 215th of the following sequences were used.
ACCESSION AAA39292
(21)M2・NA・IL12分子を作製するために使用した、発現用に最適化したDNA配列(Bombyx Moriにコドンを最適化しているため、同様にエリ蚕においても最適化されている)(配列番号17)
ATGTCACTGCTGACAGAAGTGGAAACACCTATCAGAAACGAATGGGGTTGCAGATGCAACGACTCATCAGACCCTCTGGTGGTGGCTGCTTCAATCATCGGTATCCTGCACCTGATCCTGTGGATCCTGGACAGACTGTTCTTCAAATGCATCTACAGATTCTTCGAACACGGTCTGAAAAGAGGTCCTTCAACAGAAGGTGTGCCTGAATCAATGAGAGAAGAATACAGAAAAGAACAACAATCAGCTGTGGACGCTGACGACTCACACTTCGTGTCAATCGAACTGGAAGGTGACTACAAAGACGACGACGACAAAGGTGGTATGAACCCTAACCAAAAAATCATCACAATCGGTTCAGTGTCACTGACAATCGCTACAGTGTGCTTCCTGATGCAAATCGCTATCCTGGTGACAACAGTGACACTGCACTTCAAACAATACGAATGCGACTCACCTGCTTCAAACCAAGTGATGCCTTGCGAACCTATCATCATCGAAAGAAACATCACAGAAATCGTGTACCTGAACAACACAACAATCGAAAAAGAAGGTGGTATGTGGGAACTGGAAAAAGACGTGTACGTGGTGGAAGTGGACTGGACACCTGACGCTCCTGGTGAAACAGTGAACCTGACATGCGACACACCTGAAGAAGACGACATCACATGGACATCAGACCAAAGACACGGTGTGATCGGTTCAGGTAAAACACTGACAATCACAGTGAAAGAATTCCTGGACGCTGGTCAATACACATGCCACAAAGGTGGTGAAACACTGTCACACTCACACCTGCTGCTGCACAAAAAAGAAAACGGTATCTGGTCAACAGAAATCCTGAAAAACTTCAAAAACAAAACATTCCTGAAATGCGAAGCTCCTAACTACTCAGGTAGATTCACATGCTCATGGCTGGTGCAAAGAAACATGGACCTGAAATTCAACATCAAATCATCATCATCATCACCTGACTCAAGAGCTGTGACATGCGGTACAGCTTCACTGTCAGCTGAAAAAGTGACACTGGACCAAAGAGACTACGAAAAATACTCAGTGTCATGCCAAGAAGACGTGACATGCCCTACAGCTGAAGAAACACTGCCTATCGAACTGGCTCTGGAAGCTAGACAACAAAACAAATACGAAAACTACTCAACATCATTCTTCATCAGAGACATCATCAAACCTGACCCTCCTAAAAACCTGCAAATGAAACCTCTGAAAAACTCACAAGTGGAAGTGTCATGGGAATACCCTGACTCATGGTCAACACCTCACTCATACTTCTCACTGAAATTCTTCGTGAGAATCCAAAGAAAAAAAGAAAAAATGAAAGAAACAGAAGAAGGTTGCAACCAAAAAGGTGCTCTGCTGGTGGAAAAAACATCAACAGAAGTGCAATGCAAAGGTGGTAACGTGTGCGTGCAAGCTCAAGACAGATACTACAACTCATCATGCTCAAAATGGGCTTGCGTGCCTTGCAGAGTGAGATCAGGTGGTGGTGGTACAGGTGGTGGTGGTTCAGGTGGTGGTGGTACAGGTGGTGGTGGTAGAGTGATCCCTGTGTCAGGTCCTGCTAGATGCCTGTCACAATCAAGAAACCTGCTGAAAACAACAGACGACATGGTGAAAACAGCTAGAGAAAAACTGAAACACTACTCATGCACAGCTGAAGACATCGACCACGAAGACATCACAAGAGACCAAACATCAACACTGAAAACATGCCTGCCTCTGGAACTGCACAAAAACGAATCATGCCTGGCTACAAGAGAAACATCATCAACAACAAGAGGTTCATGCCTGCCTCCTCAAAAAACATCACTGATGATGACACTGTGCCTGGGTTCAATCTACGAAGACCTGAAAATGTACCAAACAGAATTCCAAGCTATCAACGCTGCTCTGCAAAACCACAACCACCAACAAATCATCCTGGACAAAGGTATGCTGGTGGCTATCGACGAACTGATGCAATCACTGAACCACAACGGTGAAACACTGAGACAAAAACCTCCTGTGGGTGAAGCTGACCCTTACAGAGTGAAAATGAAACTGTGCATCCTGCTGCACGCTTTCTCAACAAGAGTGGTGACAATCAACAGAGTGATGGGTTACCTGTCATCAGCTtaa
(21) Expression-optimized DNA sequence used to prepare M2, NA, and IL12 molecules (because codons are optimized for Bombyx Mori, they are also optimized for Eli silk moth) ( SEQ ID NO: 17)
ATGTCACTGCTGACAGAAGTGGAAACACCTATCAGAAACGAATGGGGTTGCAGATGCAACGACTCATCAGACCCTCTGGTGGTGGCTGCTTCAATCATCGGTATCCTGCACCTGATCCTGTGGATCCTGGACAGACTGTTCTTCAAATGCATCTACAGATTCTTCGAACACGGTCTGAAAAGAGGTCCTTCAACAGAAGGTGTGCCTGAATCAATGAGAGAAGAATACAGAAAAGAACAACAATCAGCTGTGGACGCTGACGACTCACACTTCGTGTCAATCGAACTGGAAGGTGACTACAAAGACGACGACGACAAAGGTGGTATGAACCCTAACCAAAAAATCATCACAATCGGTTCAGTGTCACTGACAATCGCTACAGTGTGCTTCCTGATGCAAATCGCTATCCTGGTGACAACAGTGACACTGCACTTCAAACAATACGAATGCGACTCACCTGCTTCAAACCAAGTGATGCCTTGCGAACCTATCATCATCGAAAGAAACATCACAGAAATCGTGTACCTGAACAACACAACAATCGAAAAAGAAGGTGGTATGTGGGAACTGGAAAAAGACGTGTACGTGGTGGAAGTGGACTGGACACCTGACGCTCCTGGTGAAACAGTGAACCTGACATGCGACACACCTGAAGAAGACGACATCACATGGACATCAGACCAAAGACACGGTGTGATCGGTTCAGGTAAAACACTGACAATCACAGTGAAAGAATTCCTGGACGCTGGTCAATACACATGCCACAAAGGTGGTGAAACACTGTCACACTCACACCTGCTGCTGCACAAAAAAGAAAACGGTATCTGGTCAACAGAAATCCTGAAAAACTTCAAAAACAAAACATTCCTGAAATGCGAAGCTCCTAACTACTCAGGTAGATTCACATGCTCATGGCTGGTGCAAAGAAACATGGACCTGAAATTCAACATCAAATCATCATCATCATCACCTGACTCAAGAGCTGTGACATGCGGTACAG CTTCACTGTCAGCTGAAAAAGTGACACTGGACCAAAGAGACTACGAAAAATACTCAGTGTCATGCCAAGAAGACGTGACATGCCCTACAGCTGAAGAAACACTGCCTATCGAACTGGCTCTGGAAGCTAGACAACAAAACAAATACGAAAACTACTCAACATCATTCTTCATCAGAGACATCATCAAACCTGACCCTCCTAAAAACCTGCAAATGAAACCTCTGAAAAACTCACAAGTGGAAGTGTCATGGGAATACCCTGACTCATGGTCAACACCTCACTCATACTTCTCACTGAAATTCTTCGTGAGAATCCAAAGAAAAAAAGAAAAAATGAAAGAAACAGAAGAAGGTTGCAACCAAAAAGGTGCTCTGCTGGTGGAAAAAACATCAACAGAAGTGCAATGCAAAGGTGGTAACGTGTGCGTGCAAGCTCAAGACAGATACTACAACTCATCATGCTCAAAATGGGCTTGCGTGCCTTGCAGAGTGAGATCAGGTGGTGGTGGTACAGGTGGTGGTGGTTCAGGTGGTGGTGGTACAGGTGGTGGTGGTAGAGTGATCCCTGTGTCAGGTCCTGCTAGATGCCTGTCACAATCAAGAAACCTGCTGAAAACAACAGACGACATGGTGAAAACAGCTAGAGAAAAACTGAAACACTACTCATGCACAGCTGAAGACATCGACCACGAAGACATCACAAGAGACCAAACATCAACACTGAAAACATGCCTGCCTCTGGAACTGCACAAAAACGAATCATGCCTGGCTACAAGAGAAACATCATCAACAACAAGAGGTTCATGCCTGCCTCCTCAAAAAACATCACTGATGATGACACTGTGCCTGGGTTCAATCTACGAAGACCTGAAAATGTACCAAACAGAATTCCAAGCTATCAACGCTGCTCTGCAAAACCACAACCACCAACAAATCATCCTGGACAAAGGTATGCTGGTGGCTATCGACGAACTGATGCAATCACTGAACCACAACGGTGA AACACTGAGACAAAAAACCTCCTGTGGGTGAAGCTGACCCTTACAGAGTGAAAATGAAACTGTGCATCCTGCTGCACGCTTTCAACAAGAGTGGTGACAATCAACAGAGTGATGGGTTACCTGTCATCAAGCTtaa

Claims (7)

  1.  免疫モジュレーター分子を含有するウイルス様粒子を含むワクチンであって、
     免疫モジュレーター分子が、インターロイキン12タンパク質と、ノイラミニダーゼ(NA)タンパク質由来のNAドメイン領域と、インフルエンザウイルス由来のM2タンパク質ドメイン領域とを含み、
     NAドメイン領域は、細胞膜外ドメインと、細胞膜貫通ドメインと、細胞質内ドメインとを含み、
     M2タンパク質ドメイン領域は、細胞膜外ドメインと、細胞膜貫通ドメインと、細胞質内ドメインとを含み、
     インターロイキン12タンパク質が、NAドメイン領域における細胞膜外ドメインに結合され、
     M2タンパク質ドメイン領域における細胞質内ドメインが、NAドメイン領域における細胞質内ドメインとリンカーを介して結合された、ワクチン。
    A vaccine containing virus-like particles containing an immunomodulator molecule.
    The immune modulator molecule comprises an interleukin 12 protein, an NA domain region derived from a neuraminidase (NA) protein, and an M2 protein domain region derived from an influenza virus.
    The NA domain region includes an extracellular domain, a transmembrane domain, and an intracytoplasmic domain.
    The M2 protein domain region comprises an extracellular domain, a transmembrane domain, and an intracytoplasmic domain.
    Interleukin 12 protein is bound to the epimembrane domain in the NA domain region
    A vaccine in which the intracytoplasmic domain in the M2 protein domain region is linked to the intracytoplasmic domain in the NA domain region via a linker.
  2.  さらに、
     (i)インフルエンザウイルスH5型に分類されるウイルス由来のヘマグルチニン(HA)タンパク質を含有するインフルエンザウイルス様粒子、及び/又は、
     (ii)インフルエンザウイルスH7型に分類されるウイルス由来のヘマグルチニン(HA)タンパク質を含有するインフルエンザウイルス様粒子を含む、
    ワクチン。
    further,
    (I) Influenza virus-like particles containing hemagglutinin (HA) protein derived from a virus classified as influenza virus H5 type and / or
    (Ii) Containing influenza virus-like particles containing hemagglutinin (HA) protein derived from a virus classified as influenza virus H7 type,
    vaccine.
  3.  不活化インフルエンザウイルスH1N1型を含むワクチン接種をしてからインフルエンザウイルスH1N1型に感染させた動物と同等の生存率を提供する、請求項1又は2に記載のワクチン。 The vaccine according to claim 1 or 2, which provides a survival rate equivalent to that of an animal infected with influenza virus H1N1 after vaccination containing inactivated influenza virus H1N1.
  4.  免疫モジュレーター分子を含有するウイルス様粒子、インフルエンザウイルス様粒子(i)、及び、インフルエンザウイルス様粒子(ii)から選択される少なくとも1種が、Sf9細胞又はエリ蚕蛹によって産生される、請求項1~3のいずれかに記載のワクチン。 Claims 1 to 1, wherein at least one selected from a virus-like particle containing an immunomodulator molecule, an influenza virus-like particle (i), and an influenza virus-like particle (ii) is produced by Sf9 cells or Eri silkworm. The vaccine according to any one of 3.
  5.  インフルエンザウイルスH5型に分類されるウイルスがH5N1型ウイルスであり、及び/又は、インフルエンザウイルスH7型に分類されるウイルスがH7N9型ウイルスである、請求項1~4のいずれかに記載のワクチン。 The vaccine according to any one of claims 1 to 4, wherein the virus classified into influenza virus H5 type is H5N1 type virus and / or the virus classified into influenza virus H7 type is H7N9 type virus.
  6.  請求項1~5のいずれかに記載のワクチンの製造方法であって、
     免疫モジュレーター分子をコードするDNA断片において、コードされる免疫モジュレーター分子のタンパク質のアミノ酸配列が、ワクチンを接種する対象の哺乳動物における対応するアミノ酸配列と比べて変異が起こらないように、前記DNA断片のコドンを改変して、発現用のコドン最適化DNA断片を得る工程、
     得られたコドン最適化DNA断片をベクターに挿入する工程、
     得られたベクターと、バキュロウイルス由来DNAとを、Sf9細胞にコトランスフェクションする工程、
     得られたSf9細胞から、コドン最適化DNA断片を含むバキュロウイルス組換体を得る工程、
     エリ蚕蛹を前記バキュロウイルス組換体に感染させて、エリ蚕蛹を飼育する工程、及び
     前記エリ蚕蛹から、免疫モジュレーター分子を単離する工程、
    を含む、ワクチンの製造方法。
    The method for producing a vaccine according to any one of claims 1 to 5.
    In the DNA fragment encoding the immunomodulator molecule, the amino acid sequence of the protein of the encoded immunomodulator molecule is not mutated as compared with the corresponding amino acid sequence in the mammal to be vaccinated. The process of modifying codons to obtain codon-optimized DNA fragments for expression,
    The step of inserting the obtained codon-optimized DNA fragment into a vector,
    A step of cotransfecting the obtained vector and baculovirus-derived DNA into Sf9 cells,
    Step of obtaining a baculovirus recombinant containing a codon-optimized DNA fragment from the obtained Sf9 cells,
    A step of infecting Eri silkworm with the baculovirus recombinant to breed Eri silkworm, and a step of isolating an immunomodulator molecule from the Eri silkworm.
    How to make a vaccine, including.
  7.  前記コドン最適化DNA断片の配列が、配列番号17の塩基配列である、請求項6に記載のワクチンの製造方法。 The method for producing a vaccine according to claim 6, wherein the sequence of the codon-optimized DNA fragment is the base sequence of SEQ ID NO: 17.
PCT/JP2020/041112 2019-10-31 2020-11-02 Vaccine WO2021085650A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021553752A JPWO2021085650A1 (en) 2019-10-31 2020-11-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019198845 2019-10-31
JP2019-198845 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085650A1 true WO2021085650A1 (en) 2021-05-06

Family

ID=75715507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041112 WO2021085650A1 (en) 2019-10-31 2020-11-02 Vaccine

Country Status (2)

Country Link
JP (1) JPWO2021085650A1 (en)
WO (1) WO2021085650A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054535A2 (en) * 2006-05-11 2008-05-08 Novavax, Inc. Novel influenza m2 vaccines
US20090214590A1 (en) * 2005-07-08 2009-08-27 Wayne State University Virus Vaccines Comprising Envelope-Bound Immunomodulatory Proteins and Methods of Use Thereof
JP2009544318A (en) * 2006-07-27 2009-12-17 リゴサイト ファーマシューティカルズ インコーポレイテッド Chimera virus-like particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214590A1 (en) * 2005-07-08 2009-08-27 Wayne State University Virus Vaccines Comprising Envelope-Bound Immunomodulatory Proteins and Methods of Use Thereof
WO2008054535A2 (en) * 2006-05-11 2008-05-08 Novavax, Inc. Novel influenza m2 vaccines
JP2009544318A (en) * 2006-07-27 2009-12-17 リゴサイト ファーマシューティカルズ インコーポレイテッド Chimera virus-like particles

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MAEGAWA KENICHI, SUGITA SHIGEO, ARASAKI YOUTA, NEROME REIKO, NEROME KUNIAKI: "Interleukin 12-containing influenza virus-like-particle vaccine elevate its protective activity against heterotypic influenza virus infection", HELIYON, ELSEVIER LTD, GB, vol. 6, no. 8, 1 August 2020 (2020-08-01), GB , pages e04543, XP055930450, ISSN: 2405-8440, DOI: 10.1016/j.heliyon.2020.e04543 *
MAEGAWA KENICHI; SHIBATA TOSHIKATSU; YAMAGUCHI RYOJI; HIROIKE KOTOMI; IZZATI UDA ZAHLI; KURODA KAZUMICHI; SUGITA SHIGEO; KAWASAKI : "Overexpression of a virus-like particle influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion", ARCHIVES OF VIROLOGY, SPRINGER WIEN, AT, vol. 163, no. 10, 19 July 2018 (2018-07-19), AT , pages 2787 - 2797, XP036588083, ISSN: 0304-8608, DOI: 10.1007/s00705-018-3941-4 *
NEROME KUNIAKI; SUGITA SHIGEO; KURODA KAZUMICHI; HIROSE TOSHIHARU; MATSUDA SAYAKA; MAJIMA KEI; KAWASAKI KAZUNORI; SHIBATA TOSHIKAT: "The large-scale production of an artificial influenza virus-like particle vaccine in silkworm pupae", VACCINE, ELSEVIER, AMSTERDAM, NL, vol. 33, no. 1, 18 November 2014 (2014-11-18), AMSTERDAM, NL , pages 117 - 125, XP029107033, ISSN: 0264-410X, DOI: 10.1016/j.vaccine.2014.11.009 *
TILA KHAN;CONNIE L HEFFRON;KEVIN P HIGH;PAUL C ROBERTS: "Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines", VIROLOGY JOURNAL, BIOMED CENTRAL, LONDON, GB, vol. 11, no. 1, 3 May 2014 (2014-05-03), GB , pages 78, XP021186684, ISSN: 1743-422X, DOI: 10.1186/1743-422X-11-78 *

Also Published As

Publication number Publication date
JPWO2021085650A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP5771558B2 (en) Functional influenza virus-like particles (VLP)
RU2639551C2 (en) Computer-optimized antigens with wide reactivity spectrum for influenza viruses of h5n1 and h1n1
RU2612900C2 (en) H1n1 influenza virus antigens with wide spectrum of activity, optimized using computer tools
TWI477602B (en) Novel viral vector
JP4817625B2 (en) Novel vaccine containing mucosal immunity induction adjuvant
JP6943908B2 (en) Rapid and sustained immunological treatment
RU2653756C2 (en) Computationally optimized broadly reactive antigens for h3n2 viruses
JP5735121B2 (en) Recombinant hemagglutinin protein of influenza virus and vaccine containing the same
JP2021534074A (en) VLP preparation
WO2021085650A1 (en) Vaccine
TWI435934B (en) Novel viral vector
KR20120131725A (en) A novel virus like particle of high pathogenic avian Influenza virus H5N1 and vaccine for high pathogenic avian Influenza comprising the same
JP2013506682A (en) Peptides for inducing a heterologous subtype influenza T cell response
Vemula et al. Adenoviral vector expressing murine β-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice
KR102211077B1 (en) A pseudo type rabies virus vaccine using virus-like particles
KR102370100B1 (en) Recombinant influenza virus to form protection against heterologous influenza viruses and gene delivery and therapeutic vaccine comprising the same
US20230355738A1 (en) Bacteriophage-based, needle and adjuvant-free, mucosal covid-19 vaccine
JP6432896B2 (en) Japanese encephalitis virus vaccine and production method thereof
Singh et al. Immunogenicity and protective efficacy of virosome based vaccines against Newcastle disease
US11857618B2 (en) Boosting immunogenicity of vaccines using saponins and agonists of the intracellular stimulator of interferon genes pathway
US20240115693A1 (en) Sars-cov-2 antigen nanoparticles and uses there of
Zhang et al. Preparation and evaluation of virus-like particle vaccine against H3N8 subtype equine influenza
Ochsner Mucosal Delivery of Influenza Vaccine Antigens
JP2018095614A (en) Zika virus vaccine, and production method thereof
Burhade et al. CURRENT MANAGEMENT STRATEGIES OF COVID-19

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882665

Country of ref document: EP

Kind code of ref document: A1