WO2021085543A1 - ガス検出装置および漏洩ガス検出システム - Google Patents

ガス検出装置および漏洩ガス検出システム Download PDF

Info

Publication number
WO2021085543A1
WO2021085543A1 PCT/JP2020/040668 JP2020040668W WO2021085543A1 WO 2021085543 A1 WO2021085543 A1 WO 2021085543A1 JP 2020040668 W JP2020040668 W JP 2020040668W WO 2021085543 A1 WO2021085543 A1 WO 2021085543A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
difluoromethane
wavelength range
target space
Prior art date
Application number
PCT/JP2020/040668
Other languages
English (en)
French (fr)
Inventor
知厚 南田
知之 配川
数行 佐藤
和田 智之
正樹 湯本
Original Assignee
ダイキン工業株式会社
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, 国立研究開発法人理化学研究所 filed Critical ダイキン工業株式会社
Priority to AU2020373988A priority Critical patent/AU2020373988B2/en
Priority to CN202080075499.6A priority patent/CN114616456A/zh
Priority to ES20882466T priority patent/ES2972089T3/es
Priority to EP20882466.4A priority patent/EP4053543B1/en
Priority to US17/772,064 priority patent/US20220373457A1/en
Publication of WO2021085543A1 publication Critical patent/WO2021085543A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • G01N2021/1795Atmospheric mapping of gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N2021/3513Open path with an instrumental source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds
    • G01N33/0049Halogenated organic compounds

Definitions

  • Patent Document 1 Japanese Unexamined Patent Publication No. 10-132737 discloses a gas concentration measuring device including a detection gas cell containing a gas to be detected and a reference gas cell containing a reference gas. In this device, the concentration of methane gas in the detection gas cell is measured by using a photodetector that receives the laser light transmitted through each gas cell.
  • Refrigerants such as air conditioners often circulate the refrigerant, but the refrigerant may leak from the refrigerant circuit.
  • Refrigerators that use difluoromethane as a refrigerant also exist, and in order to detect refrigerant leakage, a device that detects the gas concentration of difluoromethane is required.
  • the gas detection device of the first aspect is a gas detection device that detects difluoromethane existing in a distant target space, and includes a detection unit.
  • the detection unit detects difluoromethane by utilizing the absorption of light having a predetermined wavelength.
  • the predetermined wavelength is First wavelength range from 1659 to 1673 (nm), Second wavelength range from 1724 to 1726 (nm) Third wavelength range from 2218 to 2221 (nm), Fourth wavelength range from 2463 to 2466 (nm), Fifth wavelength range from 3316 to 3318 (nm), and 6th wavelength range from 9034 to 9130 (nm), It is in one of the wavelength ranges of.
  • the gas detection device of the second viewpoint is the gas detection device of the first viewpoint, and further includes an irradiation unit and a light receiving unit.
  • the irradiation unit irradiates the target space with the first light and the second light.
  • the first light includes the above-mentioned infrared rays having a predetermined wavelength.
  • the second light is different from the first light.
  • the light receiving unit receives the first light and the second light that have passed through the target space.
  • the detection unit detects difluoromethane existing in the target space based on the first light and the second light received by the light receiving unit.
  • the inventor of the present application has come to recognize the existence of the absorption wavelength band of difluoromethane in the wavelength range for which the details have not been known so far by repeating the test with the latest equipment having high resolution.
  • the target space is irradiated with the first light containing infrared rays of any of the above-mentioned first to fifth wavelength ranges, and the first light and the second light that have passed through the target space are received by the light receiving unit.
  • the inventor of the present application has found that difluoromethane can be detected.
  • the gas detection device of the third viewpoint is the gas detection device of the second viewpoint, and the detection unit has a calculation unit.
  • the calculation unit calculates the concentration of difluoromethane existing in the target space.
  • the calculation of the concentration of difluoromethane is performed based on the difference between the first light and the second light received by the light receiving unit.
  • the gas detection device of the fourth aspect is a gas detection device that detects difluoromethane existing in a distant target space, and includes an irradiation unit, a light receiving unit, and a detection unit.
  • the irradiation unit irradiates the target space with first light whose emission wavelength is modulated by including infrared rays having a predetermined wavelength by current modulation.
  • the light receiving unit receives the first light that has passed through the target space.
  • the detection unit detects difluoromethane existing in the target space based on the first light received by the light receiving unit.
  • the predetermined wavelength of infrared rays contained in the first light is First wavelength range from 1659 to 1673 (nm), Second wavelength range from 1724 to 1726 (nm) Third wavelength range from 2218 to 2221 (nm), Fourth wavelength range from 2463 to 2466 (nm), Fifth wavelength range from 3316 to 3318 (nm), and 6th wavelength range from 9034 to 9130 (nm), It is in one of the wavelength ranges of.
  • the detector is The fundamental wave phase-sensitive detection signal of the predetermined wavelength of the first light and A 2nd harmonic phase sensitive detection signal of a predetermined wavelength of the first light, or a 4th harmonic phase sensitive detection signal of a predetermined wavelength of the first light. Based on, the difluoromethane existing in the target space is detected.
  • the inventor of the present application has come to recognize the existence of the absorption wavelength of difluoromethane in the wavelength range for which the details have not been known so far by repeating the test with the latest equipment having high resolution.
  • the target space is irradiated with the first light containing infrared rays of any of the above-mentioned first to fifth wavelength ranges, and the first light that has passed through the target space is received by the light receiving unit.
  • the inventor of the present application has found that difluoromethane can be detected.
  • the gas detection device of the fifth aspect is the gas detection device of the fourth aspect, and the detection unit has a calculation unit.
  • the calculation unit is The ratio of the fundamental wave phase sensitive detection signal of the predetermined wavelength of the first light to the double wave phase sensitive detection signal of the predetermined wavelength of the first light, Or The ratio of the fundamental phase sensitive detection signal of the predetermined wavelength of the first light to the fourth harmonic phase sensitive detection signal of the predetermined wavelength of the first light, Based on, the concentration of difluoromethane present in the target space is calculated.
  • the gas detection device of the sixth aspect is any of the gas detection devices of any of the second to fifth aspects, and the predetermined wavelengths of the infrared rays of the first light are the first wavelength range, the second wavelength range, and the third wavelength. It is in one of the wavelength range of the range and the fourth wavelength range.
  • the light receiving unit receives light reflected or scattered by an object on the opposite side of the target space from the irradiation unit.
  • the reflected or scattered light is received by the light receiving unit, but since the predetermined wavelength of the first light is in the above range, the absorption to the object is small, and difluoromethane can be detected with high accuracy.
  • the gas detection device of the seventh aspect is any of the gas detection devices of the second to fifth aspects, and the predetermined wavelength of infrared rays of the first light is in the fourth wavelength range or the fifth wavelength range. It is in the wavelength range.
  • the gas detection device of the sixth aspect further includes a wavelength conversion unit that converts the light received by the light receiving unit into a short wavelength.
  • the wavelength conversion unit is provided, the thermal noise in the light receiving unit is also reduced, and the cooling device for removing the thermal noise can be simplified or omitted.
  • the gas detection device of the eighth viewpoint is any gas detection device of any of the second to fifth viewpoints, and the predetermined wavelengths of infrared rays of the first light are the first wavelength range, the second wavelength range, and the third. It is in one of the wavelength ranges of.
  • the thermal noise in the light receiving portion is also reduced, and the cooling device for removing the thermal noise can be simplified or omitted.
  • the gas detection device of the ninth viewpoint is any gas detection device of any of the second to eighth viewpoints, and further includes a condenser lens or a telescope.
  • the condenser lens or telescope passes the light received through the light receiving portion.
  • the light is received by the light receiving unit.
  • condenser lens or telescope for example, a Cassegrain type telescope can be used.
  • the leaked gas detection system of the tenth viewpoint includes an air conditioner and a gas detection device of any of the first to ninth viewpoints.
  • the air conditioner has a heat exchanger through which difluoromethane flows as a refrigerant, and a casing that houses the heat exchanger.
  • the gas detector detects difluoromethane leaking from the air conditioner into the target space.
  • the portion facing the target space has a lower infrared absorption rate than difluoromethane.
  • a gas detection device is used when detecting difluoromethane leaked from the air conditioner into the target space.
  • the irradiation unit of the gas detection device transmits the first light and the second light to the target space. Irradiate against. After that, the light receiving unit receives the first light and the second light that have passed through the target space. Therefore, if the infrared absorption rate of the outer surface of the casing of the air conditioner is large, most of the first light is absorbed by the casing of the air conditioner, and the amount of the first light received by the light receiving portion is reduced.
  • the portion of the outer surface of the casing of the air conditioner facing the target space has a lower infrared absorption rate than difluoromethane. Therefore, the amount of received light in the light receiving portion of the first light increases, and the accuracy of detecting difluoromethane improves.
  • Schematic of a leaked gas detection system including a gas detector.
  • Schematic diagram of a gas detector The graph which shows the infrared transmittance of difluoromethane in the wavelength band of 2 ⁇ m to 10 ⁇ m (2000 nm to 10000 nm). The graph which shows the infrared transmittance of difluoromethane in the wavelength band of 1 ⁇ m to 2.5 ⁇ m (1000 nm to 2500 nm). The graph which shows the absorption cross section of the infrared ray of difluoromethane and methane in the wavelength band of 1.2 ⁇ m to 2.5 ⁇ m (1200 nm to 2500 nm).
  • the leaked gas detection system includes a ceiling-mounted air conditioner 90 and a gas detection device 10.
  • the air conditioner 90 includes a heat exchanger 91 through which difluoromethane (R32) flows as a refrigerant, and a casing 92 that houses the heat exchanger 91.
  • the gas detection device 10 detects difluoromethane leaking from the air conditioner 90 to the target space RM.
  • the target space RM is an indoor space of a room in which the air conditioner 90 is installed, and is a space surrounded by a ceiling CE, a side wall, and a floor FL.
  • the portion facing the target space RM has a lower infrared absorption rate than difluoromethane.
  • the panel exposed inside the casing 92 is molded from a material containing metal powder, or the surface of the panel is plated to keep the infrared absorption rate low.
  • the outer surface of the casing 92 is solid even without using metal powder or plating, the infrared absorption rate of the casing 92 is small.
  • the gas detection device 10 described later is a portable device, and is carried by a service person for detecting refrigerant leakage.
  • the gas detection device 10 irradiates the target space RM below the air conditioner 90 away from itself with infrared rays, and receives the reflected or scattered light from the casing 92 of the air conditioner 90 or the ceiling CE. By performing the calculation, the presence and concentration of difluoromethane in the target space RM are detected.
  • the gas detection device 10 shown in FIG. 2 is a gas detection device based on a laser sensing technique, and includes a main body 12, an irradiation unit 13, and a condensing cylinder 14. There is.
  • the irradiation unit 13 irradiates the target space RM with the first light IR11 and the second light IR12, which are laser beams.
  • the first light IR11 includes infrared rays having a predetermined wavelength.
  • the second light IR12 is different from the first light IR11.
  • the predetermined wavelength of infrared rays contained in the first light IR11 is in the wavelength range of 1659 to 1673 (nm).
  • the second light IR12 is near infrared and First wavelength range from 1659 to 1673 (nm), Second wavelength range from 1724 to 1726 (nm) Third wavelength range from 2218 to 2221 (nm), and Near infrared rays (700 to 2500 (nm)) in a wavelength band other than the fourth wavelength range of 2463 to 2466 (nm).
  • the condensing cylinder 14 is a condensing lens or a telescope, and allows light received by a light receiving unit 21, which will be described later, to pass therethrough.
  • a Cassegrain telescope is used as the condenser tube 14.
  • a light receiving unit 21 and a detecting unit 22 are arranged on the main body 12.
  • the light receiving unit 21 collects the first light and the second light (hereinafter referred to as reflected lights IR21 and IR22) that have passed through the target space RM and are reflected or scattered by the casing 92 of the air conditioner 90 or the ceiling CE. Receives light through.
  • the light receiving unit 21 is an infrared detection element that receives infrared rays and converts them into an electric signal.
  • an MCT (HgCdTe) infrared detection element is used as the infrared detection element.
  • the detection unit 22 detects difluoromethane existing in the target space RM based on the reflected lights IR21 and IR22 received by the light receiving unit 21.
  • the detection unit 22 includes a signal amplifier and a calculation unit 22a.
  • the calculation unit 22a is realized by a computer.
  • the arithmetic unit 22a includes a control arithmetic unit and a storage device.
  • a processor such as a CPU or GPU can be used as the control arithmetic unit.
  • the control arithmetic unit reads a program stored in the storage device and performs predetermined image processing and arithmetic processing according to the program. Further, the control arithmetic unit can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the calculation unit 22a receives an electric signal from the light receiving unit 21 and calculates the concentration of difluoromethane existing in the target space RM.
  • the calculation of the concentration of difluoromethane is performed based on the difference between the reflected lights (first light and second light) IR21 and IR22 received by the light receiving unit 21.
  • the service person carries whether or not the refrigerant (difluoromethane) is leaking from the air conditioner 90 installed in the ceiling CE of the room in the building such as an office.
  • the refrigerant difluoromethane
  • the service person determines that the space below the air conditioner 90 near the ceiling CE is the target space RM for gas detection (see FIG. 1), and laser light (first light IR11 and second light IR12) is directed toward the target space RM. ) Is irradiated.
  • the target space RM has a predetermined concentration of difluoromethane. Will exist. Then, a part of the first light IR11 of the laser light is absorbed by difluoromethane, and the second light IR12 is not absorbed by difluoromethane. Therefore, the detection levels of the reflected light (first light and second light) IR21 and IR22 from the casing 92 of the air conditioner 90 and the ceiling CE differ in the light receiving unit 21. Based on this difference, the calculation unit 22a calculates the concentration of difluoromethane in the target space RM.
  • the reflected lights (first light and second light) IR21 and IR22 enter the light receiving unit 21 via the condensing cylinder 14.
  • the condensing cylinder 14 widely condenses the reflected or scattered light. Therefore, the light receiving unit 21 can detect even the reflected light (first light) IR21 that has been absorbed and has a very small amount.
  • FIG. 3 and 4 are graphs plotting infrared wavelengths on the horizontal axis and infrared transmittances of each wavelength when passing through a space in which a predetermined concentration of difluoromethane exists on the vertical axis.
  • FIG. 5 is a graph in which the wavelength of infrared rays is plotted on the horizontal axis and the absorption cross sections of methane and difluoromethane are plotted on the vertical axis. As shown in these graphs, as a result of the test, the existence of absorption wavelengths of difluoromethane, especially in the near-infrared and mid-infrared bands, and their transmittance and absorption cross section were obtained.
  • the absorption cross section In the first wavelength range of 1659 to 1673 (nm), the absorption cross section is 5.5 x 10-22 cm 2 , In the second wavelength range of 1724 to 1726 (nm), the absorption cross section is 1.4 x 10-21 cm 2 , In the third wavelength range of 2218 to 2221 (nm), the absorption cross section is 9.8 ⁇ 10-21 cm 2 , In the fourth wavelength range of 2463 to 2466 (nm), the absorption cross section is 3.2 ⁇ 10-21 cm 2 , In the fifth wavelength range of 3316 to 3318 (nm), the absorption cross section is 7.5 ⁇ 10-19 cm 2 , In the sixth wavelength range of 9034 ⁇ 9130 (nm), the absorption cross section, 2.0 ⁇ 10 -18 cm 2.
  • the above-mentioned gas detection device 10 adopts infrared rays in the wavelength range of 1659 to 1673 (nm) as the first light IR11, and irradiates the target space RM from the irradiation unit 13. I try to do.
  • the infrared wavelength region described as "water vapor" in FIGS. 3 to 5 is an infrared wavelength region in which it is difficult to remove the presence of water vapor in the system of a measuring device such as a gas cell.
  • the measurement results shown in FIGS. 3 to 5 include the characteristics of water vapor.
  • FIGS. 3 to 5 in order to avoid confusion with the characteristics of difluoromethane and methane, it is described as "water vapor".
  • the inventor of the present application has found by repeating the test that the absorption wavelength of difluoromethane exists even in a wavelength range (1600 nm to 2500 nm) that has not been recognized until now. Then, in the gas detection device 10 according to the above embodiment, the wavelength of the first light IR11 is set to 1659 to 1673 (nm), and it is possible to detect difluoromethane existing in the remote target space RM.
  • the wavelength of the first light IR11 is set to 1659 to 1673 (nm) included in the wavelength region of near infrared rays (electromagnetic waves having a wavelength of 700 to 2500 (nm)). Therefore, as compared with the case of selecting mid-infrared rays (2500 to 4000 (nm)) or far-infrared rays (4000 (nm) or more), cooling for removing thermal noise can be omitted or simplified. As a result, the manufacturing cost can be reduced, and the deterioration of convenience due to the time from the start-up to the stabilization of the cooling device can be suppressed.
  • a Peltier element can be used as a cooling device for the infrared detection element.
  • the light receiving unit 21 receives light reflected or scattered by an object (air conditioner 90, ceiling CE, etc.) on the opposite side of the target space RM from the irradiation unit 13. Therefore, the irradiation unit 13 and the light receiving unit 21 can be brought close to each other, and the gas detection device 10 is easy to carry.
  • the absorption wavelength of building materials and structures of buildings is in the band of about 3 ⁇ m in the case of PP (polypropylene), PS (polystyrene), ABS (acrylonitrile butadiene styrene), AS (acrylonitrile styrene), etc.
  • PS polystyrene
  • paper on the ceiling surface, wood, etc. it is in a band of around 9 ⁇ m. If the wavelength of infrared rays emitted from the gas detector is selected from the band of 3 ⁇ m or 9 ⁇ m, it matches the absorption wavelength of building materials and structures, or the absorption cross-sectional area is compared with that of difluoromethane gas. If it is not small enough, it may be mistakenly recognized as the presence of difluoromethane gas due to absorption by building materials and structures.
  • the wavelength of the first light IR11 is set to 1659 to 1673 (nm). Therefore, it is not easily affected by absorption by building materials and structures.
  • the gas detection device 10 is used when detecting difluoromethane leaked from the air conditioner 90 to the target space RM.
  • the irradiation unit 13 of the gas detection device 10 is the first.
  • the first light IR11 and the second light IR12 are applied to the target space RM.
  • the light receiving unit 21 receives the first light (reflected light IR21) and the second light (reflected light IR22) that have passed through the target space RM.
  • the infrared absorption rate of the outer surface of the casing 92 of the air conditioner 90 is large, most of the first light IR11 is absorbed by the casing 92 of the air conditioner 90, and the amount of light received by the light receiving unit 21 is reduced. It ends up.
  • At least the portion of the outer surface of the casing 92 of the air conditioner 90 facing the target space RM has a lower infrared absorption rate than difluoromethane.
  • a measure can be taken in which the panel exposed inside the casing 92 is molded from a material containing metal powder, or the surface of the panel is plated.
  • the amount of received light received by the gas detection device 10 is increased, and the accuracy of difluoromethane detection is improved.
  • the outer surface of the casing 92 is solid, so that the infrared absorption rate of the casing 92 is high. Is small.
  • Modification example (7-1) Modification example 1A
  • the predetermined wavelength of infrared rays contained in the first light IR 11 is set in the wavelength range of 1659 to 1673 (nm).
  • the wavelength of the first light may be set in the wavelength range of 1724 to 1726 (nm), 2218 to 2221 (nm), or 2463 to 2466 (nm).
  • infrared rays in these wavelength ranges also match the absorption wavelength of difluoromethane and are easily absorbed by difluoromethane. Therefore, good detection accuracy of difluoromethane can be expected.
  • the wavelength range of 1724 to 1726 (nm), 2218 to 2221 (nm), or 2463 to 2466 (nm) is also in the near-infrared wavelength region, and cooling for removing thermal noise can be omitted or simplified. it can.
  • the predetermined wavelength of infrared rays contained in the first light IR 11 is set in the wavelength range of 1659 to 1673 (nm).
  • the wavelength of the first light may be set in the wavelength range of 3316 to 3318 (nm).
  • the absorption cross section of difluoromethane is large (7.5 ⁇ 10-19 cm 2 ) as described above. Therefore, it is possible to detect difluoromethane having a lower concentration than when near infrared rays are used as the first light.
  • the predetermined wavelength of infrared rays contained in the first light IR 11 is set in the wavelength range of 1659 to 1673 (nm).
  • the wavelength of the first light may be set in the wavelength range of 9034-9130 (nm).
  • the absorption cross section of difluoromethane is further large (2.0). ⁇ 10-18 cm 2 ). Therefore, it is possible to detect difluoromethane having a lower concentration than when near infrared rays are used as the first light.
  • the irradiation unit 13 is configured to irradiate the first light IR11 and the second light IR12.
  • the irradiation unit irradiates the target space with the first light whose emission wavelength is modulated by including infrared rays having a predetermined wavelength by current modulation.
  • the detection unit detects difluoromethane existing in the target space based on the fundamental wave phase sensitive detection signal of the predetermined wavelength of the first light and the double wave phase sensitive detection signal of the predetermined wavelength of the first light.
  • the predetermined wavelength of the first light is set in the wavelength range of 1659 to 1673 (nm)
  • the predetermined wavelength of the first light is replaced with the double-wave phase-sensitive detection signal of the predetermined wavelength of the first light.
  • the 4th harmonic phase sensitive detection signal of it is preferable to use the 4th harmonic phase sensitive detection signal of.
  • the detection unit determines the concentration of difluoromethane based on the ratio of the fundamental wave phase sensitive detection signal of the predetermined wavelength of the first light to the fourth harmonic phase sensitive detection signal of the predetermined wavelength of the first light. It will be calculated.
  • wavelength conversion unit a wavelength conversion device such as a nonlinear optical crystal can be adopted.
  • the irradiation unit 13 is configured to irradiate the first light IR11 and the second light IR12.
  • the wavelength may be changed by changing the output of the laser from the irradiation unit, and light of two wavelengths may be detected by inserting and removing the wavelength selection film.
  • the wavelength selection film is removed or inserted in front of the detector.
  • wavelength conversion crystal such as lithium niobate (PPRN) may be used instead of inserting and removing the wavelength selection film.
  • PPRN lithium niobate
  • wavelength conversion crystals can be used to convert wavelengths from mid-infrared rays to visible light or near-infrared rays, for example, cooling treatment using liquid nitrogen or the like becomes unnecessary, and difluoromethane can be detected at room temperature without thermal noise. it can.
  • an LED may be used as the light source of the irradiation unit instead of the laser.
  • the multi-wavelength of the LED light oscillated from the irradiation unit it is possible to perform spectroscopy with a half mirror and perform a difference of two wavelengths to detect difluoromethane.
  • the refrigerant (difluoromethane) leaking from the air conditioner diffuses into the space near the side wall, so the target space is not near the ceiling but on the side wall. It becomes a space along. If the air conditioner is a floor-standing type, the target space will be a space near the floor surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

離れた対象空間に存在するジフルオロメタンを検出するためのガス検出装置(10)は、検出部(22)を備えている。検出部(22)は、第1波長範囲から第6波長範囲のいずれかの波長範囲にある所定波長の光が吸収されることを利用して、対象空間に存在するジフルオロメタンを検出する。

Description

ガス検出装置および漏洩ガス検出システム
 ガス検出装置および漏洩ガス検出システムに関する。
 特許文献1(特開平10-132737号公報)に、検出すべきガスを収容する検出用ガスセルおよび基準用のガスを収容する基準用ガスセルを備えるガス濃度測定装置が示されている。この装置では、各ガスセルを透過したレーザー光を受光する光検出器を用いて、検出用ガスセルの中にあるメタンガスの濃度を測定している。
 空気調和機などの冷凍装置では、冷媒を循環させることが多いが、冷媒回路から冷媒が漏洩することがある。冷媒としてジフルオロメタンが使われている冷凍装置も存在しており、冷媒漏洩を検知するために、ジフルオロメタンのガス濃度を検出する装置が求められている。
 そして、従来は、装置内にジフルオロメタンのガスを誘引してガス濃度を測定する、赤外線吸収分光式の装置や半導体式の装置が用いられている。
 しかし、このような装置では、例えば、部屋の天井付近のジフルオロメタンを検出することは難しい。可搬式の装置であれば、装置を天井付近に持っていくことができるが、天井付近の空間の多数の箇所においてジフルオロメタンを検出したい場合、検出作業に長い時間を要することになる。
 また、離れた場所にあるメタンガスを検出する装置は存在しているが、ジフルオロメタンについては、装置内にガスを誘引する方式の装置が存在するだけである。
 第1観点のガス検出装置は、離れた対象空間に存在するジフルオロメタンを検出するガス検出装置であって、検出部とを備えている。検出部は、所定波長の光が吸収されることを利用して、ジフルオロメタンを検出する。所定波長は、
1659~1673(nm)の第1波長範囲、
1724~1726(nm)の第2波長範囲
2218~2221(nm)の第3波長範囲、
2463~2466(nm)の第4波長範囲、
3316~3318(nm)の第5波長範囲、および
9034~9130(nm)の第6波長範囲、
のいずれかの波長範囲にある。
 第2観点のガス検出装置は、第1観点のガス検出装置であって、照射部と、受光部と、をさらに備えている。照射部は、第1光と、第2光とを、対象空間に対して照射する。第1光は、上記の所定波長の赤外線を含む。第2光は、第1光とは異なる光である。受光部は、対象空間を通過した第1光および第2光を、受光する。検出部は、受光部が受光した第1光および第2光に基づいて、対象空間に存在するジフルオロメタンを検出する。
 本願の発明者は、これまで詳細がわかっていなかった波長範囲におけるジフルオロメタンの吸収波長帯の存在を、最新の高い分解能を持つ機器によって試験を繰り返すことによって認識するに至っている。この認識に鑑み、上記の第1~第5波長範囲のいずれかの波長の赤外線を含む第1光を対象空間に照射し、対象空間を通過した第1光および第2光を受光部で受光することで、ジフルオロメタンの検出ができることを、本願の発明者は見出している。
 第3観点のガス検出装置は、第2観点のガス検出装置であって、検出部は、演算部を有する。演算部は、対象空間に存在するジフルオロメタンの濃度を演算する。このジフルオロメタンの濃度の演算は、受光部が受光した第1光および第2光の差分に基づいて行われる。
 ここでは、対象空間に存在するジフルオロメタンの検出だけではなく、そのジフルオロメタンの濃度も測定することができる。
 第4観点のガス検出装置は、離れた対象空間に存在するジフルオロメタンを検出するガス検出装置であって、照射部と、受光部と、検出部とを備えている。照射部は、電流変調によって所定波長の赤外線を含んで発信波長を変調した第1光を、対象空間に対して照射する。受光部は、対象空間を通過した第1光を受光する。検出部は、受光部が受光した第1光に基づいて、対象空間に存在するジフルオロメタンを検出する。第1光に含まれる赤外線の所定波長は、
1659~1673(nm)の第1波長範囲、
1724~1726(nm)の第2波長範囲
2218~2221(nm)の第3波長範囲、
2463~2466(nm)の第4波長範囲、
3316~3318(nm)の第5波長範囲、および
9034~9130(nm)の第6波長範囲、
のいずれかの波長範囲にある。検出部は、
第1光の所定波長の基本波位相敏感検波信号と、
第1光の所定波長の2倍波位相敏感検波信号、又は、第1光の所定波長の4倍波位相敏感検波信号、と、
に基づいて、対象空間に存在するジフルオロメタンを検出する。
 本願の発明者は、これまで詳細がわかっていなかった波長範囲におけるジフルオロメタンの吸収波長の存在を、最新の高い分解能を持つ機器によって試験を繰り返すことによって認識するに至っている。この認識に鑑み、上記の第1~第5波長範囲のいずれかの波長の赤外線を含む第1光を対象空間に照射し、対象空間を通過した第1光を受光部で受光することで、ジフルオロメタンの検出ができることを、本願の発明者は見出している。
 第5観点のガス検出装置は、第4観点のガス検出装置であって、検出部は、演算部を有している。演算部は、
第1光の所定波長の基本波位相敏感検波信号と、第1光の所定波長の2倍波位相敏感検波信号との比、
又は、
第1光の所定波長の基本波位相敏感検波信号と、第1光の所定波長の4倍波位相敏感検波信号との比、
に基づいて、対象空間に存在するジフルオロメタンの濃度を演算する。
 ここでは、対象空間に存在するジフルオロメタンの検出だけではなく、そのジフルオロメタンの濃度も測定することができる。
 第6観点のガス検出装置は、第2観点から第5観点のいずれかのガス検出装置であって、第1光の赤外線の所定波長は、第1波長範囲、第2波長範囲、第3波長範囲、および第4波長範囲、のいずれかの波長範囲にある。受光部は、対象空間を挟んで照射部と反対側にある物体によって反射又は散乱した光、を受光する。
 ここでは、反射又は散乱した光を受光部で受光するが、第1光の所定波長が上記の範囲にあるため、物体への吸収が小さくなり、精度の良いジフルオロメタンの検出ができる。
 第7観点のガス検出装置は、第2観点から第5観点のいずれかのガス検出装置であって、第1光の赤外線の所定波長は、第4波長範囲、又は、第5波長範囲、の波長範囲にある。第6観点のガス検出装置は、受光部に受光される光を短波長に波長変換する波長変換部、をさらに備えている。
 ここでは、波長変換部を備えているため、受光部における熱ノイズも小さくなり、その熱ノイズ除去のための冷却装置の簡易化や省略を図ることができる。
 第8観点のガス検出装置は、第2観点から第5観点のいずれかのガス検出装置であって、第1光の赤外線の所定波長は、第1波長範囲、第2波長範囲、および第3波長範囲、のいずれかの波長範囲にある。
 ここでは、波長が比較的小さい第1光を利用するため、受光部における熱ノイズも小さくなり、その熱ノイズ除去のための冷却装置の簡易化や省略を図ることができる。
 なお、一般に、冷却装置の起動には時間が必要で、冷却装置が大型化するとガス検出装置の利便性が悪くなる。
 第9観点のガス検出装置は、第2観点から第8観点のいずれかのガス検出装置であって、集光レンズ又は望遠鏡をさらに備えている。集光レンズ又は望遠鏡は、受光部に受光される光を通す。
 ここでは、光が微量であっても、受光部によって光が受光される。
 なお、集光レンズ又は望遠鏡として、例えば、カセグレン式の望遠鏡を用いることができる。
 第10観点の漏洩ガス検出システムは、空気調和機と、第1観点から第9観点のいずれかのガス検出装置と、を備えている。空気調和機は、冷媒としてジフルオロメタンが流れる熱交換器と、その熱交換器を収容するケーシングと、を有する。ガス検出装置は、空気調和機から対象空間に漏洩するジフルオロメタンを検出する。空気調和機のケーシングの外面のうち、少なくとも対象空間に面する部分は、ジフルオロメタンよりも赤外線の吸収率が低い。
 ここでは、空気調和機から対象空間に漏洩したジフルオロメタンを検出するときに、ガス検出装置を用いるが、上述のとおり、ガス検出装置の照射部は、第1光および第2光を対象空間に対して照射する。その後、対象空間を通過した第1光および第2光を受光部で受光する。したがって、仮に、空気調和機のケーシングの外面の赤外線吸収率が大きいと、第1光の多くが空気調和機のケーシングに吸収されてしまい、受光部における第1光の受光量が減ってしまう。
 しかし、第10観点の漏洩ガス検出システムでは、空気調和機のケーシングの外面のうち、少なくとも対象空間に面する部分は、ジフルオロメタンよりも赤外線の吸収率が低い。このため、第1光の受光部における受光量が増え、ジフルオロメタンの検出の精度が上がる。
ガス検出装置を備える漏洩ガス検出システムの概略図。 ガス検出装置の概略図。 2μm~10μm(2000nmから10000nm)の波長帯域におけるジフルオロメタンの赤外線の透過率を示すグラフ。 1μm~2.5μm(1000nmから2500nm)の波長帯域におけるジフルオロメタンの赤外線の透過率を示すグラフ。 1.2μm~2.5μm(1200nmから2500nm)の波長帯域におけるジフルオロメタンおよびメタンの赤外線の吸収断面積を示すグラフ。 1.6μm~1.8μm(1600nmから1800nm)の波長帯域におけるジフルオロメタンの赤外線の吸収断面積を示すグラフ。 2.1μm~2.5μm(2100nmから2500nm)の波長帯域におけるジフルオロメタンの赤外線の吸収断面積を示すグラフ。 3.0μm~4.0μm(3000nmから4000nm)の波長帯域におけるジフルオロメタンの赤外線の吸収断面積を示すグラフ。 8.0μm~10.0μm(8000nmから10000nm)の波長帯域におけるジフルオロメタンの赤外線の吸収断面積を示すグラフ。
 (1)可搬で遠隔のジフルオロメタンを検出できるガス検出装置の必要性
 オフィスやホテル、商業施設などの建物では、天井設置型の空調室内機が配備されることが多い。この空調室内機の本体は、天井裏に設置され、空調室内機の吹出口や吸込口は、天井に形成された開口に配置される。すると、空調室内機の熱交換器や冷媒配管の亀裂箇所や緩んだ接続箇所から冷媒であるジフルオロメタンが漏洩した場合には、空調室内機の内部から吹出口や吸込口を通って室内の上部空間にジフルオロメタンが拡散する。室内の上部空間で且つ空調室内機の下方の空間に漏洩したジフルオロメタンが拡散した状態として、例えば、冷媒漏洩時には、その空間におけるジフルオロメタンの濃度が高くなっている状態が想定される。
 このため、空気調和機などのジフルオロメタンを冷媒として使用する機器から冷媒漏洩に関して、漏洩箇所を精度よく遠隔から検出できるガス検出装置が求められている。
 なお、従来から、フルオロカーボンのガス雰囲気にプローブを近づけることでガスを誘引し、赤外線吸収分光法式や半導体式でフルオロカーボンの有無と濃度を判定する装置、が存在している。しかしながら、そのガス検出装置は、遠隔のガスを検出できるものではなかった。
 (2)漏洩ガス検出システム
 図1に、漏洩ガス検出システムを示す。漏洩ガス検出システムは、天井設置型の空気調和機90と、ガス検出装置10と、を備えている。空気調和機90は、冷媒としてジフルオロメタン(R32)が流れる熱交換器91と、その熱交換器91を収容するケーシング92と、を有する。ガス検出装置10は、空気調和機90から対象空間RMに漏洩するジフルオロメタンを検出する。対象空間RMは、空気調和機90が設置される部屋の室内空間であり、天井CE、側壁、床FLに囲まれた空間である。
 空気調和機90のケーシング92の外面のうち、少なくとも対象空間RMに面する部分は、ジフルオロメタンよりも赤外線の吸収率が低くなっている。具体的には、ケーシング92の室内に露出するパネルを、金属粉を含む材料から成形する、あるいは、そのパネルの表面にメッキ処理を施すことで、赤外線の吸収率を低く抑えている。但し、金属粉の使用やメッキ処理を行わなくても、ケーシング92の外面が固体であるため、ケーシング92の赤外線の吸収率は小さい。
 後述するガス検出装置10は、ポータブルの装置であって、冷媒漏洩を検知するためのサービスパーソンが携帯している。ガス検出装置10は、自身から離れた空気調和機90の下方の対象空間RMに対して赤外線の照射を行い、空気調和機90のケーシング92や天井CEからの反射又は散乱した光を受光して演算を行うことによって、対象空間RMにおけるジフルオロメタンの存在およびその濃度を検出する。
 (3)ガス検出装置の構成
 図2に示すガス検出装置10は、レーザーセンシング技術を基礎としたガス検出装置であって、本体12と、照射部13と、集光筒14と、を備えている。
 照射部13は、レーザー光である第1光IR11および第2光IR12を、対象空間RMに対して照射する。第1光IR11は、所定波長の赤外線を含む。第2光IR12は、第1光IR11とは異なる光である。
 第1光IR11に含まれる赤外線の所定波長は、1659~1673(nm)の波長範囲にある。
 第2光IR12は、近赤外線であり、
1659~1673(nm)の第1波長範囲、
1724~1726(nm)の第2波長範囲
2218~2221(nm)の第3波長範囲、および
2463~2466(nm)の第4波長範囲
以外の波長帯域の、近赤外線(700~2500(nm))である。
 後述するように、対象空間RMにジフルオロメタンが存在する場合、第1光IR11の一部は吸収され、第2光IR12は吸収されない。
 集光筒14は、集光レンズ又は望遠鏡であり、後述する受光部21に受光される光を通す。ここでは、集光筒14として、カセグレン式の望遠鏡を採用している。
 本体12には、受光部21や検出部22が配置されている。
 受光部21は、対象空間RMを通過して空気調和機90のケーシング92や天井CEで反射又は散乱した第1光および第2光(以下、反射光IR21,IR22という)を、集光筒14を介して受光する。受光部21は、赤外線を受光して電気信号に変換する赤外線検出素子である。ここでは、赤外線検出素子として、MCT(HgCdTe)赤外線検出素子を採用している。
 検出部22は、受光部21が受光した反射光IR21,IR22に基づいて、対象空間RMに存在するジフルオロメタンを検出する。検出部22は、信号増幅器や演算部22aを有する。
 演算部22aは、コンピュータにより実現されるものである。演算部22aは、制御演算装置と記憶装置とを備える。制御演算装置には、CPU又はGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。
 演算部22aは、受光部21からの電気信号を受け、対象空間RMに存在するジフルオロメタンの濃度を演算する。このジフルオロメタンの濃度の演算は、受光部21が受光した反射光(第1光および第2光)IR21,IR22の差分に基づいて行われる。
 (4)ガス検出装置の動作
 漏洩ガス検出システムでは、オフィス等の建物内の部屋の天井CEに設置された空気調和機90から冷媒(ジフルオロメタン)が漏れていないかどうか、サービスパーソンが携帯する可搬のガス検出装置10によって調べる。サービスパーソンは、天井CE付近の空気調和機90の下方空間をガス検出の対象空間RM(図1参照)と判断し、その対象空間RMに向けてレーザー光(第1光IR11および第2光IR12)を照射する。
 図1に示すように、仮に、ジフルオロメタン(R32)が空気調和機90の熱交換器91や冷媒配管の亀裂箇所90aから漏れているとすると、対象空間RMには、所定の濃度のジフルオロメタンが存在することになる。すると、レーザー光のうち、第1光IR11は一部がジフルオロメタンに吸収され、第2光IR12はジフルオロメタンに吸収されない。したがって、空気調和機90のケーシング92や天井CEからの反射光(第1光および第2光)IR21,IR22は、受光部21における検出レベルに差が生じる。この差分に基づいて、演算部22aは、対象空間RMにおけるジフルオロメタンの濃度を演算する。
 なお、図2に示すように、反射光(第1光および第2光)IR21,IR22は、集光筒14を介して受光部21に入る。集光筒14は、反射又は散乱した光を広く集光する。したがって、受光部21では、吸収されて微量となっている反射光(第1光)IR21であっても、検出が可能となっている。
 (5)ジフルオロメタンの赤外線吸収の特性
 本願の発明者は、これまで詳細がわかっていなかった波長範囲におけるジフルオロメタンの吸収波長帯の存在を、最新の高い分解能を持つ機器によって試験を繰り返すことによって認識するに至っている。
 図3および図4は、横軸に、赤外線の波長、縦軸に、所定濃度のジフルオロメタンが存在する空間を通過するときの各波長の赤外線の透過率をプロットしたグラフである。図5は、横軸に、赤外線の波長、縦軸に、メタンおよびジフルオロメタンの吸収断面積をプロットしたグラフである。これらのグラフにも表れているように、試験の結果、特に、近赤外線、中赤外線の帯域におけるジフルオロメタンの吸収波長の存在と、それらの透過率や吸収断面積の知見が得られた。具体的には、以下の5つの吸収波長帯の存在と、それぞれのピークにおける吸収断面積の知見が得られた。
1659~1673(nm)の第1波長範囲では、吸収断面積が、5.5×10-22cm
1724~1726(nm)の第2波長範囲では、吸収断面積が、1.4×10-21cm
2218~2221(nm)の第3波長範囲では、吸収断面積が、9.8×10-21cm
2463~2466(nm)の第4波長範囲では、吸収断面積が、3.2×10-21cm
3316~3318(nm)の第5波長範囲では、吸収断面積が、7.5×10-19cm
9034~9130(nm)の第6波長範囲では、吸収断面積が、2.0×10-18cm
 このような新たな知見に基づき、上記のガス検出装置10では、第1光IR11として、1659~1673(nm)の波長範囲にある赤外線を採用し、照射部13から対象空間RMに向けて照射を行うようにしている。
 なお、図5のグラフから明らかなように、メタン(CH)に比べて、ジフルオロメタン(R32)の1.6~2.5μm帯域の吸収断面積が非常に小さい、ことがわかる。しかし、ある程度以上の濃度であれば、遠隔の対象空間RMに存在するジフルオロメタンをガス検出装置10で検出することは可能である。
 また、図3~図5において「水蒸気」と記載がある赤外線波長域は、ガスセル等の測定装置の系内での水蒸気の存在を除去するのが困難な赤外線波長域である。図3~図5に示す測定結果には、水蒸気の特性が混在する。図3~図5において、ジフルオロメタンやメタンの特性との混同を避けるために、「水蒸気」と記載している。
 (6)特徴
 (6-1)
 上述のように、本願の発明者は、試験を繰り返し行うことによって、今まで認識されていなかった波長範囲(1600nm~2500nm)においてもジフルオロメタンの吸収波長が存在することを見出した。そして、上記の実施形態に係るガス検出装置10では、第1光IR11の波長を1659~1673(nm)にセットし、遠隔の対象空間RMに存在するジフルオロメタンの検出を可能にしている。
 なお、これまで認識されていなかったジフルオロメタンの吸収波長を見つけることは、以前の分解能が低い測定機器を使った試験では不可能であった。最新の高い分解能を持つ測定機器を使って試験を繰り返した結果、図3~図5に示すような知見を得ることができた。
 (6-2)
 ガス検出装置10では、第1光IR11の波長を、近赤外線(波長が700~2500(nm)の電磁波)の波長領域に含まれる1659~1673(nm)にセットしている。このため、中赤外線(2500~4000(nm))や遠赤外線(4000(nm)以上)を選択する場合に比べて、熱ノイズ除去のための冷却を省略あるいは簡略化することができる。これにより、製造コストが下がり、また、冷却装置の起動から安定に至るまでの時間による利便性の悪化を抑制することができる。
 なお、必要最小限の冷却を行うために、例えば、赤外線検出素子の冷却装置としてペルチェ素子を用いることができる。
 (6-3)
 ガス検出装置10では、対象空間RMを挟んで照射部13と反対側にある物体(空気調和機90や天井CEなど)によって反射又は散乱した光、を受光部21で受光する。このため、照射部13と受光部21とを近接させることができ、ガス検出装置10が持ち運びやすいものになっている。
 (6-4)
 一般に、建物の建材や構造物の吸光波長は、PP(ポリプロピレン)、PS(ポリスチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、AS(アクリロニトリル・スチレン)などの場合には3μm近傍の帯域等にあり、PS(ポリスチレン)や天井面の紙、木材などの場合には9μm近傍の帯域等にある。仮に、ガス検出装置から照射する赤外線の波長を、3μm近傍あるいは9μm近傍の帯域等から選択したとすれば、建材や構造物の吸収波長と一致、又は、吸収断面積がジフルオロメタンのガスと比較して十分小さくないと、建材や構造物による吸光によってジフルオロメタンのガスが存在すると誤って認識してしまう恐れがある。
 しかし、ガス検出装置10では、第1光IR11の波長を、1659~1673(nm)にセットしている。このため、建材や構造物による吸光の影響を受けにくい。
 (6-5)
 上記の漏洩ガス検出システムでは、空気調和機90から対象空間RMに漏洩したジフルオロメタンを検出するときに、ガス検出装置10を用いるが、上述のとおり、ガス検出装置10の照射部13は、第1光IR11および第2光IR12を対象空間RMに対して照射する。その後、対象空間RMを通過した第1光(反射光IR21)および第2光(反射光IR22)を受光部21で受光する。したがって、仮に、空気調和機90のケーシング92の外面の赤外線吸収率が大きいと、第1光IR11の多くが空気調和機90のケーシング92に吸収されてしまい、受光部21における受光量が減ってしまう。
 しかし、上記の漏洩ガス検出システムでは、空気調和機90のケーシング92の外面のうち、少なくとも対象空間RMに面する部分は、ジフルオロメタンよりも赤外線の吸収率が低い。具体的には、ケーシング92の室内に露出するパネルを、金属粉を含む材料から成形する、あるいは、そのパネルの表面にメッキ処理を施すという対策を採れる。
 このため、ガス検出装置10における反射又は散乱した光の受光量が増え、ジフルオロメタンの検出の精度が上がっている。
 なお、金属粉を含む材料から成形する、あるいは、そのパネルの表面にメッキ処理を施すという対策を採らない場合であっても、ケーシング92の外面は固体であるため、ケーシング92の赤外線の吸収率は小さい。
 (7)変形例
 (7-1)変形例1A
 上記のガス検出装置10では、第1光IR11に含まれる赤外線の所定波長を、1659~1673(nm)の波長範囲にセットしている。
 これに代えて、第1光の波長を、1724~1726(nm)や2218~2221(nm)あるいは2463~2466(nm)の波長範囲にセットしてもよい。上述のように、これらの波長範囲の赤外線も、ジフルオロメタンの吸収波長に一致し、ジフルオロメタンに吸収されやすい。このため、良好なジフルオロメタンの検出精度が期待できる。
 また、1724~1726(nm)や2218~2221(nm)あるいは2463~2466(nm)の波長範囲も、近赤外線の波長領域にあり、熱ノイズ除去のための冷却を省略あるいは簡略化することができる。
 (7-2)変形例1B
 上記のガス検出装置10では、第1光IR11に含まれる赤外線の所定波長を、1659~1673(nm)の波長範囲にセットしている。
 これに代えて、第1光の波長を、3316~3318(nm)の波長範囲にセットしてもよい。この場合、熱ノイズ除去のための冷却が必要になる等、幾つかのデメリットが出るけれども、上述のように、ジフルオロメタンの吸収断面積が大きい(7.5×10-19cm)。したがって、近赤外線を第1光として採用する場合に比べて、より低い濃度のジフルオロメタンの検出が可能になる。
 (7-3)変形例1C
 上記のガス検出装置10では、第1光IR11に含まれる赤外線の所定波長を、1659~1673(nm)の波長範囲にセットしている。
 これに代えて、第1光の波長を、9034~9130(nm)の波長範囲にセットしてもよい。この場合も、変形例1Bと同様に、熱ノイズ除去のための冷却が必要になる等、幾つかのデメリットが出るけれども、上述のように、ジフルオロメタンの吸収断面積が更に大きい(2.0×10-18cm)。したがって、近赤外線を第1光として採用する場合に比べて、より低い濃度のジフルオロメタンの検出が可能になる。
 (7-4)変形例1D
 上記のガス検出装置10では、照射部13が第1光IR11および第2光IR12を照射する構成を採っている。
 これに代えて、照射部から第1光のみを照射する構成を採ることもできる。この場合には、照射部は、電流変調によって所定波長の赤外線を含んで発信波長を変調した第1光を、対象空間に対して照射する。検出部は、第1光の所定波長の基本波位相敏感検波信号と、第1光の所定波長の2倍波位相敏感検波信号とに基づいて、対象空間に存在するジフルオロメタンを検出する。
 なお、第1光の所定波長を、1659~1673(nm)の波長範囲にセットする場合には、第1光の所定波長の2倍波位相敏感検波信号の代わりに、第1光の所定波長の4倍波位相敏感検波信号を用いることが好ましい。具体的には、検出部は、第1光の所定波長の基本波位相敏感検波信号と、第1光の所定波長の4倍波位相敏感検波信号との比、に基づいてジフルオロメタンの濃度を演算することになる。この理由は、他の1724~1726(nm)や2218~2221(nm)や2463~2466(nm)といったジフルオロメタンの吸収波長の範囲とは異なり、1659~1673(nm)の波長範囲にはピークが2つ存在するためである。1659~1673(nm)の波長範囲全体で基本波位相敏感検波振動を照射すると、4倍波を検出することになるため、2倍波位相敏感検波信号ではなく4倍波位相敏感検波信号を用いることになる。
 (7-5)変形例1E
 上述の変形例1Bや変形例1Cのように、第1光として照射部から中赤外線あるいは遠赤外線を照射する場合には、ガス検出装置に波長変換部を更に配備することが好ましい。波長変換部によって反射又は散乱した光を波長変換し、波長変換された光を受光部で受光するように構成すれば、熱ノイズ対策を簡易化することができる。
 波長変換部としては、非線形光学結晶などの波長変換デバイスを採用することができる。
 (7-6)変形例1F
 上記のガス検出装置10では、照射部13が第1光IR11および第2光IR12を照射する構成を採っている。
 これに代えて、照射部からのレーザーの出力を変えることで波長を変化させ、波長選択膜を抜き挿しすることによって2波長の光を検出してもよい。波長選択膜は、検出器の手前において、抜いたり挿したりする。
 また、波長選択膜を抜き挿しするのではなく、ニオブ酸リチウム(PPLN)などの波長変換結晶を用いてもよい。波長変換結晶を使って、例えば中赤外線から可視光や近赤外線へと波長変換できれば、液体窒素などを用いた冷却処理が不要となり、室温において熱ノイズを伴うことなくジフルオロメタンの検出を行うことができる。
 さらに、照射部の光源として、レーザーではなくLEDを採用してもよい。この場合には、照射部から発振されたLED光の多波長を利用して、ハーフミラーで分光し、2波長差分を行ってジフルオロメタンを検出することができる。
 (7-7)変形例1G
 上記の漏洩ガス検出システムでは、空気調和機90の周辺の空間を対象空間RMとして、そこにガス検出装置10の照射部13からの照射を行っている。
 もし、建物内の部屋の側壁に空気調和機が設置されていれば、空気調和機から漏洩する冷媒(ジフルオロメタン)は側壁の近傍の空間に拡散するため、対象空間は、天井付近ではなく側壁に沿った空間になる。もし、空気調和機が床置き型のものであれば、対象空間は、床面の近くの空間になる。
 (付記)
 以上、ガス検出装置および漏洩ガス検出システムの実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 10   ガス検出装置
 13   照射部
 14   集光筒(集光レンズ、望遠鏡)
 21   受光部
 22   検出部
 22a  演算部
 90   空気調和機
 91   熱交換器
 92   ケーシング
 IR11 第1光
 IR12 第2光
 IR21 反射光(物体によって反射又は散乱した光)
 IR22 反射光(物体によって反射又は散乱した光)
 RM   対象空間
特開平10-132737号公報

Claims (10)

  1.  離れた対象空間に存在するジフルオロメタンを検出するガス検出装置(10)であって、
     所定波長の光が吸収されることを利用して、前記ジフルオロメタンを検出する検出部(22)、
    を備え、
     前記所定波長は、
    1659~1673(nm)の第1波長範囲、
    1724~1726(nm)の第2波長範囲
    2218~2221(nm)の第3波長範囲、
    2463~2466(nm)の第4波長範囲、
    3316~3318(nm)の第5波長範囲、および
    9034~9130(nm)の第6波長範囲、
    のいずれかの波長範囲にある、ガス検出装置。
  2.  前記所定波長の赤外線を含む第1光(IR11)と、前記第1光とは異なる第2光(IR12)と、を前記対象空間(RM)に対して照射する、照射部(13)と、
     前記対象空間を通過した前記第1光(IR21)および前記第2光(IR22)を受光する、受光部(21)と、
    をさらに備え、
     前記検出部は、前記受光部が受光した前記第1光および前記第2光に基づいて、前記対象空間に存在する前記ジフルオロメタンを検出する、
    請求項1に記載のガス検出装置。
  3.  前記検出部は、演算部を有し、
     前記演算部は、
    前記受光部が受光した前記第1光および前記第2光の差分、
    に基づいて、前記対象空間に存在する前記ジフルオロメタンの濃度を演算する、
    請求項2に記載のガス検出装置。
  4.  離れた対象空間に存在するジフルオロメタンを検出するガス検出装置であって、
     電流変調によって所定波長の赤外線を含んで発信波長を変調した第1光を、対象空間に対して照射する、照射部と、
     前記対象空間を通過した前記第1光を受光する、受光部と、
     前記受光部が受光した前記第1光に基づいて、前記対象空間に存在する前記ジフルオロメタンを検出する、検出部と、
    を備え、
     前記所定波長は、
    1659~1673(nm)の第1波長範囲、
    1724~1726(nm)の第2波長範囲
    2218~2221(nm)の第3波長範囲、
    2463~2466(nm)の第4波長範囲、
    3316~3318(nm)の第5波長範囲、および
    9034~9130(nm)の第6波長範囲、
    のいずれかの波長範囲にあり、
     前記検出部は、
    前記第1光の前記所定波長の基本波位相敏感検波信号、
    および、
    前記第1光の前記所定波長の2倍波位相敏感検波信号、又は、前記第1光の前記所定波長の4倍波位相敏感検波信号、
    に基づいて、前記対象空間に存在する前記ジフルオロメタンを検出する、
    ガス検出装置。
  5.  前記検出部は、演算部を有し、
     前記演算部は、
    前記第1光の所定波長の基本波位相敏感検波信号と、前記第1光の所定波長の2倍波位相敏感検波信号との比、
    又は、
    前記第1光の所定波長の基本波位相敏感検波信号と、前記第1光の所定波長の4倍波位相敏感検波信号との比、
    に基づいて、前記対象空間に存在する前記ジフルオロメタンの濃度を演算する、
    請求項4に記載のガス検出装置。
  6.  前記所定波長は、前記第1波長範囲、前記第2波長範囲、前記第3波長範囲、および前記第4波長範囲、のいずれかの波長範囲にあり、
     前記受光部は、前記対象空間を挟んで前記照射部と反対側にある物体によって反射又は散乱した光を受光する、
    請求項2から5のいずれか1項に記載のガス検出装置。
  7.  前記所定波長は、前記第4波長範囲、又は、前記第5波長範囲、の波長範囲にあり、
     前記受光部に受光される光を波長変換する、波長変換部、
    をさらに備える、請求項2から5のいずれか1項に記載のガス検出装置。
  8.  前記所定波長は、前記第1波長範囲、前記第2波長範囲、および前記第3波長範囲、のいずれかの波長範囲にある、
    請求項2から5のいずれか1項に記載のガス検出装置。
  9.  前記受光部に受光される光を通す、集光レンズ又は望遠鏡(14)、
    をさらに備える、請求項2から8のいずれか1項に記載のガス検出装置。
  10.  冷媒として前記ジフルオロメタンが流れる熱交換器(91)と、前記熱交換器を収容するケーシング(92)とを有する、空気調和機(90)と、
     前記空気調和機から前記対象空間に漏洩する前記ジフルオロメタンを検出する、請求項1から9のいずれか1項に記載のガス検出装置と、
    を備え、
     前記ケーシングの外面のうち、少なくとも前記対象空間に面する部分は、前記ジフルオロメタンよりも前記赤外線の吸収率が低い、
    漏洩ガス検出システム。
PCT/JP2020/040668 2019-10-29 2020-10-29 ガス検出装置および漏洩ガス検出システム WO2021085543A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2020373988A AU2020373988B2 (en) 2019-10-29 2020-10-29 Gas detector and leakage-gas detection system
CN202080075499.6A CN114616456A (zh) 2019-10-29 2020-10-29 气体检测装置以及泄漏气体检测系统
ES20882466T ES2972089T3 (es) 2019-10-29 2020-10-29 Dispositivo de detección de gas y sistema de detección de fugas de gas
EP20882466.4A EP4053543B1 (en) 2019-10-29 2020-10-29 Gas detection device and gas leakage detection system
US17/772,064 US20220373457A1 (en) 2019-10-29 2020-10-29 Gas detector and leakage-gas detection system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019196670 2019-10-29
JP2019-196670 2019-10-29
JP2020180465A JP7114832B2 (ja) 2019-10-29 2020-10-28 ガス検出装置および漏洩ガス検出システム
JP2020-180465 2020-10-28

Publications (1)

Publication Number Publication Date
WO2021085543A1 true WO2021085543A1 (ja) 2021-05-06

Family

ID=75713007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040668 WO2021085543A1 (ja) 2019-10-29 2020-10-29 ガス検出装置および漏洩ガス検出システム

Country Status (7)

Country Link
US (1) US20220373457A1 (ja)
EP (1) EP4053543B1 (ja)
JP (1) JP7114832B2 (ja)
CN (1) CN114616456A (ja)
AU (1) AU2020373988B2 (ja)
ES (1) ES2972089T3 (ja)
WO (1) WO2021085543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4286820A1 (fr) * 2022-06-03 2023-12-06 Thales Système de détection de fuite de fluide de refroidissement dans un équipement électronique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6873957B2 (ja) * 2018-09-24 2021-05-19 株式会社藤商事 遊技機
JP6873956B2 (ja) * 2018-09-24 2021-05-19 株式会社藤商事 遊技機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478134A (en) * 1987-04-24 1989-03-23 Mobay Corp Remotely measuring gas analyzer
JPH10132737A (ja) 1996-10-31 1998-05-22 Hitachi Cable Ltd 遠隔ガス濃度測定方法及びその装置
JP2008298638A (ja) * 2007-05-31 2008-12-11 Hitachi Cable Ltd 光式ガス濃度検出方法及び光式ガス濃度検出装置
WO2016103786A1 (ja) * 2014-12-25 2016-06-30 三菱電機株式会社 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置
WO2017044435A1 (en) * 2015-09-10 2017-03-16 Honeywell International Inc. Gas detector with normalized response and improved sensitivity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057178A (ja) 2001-08-17 2003-02-26 Horiba Ltd 多成分分析装置
JP2003294567A (ja) 2002-03-29 2003-10-15 Osaka Gas Co Ltd 気体漏洩可視化および測距装置
KR20160141590A (ko) * 2015-06-01 2016-12-09 주식회사 가스트론 Ndir 센서 및 이를 포함하는 공기 흡입형 복합 가스 감지 장치
WO2018187450A1 (en) * 2017-04-06 2018-10-11 Carrier Corporation Moderate-to-low global warming potential value refrigerant leak detection
KR101839948B1 (ko) * 2017-10-23 2018-03-22 주식회사 가스트론 간섭가스에 의한 오알람을 방지하는 적외선 센서를 이용한 가스 감지 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478134A (en) * 1987-04-24 1989-03-23 Mobay Corp Remotely measuring gas analyzer
JPH10132737A (ja) 1996-10-31 1998-05-22 Hitachi Cable Ltd 遠隔ガス濃度測定方法及びその装置
JP2008298638A (ja) * 2007-05-31 2008-12-11 Hitachi Cable Ltd 光式ガス濃度検出方法及び光式ガス濃度検出装置
WO2016103786A1 (ja) * 2014-12-25 2016-06-30 三菱電機株式会社 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置
WO2017044435A1 (en) * 2015-09-10 2017-03-16 Honeywell International Inc. Gas detector with normalized response and improved sensitivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053543A4
TANABE, KAZUTOSHI ET AL.: "Assessment of Global Warming Risk of Chemical Substances: Prediction of Infrared Absorption Intensity with First-Principle Calculation", REPORT OF THE CHIBA INSTITUTE OF TECHNOLOGY, no. 52, 30 November 2004 (2004-11-30), pages 75 - 81, XP009536883, ISSN: 0385-7026 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4286820A1 (fr) * 2022-06-03 2023-12-06 Thales Système de détection de fuite de fluide de refroidissement dans un équipement électronique
FR3136279A1 (fr) * 2022-06-03 2023-12-08 Thales Système de détection de fuite de fluide de refroidissement dans un équipement électronique

Also Published As

Publication number Publication date
ES2972089T3 (es) 2024-06-11
JP2021071483A (ja) 2021-05-06
CN114616456A (zh) 2022-06-10
EP4053543A1 (en) 2022-09-07
JP7114832B2 (ja) 2022-08-09
AU2020373988A1 (en) 2022-06-16
EP4053543B1 (en) 2023-12-20
EP4053543A4 (en) 2022-12-07
US20220373457A1 (en) 2022-11-24
AU2020373988B2 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2021085543A1 (ja) ガス検出装置および漏洩ガス検出システム
JP4317089B2 (ja) ガス中の不純物を定量する装置
KR102056460B1 (ko) 유리 유닛 내부에서 가스 성분 농도를 측정하기 위한 방법 및 기기
US11061002B2 (en) Photoacoustic gas analyzer for determining species concentrations using intensity modulation
CN108351294A (zh) 具有归一化响应和改进灵敏度的气体检测器
US20120147375A1 (en) Dryness fraction measuring device and dryness fraction measuring method
JP2010536042A (ja) 長光路大気監視測定装置
JP6481764B2 (ja) ガス濃度検出装置
JP2004533620A (ja) 気体識別装置
JP2016223640A (ja) 冷凍空調装置
Zeninari et al. Photoacoustic detection of methane in large concentrations with a Helmholtz sensor: simulation and experimentation
US10753865B2 (en) Identifying targeted gaseous chemical compound
JP2006010697A (ja) ガスセンサ構造内の結露防止方法
JP2011169633A (ja) ガス濃度算出装置およびガス濃度計測モジュール
JP2003294567A (ja) 気体漏洩可視化および測距装置
JP3197241B2 (ja) 水蒸気検知装置
JP2006292604A (ja) 断熱材の断熱特性リモートセンシング方法及び装置
JP2006269596A (ja) フラッシュランプ発光装置
KR101623490B1 (ko) 독성가스의 광범위 측정용 반사형 적외선 검출기를 이용한 가스 측정 장치 및 방법, 그리고 이를 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체
Huber et al. Miniaturized photoacoustic carbon dioxide sensor with integrated temperature compensation for room climate monitoring
Konopelko et al. Investigation of spectral characteristics of an optical-absorption gas analyzer for monitoring freons in the air
JP2010060484A (ja) 気体セル、気体サンプル室、及び、濃度測定装置
KR102410126B1 (ko) 비분산식 유해 가스 검출 장치 및 방법
US20220146459A1 (en) Gas detection system
JP2007101479A (ja) 凝縮センサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020882466

Country of ref document: EP

Effective date: 20220530

ENP Entry into the national phase

Ref document number: 2020373988

Country of ref document: AU

Date of ref document: 20201029

Kind code of ref document: A